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Abstract

Neural audio codecs that use end-to-end approaches have gained popularity due to their

ability to learn efficient audio representations through data-driven methods, without relying

on handcrafted signal processing components. This research paper evaluates the perfor-

mance of Neural Audio Codec in comparison to traditional audio codecs Opus and EVS in

terms of audio quality and efficiency. The study highlights the limitations of existing au-

dio codecs in leveraging the abundant data available in the audio compression pipeline and

proposes deep learning-based models as a potential solution. The paper reviews recent ad-

vancements in deep learning-based audio synthesis and representation learning and explores

the potential of deep learning-based audio codecs in enhancing compression efficiency. The

study also addresses the limitations of existing models, including slower training times and

increased memory requirements, by releasing open-source code and pre-trained models for

further research and improvement. Experimental results show that our approach has compa-

rable performance to widely used commercial codec OPUS at low bitrate, and a slight drop

in performance compared to current deep learning-based frameworks but at the expense of

significant improvement in speed and memory requirements. We have released our code and

pre-trained models at https://github.com/AchyutBurlakoti/Neural-Audio-Compression for

further research and improvement.

Keywords: Audio Compression, Deep Learning, Audio Codec, Pre-trained mod-

els
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1. Introduction

1.1 Background

According to recent research, traditional audio codecs such as Opus and EVS are consid-

ered state-of-the-art codecs, as they employ different coding tools, including Linear Predic-

tive Coding (LPC), Code-Excited Linear Prediction (CELP), and Modified Discrete Cosine

Transform (MDCT), to achieve high coding efficiency, low latency, and compatibility with

various content types, bitrates, and sampling rates [3] [2]. In this study, a subjective eval-

uation to compare Neural Audio Codec with Opus and EVS in terms of audio quality and

performance was conducted. Current audio standards have limitations in leveraging the

abundant data available in the audio compression pipeline, which can potentially enhance

the prediction process for more efficient entropy coding. Existing conventional approaches

[3, 2] employ block-based structures and rely on handcrafted modules [5, 28, 14]. Although

neural networks have been utilized to achieve localized improvements in audio codecs, an

end-to-end model could further enhance the overall compression efficiency. Nevertheless,

deep learning-based models for audio coding are still in their early stages [38].

Recent advancements in deep learning-based audio synthesis and representation learn-

ing [4, 32, 22, 11, 18, 33] have brought a significant breakthrough in audio compression.

Inspired by this, several deep learning-based audio codecs have been proposed [39, 37, 6].

These approaches exploit the powerful representation ability of neural networks that learn

the optimal transformation of audio waveforms to a lower-dimensional latent space. The

model is composed of two parts: the encoder, which learns the prior distribution by trans-

forming the waveform into the latent space, and the decoder, which learns the posterior

distribution by predicting the waveform from the latent variable. This enables the model

to learn the distribution of audio data using both the prior and posterior probabilities,

expressed as p(x, z) =
∑

z p(x|z)p(z). Despite the improvement in compression and quanti-

zation of audio signals, these models have several limitations, including slower training times

and increased memory requirements. Additionally, some of these models have closed-source

code, making it difficult for others to explore the pipeline further. In this work, we aim

to address these limitations by releasing our open-source code and pre-trained models at

https://github.com/AchyutBurlakoti/Audio-Compression for further research and improve-

ment.
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1.2 Objectives

1. Build a modern audio codec, with a neural network approach, which can compress the

audio file.

1.3 Scope of the Project

There are many existing audio compression algorithms which are performing well such as

MP3, AAC, and Opus, but we believe that they can be optimized further by using state-of-

the-art machine learning algorithms.

The current amount of audio information being transmitted over the internet shows how

much dependent the world has become on the audio contents be it in the field of commu-

nication, entertainment, music production, podcasting and so on. A slight improvement in

the existing audio compression algorithms can save a lot of bandwidth which is soon going

to be scarce given the huge rate of inflow of internet users worldwide. By using machine

learning algorithms, we can potentially achieve higher compression ratios without compro-

mising the audio quality, which can result in significant bandwidth savings and improved

user experience.
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2. Theoretical Background

Figure 2.1: Encoder and Decoder Model Architecture

2.1 Overview of Audio Compression

Audio compression techniques aim to reduce the amount of data needed to represent an

audio signal while maintaining its perceived quality. There are two main types: lossless and

lossy. Lossless compression algorithms use redundancies to achieve compression without any

loss of information, while lossy algorithms discard less perceptually important information.

Popular lossy formats include MP3, AAC, and Ogg Vorbis, which use psychoacoustic model-

ing and transform coding. Lossless formats such as FLAC and ALAC exploit the statistical

properties of the audio signal without discarding any information.

Encoder

An encoder is an architecture that transforms input data into a compressed, lower-dimensional

representation called a ”code” or ”embedding.” The encoder typically consists of multiple

layers of neurons that perform non-linear transformations on the input data. These transfor-

mations progressively reduce the dimensionality of the input data, resulting in a compressed

representation.

3



Quantization

Quantization is a fundamental process in data compression, and its main job is to dis-

cretize a continuous latent space by preparing a codebook. In audio and image compression,

quantization is commonly used to represent high-dimensional data with lower-dimensional

embeddings. The quantizer prepares the codebook for these embeddings, allowing us to store

the index of their nearest neighbor in the codebook. This process is called vector quanti-

zation, and it involves grouping similar embeddings together into clusters. The codebook

consists of the centroid of each cluster, which is represented by a discrete symbol.

Decoder

Decoder is multi-layered neural architecture that takes a compressed, low-dimensional rep-

resentation of the input data generated by an encoder and transforms it back into a high-

dimensional output representation that can be used for tasks such as reconstruction, classi-

fication, or generation.

Discriminator

In the context of audio synthesis, a discriminator is a neural network that is trained to dis-

tinguish between real and synthetic audio signals. The discriminator is a key component of

generative adversarial networks (GANs), a type of deep learning model that is widely used

for audio synthesis. The discriminator is trained to learn the characteristics of real audio

signals and differentiate them from synthesized signals generated by the generator network.

By doing so, it provides feedback to the generator network on how to improve the quality of

the synthesized audio.

2.2 Vector Quantization

The signal processing method known as vector quantization (VQ) permits the modeling

of probability density functions through the distribution of prototype vectors. Its initial

application was for data compression. It divides a big collection of points (vectors) into

groups that each include roughly the same number of points that are nearest to them.

2.3 DCT

The Discrete Cosine Transform (DCT) is a transformation method commonly used in signal

processing and data compression. It represents a set of finite data points as a combination

of cosine functions oscillating at various frequencies. The utilization of cosine functions in-

stead of sine functions is crucial for compression because it requires fewer cosine functions

to approximate a typical signal. However, for differential equations, the use of cosines indi-

4



cates a specific selection of boundary conditions. For two dimensional signals, DCT can be

represented mathematically as:

Xu,v =
2

N

N−1∑
x=0

N−1∑
y=0

xx,y cos

[
π

N

(
x+

1

2

)
u

]
cos

[
π

N

(
y +

1

2

)
v

]

where 0 ≤ u, v < N are the frequency indices, and xx,y is the pixel value of the input

signal at location (x, y).

2.4 CNN

A Convolutional Neural Network (CNN) consists of an input and an output layer, as well as

several hidden layers. The hidden layers in a CNN usually comprise a sequence of convolu-

tional layers that perform dot product or multiplication. The activation function employed

is typically a RELU layer, followed by further convolutional layers such as pooling, fully

connected and normalization layers, collectively referred to as hidden layers because their

inputs and outputs are masked by the activation function and final convolution.

Although these layers are commonly called convolutions, this is only a convention. In

reality, mathematically, they perform a sliding dot product or cross-correlation. This has an

impact on the matrix indices, influencing how the weight is calculated at a particular index

point.

Figure 2.2: CNN architecture.

2.5 Auto-Encoder

An autoencoder is an artificial neural network that operates in an unsupervised manner, and

it is designed to learn how to compress and encode data efficiently. Once it has accomplished

5



this, the network then learns how to reconstruct the original data from the compressed en-

coded representation, such that the final representation is as close to the original input

as possible. Autoencoders are capable of transforming high-dimensional data into a more

compact code representation, which can be reconstructed back to the original version with

minimal or no differences. The autoencoder is made up of four major components: the

encoder, the bottleneck, the decoder, and the reconstruction loss.

Figure 2.3: Auto Encoder

2.6 Variational AutoEndcoder

A variational autoencoder (VAE), is an artificial neural network architecture introduced by

Diederik P. Kingma and Max Welling, belonging to the families of probabilistic graphical

models and variational Bayesian methods. Because to its similarity in architecture, varia-

tional autoencoders are frequently compared to the autoencoder model, despite having vastly

different objectives and mathematical formulations. Statistical inference issues (such deter-

mining the value of one random variable from another randomly generated value) can be

reformulated as statistical optimization issues using variational autoencoders (i.e find the

parameter values that minimize some objective function).

Figure 2.4: Variational AutoEncoder

6



3. Literature Review

Traditional Audio Codec

Traditional audio codecs are based on block-based structures and rely on handcrafted mod-

ules for audio compression. These codecs employ subband filtering, psychoacoustic modeling,

and transform coding techniques, such as the Modified Discrete Cosine Transform (MDCT),

to achieve high compression ratios while maintaining perceptual audio quality. Traditional

audio codecs are based on block-based structures and rely on handcrafted modules for audio

compression. These codecs employ subband filtering, psychoacoustic modeling, and trans-

form coding techniques, such as the Modified Discrete Cosine Transform (MDCT), to achieve

high compression ratios while maintaining perceptual audio quality.

In particular all of the audio codec explained based on this scheme. The development of au-

dio codecs such as EVS, Opus, MPEG audio, and MP3 has enabled digital audio compression

for various applications. While EVS and Opus offer high-quality compression, MPEG audio

provides different levels of compression and quality, and MP3 is widely used for efficient

digital audio storage and transmission. However, these traditional codecs have limitations

such as limited compression efficiency, restricted quality at low bit rates, and limited sup-

port for multichannel audio. Despite these limitations, they remain widely used due to their

compatibility and ease of use. [3, 2, 5, 14].

Neural audio compression

Neural audio codecs that use end-to-end approaches have gained popularity due to their

ability to learn efficient audio representations through data-driven methods, without relying

on handcrafted signal processing components. These codecs utilize autoencoder networks

with quantization of hidden features, and have been applied in early works for speech coding

[26], as well as in more recent studies, where a deep convolutional network was used for

speech compression [19]. While most of these works target speech coding at low bitrates,

several studies have demonstrated the efficient compression of audio using neural networks.

For instance, a VQ-VAE speech codec was proposed in [11], which operates at a bitrate of

1.6 kbps.

In recent years, several studies have proposed neural-based audio codecs that rely on

quantizing the latent space prior to decoding [27, 31, 12, 25, 20, 21, 16, 17]. One approach,

used by Valin and Skoglund, involved conditioning an LPCNet vocoder on hand-crafted

7



features and a uniform quantizer [31]. Meanwhile, Gârbacea et al. conditioned a WaveNet

model on discrete units obtained from a VQ-VAEmodel [12]. Other approaches have included

feeding the Opus codec to a WaveNet in order to improve perceptual quality [27], using a

vector quantization layer applied over the latent representation in an auto-encoder [16, 17],

and using Gumbel-Softmax for representation quantization.

The SoundStream model developed by Zeghidour et al. is a notable example of this type

of work. This model uses a fully convolutional encoder-decoder architecture with Residual

Vector Quantization layers, and it is optimized using both reconstruction loss and adversar-

ial perceptual losses [37]. Although there are some variations in the specific methods used

in each of these studies, the overall trend towards neural-based audio codecs with quan-

tized latent spaces is clear. In most recent paper, Alexandre et al. proposed a method for

high-fidelity neural audio compression using a single multiscale spectrogram adversary for ef-

ficient training and high-quality sample production, coupled with Transformer models for up

to 40% compression rates, all while maintaining real-time performance for entropy coding. [9]

Audio Synthesis

Recent studies have demonstrated that relying solely on reconstruction to generate audio

can lead to the presence of noise in the output [10]. To mitigate this issue, researchers have

incorporated discriminators to improve the distribution of input data approximated by the

generator, resulting in reduced noise in the synthesized audio [8].

In particular, the use of discriminators from generative adversarial models such as Mel-

GAN [24] and HiFiGAN [23] has been shown to be effective in generating high-quality audio

with lower computational complexity. These models employ multi-scale waveform discrimi-

nators to enhance the quality of the synthesized waveform from the decoder [24]. The use of

discriminators has thus emerged as a promising approach to generate high-quality audio [23].

8



4. Methodology

  

Waveform @ 16 kHz

Conv1D (k=7, n=C)

EncoderBlock (N=2C, S=2, d=1)

EncoderBlock (N=4C, S=4, d=2)

EncoderBlock (N=8C, S=5, d=4)

EncoderBlock (N=16C, S=8. d=8)

LSTM (n= 16C)

Conv1D (k=7, n=D)

Embeddings @ 50 Hz

Encoder

  

ResidualUnit (N/2, dilation=d)

EncoderBlock (N,S)

Conv1D(n=N, k=2S, stride=S)

Conv1D(n=N/2, k=3, dilation)

Conv1D(n=N, k=1)

ResidualUnit (N, dilation)

+

Conv1D(k=2S, n=N, stride=S)

DecoderBlock (N,S)

ResidualUnit (N/2, dilation=d)

Embeddings @ 50 Hz

Conv1D (k=7, n=16C)

LSTM (n= 16C)

DecoderBlock (N=8C, S=8, d=1)

DecoderBlock (N=4C, S=5, d=2)

DecoderBlock (N=2C, S=4, d=4)

DecoderBlock (N=C, S=2, d=8)

Conv1D (k=7, n=1)

Waveform @ 16 kHz

Decoder

Figure 4.1: Encoder and Decoder Model Architecture

4.1 Encoder Architecture

The encoder structure, as depicted in Figure 4.1, follows the same format as that of the

SEANet encoder described in [9, 30]. It comprises a 1D convolution layer with Cenc channels,

followed by Benc encoder blocks, each with dilated convolutions at varying dilation rates of 1,

2, 4, and 8. The encoder block contains one residual block with a matching dilation, followed

by a down-sampling layer in the form of a strided convolution. The number of channels

is doubled when down-sampling, starting from Cenc. The embeddings are dimensionally

reduced to D using a final 1D convolution layer with a 7-length kernel and a stride of 1. All

convolutions are causal to ensure real-time inference, with padding applied only to the past

in both training and offline inference. No normalization is applied, and the ELU activation

function is used [7].

The temporal resampling ratio between the input waveform and the embeddings is de-

termined by the number of encoder blocks, Benc, and the corresponding striding sequence.

For example, when Benc=4 and using strides of (2, 4, 5, 8), one embedding is generated for

9



every M = 320 input samples, where M is calculated as (2 . 4 . 5 . 8). Thus, the encoder

output, enc(x), is in RS×D, with S = T/M .

This description is based on [3, 2] and explains the encoder architecture employed in the

paper.

4.2 Quantizer

The quantizer’s objective is to compress the encoder’s output, enc(x), to a specific bitrate,

R, expressed in bits per second (bps). Joint training of the quantizer, encoder, and decoder

is necessary for an end-to-end approach, which can be achieved by backpropagation. The

vector quantizer (VQ) proposed for VQ-VAE in [34] satisfies this requirement. It generates

a codebook of N vectors to encode each D-dimensional frame of enc(x). Next, enc(x) is

mapped to a sequence of one-hot vectors of shape S × N , which requires log2 N bits for

representation.

Limitation of Vector Quantization

To illustrate, suppose we have a codec with a target bitrate of R = 3000 bps. With a striding

factor of M = 320, one second of audio at a sampling rate of fs = 16000 Hz is represented

by S = 50 frames at the encoder output. Each frame is assigned r = 3000 / 50 = 60 bits,

given the target bitrate of R. If we were to use a simple vector quantizer, we would need to

store a codebook comprising N = 260 vectors, which is not feasible due to its impractical size.

Residual Vector Quantizer

In order to address this issue, we have decided to utilize a Residual Vector Quantizer, which

is also known as a multi-stage vector quantizer. This technique involves incorporating Nq lay-

ers of VQ in a specific manner. Initially, the unquantized input vector is processed through a

first VQ to derive quantization residuals. Subsequently, the residuals are subject to iterative

quantization by means of a sequence of additional Nq - 1 vector quantizers, following the

guidelines presented in Algorithm 1. The total rate budget is distributed uniformly across all

VQs, whereby ri = r/Nq = log2 N . If, for instance, Nq = 6, each quantizer would make use

of a codebook consisting of N = 2r/Nq = 260/6 = 1024. By manipulating the Nq parameter,

one can balance the computational complexity and coding efficiency to meet a desired target

rate budget r.
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Figure 4.2: Residual Vector Quantizer (for Nq=4)

Algorithm 1: Residual Vector Quantization

Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ

ŷ ← 0.0

residual ← y

for i = 1 to Nq do

ŷ+ = Qi( residual )

residual − = Qi( residual )

return ŷ

Scalable Bitrate

To allow for scalability in bitrate, quantizer dropout is utilized, and residual vector quan-

tization serves as a useful framework for controlling bitrate. The bitrate is determined by

the number of VQ layers, Nq, given a fixed codebook size, N, for each layer. In principle, a

different model should be trained for each target bitrate, as the vector quantizers are trained

jointly with the encoder/decoder. However, it is much more practical to have a single model

that can scale to several target bitrates, as it reduces the memory required to store model

parameters on both the encoder and decoder side.
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To create a model capable of handling multiple bitrates, we make a modification to

Algorithm 1. When processing each input example, we randomly sample a value for nq from

the range [1; Nq] and only use quantizers Qi for i = 1 . . . nq. This is similar to applying

structured dropout to the quantization layers. As a result, the model is trained to encode

and decode audio at all target bitrates within the range nq = 1 . . . Nq. During the

inference phase, we select the value of nq based on the desired bitrate. By implementing this

approach, we can create a model that is more memory-efficient than having to train separate

models for each target bitrate.

The additive composition of the outputs of each VQ layer progressively refines the quan-

tized embeddings, while keeping the same shape. Hence, no architectural changes are needed

in neither the encoder nor the decoder to accommodate different bitrates

4.3 Decoder Architecture

The design of the decoder architecture is similar to that of the encoder architecture, as

shown in Figure 3. The decoder block consists of a transposed convolution for up-sampling,

followed by residual units, which is identical to the encoder block. We use the reverse order

of strides as the encoder to reconstruct a waveform with the same resolution as the input

waveform. During up-sampling, the number of channels is halved, and the last decoder block

generates Cdec channels. A final 1D convolution layer, with a kernel size of 7 and stride 1,

with only one filter, is used to project the embeddings back to the waveform domain and

produce x̂. The same number of channels in both the encoder and decoder is controlled by

the same parameter, Cenc = Cdec = C, as illustrated in Figure 4.1.

4.4 Discriminator Architecture

In line with Wang et al. [35], we utilize a multi-scale architecture that includes three dis-

criminators (D1, D2, D3) with the same network structure but differing audio scales. D1

operates on raw audio scale, while D2 and D3 operate on raw audio downsampled by a

factor of 2 and 4, respectively. The downsampling is achieved using strided average pooling

with a kernel size of 4. The use of multiple discriminators at different scales is justified by

the fact that audio has different structures at various levels. This structure is supported

by an inductive bias that each discriminator learns features for various frequency ranges

of the audio. For instance, the discriminator operating on downsampled audio lacks access

to high-frequency components; thus, it is inclined to learn discriminative features based on

low-frequency components only.

12



Figure 4.3: Discriminator

4.5 Regularization

Dropout Regularization

Dropout is a popular regularization technique used in deep learning to prevent overfitting

of the model. By randomly dropping out some of the neurons in a neural network dur-

ing training, dropout forces the network to learn redundant representations, which makes

it more robust and less likely to overfit. The dropout technique was introduced by Srivas-

tava et al.[29] in their 2014 paper ”Dropout: A Simple Way to Prevent Neural Networks

from Overfitting”. Dropout can be applied to various types of neural network architectures,

including fully connected networks, convolutional neural networks (CNNs), and recurrent

neural networks (RNNs). To incorporate dropout in a residual block, a dropout layer can

be added after the final activation function in the block, before the output is added to the

input. The dropout layer can have a dropout rate of p, which determines the fraction of

neurons that are randomly dropped out. The value of p should be chosen based on the com-

plexity of the model and the size of the training dataset. In their paper ”Identity Mappings

in Deep Residual Networks”, He et al. [13] showed that using dropout in residual networks

can further improve the generalization performance of the model, especially when combined

with other regularization techniques. Overall, dropout is a simple and effective regulariza-

tion technique that can be used to improve the generalization performance of deep learning

models, including residual networks.
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Time Jitter Regularization

Our goal is for the model to acquire a speech representation that matches the phonetic con-

tent that changes gradually within an utterance, which is a mostly steady signal that may

suddenly change at the boundaries of phonemes. To avoid co-adaptation of latent vectors,

a time-jitter regularizer inspired by dropout [29] was employed in the vq-speech model[6].

During training, a latent vector can replace one or both of its adjacent vectors, similar to

dropout, which prevents the model from depending on consistency across groups of tokens.

Furthermore, this regularization encourages stability in latent representations over time. A

latent vector extracted at a specific time step should also be beneficial at time steps imme-

diately preceding or following it.

4.6 Training Objectives

Reconstruction Loss

In this paper, we adapt a frame-level auxiliary loss between the original and the generated

speech as in [36]. The Loss functions that are correlated with perceptual audio quality should

be used to train the model.

Lrec
G = λ1LSC(x, x̂) + λ2LlogMAG(x, x̂) + λ3LlinMAG(x, x̂),

where x and x̂ denote the target and the estimated audio signal.

λ1, λ2 and λ3 denotes the weight coefficient to balance losses, spectral convergence (LSC),

log STFT manginuted loss (LlogMAG) and linear STFT magnitude loss (LlinMAG), which is

defined as follows:

LSC(x, x̂) =
∥| STFT(x)| − | STFT(x̂)|∥F

∥| STFT(x)|∥F
LlogMAG(x, x̂) = ∥ log | STFT(x)| − log | STFT(x̂)|∥1,

LlinMAG(x, x̂) = ∥| STFT(x)| − | STFT(x̂)|∥1,

Discriminative and Generator Loss

The objective of the adversarial loss is to enhance the visual appeal of the output. It is

described as a hinge loss that is applied to the discriminator’s logits, and it is averaged

over multiple discriminators and time. To be more precise, let k ∈
{
0, ..., k

}
be used to

identify individual discriminators, where k = 0 refers to the STFT-based discriminator, and

k ∈
{
1, ..., K

}
represents the various resolutions of the waveform-based discriminator (we

use K = 3 in this study). Let Tk be the number of logits produced by the k-th discriminator

over the time dimension. The goal is for the discriminator to classify original versus decoded

audio by minimizing the loss.
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LD = Ex[
1

K

∑
k

1

Tk

max(0, 1−Dk,t(x))] + Ex[
1

K

∑
k

1

Tk

max(0, 1 +Dk,t(G(x)))]

while the adversarial loss for the generator is

Ladv
G = Ex[

1

K

∑
k,t

1

Tk

max(0, 1−Dk,t(G(x)))]

The feature loss is computed by taking the average absolute difference between the dis-

criminator’s internal layer outputs for the generated audio and those for the corresponding

target audio.

Lfeat
G = Ex[

1

KL

∑
k,l

1

Tk,l

∑
t

|D(l)
k,t(x)−D

(l)
k,t(G(x))|]

where L is the number of internal layers, D
(l)
k,l(l ∈

{
1, ..., L

}
) is the t-the output of layer

l of discriminator k, and Tk,l denotes the length of the layer in the time dimension.

VQ commitment loss

We add a commitment loss Lw between the output of the encoder, and its quantized

value, with no gradient being computed for the quantized value. For each residual step

c ∈
{
0, ..., C

}
(with C depending on the bandwidth target for the current batch), noting zc

the current residual and qc(zc) the nearest entry in the corresponding codebook, we define

Lw as

Lw =
C∑
c=1

∥zc − qc (zc)∥22

Total Generator loss

LG = λadv Ladv
G + λfeat · Lfeat

G + λrec · Lrec
G

4.7 Implementation Details

We trained the model for 3000 epochs, with epoch being 5,000 updates with the Adam

optimizer with an initial learning rate of 3e±4 for generator and 1e±4 for the discriminator

and default parameters β1 = 0.9 and β2 = 0.999 for optimization. The mini-batch size is set

to 10 and the whole system is implemented in PyTorch. We set the λ1=1, λ2=1 and λ3=0

for reconstruction loss and λadv=1, λfeat=100 and λrec=1 to scale adversarial, feature and

reconstruction losses for generator loss.
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5. Evaluation Setup

5.1 Dataset

We train our model on three types of audio content: clean speech, noisy speech, and music,

all at a 16 kHz sampling rate. The audio data from [1] were further processed using ffmpeg

to transform the given data into a suitable representation i.e. sampling frequency of 16 kHz

with 16 bits per sample. In total 20,000 audio files were used to train the model with 7,500

clean speech, 7,500 noisy speech, and 5,000 music. For validation in total 60 audio files were

used with 20 from each clean speech, noisy speech, and music.

5.2 Evaluation Metric

To evaluate our model, we conducted both subjective and objective evaluations of the results.

For subjective evaluation the MUSHRA[15] test is used, it involves presenting a listener with

several audio stimuli, which can be different versions of the same audio signal, or different

audio signals altogether. One of the stimuli is designated as the ”anchor”, which is a high-

quality reference signal that serves as a benchmark for comparison. The listener is asked to

rate the quality of each stimulus using a numerical scale, typically ranging from 0 to 100,

where 0 represents the worst possible quality and 100 represents the best. Ratings were

screened to exclude noisy data. For objective evaluation of the model, SCALE-INVARIANT

SIGNAL-TO-NOISE RATIO was used. While SI-SNR is primarily used in speech separation

and speech enhancement applications, it can also be used as a metric for evaluating audio

codecs.

5.3 Baselines

Opus and EVS are set as baselines for comparison with traditional audio codecs. Opus [3]

is a popular speech and audio codec widely used for internet communication applications,

such as Zoom, Microsoft Teams, and Google Meet, as well as for streaming on YouTube. It

supports a range of signal bandwidths from 4 kHz to 24 kHz and bitrates from 6 kbps to 510

kbps. Another versatile codec used for Voice over LTE (VoLTE) is Enhanced Voice Services

(EVS) [2], which operates at multiple signal bandwidths from 4 kHz to 20 kHz and bitrates

from 5.9 kbps to 128 kbps. Both codecs serve as baselines for comparison with our model,

which is designed to enhance audio quality. For comparison with neural audio codecs, Meta’s

Encodec [9] and Google’s SoundStream [37] are used.
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6. Result and Discussion

The developed audio codec was compared with the baselines in different categories which

are explained below:-

Subjective and Objective Evaluation

An experiment was conducted using headphones and 50 English speakers to subjectively

evaluate the performance of our codec. The evaluation dataset comprised 20 samples of

clean, noisy, reverberant speech, and music. Each sample was rated using a crowd-sourced

methodology inspired by MUSHRA. The results of the subjective evaluation are shown in

Table 6.5. It can be observed that our codec outperformed traditional audio codec(OPUS)

at low bitrates. However, our codec was unable to surpass neural audio codecs like Sound-

stream (by Google) and Encodec (by Meta). For comparison with the Baseline, our model

with a high MUSHRA score was selected and the performance of our model with different

additional components can be seen in Table 6.1. In order to further improve the quality of

the decompressed audio, a Discriminator was used to remove the artifacts from the recon-

structed audio signal as shown in Table 6.2. Table 6.3 shows that our model’s SNR score is

far less than others which makes the MUSHRA the main evaluation metric for the analysis

of our model. The poor SI-SNR score is mainly because it is primarily used in speech sepa-

ration and speech enhancement applications.

Openness

Also, there are no fully open-source neural audio codecs available on the internet. Table 6.4

shows the open-source state of different neural audio codecs on the internet.
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Table 6.1: MUSHRA(↑) scores of our models with different additional components. Performance of
our model with different additional components at different bitrates along with the model complex-
ity. Here rrdb represents the Residual-in-Residual-Dense Block from [23] which replaces the normal
residual block of the model but increases complexity and jitter is the time jitter regularization for
the robustness of quantized space.

Model 3 kbps 6 kbps 12 kbps 24 kbps Params

Ours 15 32 35 38 6.27M

Ours + lstm 20 40 45 50 14.67M

Ours + lstm + dropout(0.2) 25 40 52 55 14.67M

Ours + lstm + dropout(0.5) 15 16 15 17 14.67M

Ours + lstm + dropout(0.2) + rrdb 22 44 50 50 30.5M

Ours + lstm + dropout(0.2) + jitter 10 12 11 10 14.67M

Table 6.2: MUSHRA(↑) scores our model with and without discriminator for 6 kbps.

Model Speech Music

without disc 29 32

with disc 40 47

Table 6.3: Comparision of SI-SNR(↑) scores.

Model Speech

OPUS 2.45

EVS 1.89

ENCODEC 6.67

SoundStream 6.5

Ours 1.2

Table 6.4: Openness of different models compared to ours.

Codec Code Model Paper Reusability

SoundStream ✗ ✗ ✓ ✗

ENCODEC ✗ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓
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Table 6.5: MUSHRA(↑) scores comparison of our’s best model from Table 6.1 with different state-
of-the-art traditional and neural audio codec.

Model Bandwidth Speech Music

Reference - 95.5±1.6 93.2±2.5

OPUS 6.0 kbps 30.1±2.8 20.6±5.8

OPUS 12.0 kbps 76.5±2.3 77.8±3.2

EVS 9.6 kbps 84.4±2.5 89.9±2.3

Lyra-v2 3.0 kbps 53.1±1.9 69.3±3.3

Lyra-v2 6.0 kbps 66.2±2.9 75.7±2.6

ENCODEC 1.5 kbps 49.2±2.4 68.2±2.2

ENCODEC 3.0 kbps 67.0±1.5 89.6±3.1

ENCODEC 6.0 kbps 83.1±2.7 92.9±3.1

ENCODEC 12.0 kbps 90.6±2.6 91.8±2.5

SoundStream 3.0 kbps 67.0±1.5 -

SoundStream 6.0 kbps 80.0±1.5 -

SoundStream 12.0 kbps 82.0±1.5 -

Ours 3.0 kbps 25.0 30.0

Ours 6.0 kbps 40.0 47.0

Ours 12.0 kbps 50.0 52.0

Ours 24.0 kbps 50.0 55.0
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Figure 6.1: Ours vs state-of-art codecs for Speech

Figure 6.2: Ours vs state-of-art codecs for Music
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Latency and Real Time Factor

Latency refers to the delay between the time an audio signal enters the codec and the time

it is processed and output. In other words, it is the time it takes for the codec to encode or

decode the audio signal. We profiled our model on a single thread of an intel i7-10870H

CPU and Nvidia RTX 3060 GPU at 6 kbps while other models’ latency and RTF values are

taken from Table 5 of [9] where these models are evaluated on a single thread of a MacBook

Pro 2019 CPU. The calculation of latency involves the time taken by ffmpeg to transform

audio to 16-bit 16000 hz audio plus the model’s encoding and decoding speed. The ffmpeg

nearly takes about 6 ms to convert the audio which increases the latency of the codec.

The real-time factor is here defined as the ratio between the duration of the audio and the

processing time so that it is greater than one when the method is faster than real-time.

The calculation of latency and real-time factor is shown in Table 6.6. In this analysis, our

codec out-perform the other audio codec mainly due to its smaller model size.

Table 6.6: Latency(↓) and RTF(↑) of our model and ENCODEC, Lyra v2, SoundStream, OPUS.
All models are evaluated at 6 kbps.

Real Time Factor

Model Latency Enc. Dec.

Lyra v2 (32 kHz) - 27.4 67.2

ENCODEC 24 kHz 13 ms 9.8 10.4

ENCODEC 48 kHz 1 s 6.8 5.1

SoundStream 24 kHz 13 ms - -

OPUS 26.5 ms - -

Ours 16 kHz (cpu) 12 ms 55.56 111.11

Ours 16 kHz (gpu) 11 ms 83.33 125
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Original and Reconstructed audio waveform
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Figure 6.3: Original Waveform.
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Figure 6.4: Reconstructed Waveform.

22



7. Conclusion

In conclusion, this project highlights the potential of deep learning-based audio codecs in

enhancing compression efficiency and improving audio quality. The subjective evaluation

conducted in this study shows that our Neural Audio Codec performs comparably to

traditional audio codecs, Opus and EVS, at low bitrate despite being a relatively new

approach to audio compression. By releasing open-source code and pre-trained models, this

study provides a valuable resource for further research and improvement. Moreover, with

the endless possibility of further advancements in deep learning-based audio synthesis and

representation learning, there is a significant potential for improving audio codecs’

efficiency and quality. The future of audio compression seems promising, and the

development of deep learning-based models can play a pivotal role in it.
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8. Appendices

Appendix A: Vector Quantization Compression Mechanism

• The encoder produces one embedding for e.g. 0.1s of audio

• A vector of length 3 encode in float16 use 3 * 16= 48 bits

• Per second: 48 * 10 = 480 bits

Figure 8.1: Step I

• A vector quantizer learns a fixed “dictionary” of template vectors (called code-words)

Figure 8.2: Step II

• We replace the embedding by its closest neighbor in the dictionary
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Figure 8.3: Step III

• Now we only need to transfer 2 bits (the index) to the receiver

Figure 8.4: Step IV

• The receiver also has the codebook and uses it to retrieve the vector corresponding to

the index

Figure 8.5: Step V
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Appendix B: Custom File Format (nac)

• Byte order : network big endian

• Header format (9 Bytes)

– 3 bytes: magic string

– 1 byte : version number

– 4 byte: metadata length

– 1 byte: bit rate

Figure 8.6: custom file format (.nac)
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