
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A

PROJECT REPORT

ON

INFORMATION EXTRACTION FROM STRUCTURED DOCUMENT

SUBMITTED BY:

AAYUSH SHAH KANU (PUL075BCT007)

ADITHYA POKHREL(PUL075BCT009)

BISHAL BASHYAL(PUL075BCT026)

JANAK SHARMA (PUL075BCT040)

SUBMITTED TO:

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING

30TH APRIL, 2023

Page of Approval

TRIBHUVAN UNIVERSIY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certifies that they have read and recommended to the Institute of En-

gineering for acceptance of a project report entitled ”Information Extraction From

Structured Document” submitted by Aaysh Shah Kanu, Adithya Pokharel, Janak

Sharma, Bishal Bashyal in partial fulfillment of the requirements for the Bachelor’s degree

in Electronics & Computer Engineering.

.............................

Supervisor

Sarad Kumar Ghimire

Associate Professor

Department of Electronics and Computer

Engineering,

Pulchowk Campus, IOE, TU.

.............................

Internal examiner

Person B

Assistant Professor

Department of Electronics and Computer

Engineering,

Pulchowk Campus, IOE, TU.

.............................

External examiner

Person C

Assistant Professor

Department of Electronics and Computer Engineering,

Pulchowk Campus, IOE, TU.

Date of approval:

ii

Copyright

The author has agreed that the Library, Department of Electronics and Computer Engineer-

ing, Pulchowk Campus, Institute of Engineering may make this report freely available for

inspection. Moreover, the author has agreed that permission for extensive copying of this

project report for scholarly purposes may be granted by the supervisors who supervised the

project work recorded herein or, in their absence, by the Head of the Department wherein

the project report was done. It is understood that the recognition will be given to the author

of this report and to the Department of Electronics and Computer Engineering, Pulchowk

Campus, Institute of Engineering in any use of the material of this project report. Copying

or publication or the other use of this report for financial gain without approval of to the

Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of En-

gineering and author’s written permission is prohibited.

Request for permission to copy or to make any other use of the material in this report in

whole or in part should be addressed to:

Head

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering, TU

Lalitpur,Nepal.

iii

Acknowledgments

We would like to express our deepest appreciation to Associate Professor. Sharad Ku-

mar Ghimire, our project supervisor, for his invaluable guidance and unwavering support

throughout the entire duration of the project.

We are also grateful to Docsumo Nepal for providing us with the opportunity to

work on a real-world project and gain valuable experience in the field. We would like to

extend our thanks to the Institute of Engineering, Pulchowk Campus, for providing

us with the platform to pursue our goals and aspirations.

We would like to express our sincere gratitude to the lecturers of our department,

whose unwavering support and inspiration have been instrumental in guiding us through

every stage of this project. Their expert guidance and mentorship have been invaluable in

helping us develop our skills and abilities, and we are deeply grateful for their contributions.

Last but not the least, we extend our heartfelt thanks to everyone who has con-

tributed to this project, directly or indirectly, and helped us achieve our goals.

iv

Abstract

This project proposes the use of the LayoutLMv2 model, a deep learning model, for infor-

mation extraction from form-like documents. Specifically, the IRS 990 tax form was used as

the dataset for testing and optimization. The information extraction process from form-like

documents can be challenging due to the complex layout analysis and text recognition re-

quired to identify fields and corresponding values. The proposed model, LayoutLMv2, has

demonstrated its effectiveness in these tasks, making it a promising solution for information

extraction from form-like documents. The project resulted in the development of a web

application and annotation tools that provide users with a user-friendly interface to upload

documents and extract relevant information accurately and efficiently. The annotation tool

enables users to label data and train custom models, while the web application streamlines

document processing for businesses and organizations.

Keywords: Transformers, OCR engine, LayoutLMv2,Information Extraction

v

Contents

Page of Approval ii

Copyright iii

Acknowledgements iv

Abstract v

Contents viii

List of Figures ix

List of Tables x

List of Abbreviations x

1 Introduction 2

1.1 Background . 2

1.2 Problem statements . 3

1.3 Objectives . 3

1.4 Scope . 3

2 Literature Review 4

2.1 Related Works . 4

2.1.1 Document Layout Analysis . 5

2.1.2 OCR . 5

2.1.3 Rule Based Methods . 6

2.1.4 Machine Learning Methods . 7

2.1.5 Deep Learning Methods . 7

2.2 Related Theory . 8

2.2.1 Natural Language Processing(NLP) 8

2.2.2 Neural Network . 8

2.2.3 Convolutional Neural Network Architecture 10

vi

2.2.4 Transformers . 10

2.2.5 Embeddings . 12

2.2.6 BERT . 12

2.2.7 LayoutLM . 13

2.2.8 LayoutLMv2 . 14

2.2.9 ResNeXt . 17

2.2.10 FPN . 19

3 Methodology 21

3.1 Research . 21

3.2 Dataset Acquisition . 22

3.2.1 FUNSD . 22

3.2.2 IRS FORM 990 . 23

3.3 Data Preprocessing and Annotation . 26

3.4 Nature of Dataset and Choice of Metrices . 26

3.5 Model Training . 27

3.6 Software Development Model . 27

4 System Design and Implementation 28

4.1 Diagrams . 28

4.1.1 System Block Diagram . 28

4.1.2 Use Case Diagram . 29

4.1.3 Deployment Diagram . 30

4.2 Implementation . 31

4.2.1 API . 32

4.2.2 Annotation Tool . 33

4.3 Technology Stack . 33

4.3.1 Frontend . 33

4.3.2 Backend . 34

4.3.3 Platform . 36

5 Results 37

5.1 Loss and F1 Score . 37

5.2 Evaluation Metrices . 40

5.3 Label-Wise Evaluation Metrices . 40

6 Conclusion 45

vii

7 Limitations and Future Works 46

References . 46

8 Appendices 50

8.1 Screenshots of End Product . 50

viii

List of Figures

2.1 General OCR Process . 6

2.2 Architecture of Neuron . 9

2.3 Architecture of Neural Network . 9

2.4 One-dimensional convolutional neural network (1D CNN) model [1] 10

2.5 Transformer Architecture [2] . 11

2.6 Architecture of LayoutLMv1 . 13

2.7 An illustration of the model architecture and pre-training stragegies for Lay-

outLMv2 [3] . 15

2.8 A block of ResNet . 18

2.9 A block of ResNeXt with cardinality = 32 18

2.10 Feature Pyramid Network . 19

3.1 Sample Image from FUNSD Dataset . 23

3.2 Sample Image of Form 990 from the dataset 24

4.1 General Block Diagram . 28

4.2 Use Case Diagram . 29

4.3 Deployment Diagram . 30

4.4 Flow chart . 31

5.1 Train Vs Validation Loss Plot on FUNSD 38

5.2 Train Vs Validation F1 Score Plot on FUNSD 38

5.3 Train Vs Validation Loss Plot on 990 Form 39

5.4 Train Vs Validation F1 Score Plot on 990 Form 39

8.1 HomePage of WebApp . 50

8.2 Dashboard Page . 50

8.3 Annotation Tool . 51

8.4 API Page . 51

8.5 Document Upload Page . 52

ix

List of Tables

5.1 Evaluation Metrices using LayoutLMv2 . 40

5.2 Label Wise Metrices for IRS 990 Form . 42

5.3 Label Wise Metrices for FUNSD . 43

5.4 Experimenting with dataset size . 43

x

List of Abbreviations

NLP Natural Language Processing

JASPER Joint Actinide Shock Physics Experimental Research

IE Information Extraction

MUCs Message Understanding Competitions

NOSC Naval Ocean Systems Centre

DARPA Defence Advanced Research Project Agency Centre

OCR Optical Character Recognition

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

PDF Portable Document Format

VGG Visual Geometry Group

ResNet Residual Neural Network

JSON JavaScript Object Notation

RPN Region Proposal Network

DLA Document Layout Analysis

BERT Bidirectional Encoder Representations from Transformers

RPN Region Proposal Network

CV Computer Vision

SVM Support Vector Machines

1

1. Introduction

Manual extraction of information from documents can be a time-consuming and resource-

intensive task. However, automated information extraction systems aim to locate and inter-

pret specific pieces of relevant information from a large number of data sources, which can

include text or images. By producing a structured representation of this information, it can

be efficiently processed and analyzed to generate valuable insights.

Various types of documents, such as forms, receipts, bills, and insurance quotes, play

a critical role in diverse business workflows. An automated workflow can drastically reduce

the need for costly human resources and minimize errors. Additionally, implementing such

a system can ensure a higher level of data security since information is not accessible to

unauthorized parties.

1.1 Background

The task of extracting information from form-like documents such as bills, invoices, and

forms can be time-consuming and prone to errors. However, it is an essential activity that is

performed regularly to extract valuable data and insights. Manual extraction of this infor-

mation can lead to inefficiencies and errors, ultimately affecting productivity and efficiency.

To address this challenge, we offer a software platform that leverages the power

of deep learning to automate the extraction of data from documents and deliver it in a

structured format. By automating this process, organizations can save time, reduce errors,

and increase productivity, allowing them to focus on more critical activities.

Our software platform is designed to meet the needs of modern organizations. It

is highly customizable, easy to integrate, and can be adapted to meet the unique needs

of different industries and business processes. With our platform, organizations can gain

valuable insights from their data faster and more accurately, enabling them to make better

decisions and stay ahead of the competition.

2

1.2 Problem statements

Manually updating form data is a time-consuming and labor-intensive task for companies,

financial institutions, institutions, and banks. The process of digitizing printed structured

data forms into a digital database requires a significant investment of resources and capital.

Our automated solution aims to optimize this process by reducing the need for physical labor

and financial investment.

1.3 Objectives

The objectives of the project are:

1. To be able to locate the important features of the document

2. To extract text from the localized features

3. To map the extracted text to key entities

1.4 Scope

The scope of information extraction from structured data is vast and varied, with applications

across numerous industries and domains. In the healthcare sector, it is used for processing

medical records, lab reports, and clinical trial data. In the finance and accounting sector, it

can be used for automating data population from invoices, receipts, and financial statements.

It is also used in the legal industry for document discovery and analysis, as well as in customer

service for sentiment analysis and chatbot training.

By automating the process of data extraction, organizations can significantly reduce

the time and resources required for manual data entry and processing. This can result in

a significant increase in efficiency and productivity, allowing employees to focus on higher-

level tasks and decision-making processes. Furthermore, automated data extraction can

help organizations to minimize errors and inconsistencies in data processing, leading to more

accurate and reliable insights.

3

2. Literature Review

Information extraction dates back to the late 1970s in the early days of Natural Language

Processing (NLP)[4]. An early commercial system from the mid-1980s was JASPER built

for Reuters by the Carnegie Group Inc with the aim of providing real-time financial news to

financial traders.

The present significance of IE pertains to the growing amount of information available

in structured and unstructured form. Tim Berners-Lee, inventor of the World Wide Web,

refers to the existing Internet as the web of documents [5] and advocates that more of the

content be made available as a web of data. Message Understanding Competitions (MUCs)

have played an important role in the development of information extraction as a field of

study. This conference was initiated by the Naval Ocean Systems Centre (NOSC) and was

sponsored by the Defence Advanced Research Project Agency Centre (DARPA). MUCs took

place seven times from 1987 until 1998.

Unlike traditional OCR techniques, CNN, RNN and LSTM are achieving high per-

formance in text recognition in images. Deep learning techniques are showing prevalent

results to date. CNN as feature extractor to detect, slice and recognize pipeline [6] and as

encoder in attention mechanism outperformed others.[7]

2.1 Related Works

Rule Based algorithms were prominent historically in the Document Understanding. In the

paper [8] the author presents the method that is based on bottom up approach to document

analysis. It is based on linking of characters together to form blocks which are further

segmented, labelled and merged into paragraphs.Simulataneously, graphics are extracted

from image.

More recently , the gear has shifted towards using the recent Computer Vision (CV)

and NLP methods especially in 2010s.

In [9] the authors review different techniques for document understanding for doc-

uments written in English and concludes that Document understanding is a valuable but

understudied field due to the lack of publicly available datasets. However, recent advance-

4

ments in deep neural network modeling have made end-to-end document understanding

achievable by integrating layout analysis, optical character recognition, and domain-specific

information extraction.

Some of the document understanding tasks that are relevant for our project are

explained below:

2.1.1 Document Layout Analysis

Document Layout Analysis involves identifying regions of interest in a document, which

can range from page segmentation to semantic classification. While rule-based approaches

[8] have been used since the 1990s, recent advances in machine learning and multi-modal

transformer architectures such as LayoutLMv3 [10] have enabled more sophisticated DLA.

2.1.2 OCR

Optical Character Recognition (OCR) is the electronic or mechanical conversion of images

of typed, handwritten or printed text into machine-encoded text, whether from a scanned

document, a photo of a document, a scene-photo (for example the text on signs and billboards

in a landscape photo) or from subtitle text superimposed on an image (for example: from a

television broadcast). 1

According to [9] OCR has two primary components: text detection and text tran-

scription.

1https://www.wikiwand.com/en/Optical_character_recognition

5

https://www.wikiwand.com/en/Optical_character_recognition

Figure 2.1: General OCR Process

The general OCR process is shown in Figure 2.1.The document can take any path

and all paths produce the same structured output [9]. The document comes from FUNSD

[11]

2.1.3 Rule Based Methods

Rule Based Methods could be broadly classified into top-down, bottom-up and hybrid

methods.[12] Bottom-up methods are commonly used to detect the basic computational

units in document images, which are usually the connected components of black pixels. The

goal of the document segmentation process is to combine these components into higher-level

structures using various heuristics and label them based on different structural features.

One of the earliest successful bottom-up algorithms that utilizes connected compo-

nent analysis is the Docstrum algorithm, as described by [13] in 1993. This algorithm groups

connected components on a polar structure to derive the final segmentation.

When utilizing a top-down approach, the main goal is to divide the document into

blocks in a recursive manner. To achieve this, various methods are employed, one of which

is the X-Y cut algorithm, as presented in [14]. In this algorithm, the authors utilize the X-Y

cut technique to divide the document into blocks.

6

A hybrid methods combines both of the methods mentioned previously.[15] uses this

approach.

2.1.4 Machine Learning Methods

In the past decade, statistical machine learning approaches have become the mainstream for

document segmentation tasks, in conjunction with the development of conventional machine

learning. One notable approach, outlined in [16], considers document layout information as

a parsing problem and searches for the optimal parsing tree based on a grammar-based loss

function. This approach employs a machine learning technique to select features and train

all parameters during the parsing process.

Meanwhile,Artificial Neural Networks(ANNs) have also been extensively utilized for

document analysis and recognition, with significant success in recognizing isolated handwrit-

ten and printed characters [17].

In addition to ANNs, support vector machines (SVMs) and Gaussian mixture models

(GMMs) have been utilized in document layout analysis tasks. Machine learning approaches

can be time-consuming to design manually crafted features, and it is challenging to obtain

highly abstract semantic context. Moreover, these methods often rely on visual cues and

overlook textual information.

2.1.5 Deep Learning Methods

In recent times, deep learning techniques have gained widespread popularity and are now

widely accepted as the standard approach for solving many machine learning problems.

These methods are based on the concept of multi-layer neural networks, which have the

ability to approximate arbitrary functions. Numerous studies have demonstrated the efficacy

of deep learning across a variety of research fields.

There has been huge advancements in multistage models such as multistage Faster

R-CNN [18] and single-stage models such as YOLO [19] Recent studies have attempted to

enhance the representation of multi-modal data and address data limitations. For instance,

LayoutLM [12] was developed as a pre-trained transformer model that is based on BERT

[20] and is specifically designed for document understanding. This model combines textual

information, layout information, and image embeddings using Faster R-CNN to improve

its performance on various downstream tasks. By integrating these different types of data,

LayoutLM provides a more comprehensive representation of documents, which leads to better

results in real-world applications.

7

2.2 Related Theory

2.2.1 Natural Language Processing(NLP)

Natural language processing (NLP) is a field that combines linguistics, computer science, and

artificial intelligence to explore how computers and humans can interact through language.

Its primary aim is to develop programs that enable computers to process and analyze vast

amounts of natural language data in a way that mimics human comprehension. In other

words, NLP seeks to create a computer that can understand the meaning of documents and

the subtle nuances of language that give them context. By doing so, NLP can help extract

valuable insights and information from documents while also categorizing and organizing

them more effectively.

2.2.2 Neural Network

A neural network is a type of machine learning model that is designed to learn from data

by adjusting its internal parameters in response to the input. The architecture of a neural

network consists of multiple layers of interconnected nodes, called neurons, which receive

inputs and produce outputs. Each neuron is typically connected to several other neurons in

the previous layer, and the outputs from the previous layer are used to calculate the inputs

to the next layer. The parameters of the network, including the weights and biases of each

neuron, are adjusted using a process called backpropagation, which minimizes the difference

between the predicted outputs and the actual outputs for a given set of inputs.

8

Figure 2.2: Architecture of Neuron

Figure 2.3: Architecture of Neural Network

Neural networks are commonly used for tasks such as image and speech recognition,

natural language processing, and predictive analytics. They are highly adaptable and can

learn to recognize complex patterns and relationships in the input data, even when these

9

patterns are not immediately apparent to humans. This ability to learn and generalize from

examples makes neural networks highly effective for a wide range of applications.

2.2.3 Convolutional Neural Network Architecture

CNN is a neural architecture that applies sliding window over the image to capture the spa-

tial relation and context over that window. The sliding window works as filters for spatial

representation to understand the feature of the spatial data. This architecture includes Con-

volutional layers connected to Pooling and Normalization layers for better feature extraction.

For classification, the feature extraction portion of CNN is used with Fully Connected Neural

Layer and softmax layer.

Figure 2.4: One-dimensional convolutional neural network (1D CNN) model [1]

2.2.4 Transformers

A transformer is a deep learning model that adopts the mechanism of self-attention, differ-

entially weighting the significance of each part of the input data. It is used primarily in

the fields of NLP and computer vision.[2] Transformers were introduced in 2017 by a team

at Google Brain [2] and are increasingly the model of choice for NLP problems, replacing

Recurrent Neural Network (RNN) models such as Long Short-Term Memory (LSTM).

10

Figure 2.5: Transformer Architecture [2]

Encoder

Each encoder consists of two major components: a self-attention mechanism and a feed-

forward neural network. The self-attention mechanism accepts input encodings from the

previous encoder and weighs their relevance to each other to generate output encodings.

11

The feed-forward neural network further processes each output encoding individually. These

output encodings are then passed to the next encoder as its input, as well as to the de-

coders.The first encoder takes positional information and embeddings of the input sequence

as its input, rather than encodings. The positional information is necessary for the trans-

former to make use of the order of the sequence, because no other part of the transformer

makes use of this.[2]

Decoder

Each decoder consists of three major components: a self-attention mechanism, an attention

mechanism over the encodings, and a feed-forward neural network. The decoder functions

in a similar fashion to the encoder, but an additional attention mechanism is inserted which

instead draws relevant information from the encodings generated by the encoders.[2]

2.2.5 Embeddings

In natural language processing, embeddings are a way to represent words or phrases as vectors

in a high-dimensional space. These vectors capture the semantic and syntactic relationships

between the words, allowing for computational models to better understand the meaning

of text. Embeddings are created through a process called ”word embedding,” where words

are transformed into dense numerical vectors. There are several types of word embeddings,

including one-hot encoding, frequency-based embeddings, and context-based embeddings.

One-hot encoding represents words as sparse vectors where each dimension corre-

sponds to a word in the vocabulary, and only one dimension has a value of one while the

others are zero. Frequency-based embeddings assign a numerical value to each word based

on its frequency in the corpus. Context-based embeddings use neural networks to learn a

mapping between words and their surrounding context, which captures the semantic and

syntactic relationships between the words.

2.2.6 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained language

model developed by Google in 2018 for natural language processing tasks. It is based on the

transformer architecture, which was introduced in [2]

BERT is a deep neural network that is trained on large amounts of unannotated

text data to generate high-quality embeddings for various natural language processing tasks.

Unlike previous models, BERT is bidirectional, which means that it takes into account both

the left and right context of each word in a sentence.

12

BERT is trained using two tasks: masked language modeling and next sentence

prediction. In masked language modeling, the model is trained to predict a randomly masked

word within a sentence, while in next sentence prediction, the model is trained to predict

whether two sentences are consecutive or not. By training on these tasks, BERT is able to

capture the semantic relationships between words and understand the context in which they

are used.

BERT has achieved state-of-the-art performance on a wide range of natural language

processing tasks, including question answering, sentiment analysis, and text classification. It

has also paved the way for other pre-trained language models, such as GPT-2 and RoBERTa,

which have further improved the state-of-the-art performance on various language tasks.

2.2.7 LayoutLM

LayoutLM is a deep learning model that combines text recognition and layout analysis to

improve the performance of natural language processing (NLP) tasks on documents with

complex layouts, such as forms, receipts, and invoices. The model is based on the popular

BERT architecture, which uses a transformer network to encode input text into a contextual-

ized representation. However, LayoutLM extends BERT by also encoding spatial information

about the position of words and their relationships within the layout of the document.

Figure 2.6: Architecture of LayoutLMv1

To achieve this, LayoutLM uses a two-stage approach. In the first stage, the model

13

processes the input document as an image to extract layout features, such as bounding

boxes, coordinates, and visual features of text and non-text elements. In the second stage,

the model processes the text within each bounding box and combines the layout features

with the BERT-encoded text to create a final representation.

LayoutLM can be trained on a variety of tasks, such as named entity recognition,

information extraction, and document classification, and has shown to outperform traditional

NLP models on tasks that require understanding of both textual and spatial information.

Additionally, the model can be fine-tuned on specific document types to further improve

performance.

2.2.8 LayoutLMv2

LayoutLMv2[3] is the improved version of LayoutLM which incorporates visual information

in the pre-training stage through a spatial-aware self-attention mechanism. The model uses

a 2-D relative position representation for token pairs to provide a broader view for con-

textual spatial modeling. In addition, two new training objectives are used, including a

text-image alignment strategy and a text-image matching strategy, to further improve per-

formance. These modifications help LayoutLMv2 achieve better accuracy and correlation

between document images and textual content compared to the original LayoutLM model.

14

Figure 2.7: An illustration of the model architecture and pre-training stragegies for Lay-

outLMv2 [3]

The model uses three types of Embeddings which are explained below:

Text Embedding

In LayoutLMv2, the text embedding is made up of three components that are combined

using addition. The first component is the token embedding which is the actual text of the

token. The second component is the positional embedding which represents the position of

the token in the sequence. The third component is the segment embedding which is used

to differentiate between text and visual tokens. The model uses the segment embedding to

identify the type of token in the sequence. The text sequences are of equal length and shorter

15

sequences are padded with additional tokens. The text embedding for a given word in the

sequence is defined by an equation 2.1 that includes the word itself, its segment embedding,

and the maximum length of the sequence.

ti = TokEmb(wi) + PosEmb1D(i) + SegEmb(si), 0 ≤ i < L (2.1)

Visual Embedding

In LayoutLMv2, the visual embedding is produced using ResNeXt-FPN [21, 22] as the back-

bone. For each document page, a feature map is generated with a resolution of 224x224.

This assumes that all pages have the same aspect ratio, such as the commonly used A4 for-

mat. However, since A4 is not a square, the receptive field is not symmetrical in the x and y

directions. To match the dimensionality of the text embeddings, a linear projection layer is

applied to the visual embedding sequence. The visual embedding sequence is represented by

the visual token embeddings, the positional embedding, and the segment embedding. The

visual embedding for each token in the visual embedding sequence is defined by an equation

2.2 that includes the visual token embedding, the index of the token (positional embedding),

and the segment embedding. Since the CNN-based backbone does not capture positional

information, a positional embedding PosEmb1D is added to the visual embedding of each

token. Finally, the segment embedding is set to [C] since all visual embeddings are visual

segments.

vi = Proj(VisTokEmb(I)i) + PosEmb1D(i) + SegEmb([C]), 0 ≤ i < WH (2.2)

Layout Embedding

A 2D layout embedding sequence is constructed using existing information from documents.

The bounding box for each word is described using six parameters where x−min, x−max,

y −min and y −max are corner coordinates and width and height are sizes. The bouding

box coordinates are all normalized to integers in the range [0, 1000]. In PosEmb2D the three

parameters for each direction are concatenated and two embeddings are obtained, one for

the x− direction and one for the y− direction. The two embeddings are then concatenated

into a resulting layout token embedding shown in Equation 2.3

li = Concat(PosEmb2Dx(xmin, xmax, width),PosEmb2Dy(ymin, ymax, height)) (2.3)

16

Multi-model Encoder with Spatial-Aware Self-Attention Mechanism

The encoder consists of two parts. The first is the input sequence that contains both visual

and text embeddings for each sequence

InputSequence = Concat(VisualEmbedding,TextEmbedding) (2.4)

As for any Transformer network this sequence is then used in the self-attention

layer. Furthermore, after obtaining a self-attention map a, a spatially aware self-attention

mechanism is used. In this phase, the layout embeddings are used to update the self-attention

map with the layout information. This is achieved by taking the previous attention score

and adding the positional 1D embedding bias plus the 2D embeddings biases in x−direction

and y − direction respectively as shown in Equation 2.5. In equation 2.5 a′ij denotes the

updated attention score in the self-attention map for query i and key j. xi and yi denote the

top-left corner coordinates for the i:th bounding box, and xj and yj denote the j:th key-query

pair in the self-attention map. To avoid adding too many parameters, each embedding is

represented as a bias term b.

a′ij = aij + b
(1D)
(j−i) + b

(2Dx)
(xj−xi)

+ b
(2Dy)

(yj−yi)
(2.5)

In the end, the output vectors are obtained by taking a weighted average of all the

projected value vectors. The weights are determined by normalized spatial-aware attention

scores, which reflect the importance of each vector in the context of the input data. Essen-

tially, the algorithm is using these attention scores to focus on the most relevant parts of the

input data and combining them to produce the output vectors.

hi =
∑
j

exp(α′
ij)∑

k exp(α′
ik)

xjW
V (2.6)

2.2.9 ResNeXt

ResNeXt is a variant of the popular ResNet architecture that extends the basic ResNet block

with a split-transform-merge operation. This operation enables ResNeXt to capture more

diverse and fine-grained features by increasing the network’s representational power.

17

Figure 2.8: A block of ResNet

Figure 2.9: A block of ResNeXt with cardinality = 32

In contrast to ResNet, where the focus is on increasing depth to improve performance,

ResNeXt achieves better performance by increasing the width of the network. Instead of

using a single path to learn features, ResNeXt splits the input into multiple paths or cardi-

nality, each processing a subset of the input. The outputs of these paths are then combined

through a summation operation.

This cardinality parameter allows ResNeXt to increase the width of the network

without adding too much computational cost.

18

2.2.10 FPN

Feature Pyramid Network (FPN) [22] is a technique for building deep neural networks that

can effectively detect objects at different scales in an image.

The basic idea behind FPN is to combine feature maps from different layers of a

network to create a pyramid of features, with each level in the pyramid corresponding to

a different scale of the input image. This pyramid structure allows the network to detect

objects at different scales in the image, which is essential for many computer vision tasks

such as object detection and segmentation.

Figure 2.10: Feature Pyramid Network

To create the feature pyramid, FPN first takes the highest resolution feature map

from the network and applies a 1x1 convolution to it to reduce the number of channels.

This feature map is then upsampled and combined with the feature map from the layer

immediately below it, creating a new feature map that contains information from both

layers. This process is repeated to create the next level of the pyramid, and so on until the

desired number of levels is reached.

The resulting feature pyramid can be used for a variety of tasks. For example, in

object detection, the pyramid is used to detect objects of different sizes by matching them

to features at different levels of the pyramid. In semantic segmentation, the pyramid is used

19

to generate a dense prediction by upsampling the final feature map to the original input

resolution.

20

3. Methodology

3.1 Research

This project’s research has been crucial, accounting for more than half of the total effort

expended. Our primary objective was to develop a more efficient method of extracting

information from financial documents, specifically Form 990s. To achieve this goal, we

began by studying various research papers to better understand the current state of the art

in document extraction.

Our initial approach was rule-based since the Form 990s were supposed to follow a

fixed format. However, we soon realized that the forms had variations in dimensions and

content, which made this approach unreliable.

Our second approach was entity linking, which aimed to identify and link entities such

as names, addresses, and financial figures in the forms. However, the extracted information

may not be in standard form. For example, some of the words in the key might be missing

or some keys may have large blocks of text while the value might be a single word. These

discrepancies can greatly affect the entity linking process.

Finally, we settled on a third and current approach using token classification. For

this, we used the LayoutLMv2 model, which allowed us to train our system to identify

relevant tokens in the financial documents accurately. This approach has shown promising

results and has significantly increased the efficiency of extracting information from Form

990s.

To extract information from Form 990s more efficiently, we utilized the LayoutLMv2

model. Initially, we trained the model on the FUNSD dataset, which contains annotated

forms from various domains. The results of the model were analyzed to determine its per-

formance in extracting key fields such as the organization’s name, address, and financial

information from the FUNSD dataset. Afterward, we trained the same base LayoutLMv2

model on the Form 990s dataset to make it more specific to our use case.

21

3.2 Dataset Acquisition

Acquiring high-quality datasets is essential for developing machine learning models that can

effectively extract information from financial documents. In this project, we utilized two

datasets: the FUNSD dataset and the Form 990 dataset.

3.2.1 FUNSD

The FUNSD [11] dataset is publicly available and a widely-used benchmark dataset for

document segmentation and information extraction.

It consists of 199 annotated scanned forms from various domains, including finance,

insurance, and medical industries. The dataset is designed to support form understanding

tasks, such as layout analysis, information extraction, and classification, and it contains a

diverse range of document layouts and formats.

The annotations in the FUNSD dataset include information such as the bounding

boxes of text, lines, checkboxes, and other form elements, as well as the corresponding

labels or values. The dataset also includes a separate set of testing data to evaluate the

performance of form understanding systems. Researchers and practitioners in the fields

of document analysis, machine learning, and natural language processing use the FUNSD

dataset to develop and evaluate algorithms for form understanding tasks.

22

Figure 3.1: Sample Image from FUNSD Dataset

We chose this dataset because it provides a diverse set of document layouts and

allows for training and evaluating our model on a broad range of document types.

3.2.2 IRS FORM 990

From a technical point of view, IRS Form 990 contains a wealth of information that can

be extracted and analyzed to gain insights into the financial and operational performance

of nonprofit organizations. The data on Form 990 is publicly available and can be accessed

from the IRS website, making it a valuable resource for researchers, analysts, and document

23

processing companies.

Figure 3.2: Sample Image of Form 990 from the dataset

One of the key pieces of information that can be extracted from Form 990 is revenue

data. Nonprofits are required to report their revenue from various sources, including dona-

tions, grants, and investment income. This data can be used to analyze trends in fundraising

and identify opportunities for organizations to improve their revenue generation.

24

Another important piece of data that can be extracted from Form 990 is expense

data. Nonprofits are required to report how they spend their money, including details of

program expenses, administrative expenses, and fundraising expenses. This data can be

used to analyze the efficiency of an organization’s operations and identify areas where cost

savings can be made.

Form 990 also contains information on the governance and management of nonprofit

organizations, including the names and addresses of key individuals such as officers, directors,

and trustees. This data can be used to identify potential conflicts of interest and analyze

the composition of an organization’s leadership.

Various types of 990 Form are explained below:

• 990-N: For small nonprofits with gross receipts less than $50,000, a simple and quick

electronic notice that includes basic information about the organization’s activities and

finances.

• 990-EZ: A shortened version of the full 990 form, for mid-sized organizations with

gross receipts between $50,000 and $200,000, and total assets less than $500,000.

• 990: A comprehensive form for larger nonprofits with gross receipts of $200,000 or

more, or total assets of $500,000 or more, providing detailed information on the orga-

nization’s activities and finances.

• 990-PF: A specialized form for private foundations, providing information about the

organization’s finances, funding sources, and grants.

• 990-T: A form filed by exempt organizations to report unrelated business income to

the IRS, providing details on any income earned through activities not related to the

organization’s tax-exempt purpose.

To ensure the quality of the datasets, we performed a thorough data cleaning and pre-

processing process. We removed any duplicate or irrelevant forms, corrected any mislabeled

or misannotated data, and standardized the formatting and structure of the documents.

Overall, the acquisition and preprocessing of high-quality datasets were critical steps

in developing our machine learning model for document extraction. By utilizing the FUNSD

and Form 990 datasets, we were able to train and evaluate our model on a diverse set

of document layouts and document types, leading to improved performance in extracting

information from financial documents.

25

3.3 Data Preprocessing and Annotation

Data preprocessing and annotation are critical steps in developing a machine learning model.

In this section, we will discuss the methods used to preprocess and annotate the dataset used

in this study.

To preprocess the dataset, a variety of techniques were employed, including data

cleaning, normalization, and feature engineering. Data cleaning involved removing any miss-

ing or invalid values from the dataset, while normalization ensured that the data was on a

consistent scale. Feature engineering involved selecting the most relevant variables from the

dataset and transforming them into a format that could be used by the machine learning

algorithm.

Once the dataset was preprocessed, it was annotated using a combination of tools.

The first tool used was Docsumo, an AI-powered document processing software that auto-

mates data extraction from complex documents like the 990 form. Docsumo helped to extract

structured data from the 990 forms, which was then used for annotation. In addition to using

Docsumo for data extraction from the 990 forms, we also built our own annotation tool to

extract data.The combination of Docsumo and our annotation tool helped us to extract and

label the necessary information from the 990 forms more accurately and comprehensively,

which in turn facilitated the training and evaluation of our LayoutLMv2 model.

3.4 Nature of Dataset and Choice of Metrices

In this study, the 990 form dataset was used to develop a machine learning model. To

evaluate the performance of the model, the F1 score and accuracy metrics were chosen. The

F1 score is a measure that combines precision and recall, which are important measures for

evaluating classification models. It provides an indication of how well the model is performing

overall and takes into account both false positives and false negatives.

F1 = 2 · precision · recall

precision + recall

The accuracy metric measures the percentage of correct predictions made by the model.

Accuracy =
TP + TN

TP + TN + FP + FN

The choice of metrics for evaluating the performance of the model is appropriate for

the nature of the dataset and the task at hand. Since the 990 form contains a wide range of

26

financial information about the organization, it is crucial to have a model with high accuracy

in its predictions.

3.5 Model Training

The model under consideration was subjected to a training process lasting 8 epochs, with

validation conducted after each epoch to ensure effective learning.The split contained 80%

on training set and 20% on validation set. During the training, the model was assessed

using various metrics, including loss, accuracy, and F1 score. These measures allowed for a

comprehensive evaluation of the model’s performance, with loss indicating the model’s ability

to accurately predict outcomes and accuracy measuring the model’s precision. The F1 score,

which combines precision and recall, was also used to assess classification performance.

Following the training process, a thorough analysis of the model’s performance was

conducted, with the best checkpoint chosen to be utilized for future predictions. This selected

checkpoint represents the optimal performance of the model achieved during the training

process and can be used to further develop and improve the model or to apply it to new

data.

Overall, this rigorous approach to the development and assessment of the model ex-

emplifies a methodical and comprehensive approach to machine learning, which is critical to

ensuring successful outcomes and effective implementation of the model in practical settings.

3.6 Software Development Model

The Iterative Model was selected as the software development model for our information ex-

traction project using Layout LMv2 because the extraction model requires extensive iteration

and fine-tuning to produce the desired output. We began by implementing a basic version

of the model and continued to enhance and refine it iteratively until a satisfactory system

was developed. Since the Layout LMv2 model involves complex neural network architecture,

the model’s hyperparameters needed to be regularly adjusted and tuned to achieve optimal

performance. Additionally, as new challenges and requirements arose during the develop-

ment process, new methods and procedures were implemented through further iterations.

The iterative approach allowed us to efficiently address these challenges and continuously

improve the model until it met our project’s requirements.

27

4. System Design and Implementation

4.1 Diagrams

4.1.1 System Block Diagram

Figure 4.1: General Block Diagram

28

4.1.2 Use Case Diagram

Figure 4.2: Use Case Diagram

29

4.1.3 Deployment Diagram

Figure 4.3: Deployment Diagram

30

4.2 Implementation

Figure 4.4: Flow chart

31

4.2.1 API

User Authentication

Cookies based authentication is used for authenticating users. Authentication helps to verify

that the user is who they claim themselves to be. Users can login by entering their username

or email address and password. When a user logs in, the website creates a unique session

ID and stores it in a cookie on the user’s browse and the database. This session ID is then

used to identify the user’s session on subsequent requests to the server. The server checks

the session ID stored in the cookie and compares it to the session ID stored on the server to

authenticate the user. If the IDs match, the user is considered authenticated and can access

protected resources on the website.

REST API

The FastAPI-implemented REST API is a powerful tool for managing user authentication,

extracting information, and annotating data. It contains numerous endpoints that allow

users to interact with the API either directly or through a frontend web application.

The API’s user authentication endpoints enable users to securely authenticate and

manage their account information. Users can create accounts and manage their sessions

when they are logged in. The doc type feature allows users to create custom datasets,

upload documents, and annotate them. Additionally, the API’s information extraction end-

points enable users to extract and process data, while the annotation endpoints facilitate

the annotation of various data types.

The frontend web application interacts with the REST API using these endpoints,

enabling users to seamlessly utilize the API’s functionality. With its ease of use, speed, and

flexibility, the FastAPI-based REST API is an ideal solution for any project that requires a

robust, secure, and scalable API.

Information Extraction

Users can extract information by uploading their desired document through either the email

or the web app. The document is then queued for processing on the application server. Once

complete, the extracted information can be downloaded in either CSV or JSON format, or

can be directly saved to Google Drive if preferred.

32

Training

Users have the ability to create custom datasets by uploading their own documents and

annotating them. This annotated data can then be utilized to train a model specific to

the dataset. So trained model can be used to extract information from newly uploaded

documents.

4.2.2 Annotation Tool

The web application includes a annotation tool used for the process of labeling and annotat-

ing data/ The tool allows users to identify and highlight specific fields and assign relevant

tags or labels to them. This process of annotation is essential in building machine learning

datasets, as it helps the model to recognize and learn patterns in the data more accurately.

4.3 Technology Stack

4.3.1 Frontend

React

React 1 or React.js is a popular open-source JavaScript library that is used to create user

interfaces for web applications. It was developed by Facebook and is now maintained by

Facebook and a community of developers. React allows developers to build reusable UI

components and render them in a declarative way. It makes use of a virtual DOM, which

is a lightweight representation of the actual DOM. This allows React to efficiently update

only the parts of the UI that have changed, resulting in faster and more responsive web

applications. React follows a component-based architecture, where each component is a self-

contained unit of functionality that can be easily composed with other components to build

complex UIs. React components can be created using either JavaScript classes or functions,

and can be styled using CSS or inline styles.

Javascript

JavaScript 2 is a dynamic, high-level programming language that is widely used in web

development. It enables the creation of interactive, client-side applications and can also

be used on the server-side. It is known for its versatility, as it can be used for a variety of

purposes, from adding basic functionality to web pages to creating complex web applications.

1https://reactjs.org/
2https://developer.mozilla.org/en-US/docs/Web/JavaScript

33

https://reactjs.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript

Tailwind CSS

Tailwind CSS 3 is a popular open-source utility-first CSS framework that allows developers

to quickly and efficiently create custom user interfaces. Unlike traditional CSS frameworks

that rely on pre-built components, Tailwind provides a set of pre-defined classes that can be

used to style any HTML element in a consistent and intuitive way.

Tailwind includes a comprehensive set of utility classes that cover a wide range of CSS

properties, such as margins, padding, typography, colors, and more. This allows developers

to rapidly prototype and build custom designs without having to write CSS from scratch or

rely on a design system. One of the key benefits of Tailwind is its flexibility and customization

options. Developers can easily extend or override the default classes to meet their specific

needs and design requirements. Tailwind also provides a range of configuration options, such

as customizing the color palette and typography, that allow developers to create a unique

and consistent look and feel for their web applications.

Figma

Figma 4 is a web-based design tool used for creating user interfaces, wireframes, and proto-

types. It allows designers to collaborate in real-time, share designs with stakeholders, and

create reusable design components. Figma is known for its intuitive interface and ease of

use, making it a popular choice for design teams of all sizes.

4.3.2 Backend

FastAPI

FastAPI 5 is a modern, high-performance web framework for building APIs with Python.

It is designed to be easy to use and scalable, making it a great choice for developers who

want to quickly build high-performance APIs. With its built-in support for asynchronous

programming and automatic data validation, FastAPI can help developers to build APIs

quickly and with less code. It also integrates well with other Python libraries, making it a

popular choice for developers.

3https://tailwindcss.com/
4https://www.figma.com/
5https://fastapi.tiangolo.com/

34

https://tailwindcss.com/
https://www.figma.com/
https://fastapi.tiangolo.com/

PyTorch

PyTorch 6 is an open-source machine learning library that is widely used for deep learning

applications. It provides a flexible and dynamic computational graph system that allows

developers to create complex neural networks and models. The library includes a variety of

optimization algorithms and pre-built modules that make it easy to create and train models

for tasks like image and speech recognition, natural language processing, and more. PyTorch

is built to work seamlessly with other Python libraries, and its efficient implementation of

tensor operations allows for fast and scalable computation.

Matplotlib

Matplotlib 7 is a data visualization library for Python that allows developers to create a

variety of static, animated, and interactive visualizations in their Python scripts or applica-

tions. It provides a high-level interface for creating and manipulating graphs, charts, and

plots, and includes support for a wide range of visualization styles and customization op-

tions. Matplotlib uses a state-based interface, allowing developers to modify existing plots

or create new ones from scratch, and provides support for multiple backends to allow for

visualization across multiple platforms and formats. Overall, Matplotlib is a versatile and

powerful tool for data visualization in Python.

MongoDB

MongoDB 8 is a document-oriented NoSQL database that is used for storing and retrieving

large amounts of data in a flexible and scalable manner. It stores data in documents, which

are JSON-like data structures that can be nested and indexed for faster access. MongoDB

uses a flexible schema, which means that data can be added or changed without having to

modify the database schema. It also supports horizontal scaling, which allows for high avail-

ability and faster performance by distributing the data across multiple servers. MongoDB is

often used in web applications and big data analytics, where fast and scalable data storage

and retrieval is critical.

6https://pytorch.org/
7https://matplotlib.org/
8https://www.mongodb.com/

35

https://pytorch.org/
https://matplotlib.org/
https://www.mongodb.com/

4.3.3 Platform

Google Colab

Google Colab is a cloud-based development environment that provides a Jupyter notebook

interface for working with Python code. It allows users to run and execute Python code

on remote servers using a web browser, with access to a variety of pre-installed libraries,

including TensorFlow and PyTorch. Google Colab also provides free access to GPU and

TPU resources for faster computation, making it a popular choice for machine learning and

data analysis tasks. It integrates with Google Drive for data storage and offers collaboration

features for sharing notebooks with others.

Azure VM

Azure 9 Virtual Machines (VMs) is a cloud-based service provided by Microsoft Azure that

allows users to create and manage virtual machines in the cloud. It offers on-demand com-

puting resources for running Windows and Linux-based applications in a scalable and secure

manner. Azure VMs provide a wide range of options for configuring virtual machines, in-

cluding selecting virtual machine sizes, operating systems, and networking configurations. It

also offers options for backup and disaster recovery, making it a popular choice for businesses

that require flexibility and scalability in their computing infrastructure.

9https://azure.microsoft.com/

36

https://azure.microsoft.com/

5. Results

In this section, we present the results of our analysis using LayoutLMv2 as the deep learning

model for document layout analysis and information extraction. The model was trained on

two datasets: FUNSD and IRS 990, FUNSD containing 199 annotated images and IRS 990

containing 202 annotated images with an 80/20 split for training and validating. We trained

the LayoutLMv2 model on the training set of each dataset and evaluated its performance on

the validation set. The results of our analysis are presented in this section, including loss,

F1 score and detailed error analysis.

5.1 Loss and F1 Score

The graph for Loss and F1 Score is generated for each dataset that can be seen below.Upon

examining the graphs for the FUNSD dataset, it is evident that the validation and training

loss curves are decreasing over time, indicating that the model is learning and becoming

more efficient. Additionally, the f1 score curve is increasing, which further reinforces the fact

that the model is performing well and producing accurate results.

Similarly, the results for the 990 dataset are also very promising. The loss curve

for both the validation and training data is decreasing, which indicates that the model

is learning and becoming more accurate with time. Furthermore, the f1 score curve is

increasing, indicating that the model is producing more accurate and reliable results.

37

Figure 5.1: Train Vs Validation Loss Plot on FUNSD

Figure 5.2: Train Vs Validation F1 Score Plot on FUNSD

38

Figure 5.3: Train Vs Validation Loss Plot on 990 Form

Figure 5.4: Train Vs Validation F1 Score Plot on 990 Form

39

Overall, the results of the reports suggest that the models used for both the FUNSD

and 990 datasets are performing well and producing accurate results. The decreasing loss

curves and increasing f1 score curves for both datasets are clear indicators of the model’s

learning and improving over time. These results are very encouraging and indicate that the

models can be used effectively to produce reliable results for a wide range of applications.

5.2 Evaluation Metrices

The table 5.1 shows the performance of LayoutLMv2 on FUNSD and 990 Form dataset.It

can be seen that Training LayoutLMv2 performed better on the 990 Form dataset with an

F1-score of 0.92 compared to the FUNSD dataset with an F1-score of 0.81. The higher

F1-score on the 990 Form dataset indicates a better balance between precision and recall for

this dataset compared to the FUNSD dataset.

One possible reason for the lower performance of Training LayoutLMv2 on the

FUNSD dataset is the variability in document layouts and formats within the dataset. The

FUNSD dataset contains various types of forms with different layouts and formats, which

could make it more challenging for the model to learn the underlying patterns and structures

in the documents compared to the 990 Form dataset, which contains fewer variants.

Table 5.1: Evaluation Metrices using LayoutLMv2

Datasets Total Documents Precision Recall F1-score

990 Form 202 0.89 0.97 0.92

FUNSD 199 0.81 0.82 0.81

In summary, while Training LayoutLMv2 achieved good performance on the 990

Form dataset, it had a moderate performance on the FUNSD dataset, which could be at-

tributed to the complexity and variability of the dataset. The F1-score is a useful metric to

measure the overall performance of a model in identifying the relevant documents, taking

into account both precision and recall.

5.3 Label-Wise Evaluation Metrices

The table 5.2 shows the result of validation of LayoutLMv2 on 990 Form data.The results

indicate that the model is performing well overall, but there are some underperformed labels,

such as NAME OF ORGANIZATION, GROSS RECEIPTS and NUMBER AND

STREET.

The underperformance of NAMEOF ORGANIZATION, GROSS RECEIPTS,

40

and NUMBER AND STREET can be attributed to several factors. For NAME OF

ORGANIZATION, the label is complex and involves identifying multiple pieces of infor-

mation in a specific order. The model may not have learned the correct relationship between

them due to label ambiguity, or label complexity.

Similarly, GROSS RECEIPTS can vary significantly in format and location within

the form, making it difficult for the model to consistently identify it. This variability and

ambiguity may also be due to limited training examples or label complexity.

NUMBER AND STREET may have similar challenges as GROSS RECEIPTS

in terms of its variability and ambiguity. The location and format of the information can

vary significantly across forms, and the model may not have learned to consistently identify

it due to limited training examples or label ambiguity.

41

Table 5.2: Label Wise Metrices for IRS 990 Form

Label Precision Recall F1-score

ADDRESS LINE 0.97 0.97 0.97

CAT NO 0.99 1.00 0.99

DLN 0.83 1.00 0.91

EMPLOYER IDENTIFICATION NUMBER 1.00 1.00 1.00

FIRM’S ADDRESS 0.72 0.89 0.80

FIRM’S EIN 0.91 1.00 0.95

FIRM’S NAME 0.80 0.80 0.80

FORM OF ORGANIZATION 0.76 0.84 0.80

GROSS RECEIPTS 0.64 0.92 0.75

NAME AND ADDRESS OF PRINCIPAL OFFICER 0.95 0.86 0.90

NAME OF ORGANIZATION 0.70 0.64 0.67

NUMBER AND STREET 0.72 0.78 0.75

OMB NO 0.81 1.00 0.89

STATE OF LEGAL DOMICILE 0.87 0.93 0.90

TAX YEAR BEGINNING 1.00 1.00 1.00

TAX YEAR ENDING 1.00 1.00 1.00

TELEPHONE NUMBER 0.98 1.00 0.99

WEBSITE 1.00 1.00 1.00

YEAR OF FORMATION 0.89 1.00 0.94

Micro avg 0.88 0.97 0.92

Macro avg 0.87 0.93 0.90

Weighted avg 0.89 0.97 0.92

The table 5.3 shows results of training FUNSD on LayoutLMv2. The results indicates

that model has good performance in identifying ANSWERand QUESTION classes, with

weighted average F1-scores of 0.81 and 0.85, respectively. However, the model has relatively

low performance in identifying HEADER instances, with a weighted average F1-score of

0.50.

For HEADER class, the precision is 0.59, indicating that out of all the instances pre-

dicted as HEADER, only 59% are actually HEADER instances. The recall for HEADER

class is 0.43, which means that out of all the true HEADER instances in the dataset, the

model correctly identifies only 43%. This low recall suggests that the model is missing many

42

HEADER instances, which might be due to the variability in the layout and formatting of

headers in the document.

Table 5.3: Label Wise Metrices for FUNSD

Label Precision Recall F1-score

ANSWER 0.80 0.82 0.81

HEADER 0.59 0.43 0.50

QUESTION 0.84 0.87 0.85

Micro avg 0.81 0.82 0.82

Macro avg 0.74 0.70 0.72

Weighted avg 0.81 0.82 0.81

We conducted an evaluation of the LayoutLMv2 model on the 990 Forms dataset,

specifically looking at its performance with varying amounts of training data and epochs.

The results, presented in 5.4, demonstrate that the overall f1 score of the model improves

monotonically with more training epochs and larger sample sizes.

The 990 Forms dataset we used for fine-tuning only contains 200 images, making it a

low-resource setting. However, our findings confirm that pre-training the model on text and

layout is an effective approach for scanned document understanding. Even with the limited

sample size, we observed significant improvements in accuracy as more training data and

epochs were used. To be more specific, we experimented with sample sizes of 40, 80, 120,

and 160, and trained the model with up to 8 epochs which can be seen in 5.4.

Table 5.4: Experimenting with dataset size

Dataset size No of epochs Precision Recall F1 score

40 7 0.02 0.0 0.0

8 0.31 0.14 0.19

80 7 0.49 0.30 0.37

8 0.69 0.45 0.54

120 6 0.81 0.75 78

7 0.83 0.82 0.83

8 0.83 0.93 0.88

160 6 0.83 0.89 0.86

7 0.85 0.88 0.87

8 0.85 0.95 0.90

43

In conclusion, Training LayoutLMv2 performed well on both the FUNSD and 990

Form datasets, achieving an F1-score of 0.81 and 0.92, respectively. The results demonstrate

the potential of LayoutLMv2 in accurately identifying and extracting relevant information

from structured documents. However, further improvements could be made to the model’s

performance on more complex and varied datasets such as FUNSD. Nonetheless, the model’s

strong performance on the 990 Form dataset suggests that it could be a valuable tool for

automating the extraction of structured data from forms and other similar documents.

44

6. Conclusion

In conclusion, the project this project utilized the datasets FUNSD and 990 Form to develop a

model using LayoutLMv2. The end product is a web application that enables users to train

the model and generate inferences. Additionally, the application features an annotation

tool that allows for the efficient annotation of data. With this project, users can easily

extract information from structured documents, making data analysis and interpretation

more accessible and streamlined. Overall, this project is a valuable contribution to the field

of information extraction and has the potential to make a significant impact on various

industries that rely manual extraction.

45

7. Limitations and Future Works

There are a few potential limitations and areas for future work that could be considered for

this project.

Firstly, the model’s performance may be limited by the quality and size of the train-

ing dataset. While the FUNSD and 990 Form datasets are comprehensive, they may not

represent all possible variations in structured document layouts. Therefore, future work

could involve expanding the dataset to include more diverse layouts, which could enhance

the model’s accuracy and generalizability.

Secondly, the annotation tool could be improved to increase efficiency and accuracy.

For instance, implementing an active learning algorithm to select the most informative data

for annotation could improve the tool’s performance and reduce the time required for manual

annotation.

Integration of more export formats can be done to enhance the usability and acces-

sibility of software by allowing users to work with their preferred file types and tools.

Other potential limitations of the current model is its response time during inference,

which could be improved by using the ONNX runtime. As part of future work, efforts

could be made to reduce the model’s response time and enhance its overall performance by

exploring the use of ONNX runtime.

Lastly, while the web application is a useful tool for users, its scalability and security

may be limited, depending on the size and sensitivity of the data being processed. Future

work could involve improving the application’s architecture and incorporating additional

security measures to support larger-scale data processing and handling.

46

References

[1] Tongwei Liu, Hao Xu, Minvydas Ragulskis, Maosen Cao, and Wies law Ostachowicz. A

data-driven damage identification framework based on transmissibility function datasets

and one-dimensional convolutional neural networks: Verification on a structural health

monitoring benchmark structure. Sensors, 20(4):1059, 2020.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[3] Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei

Florencio, Cha Zhang, Wanxiang Che, et al. Layoutlmv2: Multi-modal pre-training for

visually-rich document understanding. arXiv preprint arXiv:2012.14740, 2020.

[4] Peggy M. Andersen, Philip J. Hayes, Steven P. Weinstein, Alison K. Huettner, Linda M.

Schmandt, and Irene B. Nirenburg. Automatic extraction of facts from press releases

to generate news stories. In Third Conference on Applied Natural Language Processing,

pages 170–177, Trento, Italy, March 1992. Association for Computational Linguistics.

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The story so far.

In Semantic services, interoperability and web applications: emerging concepts, pages

205–227. IGI global, 2011.

[6] Yi Zheng, Qitong Wang, and Margrit Betke. Deep neural network for semantic-based

text recognition in images, 2019.

[7] Hongtao Xie, Shancheng Fang, Zheng-Jun Zha, Yating Yang, Yan Li, and Yongdong

Zhang. Convolutional attention networks for scene text recognition. ACM Transactions

on Multimedia Computing, Communications, and Applications (TOMM), 15(1s):1–17,

2019.

[8] Frank Lebourgeois, Zbigniew Bublinski, and Hubert Emptoz. A fast and efficient

method for extracting text paragraphs and graphics from unconstrained documents.

In 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference B:

Pattern Recognition Methodology and Systems, volume 1, pages 272–273. IEEE Com-

puter Society, 1992.

47

[9] Nishant Subramani, Alexandre Matton, Malcolm Greaves, and Adrian Lam. A sur-

vey of deep learning approaches for ocr and document understanding. arXiv preprint

arXiv:2011.13534, 2020.

[10] Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-

training for document ai with unified text and image masking. In Proceedings of the

30th ACM International Conference on Multimedia, pages 4083–4091, 2022.

[11] Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe Thiran. Funsd: A dataset

for form understanding in noisy scanned documents. In 2019 International Conference

on Document Analysis and Recognition Workshops (ICDARW), volume 2, pages 1–6.

IEEE, 2019.

[12] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm:

Pre-training of text and layout for document image understanding. In Proceedings of the

26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pages 1192–1200, 2020.

[13] Lawrence O’Gorman. The document spectrum for page layout analysis. IEEE Trans-

actions on pattern analysis and machine intelligence, 15(11):1162–1173, 1993.

[14] Pınar Duygulu and Volkan Atalay. A hierarchical representation of form documents for

identification and retrieval. International Journal on Document Analysis and Recogni-

tion, 5:17–27, 2002.

[15] Raymond W Smith. Hybrid page layout analysis via tab-stop detection. In 2009 10th

International Conference on Document Analysis and Recognition, pages 241–245. IEEE,

2009.

[16] Michael Shilman, Percy Liang, and Paul Viola. Learning nongenerative grammatical

models for document analysis. In Tenth IEEE International Conference on Computer

Vision (ICCV’05) Volume 1, volume 2, pages 962–969. IEEE, 2005.

[17] Simone Marinai, Marco Gori, and Giovanni Soda. Artificial neural networks for doc-

ument analysis and recognition. IEEE Transactions on pattern analysis and machine

intelligence, 27(1):23–35, 2005.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. Advances in neural information

processing systems, 28, 2015.

48

[19] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[21] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated

residual transformations for deep neural networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 1492–1500, 2017.

[22] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge

Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2117–2125, 2017.

49

8. Appendices

8.1 Screenshots of End Product

Figure 8.1: HomePage of WebApp

Figure 8.2: Dashboard Page

50

Figure 8.3: Annotation Tool

Figure 8.4: API Page

51

Figure 8.5: Document Upload Page

52

	Page of Approval
	Copyright
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Problem statements
	Objectives
	Scope

	Literature Review
	Related Works
	Document Layout Analysis
	OCR
	Rule Based Methods
	Machine Learning Methods
	Deep Learning Methods

	Related Theory
	Natural Language Processing(NLP)
	Neural Network
	Convolutional Neural Network Architecture
	Transformers
	Embeddings
	BERT
	LayoutLM
	LayoutLMv2
	ResNeXt
	FPN

	Methodology
	Research
	Dataset Acquisition
	FUNSD
	IRS FORM 990

	Data Preprocessing and Annotation
	Nature of Dataset and Choice of Metrices
	Model Training
	Software Development Model

	System Design and Implementation
	Diagrams
	System Block Diagram
	Use Case Diagram
	Deployment Diagram

	Implementation
	API
	Annotation Tool

	Technology Stack
	Frontend
	Backend
	Platform

	Results
	Loss and F1 Score
	Evaluation Metrices
	Label-Wise Evaluation Metrices

	Conclusion
	Limitations and Future Works
	References

	Appendices
	Screenshots of End Product

