
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A Major Project Report

On

LIVE CAMERA FEED SCENE DESCRIPTOR FOR VISUALLY

IMPAIRED

Submitted By:

AADITYA MANI SUBEDI (PUL075BCT001)

ARPAN GYAWALI (PUL075CT014)

BIDHAN KHATIWADA (PUL075BCT018)

BIJAYA SHRESTHA (PUL075BCT020)

A PROJECT WAS SUBMITTED TO THE DEPARTMENT OF

ELECTRONICS AND COMPUTER ENGINEERING IN PARTIAL

FULFILLMENT OF THE REQUIREMENT FOR THE BACHELOR’S

DEGREE IN COMPUTER ENGINEERING

(April 30, 2023)

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A Major Project Report

On

LIVE CAMERA FEED SCENE DESCRIPTOR FOR VISUALLY

IMPAIRED

Submitted By:

AADITYA MANI SUBEDI (PUL075BCT001)

ARPAN GYAWALI (PUL075CT014)

BIDHAN KHATIWADA (PUL075BCT018)

BIJAYA SHRESTHA (PUL075BCT020)

Submitted To:

DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING

LALITPUR, NEPAL

(April 30, 2023)

PAGE OF APPROVAL

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certifies that they have read and recommended to the Institute of Engineer-

ing for acceptance of a project report entitled "LIVE CAMERA FEED SCENE DESCRIP-

TOR FOR VISUALLY IMPAIRED" submitted by Aaditya Subedi, Arpan Gyawali, Bid-

han Khatiwada, Bijaya Shrestha in partial fulfillment of the requirements for the Bachelor’s

degree in Electronics & Computer Engineering.

.............................

Supervisor

Daya Sagar Baral

Assistant Professor

Department of Electronics and Computer

Engineering,

Pulchowk Campus, IOE, TU.

.............................

Internal examiner

Assistant Professor

Department of Electronics and Computer

Engineering,

Pulchowk Campus, IOE, TU.

.............................

External examiner

Assistant Professor

Department of Electronics and Computer Engineering,

Pulchowk Campus, IOE, TU.

Date of approval:

ii

COPYRIGHT

The author has agreed that the Library, Department of Electronics and Computer Engineering,

Pulchowk Campus, Institute of Engineering may make this report freely available for inspec-

tion. Moreover, the author has agreed that permission for extensive copying of this project

report for scholarly purposes may be granted by the supervisors who supervised the project

work recorded herein or, in their absence, by the Head of the Department wherein the project

report was done. It is understood that the recognition will be given to the author of this report

and to the Department of Electronics and Computer Engineering, Pulchowk Campus, Institute

of Engineering in any use of the material of this project report. Copying or publication or the

other use of this report for financial gain without approval of to the Department of Electronics

and Computer Engineering, Pulchowk Campus, Institute of Engineering and author’s written

permission is prohibited.

Request for permission to copy or to make any other use of the material in this report in whole

or in part should be addressed to:

Head

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering, TU Lalitpur,Nepal.

iii

ACKNOWLEDGEMENTS

Working with a variety of people whose thoughts and ideas have directly or indirectly aided or

motivated us has been a wonderful pleasure. We’d want to express our gratitude to everyone

who helped us finish this project, which was truly an academic experience. We’d like to express

our gratitude to our supervisor Assistant Prof. Daya Sagar Baral for giving us the information,

invaluable suggestions, and assistance we needed to complete this project. We appreciate and

respect the initiative taken by the Department of Electronics and Computer Engineering, Pul-

chowk Campus in indulging the students in this self-practicing method of education to famil-

iarize us with the tackling of real-world problems, meanwhile also enhancing our capabilities

to work as a team.We’d also like to thank all of our friends who have supported us with this

project, both directly and indirectly.

iv

ABSTRACT

Every visually impaired people wants to interact with their nature, surrounding and people.

They want to feel the event happening on the nature but are naturally deprived. Our product

aims at assisting visually impaired individuals in navigating their way around Pulchowk Cam-

pus and describing the actions happening inside the campus. The product utilizes a live camera

feed and visual transformer techniques to generate a descriptive caption and its audio output,

providing the user with a proper and timely description of their surroundings. The product is

designed to work on some landmark of the campus and wide range of activities. We suggest a

model that is fine tuned on the pre-trained Git-base-Vatex model in our campus video datasets

to describe the surrounding scene.

Keywords: Video Captioning, Generative Image-To-Text Transformer, processor, Pulchowk

Campus, Vatex dataset, WebRTC

v

TABLE OF CONTENTS

PAGE OF APPROVAL . ii

COPYRIGHT . iii

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF ABBREVIATION . ix

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Problem Statement . 2

1.4 Scope of Project . 2

2 LITERATURE REVIEW . 3

2.1 Related Works . 3

3 THEORY . 5

3.1 Artificial Intelligence . 5

3.1.1 Types of Artificial Intelligence: 5

3.2 Machine Learning . 6

3.3 Neural Network . 7

3.3.1 Types of Neural Network: 8

3.4 Deep Learning . 8

3.5 NLP . 9

3.5.1 Natural language techniques: 9

3.6 RNN . 10

3.7 LSTM . 11

3.8 Transformer Model . 12

3.8.1 Architecture . 13

3.8.2 Encoder . 13

3.8.3 Decoder . 15

3.8.4 Training process . 16

3.9 GIT . 17

3.9.1 Git-base-vatex . 18

vi

3.10 WebRTC . 19

3.11 Fine-tuning with transfer learning . 20

3.12 Multithreading . 21

3.13 Text-to-Speech . 21

3.14 Technology Used . 22

4 METHODOLOGY . 25

4.1 Process Model . 25

4.2 Planning and research . 25

4.3 Training and Inferencing of model . 26

4.3.1 Data Collection and pre-processing 26

4.3.2 Fine tuning . 27

4.3.3 Inferencing . 28

4.4 Working Principle of our application 28

4.4.1 Video Description Interface 28

4.4.2 WebRTC . 28

4.4.3 Backend Server . 29

4.4.4 Inference Model . 29

5 SYSTEM DESIGN . 30

5.1 Block Diagram . 30

5.2 Use Case Diagram . 30

5.3 Sequence Diagram . 31

6 RESULTS AND DISCUSSION . 32

7 CONCLUSION . 36

8 LIMITATIONS AND FUTURE ENHANCEMENTS 37

8.1 Limitations . 37

8.2 Future works . 37

REFERENCES . 38

APPENDICES . 39

vii

LIST OF FIGURES

3.1 Artificial Intelligence . 6

3.2 Machine Learning . 7

3.3 Neural Network . 7

3.4 Deep Learning . 9

3.5 Natural Language Processing . 10

3.6 RNN . 11

3.7 LSTM Model . 11

3.8 Gate in LSTM . 12

3.9 Architecture of Transformer Model . 13

3.10 Encoder . 14

3.11 Decoder . 15

3.12 Seq2Seq Attention Mask . 18

3.13 Image Captioning . 19

3.14 Video Captioning . 19

3.15 GIT architecture . 19

4.1 Epoch vs Loss . 27

5.1 Block Diagram . 30

5.2 Use Case Diagram . 30

5.3 Sequence Diagram . 31

6.1 CIDEr score vs Model . 33

6.2 Example actions at Pulchowk Campus landmarks 34

6.3 Example general actions . 35

8.1 Splash Screen and Dashboard . 39

8.2 Start camera and waiting for connection . 40

8.3 Result screenshots . 41

8.4 uploading videos . 42

viii

LIST OF ABBREVIATION

TTS Text-To-Speech

NLP Natural Language Processing

LSTM Long Short Term Memory

CNN Convolutional Neural Network

AI Artificial Neural Network

ROUGE Recall-Oriented Understudy for Gisting Evaluation

GIT Generative Image to Text

WEBRTC Web Real-Time Communication)

W3C Wide Web Consortium

RTP Real Time Protocol

SVC Scalable Video Coding

BLEU Bilingual Evaluation Understudy

METEOR Metric for Evaluation of Translation with Explicit ORdering

API Application Programming Interface

CIDEr Consensus-based Image Description Evaluation

ix

1. INTRODUCTION

1.1. Background

Describing visual content with natural language text has recently received increased interest,

especially describing images with a single sentence[1, 2].Video description has so far seen less

attention despite its important applications in human-robot interaction, video indexing, and de-

scribing movies for the blind. Various mobile apps have been developed to help especially

visually impaired person. In the verge of implementing numerous and wide range of features

on a single application, rose a problem in user interactivity with increased complexity. Further-

more, none of the pre-existing application captions video in real time. Rather they capture an

image of real time process it and only describes the object on the scene rather than the action.

While image description handles a variable length output sequence of words, video description

also has to handle a variable length input sequence of frames. Related approaches to video de-

scription have resolved variable length input by holistic video representations[3], pooling over

frames[4], or sub-sampling on a fixed number of input frames [5].

This work introduces a product that is capable of taking real-time video as an input and gen-

erating a description of the scene in real-time. The output of the product includes a caption

that is both displayed on the screen and spoken aloud in a way that can be heard by humans.

In contrast to other approaches, this technology provides a real-time solution for generating

captions for live scene.

1

1.2. Objectives

The objectives of the project are:

1. Design an application that a visually impaired person can use to get informed about the

actions happening around Pulchowk Campus

2. Design an intuitive and user-friendly interface that visually impaired individuals can use

to interact with the system

3. Develop an algorithm or deep learning model that can extract features from live camera

feed and generate a natural language description of the scene.

4. Ensure that the system operates in near real-time to provide immediate feedback to the

user.

1.3. Problem Statement

There aren’t any affordable and applicable technology that can assist visually impaired people

to make them aware of the surrounding. Therefore, there is a need for a system that can auto-

matically describe the video scene around a person.

Our automated solution can provide an assist to visually impaired people making them aware

of the surrounding.Our product focuses to a visually impaired person visiting a Pulchowk Cam-

pus. One can easily be aware of the action taking place in the Campus premises.

1.4. Scope of Project

The prime focus of the application is provide an aid to visually impaired person to describe

about the live scene happening around Pulchowk Campus. The user can be a student from a

Campus or any individual visiting a Pulchowk Campus. This product can be scaled up so that

it can be used by visually impaired person to get informed about general live action in abstract

surrounding.

Furthermore, it can help in object detection by identifying and localizing objects in the scene,

such as cars, buildings, people, animals, and other relevant entities. It also assist in recognizing

and categorizing actions that are taking place in the scene, such as walking, running, jumping,

waving, or other relevant movements, and also events that are occurring in the scene, such as a

protest, a car accident, a fire, or other significant occurrences.

2

2. LITERATURE REVIEW

The problem of generating descriptions in open domain videos is difficult not just due to the

diverse set of objects, scenes, actions, and their attributes, but also because it is hard to deter-

mine the salient content and describe the event appropriately in context.

Early work on scene descriptor considered tagging videos with metadata [6] and clustering

captions and videos [7] for retrieval tasks. Several previous methods for generating sentence

descriptions used a two stage pipeline that first identifies the semantic content (subject, verb,

object) and then generates a sentence based on a template. This typically involved training

individual classifiers to identify candidate objects, actions and scenes. They then use a proba-

bilistic graphical model to combine the visual confidences with a language model in order to

estimate the most likely content (subject, verb, object, scene) in the video, which is then used

to generate a sentence. While this simplified the problem by detaching content generation and

surface realization, it requires selecting a set of relevant objects and actions to recognize. More-

over, a template-based approach to sentence generation is insufficient to model the richness of

language us ed in human descriptions – e.g., which attributes to use and how to combine them

effectively to generate a good description.

In contrast, our approach avoids the separation of content identification and sentence genera-

tion by learning to directly map videos to full human-provided sentences, learning a language

model simultaneously conditioned on visual features.

2.1. Related Works

In [4], LSTMs are used to generate video descriptions by pooling the representations of individ-

ual frames. Their technique extracts CNN features for frames in the video and then mean-pools

the results to get a single feature vector representing the entire video. They then use an LSTM

as a sequence decoder to generate a description based on this vector.

The approach in [1] also generates video descriptions using an LSTM; however, they employ

a version of the two-step approach that uses CRFs to obtain semantic tuples of activity, object,

tool, and locatation and then use an LSTM to translate this tuple into a sentence. Moreover, the

model in [1] is applied to the limited domain of cooking videos.

Another recent project [8] uses LSTMs to predict the future frame sequence from an encoding

of the previous frames.

3

Various Mobile Application like "Be My Eyes", "My Eyes", "Envision AI", "Seeing AI" are

available for visually impaired people that can help with a variety of tasks.

’Seeing AI’ developed by Microsoft uses CNN model that take recent image as an input and

describe about the object on the scene.

’TapTapSee’ uses the camera on a smartphone or tablet to identify objects and read aloud

descriptions of them.

’Envision AI’ is a mobile app that uses CNN Model to assist individuals, help users recognize

objects, read text, and navigate their environment.

Most of these application, in context of describing a scene lacks a feature of captioning a real-

time action. Rather, they capture an image process on it and provides an outcome in the form of

detected object or a person. In contrast, our product rather focuses on captioning a live action

and provides with an audio output that makes any visually impaired person to know about what

is actually happening in his surrounding inside Pulchowk Campus.

4

3. THEORY

3.1. Artificial Intelligence

Artificial Intelligence (AI) is the field of computer science that focuses on creating intelligent

machines that can perform tasks that typically require human intelligence. AI has seen tremen-

dous growth and development over the past few decades, with breakthroughs in areas such as

machine learning, natural language processing, computer vision, and robotics. These technolo-

gies are being applied to a wide range of industries and use cases, from healthcare and finance

to manufacturing and transportation.The goal of AI is to create algorithms and systems that can

learn from data, reason, make predictions, and take actions.

3.1.1. Types of Artificial Intelligence:

1. Supervised learning: This type of AI is trained on labeled data, where the desired output

is known. The machine is taught to recognize patterns in the data and map them to the

correct output. For example, in image recognition, a supervised learning algorithm would

be trained on labeled images of cats and dogs, and then would be able to classify new

images as either a cat or a dog based on what it has learned.

2. Unsupervised learning: This type of AI is trained on unlabeled data, where the desired

output is unknown. The machine is taught to identify patterns and structures in the data

without any specific guidance. For example, in clustering, an unsupervised learning

algorithm could be used to group similar customers together based on their buying habits,

without knowing in advance what specific characteristics to look for.

3. Reinforcement learning: This type of AI is trained through trial and error, where the

machine receives rewards for certain actions and punishments for others. The machine

learns to make decisions based on the consequences of its actions. For example, in game

playing, a reinforcement learning algorithm would be trained to maximize its score based

on the rewards it receives for different moves. In robotics, reinforcement learning can be

used to train robots to perform tasks in the real world.

5

Figure 3.1: Artificial Intelligence

3.2. Machine Learning

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses

on the use of data and algorithms to imitate the way that humans learn, gradually improving its

accuracy, without being explicitly programmed.

Over the last couple of decades, the technological advances in storage and processing power

have enabled some innovative products based on machine learning, such as Netflix’s recom-

mendation engine and self-driving cars.It is an important component of the growing field of

data science. Through the use of statistical methods, algorithms are trained to make classi-

fications or predictions, and to uncover key insights in data mining projects. These insights

subsequently drive decision making within applications and businesses, ideally impacting key

growth metrics. As big data continues to expand and grow, the market demand for data scien-

tists will increase. They will be required to help identify the most relevant business questions

and the data to answer them.

Machine learning algorithms are typically created using frameworks that accelerate solution

development, such as TensorFlow and PyTorch.

6

Figure 3.2: Machine Learning

3.3. Neural Network

Neural networks, also known as artificial neural networks (ANNs) or simulated neural networks

(SNNs), are a subset of machine learning and are at the heart of deep learning algorithms. Their

name and structure are inspired by the human brain, mimicking the way that biological neurons

signal to one another.

Artificial neural networks (ANNs) are comprised of a node layers, containing an input layer,

one or more hidden layers, and an output layer. Each node, or artificial neuron, connects to

another and has an associated weight and threshold. If the output of any individual node is

above the specified threshold value, that node is activated, sending data to the next layer of the

network. Otherwise, no data is passed along to the next layer of the network.

Neural networks rely on training data to learn and improve their accuracy over time. However,

once these learning algorithms are fine-tuned for accuracy, they are powerful tools in computer

science and artificial intelligence, allowing us to classify and cluster data at a high velocity.

Tasks in speech recognition or image recognition can take minutes versus hours when compared

to the manual identification by human experts. One of the most well-known neural networks is

Google’s search algorithm.

Figure 3.3: Neural Network

7

3.3.1. Types of Neural Network:

1. Multi-layer perceptrons (MLPs) : This type of network is composed of an input layer,

one or more hidden layers, and an output layer. The information flows from the input

layer through the hidden layers to the output layer in a forward direction, with each layer

performing a nonlinear transformation of the input data. These networks are used for

classification and regression tasks, such as image recognition or predicting stock prices.

2. Recurrent neural networks: This type of network is designed to process sequential data,

where the order of the input data is important. The network has loops that allow informa-

tion to be passed from one step to the next, and can learn from previous inputs to predict

future outputs. Recurrent neural networks are widely used in natural language processing

tasks such as text generation, machine translation, and speech recognition.

3. Convolutional neural networks: This type of network is designed to process image and

video data. They use filters that can identify features such as edges, corners, and textures

in the image. The filters are applied to overlapping regions of the image to generate

feature maps that are used to make predictions. Convolutional neural networks are widely

used in computer vision tasks such as object detection, image classification, and facial

recognition.

3.4. Deep Learning

Deep Learning, is a more evolved branch of machine learning, and uses layers of algorithms to

process data, and imitate the thinking process, or to develop abstractions.

It is often used to visually recognize objects and understand human speech. Information is

passed through each layer, with the output of the previous layer providing input for the next

layer. The first layer in a network is called the input layer, while the last is called an output

layer.

All the layers between input and output are referred to as hidden layers. Each layer is typically

a simple, uniform algorithm containing one kind of activation function.In a fully connected

Deep neural network, there is an input layer and one or more hidden layers connected one after

the other. Each neuron receives input from the previous layer neurons or the input layer. The

output of one neuron becomes the input to other neurons in the next layer of the network, and

this process continues until the final layer produces the output of the network. The layers of the

8

neural network transform the input data through a series of nonlinear transformations, allowing

the network to learn complex representations of the input data.

It is capable of learning complex patterns and relationships within data. In deep learning,

we don’t need to explicitly program everything. It has become increasingly popular in recent

years due to the advances in processing power and the availability of large datasets. Because

it is based on artificial neural networks (ANNs) also known as deep neural networks (DNNs).

These neural networks are inspired by the structure and function of the human brain’s biological

neurons, and they are designed to learn from large amounts of data.

Figure 3.4: Deep Learning

3.5. NLP

NLP is a subfield of Artificial Intelligence (AI) that focuses on enabling machines to under-

stand, interpret, and generate human language. It involves the use of statistical and machine

learning techniques to analyze and model natural language data, including text and speech.It is

used in a wide variety of everyday products and services. Some of the most common ways NLP

is used are through voice-activated digital assistants on smartphones, email-scanning programs

used to identify spam, and translation apps that decipher foreign languages.

3.5.1. Natural language techniques:

NLP encompasses a wide range of techniques to analyze human language. Some of the most

common techniques you will likely encounter in the field includes:

1. Sentiment analysis: An NLP technique that analyzes text to identify its sentiments, such

as “positive,” “negative,” or “neutral.” Sentiment analysis is commonly used by busi-

nesses to better understand customer feedback.

2. Summarization: An NLP technique that summarizes a longer text, in order to make it

more manageable for time-sensitive readers. Some common texts that are summarized

9

include reports and articles.

3. Keyword extraction: An NLP technique that analyzes a text to identify the most im-

portant keywords or phrases. Keyword extraction is commonly used for search engine

optimization (SEO), social media monitoring, and business intelligence purposes.

4. Tokenization: The process of breaking characters, words, or subwords down into “to-

kens” that can be analyzed by a program. Tokenization undergirds common NLP tasks

like word modeling, vocabulary building, and frequent word occurrence.

Figure 3.5: Natural Language Processing

3.6. RNN

A recurrent neural network (RNN) is a special type of artificial neural network adapted to work

for time series data or data that involves sequences. Ordinary feedforward neural networks are

only meant for data points that are independent of each other. However, if we have data in a

sequence such that one data point depends upon the previous data point, we need to modify

the neural network to incorporate the dependencies between these data points. RNNs have

the concept of “memory” that helps them store the states or information of previous inputs to

generate the next output of the sequence.The basic building block of an RNN is the recurrent

cell, which is a module that takes an input, updates its internal state, and produces an output.

The output is then fed back into the cell as input for the next time step. This allows the cell to

maintain a memory of previous inputs, which can be used to influence the output at each time

step.

10

Figure 3.6: RNN

3.7. LSTM

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of RNN,

capable of learning long-term dependencies. They were introduced by Hochreiter Schmidhu-

ber (1997), and were refined and popularized by many people in following work.1 They work

tremendously well on a large variety of problems, and are now widely used. LSTMs are ex-

plicitly designed to avoid the long-term dependency problem. Remembering information for

long periods of time is practically their default behavior, not something they struggle to learn!

The central role of an LSTM model is held by a memory cell known as a ‘cell state’ that main-

tains its state over time. The cell state is the horizontal line that runs through the top of the

below diagram. It can be visualized as a conveyor belt through which information just flows,

unchanged.

Figure 3.7: LSTM Model

Information can be added to or removed from the cell state in LSTM and is regulated by gates.

These gates optionally let the information flow in and out of the cell. It contains a pointwise

multiplication operation and a sigmoid neural net layer that assist the mechanism.

11

Figure 3.8: Gate in LSTM

The sigmoid layer gives out numbers between zero and one, where zero means ‘nothing should

be let through,’ and one means ‘everything should be let through.’ LSTM networks are indeed

an improvement over RNNs as they can achieve whatever RNNs might achieve with much

better finesse. As intimidating as it can be, LSTMs do provide better results and are truly a big

step in Deep Learning. With more such technologies coming up, you can expect to get more

accurate predictions and have a better understanding of what choices to make

3.8. Transformer Model

The transformer model was introduced to address some of the limitations of traditional recur-

rent neural networks (RNNs) and long short-term memory (LSTM) networks, which have been

widely used in natural language processing (NLP) tasks.

One of the main drawbacks of RNNs and LSTMs is that they struggle to capture long-term

dependencies in language, as they process sentences sequentially, one word at a time. This

means that the model’s ability to understand the relationship between words that are far apart

in a sentence is limited.

The transformer model overcomes this limitation by introducing the concept of self-attention,

which allows the model to weigh the importance of different words in a sentence when making

predictions. This means that the model can better understand the relationship between words

that are far apart in a sentence, and capture long-term dependencies in language more effec-

tively.

12

The transformer model is highly parallelizable, which allows it to be trained more efficiently

than RNNs and LSTMs. This is because the self-attention mechanism can be computed in par-

allel for all words in a sentence, whereas RNNs and LSTMs need to process words sequentially.

3.8.1. Architecture

The Transformer architecture follows an encoder-decoder structure but does not rely on recur-

rence and convolutions in order to generate an output. The task of the encoder, on the left

half of the Transformer architecture, is to map an input sequence to a sequence of continuous

representations, which is then fed into a decoder. And the decoder, on the right half of the

architecture, receives the output of the encoder together with the decoder output at the previous

time step to generate an output sequence.

Figure 3.9: Architecture of Transformer Model

3.8.2. Encoder

The encoder, on the left half of the Transformer architecture which is shown below as:

13

Figure 3.10: Encoder

The encoder of the Transformer model is responsible for processing the input sequence, which

could be a sequence of words in natural language, an audio signal, or any other sequence-based

input. The encoder consists of a stack of N = 6 identical layers, where each layer is composed

of two sublayers: a multi-head self-attention mechanism and a fully connected feed-forward

network.

The multi-head self-attention mechanism is the key innovation of the Transformer model. It

allows the model to weigh the importance of different words in a sentence when making pre-

dictions. Specifically, the self-attention mechanism generates multiple "heads," each of which

receives a linearly projected version of the input sequence, i.e., queries, keys, and values. These

linear projections are learned weights that allow the model to attend to different aspects of the

input sequence. The self-attention mechanism then computes a weighted sum of the values

based on the similarity between the queries and the keys. The outputs of the different heads

are concatenated and passed through a linear transformation to produce the final output of the

self-attention mechanism. This process is repeated for each position in the input sequence.

The fully connected feed-forward network is another sublayer of each Transformer encoder

layer. It consists of two linear transformations with ReLU activation in between. The pur-

pose of this sublayer is to introduce nonlinearity and enable the model to learn more complex

representations of the input sequence.

14

Each of the two sublayers in each Transformer encoder layer has a residual connection around

it. This means that the output of the sublayer is added to the input of the sublayer, and the

result is passed through a normalization layer to mitigate the effect of vanishing gradients

during training. The normalization layer performs layer normalization, which normalizes the

sum computed between the sublayer input and the output generated by the sublayer itself.

3.8.3. Decoder

The encoder, on the right half of the Transformer architecture which is shown below as:

Figure 3.11: Decoder

The decoder of the Transformer model is responsible for generating the output sequence given

the encoded input sequence. It consists of a stack of N = 6 identical layers, each of which is

composed of three sublayers: a multi-head self-attention mechanism, a multi-head attention

mechanism over the encoder output, and a fully connected feed-forward network.

The first sublayer in each decoder layer is a multi-head self-attention mechanism, which is

15

similar to the one used in the encoder. However, there is a key difference: during training,

the decoder has access to the entire output sequence generated so far, including the current

time step, while during inference, the decoder only has access to the previously generated

output. Therefore, the self-attention mechanism in the decoder uses masked attention, where

the attention weights for the current time step are set to zero, so that the decoder does not attend

to itself.

The second sublayer in each decoder layer is a multi-head attention mechanism over the en-

coder output. This sublayer allows the decoder to attend to different parts of the input sequence

while generating the output. Specifically, each head receives a linearly projected version of the

decoder input, i.e., queries, and the encoder output, i.e., keys and values. The attention mecha-

nism then computes a weighted sum of the values based on the similarity between the queries

and the keys. The outputs of the different heads are concatenated and passed through a linear

transformation to produce the final output of the multi-head attention mechanism.

The third sublayer in each decoder layer is a fully connected feed-forward network, which is

similar to the one used in the encoder. Its purpose is to introduce nonlinearity and enable the

model to learn more complex representations of the input sequence.

3.8.4. Training process

The training process of the Transformer architecture involves optimizing a loss function that

measures the discrepancy between the predicted output sequence and the ground truth se-

quence. This loss function is typically the cross-entropy loss, which measures the difference

between the predicted probability distribution over the output vocabulary and the true distri-

bution. The training process of the Transformer architecture can be divided into two phases:

pre-training and fine-tuning. In the pre-training phase, the model is trained on a large corpus of

text data using an unsupervised learning objective, such as language modeling or masked lan-

guage modeling. The pre-training objective is designed to encourage the model to learn useful

representations of the input sequence, which can then be finetuned on downstream tasks. In the

fine-tuning phase, the pre-trained model is further trained on a specific downstream task using

supervised learning. The fine-tuning process involves replacing the final layer(s) of the model

with task-specific layers and optimizing the model parameters to minimize the task-specific

loss.

16

3.9. GIT

The Generative Image to Text Transformer model (GIT) [9] is a neural network model that

generates natural language descriptions of images. It is based on the Transformer architecture,

consisting of three main components: an image encoder, a text encoder, and a text decoder.

The image encoder is based on the contrastive pre-trained model. The input is the raw image

and the output is a compact 2D feature map, which is flattened into a list of features. With an

extra linear layer and a layernorm layer, the image features are projected into D dimensions,

which are the input to the text decoder. It is based on a convolutional neural network (CNN)

that extracts features from the input image. The features are then fed into a self-attention

mechanism, which allows the model to attend to different parts of the image and extract relevant

visual information.

In the text encoder, the text is tokenized and embedded into D dimensions, followed by an

addition of the positional encoding and a layernorm layer. This gives a text embeddings which

allows the model to attend to different parts of the text and extract relevant linguistic informa-

tion.

The text decoder is a transformer module to predict the text description. The transformer mod-

ule consists of multiple transformer blocks, each of which is composed of one self-attention

layer and one feed-forward layer. Here, the image features are concatenated with the text em-

beddings as the input to the transformer module. The text begins with the [BOS] token, and is

decoded in an auto-regressive way until the [EOS] token or reaching the maximum steps. The

seq2seq attention mask as in figure below is applied such that the text token only depends on

the preceding tokens and all image tokens, and image tokens can attend to each other. This

is different from a unidirectional attention mask, where not every image token can rely on all

other image tokens.

17

Figure 3.12: Seq2Seq Attention Mask

Here, If (i, j) is 1, the i-th output can depend on the j-th input; otherwise, not. For each image-

text pair, let I be the image, yi, i ∈ 1, . . . ,N be the text tokens, y0 be the [BOS] token, and yN+1

be the [EOS] token. We apply the language modeling (LM) loss to train the model:

LLM =
1

N +1

N+1

∑
i=1

CE(yi, p(yi|I,{y j}i−1
j=0))

where CE is the cross-entropy loss with label smoothing of 0.1.

3.9.1. Git-base-vatex

Git-base-vatex is a transformer model that has been obtained by fined tuning git-base model

on Vatex dataset for video captioning, which generates captions for video sequences based on

visual information.

VATEX [10] is a new large-scale multilingual video description dataset, which contains over

35k videos and about 10 captions for each video. VATEX is characterized by the following

major unique properties. First, it contains both English and Chinese descriptions at scale,

which can support many multilingual studies that are constrained by monolingual datasets.

Secondly, VATEX has the largest number of clip-sentence pairs with each video clip annotated

with multiple unique sentences, and every caption is unique in the whole corpus. Thirdly,

VATEX contains more comprehensive yet representative video content, covering 600 human

activities in total. Furthermore, both the English and Chinese corpora in VATEX are lexically

richer and thus can empower more natural and diverse caption generation.

Six frames of each data is taken from the video and given to the image encoder as explained

18

above. Then their temporal embedding are extracted. These features are then concatenated

with text encoding and given to text decoder.

Figure 3.13: Image Captioning Figure 3.14: Video Captioning

Figure 3.15: GIT architecture

3.10. WebRTC

WebRTC (Web Real-Time Communication) is an open-source technology and framework that

allows real-time communication, such as audio and video calls, between web browsers and

mobile applications. WebRTC enables peer-to-peer communication without requiring any plu-

gins, downloads, or installations, making it an attractive option for real-time applications such

as video conferencing, online gaming, and file sharing.

WebRTC was first developed by Google in 2011 and is now a standard supported by the World

Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF). WebRTC uses

a combination of JavaScript APIs and open-source protocols such as STUN (Session Traversal

Utilities for NAT) and ICE (Interactive Connectivity Establishment) to establish and maintain

a direct communication channel between peers.

Major components of WebRTC include several JavaScript APIs:

• getUserMedia acquires the audio and video media (e.g., by accessing a device’s camera

and microphone).

• RTCPeerConnection enables audio and video communication between peers. It per-

forms signal processing, codec handling, peer-to-peer communication, security, and band-

width management.

19

• RTCDataChannel allows bidirectional communication of arbitrary data between peers.

The data is transported using SCTP over DTLS.[22] It uses the same API as WebSockets

and has very low latency.

The WebRTC API also includes a statistics function:

• getStats allows the web application to retrieve a set of statistics about WebRTC sessions.

These statistics data are being described in a separate W3C document.

The WebRTC API includes no provisions for signaling, that is discovering peers to connect to

and determine how to establish connections among them. Applications use Interactive Con-

nectivity Establishment for connections and are responsible for managing sessions, possibly

relying on any of Session Initiation Protocol, Extensible Messaging and Presence Protocol,

Message Queuing Telemetry Transport, Matrix, or another protocol. Signaling may depend on

one or more servers.

You can group WebRTC applications into 4 broad categories:

1. Conversational voice and video: Applications that need the ability to have a person

communicate with others in real time and in a conversational manner. These will more

often than not end up using WebRTC

2. Live streaming: while WebRTC isn’t the most popular choice for streaming, it is one

of the best technologies available for low-latency live streaming. If you need to stream

something to one or more users and maintain really low latency to enhance the interactiv-

ity (things like cloud gaming, gambling, auctions, webinars, etc) – then WebRTC might

be a great choice

3. Data transfer: you can send voice and video with WebRTC, but you can also send

arbitrary data. This can be used to share huge files between machines with little need for

server space for example. Or it can be used to create a bittorrent like experience

4. Privacy: since WebRTC runs direct between browsers, it is sometimes used to enhance

privacy. Doing this by simply not sending the media or data via servers at all

3.11. Fine-tuning with transfer learning

Fine-tuning with transfer learning is a technique in mac hine learning where a pre-trained model

is adapted to a new task by updating some of its parameters. Transfer learning is the practice

20

of using knowledge gained from solving one problem to help solve another related problem.

In the case of fine-tuning with transfer learning, a pre-trained model is used as a starting point,

and then the model is fine-tuned on a new task using a smaller amount of data than would

be required to train the model from scratch. Fine-tuning typically involves updating the final

layers of the pre-trained model to suit the new task, while freezing the weights of the lower

layers, which capture more general features.

Fine-tuning with transfer learning can significantly reduce the amount of time and resources

required to train a model, as well as improve its performance on new tasks. It is a powerful

technique that has enabled significant progress in various areas of machine learning, including

computer vision, speech recognition, and natural language processing.

3.12. Multithreading

Multithreading is a programming concept that allows multiple threads of execution to run con-

currently within a single process. A thread is a lightweight unit of execution that consists of

a program counter, a stack, and a set of registers. Multiple threads can exist within a single

process, and they can share the same memory space.

Multithreading can improve the performance of programs that have a lot of I/O or that need

to perform multiple tasks simultaneously. By allowing multiple threads to run concurrently,

a program can take advantage of modern CPUs that have multiple cores or hyperthreading

capabilities.

Even though the processor executes only one instruction at a time, threads from multiple pro-

grams are executed so fast that it appears multiple programs are executing concurrently.

Each CPU cycle executes a single thread that links to all other threads in its stream. This

synchronization process occurs so quickly that it appears all the streams are executing at the

same time.Each thread contains information about how it relates to the overall program. While

in the asynchronous processing stream, some threads are executed while others wait for their

turn.

3.13. Text-to-Speech

Text-to-Speech (TTS) is a technology that has become increasingly popular in recent years. It

is a process that converts written text into spoken words, making digital content accessible to

21

people with visual impairments or reading difficulties. TTS works by analyzing the text and

using natural language processing algorithms to determine the pronunciation of each word. The

system then generates a waveform that represents the spoken words, which can be played back

through a speaker or headphones. TTS has a wide range of applications, including accessibility,

language learning, navigation, and assistive technology. For instance, it can help people who

have difficulty reading to access digital content such as books, articles, or websites. It can also

be used to improve pronunciation and listening skills in language learning, provide audible

directions in navigation systems, or serve as an assistive technology for people with speech

disabilities.

3.14. Technology Used

• Programming Languages:

– Python3 (For Deep Learning and Backend):Python is a powerful, high-level pro-

gramming language that is simple to read and has a clean structure. It has an in-

terpreted nature, meaning you can run code without the intermediate compilation

step. Python is rapidly being adopted by fortune organizations and has upcoming

libraries that support machine learning, data science, database manipulation, and

AI. Python 3 is an interpreted language, which means that code written in Python

is executed line by line, rather than being compiled first. This makes it easier to

write and test code, and it also allows for more rapid development cycles.It is a

dynamically typed language, which means that variables can change their data type

during runtime. This makes it more flexible and easier to use than statically typed

languages like C++ or Java.

Python 3 is an object-oriented language, which means that it supports object-oriented

programming principles such as encapsulation, inheritance, and polymorphism.

This allows developers to write modular and reusable code, which can help to re-

duce development time and improve code quality.It has a large number of third-

party libraries that make it a popular choice for data science, machine learning,

web development, and more. Some popular libraries include NumPy, Pandas, Mat-

plotlib, Django, Flask, and TensorFlow.

Python is a cross-platform language, which means that code written in Python can

be run on different operating systems like Windows, Mac, and Linux. This makes

22

it a flexible and versatile choice for developers who need to create applications that

run on multiple platforms.It comes with a comprehensive standard library that pro-

vides built-in support for a wide range of tasks such as file I/O, networking, regular

expressions, and more. This can help to reduce development time and make it easier

to write high-quality code.

– Flutter (For Frontend):Flutter is an open-source mobile app development frame-

work developed by Google. It is designed to help developers build high-performance,

natively compiled mobile apps for iOS, Android, and the web from a single code-

base.It uses the Dart programming language, which is a statically typed language

that has a concise and expressive syntax. This makes it easy for developers to write

and read code, which can help to reduce development time and improve code qual-

ity.One of the key features of Flutter is its widget-based architecture. Widgets are

the basic building blocks of a Flutter app, and they can be combined in various ways

to create complex and dynamic user interfaces. Flutter provides a large number of

built-in widgets, as well as support for custom widgets, which allows developers to

create unique and visually appealing interfaces.

Flutter provides a hot-reload feature, which allows developers to see the changes

they make to their code in real-time, without having to recompile the entire app.

This makes it easy to experiment and iterate quickly during the development pro-

cess.It also provides a rich set of tools and libraries, including the Flutter SDK, the

Dart SDK, and the Flutter plugin for Android Studio or Visual Studio Code. These

tools make it easy to develop, test, and deploy apps for a wide range of devices and

platforms.

– WebRTC (For Integrating Layer):WebRTC (Web Real-Time Communications) is an

open-source technology that enables real-time communication between web browsers

and mobile applications. It provides a set of APIs that allow developers to add

voice and video chat, file sharing, and data transfer capabilities to their applications

without requiring the installation of additional software or plugins. WebRTC uses

peer-to-peer networking technology to establish secure and efficient connections

between devices, and it supports multiple platforms, including desktop and mobile

23

devices. Overall, WebRTC simplifies real-time communication and collaboration

for developers and end-users.

• Frameworks:

– PyTorch (For Deep Learning):PyTorch is an open-source machine learning library

developed by Facebook’s AI Research team that is widely used for building and

training deep learning models. It supports both CPU and GPU computation and

provides a variety of tools and modules for building and training neural networks.

PyTorch is known for its dynamic computational graph capabilities, which make it

easy to build complex models with variable-length inputs. Additionally, PyTorch

has a user-friendly interface for debugging and visualizing the training process, with

many resources and tutorials available online.

– Aiohttp (For Backend Server):Aiohttp is an open-source Python library for building

asynchronous HTTP-based web services and clients. It is built on top of asyncio,

a Python library for writing concurrent code, and provides an easy-to-use API for

building and consuming HTTP APIs. Aiohttp supports both client and server-side

implementations, making it a versatile tool for web developers. It also provides

support for HTTP/2, WebSockets, and secure HTTPS connections. Overall, aiohttp

simplifies the process of building high-performance and scalable web applications

in Python.

24

4. METHODOLOGY

4.1. Process Model

The Agile software development methodology is a straightforward and effective approach to

develop software solutions from a system requirement. The Agile process model includes the

following steps:

1. Planning: A comprehensive plan was developed to determine the time and effort re-

quired to build the project, and to assess the technical and economic feasibility of the

project.

2. Requirement Analysis: The requirements were defined and analyzed to design the var-

ious elements of the project.

3. Designing: The design phase began, and the project elements were designed based on

the requirements. This involved constructing user flow diagrams or high-level UML

diagrams.

4. Building: The work on the project started, and a working product was deployed that had

minimal functionality. The product underwent several stages of improvement.

5. Testing: The product’s quality and performance were assessed, and bugs were identified

and resolved during this phase.

The project was carried out using a process model that consisted of five iterations. The initial

iteration involved thorough planning and research to establish the project cycles, which was

followed by the execution of the process. For the subsequent iterations, the project started from

the analysis phase of the process model and progressed to testing the final product. The first

two iterations were completed within the first 2 months of the project’s conception, while the

last three iterations were done after this initial six-month period.

4.2. Planning and research

Our application employs 3 major tasks i.e image stream transmission, caption generation, and

text to speech generation. so appropriate research on these tasks needed to be done.

For the real-time video transmission from one device to another device in a real-time various

cutting-edge technologies were available like Real Time Protocol(RTP), H.264, VP9, Scalable

Video Coding (SVC), WebRTC. Among them, we choose webRTC because of its high-quality

25

Video , in-built security, low-latency and easier integration it provides through simple APIs

For the task of generating captions from a stream of images, we need to account the temporal

information between the image frames. Hugginface provides an easy-to-integrate transformer

model that employs an attention mechanism. Microsoft provides an open-source GIT-BASE

pre-trained on 4M images and GIT-LARGE pre-trained on 14M images. GIT-BASE is suitable

for our simpler application as the model is not heavy and thus offers quicker inference pro-

cessing. Various GIT-BASE models pre-trained on different image datasets like GIT-BASE-

COCO, GIT-BASE-VATEX, and GIT-BASE-MSRVTT were available . Among them, GIT-

BASE-VATEX 1 with the CIDEr score of 91.5 seems to be promising for our application. We

thus chose it, for fine-tuning with our custom datasets of Pulchowk Campus domain.

Similarly, we need to employ a text to speech mechanism inorder to generate the speech from

the predicted caption. Various flutter packages offer text-to-speech translation, flutter_azure_-

tts, rw_tts, text_to_speech, flutter_tts. We choose flutter_tts for its easier integration and easier

customization it provides.

4.3. Training and Inferencing of model

4.3.1. Data Collection and pre-processing

For this project, we collected video data inside the Pulchowk Campus boundary. The location

covered three main areas: the Dean’s office, the ICTC building, and the library. We captured

various actions of people, including walking, riding, talking on cell phones, and talking to each

other. We captured total of 232 videos where 52 videos describing actions on the ICTC build-

ings, 45 videos describing actions near Dean office,40 videos describing actions near library, 34

videos describing actions near campus cafe and 61 videos with general actions in other places

inside campus without taking location into consideration. From 232 videos, 200 are was used

for training and 32 for testing.

To capture the video, we used a mobile with a frame rate of 30 frames per second. We took

care to ensure that the camera was placed in a location that provided a clear view of the scene,

while at the same time minimizing any obstructions or distortions in the video.

After capturing the video, we split it into short 5-6 second video clips. For each clip, we wrote

a caption manually. The captions were designed to describe the actions taking place in the

video and provide context to the viewers. On average, each caption contained approximately

1https://huggingface.co/microsoft/git-base-vatex

26

https://huggingface.co/microsoft/git-base-vatex

10 words.

4.3.2. Fine tuning

We used PyTorch and Google Collab environment to fine-tune the pre-trained GIT-base-vatex

model on our custom datasets. We first initialized the model with the pre-trained weights

and biases of GIT-base-vatex model. GITAutoprocessor of git-base-vatex, encodes the images

frames and corresponding caption into the encoding vector. The encoding vector is BatchEn-

coding class. We use AdamW optimiser with the learning rate of 5e-6. The batch size is set to

2. We trained the model for 20 epochs. The average training time was 4 hours. The loss at 1st

epoch was 8.57 which reached 3.70 at the end of 20 epoch.

Figure 4.1: Epoch vs Loss

Adam Optimizer: Adam is a popular optimization algorithm used in deep learning for opti-

mizing stochastic gradient descent (SGD). It combines the advantages of two other optimization

algorithms: Adagrad and RMSProp. The Adam optimizer keeps an exponentially decaying av-

erage of past gradients and squared gradients, respectively. It is particularly effective when

dealing with large datasets and high-dimensional parameter spaces. Transformers require a lot

of computational resources to train, and the Adam optimizer has been found to be particularly

effective for optimizing the large number of parameters in these models.

27

4.3.3. Inferencing

The fine-tuned model resulted from the above fine-tuning process is then integrated with the

backend server to perform the inference task. The inferencing model(refers to fine-tuned model

on our custom datasets) takes in 6 image frames sampled from the 3 seconds continuous image

streams. The frames are encoded by the GITAutoProcessor to produce an enconding vector,

BatchEncoding class. This encoding vector is fed inside the inferencing model that generates

the caption output of maximum length 20.

4.4. Working Principle of our application

A typical live camera feed scene descriptor for visually impaired, which takes a continuous

video stream as input and give a description as output, contains the following key modules.

4.4.1. Video Description Interface

A simple camera feed interface is developed using flutter for a quick demo of the model and

its function. The interface ask for the user consent to capture the video. A user can start

the process by pressing START button. Our App then ask for the user consent to use the

device camera. When the user consent for camera use, the app then initializes a WebRTC peer

connection instance, sends the offer message to the backend server. When the backend server

is ready for RTCConnection, backend replies the answer message and the connection is said

to be established. The interface then keep forwarding the camera feed stream to the backend

server using webRTCtechnology, particularly flutter_webrtc 2in frontend. It keeps listening to

the predicated caption from the backend through RTCData channel.

For each received caption, the frontend then generates the voice through the device’s speaker

using a text-to-speech transformation mechanism.

4.4.2. WebRTC

WebRTC is an integrating layer for data communication between frontend and backend in our

application. Frontend and backend establish peer connection between them through offer and

answer message transmission. Sending and receiving offers and answers for peer connection

is done through HTTP API. On successful peer connection, the images stream is propagated

from frontend to backend through RTC track. The predicted caption is delivered from backend

to frontend through RTC data channel.
2https://pub.dev/packages/flutter_webrtc

28

https://pub.dev/packages/flutter_webrtc

4.4.3. Backend Server

The backend server for the application was implemented using the aiohttp3 framework in

Python. When the server is started, the configuration for the trained model is loaded from

a initialization.py file. Before listening to requests from the designated port, the server loads

the model using the configuration and stores it as a global variable. This prevents the loading

of the model from the disk to the memory of the GPU for each request. Although this method

reserves a certain portion of the memory of GPU constantly, this seems to be the right option

because it saves memory allocation and deallocation time for the model for each request to the

server. Then the server listens to the offer requests and sends answer responses in the form

of API for webRTC peer connection. The information backend receives on the offer message

is discussed on earlier section. When the backend is ready, it answers the frontend with the

relevant information required for peer connection. The information on the answer message is

similar to the offer message discussed earlier.

On succesful peer connection, backend keeps listening for a stream of video feed from fron-

tend, and in response it sends predicated caption from model to the frontend through webRTC

data channel. Every time a new data is sent for prediction, the server replaces the data to be

predicted in the model and recomputes the results.

The backend server continuously accumulates the captured frames for 3 seconds. All the frames

captured for 3 seconds are sampled to extract only 6 frames. These 6 sampled frames are passed

into the ML model for inference. Each inference processes run on the background in a new

thread. Running the inference on background thread enables backend server to continuously

collect the frames in real-time.

4.4.4. Inference Model

Fined tuned GIT-Base-Vatex model(pretrained on the vatex datasets) takes sampled 6 frames

from backend. It performs the inference task on a seperate thread from main thread as well

as other threads where inference process is running i.e. each chunk of frames runs inference

model on seperate thread. Once the inference process completes, it generates caption and then

triggers the backend server to inform that new caption is predicted. Each inference process

run on the background so that backend server process is freed to captured new frames while

inferencing is taking place.

3https://docs.aiohttp.org/en/stable/

29

5. SYSTEM DESIGN

5.1. Block Diagram

Figure 5.1: Block Diagram

5.2. Use Case Diagram

Figure 5.2: Use Case Diagram

30

5.3. Sequence Diagram

Figure 5.3: Sequence Diagram

31

6. RESULTS AND DISCUSSION

We trained our data in different model. Training an LSTM encoder-decoder sequence-to-

sequence model in MSVD with 2k videos was unable to provide proper result due to less

amount of data and simple architecture without any attention mechanism. While using VGG16

CNN model in encoder, we obtained the following results in test dataset:

BLUE-4: 0.192

METEOR: 0.230

CIDEr: 50.8

git-base-vatex: The git-base model by microsoft which was fine tuned in vatex dataset for

video captioning. Vatex dataset contains 35k videos and each videos are given about 10 cap-

tions. 26k videos are taken as training set, 6k as test set and 3k videos as validation set. It was

trained for 10 epochs with learning rate of 2.5×10−6

CIDEr score obtained on test was 91.5

Our fine-tuned model: Finally, we fine tuned the git-base-vatex model on our own dataset

collected at Pulchowk campus. Our dataset contains 232 videos at different landmark of pul-

chowk campus and each videos are given about 3 captions. 200 videos are taken as training set

and 32 as test set. It was trained for 20 epochs with learning rate of 5×10−6

The scored obtained on the test data on our fine tuned model are explained below:

Table 1: Evaluation Results
Metric Score

BLEU_4 0.23935256374863303

METEOR 0.29055057593408057

ROUGE_L 0.5760558588613365

CIDEr 100.19187158496112

32

Figure 6.1: CIDEr score vs Model

BLEU-4 (Bilingual Evaluation Understudy) is a metric that measures the similarity between

a machine-generated translation and a reference translation. Specifically, BLEU-4 computes

the n-gram overlap between the machine translation and the reference translation, where n

ranges from 1 to 4. BLEU-4 scores range from 0 to 1, with higher scores indicating better

translations.

METEOR (Metric for Evaluation of Translation with Explicit ORdering) is another metric

that measures the quality of machine-generated translations. METEOR combines various com-

ponents to measure the similarity between a machine translation and a reference translation.

These components include unigram precision, recall, and alignment scores, as well as various

measures of paraphrasing. METEOR scores range from 0 to 1, with higher scores indicating

better translations.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics that mea-

sure the similarity between a machine-generated summary and a reference summary. ROUGE

includes several variants, such as ROUGE-1 (which measures unigram overlap), ROUGE-2

(which measures bigram overlap), and ROUGE-L (which measures longest common subse-

quence). Like BLEU-4 and METEOR, ROUGE scores range from 0 to 1, with higher scores

indicating better summaries.

CIDEr (Consensus-based Image Description Evaluation) is a metric specifically designed

for evaluating image captioning systems. CIDEr is based on a consensus-based model of human

evaluation, where multiple reference captions are used to evaluate the quality of a machine-

generated caption. CIDEr computes a weighted combination of n-gram similarity scores be-

tween the machine-generated caption and the reference captions. CIDEr scores range from 0

to infinity, with higher scores indicating better captions.

33

Figure 6.2: Example actions at Pulchowk Campus landmarks

34

Figure 6.3: Example general actions

35

7. CONCLUSION

In conclusion, our mobile app that provides description of the scene in near real time for visu-

ally impaired people using live camera feed and helps them navigate through Pulchowk Cam-

pus. It can describe various activities happening around the campus. The transformer model

used in the app has been trained on a large dataset, ensuring accurate and reliable descriptions

of the environment. Also the app has been tested and has provided somewhat satisfying de-

scription of the scene. Overall, this app has great potential to improve the quality of life for

visually impaired individuals, enabling them to navigate and explore their environment with

more independence and confidence. Further improvements and enhancements can be made to

the app in the future, based on feedback and advancements in machine learning technology.

36

8. LIMITATIONS AND FUTURE ENHANCEMENTS

8.1. Limitations

1. The model does not include all the location inside the Pulchowk campus

2. The model could not express all domain of complex actions and activities due to limited

number of data.

3. Due to the lack of computational resources, the model may sometimes take longer than

expected to return the caption.

8.2. Future works

1. By collecting more data, all the location and more actions inside the Pulchowk campus

can be incorporated

2. High powerful GPU computing resources can be used, inorder to reduce the inference

computation time delay.

37

REFERENCES

[1] Jeff Donahue et al. “Long-term recurrent convolutional networks for visual recognition

and description”. In: (2015), pp. 2625–2634. DOI: 10.1109/CVPR.2015.7298935.

URL: https://doi.org/10.1109/CVPR.2015.7298935 (cit. on pp. 1, 3).

[2] Andrej Karpathy and Li Fei-Fei. “Deep visual-semantic alignments for generating image

descriptions”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2015, pp. 3128–3137 (cit. on p. 1).

[3] Sergio Guadarrama et al. “YouTube2Text: Recognizing and Describing Arbitrary Activ-

ities Using Semantic Hierarchies and Zero-shot Recognition”. In: 2013 IEEE Interna-

tional Conference on Computer Vision. IEEE. 2013, pp. 2712–2719 (cit. on p. 1).

[4] Subhashini Venugopalan et al. “Translating Videos to Natural Language Using Deep Re-

current Neural Networks”. In: Proceedings of the 2015 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies. 2015, pp. 1494–1504 (cit. on pp. 1, 3).

[5] Li Yao et al. “Describing Videos by Exploiting Temporal Structure”. In: arXiv preprint

arXiv:1502.08029v4 (2015) (cit. on p. 1).

[6] Hrushikesh Aradhye, George Toderici, and Jay Yagnik. “Video2Text: Learning to An-

notate Video Content”. In: 2009 IEEE International Conference on Data Mining Work-

shops. IEEE. 2009, pp. 263–270 (cit. on p. 3).

[7] Hai Huang et al. “A Multi-modal Clustering Method for Web Videos”. In: 2013 Inter-

national Symposium on Computer Technology and Control & Automation. IEEE. 2013,

pp. 707–710 (cit. on p. 3).

[8] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. “Unsupervised learn-

ing of video representations using LSTMs”. In: International Conference on Machine

Learning. JMLR.org. 2015, pp. 843–852 (cit. on p. 3).

[9] Jianfeng Wang et al. GIT: A Generative Image-to-text Transformer for Vision and Lan-

guage. 2022. arXiv: 2205.14100 [cs.CV] (cit. on p. 17).

[10] Xin Wang et al. VATEX: A Large-Scale, High-Quality Multilingual Dataset for Video-

and-Language Research. 2020. arXiv: 1904.03493 [cs.CV] (cit. on p. 18).

38

https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/CVPR.2015.7298935
https://arxiv.org/abs/2205.14100
https://arxiv.org/abs/1904.03493

APPENDICES

Figure 8.1: Splash Screen and Dashboard

39

Figure 8.2: Start camera and waiting for connection

40

Figure 8.3: Result screenshots

41

Figure 8.4: uploading videos

42

	PAGE OF APPROVAL
	COPYRIGHT
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATION
	INTRODUCTION
	Background
	Objectives
	Problem Statement
	Scope of Project

	LITERATURE REVIEW
	Related Works

	THEORY
	Artificial Intelligence
	Types of Artificial Intelligence:

	Machine Learning
	Neural Network
	Types of Neural Network:

	Deep Learning
	NLP
	Natural language techniques:

	RNN
	LSTM
	Transformer Model
	Architecture
	Encoder
	Decoder
	Training process

	GIT
	Git-base-vatex

	WebRTC
	Fine-tuning with transfer learning
	Multithreading
	Text-to-Speech
	Technology Used

	METHODOLOGY
	Process Model
	Planning and research
	Training and Inferencing of model
	Data Collection and pre-processing
	Fine tuning
	Inferencing

	Working Principle of our application
	Video Description Interface
	WebRTC
	Backend Server
	Inference Model

	SYSTEM DESIGN
	Block Diagram
	Use Case Diagram
	Sequence Diagram

	RESULTS AND DISCUSSION
	CONCLUSION
	LIMITATIONS AND FUTURE ENHANCEMENTS
	Limitations
	Future works

	REFERENCES
	APPENDICES

