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Abstract

This group project highlights the effectiveness of utilizing reinforcement learning (RL) along

with the Proximal Policy Optimization (PPO) algorithm to train an agent to play a Wolfenstein3D-

like game with multiple levels. The agent exhibited exceptional performance in relation to

reward, time efficiency, and overall effectiveness. An in-depth analysis of its performance

indicated marked enhancements in the reward curves, strategic navigation throughout the

game levels, and expeditious completion of each level. The study highlights the potential of

RL and PPO for training agents in complex video games with multiple levels, as well as in

other applications such as agent-based modeling and machine learning.

Keywords: Reinforcement Learning, Deep Reinforcement Learning, Proximal Policy Opti-

mization, Curriculum Learning, Reward Shaping
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1. Introduction

1.1 Background

Reinforcement Learning(RL) is a powerful machine learning technique in which an agent

learns to solve a problem by interacting with its environment. Through a system of rewards

and punishments, agents learn to make decisions that maximize rewards and minimize neg-

ative consequences. RL is rapidly becoming a prominent area of research, with a growing

number of applications in a wide range of fields [3].

One area where RL has shown particular promise is in the development of first-person

shooter(FPS) bot artificial intelligence. In FPS games, RL has the potential to create diverse

behaviors without the need for explicit coding. Unlike traditional arcade games, FPS games

offer a more realistic study environment for RL, with 3D graphics and partially viewable

states.

Furthermore, FPS games directly simulate reality from a first-person perspective, presenting

agents with new, competitive objectives like navigating and shooting. The ability to manage

these objectives is highly desired for general intelligence. The availability of well-designed

game environments also accelerates the development of RL algorithms [4].

Overall, RL holds great potential for creating intelligent agents that can operate in complex,

dynamic environments. The use of FPS games as a testing ground for RL algorithms is

particularly promising, and is likely to drive significant advances in the field of artificial

intelligence in the coming years.

1.2 Problem statements

Training agents to operate successfully in 3D multiplayer games based on raw pixel inputs

is a difficult task and a growing area of interest in AI research. Adding AI to games can

improve Non-Player Character(NPC) intelligence and balance game complexity. The focus

of this project is on training agents in a First-Person Shooting (FPS) game environment.

The game consists 3 different levels each with a different objective and finish conditions.

The primary objective is to replicate a human player and play against in-game NPCs and

complete the levels.
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1.3 Objectives

The objective of this project is to train a competent agent using RL in FPS games, with the

aim of exhibiting human-like behaviors and outperforming both average human players and

existing in-built game agents.

1.4 Scope

Following are the scope of our project:

• Implement RL algorithm for FPS games

• Train an agent to navigate game environment and compete against human players or

in-game agents

• Explore and compare different RL algorithms for optimization

• Evaluate and analyze agent’s performance and behavior in various game scenarios

• Investigate the impact of different reward functions on the learning process and per-

formance of the agent.

• Investigate the use of curriculum learning to design a training curriculum that gradually

increases the complexity of tasks and environments, enabling the agent to learn more

effectively and efficiently.

1.5 Applications

Our project has a wide range of applications in various fields:

• Gaming-The development of more advanced and engaging video games with smarter

in-game agents

• Security-The potential to use the intelligent agents for security and surveillance.

• VR/AR-The use of intelligent agents in virtual reality and augmented reality appli-

cations for training and simulation

• Autonomous Robots-The development of autonomous robots that can learn and

adapt to new environments

2



• Real-World Problems-The potential to apply reinforcement learning to a wider

range of real-world problems beyond gaming, such as traffic management or financial

trading.

• IEEE ViZDoom Competitions- The agents trained in an FPS environment are able

to compete in a multiplayer death match FPS game Doom.
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2. Literature Review

2.1 Related work

Reinforcement Learning (RL) has been utilized extensively in the development of intelligent

agents capable of playing games. Recent advancements in RL have led to significant progress

in game-playing agents for various games such as Atari, VizDoom, and Wolfenstein. This

literature review provides an overview of the advancements in these three domains, highlight-

ing the key techniques, algorithms, and architectures used to build intelligent game-playing

agents.

The Atari 2600 platform was introduced in the 1970s and included popular games such as

Space Invaders, Pac-Man, and Breakout. In 2013, DeepMind introduced the Atari 2600

games as a benchmark for RL algorithms, which led to significant advancements in the field.

[5] introduced the Deep Q-Network (DQN) algorithm, one of the earliest and most influential

papers in this domain.

DQN is a value-based RL algorithm that learns to estimate the value of each action in each

state. The algorithm utilizes a neural network to approximate the value function, and a

replay memory to store past experiences. DQN achieved state-of-the-art results on several

Atari games, even outperforming human players in some cases. However, DQN had several

limitations, including slow learning and a tendency to overestimate the value function.

To address these limitations, several variants of DQN were introduced, including Double

DQN [6], Dueling DQN [7], and Rainbow [8]. Double DQN addressed the overestimation

issue by decoupling the selection and evaluation of actions. Dueling DQN introduced a new

architecture that separates the estimation of the state value and the advantage of each action.

Rainbow combined several techniques, including double Q-learning, prioritized experience

replay, and distributional RL, to achieve state-of-the-art results on the Atari benchmark.

VizDoom ,a first-person shooter game that was introduced in 2016 as a benchmark for RL

algorithms. The game includes several challenging scenarios, including navigating through a

maze and killing enemies. The VizDoom benchmark presented several challenges that were

not present in the Atari games, including partial observability and continuous action spaces.

Several RL algorithms have been applied to VizDoom, including DQN [9], Asynchronous
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Advantage Actor-Critic (A3C) [10], and Proximal Policy Optimization (PPO) [11]. DQN

achieved state-of-the-art results on some of the simpler scenarios, but struggled on more

complex scenarios that required long-term planning. A3C and PPO both achieved state-of-

the-art results on the VizDoom benchmark, with PPO outperforming A3C on some of the

more challenging scenarios.

Wolfenstein 3D, a first-person shooter game that was introduced in 1992. In 2017, DeepMind

introduced a version of Wolfenstein as a benchmark for RL algorithms. The Wolfenstein

benchmark presented several challenges, including the need to navigate through a complex

3D environment and interact with enemies that could shoot back.

Several RL algorithms have been applied to Wolfenstein, including DQN [12], Asynchronous

Actor-Critic (A2C) [13], and IMPALA [14]. DQN achieved state-of-the-art results on some

of the simpler scenarios, but struggled on more complex scenarios.

2.2 Related Theory

2.2.1 Reinforcement Learning

Reinforcement learning (RL) is a sub-field of machine learning that focuses on how agents

can learn to make optimal decisions in dynamic and uncertain environments. RL has shown

great success in a wide range of applications, including robotics control, game playing, and

recommendation systems. As stated by Sutton and Barto, “Reinforcement learning is learn-

ing what to do – how to map situations to actions – so as to maximize a numerical reward

signal” [15]. RL algorithms operate by trial and error, where the agent learns from feed-

back in the form of rewards or punishments, which encourages it to make better decisions.

The success of RL lies in its ability to learn from experience, allowing it to improve its

decision-making abilities over time.

2.2.2 Agent-Environment Interface

Figure 2.1 illustrates the agent-environment interaction in reinforcement learning, where the

agent takes actions in the environment, receives rewards, and observes the resulting state.

As Sutton and Barto state, RL consists of three key components: “an agent, an environment,

and a reward signal” [15]. The agent is responsible for taking actions within the environment,

with the goal of maximizing the cumulative reward it receives. The environment, on the other

hand, is the context in which the agent operates, consisting of a set of states and the rules

that dictate how the agent transitions between them. The reward signal is a numerical value

that the agent receives from the environment after each action it takes, and it is used to guide
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the agent’s learning process. By learning from experience through the feedback provided by

the reward signal, the agent can improve its decision-making abilities over time. These three

components are fundamental to the RL framework, and their interaction is essential to the

learning process.

Figure 2.1: The agent-environment interaction in reinforcement learning.

2.2.3 Terminologies

Reinforcement learning (RL) has its own set of terminology that is used to describe the

various concepts and algorithms within the field. Some of the key terms used in RL include:

State: A state is the condition of the environment that the agent is in.

Action: An action is the choice made by the agent in response to the state it is currently

in.

Reward: A reward is a signal that the agent receives in response to its action in a particular

state, that defines how good the action was.

Policy: A policy is the mapping from states to the actions the agent should take in those

states.

Value function: The value function estimates the expected total reward an agent will

receive in the future from a given state or action.

Q-value: The Q-value is the expected total reward an agent will receive in the future if it

takes a particular action in a particular state.
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Discount factor: A discount factor is a value between 0 and 1. It is multiplied to the

reward signal to minimise the impact of future rewards.

Model: A model is an internal representation of the environment that the agent uses to

predict how the environment will respond to its actions.

Episode: An episode is a single instance of the agent’s interaction with the environment,

starting from an initial state and ending when the agent reaches a terminal state.

On-policy learning: On-policy learning is a type of RL algorithm where the agent learns

from experience that was generated by following the same policy that is being updated.

Off-policy learning: Off-policy learning is a type of RL algorithm where the agent learns

from experience that was generated by following a different policy than the one being up-

dated.

2.2.4 Key Characteristics of RL

1. Trial and Error Learning:

Trial and error learning is a process by which the agent learns to take actions based on

the feedback provided by the environment. The agent tries different actions and learns

from the rewards received, gradually improving its behavior over time. Reinforcement

learning algorithms use trial and error learning to discover the optimal policy that

maximizes the cumulative reward over time [15].

2. Goal-oriented Learning:

Reinforcement learning is a goal-oriented learning process, where the goal of the agent is

to learn a policy that maximizes the cumulative reward over time. The agent learns to

take actions that lead to desirable outcomes and avoids actions that lead to undesirable

outcomes. The goal-oriented nature of reinforcement learning makes it well-suited for

a wide range of applications, such as game playing, robotics, and autonomous driving

[15].

3. Exploration and Exploitation:

Exploration refers to the process of trying out new actions that the agent has not yet

tried in order to learn about the environment and discover new strategies that can

lead to higher rewards. In reinforcement learning, exploration is necessary to avoid

the agent getting stuck in a suboptimal policy and to learn about the environment’s

unknown aspects.

Exploitation refers to the process of selecting actions that the agent has previously
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found to be optimal in order to maximize the cumulative reward over time. In rein-

forcement learning, exploitation is necessary to ensure that the agent continues to take

actions that have previously yielded high rewards. The exploration-exploitation trade-

off is a fundamental problem in reinforcement learning. The agent must balance its

exploration of new actions with its exploitation of actions that have previously yielded

high rewards. If the agent explores too much, it may waste time and resources trying

out actions that lead to lower rewards, but if it exploits too much, it may miss out on

potentially higher rewards that could be obtained by trying out new actions [15].

4. Reward Signal:

The reward signal is the feedback provided by the environment to the agent, indicating

the quality of the actions taken by the agent. The reward signal is used to guide the

learning process of the agent, encouraging it to take actions that lead to higher rewards.

The reward signal can be either positive or negative, depending on whether the action

taken by the agent led to a desirable or undesirable outcome [15].

5. Sequential Decision-Making:

Reinforcement learning is concerned with sequential decision-making, in which the

agent takes a series of actions over time, with each action affecting the state of the

environment and the rewards received. The agent learns to take actions that maximize

the cumulative reward over time, taking into account the long-term consequences of

its actions. The sequential decision-making nature of reinforcement learning makes it

well-suited for applications such as decision making in finance, healthcare, and logistics.

2.2.5 Distinction from other forms of Machine Learning (ML):

Reinforcement learning (RL) differs from other machine learning algorithms such as su-

pervised learning and unsupervised learning in several ways. In supervised learning, the

algorithm is trained on labeled examples, whereas in RL, the agent learns through trial

and error. In unsupervised learning, the algorithm learns to identify patterns in unlabeled

data, whereas in RL, the agent learns to select actions that maximize the cumulative re-

ward signal. Additionally, RL can handle problems with delayed rewards and continuous

and high-dimensional state and action spaces, which makes it suitable for a wide range of

applications [15].
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2.2.6 Most Popular Breakthroughs in RL

RL has had several breakthroughs in recent years. Some of the most popular breakthroughs

in RL are as follows:

• Deep Q-Networks (DQN): DQN is a deep RL algorithm that was introduced by

[5]. DQN combines Q-learning with deep neural networks to enable agents to learn

from high-dimensional sensory inputs such as images.

• AlphaGo: AlphaGo is a deep RL algorithm that was introduced by [16]. AlphaGo

combines RL with deep neural networks to play the board game Go at a superhuman

level, surpassing the performance of human experts.

• AlphaZero: AlphaZero is a deep RL algorithm that was introduced by [17]. Alp-

haZero combines RL with deep neural networks to play the board games Go, chess,

and shogi at a superhuman level, without any prior knowledge of the game rules.

• OpenAI Five: OpenAI Five is a deep RL algorithm that was introduced by OpenAI

in 2019. OpenAI Five combines RL with deep neural networks to play the multiplayer

online battle arena game Dota 2 at a professional level, surpassing the performance of

human teams [18].

2.2.7 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework used to model decision-

making in situations where outcomes are uncertain and depend on previous states and ac-

tions. According to a research paper by Kaelbling, Littman, and Moore, an MDP consists

of “a set of states, a set of actions, a transition function, a reward function, and a discount

factor” [19]. In an MDP, the agent interacts with the environment by taking actions in a

current state, transitioning to a new state, and receiving a reward based on the action taken

and the new state reached.

The key components of an MDP are:

• States: These are the different possible situations or configurations that the decision-

maker can find themselves in. In a given state, the decision-maker has some information

about their environment, but may not know everything. The set of states is denoted

by S.
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• Actions: These are the different possible choices or decisions that the decision-maker

can make. Actions are chosen based on the current state and the decision-maker’s

goals. The set of actions is denoted by A.

• Transition probabilities: These describe the probability of moving from one state

to another when a particular action is taken. The transition probabilities are denoted

by P (s′|s, a), where s and a are the current state and action, respectively, and s′ is the

next state.

• Rewards: These are the immediate benefits or costs associated with each action. The

rewards are denoted by R(s, a).

• Policy: This is the decision-making rule used by the decision-maker to choose actions

based on the current state. The policy is denoted by π(a|s).

An MDP is said to satisfy the Markov property if the probability of transitioning to a future

state only depends on the current state and the action taken, and not on the history of

past states and actions. This property simplifies the analysis and computation of optimal

policies.

The goal of an MDP is to find a policy that maximizes the expected cumulative reward

over time. The cumulative reward is given by the sum of the rewards received at each time

step, weighted by a discount factor that reflects the importance of immediate versus future

rewards.

10



MDP is explained by the mathematical equations as:

Inputs:

State space S

Action space A

Reward function R(s, a)

Transition function P (s′|s, a)

Outputs:

Policy π(s)

Value function V (s)

Formulation:

For each state s ∈ S, initialize V (s) arbitrarily.

Repeat until convergence:

For each state s ∈ S :

V (s)← max
a∈A

∑
s′∈S

P (s′|s, a) [R(s, a, s′) + γV (s′)] (2.1)

For each state s ∈ S :

π(s)← argmax
a∈A

∑
s′∈S

P (s′|s, a) [R(s, a, s′) + γV (s′)] (2.2)

In the above formulation, an MDP is defined by a state space S, an action space A, a reward

function R(s,a), and a transition function P(s’—s,a). The goal is to find a policy π(s) that

maximizes the expected total reward over time. The value function V(s) represents the

expected total reward starting from state s and following policy π(s) [15].

2.2.8 Policy and Value Functions

In reinforcement learning, a value function represents the expected return starting from a

particular state and following a specific policy. The value function can be defined recursively

using the Bellman equation:

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)[R(s, a, s′) + γV π(s′)]. (2.3)

where V π(s) is the value function for state s under policy π, a represents an action, s′ is the

resulting state, P (s′|s, a) is the probability of transitioning to state s′ from state s under

action a, R(s, a, s′) is the immediate reward received after taking action a in state s and
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transitioning to state s′, π(a|s) is the probability of selecting action a in state s, and γ is a

discount factor.

On the other hand, a policy function specifies the action to be taken in a given state. A

policy can also be evaluated using a similar recursive definition:

Qπ(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γ
∑
a′

π(a′|s′)Qπ(s′, a′)]. (2.4)

where Qπ(s, a) is the action-value function for state-action pair (s, a) under policy π [15].

2.2.9 Policy Evaluation

Policy evaluation is the process of calculating the state-value function for a given policy.

The state-value function is the expected return starting from a given state and following the

policy thereafter. The formula for state-value function is given by:

V π(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γV π(s′)] (2.5)

Here, V π(s) is the state-value function for policy π, π(a|s) is the probability of taking action

a in state s, p(s′, r|s, a) is the probability of transitioning to state s′ and receiving reward r

when taking action a in state s, and γ is the discount factor.

The optimal state-value function, denoted as V (s), is the maximum state-value function over

all policies, i.e., V (s) = maxπ V
π(s). The optimal state-value function satisfies the Bellman

optimality equation:

V (s) = max
a

∑
s′,r

p(s′, r|s, a) [r + γV (s′)] (2.6)

The optimal policy π can be obtained by acting greedily with respect to the optimal state-

value function, i.e., π(a|s) = 1(a = arg maxa′ Q(s, a′)), where Q(s, a) is the optimal action-

value function and 1(·) is the indicator function [16].

2.2.10 Policy Iteration

Policy iteration is an iterative method for solving a Markov Decision Process (MDP) that

involves alternating between policy evaluation and policy improvement. The goal is to find
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an optimal policy that maximizes the expected cumulative reward.

The steps involved in policy iteration are as follows:

1. Initialize the policy π arbitrarily.

2. Evaluate the policy π by solving the Bellman equation for Vπ:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)] (2.7)

3. Improve the policy by selecting the action that maximizes the expected cumulative

reward for each state:

π′(s) = argmax a
∑

s′, rp(s′, r|s, a)[r + γVπ(s′)] (2.8)

4. If the policy has not changed significantly, stop and return the optimal policy π and

the corresponding value function Vπ , otherwise set π = π′ and go to step 2.

In the above equations, s represents the current state, a represents the action taken, s′ repre-

sents the next state, r represents the reward received, p(s′, r|s, a) represents the probability

of transitioning to state s′ and receiving reward r given the current state s and action a, γ

represents the discount factor, and π′(s) represents the new policy [16].

2.2.11 Value Iteration

Value iteration is another iterative algorithm in reinforcement learning used for finding the

optimal value function for a given MDP. The algorithm starts with an initial estimate of the

value function and updates it using the Bellman optimality equation until convergence.

The Bellman optimality equation for the value function can be written as:

Vk+1(s) = max
a∈A

∑
s′∈S

P (s′|s, a) [R(s, a, s′) + γVk(s′)] (2.9)

where Vk(s) is the estimated value of state s after k iterations, a is an action in the action

space A, P (s′|s, a) is the transition probability from state s to state s′ under action a,

R(s, a, s′) is the immediate reward obtained from taking action a in state s and ending up

in state s′, and γ is the discount factor.

The value iteration algorithm can be summarized as follows:
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Initialize V0(s) for all s ∈ S arbitrarily. For each iteration k ≥ 0, update the value function

Vk+1(s) for all s ∈ S using the Bellman optimality equation:

Vk+1(s) = max
a∈A

∑
s′∈S

P (s′|s, a) [R(s, a, s′) + γVk(s′)] (2.10)

Repeat step 2 until the change in Vk(s) between two consecutive iterations is less than a

predefined threshold [15]. The optimal policy can then be obtained by selecting the action

that maximizes the right-hand side of the Bellman optimality equation:

π(s) = argmax a ∈ A
∑

s′ ∈ SP (s′|s, a) [R(s, a, s′) + γV ∗(s′)] (2.11)

where V ∗(s) is the optimal value function, obtained as the limit of Vk(s) as k →∞.

2.2.12 Necessary Mathematical Quantities

A) Expected Return

The expected return is the expected cumulative reward that an agent can achieve by

following a policy π starting from a state s:

V (s) = E[
∞∑
t=0

γtR(st, at)|s0 = s, π], (2.12)

where V (s) is the value function of state s, R(st, at) is the immediate reward received

when taking action at in state st, γ is the discount factor, and E is the expectation

operator [16].

B) Q-Value

The Q-value is the expected cumulative reward that an agent can achieve by taking a

particular action a in a given state s and then following a specific policy π:

Q(s, a) = E[
∞∑
t=0

γtR(st, at)|s0 = s, a0 = a, π], (2.13)

where Q(s, a) is the Q-value function of state-action pair (s, a) [16].

C) Advantage Function

The advantage function measures how much better an action is than the average action

taken in a given state:
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A(s, a) = Q(s, a)− V (s), (2.14)

where A(s, a) is the advantage function of state-action pair (s, a), Q(s, a) is the Q-value

function of state-action pair (s, a), and V (s) is the value function of state s [15].

D) Bellman Equation

The Bellman equation is a fundamental equation in reinforcement learning that de-

scribes the relationship between the value function and the expected reward:

V (s) = E[R + γV (s′)|s, a], (2.15)

where V (s) is the value function of state s, R is the immediate reward, γ is the discount

factor, V (s′) is the value function of the next state s′, and a is the action taken in state

s [15].

2.2.13 Reinforcement Learning Algorithms

Reinforcement Learning (RL) can be broadly categorized into two categories: Value-Based

RL and Policy-Based RL. Value-Based RL algorithms aim to learn the value function of

a state, which represents the expected cumulative reward that an agent would receive by

following a specific action policy from that state. The agent learns to estimate the value

function, which can be used to select actions that maximize the expected cumulative reward.

On the other hand, Policy-Based RL algorithms aim to learn a policy directly, which is a

mapping from states to actions. The agent learns to optimize the policy by adjusting the

parameters of the policy directly. Both categories of RL algorithms have their advantages

and disadvantages, and the choice of algorithm depends on the specific problem and the

characteristics of the environment.

2.2.13.1 Monte Carlo Estimate:

Monte Carlo (MC) is a specific type of reinforcement learning (RL) algorithm that works

by simulating complete episodes of the environment and using the observed returns to es-

timate the value function. MC does not require a model of the environment, which makes

it suitable for situations where the environment’s dynamics are either unknown or hard to

model. MC methods rely on the principle of sampling the returns of complete episodes of

the environment, and they estimate the value function of a state by averaging the returns
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observed in all episodes that visit that state.The update rule for a first-visit MC algorithm

is given by:

V (st)← V (st) + α(Gt − V (st)) (2.16)

Where V (st) is the estimated value function for state st, α is the learning rate, and Gt is the

observed return starting from state st at time t. The return is defined as the sum of rewards

received from time t to the end of the episode [15].

MC methods offer several advantages compared to other RL algorithms. One major advan-

tage is their unbiasedness, meaning that their estimates approach the true value function

with enough samples. Additionally, MC methods can handle environments with stochastic

rewards or transitions, making them applicable to a wide range of problems. However, MC

methods also come with some limitations. One primary limitation is the high variance of

estimates, particularly in scenarios where episodes are long or infrequent. This high variance

can hinder the accuracy of value function estimates and slow down the learning process.

Another limitation of MC methods is the computational expense of simulating complete

episodes of the environment, which can be a challenge in large-scale problems.

2.2.13.2 Temporal Difference:

Temporal Difference (TD) is a kind of reinforcement learning (RL) algorithm that updates its

value function by estimating the value of the state-action pairs from the observed experience.

TD methods use a blend of Monte Carlo (MC) and dynamic programming (DP) methods,

enabling them to update their estimates based on partial experience.

TD algorithms estimate the value function by calculating the temporal difference between the

predicted value of a state or action and the observed value of the next state. This difference

is used to update the value function of a state-action pair, by adding the difference between

the predicted value and the actual reward received. The update rule for a TD(0) algorithm

is given by:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.17)

where V (st) is the estimated value function for state st, α is the learning rate, rt+1 is the

reward received at time t + 1, γ is the discount factor, and V (st+1) is the estimated value

function for the next state st+1 [16].

TD methods offer several advantages over other RL algorithms. One advantage is that they

can learn online, meaning that the value function can be updated after each environment

step. This allows the agent to quickly adjust to changes in the environment. Another
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advantage is that they do not need a complete model of the environment, making them

suitable for situations where the environment’s dynamics are unknown or difficult to model.

TD methods, despite their benefits, come with some drawbacks as well. One of the main

limitations of TD methods is the tradeoff between bias and variance. If the value function

estimate is incorrect, TD methods can become biased, and this bias can accumulate over

time, leading to inaccurate estimates. However, increasing the number of updates can reduce

bias, but it can also increase the variance of the estimates. Another limitation is the curse of

dimensionality, where the number of possible states and actions can increase exponentially

with the size of the problem, making it challenging to estimate the value function with

accuracy.

2.2.13.3 Generalized Advantage Estimation:

The goal of RL is to learn a policy π that maximizes the expected cumulative reward over

time. To do this, we need to estimate the value function V (s) and the advantage function

A(s, a) for each state s and action a, which represent the expected cumulative reward starting

from state s or taking action a in state s, respectively.

The advantage function is defined as:

A(s, a) = Q(s, a)− V (s) (2.18)

where Q(s, a) is the state-action value function, representing the expected cumulative reward

starting from state s, taking action a, and following policy π thereafter. The value function

V (s) can be estimated using various methods, such as TD learning or Monte Carlo sampling,

but the advantage function is typically harder to estimate accurately.

The GAE technique is a method of calculating the advantage function, which combines TD

and Monte Carlo estimates. GAE works by taking an exponentially-weighted average of

the TD error signals at different time horizons. This results in a weighted average of the

advantages over both short and long-term periods. The degree of weighting is controlled by

the lambda parameter (λ), which helps balance the tradeoff between bias and variance in

the estimation process.

The GAE estimate is defined as follows:

GAE(t) =
∞∑
k=0

(γλ)kδt+k (2.19)

where δt+k is the TD error signal at time step t + k, defined as δt+k = rt+k + γV (st+k+1) −
V (st+k), and γ is the discount factor. The lambda parameter controls the weighting of
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the TD error signals at different time horizons, where λ = 0 corresponds to a purely TD

estimate, λ = 1 corresponds to a purely Monte Carlo estimate, and 0 < λ < 1 corresponds

to a combination of both TD and Monte Carlo estimates [1].

The trade-off between bias and variance:

Monte Carlo methods estimate the value function by averaging the actual returns obtained

from running a complete episode of the RL algorithm. This method is unbiased but has high

variance, as it requires a large number of samples to obtain accurate estimates. In contrast,

TD methods estimate the value function by bootstrapping from the estimates of the next

state, using a temporal difference error signal. This method is biased but has lower variance

than Monte Carlo methods, as it can update the value function after each time step.

The GAE method combines both Monte Carlo and TD estimates to obtain a more accurate

and stable estimate of the advantage function. Specifically, GAE computes an exponentially-

weighted average of the TD error signals with different time horizons, where the weighting

factor is controlled by a hyperparameter called the λ parameter. This allows for a bias-

variance tradeoff in the estimate of the advantage function, resulting in a more accurate and

stable estimate.

To see how GAE takes the better aspects of both Monte Carlo and TD estimates, let’s start

with the TD error signal:

δt = rt + γV (st+1)− V (st) (2.20)

This error signal represents the difference between the observed reward at time t and the

expected reward, based on the current estimate of the value function. In TD learning, we

use this error signal to update the value function estimate:

V (st)← V (st) + αδt (2.21)

where α is the learning rate.

However, the TD error signal has high variance, especially when the policy changes frequently

or the reward signal is noisy. To address this, we can use Monte Carlo estimates of the return

to provide a more accurate estimate of the value function. Specifically, we can define the

return Gt as:

Gt =
T∑

k=t

γk−trk (2.22)

where T is the time horizon, and γ is the discount factor.
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The Monte Carlo estimate of the value function is then:

VMC(st) = E[Gt|st] (2.23)

This estimate is unbiased, but has high variance, as it requires a large number of samples to

obtain accurate estimates.

The GAE method combines both TD and Monte Carlo estimates to obtain a more accurate

and stable estimate of the advantage function. Specifically, the GAE estimate at time step

t is given by:

GAE(t) =
∞∑
k=0

(γλ)kδt+k (2.24)

where λ is the lambda parameter, which controls the balance between bias and variance

in the estimate. The lambda parameter can take values between 0 and 1, where λ = 0

corresponds to a purely TD estimate, λ = 1 corresponds to a purely Monte Carlo estimate,

and 0 < λ < 1 corresponds to a combination of both TD and Monte Carlo estimates.

The GAE estimate is a weighted average of the TD error signals at different time horizons,

where the weight of each TD error signal is determined by the lambda parameter. When λ

is close to 0, the GAE estimate is dominated by the short-term TD estimates, which have

lower variance but higher bias. When λ is close to 1, the GAE estimate is dominated by

the long-term Monte Carlo estimates, which have higher variance but lower bias. When λ

is between 0 and 1, the GAE estimate combines both short-term and long-term estimates,

resulting in a more accurate and stable estimate of the advantage function.

The GAE estimate can be used to update the policy parameters using a gradient ascent

algorithm. The policy gradient is defined as:

∇θJ(θ) =
∑
t

∇θ log π(at|st)A(st, at), (2.25)

where J(θ) is the objective function to be maximized, and θ represents the policy parameters.

The policy gradient is estimated using the GAE estimate of the advantage function, resulting

in a more accurate and stable estimate of the gradient [1].

2.2.13.4 Value-Based Methods

Value-based methods are a class of reinforcement learning algorithms that learn to estimate

the value function of state-action pairs in order to find an optimal policy that maximizes the
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expected cumulative reward. The value function represents the expected cumulative reward

that an agent can achieve by taking a particular action in a given state and then following

a specific policy [4].

A) Q-Learning

Q-learning is an off-policy method that learns the optimal Q-value function by selecting

actions that maximize the expected cumulative reward, regardless of the current policy. It

updates the Q-value function by using the Bellman equation and the maximum Q-value over

all possible actions in the next state:

Q(s, a)← Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)] (2.26)

where Q(s, a) is the Q-value function of state-action pair (s, a), α is the learning rate, r is

the immediate reward, s′ is the next state, and a′ is the action taken in the next state [15].

Popular Q-learning methods include:

• Double Q-Learning: Double Q-learning is an extension of Q-learning that addresses

the problem of overestimation of Q-values. In Q-learning, the maximum Q-value in

the next state is used to update the Q-value of the current state. This can lead

to overestimation of Q-values, especially in environments with high variance in the

rewards. Double Q-learning addresses this issue by using two Q-functions instead of

one and alternating between them during updates [6].

• Deep Q-Networks (DQN): DQN is a variant of Q-learning that uses deep neural

networks to estimate the Q-function. This allows DQN to handle high-dimensional

state spaces, such as images, and can learn directly from raw sensory input. DQN uses

experience replay to store and sample transitions from a replay buffer, allowing it to

learn from past experiences and improve sample efficiency [6].

Limitations of Value-Based Methods:

• Unstable: One of the major limitations of value-based methods, especially deep re-

inforcement learning algorithms, is their instability. The problem arises due to the

inherent nature of these algorithms, which involves updating the estimates of state or

action values based on noisy samples. This noise can lead to oscillations in the learned

policy and cause the algorithm to diverge. Additionally, the use of large neural net-

works in deep reinforcement learning can lead to issues with overfitting, making the

learned policy too specific to the training environment.
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• Off-policy method: Another limitation of value-based methods is that they are off-

policy methods, meaning that they require the use of a separate behavior policy to

generate the training data. This can be a disadvantage because it may not always be

feasible to use the same behavior policy as the target policy, leading to poor convergence

of the learned policy.

• Value bootstrapping: Value-based methods use value bootstrapping, which means

that the value estimate for a state or action is updated based on the estimates of the

next state or action. While this can lead to faster convergence and more efficient learn-

ing, it can also result in overestimation or underestimation of values if the bootstrapped

estimates are inaccurate.

• Limited exploration: Value-based methods can suffer from limited exploration of

the state-action space, especially in large state-action spaces. This can lead to sub-

optimal policies that do not explore all possible actions and states, resulting in poor

performance in complex environments.

• Reward engineering: Another limitation of value-based methods is that they rely

heavily on the reward function, which can be challenging to design for complex en-

vironments. Reward engineering involves designing a reward function that provides

a meaningful signal to the agent, but it can be difficult to strike a balance between

encouraging exploration and rewarding the agent for achieving the desired task.

• No natural handling of continuous action spaces: Many value-based methods,

such as Q-learning and SARSA, are designed for discrete action spaces and cannot be

easily extended to continuous action spaces. While there are extensions, such as deep

deterministic policy gradients (DDPG), they can be complex to implement and may

require significant computational resources.

• Difficulty in handling multi-agent environments: Value-based methods can also

struggle to handle multi-agent environments, where the behavior of one agent affects

the rewards of other agents. This can result in non-stationary environments, where

the optimal policy changes over time, leading to challenges in convergence [6].

2.2.13.2 Policy-Based Methods

Policy-based methods are a class of machine learning algorithms that directly learn an op-

timal policy to maximize the cumulative reward. In contrast, value-based methods learn an
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optimal value function to estimate the expected reward from each state. Policy-based meth-

ods have several advantages over value-based methods, but they also have some limitations

that need to be considered.

The key distinctions for policy-based methods over value-based methods include:

• Policy-based methods can handle continuous and high-dimensional action spaces, mak-

ing them well-suited for real-world problems where the action space is continuous and

high-dimensional.

• Policy-based methods can learn stochastic policies, which output a probability distri-

bution over actions instead of a single action. Stochastic policies are more robust to

changes in the environment and can handle exploration-exploitation trade-offs more

effectively.

• Policy-based methods can learn optimal policies that are optimal in expectation, mean-

ing that they can perform well even in non-stationary environments.

• Policy-based methods are less prone to the overestimation of Q-values that can occur

with value-based methods, which can lead to suboptimal policies.

Limitations of Policy-Based Methods:

• Policy-based methods can be more sample-inefficient than value-based methods, mean-

ing that they require more data to learn an optimal policy.

• Policy-based methods can be sensitive to the choice of hyperparameters and can be

more challenging to tune than value-based methods.

• Policy-based methods can suffer from local optima, meaning that they can converge to

a suboptimal policy that is not the globally optimal one.

• Policy-based methods can be more computationally expensive than value-based meth-

ods, especially for large and complex environments [1].

A) Policy Gradient

A approach known as ”policy gradient” allows agents to directly learn their policies, i.e.,

π(a, s) = Pr(at = a|st = s), from their experiences, i.e., (st, at, st+1, rt), which are acquired

from the environment.The method attempts to estimate the true gradient of the anticipated

22



return ∇θE by gathering a sample of trajectories and comparing the mean gradient among

these sampled trajectories to the actual gradient. A greater performance results by updating

the parameters in the projected direction of the anticipated return gradient, which causes

the expected return to grow roughly after every step. The following equation is used by the

default policy gradient to update its parameters:

ĝt = Êt
[
∇θ log πθ(at|st)Ât

]
. (2.27)

In this algorithm, a stochastic policy πθ and an estimator Ât for the advantage function at

timestep t are utilized. The empirical average across a finite batch of samples is denoted by

Êt[. . . ] in a sampling-and-optimization-alternating approach. Objective functions that utilize

automated differentiation software generate a policy gradient estimator as the gradient; this

estimator ĝ is produced by differentiating the objective as follow:

LPG(θ) = Êt
[
log πθ(at|st)Ât

]
(2.28)

Multiple optimization steps for the same trajectory on this loss frequently result in incredibly

large policy updates. Consequently, it is not advised to do so.

We may infer from the equation above that we select a few sample trajectories and compute

their returns. Then, for a trajectory, the gradients of log probabilities at each time step are

added and multiplied by the trajectory’s return. The real gradient of the expected return,

which is utilized to update the policy, is approximately approximated by averaging this

number for various samples of our strategy.

The formula unambiguously demonstrates that a positive return for a trajectory increases

the likelihood that these activities will be taken, but a negative return for a trajectory moves

in the other direction, reducing the probability of taking the trajectory and so lowering its

likelihood.

B) Actor Critic Methods

Actor-Critic methods are a class of reinforcement learning (RL) algorithms that combine

the benefits of both policy-based and value-based methods. The Actor-Critic approach can

learn both the optimal policy and the value function of an environment simultaneously.

In Actor-Critic methods, the agent maintains two neural networks: an Actor and a Critic.

The Actor network is responsible for determining the policy (i.e., the action to take) in a
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given state, whereas the Critic network evaluates the value of the state. The Actor network

is trained using policy gradients, while the Critic network is trained using TD (Temporal

Difference) learning.

The Actor-Critic approach can be further classified into two subcategories: on-policy and

off-policy methods.

On-policy Actor-Critic Methods/A2C:

In on-policy Actor-Critic methods, the policy is updated after every action, which means

that the policy is learned based on the current policy. This results in a slow learning process,

but it has the advantage of being stable and converging to a near-optimal solution.

The most used variation of the on-policy actor-critic methods is the advantage actor-critic

method (A2C).

The Advantage Actor-Critic (A2C) is an on-policy Actor-Critic algorithm that combines the

advantages of policy gradient methods and value-based methods. A2C learns both the policy

and the value function simultaneously by using two neural networks: an Actor network and

a Critic network.

The Actor network takes the state as input and outputs the probability distribution of

actions to be taken in that state. The Critic network takes the state as input and outputs

the value of the state. The value function estimates the expected reward that an agent can

get by being in a particular state and following the current policy.

The A2C algorithm updates the policy and value function using the advantage function,

which measures the difference between the actual value of a state and the expected value

based on the current policy. The advantage function is defined as:

Advantage = Q(s, a)− V (s) (2.29)

where Q(s, a) is the expected reward of taking action a in state s and following the current

policy, and V(s) is the expected reward of being in state s and following the current policy.

The A2C algorithm performs the following steps:

1. Collect trajectories: The agent interacts with the environment by taking actions

based on the current policy and collects a set of trajectories, which are sequences of

state, action, and reward tuples.
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2. Compute advantages: The Critic network is used to estimate the value function

for each state in the trajectory. Then, the advantage function is computed for each

state-action pair in the trajectory.

3. Compute policy gradients: The policy gradients are computed using the advantage

function. The gradients are then used to update the Actor network.

4. Update value function: The value function is updated using TD learning. The

Critic network is trained to minimize the mean squared error between the estimated

value and the actual value of the state.

The given steps are repeated for as long as the iterations are required and the desired goal

is reached. A2C stands out as computationally efficient because it updates the policy and

value function using the same set of trajectories. It is also stable because the value function

provides a baseline for estimating the advantages[1].

C) Trust Region Methods:

In TRPO, an objective function (the “surrogate” objective) is maximized subject to a con-

straint on the size of the policy update. Specifically,

maximize θ Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
(2.30)

subject to Êt [KL [πθold(·|st), πθ(·|st)]] ≤ δ. (2.31)

Here, θold is the vector of policy parameters before the update. After approximating the

objective and constraint using linear and quadratic approximations, this issue can be roughly

solved effectively using the conjugate gradient algorithm.

The theory supporting TRPO actually recommends solving the unconstrained optimization

problem by employing a penalty rather than a constraint.

maximize
θ

Êt

[
πθ (at | st)

πθold (at | st)
Ât − βKL [πθold (· | st) , πθ (· | st)]

]
(2.32)

for some coefficient β. This follows from the fact that a certain surrogate objective (which

computes the max KL over states instead of the mean) forms a lower bound (i.e., a pessimistic

bound) on the performance of the policy π. TRPO employs a hard constraint as opposed

to a penalty since it is challenging to select a single value of beta that performs well over
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several problems, or even within a single issue when the features vary throughout the course

of learning. Experiments demonstrate that selecting a fixed penalty coefficient beta and

optimizing the penalized objective equation using SGD alone are not sufficient to meet our

aim of a first-order method that mimics the linear improvement of TRPO; more adjustments

are needed. [1].

Limitations with TRPO

1. Computationally expensive:

TRPO requires computing the Fisher information matrix, which has a high computa-

tional cost, especially for high-dimensional policies. The Fisher information matrix is

used to estimate the curvature of the policy objective function around the current pol-

icy, which is then used to constrain the magnitude of the policy update. This can make

TRPO infeasible for large-scale problems where the number of parameters is large. The

Fisher information matrix is defined as the negative expected value of the Hessian of

the log-likelihood function of the policy. Computing the Hessian requires evaluating

the second derivatives of the log-likelihood function with respect to each parameter

of the policy. This can be computationally expensive, especially for high-dimensional

policies, where the number of parameters can be in the millions or billions.

2. Hyperparameter sensitivity:

TRPO has several hyperparameters that require careful tuning to achieve good results.

These include the step size, the trust region size, and the penalty coefficient. The opti-

mal values for these hyperparameters can be difficult to find and are highly dependent

on the specific problem at hand. The step size determines the magnitude of the policy

update, and a too large step size can result in policy divergence, while a too small step

size can result in slow convergence. The trust region size determines the maximum

allowable policy update, and a too small trust region can result in slow convergence,

while a too large trust region can result in policy divergence. The penalty coefficient

determines the trade-off between the policy improvement and the trust region con-

straint, and a too small penalty coefficient can result in policy divergence, while a too

large penalty coefficient can result in overly conservative updates.

Finding the optimal values for these hyperparameters can be difficult and time-consuming.

Moreover, the optimal values may change during the training process as the policy

changes.

3. Limited Exploration:
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TRPO may suffer from limited exploration, especially in environments with sparse

rewards or complex dynamics. This is due to the conservative nature of the trust

region policy update rule, which may not explore new actions or states as effectively

as other algorithms. The trust region policy update rule constrains the policy update

to be within a certain region around the current policy. This constraint can limit the

ability of the policy to explore new actions or states that may be far away from the

current policy. Moreover, the trust region constraint is based on the current policy,

which may not be optimal, and therefore may not encourage exploration towards the

optimal policy.

D) Proximal Policy Optimization:

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that is com-

monly used to train agents to interact with environments in order to maximize rewards. It

was first introduced by OpenAI in 2017 following the limitations regarding TRPO and has

since become a popular choice for many researchers and practitioners in the field of deep

reinforcement learning[15].

PPO is a variant of policy gradient methods, which involve optimizing a parameterized

policy to maximize the expected cumulative reward of the agent over multiple episodes.

Unlike other policy gradient methods, PPO constrains the changes to the policy during each

update step to prevent it from diverging too far from the previous policy, thereby ensuring

stability and preventing catastrophic forgetting.

Clipped Surrogate Objective Function

By limiting the policy update to prevent significant changes in the policy parameters, the

clipped surrogate objective function strategy of PPO works to increase the learning process’

stability and prevent the policy from diverging.

Let rt(θ) denote the probability ratio,

rt(θ) =
πθ(at|st)
πθold(at|st)

(2.33)

so r(θold) = 1.

TRPO maximizes a “surrogate” objective.

LCPI(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
(2.34)
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The primary objective we recommend is as follows:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2.35)

Where ϵ is a hyperparameter, say, ϵ = 0.2. The motivation for this objective is as follows.

The first term inside the min is LCPI . The second term, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât, modifies

the surrogate objective by clipping the probability ratio, which removes the incentive for

moving rt outside of the interval [1 − ϵ, 1 + ϵ].The ultimate goal is a lower bound for the

unclipped objective since we pick the lowest possible value of the clipped and unclipped

objectives. With this method, we only take into account the probability ratio change when

it would improve the objective and ignore it when it would worsen it.

Figure 2.2: Single time-step of surrogate function [1]

Overcoming Limitations of Value-Based Methods with PPO

1. Exploration: One of the major limitations of value-based methods such as DQN

is that they tend to overestimate the value function, leading to a suboptimal policy.

This occurs because the agent may not explore enough to find the optimal policy.

PPO solves this issue by directly learning the policy, which encourages exploration.

Additionally, PPO uses an objective function that constrains the policy update to a

certain range, preventing the policy from changing too much at once and reducing the

risk of catastrophic forgetting[1].

2. Stability:
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Another limitation of value-based methods is the instability caused by the non-stationary

target function in the Bellman equation. This can lead to divergence or oscillations in

the learning process. PPO solves this issue by using a surrogate objective function that

constrains the policy update to be close to the old policy, thereby ensuring a smooth

learning process.

3. Sample Efficiency:

Value-based methods such as DQN require large amounts of data to learn the value

function accurately. This is because they learn from complete episodes of experience,

which can be time-consuming and computationally expensive. PPO solves this issue

by using a mini-batch of experiences to update the policy, which reduces the amount

of data needed and makes the learning process more efficient. Additionally, PPO uses

a value function that is trained on the same data as the policy, which reduces the

variance of the value estimates and increases sample efficiency.

4. Continuous Action Spaces: Value-based methods such as DQN are designed for

discrete action spaces and are not well-suited for continuous action spaces. PPO solves

this issue by using an actor-critic architecture, where the actor directly outputs the

mean and variance of a Gaussian distribution, and the critic estimates the value func-

tion of the state-action pairs. This allows the agent to learn a stochastic policy that

can handle continuous action spaces.

Limitations of PPO

While PPO solves some of the limitations of value-based methods, it also has its own limita-

tions. One of the main limitations of PPO is that it is computationally expensive, especially

in large-scale problems. Additionally, PPO is still prone to local optima, and it may not

always converge to the optimal policy.

Adaptive KL Penalty Coefficient

The application of a penalty on KL divergence and adaptation of the penalty coefficient

such that we attain some goal value of the KL divergence dtarg with each policy update is

another strategy that may be employed as an alternative to the clipped surrogate objective

or in addition to it. The KL penalty fared worse than the clipped surrogate objective in

testing, but we’ve put it here because it’s a crucial baseline.[1].
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In the simplest instantiation of this algorithm, we perform the following steps in each policy

update:

1. Using several epochs of minibatch SGD, KL-penalized objective is optimized as

LKLPEN(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât− βKL[πθold(·|st), πθ(·|st)]
]

(2.36)

2. Compute :

d = Êt[KL[πθold(·|st), πθ(·|st)]] (2.37)

• If d < dtarg/1.5, β ← β/2

• If d > dtarg × 1.5, β ← β × 2

For the upcoming policy update, the revised β is utilized. Another hyperparameter, β’s

starting value is unimportant in reality because the algorithm swiftly modifies it. [1].

2.2.14 Game Rendering Technique

Raycasting

Raycasting is a technique used in computer graphics to render a 3D scene into a 2D image.

Raycasting is a fundamental technique used in many classic video games such as Wolfenstein

3D and Doom.

The process of raycasting involves casting a ray from the player’s viewpoint into the 3D

environment. The ray is then traced through the environment until it intersects with an

object or surface. The point of intersection is then used to calculate the distance between

the player and the object, as well as the angle at which the object is seen. This information

is used to render the scene on the player’s screen.

In the context of first-person shooter games, raycasting is used to determine what the player

can see and what obstacles are in the way. This information is then used by the game engine

to determine which objects should be rendered and which should be hidden, based on their

distance and angle relative to the player’s viewpoint. Additionally, raycasting can be used

to detect collisions between the player and other objects, such as walls or enemies.

Raycasting can be implemented using different algorithms, such as the Digital Differential

Analyzer (DDA) algorithm or the Bresenham’s line algorithm. In general, raycasting is a

computationally efficient technique, making it a popular choice for real-time rendering in

video games.
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Limitations of Raycasting

Although ray-casting is a fast and efficient technique for creating 3D environments, it does

have some limitations. One major limitation is that it relies on certain geometric constraints,

such as walls being at a 90-degree angle with the floor. As a result, the viewpoint in a ray-

casting game cannot be rotated along the Z-axis. This means that walls cannot be slanted,

and the benefit of drawing in vertical slices is lost. Because of this limitation, a ray-casting

environment is not considered a true 3D environment. Players can only move forward,

backward, and turn left or right, but cannot rotate or swing around the Z-axis
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3. Methodology

3.1 Game Environment

3.1.1 Game Development

To develop our FPS game, the Pygame library was utilized. Pygame is a popular game

development framework for Python that provides a range of features, including graphics

and sound capabilities, event handling, and game physics. The library allowed to create a

2D game environment and implement various game mechanics, such as player movement,

enemy AI, weapon mechanics, and health systems. We also utilized the library’s sprite class

to create and animate game objects and the Pygame mixer module to handle sound effects

and background music. Overall, Pygame provided a robust and flexible toolset to create a

functional and immersive game environment for our reinforcement learning agent.

3.1.2 Game Rendering

To render the game environment, the raycasting technique was utilized, which involves cast-

ing rays from the player’s perspective and using their intersections with the game world to

create a 2D projection of the 3D environment.

Implementation Steps

The following outlines the steps involved in raycasting for an FPS game:

1. Setting up the Environment: The first step is to set up the virtual 3D environment.

This can be done by defining a 2D grid of cells, where each cell can either be a wall or

empty space. In addition, we define the player’s position and orientation [20].

Following constraints are considered for the environment creation:

• Walls are always at a 90° angle with the floor.

• Walls are made of cubes that have the same size. (64*64*64 in our case)

• The floor is always flat.
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2. Defining attributes for projections: We define the projection attributes required

to render the world. These attributes include the player’s height, field of view (FOV),

and position, as well as the projection plane’s dimension and the relationship between

the player and the projection plane as shown in the figure B.1. In the figure B.1, player

is represented by yellow dot with a field of view of 60 degrees represented by green

region. We set the FOV to 60 degrees for screen optimization, and the player’s height

to 32 units. The player’s point of view is defined by their X and Y coordinates and the

angle they are facing. We also define a projection plane with a resolution of 320x200

units, which corresponds to the VGA video card resolution [20]. When projected, the

world look like the scene in Figure B.2.

We now have obtained following attributes that will be used throughout our project:

Table 3.1: Atrributes for projections

Attributes Values

Dimension of the Projection Plane 320 x 200 units

Distance to the Projection Plane 277 units

Angle between subsequent rays 60/320 degrees

Center of the Projection Plane (160,100)

From these values, the angle between subsequent rays and the distance between the

player and projection plane can be calculated using trigonometry and the Pythagorean

theorem. These values are important for later steps in the ray-casting process.

3. Finding the walls: In the third step of ray-casting, we need to find the walls of the

world by tracing rays. The walls can be viewed as a collection of 320 vertical lines,

which simplifies the process of ray-casting.

The steps involved are as follow [21]:

(a) Divide the projection plane into 320 vertical columns to represent the walls in the

scene.

(b) Starting from the left-most column (column 0), subtract half of the field of view

(FOV) angle (30 degrees) from the player’s viewing angle to get the direction of

the first ray.

(c) Cast the first ray from the player’s position in the direction obtained in step 2.

33



(d) Trace the ray until it intersects with a wall, by checking the grid intersection

points of the ray with the grid boundary (Points A, B, C, D ,E and F in Figure

B.3.

(e) Record the distance to the wall, which is equal to the length of the ray.

(f) Add the angle increment of 60/320 degrees to the viewing angle to get the direction

of the next ray.

(g) Repeat steps 3-6 for each subsequent column until all 320 rays have been cast.

The process to find the vertical and horizontal intersections are described in the next

section.

Finding the horizontal intersections

Steps to find the horizontal intersections are as follow:

(a) Find the coordinate of the first intersection point A as shown in Figure B.3.

(b) For a ray facing up, A.y = ⌊Py/64⌋ ∗ (64)− 1.

(c) For a ray facing down, A.y = ⌊Py/64⌋ ∗ (64) + 64.

(d) Find Y a.

(e) For a ray facing up, Y a = −64.

(f) For a ray facing down, Y a = 64.

(g) Find Xa = 64/ tan(α).

(h) Extend the ray to the next intersection point, C.

(i) C.x = A.x + Xa and C.y = A.y + Y a.

(j) Repeat steps 1-4 until a wall is encountered.

(k) Compare the distances to both intersection points and choose the closer one.

Finding the vertical intersections

Steps to find the vertical intersections are as follow:

(a) Find the coordinate of the first intersection point, B as shown in Figure B.3.

(b) For a ray facing right, B.x = ⌊Px/64⌋ ∗ (64) + 64.

(c) For a ray facing left, B.x = ⌊Px/64⌋ ∗ (64)− 1.
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(d) Find A.y = Py + (Px− A.x) ∗ tan(α).

(e) Find Xa = 64.

(f) Find Y a using the same equation as in the horizontal case.

(g) Extend the ray to the next intersection point.

(h) Repeat steps 1-5 until a wall is encountered.

(i) Compare the distances to both intersection points and choose the closer one.

4. Finding distance to the walls: The distance from the player’s viewpoint to the

wall slice is determined using trigonometric functions such as sine or cosine. These

functions can be precomputed and put into tables for efficiency. However, a problem

known as the “fishbowl effect” (as shown in Figure B.4) can occur when using these

equations, causing viewing distortions. To correct for this, the resulting distance is

multiplied by the cosine of the angle of the ray being cast relative to the viewing angle

(BETA). BETA is calculated based on the player’s field of view and the angle of the

ray being cast.

Fishbowl effect

The “fishbowl effect” refers to a visual distortion that can occur in ray-casting im-

plementations when trying to render 3D scenes. This effect arises from the fact that

ray-casting combines polar and Cartesian coordinates, which can result in an inaccu-

rate representation of distance when rendering walls that are not directly in front of

the viewer.

Specifically, the distance calculated using trigonometric functions in polar coordinates

can become distorted when mapped onto a 2D Cartesian plane. This is because the

distance between two points on a 2D plane is not the same as the distance between

those same two points in a polar coordinate system. As a result, the walls in the

rendered scene may appear to bulge outwards or inwards, giving the impression of a

“fishbowl” shape.

To correct for this distortion, the distance calculated using trigonometric functions

in polar coordinates needs to be adjusted using a correction factor. This correction

factor is based on the angle of the ray being cast relative to the viewer’s line of sight

(ALPHA), which is referred to as BETA [20]. The correction factor is simply the cosine

of BETA, which ensures that the distance to the wall slice is accurately represented on

the 2D Cartesian plane, and eliminates the “fishbowl effect” as shown in Figure B.5.
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5. Drawing the walls: Once the distances to the walls are computed, the height of the

projected wall slice needs to be found. This is done using a simple formula which takes

into account the actual height of the wall slice, the distance to the projection plane

and the distance to the wall slice as shown below [20]:

Projected Slice Height =
Actual Slice Height

Distance to the Slice
∗Distance to Projection Plane (3.1)

Our world consists of cubes, where the dimension of each cube is 64x64x64 units, so

the wall height is 64 units. We also already know the distance of the player to the

projection plane (which is 277). Thus, the equation can be simplified to:

Projected Slice Height =
64

Distance to the Slice
∗ 277 (3.2)

Once this value is computed, a vertical line can be drawn on the corresponding column

on the projection plane. This line will represent the projected wall slice.

6. Texturing the walls: To add texture to the walls in the ray-casting world, the tech-

nique of texture mapping is used. This technique involves adding a texture (bitmap) to

the walls, making them more visually appealing. The bitmaps used in this technique

have a size of 64 by 64 pixels, which is also the size of the cube facets used in the world.

Texture mapping in the ray-casting world is simplified as it only requires scaling a slice

(a column) of the bitmap to map it onto the walls. This means that for each column

of the screen, the program can take the corresponding slice of the bitmap and scale it

to match the height of the wall. This scaled slice is then used to texture the wall in

that column, creating the illusion of a textured surface.

By using texture mapping, the walls in the ray-casting world can be made to look more

realistic and interesting as shown in Figure B.6, without requiring complex 3D models

or rendering techniques. It is a simple yet effective way to enhance the visual appeal

of the world and create a more immersive experience for the player.

7. Motion of the player:

Horizontal Motion

Horizontal motion in the context of a ray-casting game involves allowing the player to

move forward, backward, and turn. To achieve this, the player’s position is defined

by a coordinate and a viewing angle, and two additional attributes are needed: the

player’s movement speed and turning speed.
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A Moving Forward and Backward

Moving forward or backward involves finding the displacement based on the player’s

movement speed. This is done by calculating the X and Y displacement using trigonom-

etry and adding or subtracting it from the player’s current position. It is important to

check for boundaries to ensure the player does not go outside the map or walk through

walls.

B Turning

Turning is achieved by adding or subtracting an angle increment to the current viewing

angle. The angle increment determines how fast the player turns, and larger increments

can make the movement appear less smooth. The viewing angle should wrap around

when it reaches a full circle.

3.2 Use of OpenAIGym:

The wolfenstein game was wrapped with OpenAIGym Environment to leverage the power of

Gym Environments and its API. OpenAI is an organization that is dedicated to advancing

artificial intelligence in a safe and beneficial way. One of their major achievements is the

development of language models that can generate coherent and relevant text based on user

inputs. In the context of gaming, OpenAI has also developed tools that allow game devel-

opers to wrap their existing games in environments that are compatible with reinforcement

learning algorithms. This means that the game can be used to train AI agents to learn how

to play the game autonomously, without the need for explicit programming.

The game mechanics and rules were defined in a way that could be understood by the AI

algorithms, and the necessary data and resources were provided for the AI agents to interact

with the game. By doing so, it was easier to train AI agents to play the FPS game, using

reinforcement learning algorithms.

Overall, the use of OpenAI tools for wrapping our FPS game in a Wolfenstein environment

represents a promising approach for advancing AI research in the gaming domain. This

approach can help accelerate the development of intelligent agents that can learn to play

games at a human-level or beyond, and could have potential applications in other areas such

as robotics and automation.
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3.3 Game Settings

3.3.1 Game Scenarios and Action Spaces

The project consists of three levels that progressively increase in difficulty. Each level presents

unique challenges and objectives for the player to complete, allowing the reinforcement learn-

ing agent to learn and improve its decision-making skills. The following section provides a

detailed description of the three levels in the game, including their objectives, challenges,

and action space.

1. Basic Level: The Basic scenario is a rectangular map surrounded by walls on all

sides. The player/agent spawns along one of the longer walls in the center and along

the opposite wall, an enemy is spawned in a random position and moving either towards

the left or right randomly. The enemy deals no damage to the player and a single hit

to the enemy kills it. Episode ends when the enemy is killed.

Action Space: Move left, Move right, Shoot

2. Defend The Center: Defend The Center is a square map enclosed by walls on all

sides similar to basic. The player spawns at the center of the map. Four enemies are

spawned, one at each corner of the room. The enemies cannot shoot the player, but

move towards the player at constant speeds and deal damage to the player on collision.

If an enemy is shot by or if it collides with the player, a new enemy replaces it in the

same corner that it spawned from. The player has limited ammo to play with. Episode

ends if the player’s health decreases to zero.

Action Space: Turn Left, Turn Right, Shoot

3. Deadly Corridor: Deadly Corridor is a long corridor like map with shooting enemies

at both sides of the player in multiple locations. The enemies cannot move but can deal

damage to the player by shooting. The player is spawned at one end of the corridor

and has to reach a flag at the opposite end of the corridor. To reach the flag, it has to

move through multiple shooting enemies and kill them. The player has limited ammo

to play with. The episode ends on capturing the flag or if the player’s health decreases

to zero.

Action Space: Move Forward, Move Backward, Turn Left, Turn Right, Shoot
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3.3.2 Observation Spaces

The observation space on each timestep is the actual frame of the game window i.e raw pixel

of the game and has a shape of (100,160,1). PPO is utilising CNNs instead of MLP policy.

So, the input to the network is a grayscaled image of width 160 and height 100. The original

window size was 320 x 200 which was rescaled to a size of 160 x 100.

3.3.3 Reward Structure

The following section outlines the reward structures for each level of our game, which are

designed to incentivize the reinforcement learning agent to complete objectives and improve

its performance over time.

1. Basic Level:

For basic level, we used sparse rewards as follows:

a) +100 for killing an enemy

b) -5 for missing a shot, or wasting ammo

c) -1 for each time-step

2. Defend The Center: For ‘Defend The Center’, we used only 2 rewards per time step,

one for killing an enemy and another for dying. The agent was left to figure out the

rest for itself.

a) +1 for killing an enemy

b) -1 for dying i.e, player’s health < 0

3. Deadly Corridor:

Sparse Reward Problem:

The problem of sparse rewards was not visible in the first two levels of the game. In fact,

sparse rewards worked pretty well for those two levels. We tried using similar sparse

rewards for deadly corridor too, +1000 for getting to the flag and -1000 for dying and -

500 for losing all ammo before killing all enemies. But this reward structure trained the

agent to only move towards the flag and not shoot any of the enemies in its way. Thus,

the agent got many hits and died pretty early if the damage taken was comparatively

higher.
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Reward Shaping:

The new reward structure introduced movement rewards for the agent,+dx for every

step taken towards the flag and −dx for every step taken away from the flag. Along

with the movement rewards, we introduced 3 more variables to the agent to help shape

its reward structure and add some intermediate rewards for its actions: damage-taken,

hitcount and ammo-count. damage-taken tells how much more damage the agent has

taken in this step than the previous step, so a negative reward corresponding to damage-

taken is given to the agent. Second is hit-count, which tells how much more enemies

our agent hit in the current step as compared to the previous step. A positive reward

to the agent corresponding to this value is given. The last one is the ammo-count

which gives the difference between numbers of available ammo from the previous step

to the current step. So, we give a negative reward to the agent corresponding to this

value advising it not to waste bullets.

After shaping, the reward structure looked quite better than the previous sparse re-

wards and it showed in training as well. The agent started to consider killing its

enemies, saving ammo and at the same time moving towards the goal flag.

Curriculum Learning:

Curriculum Learning (CL) is a training strategy that trains a machine learning model

from easier data to harder data, which imitates the meaningful learning order in human

curricula. There are a few generic types of curriculum learning available for reinforce-

ment learning problems. Single-task curriculum, task specific curriculum and sequence

curriculum are the prominent ones. An important question when designing curricula

is determining the stopping criteria: that is, how to decide when to stop training on

samples or tasks associated with a vertex, and move on to the next vertex. In practice,

typically training is stopped when performance on the task or set of samples has con-

verged. Training to convergence is not always necessary, so another option is to train

on each vertex for a fixed number of episodes or epochs[22]

Our use of curriculum learning includes dividing the deadly corridor level into 3 sub-

levels: easy, medium and hard. Easy level is a small map with only 2 enemies, medium

is a slightly larger map with 4 enemies and hard is the complete map with 6 enemies.

The agent is first trained in the easy level to help it learn to kill enemies and move ahead

in the map. Subsequent training in easy, medium and hard levels using curriculum

learning makes it possible for the agent to play well in a hard environment like deadly
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corridor.

3.3.4 PPO Core Implementation Details

3.3.4.1 PPO Core Algorithm:

A proximal policy optimization (PPO) algorithm that uses fixed-length trajectory segments

is shown below. Each iteration, an actor collects rollout of data in N environment by stepping

M steps. Then we construct the surrogate loss on these NM steps of data, and optimize it

with minibatch SGD (or usually for better performance, Adam), for K epochs.

Algorithm 1 PPO, Actor-Critic Style

1: for iteration = 1, 2, ... do

2: for environment = 1, 2, ..., N do

3: Run policy πθold for M steps

4: Compute advantage estimates Â1, ..., ÂM

5: end for

6: Optimize surrogate L with respect to θ, with K epochs and minibatch size B ≤ NM

7: θold ← θ

8: end for

where L(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
is the surrogate objective loss.
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Figure 3.1: Actor-Critic PPO algorithm process, Source:[2]

3.3.4.2 Vectorized Architecture:

PPO leverages an efficient paradigm known as the vectorized architecture that features a

single learner that collects samples and learns from multiple environments.

Pseudocode of Vectorized Architecture

1: envs = V ecEnv(num envs = N)

2: agent = Agent()

3: next obs = envs.reset()

4: next done = [0, 0, ..., 0]

5: for update in range(1, total timesteps//(N ∗M)) do

6: data = [] ▷ ROLLOUT PHASE

7: for step in range(0,M) do

8: obs = next obs

9: done = next done

10: action, other stuff = agent.get action(obs)

11: next obs, reward, next done, info = envs.step(action)

12: data.append([obs, action, reward, done, other stuff ])

13: end for ▷ LEARNING PHASE

14: agent.learn(data, next obs, next done)

15: end for

In this architecture, PPO first initializes a vectorized environment envs that runs N inde-
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pendent environments either sequentially or in parallel by leveraging multi-processes. envs

presents a synchronous interface that always outputs a batch of N observations from N

environments, and it takes a batch of N actions to step the N environments. When calling

next obs = envs.reset(), next obs gets a batch of N initial observations. PPO also ini-

tializes an environment done flag variable called next done to an N -length array of zeros,

where its i-th element next done[i] has values of 0 or 1 corresponding to not done and

done state of the i-th sub-environment respectively.

Then, the vectorized architecture loops two phases: the rollout phase and the learning phase:

Rollout Phase:

The agent samples actions for the N environments and continues to step them for a fixed

number of M steps. During these M steps, the agent appends relevant data in an empty

list data. If the i-th sub-environment is done after stepping with the i-th action action[i],

envs would set the next done[i] to 1, auto-reset the i-th environment, and set next obs[i]

to the initial observation of the new episode of the i-th environment.

Learning Phase:

The agent learns from the collected data in the rollout phase: data of length N ·M , next obs,

and done. Specifically, PPO can estimate value for the next observation next obs and

calculate the advantage advantages and the return returns, both of which also have length

N ·M . PPO then learns from the prepared data [data, advantages, returns], which is

called “fixed-length trajectory segments” by [23].

3.3.4.3 Orthogonal Initialization of Weights and Constant Initialization of Bi-

ases:

The weights of hidden layers use orthogonal initialization of weights with scaling np.sqrt(2),

and the biases are set to 0. However, the policy output layer weights are initialized with

the scale of 0.01 and the value output layer weights are initialized with the scale of 1. [24]

find orthogonal initialization to outperform the default Xavier initialization in terms of the

highest episodic return achieved. Also, [25] finds centering the action distribution around 0

(i.e., initialize the policy output layer weights with 0.01”) to be beneficial.
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3.3.4.4 Generalized Advantage Estimation:

Our PPO implementation use Generalized Advantage Estimation (GAE) for estimating ad-

vantages. Two important sub-details include:

a) Value Bootstrap: If a sub-environment is not terminated nor truncated, PPO esti-

mates the value of the next state in this sub-environment as the value target.

b) TD(λ) Return Estimation: PPO implements the return target as

returns = advantages + values

which corresponds to TD(λ) for value estimation (where Monte Carlo estimation is a

special case when λ=1).

3.3.4.5 Mini-Batch Updates:

During the learning phase of the vectorized architecture, we shuffle the indices of the training

data of size N∗M and break it into mini-batches to compute the gradient and update the policy.

3.3.4.6 Normalization of Advantages:

After calculating the advantages based on GAE, we normalize the advantages by subtracting

their mean and dividing them by their standard deviation.

3.3.4.7 Clipped Surrogate Objective:

LCPI(θ) = Êt

[(
πθ(at|st)
πθold(at|st)

)CPI

Ât

]
= Êt

[
rt(θ)Ât

]
(3.3)

TRPO maximizes this “surrogate” objective.

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(3.4)

This is the main clipped surrogate objective proposed by [23].
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3.3.4.8 Shared Nature-CNN Network for Policy and Value Functions:

Figure 3.2: Shared Nature Actor Network

Figure 3.3: Shared Nature Critic Network

We implemented PPO so as to use the same Convolutional Neural Network (CNN) in [3]

along with the layer initialization technique of weights and biases mentioned earlier to extract

features, flatten the extracted features, and apply a linear layer to compute the hidden

features. The policy and value functions share parameters by constructing a policy head and

a value head using the hidden features.
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Pseudocode of Shared Nature-CNN Network

hidden = Sequential(

layer_init(Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0)),

ReLU(),

layer_init(Conv2d(32, 64, kernel_size=4, stride=2, padding=0)),

ReLU(),

layer_init(Conv2d(64, 64, kernel_size=3, stride=1, padding=0)),

ReLU(),

Flatten()

)

# Do a forward pass to get the shape

with torch.no_grad():

n_flatten = hidden(

torch.as_tensor(envs.single_observation_space.sample()[None]).float()

).shape[1]

# Policy output layer weights are initialized with the scale of 0.01

policy = Sequential(

layer_init(Linear(n_flatten, 512), std=0.01),

ReLU(),

layer_init(Linear(512, envs.single_action_space.n), std=0.01)

)

# Value output layer weights are initialized with the scale of 1.0

value = Sequential(

layer_init(Linear(n_flatten, 512), std=0.01),

ReLU(),

layer_init(Linear(512, 1), std=1.0)

)
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3.3.4.9 Overall Loss and Entropy Bonus:

The overall loss is calculated as:

loss = policyLoss + entropyCoeffient ∗ entropy + valueCoeffecient ∗ value

[3] has reported this entropy bonus to improve exploration by encouraging the action prob-

ability distribution to be slightly more random.

3.3.4.10 Scaling the Images to Range [0, 1]

The input data has the range of [0, 255], but it is divided by 255 to be in the range of [0, 1].

3.3.4.11 Global Gradient Clipping:

For each update iteration in an epoch, the gradients of the policy and value network was

rescaled so that the “global l2 norm” (i.e., the norm of the concatenated gradients of all pa-

rameters) does not exceed 0.5. [25] find global gradient clipping to offer a small performance

boost.

3.3.4.12 Debug Variables:

The PPO implementation comes with several debug variables, which are:

1. Policy Loss: This is the mean policy loss across all data points. It correlates to how

much our policy is changing. Ideally, policy loss should decrease with training time.

2. Value Loss: This is the mean value loss across all data points. It correlates to how

well the model is able to predict the value in each state. Ideally, it should increase as

the agent is learning and then decrease once the reward stabilizes.

3. Entropy Loss: This is the mean entropy value across all data points. A high entropy

loss value indicates that the policy is taking a wide range of actions with relatively

equal probability, while a low entropy loss value indicates that the policy is taking

actions with high certainty..

4. Clip Fraction: This is the fraction of the training data that triggered the clipped

objective.
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5. ApproxKL: This is the approximate Kullback–Leibler divergence, measured by,

(-logratio).mean()

which corresponds to the KL estimator. An alternative estimator,

((ratio - 1) - logratio).mean()

which is unbiased and has less variance can also be used. Spikes in the Approx KL

plot suggests that the policy is changing rapidly and one might want to increase the

clip range.

3.3.4.13 Evaluation Metrics:

Mean Episode Length:

Mean episode length is a basic but important metric to evaluate how our agent is performing.

It tells whether the behavior of our agent is as expected or opposite. For example, in basic

environment the mean episode length is expected to decrease with training time as it indicates

the agent is taking less and less time to kill the enemy. Contrary to that, in defend the center

environment, the mean episode length is supposed to increase with training. It tells that

the agent is doing well to survive and killing the enemies before they reach the center. In

deadly corridor, a very small episode length might mean that the agent is dying early. But

a gradually decreasing episode length in the training curve indicates that the agent is taking

less and less time to reach its goal, which is the flag.

Mean Episode Reward:

Mean episode reward is another important metric to evaluate the agent’s performance. If

the per episode reward is increasing with time, it means that the agent is doing well to meet

its objectives and is doing what it is supposed to do. The ideal trajectory of the reward

curve depends on the specific problem and the objectives of the agent. Generally, the reward

curve should increase over time as the agent learns to maximize its cumulative reward in

the environment. The rate at which the reward curve increases can vary depending on the

complexity of the environment and the learning algorithm being used. Ideally, the reward

curve should converge to a high level of cumulative reward, indicating that the agent has

learned an optimal policy for the task.
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4. System Design

Figure 4.1: PPO Implementation Flowchart

On a high level, PPO takes the agent initalized to do policy rollouts i.e. to play the game.

This generates rollouts data that can be used for policy training / optimizing the model. It

then takes the updated agent to do policy rollouts and continue the training loop.
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5. Results & Discussion

This section presents the findings and conclusions of our project for different levels of the

game.

5.0.1 Basic Level

We trained the agent using PPO for about 110K timesteps which was enough to notice

a satisfactory performance for the first level of the game. The episode length decreased

continuously which is as intended for this level. On the other hand, the mean episode

reward showed an increasing trend.

Figure 5.1: Mean Episode Length and Mean Episode Reward for Basic Level
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Figure 5.2: Losses in Basic Level

5.0.2 Defend The Center

The agent was trained for about 800K timesteps during which the agent showed good learning

until about 700K timesteps and reached pretty near optimal results but started performing

worse after that. Now might be a good time for early stopping. One reason for the agent to

start performing worse might be that it started saving ammo causing it to shoot less often

and hence, reduced its returns. Though trying out the model at 600K steps showed pretty

good performance by the agent, the agent was wasting a minimum number of bullets and

was hitting its targets with a good accuracy. During test with a total of 50 bullets given to

the agent at start of the episode, it is consistently able to get 40 to 42 kills, wasting only 8

to 10 bullets per episode.
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Figure 5.3: Mean Episode Length and Mean Episode Reward for Defend the Center

Figure 5.4: Losses in Defend the Center

5.0.3 Deadly Corridor

Training in the deadly corridor environment was particularly difficult due to the larger action

space and a comparatively harder environment to navigate through. Firstly, training with

sparse rewards showed no improvement in the agent’s behavior whatsoever. The agent was

not taking the intended actions and seemed confused. Though after a careful reward shaping

and introduction of intermediate rewards, the agent’s performance did not improve all that
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much. The agent was still not performing optimally. So to tackle this problem, we opted to

make the agent learn via curriculum learning. The curriculum we tried primarily was simple

and naive. By dividing the levels into 4 categories: EASY, MEDIUM, HARD and INSANE.

The agent quickly figured out that it was able to complete the task inspite of taking damage.

So, for those instances where it wasn’t enough damage to kill it, it would simply run towards

the goal. It had no plan and was lost as the levels got harder showing minimum to no

progress. On introducing the second level in the curriculum, i.e, the medium level, with a

larger damage from the enemies, the learning didn’t go as expected as the agent was still

not shooting as many enemies and died before reaching the flag. So, we had to modify the

curriculum by taking a different approach. The sublevels were now easy, medium and hard.

Easy level was a small map with only 2 enemies. We increased the enemy count by 2 and

also the map size with each level. This allowed the agent to learn to kill 2 enemies that it

encounters initially and then follows up by eliminating the rest of the enemies likewise thus

progressively learning to move towards its goal, the flag, by eliminating the enemies.

Figure 5.5: Mean Episode Length and Mean Episode Reward for Deadly Corridor
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Figure 5.6: Losses in Deadly Corridor

After training the agent, we tested its performance in each level for 10 episodes. The testing

showed pretty good results and the agent’s performance was near optimal. It was successful

in its intended tasks almost 100 % of the time.
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6. Conclusions

In this paper, we presented a PPO-based reinforcement learning agent that was trained to

perform in the Wolfenstein environment using raycasting for graphical rendering, and tested

in three different game modes: basic, defend the center, and deadly corridor. Our agent

achieved impressive results in terms of both its ability to navigate through the environment

and its ability to accurately identify and target enemies.

Our agent was able to easily accomplish the objectives in the basic and defend the center

game modes, demonstrating its versatility and ability to adapt to different tasks. However,

the deadly corridor game mode proved to be more challenging, requiring our agent to navigate

through narrow and highly dangerous environments.

To overcome these challenges, we utilized a convolutional neural network (CNN) alongside

our PPO-based RL agent to improve its perception and decision-making capabilities. Our

CNN-based approach enabled our agent to efficiently process the visual input from the

environment and make more informed decisions, leading to improved performance in the

deadly corridor game mode.

The performance of our agent was evaluated through various experiments, including the

analysis of its learning curves, as well as its success rates in completing the game’s objectives.

Our results demonstrate that our approach is both effective and efficient, and it outperforms

several existing methods that have been used to train RL agents for this environment.

One of the key advantages of our approach is that it utilizes raycasting for graphical ren-

dering, which enables the agent to efficiently perceive its surroundings and accurately detect

obstacles and enemies in real-time. Our agent was able to learn complex strategies and suc-

cessfully navigate through the environment, demonstrating the effectiveness of our approach.

Overall, our approach combining PPO-based RL with CNN-based perception provides a

promising framework for training agents to perform complex tasks in virtual environments.

We believe that our results demonstrate the potential of RL-based approaches for solving

real-world problems and provide a foundation for further research in this field.
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7. Limitations and Future Enhancement

Training a game agent using reinforcement learning has an advantage of being able to learn

without any supervision and flexibility in learning objectives. However RL is limited by

several factors including its sensitivity to hyper-parameters and difficulty to interpret decision

making technique of RL agents. Designing a good curriculum and shaping rewards properly is

a difficult task itself. Self-playing AI agents can become too reliant on their learned strategies

and may not be able to adapt to new situations or unexpected gameplay scenarios. This can

make them predictable and less challenging to play against. There are also ethical concerns

around the use of AI agents in games, particularly if they are designed to deceive or exploit

human players.

Currently the agent in our game replicates a human player playing against one or many

in-game NPCs(Non-Playable Characters). Future Enhancements might include using the

trained model in the NPCs and letting a human play against the trained agent. For example,

the trained model in basic level might be used in the enemy NPC and a human can control

the playable character and try to stay alive against the trained enemy. These trained NPCs

or AI bots if well trained might be a challenge for human players to play against.
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Appendix A. Hyperparameters

Table A.1: Hyperparameters for different environments

Hyperparameters Basic Level Defend The Center Level Deadly Corridor Level

Adam Learning Rate 1e-4 1e-4 1e-5

N Steps (M) 2048 4096 8192

Batch Size 64 64 64

N Epochs 10 10 10

Discount Factor 0.99 0.99 0.95

GAE Lambda 0.95 0.95 0.9

Clip Range 0.2 0.2 0.1

Entropy Coefficient 0.05 0.05 0.05

Value Coefficient 0.5 0.5 0.5
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Appendix B. Game Environments

Figure B.1: Initial 2D representation of the world

Figure B.2: Pseudo 3D world after raycasting
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Figure B.3: Game world with horizontal and vertical intersection with the grid

Figure B.4: Fishbowl effect

Figure B.5: After correcting the fishbowl effect
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Figure B.6: Textured Walls

Figure B.7: Basic Level Game Environment
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Figure B.8: Defend the Center Level Game Environment

Figure B.9: Deadly Corridor Game Environment
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