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Abstract

The project aims to explore the effectiveness of using the SBERT model and vector

database for performing question similarity analysis. The project involves building

a vector database by training a sentence transformer model on a large corpus of

text data. The vector dataset is then used to perform question similarity analysis

by retrieving similar questions and similarity scores to a given search query. The

model is trained on a large corpus of ALLNLI datasets, other paraphrase datasets

such as MRPC, and PAWS, and the semantic similarity of datasets such as STS

and finally adapted on 9,282 custom-prepared engineering datasets. The sentence

transformer model is trained using the aforementioned datasets with MNR Loss

as the loss function. The effectiveness of the model is evaluated by using the STS

test dataset and test set of the MRPC. The result of the project demonstrates

that using a sentence transformer model and vector database for question similar-

ity analysis outperforms the baseline method of keyword matching. The approach

achieved a spearman correlation value of 0.863 on the STS benchmark and an

accuracy of 88.7% on the MRPC test. The Spearman correlation value in the

SBERT paper for the NLI-large dataset was below 0.80. These values show that

continuous training of the model on other datasets besides NLI helps to increase

the performance and performs better for downstream tasks. This suggests that

the use of the sentence transformer model and vector database is a promising

approach for performing question similarity analysis, which could have significant

implications for information retrieval systems.

Keywords : indexing, information retrieval, sentence transformer, vector database
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1 Introduction

1.1 Background

Natural Language Processing (NLP) is a subfield of linguistics, computer science,

and artificial intelligence that studies how computers and human language inter-

act, with a focus on how to design computers to process and analyse massive

amounts of natural language data. Due to the abundance of textual data avail-

able on the internet and other digital sources, the field of NLP has been extremely

popular. The goal of NLP is to enable computers to recognize and understand

the nuances of human language, such as idiomatic expressions, and regional di-

alects. In recent years, the field of NLP has seen tremendous growth, with the

development of more complex and powerful language models. We have also seen

the boom of large language models like GPT-3 by OpenAI, Bard by Google, and

Sparrow by Deepmind among various others.

This project aims to explore the application of NLP in the field of similarity de-

tection and implement this aspect in determining the repetition of questions in

the examination of engineering students. NLP can be implemented to find the

similarity between questions and documents, which can be used for semantically

and lexically related texts. Its use case can be to prevent the frequency of rep-

etition of questions and maintain the quality of the question paper. There is a

huge demand for such implementation in universities around the world as it would

greatly reduce the time it takes to examine the quality of question papers as well

as reduce the human errors associated with it. The recent cases of examination of

TU have highlighted the absence of such mechanisms to prevent the repetition of

questions here in Nepal.

The project will focus on creating tools and applications that can be used by

researchers and practitioners in various industries.

1.2 Motivation

Similarity detection is a popular NLP technique and is a growing field of research.

The news of a complete question paper repetition with the examination paper of

the previous year was about 8 months before. This incident highlighted the need

for an effective similarity detection tool in the education sector in order to main-

tain academic integrity. Plagiarism detection tools that are currently available are

limited in their ability to detect more sophisticated forms of similarity, such as

paraphrasing and rewording. In addition to this, the existing tools are not opti-

mized for detecting similarities in academic contexts, where the use of specialized

1



vocabulary and technical terms is common.

Therefore, this project aims to develop a more advanced similarity detection tool

using NLP techniques, which can accurately identify similarities in academic ques-

tions and flag potential instances of question repetition. The tool will be trained

on a large corpus of academic texts and will leverage the latest advancements in

NLP to detect subtle nuances in language and identify patterns of similarity that

may not be apparent to the human eye. By providing educators with a more ro-

bust tool for detecting similarity, this project can help maintain academic integrity

and ensure a fair and level playing field for all students.

1.3 Project Objectives

The main objective of the project is to provide educators with the tool to check

the similarity between questions so that they are able to make more informed

decisions regarding the setting of examination papers (or question papers). With

an NLP-based system built to check for question similarity, problems such as

similar questions in subsequent examinations can be minified.

1.4 Project Scope and Applications

The use case of this type of similarity-detecting tool modeled to understand the

domain-specific data and assist educators in making better decisions is very large.

It can be implemented in various educational bodies to help for better decision-

making while setting the questions. This will help to maintain the academic

standard in examination question papers.

1.5 Feasibility Analysis

1.5.1 Economic Feasibility

As this project is completely software-based, the economic feasibility of the project

includes its economic appropriateness with respect to its presented output. It is

not economically feasible if the result it provides cannot justify its capital budget

and operational budget. The main expense incurred in this project includes the

service fees of the hardware used to train the machine learning model i.e. AWS

Sagemaker and in hosting the cloud database.

After the project is completed if we are to deploy the system, then it would incur

additional expenses required for the deployment of all the resources. The cost

includes using an inference server for generating the result based on the query

provided by the user, hosting the database for storing all the embeddings as well

as making the proper backups of the database. Also, the cost will be included

2



in expanding the database as more and more questions will be accumulated over

time. Since the pattern of the data may change over time so, further resources for

training the model either in offline mode or online mode will be required. Further

costs will incur on deploying the frontend as well as backend services.

1.5.2 Technical Feasibility

The technical feasibility is measured on the basis of the availability of technical

resources. We have used Python libraries like Pandas and Numpy for preparing

the data. We also used the popular frontend framework React and for backend

Django in an attempt to keep technical requirements simple and feasible. The

project will require a solid understanding of all these technical components for it

to be feasible.

1.5.3 Schedule Feasibility

Our initial study provided us with the confidence that the project can be completed

within the allocated time interval, so the project was deemed feasible from the

perspective of time constraints.

1.5.4 Legal Feasibility

There are no legal constraints hindering the completion of the project. However,

we may need some legal permits to establish the on-premise server system. Fur-

thermore, if the project is decided to be deployed in cloud services, then huge

legal constraints may be present as the law does not permit the internal data to

be stored outside the country.

3



2 Literature Review

2.1 Related Work

(Mathematical Structures of Language-1951 or 1968)[7] proposed a mathematical

framework for analysing the distribution of words in a text, which paved the way

for computational methods in language analysis and influenced the development

of computational linguistics and natural language processing.

The paper ”A Neural Probabilistic Language Model-2003”[2] introduced a neural

network-based language model that effectively captures long-term dependencies

between words in a sentence and outperforms traditional n-gram models. It laid

the foundation for the development of other neural network-based language mod-

els.

(Natural Language Processing (Almost) from Scratch-2011)[3] introduced a neural

network-based approach to natural language processing that learned representa-

tions of words from raw text data, without requiring extensive feature engineering.

This approach achieved state-of-the-art results on several NLP tasks and paved

the way for the development of other neural network-based models for NLP, con-

tributing to the rise of deep learning in general.

Another paper from 2013 named ”Efficient Estimation of Word Representations in

Vector Space”[8] introduced a method for representing words as vectors in a high-

dimensional space, using two models called Continuous Bag of Words (CBOW)

and Skip-Gram, also called the Word2Vec. This method improved the efficiency of

representing words compared to one-hot encoding and captured semantic relation-

ships between words. The learned word embeddings from Word2Vec improved the

performance of various natural language processing tasks and has become popu-

lar. The paper [9] explained how LSTM networks work for processing sequential

data like natural language text and had a significant impact on the development

of LSTM-based models for various natural language processing tasks. LSTMs are

able to effectively capture long-term dependencies in sequential data, such as nat-

ural language text.

In 2017, a team from google published a paper ”Attention is all you need”[14]

which introduced the transformer architecture based solely on attention mecha-

nisms, avoiding recurrence and convolutions entirely, and is better at handling

long-range dependencies, easier parallelization, ability to model bidirectional re-

lationships, and requires less time to train. The proposed model achieves 28.4

BLEU on the WMT 2014 English-to-German translation task, improving over the
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existing best results, including ensembles, by over 2 BLEU.

Deep contextualised word representations - 2018[10] introduced ELMo, a deeply

contextualised word representation that generates context-dependent word rep-

resentations capturing complex linguistic phenomena like polysemy and syntax,

which significantly improved performance in downstream natural language pro-

cessing tasks (like question answering, textual entailments, etc) and outperformed

the performance of the pre-trained word vectors that only produced a single

context-independent representation for each word. In every task considered, sim-

ply adding ELMo establishes a new state-of-the-art result, with relative error

reductions ranging from 6 - 20% over strong base models.

[5]”BERT: Pre-training of Deep Bidirectional Transformers for Language Under-

standing” introduced a highly effective pre-training method for natural language

processing using a transformer-based architecture. BERT is pre-trained on mas-

sive amounts of unlabeled text and can be fine-tuned on a variety of downstream

NLP tasks. It achieved state-of-the-art results on a wide range of NLP bench-

marks, including question-answering, sentiment analysis, and text classification.

BERT processes text in both forward and backward directions, enabling the model

to better understand the context of each word in a sentence. It obtains new state-

of-the-art results on eleven natural language processing tasks, including pushing

the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy

to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1

to 93.2 (1.5 points absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1

points absolute improvement).

Measuring Sentences Similarity: A Survey[15] suggests that the sentence similarity

methods consist of three main categories: Word-to-word based, structure-based,

and vector-based. Word-to-word-based and structure-based focus on lexical and

structural similarity whereas vector-based focuses on the semantic word repre-

sentations generated by deep learning models. Combining different approaches

normally gives better results because it considers different aspects (lexical, syn-

tactic, and semantic) of sentences.

[11] introduced a method for learning high-quality sentence embeddings that can

capture the meaning and context of entire sentences. SBERT adds a pooling op-

eration to the output of BERT to derive a fixed-sized sentence embedding. The

construction of BERT makes it unsuitable for semantic similarity search as well

as for unsupervised tasks like clustering.

5



SBERT drastically reduces the computation overhead for semantic similarity tasks

and enables BERT to be used for new tasks like clustering, and information re-

trieval via semantic search. It reduced the time for finding the most similar pair

from 65 hours with BERT/RoBERTa to about 5 seconds with SBERT in a collec-

tion of 10,000 sentences while maintaining the accuracy of the BERT.

COBERT: COVID-19 Question Answering System Using BERT - 2021[1] intro-

duces COVID-19 Question Answering System Using BERT (COBERT), a fine-

tuned version of DistilBERT on COVID-19-related information and addresses a

critical need for a reliable and accurate question-answering system for COVID-

19-related information. It outperformed previous pre-trained models obtaining an

Exact Match(EM)/F1 score of 80.6/87.3 respectively.

FAQ Retrieval using Query-Question Similarity and BERT-Based Query-Answer

Relevance[12] proposes a novel approach to FAQ retrieval that uses both query-

question similarity and BERT-based query-answer relevance to improve the accu-

racy and relevance of retrieved answers. It achieves state-of-the-art results on the

FAQ dataset, demonstrating its effectiveness in improving the accuracy of FAQ

retrieval.

Sentence embeddings for Quora question similarity[6] used SBERT to build a ques-

tion similarity classifier to detect duplicate questions in Quora Datasets, in order

to provide a better Quora user experience. It achieved 91.56% test accuracy

An [13] approach to computing semantic similarity was investigated by mapping

terms (concepts) to an ontology and by examining their relationships in that ontol-

ogy. Some of the most popular semantic similarity methods are implemented and

evaluated using WordNet as the underlying reference ontology. Building upon the

idea of semantic similarity, a novel information retrieval method is also proposed.

This method is capable of detecting similarities between documents containing

semantically similar but not necessarily lexicographically similar terms. The pro-

posed method has been evaluated in the retrieval of images and documents on

the Web. The experimental results demonstrated very promising performance

improvements over state-of-the-art information retrieval methods.

2.2 Related Theory

2.2.1 Natural Language Processing

NLP is a branch of computer science that deals with how computers can under-

stand and analyse human language. It involves developing computer programs

that can process, interpret and generate human language. NLP has many prac-

6



tical applications such as language translation, chatbots, sentiment analysis, and

question-answering among many others. The recent craze regarding the capabili-

ties of a large language model GPT-3 is also an example of NLP in action. This

application was able to gather a user base of more than 1 million in mere 5 days.

Over the years, there have been many research papers published on NLP that have

contributed to the development of this field. Some of the notable papers include

Word2Vec, Attention Is All You Need, Universal Language Model Fine-tuning for

Text Classification, BERT, and GPT-3. These papers introduced various tech-

niques and models that have been successful in different NLP applications. NLP

is an ever-evolving field, and researchers continue to develop new models and tech-

niques to improve the accuracy and efficiency of natural language processing.

The study of NLP started in the early 1600s by Rene Descartes and Gottfried

Wilhelm Leibniz, who proposed codes that could relate words between languages.

However, due to technological barriers, it was not until the early 1950s that the

study of modern NLP took place. In 1954, the Georgetown-IBM experiment took

place which demonstrated the automatic machine translation of 60+ Russian sen-

tences to English. In the 1980s, rule-based models were developed which relied

on hand-crafted rules designed to capture the various aspect of languages such

as syntax, grammar, and semantics. Soon, statistical models like Hidden Markov

Models (HMMs), Conditional Random Fields (CRFs), and Maximum Entropy

Markov Models (MEMMS) were developed to overcome the limitations of rule-

based models. This was soon followed by the use of deep learning models such as

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

which followed the idea of learning hierarchical representations from text data,

where lower-level features such as individual words and characters are combined

to form higher-level representations such as phrases and sentences.

The substantial jump in the field of NLP which greatly influenced this project

was the development of the transformer model in 2017 by a team of researchers

from google. The team published the paper titled ”Attention Is All You Need”[14]

which contained the transformer model architecture. This architecture basically

led way to today’s advancement in study of Natural Language Processing (NLP).

Transformers are based on the attention mechanism, which allows the model to

selectively focus on different parts of the input sequence when making predictions.

Transformers are said to be the state-of-the-art method in NLP tasks like machine

translation, question-answering, and similarity search.
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2.2.2 Tokenization

Tokenization is the process of breaking down a piece of text into smaller units called

tokens. Tokens are typically words or individual punctuation marks, but they can

also be phrases, subwords, or other units depending on the specific application.

Tokenization is an important pre-processing step in NLP and machine learning

tasks that involve text data. The purpose of tokenization is to convert raw text

input into a format that can be easily processed by algorithms, by segmenting the

input into meaningful units.

There are several different tokenization strategies used in NLP, including:

• Word tokenization

This involves breaking up the input into individual words. For example, the

sentence ”The quick brown fox jumps over the lazy dog” would be tokenized

into the words ”The”, ”quick”, ”brown”, ”fox”, ”jumps”, ”over”, ”the”,

”lazy”, and ”dog”.

• Character tokenization

This involves breaking up the input into individual characters. For example,

Input text: ”Hello, world!” then character tokens: ”H”, ”e”, ”l”, ”l”, ”o”,

”,”, ” ”, ”w”, ”o”, ”r”, ”l”, ”d”, ”!”

• Subword tokenization

This involves breaking up the input into smaller units such as syllables or

subwords. This strategy is useful for handling rare or previously unseen

words. For example, Input text: ”unbelievable” then Subword tokens (using

byte-pair encoding with a vocabulary size of 10): ”un”, ”b”, ”el”, ”ie”, ”v”,

”a”, ”bl”, ”e”

• WordPiece tokenization

WordPiece tokenization is a type of subword tokenization used in natural

language processing, and it is also used in the BERT model. In WordPiece

tokenization, words are broken down into smaller units called subwords based

on the frequency of occurrence of each subword. The most common subwords

are kept as individual tokens, while the less common ones are broken down

into smaller pieces. For example: “I just got a funky phone case!” then

Tokenized: [“I”, “just”, “got”, “a”, “fun”, “##ky”, “phone”, “case”]. The

characters ## suggest that this subword should be attached to the previous

token.

Tokenization is often followed by additional processing steps such as stemming,

lemmatization, or stopword removal, which can further refine the representation of
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the input data. The tokens thus produced are utilized for Embedding generation,

sequence labelling, Language modelling, etc.

2.2.3 Dense Vector

In NLP, a dense vector is a numerical representation of a word, sentence, or docu-

ment that captures its semantic meaning in a high-dimensional space. Dense vec-

tors are also known as word embeddings, sentence embeddings, or document em-

beddings. Unlike sparse vectors which contain sparsely distributed bits of informa-

tion, and only represent the presence or absence of a feature, dense vectors that are

information-rich and densely packed contain continuous values and can capture the

similarity and relationships between different features. They are learned through

unsupervised training of neural network models, such as Word2Vec, GloVe, or

BERT, on large corpora of text. Dense vectors have become a popular tool in

NLP for tasks such as document classification, sentiment analysis, machine trans-

lation, and question-answering, among others. They allow NLP models to capture

the semantic meaning of words, sentences, and documents, and to generalize to

new or unseen data. Due to the nature of the vector, they can also be stored in

specialized databases called vector databases for performing various NLP tasks

such as semantic searching, and sentiment analysis. Since these text representa-

tions are numbers or floating points, different mathematical operations can also be

applied to them to perform transformations that result in actual transformations

in the semantics of the words. Dense vector embeddings for semantically similar

entities are close to each other in vector space which can be measured by cosine

similarity and distance.

Figure 1: (From pinecone) Sparse Vectors vs Dense Vectors

2.2.4 Transformer

(Attention Is All You Need, 2017) [14] presented the transformer architecture

which has revolutionalized the field of Natural Language Processing (NLP). [14]

presents transformers as the first sequence transduction model based entirely on
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attention, replacing the recurrent layers most commonly used in encoder-decoder

architectures with multi-headed self-attention. The architecture of the transformer

is as shown below:

Figure 2: The Transformer-Model Architecture[14]

Encoder Stack and Decoder Stack

The architecture consists of two main sections divided into the Encoder stack

and the Decoder stack.

• Encoder Stack

The encoder is composed of a stack of 6 identical layers which has two

sub-layers. The first sublayer is a multi-head self-attention mechanism

and the second is a simple, position-wise fully connected feed-forward

network.

• Decoder Stack

Similar to the encoder layer, the decoder layer also consists of a stack

of 6 identical layers. In addition to the two sub-layers of the encoder

layer, the decoder inserts a third sub-layer, which performs multi-head

attention over the output of the encoder layer.
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Attention

Attention refers to a mechanism in the Transformer model that allows the

model to selectively focus on different parts of the input sequence when

producing the output. The attention mechanism assigns weights to each

element in the input sequence, based on its relevance to the current output

element. These weights are then used to compute a weighted sum of the

input sequence elements, which is used to produce the output.

Self-attention

As proposed by [14], self-attention allows the model to compute weights

based on the similarity between different positions or ”tokens” within the

input sequence, unlike traditional attention mechanisms, which compute

weights based on the similarity between a query and a set of key-value pairs.

Multi-head Attention

Multi-head attention is a type of attention mechanism used in Transformer

models, as explained in the paper ”Attention is all you need” [14]. It builds

upon the basic self-attention mechanism by performing multiple attention

computations in parallel, each with its own set of query, key, and value

weights. By doing so, the model is able to capture various relationships be-

tween the tokens in the input sequence. This enables the model to represent

the input more effectively and produce better results in a variety of natural

language processing tasks.

2.2.5 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a deep learning-

based pre-training technique for NLP developed by Google. BERT is based solely

on the encoder component of the Transformer architecture, which enables it to

generate high-quality contextualized embeddings for words in a sentence that cap-

ture the meaning of words in context. This is achieved by training a large-scale

neural network on a diverse range of language modelling tasks, such as masked

language modelling and next-sentence prediction. The pre-training concept in

BERT involves training the model on a large dataset in an unsupervised manner

using language modelling. This allows the model to understand the context of the

input sentence. After pre-training, the model can be fine-tuned on a task-specific

supervised dataset to achieve good results on that particular task. Pre-training on

a larger dataset helps the model to learn more general language representations

that can be effectively used in different downstream tasks. The name itself reflects

the key features of the model as
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Bidirectional

BERT is a bidirectional model, meaning that it takes into account both the

left and right context of each word in a sentence. This allows the model to

capture a more nuanced understanding of the meaning of words, as well as

the relationships between words within a sentence.

Encoder

BERT is based on the transformer architecture, which is an attention-based

neural network that can process sequences of variable length. The encoder

component of BERT is responsible for generating contextualized embeddings

for each word in the input sequence, based on the surrounding context.

Representations

BERT generates rich, multi-layered representations for each word in the

input sequence, which capture both its syntactic and semantic meaning.

These representations can be fine-tuned for a wide range of downstream

NLP tasks.

Transformers

BERT is based on the transformer architecture, which uses self-attention

mechanisms to allow the model to selectively focus on different parts of the

input sequence, based on their relevance to the current task. This allows

BERT to generate highly accurate and robust representations for a wide

range of NLP tasks.

BERT uses WordPiece tokenizer which produces tokens that ultimately get con-

verted to token IDs and corresponding segment IDs and attention masks. Token

IDs represent indices of the tokens on the pre-trained vocabulary. The tokenizer

also adds special tokens to the input sequence, including a [CLS] token at the

beginning of the sequence to indicate the start of a new input, and a [SEP] token

between segments or at the end of the sequence. The [CLS] token is used as the

input for classification tasks, while the [SEP] token is used to separate multiple

sentences or segments in the input. In addition to the token IDs, the tokenizer

also generates segment IDs and attention masks for each token. The segment IDs

indicate which segment each token belongs to, which is useful for tasks that in-

volve processing multiple sentences or segments in a single input. The attention

mask is a binary mask that indicates which tokens should be attended to and

which should be ignored, based on the presence or absence of padding tokens.

The padding tokens [PAD] are used to represent paddings to the sentence to make

up the required length.
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# Or ig ina l Sentence

Let ’ s l e a rn deep l e a rn i ng !

# Tokenized Sentence

[ ’ Let ’ , ” ’” , ’ s ’ , ’ l earn ’ , ’ deep ’ , ’ l e a rn ing ’ , ’ ! ’ ]

# Adding [CLS ] and [SEP] Tokens

[ ’ [ CLS ] ’ , ’ Let ’ , ” ’” , ’ s ’ , ’ l earn ’ , ’ deep ’ ,

’ l ea rn ing ’ , ’ ! ’ , ’ [ SEP ] ’ ]

# Padding

[ ’ [ CLS ] ’ , ’ Let ’ , ” ’” , ’ s ’ , ’ l earn ’ , ’ deep ’ ,

’ l ea rn ing ’ , ’ ! ’ , ’ [ SEP] ’ , ’ [PAD] ’ ]

# Output o f BERT token i z e r

Token IDs : [ 1 0 1 , 2421 , 112 , 188 , 3858 , 1996 , 3776 , 106 , 102 , 0 ]

Segment IDs : [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

Attent ion mask : [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ]

In the above snippet, it should be noted that the [101] and [102] tokens correspond

to the special [CLS] and [SEP]. A segment ID of 0 corresponds to the first sentence.

An attention mask of 1 represents a valid token and 0 represents a [PAD] token.

The output of the pre-trained BERT tokenizer is used to create input embeddings

for the BERT model. Once the input embeddings are created, they are passed

through the various layers of the BERT model to extract the relevant features for

the given NLP task. The output of the model is then used to make predictions

or perform other downstream tasks, such as generating a summary, answering a

question, or classifying a text into a category. During Fine tuning of the BERT

the output of the tokenizer remains the same, only the parameters of the model

are changed to align for the specific task.

2.2.6 SBERT

Sentence Bidirectional Encoder Representations from Transformers (SBERT) is

a variant of BERT that is specifically designed to generate high-quality sentence

embeddings. SBERT uses a siamese network architecture, in which two identi-

cal copies of the BERT network are used to process two input sentences. The

two-sentence embeddings are then compared using a similarity measure such as

cosine similarity or Euclidean distance. The siamese architecture allows SBERT

to learn high-quality sentence representations that capture the semantic mean-
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ing of the sentence. The sentence embeddings generated by SBERT have several

advantages over the embeddings generated by BERT. For example, they can be

used in various NLP tasks such as semantic search, text classification, and infor-

mation retrieval. In addition, they have been shown to outperform traditional

approaches like averaging word embeddings or using pre-trained word embeddings

like GloVe in sentence similarity tasks. Before sentence transformers, the approach

to calculating accurate sentence similarity with BERT was to use a cross-encoder

structure. This meant that we would pass two sentences to BERT, add a classifi-

cation head to the top of BERT - and use this to output a similarity score. The

cross-encoder network does produce very accurate similarity scores (better than

SBERT), but it’s not scalable i.e. as the collection of sentences increases searching

through them requires huge time. Unlike BERT, SBERT is fine-tuned on sentence

pairs using a siamese architecture. The token embeddings are pooled to generate

sentence embeddings.

Figure 3: (From pinecone) An SBERT model architecture

In the above figure, the SBERT model is applied to sentence pair A and B. The

BERT model outputs token embeddings(consisting of 512 * 768-dimensional vec-

tors). We then compress that data into a single 768-dimensional sentence vector

using a pooling function.

2.2.7 Spearman Correlation

Spearman correlation is a statistical measure of the degree and direction of the

relationship between two variables. It is a non-parametric measure that evaluates

how effectively a monotonic function can explain the relationship between two
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variables. Basically, it determines how well a straight line with an upward or

downward slope can depict the relationship between the two variables.

rs = 1− 6
∑n

i=1D
2

n(n2 − 1)
(1)

The Spearman’s correlation coefficients range between -1 and +1. The coefficient’s

sign tells us whether the relationship is positive or negative monotonic relationship.

A positive correlation indicates that the two variables tend to rise together as one

rises. When two variables are negatively correlated, it means that if one variable

rises, the other tends to fall. The values close to -1 or +1 represent stronger

relationships than values closer to zero.

2.2.8 Vector Database

A vector database is a type of database that stores and retrieves vector-based

data. A vector is a mathematical representation of a quantity that has both mag-

nitude and direction, such as velocity or acceleration. In the context of databases,

vectors are commonly used to represent high-dimensional data, such as images,

audio, and text.

In a vector database, each data point is represented as a vector, with each dimen-

sion of the vector corresponding to a specific feature or attribute of the data point.

For example, in an image database, each image may be represented as a vector of

pixel values, with each pixel being a dimension of the vector.

One of the main advantages of a vector database is that it allows for efficient and

flexible retrieval of similar data points. This is accomplished through the use of

similarity search algorithms, which can quickly identify data points that are sim-

ilar to a given query point.

There are several different types of similarity search algorithms that can be used

with vector databases, including

Euclidean distance

This measures the straight-line distance between two vectors in Euclidean

space. It is commonly used in image and audio databases.

Cosine similarity

This measures the cosine of the angle between two vectors, which is a mea-

sure of their similarity. It is commonly used in text databases.

Jaccard similarity
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This measures the similarity between two sets of data points by comparing

their intersection and union. It is commonly used in graph databases.

Hamming distance

Hamming distance measures binary data strings. The distance between two

strings of equal length is the number of bit positions at which the bits are

different.

In addition to similarity search, vector databases can also be used for other tasks

such as clustering, classification, and regression. For example, clustering algo-

rithms can group similar data points together, while classification algorithms can

assign new data points to predefined categories.

Overall, vector databases are a powerful tool for storing and retrieving high-

dimensional data. They can be used in a wide range of applications, from image

and audio processing to natural language processing and graph analysis.

2.2.9 Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors. This con-

cept is frequently applied in information retrieval and natural language processing.

It calculates the cosine of the angle formed by two vectors in a multidimensional

space. Cosine similarity yields a value between -1 and 1, where -1 denotes entire

dissimilarity, 0 denotes no similarity, and 1 denotes total similarity.

To calculate the cosine similarity, we initially normalize the vectors to unit length

Figure 4: Cosine Similarity[4]
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by dividing the vectors by their magnitude. Then, using the sum of the products

of the respective components of the two vectors, we compute the dot product of

the two normalized vectors. The dot product is finally divided by the product of

the magnitudes of the two vectors. This yields a value between -1 and 1, which

represents how similar the two vectors are to one another.

similarity(A,B) =
A.B

||A|| × ||B||
=

∑n
i=1Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1B

2
i

(2)

2.2.10 Inverted File Index (IVF)

Information retrieval systems employ the inverted file index as a data structure

to effectively retrieve data from huge document collections. A unique phrase in a

group of documents is mapped to the set of papers that include it via this index

structure.

An inverted file index’s main concept is to compile a dictionary of terms that are

used in the documents and then produce a list of all the documents that use each

keyword. In this approach, the system may swiftly seek up a list of papers that

include a certain phrase when a user queries it and deliver the appropriate results.

Consider a group of papers that contain the words ”apple”, ”orange,” and ”ba-

nana,” for instance.

A dictionary with three entries for each phrase and a list of documents that use

that term would be produced using the inverted file index. For instance:

Apple: Documents 1, 3, and 5.

Orange: Docs. 2, 4, and 5.

Banana: Docs. 1, 2, and 4.

The algorithm would simply consult the definition of ”apple” in the dictionary to

do a search for that term, returning a list of publications that do (in this case,

Doc 1, Doc 3, and Doc 5).

Search engines and other information retrieval systems frequently employ inverted

file indexes to effectively extract pertinent data from big document collections. It

effectively links search phrases to papers that include those terms, enabling quick

searches.
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2.2.11 MNR Loss

Multiple Negative Ranking (MNR) is a great loss function for datasets having

positive pairs, for example, only pairs of similar texts like pairs of paraphrases,

pairs of duplicate questions, pairs of (query, response), or pairs of (source language,

target language).

This loss expects as input a batch consisting of sentence pairs (a 1, p 1), (a 2,

p 2). . . , (a n, p n) where we assume that (a i, p i) are a positive pair and (a i,

p j) for i!=j a negative pair.

For each a i, it uses all other p j as negative samples, i.e., for a i, we have 1 positive

example (p i) and n-1 negative examples (p j). It then minimizes the negative log-

likelihood for softmax normalized scores.

This loss function works great to train embeddings for retrieval setups where you

have positive pairs (e.g. (query, relevant doc)) as it will sample in each batch of

n-1 negative docs randomly.

The MNR loss is given by:

L(x, y, θ)

= − 1

K

K∑
i=1

logPapprox(yi|xi)

= − 1

K

K∑
i=1

[
S(xi, yi)− log

K∑
j=1

eS(xi,yj)

] (3)

where

K = no of sentences or batch size

xi and yj are the duplicate sentences for i = j and negative for i != j

θ represents word embeddings

S(x,y) is the similarity score
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3 Methodology

3.1 Requirement Analysis

3.1.1 Functional Requirements

From the perspective of functional requirements, the system must provide users

with the ability to enquire about various questions related to the domain of en-

gineering studies. The system must enable users to view the pattern of question

repetition in past papers in order to help users improve the mix of questions in

papers. The users should be able to enter the question they want to analyse and

the system should show them all the similar questions and their appearance year

along with the similarity index indicating the level of repetition.

In addition to this, the system should also allow users to upload a file containing

the questions of a subject and receive the analysis related to the questions in the

file. The analysis contains the question-wise similarity as with a single question,

as well as the overall similarity of uploaded files with historical papers.

3.1.2 Non-functional requirements

Non-functional requirements are essential characteristics of a system that is not

directly related to its functionality but to other aspects such as usability, perfor-

mance, maintainability, scalability, security, and reliability. These requirements

focus on how the system should behave, and how it should interact with its users.

So, with that in mind, the following non-functional requirements are considered

for the project:

1. The system shall be optimized for minimum response time regarding simi-

larity analysis.

2. The user interface has been kept as simple and minimalistic as possible,

allowing for a seamless and intuitive user experience.

3. The system has been designed as a web application for the system to be

platform-independent.

4. All exceptions arising from incorrect user input shall be handled and all

output shall be provided with minimal data loss.

3.1.3 Other Requirements

This system development demands several software components for programming

and hardware accessories for training and processing.

19



Languages, Libraries, and Frameworks

• Python

• Javascript/Typescript

• Reactjs - Frontend Web

• Django - Backend Web

• Zilliz - Cloud Database

• Numpy and Pandas

Hardware Requirements

The training of large datasets requires a large amount of computing and memory

resources. For this use case, we have used the g5.xlarge compute resource of AWS

through AWS Sagemaker service which consisted of NVIDIA A10G Tensor Core

GPUs with the GPU memory being 24GB. Graphical Processing Unit (GPU) is a

processing unit specially designed to enhance graphics rendering and deep learning

inferencing. It took about half an hour for our model to train with a single epoch

and we have trained 6 such models.

3.2 System Architecture

The system architecture of the project was developed using a layered architecture

approach, with separate layers for presentation, business logic, and data access.

The layered architecture was chosen to improve the maintainability and flexibility

of the system, as it allows for changes to be made to one layer without affecting

the others.

The presentation layer consists of the user interface components, including web

pages, forms, and controls. This layer was implemented using a Model-View-

Controller (MVC) design pattern, which separates the user interface logic from

the business logic. The MVC pattern also allows for the use of reusable compo-

nents and simplifies testing.

The business logic layer contains the application logic, including the rules and

procedures that govern the system’s behaviour. This layer was implemented using

a monolith approach, which makes use of a single executable file. The monolith

approach provides us with the ease of using components inside a single applica-

tion without having to manage different services and communication between the

services.

To support the development of the system architecture, a number of tools and
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frameworks were used, including React, Django, Sentence Transformers, and the

Milvus database hosted on the Zilliz cloud. The architecture was developed

through an iterative approach, with regular feedback from mentors and super-

visors.

To develop the system architecture for the project, we followed a structured ap-

proach that included the following methods.

3.2.1 Development Methodology

We used the incremental development approach to achieve the project. The In-

cremental Software Development Life Cycle (SDLC) model is a methodology that

breaks down the software development process into smaller, more manageable

pieces or increments. Each increment is developed and tested separately before

being integrated with the previous increments to form the final product.

The project was broken down into its own modular parts based on the require-

ment analysis which could be separately implemented on its own. This approach

is included in the project in the following ways.

Iteration 1

The most critical feature of our application included using a sentence trans-

former model for a generation of vector embeddings. The pre-trained models

from hugging face were used in this phase for generating the embeddings and

basic testing of similarity using cosine similarity. This helped to further make

plans for data collection and choose the best model architecture.

Iteration 2

In the second iteration, the searching mechanism of questions based on em-

bedding generated from the model was developed. The search used inverted

indexing generated by FAISS and the search modules provided by FAISS for

performing a search on the questions included in the runtime environment.

Iteration 3

After gaining information about the working of sentence transformers, we

used a pre-trained BERT-based model i.e. DistilBERT-base-uncased and

trained it on AllNLI, MRPC, PAWS and STS-B datasets to form sentence

transformers. This iteration still used FAISS for searching on the runtime

environment only. During this phase, the front end for query insertion and

API call requests was developed.

Iteration 4

In the fourth iteration, the sentence transformer model trained during the
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previous iteration was fined tuned on our primary dataset and embeddings

were generated. Milvus database hosted on Zilliz Cloud was used to store the

vector embeddings. FAISS was also replaced by Milvus’s Knowhere vector

engine which integrates FAISS, HNSW and Annoy for performing the vector

search. This provided the team with a robust, and scalable database and

search solutions independent of the Python runtime.

Iteration 5

In this iteration, the frontend along with the backend and database was fully

integrated to perform semantic query searching using only the frontend pro-

vided to the user. Searching based on the subject filter was also introduced

in this iteration.

Iteration 6

Here, we introduced the functionality to add the questions from the UI

and also generated the report calculating the similarity score between the

documents.

By using an incremental approach, we were able to break down the project into

smaller, more manageable chunks This approach allowed us to focus on devel-

oping the most critical features first and then on that foundation to add more

functionality. Throughout the process, we were able to gather feedback and make

adjustments to the model as well as the website based on the need and prefer-

ences. In the end, the result was a functional product that met the needs of our

requirements.

3.2.2 Software Development Tools and Frameworks

Software development tools and frameworks are an important part of the system

architecture for any software development project. They provide a foundation for

building, testing, and deploying software, as well as tools for managing the devel-

opment process itself. Here are the software development tools and frameworks

that we used in this project:

Integrated Development Environment (IDE)

VSCode was mostly used for performing the development of the frontend

and backend systems. Occasionally, Jupyter Notebook provided by AWS

Sagemaker was used for training the model.

Version Control System (VCS)

Git and GitHub were used to collaborate on code changes and track changes

to the code over time. For the versioning of the sentence transformer model,
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Huggingface Hub was used which also provided an inference API for testing

purposes.

Build and Automation Tools

For building the frontend application, GitHub Actions was used in conjunc-

tion with Vite. The builds were triggered on every pull request and merge.

Similarly, automatic dependency check tools such as dependabot provided

by GitHub were also integrated.

Front-end and Back-end Frameworks

Front-end and back-end frameworks provide a foundation for building the

user interface (front-end) and the server-side logic (back-end) of a software

application. React and Django were used in the front end and back end

respectively.

By including these software development tools and frameworks in the system ar-

chitecture, we streamlined the development process, improved collaboration, and

ensured that the software functions as intended.

3.2.3 Project Management

It is an essential component of system architecture, as it involves planning, or-

ganizing, and coordinating resources and activities to ensure that a project is

completed on time, within budget, and with the desired outcome.

Our project includes the following steps of project management:

Planning and goal-setting

We approached this step using the top-down approach by short-listing all

the tools and resources needed to accomplish the project. We divided the

project into various milestones and sprints based on the listings which were

achieved with every iteration. During this phase, architectural design work

was also performed that provided a general overview of the working of the

overall system and how each part communicates with the other.

Resource allocation

During the first two iterations, all the time and resources were dedicated to

developing an MVP that illustrated the whole application on a very small

scale. During this phase, frequent coordination was made among the team

members to ensure the resources are available when needed.

Communication

Daily standups and regular meetups were organized between team members
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and the supervisor to ensure that everyone has access to the information

they need to complete their tasks effectively. Regular progress reports were

provided to the supervisor and all the documentation regarding the project

materials was maintained in a central repository.

Monitoring and control

The monitoring of the project was done using project management tools like

Jira and plans was also adjusted as needed to ensure that the project stays

on track. Various metrics were used against goals, and objectives to make

adjustments and improve the project outcomes.

3.2.4 Performance Optimization

Software development must include performance optimization since it makes sure

the application is quick to respond, effective, and able to manage a lot of users and

data. The methods utilised to improve the software’s performance are described

in this portion of the study, including profiling, caching, network optimization,

and hardware optimization. By improving the performance of the software, the

application achieve its performance goals and provide users with a better user

experience by performing better, which will improve adoption and satisfaction.

The following are the measures that we implemented in the performance optimiza-

tion section of our project:

Performance goals

The performance of the system must be on par with that of a real-time sys-

tem. The response time of the system is around 3-4 seconds after performing

optimization. The database utilization metrics include CPU usage of 6%,

storage usage of 0.06 GB, QPS of 0.07 on average as per our usage and query

latency of 500ms on average.

Performance Profiling

The profiling technique used for measuring network latency is a waterfall dia-

gram in Chrome Developer Tools. The major performance bottleneck is idle

server latency of nearly 3.5s. This is due to the deployment of the database

in the us-west (Oregon) and also the need to generate embeddings by the

transformer model per query request. Similarly, the performance of the UI

was measured using Lighthouse and PageSpeed Insights.

Optimization Strategies

The optimization on the backend was done using a singleton pattern to load

the sentence transformer only once and use the same instantiated model
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during all the query requests. The model is thus stored in the memory

during runtime.

The system also used connection pooling for making requests to the database

so that the request doesn’t have to make connections with the database for

each and every request. Similarly, the optimization on the front end was

done using a compressed build version and using gzip compression on the

browser.

Network Optimization

The front end was deployed on the CDN provided by Vercel to serve static

assets. Also, the data in transit is provided with minimal response so that

it can travel across the network in minimum time.

By implementing these optimization strategies in the front end, back end and

database of the software application, we drastically reduced the response time

and increased the performance of the system.

3.2.5 Deployment and maintenance

Deployment and maintenance of software are critical phases in the software devel-

opment lifecycle. Deployment involves moving the software from the development

environment to a production environment, while maintenance involves managing

the software after it has been deployed to ensure that it continues to function

properly and meet the needs of users. Here is an overview of the deployment and

maintenance of software:

Deployment

The deployment of the sentence transformer model is done in the Hugging-

Face hub, database in Zilliz Cloud, and front end in Vercel.

Maintenance

The maintenance of the code is done using code analysis and dependency

alert tools provided by GitHub Action.

3.2.6 System workflow

The user is presented with an interface where they can enter questions. The user

then enters the query (question) for which they want to calculate the similarity

score and see the similar questions.

The front end then sends the API request containing the question to the backend

service. The backend service loads the custom-trained sentence transformer model
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Figure 5: System Workflow Diagram

which generates the embeddings of the query. The vector embeddings are sent over

the network to the Milvus Database hosted on Zilliz Cloud. The database receives

the embeddings which are in turn passed to the Knowhere vector engine which is

included in the Milvus Database. The Knowhere then returns a set of candidate

vectors that are similar to the query, and Milvus then retrieves the corresponding

vectors from its vector database.

The response however received in this stage does not contain the questions from

the database, rather it only contains the identifier and distance metrics. Again,

the backend makes the query request to the Milvus database for the questions and

corresponding embeddings based on the id returned in the previous response. The

backend then calculates the cosine similarity of the received embeddings against

the embeddings generated from the query questions and prepares the correspond-

ing response to be consumed by the frontend application.

The frontend application then receives the JSON response from the backend which

is then presented in an easy-to-understand format.
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3.2.7 Use Case

Figure 6: Use Case Diagram

3.3 Implementation Details

3.3.1 Data Collection

The data for this project was collected from a variety of sources. We used pub-

licly available datasets hosted on Hugging Face such as AllNLI which provide a

large and diverse dataset for training and evaluating Natural Language Inference

(NLI) models. AllNLI is a collection of several existing NLI datasets, including the

Multi-Genre Natural Language Inference (MNLI), the Stanford Natural Language

Inference (SNLI), and the Corpus of Linguistic Acceptability (CoLA).

MRPC dataset which specializes in training and evaluating natural language pro-

cessing models for paraphrase identification is also used which helps in determining

whether two sentences have the same meaning.

PAWS dataset which also specializes in paraphrase identification is also used.

However, this dataset is unique in that it focuses on a specific type of paraphrase

that is generated by word scrambling.

STS dataset which specializes in the semantic similarity between two sentences is
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3.2.8 Sequence Diagram

Figure 7: Sequence Diagram

used for training as well as evaluation of the model. The main use of the STS

dataset in model training is to evaluate and improve the performance of NLP

models in measuring the similarity between two pieces of text.

The primary dataset for our project is collected with the help of Google Docs

and Google Drive API, collecting all the questions from the digital version of past

question papers used at Pokhara University.

3.3.2 Data Cleaning

However, the data retrieved using the API was very raw and contained irrelevant

information such as marks, heading information, and noisy data that were gath-

ered while parsing the JSON data received from API.

The data was cleaned using regex as well as organized in a suitable pattern man-

ually. Still, the data contained a large number of mathematical questions which

were not wanted in the training dataset. We manually removed those mathemat-

ical questions. Also, there were multiple instances where a single question was

distributed in multiple rows. Those questions were also manually corrected. We

also had to manually add the subject and year in which the question was asked

in order to provide more information. After these steps, we had a proper dataset

on our hands.
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3.3.3 Data Preparation

The primary dataset collected was not suitable for training our sentence trans-

former as transformer had to be trained under supervised conditions. So, the

suitable dataset was prepared by paraphrasing the collected questions using the

text-davinci-003 language model from OpenAI.

Question 1 Paraphrased Question 1
Paraphrased Question 1 Question 1

Table 1: Example of the Dataset used for training

Let us suppose a question “Question 1” and its paraphrased version “Paraphrased

Question 1”. Then we created the dataset for training as shown in the figure below.

By this method, our 9000+ rows dataset was doubled for training purposes.

3.3.4 Modeling

We developed several models for domain adaptation using supervised as well as

unsupervised learning approaches. We first used GPL for unsupervised learning

due to a lack of labelled training data however due to larger training time and

complexity and low correlation i.e. 0.68 we switched to the MNR Loss method for

supervised learning.

3.3.5 Software Development

Model Development

The implementation of the models was done by using the Sentence Transformer

library provided by UKP Lab. This library includes modules for performing the

evaluation, calculating loss function measures, cosine similarity values as well as

different correlations metrics.

The first step included using a pre-trained BERTmodel, distilbert-base-uncased

which does not take casing into account and converting it into SBERT by adding

a pooling layer at the output and then training it on the AllNLI dataset. The

MNR Loss function was used for optimizing the model as it required only positive

pairs in contrast to what is required when using other types of loss functions.

Further training was done in MRPC, PAWS, and STS training datasets to tune

the model for paraphrase detection as well as similarity scoring. These datasets

were specifically chosen for training the model as they specialized in the domain

of paraphrasing as well as similarity detection.
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The fine-tuning of the model in the engineering domain was performed by training

the model on the custom-prepared primary dataset.

The training of all these models on different datasets was performed using AWS

Sagemaker with a training batch size of 128, a maximum sequence length of 512,

word embedding dimensions of 768, and a mean pooling method. The training

was performed only with a single epoch as suggested by the paper on SBERT.

The model architecture used looks as shown in Figure 8.

Figure 8: System Architecture Diagram

Frontend Development

The implementation of the front end included using React JS library for imple-

menting the UI and all the core logic of the front end. The React library was used

as the project required lots of data communication between various components as

well as reactivity without needing to reload the page. It also defines the concept

of reusable components which makes the development process quick.

The designs and prototypes of the UI were made in Figma. The environment of

the frontend development setup was performed using Node.js, yarn and Vite with

all the necessary dependencies. This included the proper setup of credentials for

using the backend services and all the environment variables that were used in the
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deployment of the front end. Vite is used as it supports faster development, and

faster production build times as it used ESBuild instead of Webpack for bundling,

has high configurability and uses fewer resources.

The axios library was used for making all the HTTP requests to our backend ser-

vice. It allows for working with various types of data that needs to be sent over

the network. It also provides a consistent API for making HTTP requests across

different platforms and browsers.

Backend Development

The implementation of the backend included using Django which is a Python web

framework for creating the backend. The main purpose of using Django was to

make ease in using the sentence transformer library used for generating the em-

beddings to perform the comparison. The Django library was used in building the

backend server and creating APIs for communicating with our model, database

and frontend side. The library used for interfacing with the database was also

easily integrable with Django. It also provides for future enhancements regarding

the segregation of every service in case of production deployment.

Database

Milvus hosted on Zilliz Cloud which in turn deploys the resources in the AWS

platform is used as a database for this project. Milvus is an open-source vector

database designed for handling large-scale machine-learning workloads. It is opti-

mised for storing and searching high-dimensional vector data, such as embeddings

generated by deep learning models. The main use of Milvus is to provide a highly

scalable and efficient platform for building intelligent applications that require fast

and accurate similarity searches.

This project uses the Milvus database for storing sentence embedding generated

by the fined-tuned sentence transformer model and also performing an accurate

similarity search. Implementation details of performing data insertion and sim-

ilarity search are handled by the pymilvus library. The search process used

Knowhere as the underlying vector similarity search engine. Knowhere provides

optimised indexing algorithms that are used to index and search large-scale vector

databases. When a query is submitted to Milvus, it is processed by Knowhere

using the specified indexing algorithm. Knowhere then returns a set of candidate

vectors that are similar to the query, and Milvus then retrieves the corresponding

vectors from its vector database.
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4 Results and Analysis

4.1 Training Results

The first phase of our training included training distilbert-base-uncased on

AllNLI dataset to convert it into SBERT for 1 epoch.

steps cosine pearson cosine spearman euclidean pearson euclidean spearman
220 0.8364516097 0.83932855 0.8163054757 0.8196672197
440 0.8451248998 0.850080908 0.8258113817 0.8294317432
660 0.8425308757 0.847485762 0.8279182604 0.8308162577
880 0.8469245836 0.8517480746 0.8293103285 0.8322019925
1100 0.8511393044 0.8549902573 0.8348620622 0.837028036
1320 0.8488461649 0.852874159 0.8321725367 0.834869006
1540 0.8511160436 0.8552112051 0.8331633293 0.8355860688
1760 0.8507647935 0.8542689411 0.8351606703 0.8371928955
1980 0.8511629525 0.8542907622 0.8349342985 0.8369407245
2200 0.8516398052 0.8550346605 0.8352028955 0.8372999223
-1 0.8516401066 0.8550360047 0.8352029808 0.8372999223

steps manhattan pearson manhattan spearman dot pearson dot spearman
220 0.815920996 0.8190446133 0.7501043149 0.7435983726
440 0.8258887841 0.8297153804 0.7718244485 0.7672620021
660 0.827903569 0.8307285761 0.7780585242 0.7745490036
880 0.8294952675 0.8325163247 0.7915537884 0.7882690753
1100 0.8348559833 0.8369807833 0.7935572455 0.7897020283
1320 0.8322332832 0.8349613708 0.7914952347 0.7875094787
1540 0.8331363587 0.8356607575 0.7951959209 0.7910028245
1760 0.835193458 0.8373388981 0.7984664532 0.7942523979
1980 0.8349066513 0.8370105652 0.8000965923 0.7953404225
2200 0.8351443516 0.837306086 0.7997876431 0.7951892189
-1 0.8351444426 0.8373055308 0.799788498 0.7951890427

Table 2: Evaluation metrics while training on AllNLI
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Further training of the model on MRPC for 1 epoch resulted in different metrics

as shown below

steps cosine pearson cosine spearman euclidean pearson euclidean spearman
440 0.8343577256 0.839353702 0.8164808715 0.8205871499
440 0.8363515928 0.8430247081 0.8102966348 0.8160169891
880 0.8425916223 0.8489752834 0.8199459757 0.8263628532
1320 0.8432426234 0.8503495868 0.8257562947 0.8313146627
1760 0.8470568724 0.8517104614 0.8276564905 0.8306492423
2200 0.8494367121 0.8543035397 0.8340444222 0.8363041608
2640 0.8472370418 0.8528592416 0.8303407719 0.8336411518
3080 0.8464874389 0.8526450208 0.8291406845 0.8321360529
3520 0.847422422 0.8526455831 0.8289576243 0.8323210691
3960 0.8483662702 0.8535172065 0.8292084499 0.8326882277
4400 0.8485433281 0.8535884876 0.8294968247 0.8328049555
-1 0.8485450498 0.8535941834 0.8294988829 0.8328111601

steps manhattan pearson manhattan spearman dot pearson dot spearman
440 0.816497681 0.8205425591 0.7419814576 0.7363160508
440 0.8101810775 0.8158083584 0.7330022373 0.7313526577
880 0.8203358746 0.8267426382 0.7630823272 0.7611710182
1320 0.8258374865 0.831420451 0.7771250706 0.773988027
1760 0.8276305395 0.8306525384 0.7847924916 0.7824372126
2200 0.8340054982 0.8365270204 0.8003641672 0.7964372614
2640 0.8302999444 0.8337021376 0.7921299057 0.7889456761
3080 0.8290396245 0.8320951721 0.7922173564 0.7898946145
3520 0.8287994804 0.8324727773 0.7935284262 0.7910307452
3960 0.8289307603 0.8322407914 0.7932115619 0.7904691807
4400 0.8292640683 0.8325136297 0.7953522708 0.7924759045
-1 0.8292661261 0.8325165888 0.7953531276 0.792478449

Table 3: Evaluation metrics while training on MRPC

Further training of the model on PAWS for 1 epoch resulted in higher correlation

scores.
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steps cosine pearson cosine spearman euclidean pearson euclidean spearman
34 0.8397202405 0.8040743712 0.8134474323 0.7990306822
68 0.8397202405 0.8040743712 0.8134474323 0.7990306822
102 0.8397202405 0.8040743712 0.8134474323 0.7990306822
136 0.8397202405 0.8040743712 0.8134474323 0.7990306822
170 0.8397202405 0.8040743712 0.8134474323 0.7990306822
204 0.8397202405 0.8040743712 0.8134474323 0.7990306822
238 0.8397202405 0.8040743712 0.8134474323 0.7990306822
272 0.8397202405 0.8040743712 0.8134474323 0.7990306822
306 0.8397202405 0.8040743712 0.8134474323 0.7990306822
340 0.8397202405 0.8040743712 0.8134474323 0.7990306822
-1 0.8397202405 0.8040743712 0.8134474323 0.7990306822
34 0.8676114699 0.8696745486 0.8554968638 0.8565594808
68 0.8676114699 0.8696745486 0.8554968638 0.8565594808
102 0.8676114699 0.8696745486 0.8554968638 0.8565594808
136 0.8676114699 0.8696745486 0.8554968638 0.8565594808
170 0.8676114699 0.8696745486 0.8554968638 0.8565594808
204 0.8676114699 0.8696745486 0.8554968638 0.8565594808
238 0.8676114699 0.8696745486 0.8554968638 0.8565594808
272 0.8676114699 0.8696745486 0.8554968638 0.8565594808
306 0.8676114699 0.8696745486 0.8554968638 0.8565594808
340 0.8676114699 0.8696745486 0.8554968638 0.8565594808
-1 0.8676114699 0.8696745486 0.8554968638 0.8565594808

steps manhattan pearson manhattan spearman dot pearson dot spearman
34 0.8134910179 0.7985155715 0.814138864 0.7711614911
68 0.8134910179 0.7985155715 0.814138864 0.7711614911
102 0.8134910179 0.7985155715 0.814138864 0.7711614911
136 0.8134910179 0.7985155715 0.814138864 0.7711614911
170 0.8134910179 0.7985155715 0.814138864 0.7711614911
204 0.8134910179 0.7985155715 0.814138864 0.7711614911
238 0.8134910179 0.7985155715 0.814138864 0.7711614911
272 0.8134910179 0.7985155715 0.814138864 0.7711614911
306 0.8134910179 0.7985155715 0.814138864 0.7711614911
340 0.8134910179 0.7985155715 0.814138864 0.7711614911
-1 0.8134910179 0.7985155715 0.814138864 0.7711614911
34 0.8550622291 0.8563361568 0.8245345726 0.8216147965
68 0.8550622291 0.8563361568 0.8245345726 0.8216147965
102 0.8550622291 0.8563361568 0.8245345726 0.8216147965
136 0.8550622291 0.8563361568 0.8245345726 0.8216147965
170 0.8550622291 0.8563361568 0.8245345726 0.8216147965
204 0.8550622291 0.8563361568 0.8245345726 0.8216147965
238 0.8550622291 0.8563361568 0.8245345726 0.8216147965
272 0.8550622291 0.8563361568 0.8245345726 0.8216147965
306 0.8550622291 0.8563361568 0.8245345726 0.8216147965
340 0.8550622291 0.8563361568 0.8245345726 0.8216147965
-1 0.8550622291 0.8563361568 0.8245345726 0.8216147965

Table 4: Evaluation metrics while training on PAWS
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The model was again further trained on the STS-B dataset which specialized

in semantic similarity and the results can be seen below:

steps cosine pearson cosine spearman euclidean pearson euclidean spearman
-1 0.8839867553 0.8834848135 0.8630618932 0.86820227
-1 0.8841050468 0.8827960889 0.8631319044 0.8669466003
-1 0.8853258557 0.8838996234 0.8645618255 0.8683514241
-1 0.8852344061 0.8837954746 0.8652939742 0.8691081008

steps manhattan pearson manhattan spearman dot pearson dot spearman
-1 0.8627218612 0.8676591542 0.8444908252 0.8451809331
-1 0.8628397082 0.8665157922 0.8473994321 0.8469431763
-1 0.864324514 0.8678471401 0.8498861724 0.8493216049
-1 0.8650384421 0.8684945177 0.8484928546 0.8475987631

Table 5: Evaluation metrics while training on STS-B

After fine-tuning the model on our dataset, and again training for 1 epoch, the

results obtained while performing the test on the STS-B test set are as follow:

steps cosine pearson cosine spearman euclidean pearson euclidean spearman
-1 0.8833105324 0.8824940887 0.8676245283 0.8701836815

steps manhattan pearson manhattan spearman dot pearson dot spearman
-1 0.8670872804 0.8695489242 0.8527779223 0.8504752382

Table 6: Evaluation metrics while finetuning on our dataset

After all of the above fine-tuning approaches when the model was tested on the

STS-B test dataset, the spearman correlation value was found to be 0.863 and in

the test dataset of MRPC, the accuracy was found to be 88.7%.

4.2 Analysis

From the data obtained above, we can conclude that converting the BERT into

SBERT and continuous fine-tuning on datasets like ALLNLI, MRPC, PAWS, STS-

B, and then the custom dataset showed an increase in performance. This is be-

cause fine-tuning on these datasets allowed the model to learn general language

patterns and relationships that are relevant to a wide range of natural language

processing tasks. These datasets cover a broad range of tasks, including sentence

pair classification, paraphrase detection, and semantic similarity, allowing BERT

to learn a wide range of linguistic features and improve its performance on these

tasks. So at the last step of fine-tuning on our custom dataset, the model is able

to effectively capture the feature in the semantic similarity of the duplicate ques-

tions. The correlation and distance metrics obtained at the last step are greater
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than the previous steps which showed that the model is able to learn the specific

features in our custom dataset.

4.3 Web Application Output

Figure 9: Response having the same question

Figure 10: Response with unrelated question
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Figure 11: Response for question with subject filtering

Figure 12: File upload page

37



5 Conclusion

In conclusion, this project “Question Similarity Detection and Analysis” based

on the SBERT language model is going to be helpful to the question setters in

the university who need to be aware of past question repetition and need proper

question preparation mechanism. Since SBERT has the ability to generate high-

quality sentence embeddings, which can capture the meaning of a sentence in a

more accurate and nuanced way than traditional bag-of-words or word-level em-

beddings, this project has the ability to understand the semantic meaning of the

question and takes that meaning into account while performing a similarity check.

We have successfully adapted our own engineering domain questions in our NLP

model that helps to precisely detect the frequency of input questions as well as

their similarities and is able to show the result in numbers for the analysis.

Through the implementation of the SBERT model, it was found that we were more

accurately able to find the similarity between the sentence and better represent

the semantics of the sentence than what was possible by just using BERT

Overall, this project Question Similarity Detection and Analysis has great po-

tential for implementation in the question-setting task. The features added in

this project are going to help the university in maintaining the authenticity and

uniqueness of the question papers for the board exams.
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6 Future Enhancement

After successfully developing a system to check the similarity of a question with

the corpus of past questions, a few actions are desirable. These actions will allow

this system to be implemented for use by the concerned authorities. The desired

future enhancement tasks are as follows:

1. Currently, the database is composed of questions from Pokhara University.

So, if we are to use this system in IOE, Tribhuvan University, the database

needs to be populated with the questions from IOE by creating a new col-

lection and following the same schema as before.

2. The functionality for administrative access with specific roles can be devel-

oped.

3. The system is limited to normal textual questions which can further be

extended to accommodate the questions from the Mathematical domain.

Further, the system can also be trained to recognize image patterns.

4. For now, the system is limited to the questions of the engineering domain.

So, we could adapt the model for various other education domains and use

it accordingly.
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