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Abstract

In today’s digital age, the digitization of paper documents like invoices and receipts
has taken on more significance. Nevertheless, manually entering data from these
papers can take a lot of time and be prone to mistakes, which causes inefficiencies
and drives up expenses for enterprises. To solve this issue, we created a software
platform that automates the process of collecting important data from scanned
documents using deep learning technology, more specifically the LayoutLM ar-
chitecture. Users can upload their scanned papers in bulk to our platform and
choose which fields, including date, merchant name, and total amount, they want
to extract. The technology is scalable and can manage high document volumes
while preserving precision and effectiveness.The user-friendly interface makes it
easy for users to upload and extract information from their scanned documents.
Our platform offers significant benefits, including increased efficiency, accuracy,
and cost savings, and has the potential to transform the way businesses handle
physical documents. In this project, we will provide an overview of our software
platform, including the technology behind it, its key features, and its potential
applications.

Keywords: Intelligent Document Processing, Key Information Extraction, Deep
Learning
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1. Introduction

1.1 Background

Even though everything seems to be going digital, many of the information con-
veying between parties happen in hard copy. As the use of computer to process
data is increasing day by day, the process of manually extracting information from
documents can be time-consuming, error-prone, and expensive. Intelligent Docu-
ment Processing (IDP) has become a crucial tool to automate this procedure with
the advancements in artificial intelligence and machine learning.

To address this problem, we created a software platform with an IDP system
that use deep learning to automatically extract data from images of documents.
The software platform enables customers to mass upload their scanned documents
and automatically extract key information. Our platform is built using deep learn-
ing technology, more especially the LayoutLM architecture, which is intended for
information extraction and document layout analysis.

By using deep learning technologies, our platform is able to accurately iden-
tify key information from scanned documents, such as date, merchant name, total
amount, and more. Users can choose which fields they want to extract from their
documents, and our system will automatically extract and display the relevant
information. This information can be used by the customer in any which required
ways to fulfill their objectives. Our targeted market mainly includes large corpora-
tions that deals with public documents like governmental ones and the companies
with large influx of hard copy documents like a Insurance company which has to
analyze all the fields present in the document of their customer for their daily
workings.

1.2 Problem Statement

Despite the increasing digitization of business processes, many businesses still
rely on physical documents such as receipts and invoices for record-keeping and
accounting purposes. Many companies are facing the problem of manual labor
for data entry to be quite time consuming and costly. As the field of Artificial
intelligence and machine learning matures, we in-vision to solve this problem so
that the operation costs and time of large company is brought down massively.
Thereby pushing us and them to a better financial position.

1.3 Objectives

The main objective of this project are:

• To make repetitive job manual data entry obsolete.
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• To develop a good enough system for company to rely on their day to day
operations

• Development of user-friendly interface that enables users to easily upload
and extract information from their scanned documents.

1.4 Scope

Our project’s objective is to develop a software platform that lets customers submit
their scanned receipts and extract crucial data from those records. The platform
will recognize and extract important fields from the submitted documents using
the LayoutLM architecture, which is based on deep learning.

1.5 Features and Functionalities

The platform will offer the following features and functionalities:

• Bulk document uploading
Users can upload multiple documents at once, either by selecting them from
their local device or by connecting to a cloud storage service.

• Field selection
Users can choose which fields they want to extract from the uploaded doc-
uments, such as date, amount, merchant name, and payment method.

• Data extraction
The platform will use deep learning to identify and extract data from the
selected fields.

• Data visualization
Users will be able to view the extracted data in a clear and user-friendly
format, such as a table or graph.

6



2. Literature Review

2.1 Related work

Automated data extraction technology has evolved significantly since the ’90s. In
this process, data is captured from documents through software tools and recorded
digitally. They used AI and ML algorithms to capture important details from
physical or electronic documents and save them in an organized manner in com-
puter files. Methods of information Extraction can be categorized into following
topics.

2.1.1 Rule-based Information Extraction

Information Extraction originates from the field of Natural Language Process-
ing(NLP). Initially knowledge based systems like ATRANS systems that employed
a lexicon hierarchy were developed. DARPA, the US defence agency also funded
and encouraged research in information extraction by organizing a series of con-
ferences. The conferences hosted competitions on information extraction. Most
of the information extraction systems developed in the conferences emerged from
research into rule-based systems in NLP and linguistics. Most systems were de-
signed to apply series of rules on source text to extract relevant information.
NER(Named Entity Recognition) and Part-Of-Speech(POS) tagging systems were
developed using hundreds of rules.

Regular Expression search systems were also developed. Usually, for each field
a regular expression would be associated. To improve the precision of such systems
domain heuristics were applied. The context of the matched strings were also used
to search for required information. The regular expression is usually designed by
a domain expert. Manually constructing regular expressions is a tedious task.
Automatic regular generation methods can be employed. The regular expressions
may be learned from a corpus of documents[1] or derived from set of example
entities[2].

Rule based Information System is not only restricted to regular expressions.
Other methods involve extracting complex structures like tabular data using ex-
pectation driven approach.[3] A set of all possible column configurations involving
global and local expectations is exhaustively searched after application of heuris-
tics. After tagging a document using only the morphological structure, a sec-
ondary tagging is generated using regular expressions. As a post processing step,
to improve accuracy, the extracted information is checked with the additional in-
put resources for consistency and validity. This may be performed using domain
specific database or pre-built ontologies. [4]

The leverage of rule bases information extraction systems over other methods is
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that the rules are interpret-able for both the users and the experts. These systems
are also more flexible in that they can be employed for different tasks with little
modification. When class specific knowledge is available, the task of information
extraction can be made easier by document classification. If the documents can
be linked to issuers easily this can be used to classify the document. The assigned
class of the document can be used to more effectively extract the document.

For highly structured documents, the system can just employ a spatial mask to
a previously constructed location of the information. This extraction strategy is
greatly effective for structured documents provided the scanning process artifacts
are correctly handled. For semi-structured documents, where the relative posi-
tioning is maintained, systems that depend on certain structure on the document
can be developed e.g. table lines. Graph based and probability based models
are also available that try to capture the similarity between the documents and
effectively predict the information region.

Overall, rule based information extraction have been available for a long time.
However, the design and maintenance of rule based systems require expertise and
tedious labor. These efforts are being infeasible in the era where the need to
capture recurring and complex structures of information is essential.

2.1.2 Machine Learning Based Information Extraction

With the development of machine learning techniques, statistical ML approaches
have become the mainstream for a wide range of document analysis tasks, includ-
ing information extraction. Most machine learning based information extraction
method involve decomposition of document into various homogeneous parts and
classification of all parts. The most common decomposition is the sequence of
tokens. The task then is the label the sequence. The labels possibly contain the
target information. Multiple labelling schemes exist that try to separate the tar-
geted information from the tokens that carry irrelevant information. Once the text
is decomposed into tokens or segment of tokens, the ML model is responsible with
tagging the document with one label from the pre-defined set of possible labels.

One approach of information extraction is feature based machine learning. In
the early days of ML based information extraction, classification of documents
was done using models with limited expressiveness. This low model complexity
was mitigated using highly informative features. A token’s text value was used
to derive categorical or Boolean features. For visually rich documents, layout
features and font types were incorporated.

After feature extraction, the ML model is applied to the feature vector of a
document to determine the label of its tokens or segments. The ML models range
from simple logistic regression, kernel-based to tree-based models. These models
however only capture interactions between features of the same document and not
across documents. To address this problem, probabilistic graph models are also
used. These graphical models label document tokens given their feature vectors.
The training and inference times of these models grow exponentially with the
size of the label set and the number of tokens. Therefore, the dependency graph
is restricted to only simple structures. All models except kernel-based methods
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are trained using maximum likelihood estimation. Even though extraction logic
learned to some extent by the ML model, feature-based approach still require
substantial engineering efforts to design the features that are informative enough.
While feature based approaches are still proposed for information extraction, most
ML methods now employ deep models.

Like many other fields the task of information extraction has also transitioned
from feature based to deep learning models. This method greatly reduces the
engineering efforts. The deep model can be viewed as encoder and decoder. The
encoder takes in feature vectors and creates a high level meaningful representation
of tokens. The decoder then assigns information labels to tokens. During the deep
learning process, the model derives linguistic representations of tokens that are
helpful for information extraction. The token embeddings are then combined in
later layers of encoder to learn contextualized document-level representations of
tokens. The combination of embedding can be done in a fixed size neighbourhoods,
however such model cannot capture the long range dependencies between tokens
of documents.

The first deep models leveraging document-level representations of tokens were
Recurrent Neural Network(RNN) encoders. Such models extract information by
processing a document as a sequence of tokens. Using the powerful LSTM and
GRU cells the models are able to store in their hidden states unbounded depen-
dencies between the document tokens. The deep contextualized tokens represen-
tations are obtained by stacking neural networks. The final layer of the network
is a fully-connected layer which classifies the tokens.

2.1.3 Sequence-to-sequence models for end-to-end extrac-
tion

Token level supervision is difficult for traditional machine learning based approach.
Thus, sequence to sequence models that directly extract the information from in-
put without token generation have originated. They employ a end-to-end method
where a attention based sequence to sequence model is adapted to extract in-
formation from the raw extraction schemas. These models have been found to
outperform token based system.[5] End to end models have better performance
since they avoid the post processing step and they do not rely on text serializer
for making predictions.

Pointer Networks were the first attempt at end to end information extraction
task.[6] A single BLSTM network is used to encode the sequence of words and
LSTM decoders. Each decoder has its own attention mechanism and is respon-
sible for predicting a single target field. This approach is not able to extract
information such as entities grouping multiple fields. In a follow up work by the
same authors[7], a sequence-to-sequence model that extracted main information
from the invoice was proposed. It has multi-modal architecture that can efficiently
encode visually rich documents and parse the extracted information to normalized
field values format. It is able to process unstructured information.
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3. Related Theory

3.1 Deep Learning

Deep learning is a subset of machine learning that is based on artificial neural
networks that are inspired by the structure and function of the human brain. Deep
learning models are capable of automatically learning hierarchical representations
of data, which allows them to achieve state-of-the-art performance on a wide
range of complex tasks, including image and speech recognition, natural language
processing, and many others.

The core building block of a deep learning model is a neural network, which is
composed of layers of interconnected neurons. Each neuron computes a weighted
sum of its input values, applies an activation function to the result, and passes
the output to the next layer. The weights of the neurons are learned through a
process called back-propagation, which adjusts the weights to minimize the error
between the predicted and actual outputs of the model.

In our project, we used deep learning techniques to implement the LayoutLM
architecture, which is based on pre-training deep bidirectional transformers for
text recognition and layout analysis. The use of deep learning allowed us to
achieve state-of-the-art performance on the task of extracting structured data from
scanned documents. We also used convolutional and recurrent neural networks for
image processing and natural language processing tasks, respectively. We trained
our models using backpropagation and evaluated their performance using various
metrics such as precision, recall, and F1-score.

Deep learning has revolutionized the field of machine learning and has enabled
significant advances in various areas of artificial intelligence. However, deep learn-
ing also has its limitations, such as the need for large amounts of labeled data, the
difficulty of interpreting the learned representations, and the high computational
requirements for training and inference. Despite these challenges, deep learning
continues to be a powerful tool for solving complex problems and will likely remain
at the forefront of research in artificial intelligence for the foreseeable future.

3.1.1 RNN

Recurrent neural networks (RNNs) are a type of neural network that is well-suited
for modeling sequential data, such as natural language text, time series data, and
music. Unlike feedforward neural networks, which only process a fixed-length
input, RNNs can handle input of variable length by maintaining a hidden state
that represents the context of the previous inputs. This hidden state is updated
at each time step based on the current input and the previous hidden state.

The core building block of an RNN is a recurrent layer, which computes the
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hidden state at each time step based on the current input and the previous hidden
state. The output of the recurrent layer can be used to make a prediction at
each time step, or it can be fed into another layer for further processing. There
are several variants of RNNs, such as the Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), which are designed to address the problem of
vanishing gradients, which can occur when the gradient signal becomes too small
to propagate through many layers.

LSTMs are a type of RNN that is particularly effective at modeling long-term
dependencies in sequential data. They have a memory cell that allows them to
selectively remember or forget information based on the current input and the
previous hidden state. This makes them well-suited for tasks such as language
modeling, machine translation, and speech recognition, where the input sequence
can be quite long.

3.1.2 CNN

Convolutional Neural Networks (CNNs) are a type of neural network that are
particularly well-suited for image classification tasks. They were inspired by the
structure and function of the visual cortex in animals, which is known to process
visual information in a hierarchical and spatially-local manner. CNNs consist of
multiple layers, including convolutional layers, pooling layers, and fully connected
layers, which are arranged in a hierarchical manner to gradually learn more com-
plex features from the input image.

The core building block of a CNN is the convolutional layer, which applies
a set of learnable filters to the input image to extract features. The filters are
typically small in size (e.g., 3x3 or 5x5) and slide over the entire image to produce
a feature map. By applying multiple filters, the convolutional layer can learn to
detect different types of features, such as edges, corners, and textures, at different
locations in the image.

After the convolutional layer, a pooling layer is often applied to reduce the
spatial dimensions of the feature map and improve computational efficiency. The
pooling layer can perform operations such as max pooling or average pooling,
which aggregate the output of adjacent neurons in the feature map to produce a
smaller output.

The fully connected layers are used to map the learned features to the output
classes. They take the flattened output of the previous layer and apply a set of
weights to produce a prediction.

One of the key advantages of CNNs is their ability to automatically learn
features from the input image, rather than relying on manual feature engineering.
This makes them particularly effective for tasks such as object recognition, where
the visual appearance of the object can vary widely depending on the viewpoint,
lighting, and occlusion.
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Figure 3.1: Transformer’s Architecutre

3.1.3 Transformers

The Transformer architecture is a type of deep learning model that was introduced
in 2017 for natural language processing tasks, such as machine translation and
language modeling. It uses a self-attention mechanism to process sequential data,
such as sentences or documents.

The self-attention mechanism allows the model to focus on different parts of
the input sequence at each step, based on the relevance of each part to the current
context. This enables the model to capture long-range dependencies and relation-
ships between different parts of the input sequence, which is difficult for traditional
recurrent neural networks.

The Transformer architecture consists of an encoder and a decoder, where
the encoder processes the input sequence and the decoder generates the output
sequence. The encoder consists of multiple layers, each of which has a multi-
head self-attention mechanism and a feed-forward neural network. The output
of each layer is passed to the next layer as input, allowing the model to capture
increasingly complex patterns in the input sequence.

The Transformer architecture has become one of the most popular deep learn-
ing models in natural language processing due to its high accuracy and efficiency
in processing long sequences.

LayoutLM is a deep learning model that is based on the encoder of the Trans-
former architecture. It extends the Transformer architecture to include layout
analysis, which is the process of identifying the position and structure of text and
graphics in a document.

LayoutLM is pre-trained on large amounts of document data to learn the re-
lationships between text and layout features. During pre-training, the model is
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trained on two objectives simultaneously: predicting the next word in a sentence
(language modeling) and predicting the next layout element in a document (layout
modeling). This allows the model to learn to predict both the textual content and
the layout structure of a document.

The pre-trained LayoutLM model can then be fine-tuned on specific down-
stream tasks, such as named entity recognition and relation extraction, by adding
task-specific layers on top of the pre-trained model.

The use of LayoutLM as a core component in our project allows us to extract
structured data from scanned documents, taking into account both the textual
content and the layout structure of the document. The pre-trained LayoutLM
model is fine-tuned on our specific task of extracting structured data from invoices,
which allows it to learn the specific patterns and relationships that are relevant
to this task.

Overall, the Transformer architecture is a powerful deep learning model that is
widely used in natural language processing tasks. LayoutLM extends the Trans-
former architecture to include layout analysis, and is pre-trained on large amounts
of document data to learn the relationships between text and layout features.
Our project uses LayoutLM as a core component to extract structured data from
scanned documents, taking advantage of its ability to capture both textual content
and layout structure.

3.2 Optical Character Recognition(OCR)

Optical Character Recognition (OCR) is a technique that involves the conversion
of scanned images of printed or handwritten text into machine-readable text that
can be processed and analyzed by a computer. OCR is an essential component
of document digitization as it enables the extraction of information from docu-
ments that have been scanned or photographed. OCR is used in a wide range of
applications, including data entry, document indexing, and archival storage.

OCR technology has evolved significantly over the years, with the current
state-of-the-art OCR systems relying on deep learning algorithms. Deep learning
algorithms are neural networks that can learn to recognize patterns and features in
images and text data. These algorithms have been shown to outperform traditional
OCR techniques based on pattern recognition and rule-based approaches.

OCR involves several stages that include image preprocessing, text localization,
text segmentation, character recognition, and post-processing.

Image preprocessing : This stage involves the preparation of the scanned image
for OCR processing. It includes operations such as image resizing, normalization,
and noise removal. The objective of this stage is to enhance the quality of the
scanned image to improve OCR accuracy.

Text localization : This stage involves identifying the regions in the scanned
image that contain text. It is accomplished using techniques such as edge de-
tection, contour analysis, and connected component analysis. The output of this
stage is a binary image that highlights the regions that contain text.
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Text segmentation: This stage involves dividing the text regions into individual
characters or words. It is achieved using techniques such as horizontal and vertical
projection profiles, connected component analysis, and watershed segmentation.
The output of this stage is a set of character or word images that can be recognized
by an OCR engine.

Character recognition: This stage involves recognizing the characters in the
segmented images. OCR engines use machine learning algorithms, such as convo-
lutional neural networks (CNNs), to classify the characters based on their features.
The output of this stage is a sequence of recognized characters.

Post-processing : This stage involves refining the output of the OCR engine
to improve the accuracy of the recognized text. It includes operations such as
spelling correction, punctuation and symbol recognition, and contextual analysis.

OCR systems are evaluated based on their accuracy, which is typically mea-
sured using metrics such as character error rate (CER) and word error rate (WER).
The accuracy of OCR systems depends on several factors, including the quality of
the scanned image, the complexity of the text, and the language being recognized.

3.2.1 docTR

To get the OCR output for our project we have used OCR based on deep learn-
ing approach, it is called docTR(Document Transformer) [8], docTR OCR uses a
two-stage approach for end-to-end OCR, involving text detection and text recog-
nition. The text detection stage involves localizing words in an image, while the
text recognition stage involves identifying all the characters in the localized words.
For each stage, docTR OCR offers a range of deep learning neural network archi-
tectures to choose from.

One of the architectures available for text detection is the DBNet [9], which
stands for Differentiable Binarization Network. The DBNet architecture is a deep
learning network that uses the Differentiable Binarization (DB) technique to detect
text in the document image. The DB technique is a thresholding-based approach
that converts the input image into a binary image by applying a differentiable
thresholding function. The DBNet architecture consists of a feature extraction
network and a binary classification network. The feature extraction network ex-
tracts a set of features from the input image, while the binary classification network
produces a binary mask that indicates the text regions in the image.

The DBNet architecture is optimized for detecting text in various orientations,
languages, and font styles, and it can handle text of different sizes and aspect
ratios. Moreover, it has the advantage of being able to train end-to-end using
backpropagation, which allows it to learn features and thresholding parameters
directly from the data.

For text recognition, docTR OCR offers the CRNN [10] (Convolutional Re-
current Neural Network) architecture. The CRNN architecture is a deep learning
network that combines convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). The CNNs are used to extract features from the input image,
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while the RNNs are used to model the sequential nature of text. The output of the
CRNN network is a sequence of characters, which can be decoded into text using
a language model. The CRNN architecture is particularly effective for recognizing
text in complex layouts, such as documents with multiple columns, tables, and
images.

Overall, the DBNet and CRNN architectures in docTR OCR provide a robust
and accurate solution for text detection and recognition in a wide range of docu-
ment types and languages. By selecting the appropriate architecture for each stage
of the OCR process, docTR OCR can achieve high accuracy and performance in
document capture and recognition tasks.

3.3 Information Extraction

Information extraction (IE) is a subfield of natural language processing (NLP) that
focuses on identifying and extracting structured information from unstructured or
semi-structured sources of data, such as text documents, web pages, and emails.
The goal of IE is to automatically extract relevant information from large volumes
of textual data and transform it into a structured format, such as a database or a
spreadsheet.The process of IE involves several steps, including:

Named entity recognition (NER): This step involves identifying and extracting
named entities from the text, such as persons, organizations, locations, dates, and
other entities of interest. NER is typically achieved using machine learning models
that are trained on annotated datasets.

Relation extraction: Once named entities are identified, the next step is to
identify the relationships between them. For example, if a document mentions
two people, relation extraction can identify whether they are family members,
co-workers, or have some other type of relationship.

Template-based extraction: In some cases, the information to be extracted
follows a specific pattern or template. In such cases, template-based extraction
can be used to identify and extract the relevant information. For example, in
a resume, the name, address, education, and work experience sections follow a
specific template that can be easily extracted using regular expressions.

Machine learning-based extraction: In cases where the information to be ex-
tracted is not easily defined by a template or pattern, machine learning-based ap-
proaches can be used. These approaches involve training machine learning models
on annotated datasets to identify relevant information.

IE has a wide range of applications, including:

Business intelligence: IE can be used to extract and analyze data from various
sources, such as financial reports, customer feedback, and social media. This can
provide valuable insights for business decision-making.

Document classification: IE can be used to automatically categorize documents
based on their content, such as legal documents, medical records, or news articles.

15



Information retrieval : IE can be used to extract relevant information from
large volumes of unstructured data, such as web pages, to improve search results.

Fraud detection: IE can be used to detect fraudulent activity, such as credit
card fraud or insurance fraud, by analyzing large volumes of data to identify
patterns and anomalies.

3.4 LayoutLM

3.4.1 The BERT Model

The BERT model is an attention-based bidirectional language modeling approach.
It has been verified that the BERT model shows effective knowledge transfer from
the self-supervised task with large-scale training data. The architecture of BERT is
basically a multi-layer bidirectional Transformer encoder. It accepts a sequence of
tokens and stacks multiple layers to produce final representations. In detail, given
a set of tokens processed using WordPiece, the input embeddings are computed
by summing the corresponding word embeddings, position embeddings, and seg-
ment embeddings. Then, these input embeddings are passed through a multi-layer
bidirectional Transformer that can generate contextualized representations with
an adaptive attention mechanism. There are two steps in the BERT framework:
pre-training and fine-tuning. During the pre-training, the model uses two objec-
tives to learn the language representation: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP), where MLM randomly masks some input
tokens and the objective is to recover these masked tokens, and NSP is a binary
classification task taking a pair of sentences as inputs and classifying whether
they are two consecutive sentences. In the fine-tuning, task-specific datasets are
used to update all parameters in an end-to-end way. The BERT model has been
successfully applied in a set of NLP tasks.

3.4.2 The LayoutLM Model

Although BERT-like models become the state-of-the-art techniques on several
challenging NLP tasks, they usually leverage text information only for any kind
of inputs. When it comes to visually rich documents, there is much more infor-
mation that can be encoded into the pre-trained model. Therefore, LayoutLM
[11] was proposed to utilize the visually rich information from document layouts
and align them with the input texts. Basically, there are two types of features
which substantially improve the language representation in a visually rich docu-
ment, which are: Document Layout Information. It is evident that the relative
positions of words in a document contribute a lot to the semantic representation.
Taking form understanding as an example, given a key in a form (e.g., “Passport
ID:”), its corresponding value is much more likely on its right or below instead of
on the left or above. Therefore, we can embed these relative positions information
as 2-D position representation. Based on the self-attention mechanism within the
Transformer, embedding 2-D position features into the language representation
will better align the layout information with the semantic representation. Vi-
sual Information. Compared with the text information, the visual information is
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another significantly important feature in document representations. Typically,
documents contain some visual signals to show the importance and priority of
document segments. The visual information can be represented by image features
and effectively utilized in document representations. For document-level visual
features, the whole image can indicate the document layout, which is an essential
feature for document image classification. For word-level visual features, styles
such as bold, underline, and italic, are also significant hints for the sequence la-
beling tasks. Therefore, It is believed that combining the image features with
traditional text representations can bring richer semantic representations to doc-
uments.

3.4.3 LayoutLM Architecture

Figure 3.2: LayoutLM Architecutre

To take advantage of existing pre-trained models and adapt to document image
understanding tasks, BERT architecture is used as the backbone and add two
new input embeddings: a 2-D position embedding and an image embedding. 2-
D Position Embedding. Unlike the position embedding that models the word
position in a sequence, 2-D position embedding aims to model the relative spatial
position in a document. To repre- sent the spatial position of elements in scanned
document images, we consider a document page as a coordinate system with the
top- left origin. In this setting, the bounding box can be precisely defined by (x0 ,
y0, x 1 , y1 ), where (x0 , y0 ) corresponds to the position of the upper left in the
bounding box, and (x1 , y 1) represents the position of the lower right. We add
four position embedding layers with two embedding tables, where the embedding
layers representing the same dimension share the same embedding table. This
means that we look up the position embedding of x 0 and x1 in the embedding
table X and lookup y0 and y1 in table Y . Image Embedding. To utilize the image
feature of a document and align the image feature with the text, we add an image
embedding layer to represent image features in language representation. In more
detail, with the bounding box of each word from OCR results, we split the image
into several pieces, and they have a one-to-one correspondence with the words.
We generate the image region features with these pieces of images from the Faster
R-CNN [12] model as the token image embeddings. For the [CLS] token, we also
use the Faster R-CNN model to produce embeddings using the whole scanned
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document image as the Region of Interest (ROI) to benefit the downstream tasks
which need the representation of the [CLS] token.

3.4.4 Embeddings

In deep learning, embeddings are a way of representing data in a lower-dimensional
space. This is often used in natural language processing (NLP) tasks to represent
words as vectors of a fixed length. The goal of using embeddings is to capture
the semantic meaning of the words in the context of the task at hand, such as
sentiment analysis or language translation.

Traditionally, NLP models would represent each word as a one-hot vector,
where each word in the vocabulary is represented by a vector of all zeros except
for a one in the position corresponding to the index of the word in the vocabulary.
However, one-hot vectors are not effective for capturing the semantic meaning of
words, since each word is treated as an independent entity. By contrast, embed-
dings represent words as vectors that capture the semantic relationships between
words. For example, similar words such as ”cat” and ”dog” will have similar
embeddings, while dissimilar words such as ”cat” and ”car” will have dissimilar
embeddings.

Embeddings are learned during training using techniques such as backpropa-
gation and stochastic gradient descent. During training, the model adjusts the
embeddings such that they capture the semantic meaning of the words in the con-
text of the task at hand. Once the embeddings are learned, they can be used to
represent words in new inputs and fed into the model for inference.

3.4.5 Pre-training

Pre-training is a technique in deep learning that involves training a model on a
large dataset before training it on a specific task. The idea is to use the large
dataset to learn general features that can be applied to a wide range of tasks. The
pre-training is typically unsupervised, meaning that the model learns to extract
features from the input data without any explicit labels or targets.

One popular pre-training approach in NLP is called language modeling. The
model is trained to predict the next word in a sequence of words, given the previous
words in the sequence. This task requires the model to capture the semantic
relationships between words and the overall structure of the language. Once the
model is pre-trained on a large corpus of text, the learned features can be applied
to a range of downstream tasks, such as sentiment analysis or text classification.

3.4.6 Fine-tuning

Fine-tuning is a technique in deep learning that involves taking a pre-trained model
and updating the weights of some of the layers to adapt it to a new task. The
idea is to leverage the general knowledge learned during pre-training and transfer
learning to quickly adapt the model to the specifics of the new task.
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For example, in the sentiment analysis task mentioned earlier, the pre-trained
language model can be fine-tuned by adding a new output layer and updating
the weights of the existing layers to optimize the model for the sentiment analysis
task. The fine-tuning process typically involves training the model on a smaller
dataset than the pre-training dataset, which allows for faster training times and
better performance on the new task.

3.4.7 Transfer Learning

Transfer learning is a technique in deep learning that involves transferring knowl-
edge from one task to another. The idea is to use a model that has been pre-trained
on a large dataset and fine-tuned for a specific task as a starting point for train-
ing a new model on a related task. This can speed up the training process and
improve the performance of the model on the new task.

For example, in NLP, a model that has been pre-trained on a large corpus of
text using language modeling can be used as a starting point for training a senti-
ment analysis model. The pre-trained model has already learned general features
that are useful for understanding the semantic relationships between words, which
can be applied to the sentiment analysis task.

3.4.8 Sequence Labeling

Sequence labeling is a type of task in natural language processing (NLP) that
involves assigning labels to each element of a sequence. The sequence can be a
sequence of words, characters, or other tokens. The goal of sequence labeling is
to identify the structure and meaning of the sequence by assigning labels to each
element.One common type of sequence labeling task in NLP is named entity recog-
nition (NER), which involves identifying and categorizing entities in a text, such
as people, organizations, and locations. In this task, the sequence is a sequence
of words, and the labels indicate whether each word is part of an entity and what
type of entity it is.Another type of sequence labeling task is part-of-speech (POS)
tagging, which involves labeling each word in a sentence with its part of speech,
such as noun, verb, or adjective. In this task, the sequence is a sequence of words,
and the labels indicate the part of speech of each word.

Sequence labeling can be performed using various machine learning techniques,
including rule-based systems, statistical models, and deep learning models. In re-
cent years, deep learning models such as recurrent neural networks (RNNs) and
transformers have achieved state-of-the-art performance on many sequence label-
ing tasks.To train a deep learning model for sequence labeling, a labeled dataset
is required. The labeled dataset consists of a sequence of inputs and correspond-
ing labels. The model is trained using backpropagation and stochastic gradient
descent to minimize a loss function, which measures the difference between the
predicted labels and the true labels.During inference, the trained model takes a
sequence of inputs as input and outputs a sequence of predicted labels. The pre-
dicted labels can be used to identify the structure and meaning of the sequence.
For example, in NER, the predicted labels can be used to identify the entities in
the text and their types.
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3.4.9 Cross-Entropy Loss

Cross-entropy loss is a commonly used loss function in deep learning, particularly
in classification tasks. It measures the difference between the predicted probability
distribution and the true probability distribution of the labels. The goal of the
loss function is to minimize this difference, which indicates how well the model is
predicting the correct labels.

The formula for cross-entropy loss is as follows:

L = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij)

where L is the cross-entropy loss N is the number of samples in the batch C is
the number of classes yij is the true label for sample i and class j (1 if the sample
belongs to the class, 0 otherwise) ŷij is the predicted probability for sample i and
class j The formula can be interpreted as follows: for each sample, the loss is the
sum of the negative logarithm of the predicted probability of the correct label.
The negative sign is used to ensure that the loss is always positive and that the
model is penalized for making incorrect predictions.

In practice, the cross-entropy loss is often combined with other techniques,
such as regularization and optimization, to improve the performance of the model.
It is also used in conjunction with various deep learning architectures, such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to
achieve state-of-the-art performance on a wide range of tasks.

3.4.10 Tokenization

Tokenization is the process of breaking down a text into smaller units called tokens.
Tokens can be words, phrases, symbols, or other units, depending on the specific
task and the chosen tokenizer. The goal of tokenization is to make it easier to
analyze and process text data, by breaking it down into smaller, more manageable
units.

The formula for tokenization can be written as follows:

Tokenization(text) = [t1, t2, ..., tn]

where:

Tokenization(text) is the tokenized representation of the input text [t1, t2, ..., tn]
is a sequence of tokens, where n is the number of tokens in the text

Tokenization is a fundamental step in many NLP tasks, such as text classifi-
cation, sentiment analysis, and machine translation. The choice of tokenizer can
have a significant impact on the performance of the model, as different tokeniz-
ers may break down the text in different ways, and may capture different levels of
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granularity in the text data. There are many different tokenization algorithms and
tools available in NLP, ranging from simple rule-based tokenizers to complex neu-
ral network-based tokenizers. Some popular tokenization algorithms include the
Penn Treebank tokenizer, the WordPiece tokenizer, and the Byte Pair Encoding
(BPE) tokenizer.

3.4.11 Classification Metrices

When evaluating the performance of a machine learning model for a classification
task, it is important to use appropriate metrics to measure its accuracy. In this
section, we will discuss some of the most commonly used metrics for classification
tasks.

Accuracy

Accuracy is the simplest and most intuitive metric for measuring the performance
of a classification model. It measures the proportion of correctly classified samples
out of the total number of samples in the dataset. The formula for accuracy is:

Accuracy =
Number of Correctly Classified Samples

Total Number of Samples

While accuracy is a useful metric, it can be misleading in some cases. For
example, if the dataset is imbalanced, with many more samples in one class than
in another, a model that always predicts the majority class will have high accuracy,
but will not be useful for practical purposes.

Precision and Recall

Precision and recall are two complementary metrics that provide a more detailed
picture of the model’s performance. Precision measures the proportion of true
positives (correctly classified samples) out of all positive predictions (samples pre-
dicted to be in a certain class):

Precision =
True Positives

True Positives + False Positives

Recall measures the proportion of true positives out of all actual positive sam-
ples:

Recall =
True Positives

True Positives + False Negatives

In general, precision and recall are trade-offs: increasing one metric often re-
sults in a decrease in the other. F1 score is a commonly used metric that combines
precision and recall into a single score:
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F1 Score = 2 · Precision · Recall
Precision + Recall

Confusion Matrix

A confusion matrix is a table that summarizes the classification results of a model.
It shows the number of true positives, true negatives, false positives, and false
negatives for each class. The table can be used to calculate other metrics such as
precision, recall, and F1 score.

Table 3.1: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive False Negative
Actual Negative False Positive True Negative
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4. Methodology

4.1 Data Collection

The data collection process is a critical aspect of any machine learning project, and
it requires a careful consideration of the dataset’s size, diversity, and quality. In
our project, we collected ATM receipts from different ATM booths in the city and
tax invoices from various vendors we know. We selected these sources because they
represent common types of documents that users might need to extract information
from and these were the most easy source we know to collect the required data for
our project, These are relevant because user might want to extract information
from documents such as transaction records, expense reports, and receipts for tax
purposes

To augment our dataset and increase its diversity, we also generated synthetic
tax invoices using an Excel-based template that closely resembles real tax invoices.
This approach enabled us to add more samples to our dataset without incurring
additional costs or relying solely on a limited set of available documents. By
generating synthetic data, we can also control the variability and complexity of the
data, which can be useful for testing the robustness and generalization capabilities
of our system.

In total, we collected a dataset of around 500 documents for training and test-
ing. We ensured that our dataset is representative of real-world documents by
including documents with varying layouts, fonts, sizes, and other visual character-
istics. To evaluate the performance of our system, we randomly split the dataset
into training, validation, and test sets. We also ensured that the annotation pro-
cess is consistent and accurate by providing clear annotation guidelines and regular
quality checks.

To provide more transparency and reproducibility of our results, we have in-
cluded a sample of each dataset in the appendix of our report. These samples
illustrate the diversity and complexity of the data we used for training and testing
our system. They also provide a concrete example of the types of documents that
our system can handle, such as ATM receipts with different layouts, tax invoices
with varying item descriptions, and synthetic invoices with controlled variables.
Overall, the data collection process is a crucial component of our project, and we
believe that our approach to collecting and augmenting the dataset is a key factor
in achieving accurate and robust information extraction from scanned documents.

4.2 Data Annotation

In order to train a deep learning model to accurately extract information from
documents, it is necessary to first annotate the data. Annotation involves the
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process of labeling key fields in the documents, such as dates, merchant names,
and total amounts. This is typically done using an annotation tool that allows
the annotator to highlight the relevant text and assign it a specific label.

In our software platform, we utilized an annotation tool to annotate the col-
lected documents for training the deep learning model. This involved creating a
dataset of documents that had been labeled with the key fields that the model
needed to learn to recognize. The annotation process was done by a team of
trained annotators who were provided with clear guidelines and instructions for
labeling the data.

Ensuring consistency and accuracy in the annotation process was a critical
component of this project. To achieve this, we provided our annotators with a
detailed set of guidelines and rules for labeling the data. These guidelines covered
the specific labeling conventions and the criteria for determining what should be
labeled as a date, merchant name, total amount, etc.

Additionally, we implemented regular quality checks to ensure that the anno-
tation was being done correctly and consistently. This involved reviewing a sample
of the annotated data on a regular basis to check for any errors or inconsistencies.
If issues were identified, we would provide additional training to the annotators
to ensure that they were following the guidelines correctly.

4.3 Pretrained LayoutLM Model

4.3.1 Pre-training Dataset

The performance of pre-trained models is largely determined by the scale and
quality of datasets. Therefore, large-scale scanned document image dataset was
used to pre-train the LayoutLM model. This model pre-trained on the IIT-CDIP
Test Collection 1.0, which contains more than 6 million documents, with more
than 11 million scanned document images. Moreover, each document has its
corresponding text and metadata stored in XML files. The text is the content
produced by applying OCR to document images. The metadata describes the
properties of the document, such as the unique identity and document labels.
Although the metadata contains erroneous and inconsistent tags, the scanned
document images in this large-scale dataset was perfectly suitable for pre-training
this model.

4.3.2 Pre-training Tasks

Pretraining objective refers to the specific task or objective that a deep learn-
ing model is trained on during the pretraining stage. The pretraining objective
is typically different from the objective of the downstream task that the model
will be used for, and is designed to help the model learn general features and
representations that can be transferred to the downstream task.

The LayoutLMmodel proposes two pre-training tasks to improve document im-
age understanding. The first task is the Masked Visual-language Model (MVLM),
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which is inspired by the masked language model. The MVLM is designed to learn
language representations with the clues of 2-D position embeddings and text em-
beddings. During pre-training, some of the input tokens are randomly masked, but
the corresponding 2-D position embeddings are kept. The model is then trained
to predict the masked tokens given the contexts. This approach enables the model
to understand language contexts and utilize the corresponding 2-D position infor-
mation, bridging the gap between visual and language modalities.

The second pre-training task proposed is the Multi-label Document Classi-
fication (MDC) loss. This task is used for document image understanding and
generates high-quality document-level representations. The IIT-CDIP Test Col-
lection includes multiple tags for each document image, and the MDC loss is used
to supervise the pre-training process. The model clusters knowledge from different
domains and generates better document-level representations. However, since the
MDC loss needs the label for each document image, it may not be used for larger
datasets. The performance of MVLM and MVLM+MDC gives the better result.
Overall, the pre-training tasks proposed in LayoutLM help to improve document
image understanding by utilizing language contexts and position information, as
well as generating high-quality document-level representations.

4.3.3 Pre-training Configuration

The LayoutLM model initializes its weights using the pre-trained BERT base
model, which has a 12-layer Transformer with 768 hidden sizes and 12 atten-
tion heads. The model contains approximately 113 million parameters. For the
LARGE setting, the model has a 24-layer Transformer with 1,024 hidden sizes and
16 attention heads, which is initialized using the pre-trained BERT LARGE model
and contains around 343 million parameters. The model randomly masks 15% of
input tokens during pre-training and replaces them with the [MASK] token 80%
of the time, a random token 10% of the time, and an unchanged token 10% of the
time. The corresponding token is then predicted with the cross-entropy loss.

Additionally, LayoutLM adds 2-D position embedding layers with four embed-
ding representations (x0, y0, x1, y1), where (x0, y0) represents the position of the
upper left in the bounding box, and (x1, y1) represents the position of the lower
right. To account for variations in document layout due to different page sizes,
the actual coordinates are scaled to a ”virtual” coordinate with a value from 0
to 1,000. The Faster R-CNN model uses the ResNet-101 model as its backbone
network, which is pre-trained on the Visual Genome dataset.

The LayoutLM model is trained on eight NVIDIA Tesla V100 32GB GPUs
with a total batch size of 80. The Adam optimizer is used with an initial learning
rate of 5e-5 and a linear decay learning rate schedule. The BASE model takes
approximately 80 hours to finish one epoch on 11 million documents, while the
LARGE model takes nearly 170 hours to complete one epoch. Overall, the Lay-
outLM model leverages the pre-trained BERT model, incorporates 2-D position
embeddings, and uses the ResNet-101 model as its backbone network to improve
document image understanding.
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4.4 Finetuning

Figure 4.1: Fine-tuning LayoutLM for token classification

Fine-tuning is a process of adapting a pre-trained model on a specific task by
training it on a small amount of task-specific data. In the case of LayoutLM, we
finetune the model for token classification task, where the objective is to identify
the tokens present in the document and classify them into different categories such
as text, image, table, or equation.

To fine-tune the model, we add an additional layer called the token classifica-
tion head to the pre-trained LayoutLM architecture. The token classification head
is a fully connected layer that takes the contextual embeddings from LayoutLM as
input and produces a probability distribution over the different token categories.
The parameters of this layer are initialized using some form of initialization and
are optimized during fine-tuning.

During fine-tuning, the model is trained on a small set of task-specific data,
where the token labels are provided. The objective is to minimize the cross-
entropy loss between the predicted and the actual labels. The fine-tuning process
updates the parameters of the token classification head and fine-tunes the pre-
trained LayoutLM parameters to adapt to the specific token classification task.

Fine-tuning LayoutLM for token classification enables us to leverage the pre-
trained model’s knowledge of language and document layout to improve the per-
formance of the token classification task. By fine-tuning on the task-specific data,
we can optimize the model’s parameters to improve the classification performance
on the specific task, and achieve state-of-the-art performance on various document
analysis tasks.

Here is the high level observation of steps involved during Fine-tuning of Lay-
outLM for token classification task.
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4.4.1 OCR

In this step, we pass our document through the Optical Character Recognition
(OCR) software to convert the scanned images of the document into digital text.
The OCR software that we used for this project is docTR, which is a deep learning-
based OCR engine that supports a wide range of languages and fonts.

The docTR OCR engine uses a combination of Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) to recognize and transcribe the
text from the input images. The CNNs are used to extract features from the input
images, while the RNNs are used to model the sequence of characters in the text.

The output of the OCR step is a digital representation of the text in the docu-
ment, which can be further processed and analyzed to extract useful information.
However, the accuracy of the OCR output depends on the quality of the input
images, the complexity of the document layout, and the language and font used in
the document. We specifically need Text and Bounding box information the OCR.
Hence the output of this step is Text in the digital form along with its bounding
box. Four numbers are used to represent bounding box, representing top left and
bottom right of the rectangle.

Overall, the OCR step is a crucial component of the document analysis pipeline,
as it enables us to convert the scanned images of the document into digital text
that can be analyzed and processed using machine learning techniques.

4.4.2 Labeling

Since LayoutLM finetuning for token classification uses a supervised learning tech-
nique, it requires a set of input sequences with corresponding labels that represent
the ground truth for the target task.

In our project, we labeled the digital text output of the OCR step using a
manual annotation tool. The annotation tool allowed us to label each token in
the input text with the corresponding label that represents its semantic category.
The labels used in our project included entity types such as Person, Organization,
Location, Date, Time, and Money, as well as other types such as Number, Symbol,
and Other.

To create the labeled training data, we first divided the digital text output
into individual sentences and then labeled each token in each sentence using the
annotation tool. We also validated the labeled data by performing inter-annotator
agreement (IAA) analysis, which measures the level of agreement between different
annotators for the same set of input sequences. The IAA analysis helped us ensure
the consistency and accuracy of the labeled data.

4.4.3 Tokenization

Tokenization involves converting the input text into a sequence of tokens that
can be processed by the model. Tokenization is the process of breaking down the
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input text into smaller units, such as words or subwords, that can be represented
as discrete units of input for the model.

In our project, we used the WordPiece tokenization algorithm to tokenize the
input text. The WordPiece algorithm is a popular subword tokenization algorithm
that can handle out-of-vocabulary words by breaking them down into smaller sub-
words. The WordPiece algorithm works by iteratively merging the most frequent
pairs of adjacent subwords until a maximum vocabulary size is reached.

After tokenizing the input text, we also added special tokens to the beginning
and end of each sequence to indicate the start and end of the input, as well as
padding tokens to ensure that all sequences have the same length. We also created
attention masks to indicate which tokens should be attended to by the model and
which tokens should be ignored.

The tokenization step is critical in the LayoutLM finetuning process for token
classification, as it converts the input text into a format that can be processed
by the model. The choice of tokenization algorithm can have a significant impact
on the performance of the model, and it is important to choose an algorithm
that is appropriate for the target task and the characteristics of the input text.
Additionally, it is important to carefully consider the use of special tokens and
attention masks to ensure that the model is able to effectively process the input
sequences.

4.4.4 Data Pre-Processing

This step involves preparing the labeled data for input into the model. In our
project, this step involved several key tasks, including normalizing the document
images, converting the labeled data into the appropriate format, and splitting the
data into training, validation, and test sets.

First, we normalized the document images to a resolution of 1000 by 1000
pixels. This was done to ensure that all images had the same size, which is a
requirement for input into the LayoutLM model. The image normalization process
involved resizing and padding the images to ensure that they had a consistent
aspect ratio and size.

Next, we converted the labeled data into the appropriate format for input into
the model. This involved encoding each token in the input text as a numerical
value, using the tokenization algorithm that was applied in the previous step.
We also created a corresponding label for each token, representing its semantic
category, which was encoded as a numerical value as well.

Finally, we split the labeled data into training, validation, and test sets. The
training set was used to train the model, while the validation set was used to tune
the hyperparameters of the model and prevent overfitting. The test set was used
to evaluate the performance of the model on unseen data.
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4.4.5 Calculating Embeddings

Embeddings calculated in this step include:

1D position embeddings : These embeddings represent the position of each token
along the 1D sequence of tokens in the input text.

2D position embeddings : These embeddings represent the position of each token
within the 2D image space of the document. Four different embeddings are used
to represent the Left, Right, Top and Left position of the bounding rectangle.

Height and width embeddings : These embeddings represent the height and
width of each token in the document image.

Word embeddings : These embeddings represent the semantic meaning of each
token in the input sequence.

All of these embeddings are concatenated together to form a single vector for
each token. This concatenated embedding vector captures both the spatial and
semantic relationships between each token and is used as input to subsequent
layers of the model for further processing and classification.

By incorporating these different types of embedding, the LayoutLM model
is able to effectively capture the complex relationships between text and layout
information in document images. The Position and Word Embedding Layer is
a key step in this process, as it enables the model to represent both the spatial
and semantic information in a unified manner. Moreover all these embedding
are learnable and model update these embedding while training to get contextual
embedding that represent some meaning in the context of document

4.4.6 Multiheaded Attention

After the Position and Word Embedding Layer, the next step in the LayoutLM
finetuning process for token classification is the Multihead Attention layer. This
layer is used to capture the dependencies between different tokens in the input
sequence, taking into account both their spatial and semantic relationships.

Multihead Attention is a variant of the Attention mechanism, which is widely
used in deep learning models for natural language processing tasks. Attention
allows the model to selectively focus on different parts of the input sequence when
making predictions, based on their relevance to the current task.

In the Multihead Attention layer of LayoutLM, the input sequence of token
embeddings is transformed into a set of queries, keys, and values. These vectors
are then used to compute a set of attention weights for each token, indicating
how much importance should be given to each other token in the sequence when
making predictions for that token.

The Multihead Attention layer uses multiple attention heads, each of which
learns to capture different patterns of dependencies between tokens. The outputs
of the different attention heads are concatenated and passed through a feedforward
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layer to produce the final representation for each token.

Overall, the Multihead Attention layer in LayoutLM allows the model to cap-
ture complex dependencies between tokens in the input sequence, taking into ac-
count both their spatial layout and semantic content. By using multiple attention
heads, the model is able to learn different patterns of dependencies and capture a
more diverse range of relationships between tokens.

The output of the Multihead Attention layer is a sequence of vectors that
represent each token in the input sequence, enriched with information about the
dependencies between tokens. These vectors are used as input to the subsequent
layers of the model for further processing and classification.

4.4.7 Feed Forward Layer

Figure 4.2: Pre-trained LayoutLM’s Architecture

After the Multihead Attention layer in LayoutLM, the next step is the Feedfor-
ward layer. This layer is used to transform the output of the Multihead Attention
layer into a higher-dimensional space, where it can be better separated and clas-
sified.

The Feedforward layer consists of two linear transformations, each followed by
a nonlinear activation function such as the Rectified Linear Unit (ReLU). The
first transformation maps the input vectors to a higher-dimensional space, while
the second transformation maps the output of the first transformation back to the
original dimensionality.

The purpose of the Feedforward layer is to allow the model to learn more
complex and non-linear relationships between tokens in the input sequence. By
mapping the input vectors to a higher-dimensional space, the model can capture
more intricate interactions between tokens that may not be apparent in the original
feature space.

The output of the Feedforward layer is a sequence of vectors that have been
transformed to a higher-dimensional space and then back to the original dimen-
sionality. These vectors represent each token in the input sequence and are en-
riched with additional information about their relationships with other tokens in
the sequence.
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The output of the Feedforward layer is then used as input to the final layer of
the LayoutLM model for token classification, the Classification Head. By incor-
porating the Feedforward layer in the model, LayoutLM is able to capture more
complex and subtle relationships between tokens, leading to improved performance
on token classification tasks.

4.4.8 Token Classification

Token classification is the next step in the finetuning process for LayoutLM. It
involves using the trained model to classify each token in a given input sequence
into one or more predefined label, such as named Company, Address,Date etc..

For each token this layer will output the probability of falling into each labels
in the training set. The labels with the highest probability for each token are then
assigned as the predicted labels for that token. In cases where multiple labels are
assigned to a single token, the most likely label or labels can be selected based
on a variety of criteria, such as the highest probability, or the label that is most
consistent with the context of the surrounding tokens.

4.4.9 Loss Calculation

During the finetuning process for LayoutLM, the Cross Entropy Loss function is
used to measure the difference between the predicted label distribution and the
true label distribution for each token in the training set. The Cross Entropy Loss
is a commonly used loss function for classification tasks, and is defined as the
negative log-likelihood of the true label given the predicted label distribution.

During training, the Cross Entropy Loss is calculated for each token in the
training set, and the average loss over all tokens is used as a measure of the
model’s performance. The goal of the training process is to minimize this average
loss by adjusting the parameters of the model.

To update the model parameters, gradient descent is used to compute the gra-
dients of the Cross Entropy Loss with respect to each parameter. These gradients
are then used to update the parameters in the direction that reduces the loss. This
process is repeated for multiple epochs, until the model has converged to a set of
parameters that minimize the loss on the training set.

Overall, the Cross Entropy Loss is a critical component of the fine-tuning
process for LayoutLM, as it provides a measure of the model’s performance on
the task of token classification, and guides the update of the model’s parameters
during training. By minimizing the Cross Entropy Loss, LayoutLM can be trained
to accurately classify tokens into predefined categories, and enable the extraction
of structured information from unstructured text.
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5. Architecture and Implementa-
tion

5.1 Design Implementation

5.1.1 Overview of System Architecture

Figure 5.1: System Block Diagram

The system is composed of mainly two components. A CRNN based OCR
engine, and the Token Classifier. The CRNN based OCR Engine takes the invoice
images from the user and gives the text and position information to the Token-
Classifier. The TokenClassifier then then takes those text and position information
and the user input Entity to Extract and gives the output information.
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(a) Training process (b) Inference process

Figure 5.2: Process flow

A user can upload images of invoices, annotate them and then train a model
on the annotated images. The user can then use the model to extract information
from the images.

If a model is already trained and it fits the user’s requirements, then the user
can upload images and then pick a suitable model. The model then takes the
images as input and produces information that the user wants.

The user can register for a new account on the system using an email or a
Google account. Once logged in to the system the user can upload receipts/invoices.
The user can then annotate the uploaded receipts to label what the user wants to
extract from the image. The user can then use the collection of annotated images
to fine tune a pretrained model. Once the model is trained the user can then
upload images and use the model to extract information from them.
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Figure 5.3: System Context Diagram

Figure 5.4: Data Flow Diagram
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Figure 5.5: Sequence Diagram
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5.2 Technologies used

1. React: React is a JavaScript framework for building user interfaces that
offers reusable components, a virtual DOM for better performance, unidi-
rectional data flow, a large and active community, and flexibility to work
with other frameworks and tools. It is popular for building complex web ap-
plications and is a good choice for developers looking for a flexible, efficient,
and well-supported framework.

2. FastAPI: FastAPI is a Python web framework for building high-performance
APIs. It is fast, easy to use, Pythonic, automatically generates documen-
tation, and uses the Pydantic library for data validation and serialization.
FastAPI is designed to work asynchronously, which allows it to handle a large
number of concurrent requests and provide high-performance responses.

3. SQLAlchemy: SQLAlchemy is an open-source SQL toolkit and Object-
Relational Mapping (ORM) library for Python that provides a powerful
SQL Expression Language, supports multiple databases, transactions, con-
nection pooling, and an ORM for interacting with relational databases in an
object-oriented way. Its consistent API works with a wide range of relational
databases, making it easy to switch between them.

4. Firebase: Firebase is a mobile and web application development platform
that provides a suite of tools and services to help developers build high-
quality apps quickly. It offers real-time database, user authentication, cloud
storage, hosting, and messaging services, among others. Firebase’s features
are designed to make it easy to build scalable and reliable apps with minimal
effort. We use Firebase as an Auth server and also to sign in with a Google
account directly.

5. Pytorch: PyTorch is an open-source machine learning framework that is
known for its simplicity, flexibility, and ease of use. It is based on the Torch
library and provides an efficient way to perform numerical computing and
build deep learning models. This library is used for all machine learning
components of the system.

6. Google Colab: Google Colab is a cloud-based data science work space
which provide a powerful resource to perform machine learning operations.
Hence, we have trained our models in this platform.
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5.3 Deployment

The API for ReceiptScanner is deployed on Azure cloud platform behind an Ng-
inx proxy, and it is using Docker containers. This setup allows for efficient con-
tainerization, scalability, and secure traffic routing to the application. A sidecar
container is also present inside the docker environment. It’s function is to continu-
ously monitor the container registry (Docker Hub) for updates and pull the newest
image and relaunch the container with new image. The container registry is also
automatically updated. A Continuous Deployment service (GitHub actions) mon-
itors the code repository for changes and then automatically builds a new image
and pushes the image to the container registry.

The frontend of the system is hosted on Vercel which is a free cloud deployment
service. Application code is hosted on a GitHub repository and a GitHub workflow
is setup that monitors each update on the repository and then triggers a build on
Vercel. If the build passes the most recent code change is automatically reflected
on the publicly accessible domain.

Figure 5.6: System Frontend Deployment Architecture

Figure 5.7: System API Deployment Architecture
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5.4 Database Design

For interacting with the database, SQLAlchemy ORM is used. This offers the
benefit of switching database engines (eg. MySQL to PostgreSQL) without sub-
stantial change in application code and also protects from various security threats.
Additionally an ORM allows the programs to be written in a Object Oriented
Manner.

The database schema for the system is as follows:

Figure 5.8: Database Schema

1. Image: Image table represents an image that a user has uploaded. The
user can upload many images. The records on this table represent an image
resource and if the records are deleted the resource is also automatically
deleted(via triggers).

2. Folders:Each Image must be associated with one and only one folder. One
folder can have many images associated with it. Folders are a way of grouping
images. Folders can be created by users as needed and deletion of a folder
will also cause all associated images to be deleted.

3. ImageSet:A record of an ImageSet represents collection of images under
multiple folders. The ImageSet can have a labels associated (if it is of type
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training). A ImageSet can be annotated if it is of type training. If it is for
inference, then it cannot be annotated.

4. Labels:When training a model, a the model must know what entities to
extract, this is represented by the label record. Multiple labels can be as-
sociated with a single ImageSet as we can extract multiple things from a
collection of images.

5. Model:A model represents record the machine learning model resource. A
model is trained on a fixed ImageSet.

6. OCR:The OCR table stores the output of the OCR engine for each image.
Even if a image is not associated with any ImageSet, if OCR is run on it
then the output is stored on this table for faster access later.

7. AnnotatedWord:For a Image in an ImageSet for a specific label, a Anno-
tatedWord represents the data that has been input by the user. It references
the OCR table for the actual word. The corrections for the words (in case
of errors by OCR enging) are applied directly to the OCR table.

8. KeyInformation: KeyInformation is the table designated for storing the
output of an inference session. It stores the model output for each image in
a ImageSet, for a label.

9. Task:Task represents an ongoing task of training a model on a ImageSet,
running the model on an ImageSet(inference) or applying OCR on images of
an ImageSet(for faster access later). Depending on the type of task, different
columns of this table have either Null or reference other tables.
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5.5 Web Application

The web application is a complete product with some notable features.

1. When the user needs to annotate an image, the system not only provides
the user tools for drawing bounding boxes on images but also a best guess
OCR tokens drawn on the corresponding positions in the image. This allows
the user to quickly select the correct tokens instead on manually drawing a
bounding box and then typing the token on an input field. Instead, the user
can quickly select the token related to a label. The user can still draw the
bounding boxes manually and even correct the token that are not recognized
correctly by the OCR engine.

2. Once an Image Collection has been annotated, the user can export the Im-
age Collection. The exported files follow a simple structure and a simple
extraction program can be used to convert it to any desired format. Thus,
any user who only wants to use the system as an annotation tool can also
get the annotation data in a desired form. The system can also import the
Image Collection exported from the system. Thus, a user can send the Image
Collection to different accounts if such a need arises.

3. After a model has processed an input Image Collection, the resulting data
can be exported in a standardized format such as JSON or CSV. This al-
lows users to easily access and use the model’s predictions, regardless of the
software or platforms they use. The exported data includes predicted labels
and the corresponding system generate image ID and the original image file
name.
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6. Result and Analysis

In this section, we will present the result of our application and analyze its results.
To evaluate the performance of our application for extracting key information
scanned documents, we conducted experiments using these datasets: SROIE, ATM
receipt, and our custom invoice dataset. The SROIE dataset contains 1000 images
of receipts, the ATM receipt dataset contains 155 images, and our custom invoice
dataset contains 220 images. Similarly, The SROIE dataset contains five labels:
company, address, date, and total, and Other. The ATM receipt dataset contains
six labels: bank, location, date, time, and anount and other. The custom invoice
dataset contains eleven labels: Sender Company Name, Sender Address, Sender
PAN number, Receiver Name, Receiver Address, Receiver PAN Number, Date,
Invoice Number, taxable amount, total and Other. We split each dataset into a
training set and a test set, with 80% of the data used for training and 20% for
testing.

6.1 Training Loss

During the fine-tuning process of our model on all three datasets, we monitored
the training loss to ensure that our model was effectively learning from the data.
We used learning rate of 5e-5, Adam optimizer with a weight decay of 0.01, and
a batch size of 8. We fine-tuned the LayoutLM architecture for 10 epochs, which
allowed our model to learn from the data and improve its performance on the
given task. We observed that the loss was consistently decreasing on the training
and test set as shown in Figure 6.1.

Figure 6.1: Loss during LayoutLM Finetuning (10 epochs)
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The decreasing loss during the training phase indicates that our model was able
to effectively learn from the data and improve its ability to accurately extract the
desired information from the scanned documents. The overall decreasing loss in
testing phase suggests that our model was able to effectively generalize to new
data and capture the underlying patterns in the data.

Overall, the decreasing loss during the fine-tuning process of our model pro-
vides further evidence that our application for digitizing scanned documents using
deep learning-based LayoutLM architecture is effective and reliable in accurately
extracting important information from scanned receipts like documents in bulk.

6.2 Overall Evaluation Metrics

We used the deep learning based LayoutLM architecture at the core of our project
to extract the desired fields from the scanned receipts in each dataset. For evalu-
ation, we used precision, recall, and F1-score as the evaluation metrics.

Figure 6.2: Evaluation Metrics after each epoch on test set

The graph 6.2 shows the precision, recall, and F1 score metrics for each epoch
on the test set of three different datasets: SROIE, ATM receipt, and custom
invoice datasets. The trend of the graph reveals that the model’s performance
improves for all three datasets as the epochs progress. However, the improvement
is more substantial for the SROIE and ATM receipt datasets than for the custom
invoice dataset. The final evaluation metrics on three datasets after training the
model for 10 epochs is shown in table 6.1
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Table 6.1: Evaluation Metrics after 10 epochs

Dataset Total Documents Labels Precision Recall F1-score
SROIE 1000 5 0.95 0.97 0.96
ATM receipt 155 6 0.94 0.95 0.95
Custom invoice 220 11 0.70 0.80 0.75

Our experiments showed that our application achieved high precision, recall,
and F1-score values on SRIOE dataset and ATM Receipt dataset. However, the
model’s performance on the custom invoice dataset is relatively low. Specifically,
on the SROIE dataset, our system achieved an average precision of 0.95, recall
of 0.96, and F1-score of 0.95. On the ATM receipt dataset, our system achieved
an average precision of 0.94, recall of 0.95 and F1-score of 0.94. Finally, on our
custom invoice dataset, our system achieved an average precision of 0.70, recall of
0.80, and F1-score of 0.75. The relatively low metrics on custom invoice dataset
may be due to the complexity of the document layout and the relatively large
number of different labels present in the dataset. Specifically, the custom invoice
dataset contains 11 different labels for different types of entities, compared to only
5 labels in the SROIE dataset and 6 labels in the ATM receipt dataset.

These results demonstrate that our deep learning-based approach is effective
in accurately identifying and extracting relevant fields from a variety of scanned
documents, including receipts and invoices. The high precision and recall values
obtained on each dataset as shown in table 6.1 indicate that our system is able to
handle variations in layout and formatting, as well as different types of documents.

6.3 Label-wise Evaluation Metrics

We also calculated the precision, recall, and F1-score metrics for each label in the
extracted information. Table 6.2,Table 6.3 and Table 6.4 shows the evaluation
metrics for each label on the datasets used in our experiments, SROIE, ATM
receipt, and Custom invoice respectively.

Table 6.2: Label-wise Metrics on SROIE dataset (test) using LayoutLM Model

Label Precision Recall F1-score
Company 0.93 0.99 0.96
Address 0.98 0.98 0.98
Date 0.95 0.98 0.96
Total 0.67 0.71 0.69
Micro Avg 0.95 0.97 0.96
Macro Avg 0.88 0.91 0.90
Weighted Avg 0.95 0.97 0.96

In the SROIE dataset, the model achieved high precision, recall, and F1-scores
for the labels Company, Address, and Date, with a weighted average F1-score
of 0.96. However, the model’s performance for the Total label was not as good
as the other labels, with an F1-score of 0.69. This may be due to the fact that
the Total label is more complex and requires the model to accurately identify
and extract numerical values, which can be more challenging than identifying and
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Table 6.3: Label-wise Metrics on ATM receipt dataset (test) using LayoutLM Model

Label Precision Recall F1-score
Bank 0.97 0.92 0.94
Location 0.90 0.95 0.92
Date 0.91 1.00 0.95
Time 1.00 1.00 1.00
Amount 0.89 0.94 0.92
Micro Avg 0.94 0.95 0.94
Macro Avg 0.94 0.96 0.95
Weighted Avg 0.94 0.95 0.94

Table 6.4: Label-wise Metrics on Custom Invoice dataset (test) using LayoutLM Model

Label Precision Recall F1-score
Sender Company Name 0.85 0.98 0.91
Sender Address 0.72 0.80 0.76
Sender PAN number 0.91 0.74 0.82
Receiver Name 0.61 0.65 0.63
Receiver Address 0.52 0.86 0.65
Receiver PAN Number 0.80 0.89 0.84
Invoice Number 0.85 0.83 0.84
Date 0.57 0.75 0.65
Taxable Amount 0.50 0.69 0.58
Total 0.97 0.75 0.85
Micro Avg 0.70 0.80 0.75
Macro Avg 0.73 0.79 0.75
Weighted Avg 0.72 0.80 0.75

extracting text values.

In the ATM receipt dataset, the model achieved high F1-scores for all labels,
with the Time label having a perfect F1-score of 1.0. The macro and weighted
average F1-scores were also high at 0.95. his may be due to the fact that the
labels in this dataset are relatively simple and easy to identify, consisting mostly
of short text strings and numerical values.

In the Custom Invoice dataset, the model achieved high F1-scores for the
Sender Company Name, Sender PAN number, Receiver PAN number,
Invoice Number, and Total labels, with F1-scores ranging from 0.84 to 0.91.
However, the performance of the model was relatively poor for the Receiver
Name, Receiver Address, Date, and Taxable Amount labels, with F1-scores
ranging from 0.58 to 0.65. The micro and weighted average F1-scores were 0.75,
indicating that the model performed moderately well overall. This may be due to
the fact that the labels in this dataset are more varied and complex, and require
the model to accurately identify and extract different types of information from
the invoice.

In conclusion, the LayoutLM model showed promising performance for the
label-wise metrics in all three datasets. However, there is room for improvement
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in some labels, particularly in the Custom Invoice dataset. Therefore, further
optimization and fine-tuning of the model may be necessary to enhance its per-
formance in specific label categories. It is important to consider these factors
mentioned above when evaluating the performance of a model and determining its
suitability for a particular task.
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7. Epilogue

7.1 Conclusion

We have successfully developed a software platform for information extraction
from scanned documents that uses deep learning-based LayoutLM architecture.
The system allows users to upload and extract important information from scanned
receipts and other similar documents in bulk, and it is highly effective in accurately
recognizing and extracting relevant information.

Our system offers several benefits, including reducing manual data entry and
improving data accuracy, which could significantly benefit businesses and individ-
uals alike. Our project is an important step towards creating more efficient and
accurate document processing systems. We believe that our system has the poten-
tial to transform the way businesses and individuals handle scanned documents
and data extraction, and we recommend further exploration and research in this
area to continue improving upon the current capabilities of our system.

7.2 Limitation and Future Enhancements

The system is not enforcing type of field checking. Eg. If the field is date, we are
sure of the token is in one of the enumerable standard formats. In such a case, we
can give preference to those tokens that conform to one of the standard format
and get better accurate.

The system doesn’t allow fine tuning a model which has already been fine
tuned up to a point. The user might want to train a model further based on the
the new data that has been acquired.

A limitation of the system is that all processes OCR, inference, Database, Im-
age Storage, and model training are done on a single machine. These sub-systems
are ideal candidates for micro-services. A micro-service architecture would allow
the system to be highly scalable and would allow for independent development of
micro-services.

Another enhancement could be class of document based rule engine. For eg.
If a certain type of document, Department Store bills for example, always have
address towards the right top corner then the system could get better results if
this information was incorporated in some way.
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8. Appendix

Appendix A

Sample Data

Figure 8.1: Collected tax invoices

Figure 8.2: Generated invoices
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Figure 8.3: Collected ATM receipts

Figure 8.4: Train/Test loss for SRIOE test dataset
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Figure 8.5: Train/Test loss for ATM Receipt test dataset

Figure 8.6: Train/Test loss for Custom invoice test dataset
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Figure 8.7: Evaluation Metrics for SRIOE dataset
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Figure 8.8: Evaluation Metrics for ATM Receipt dataset

Figure 8.9: Evaluation Metrics for Custom invoice dataset
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Appendix B

Figure 8.10: Web App Homepage

Figure 8.11: Web App Login Page
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Figure 8.12: Web App Dashboard Page

Figure 8.13: Web App Annotation Page

Figure 8.14: Web App Results Page
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Figure 8.15: Web App Single Output Page
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