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Abstract

This project endeavors to present an implementation of a text summarization method em-

ploying the amalgamation of Latent Semantic Analysis (LSA) with Transformers. The pri-

mary objective of the proposed approach is to create a brief summary of an input text

while retaining its fundamental meaning. The summarization model is assessed through two

metrics, namely BLEU scores and ROUGE scores, which are utilized to gauge the model’s

efficacy in generating a succinct and accurate summary.

The project comprises several steps, including text preprocessing, feature extraction using

LSA, and summary generation using Transformers. The resulting summary is evaluated by

comparing it against a reference summary, and the quality of the summary is measured by

the BLEU metric and ROUGE scores.

The evaluation results reveal that the proposed approach yields high scores on both met-

rics, indicating its effectiveness in generating precise and concise summaries. Moreover, the

project incorporates an analysis of the impact of various parameters on the performance of

the summarization model, thereby providing valuable insights into the optimal parameter

settings for the proposed method.

In conclusion, this project exemplifies the potential of leveraging LSA with Transformers

for text summarization and furnishes a practical implementation for producing high-quality

summaries.

Keywords: Latent Semantic Analysis (LSA), Transformers, Text summarization, BLEU

scores, ROUGE scores
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1. Introduction

1.1 Background

The main objective of this project is to develop and train a machine learning model that

is capable of taking in a block of text and generating a summary along with significant

keywords in a suitable format.

To achieve our goal, we will be utilizing various natural language processing (NLP) techniques

and machine learning algorithms to train our model. Our focus will be on generating a

relevant summary of text , particularly in fields such as journalism, fact-checking, news

generation, and lecture summarization.

Our model will also be able to summarize formal articles that are free of grammatical errors

and are precise. The ability to generate accurate and concise summaries from formal texts

is particularly useful for academic research and other domains where precision and accuracy

are paramount.

While there are some existing text summarization models that can produce decent output,

the scope of our project is unique, and we are confident that with hard work and guidance

from our mentors, we will produce a model that stands out among the current models. We

believe that our approach, which combines NLP techniques and machine learning algorithms,

will yield a model that can provide high-quality summaries of a variety of texts.

In summary, our project aims to develop a cutting-edge machine learning model that can

accurately summarize a wide range of texts, including unstructured and formal content. With

our focus on utilizing NLP techniques and machine learning algorithms, we are confident that

we can achieve this goal and create a model that stands out among the existing models.

Automated summary generation is a crucial tool for extracting information from lengthy

texts or other forms of text data. With the sheer amount of time it takes to go through hours

of text, generating summaries automatically can be incredibly time-effective. In today’s

fast-paced world, time is a valuable commodity, and the ability to quickly generate accurate

summaries is a highly desirable feature.

1.2 Problem Statement

Develop an automated system that can accurately and efficiently generate a concise summary

of a given text while preserving its most important information. This includes addressing

challenges such as identifying the key topics and relevant information, detecting sentence

1



boundaries, and evaluating the quality of the generated summary. The goal is to create a

system that can extract the most important content from a lengthy text, making it easier

and faster for users to understand the key points without having to read the entire document.

Currently, most practical text summarization techniques are extractive, meaning they ex-

tract the most relevant sentences or phrases from the original text and combine them into

a summary. In contrast, abstraction-based summarization, which involves creating new sen-

tences that capture the essence of the original text, is a more challenging task and an active

area of research. Despite these challenges, automated text summarization has the poten-

tial to greatly improve efficiency and productivity, particularly in fields such as journalism,

research, and news reporting.

1.3 Objectives

• To summarize the text.

• To identify the important phrases and words that occurs in the text.

• To generate recommendation for heading.

1.4 Application

Our project has versatile scope and serves numerous applications. The project can be used

as various useful tools.

• Title generation

• Redundancy elimination

• Information retrieval from articles

• News generation and summarization

2



2. Literature review

2.1 Related work

The summarization approach can be broadly classified into extractive and abstractive. The

extractive approach focuses on choosing how paragraphs, and important sentences can be

chosen in such a way that it produces the set of sentences that it closely approaches the

meaning of the original text [2].Text summarization is the process of creating a shorter ver-

sion of a longer text while retaining its key information. It has become an important tool for

information retrieval and management, as well as for natural language processing applica-

tions. Text summarization techniques can be broadly categorized as extractive or abstractive

summarization.

Extractive summarization involves selecting a subset of sentences from the source text to

create a summary. This approach is often used for news articles or scientific papers, where

the sentences are usually well-structured and contain important information. One popular

approach to extractive summarization is the use of graph-based models. Carbonell and Gold-

stein [3] introduced a diversity-based re-ranking method called Maximal Marginal Relevance

(MMR) to produce summaries, while Erkan and Radev [4] proposed a graph-based model

called LexRank to identify salient sentences for summary generation. Abstractive summa-

rization, on the other hand, involves generating new sentences that capture the essence of the

source text. This approach is more challenging than extractive summarization, as it requires

natural language generation and understanding. More recently, deep learning models such

as sequence-to-sequence (Seq2Seq) models have shown promising results in abstractive text

summarization. Nallapati et al. [5] proposed a Seq2Seq model with attention mechanism for

abstractive summarization, while See et al. [6] introduced a pointer-generator network that

can copy words from the source text to produce more accurate summaries.

To guide the generation of summaries, researchers have proposed various approaches. Zhang

et al. [7] proposed a Key Information Guide Network that identifies key information in the

source text and uses it to guide the summarization process. Other approaches include using

reinforcement learning [8] and incorporating discourse structure [9].

Overall, text summarization is an active area of research, and several approaches have been

proposed over the years. Radev et al. [10] provided an overview of the state-of-the-art in

the field, while Nenkova and McKeown [11] presented a comprehensive survey of automatic

summarization techniques. Wan et al. [12] provided a survey of automatic text summa-

3



rization, covering both extractive and abstractive approaches. However, the problem of text

summarization remains a challenging one, and there is still much work to be done to im-

prove the effectiveness and efficiency of summarization techniques. The summarization of

the text can be described as a two-step process: building from source text a source represen-

tation and summary generation forming representation from the source representation build

in the first step synthesizing the output summary text [13]. LSA is converting the metrics

matrix to a single value decomposition(SVD) matrix and comparing the correlation for ex-

traction of sentences [14]. Extractive Summarization is a method for determining salient

text units (typically sentences) by looking at the text unit’s lexical and statistical relevance

or by matching phrasal patterns [15]. In the extractive method, the sentences and words

are dragged and combined them to produce arguably a comprehensive summary [16]. Ab-

stractive Summarization is a method for novel phrasing describing the content of the text

which requires heavy machinery from natural language processing, including grammar and

lexicons for parsing and generation [15]. A good sentence reduction system can improve the

conciseness of generated summaries significantly (typically by 44.2 %) [17].

2.2 Related Theory

2.2.1 Text to summary

There are different features on which we can classify a text summarization system which is

illustrated on the chart given below[18]:

4



Figure 2.1: Classification of text summarization techniques

Extractive Text summary

In Extractive Summarization, we identify important phrases or sentences from the original

text and extract only these phrases from the text. These extracted sentences would be the

summary.

Figure 2.2: Extractive Text Summarization

5



Abstractive Text summary

In the Abstractive Summarization approach, we work on generating new sentences from the

original text. The abstractive method contrasts with the approach that was described above.

The sentences generated through this approach might not even be present in the original

text.

Figure 2.3: Abstractive Text Summarization

Hybrid

Summarizer that combines the advantages of the abstractive and extractive approaches to

summarization and implements a solution to the opinion holder attribution problem.

6



3. Methodology

Figure 3.1: Methodology Block Diagram

The text is obtained either directly from the already stored database. The obtained text is

then fed into LSA model after preforming necessary pre-processing to obtain an extractive

summary of the text. The extractive text summary obtained is fed into the abstractive

summary generation model and then the abstractive text summary is obtained from which

the title generation and data mining are performed.

Each process in detail is further explained in this chapter.

3.1 Text To Summary

We intend to use the hybrid model initially for the summarization, concluded from the liter-

ature review. An overview of the text summarization approaches that will be implemented

can be understood from the block diagram below:

7



Figure 3.2: Hybrid Text Summarization Approach

3.1.1 Extractive Summary

Figure 3.3: Extractive Summarization approach

Text Input: The process begins with a text input, which is a document or a piece of text

that needs to be summarized.

LSA: LSA is a statistical method used to identify the underlying structure of the text and

to reduce the dimensionality of the text representation. The LSA algorithm creates a matrix

of word occurrences and maps the words into a lower-dimensional space that captures the

semantic relationships between them.

Significant Word: In LSA, each word is assigned a weight that reflects its importance in

the text. The weight of a word is determined by its frequency in the text and its similarity to

other words in the text. The most important words in the text are referred to as significant

words.

Significant Sentence Mapping with Significant Word: After identifying significant

words, the next step is to map each significant word to the sentences in which it occurs.

This is done by assigning a score to each sentence based on the occurrence and weight of

the significant words in the sentence. This mapping helps in identifying the most important

sentences in the text.

Generate the summary with required compression ratio: Finally, the summary is

generated by selecting the most important sentences based on the scores assigned in step 4.

The compression ratio is used to determine the length of the summary.

For an extractive summary, we intended to use Latent semantic analysis(LSA) with Singular

8



Value Decomposition(SVD).

Latent semantic analysis

Latent semantic analysis (LSA) is a mathematical method for computer modeling and simu-

lation of the meaning of words and passages by analysis of representative corpora of natural

text. LSA closely approximates many aspects of human language learning and understand-

ing. It supports a variety of applications in information retrieval, educational technology,

and other pattern recognition problems where complex wholes can be treated as additive

functions of component parts. LSA assumes that words that are close in meaning will occur

in similar pieces of text.

The underlying idea is that the aggregate of all the word contexts in which a given word

does and does not appear provides a set of mutual constraints that largely determines the

similarity of meaning of words and sets of words to each other[19].

Figure 3.4: Block diagram of LSA

The LSA uses a long-known matrix-algebra method, Singular Value Decomposition (SVD).

Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) of a matrix is a factorization of that matrix into

three matrices. It has some interesting algebraic properties and conveys important geo-

metrical and theoretical insights about linear transformations. It also has some important

9



applications in data science.

The SVD of mxn matrix A is given by the formula :

A = UWV T (3.1)

where:

U = m ∗ n matirix of the orthogonal eigenvectors of AAT

V T =transpose of an nxn matrix containing the orthonormal eigenvectors of ATA

W = a n*n diagonal matrix of the singular values which are the square roots of the eigenvalues

of ATA

Figure 3.5: SVD Process

3.1.2 Abstractive summary

An abstract is a brief summary of a research article, thesis, review, conference proceeding,

or any in-depth analysis of a particular subject and is often used to help the reader quickly

ascertain the text’s purpose[20]. Unlike the extractive summary, it includes new words and

phrases while summarizing a text. The abstract should be able to convey the main results

and conclusions of an article.

10



Figure 3.6: Abstractive Summarization approach

Abstractive Text Summarization is the task of generating a short and concise summary

that captures the salient ideas of the source text. The generated summaries potentially con-

tain new phrases and sentences that may not appear in the source text.

RNN-based encoder-decoder models for abstractive summarization have achieved good per-

formance on short input and output sequences[21]. Neural network-based methods for ab-

stractive summarization produce outputs that are more fluent than other techniques but can

be poor at the content selection. The content selector can be used for bottom-up attention

that restricts the ability of abstractive summarizers to copy words from the source. The

combined bottom-up summarization system leads to improvements in ROUGE scores[22].

11



Transformers

Figure 3.7: Transformer Block Diagram [1]

Transformers are a type of deep learning model widely used in Natural Language Processing

(NLP) tasks. They have first introduced in the paper ”Attention is All You Need” by Vaswani

et al. in 2017 [1]. The key idea behind Transformers is the self-attention mechanism, which

allows the model to weigh the importance of different input tokens in computing the output.

Transformers are a type of deep learning model used in Natural Language Processing (NLP)

12



tasks. They are designed to handle sequences of varying lengths and are well-suited for tasks

such as machine translation, text classification, and question-answering.

A Transformer model consists of two main components: an encoder and a decoder. The

encoder takes in a sequence of input tokens (such as words in a sentence) and generates

a continuous representation of the input sequence, called the context vector. The decoder

then takes the context vector and generates the final output, such as a translation or a

classification label.

The key innovation in Transformers is the self-attention mechanism, which allows the model

to weigh the importance of different input tokens in computing the output. In traditional

recurrent neural networks (RNNs), the hidden state is updated based on the previous hidden

state and the current input. In Transformers, however, the hidden state is generated based

on a weighted sum of all the input tokens, where the weights are determined by the self-

attention mechanism. This allows the model to attend to relevant information in the input

sequence and capture long-range dependencies.

The encoder and decoder in Transformers are both composed of several layers of multi-head

self-attention and fully connected layers. The multi-head self-attention mechanism allows

the model to attend to different parts of the input sequence simultaneously, improving its

ability to capture complex relationships.

Transformers have proven to be highly effective in NLP tasks and have achieved state-of-

the-art results on a variety of benchmarks. They are also easily parallelizable and can be

trained on large amounts of data, making them well-suited for large-scale NLP tasks.

We used the CNN dailymail dataset with the data which was collected and processed by

our group and used it to train the transformer model. The dataset is also used to make the

dictionary using the vocabs and also for the tokenizer and detokenizer.

In summary, Transformers are a type of deep learning model that have revolutionized NLP by

introducing the self-attention mechanism and a flexible architecture composed of encoders

and decoders. They have achieved state-of-the-art results in many NLP tasks and have

shown promise in other domains as well.

3.1.3 Loss Functions

Categorical Cross-Entropy Loss

This loss function is used in multi-class classification problems. It measures the difference

between the predicted probability and the actual probability of the target class.
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Sparse Categorical Crossentropy Loss

Sparse Categorical Crossentropy is a loss function used in machine learning for multi-class

classification problems. It is commonly used when the labels are integers instead of one-hot

encoded vectors.

In traditional Categorical Crossentropy, the model outputs a probability distribution over all

possible classes for each input sample, and the target labels are one-hot encoded vectors that

indicate the correct class for each sample. The loss function then calculates the difference

between the predicted probability distribution and the true probability distribution.

In contrast, with Sparse Categorical Crossentropy, the target labels are represented as in-

tegers that correspond to the correct class for each input sample. The model still outputs

a probability distribution over all possible classes, but the target labels are not one-hot

encoded.
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3.2 Model Development

Figure 3.8: Overall Model Development Process

3.2.1 Dataset Collection

The process of collecting data for our project involved extracting information from various

open source dataset collections, such as Kaggle and CNN/Daily Mail. These collections

provided a wealth of data, covering a wide range of topics that were relevant to the project.

In addition to using these pre-existing datasets, we also manually added many text para-

graphs and summaries to the dataset. This process involved carefully selecting relevant

information and creating new text to supplement the existing data.

By combining these various sources of data, we were able to create a robust dataset that

would be useful for training our machine learning models. The dataset contained a diverse

set of data, representing a variety of perspectives and viewpoints on the topics of interest.

To ensure the quality of the data, we carefully curated and reviewed each text paragraph

and summary before adding it to the dataset. This involved checking for accuracy, relevance,
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and consistency with the existing data.

Throughout the data collection process, we remained mindful of the ethical implications

of using data that was collected from open sources. We took care to respect the privacy

of individuals and organizations that were represented in the data, and we adhered to all

relevant legal and ethical guidelines.

Overall, the process of collecting data for our machine learning project was a challenging

but rewarding endeavor. By using a combination of existing datasets and manually adding

new data, we were able to create a high-quality dataset that would be useful for training

and evaluating our machine learning models.

3.2.2 Pre-processing

Figure 3.9: Pre-processing for model development

Tokenizing the texts into integer tokens

Tokenizing text is the process of converting raw text into a list of smaller units, or tokens,

which can then be processed by machine learning models. In the case of converting text into

integer tokens, each unique token is assigned a unique integer value.

We use ’tokenizer’ module of the nltk library for tokenizing text into integer tokens.
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Obtaining insights on lengths for defining maxlen

We calculate the average and standard deviation of sequence lengths: Computing the mean

and standard deviation of the sequence lengths can provide a rough estimate of the central

tendency and the spread of the sequence lengths. And the maxlen value was set to slightly

higher than third quartile to avoid outliers.

Padding/Truncating sequences for identical sequence lengths

Padding

When padding a sequence to a desired length, you add special padding tokens (usually zeros)

to the end of the sequence until it reaches the desired length. This is commonly used when

training models that require sequences of equal length, such as recurrent neural networks

(RNNs) or convolutional neural networks (CNNs).

Truncation

When truncating a sequence to a desired length, you remove tokens from the end of the

sequence until it reaches the desired length. This is commonly used when dealing with

sequences that are too long to be processed efficiently or when comparing sequences of

different lengths.

Note that when padding or truncating sequences, it’s important to keep the overall sequence

length within a reasonable range for the task at hand. Padding or truncating sequences too

much can lead to loss of important information and negatively impact model performance,

while not padding or truncating enough can lead to memory errors or inconsistent input

sizes for the model.

3.2.3 Creating Dataset Pipeline

Figure 3.10: Creating Dataset Pipeline Block Diagram
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Input/Target Vectors: In some cases, the input and target sequences can be very long.

In such cases, it can be helpful to split them into smaller, more manageable blocks. This is

done by creating a list of input/target vectors, where each vector represents a block of the

input/target sequence.

Slicing Input or Target: Slicing the input or target data can be useful in cases where only

a portion of the data is required for training. This can help reduce the memory requirements

of the model.

Shuffling as per buffer size: Shuffling the data can help prevent the model from overfitting

to the training data. In the case of large datasets, shuffling the entire dataset may not be

practical due to memory constraints. In such cases, shuffling can be done on a smaller buffer

size.

Selecting Batch Size: The batch size is an important hyperparameter that determines

the number of input sequences processed in each training iteration. The optimal batch size

may vary depending on the size of the dataset and the available memory. Therefore, it is

important to experiment with different batch sizes to determine the optimal value.

3.2.4 Positional Encoding

Positional encoding is a technique used in transformers to inject positional information into

the input sequence of tokens. Since transformers do not have any inherent notion of position

or order in the input sequence, positional encoding is necessary to help the model understand

the order in which the tokens appear.

The positional encoding is added to the input embeddings of each token, and it consists of

a vector that encodes the position of the token in the sequence. The vector is added to the

embedding vector of the token, so that the model has access to both the token’s meaning

and its position in the sequence.

There are different ways to compute the positional encoding vector, but one common ap-

proach is to use trigonometric functions. Specifically, for a token at position i in the sequence,

the positional encoding vector is defined as:

PEi,j =


sin
(

i

10000
2j
d

)
if j is even

cos
(

i

10000
2j
d

)
ifj is odd

(3.2)

Here, d is the dimensionality of the input embeddings (i.e., the number of features in each

embedding vector), and j is the index of the feature in the embedding vector. The positional

encoding vector has the same dimensionality as the input embeddings.

By adding the positional encoding vectors to the input embeddings, the transformer is able

to distinguish between tokens that appear in different positions in the sequence, even if the
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tokens themselves have the same meaning. This allows the model to capture more complex

patterns in the input sequence, and it is a key component of the transformer architecture.

3.2.5 Masking

Masking refers to the process of selectively hiding certain tokens or positions in the input

sequence during training or inference. This is typically done to ensure that the model cannot

cheat by peeking ahead at tokens that it should not be able to see.

There are two types of masking commonly used in transformers: padding masking and

sequence masking.

Padding masking is used to hide padding tokens that are added to the input sequence to

make it uniform in length. Since the input sequence can have variable length, it is often

padded with special tokens (e.g., zeros) to ensure that all sequences have the same length.

However, these padding tokens should not be processed by the model, since they do not

carry any meaningful information. Therefore, padding masking is used to set the attention

scores for the padding tokens to zero, so that the model ignores them during training.

Sequence masking is used to hide tokens in the input sequence that should not be visible

to the model. For example, during language modeling, the model should not be able to see

tokens from the future when predicting the next token in the sequence. Therefore, sequence

masking is used to set the attention scores for future tokens to zero, so that the model cannot

attend to them during training or inference.

Both padding masking and sequence masking are implemented as binary masks that are

applied to the attention scores before softmax normalization. By setting certain entries in

the mask to zero, the model is prevented from attending to certain tokens or positions in the

input sequence. This helps to ensure that the model learns to make predictions based only

on the information that is available at each step, and not on information that it should not

have access to.
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3.2.6 Building the model

Figure 3.11: Building the model

Scaled Dot Product

Scaled dot product attention is a type of self-attention mechanism used in the transformer

architecture. It is used to compute the attention scores between each query and key pair in

a sequence of input data.

The attention score between a query and a key is computed as the dot product of the query

and the key, which measures how similar they are. However, in order to prevent the dot

product from becoming too large, the scores are scaled by the square root of the dimension

of the key vectors. This scaling ensures that the dot product is not too large or too small,

which can help to stabilize the training process. Formally, given a set of queries Q and a set

of keys K, the scaled dot product attention is computed as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3.3)

where Q, K, and V are the query, key, and value vectors, respectively, T̂ denotes matrix

transpose, and d k is the dimension of the key vectors. The output of the attention operation

is a weighted sum of the value vectors, where the weights are given by the attention scores.

Scaled dot product attention is a computationally efficient and effective mechanism for mod-

eling dependencies between the elements in a sequence, and it has been widely used in many

NLP applications.
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Multi-head Attention

Multi-head attention is a type of attention mechanism used in the transformer architecture.

It extends the scaled dot product attention mechanism to enable the model to attend to

different aspects of the input data in parallel.

In multi-head attention, the input queries, keys, and values are transformed into multiple

smaller dimensional spaces using linear projections, resulting in h different ”heads”. Each

head computes the attention scores separately, which allows the model to capture different

patterns in the input data. The outputs of the different heads are then concatenated and

transformed again to produce the final output.

Formally, given a set of input queries Q, keys K, and values V , the multi-head attention is

computed as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headah)WO (3.4)

where:

headi = Attention(QWQ
i , KWK

i , V W V
i ). (3.5)

Here, WQ
i , WK

i , and W V
i are learnable projection matrices for the i-th head, and WO is

a learnable output projection matrix.

The Concat operation concatenates the outputs of the different heads, and the final output

is obtained by applying a linear transformation to the concatenated output.

Multi-head attention allows the transformer to model different relationships between the

input elements and to attend to different aspects of the input in parallel. This leads to im-

proved performance on a wide range of natural language processing tasks, including language

modeling, machine translation, and text classification.

For our transformer blocks, We used multihead attention witn num heads = 8 that is atten-

tion is calculated for a word in 8 different contexts.

3.2.7 Feed Forward Network

Fundamental Unit of Transformer encoder

The encoder block is one of the main components of the transformer architecture, used for

processing input data in a self-attention mechanism. The encoder block consists of several

layers of self-attention and feed-forward neural networks.

The input to the encoder block is a sequence of embeddings, which could represent words,

tokens, or any other kind of input. The embeddings are first passed through a self-attention

layer, where each token in the sequence is compared to every other token to compute a set of

attention weights. The attention weights are used to compute a weighted sum of the input
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embeddings, which is then passed through a feed-forward neural network to obtain a new

set of embeddings. This process is repeated for each layer in the encoder block.

More formally, the computation in an encoder block can be described as follows:

1. The input embeddings are first processed through a multi-head self-attention mech-

anism. This allows the model to attend to different parts of the input sequence and

capture long-range dependencies. The output of this layer is a set of attention heads,

which are then concatenated and passed through a linear layer to obtain a set of new

embeddings.

2. The new embeddings are then passed through a feed-forward neural network with

a ReLU activation function. This provides a non-linear transformation of the input

embeddings and enables the model to learn complex representations of the input data.

3. The output of the feed-forward network is then passed through another linear layer to

obtain a final set of embeddings.

The encoder block is typically stacked multiple times to process the input data with

multiple layers of self-attention and non-linear transformations. The output of the final

encoder block can be used as input to a decoder block or as a representation of the input data

for downstream tasks. The encoder block is a key component of the transformer architecture

and has been used for a wide range of natural language processing tasks, including language

modeling, machine translation, and text classification.

Fundamental Unit of Transformer decoder

The decoder block is another key component of the transformer architecture, used for gen-

erating output data based on the input data and previously generated output. The decoder

block is similar to the encoder block, but it has some important differences in its design and

operation.

The input to the decoder block is a sequence of target embeddings, which are typically

derived from the same vocabulary as the input embeddings. In addition to the target em-

beddings, the decoder block also receives the output of the final encoder block as input. The

encoder output is used to compute attention weights for the target embeddings, allowing the

model to attend to different parts of the input sequence and capture relevant information

for the generation of the target sequence.

Like the encoder block, the decoder block is typically composed of multiple layers of self-

attention and feed-forward neural networks. The computation in a decoder block can be

described as follows:
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1. The input target embeddings are first processed through a multi-head self-attention

mechanism, where each target embedding is compared to every other target embedding

in the sequence. The attention weights are computed based on the encoder output and

used to compute a weighted sum of the encoder output embeddings. This allows

the model to attend to different parts of the input sequence and capture relevant

information for the generation of the target sequence.

2. The output of the self-attention layer is passed through a second multi-head self-

attention mechanism, where the model attends to different parts of the target sequence

to capture dependencies between different target embeddings.

3. The output of the second self-attention layer is then passed through a feed-forward

neural network with a ReLU activation function. This provides a non-linear trans-

formation of the decoder input embeddings and enables the model to learn complex

representations of the target data.

4. The output of the feed-forward network is then passed through another linear layer to

obtain a final set of target embeddings, which are used to generate the final output

sequence.

The decoder block is typically used in conjunction with the encoder block to generate a

sequence of target outputs based on an input sequence. The output of the final decoder block

can be used as the final output sequence, or as a representation of the generated output for

downstream tasks. The decoder block is a key component of the transformer architecture

and has been used for a wide range of natural language processing tasks, including machine

translation, summarization, and text generation.

Encoder consisting of multiple EncoderLayer(s)

In natural language processing (NLP), an encoder is a neural network component that con-

verts a sequence of input tokens (such as words or characters) into a fixed-length vector

representation. The fixed-length representation is often used as an input to other down-

stream models or tasks.

The Transformer architecture, which is widely used in NLP, consists of an encoder and a

decoder. The encoder component typically consists of multiple encoder layers, with each

layer consisting of two sub-layers:

1. Self-attention layer: This layer computes the attention scores between every pair of

input tokens in the sequence and generates a weighted sum of the input tokens based on
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their importance scores. This enables the model to capture the contextual relationships

between different tokens in the input sequence.

2. Feedforward layer: This layer applies a simple feedforward neural network to the output

of the self-attention layer, which introduces non-linearity and helps the model to learn

more complex representations of the input sequence.

Each encoder layer in the Transformer architecture also includes residual connections and

layer normalization, which help with the training stability and performance.

By stacking multiple encoder layers on top of each other, the Transformer model is able

to capture increasingly complex relationships between the input tokens, leading to more

effective representations and improved performance.

We used num layers value of 4 for the encoder.

Decoder consisting of multiple DecoderLayer(s)

In natural language processing (NLP), a decoder is a neural network component that takes as

input a fixed-length vector representation generated by the encoder and produces a sequence

of output tokens (such as words or characters).

The Transformer architecture, which is widely used in NLP, consists of an encoder and a

decoder. The decoder component typically consists of multiple decoder layers, with each

layer consisting of three sub-layers:

1. Self-attention layer: This layer computes the attention scores between every pair of

output tokens generated by the decoder and generates a weighted sum of the out-

put tokens based on their importance scores. This enables the model to capture the

dependencies between different output tokens in the sequence.

2. Encoder-decoder attention layer: This layer computes the attention scores between the

output tokens generated by the decoder and the input tokens generated by the encoder.

This allows the decoder to focus on different parts of the input sequence based on the

context of the current output token being generated.

3. Feedforward layer: This layer applies a simple feedforward neural network to the output

of the previous two sub-layers, which introduces non-linearity and helps the model to

learn more complex representations of the output sequence.

Each decoder layer in the Transformer architecture also includes residual connections and

layer normalization, which help with the training stability and performance.
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By stacking multiple decoder layers on top of each other, the Transformer model is able to

generate increasingly accurate and fluent output sequences. During training, the decoder is

usually fed with the ground-truth output sequence as input, but during inference, it generates

the output sequence one token at a time using the previously generated tokens as context.

We used num layers value of 4 for the Decoder.

3.2.8 Training

Figure 3.12: Training Loss for adaptive learning rate

Various learning rates were used at the beginning of training process, But with fixed training

rates of 0.1, 0.01 and 0.001 the Sparse Categorical Cross-entropy loss was fluctuating at

constant value after few epochs. Then, We used the Scheduled Adaptive learning rate which

adjust as the training process goes on which yeilds us a better model loss value.Each epoch

took us around 500 seconds.

Adam optimizer

Adam (Adaptive Moment Estimation) is an optimization algorithm commonly used for train-

ing deep learning models. It is a gradient-based optimization algorithm that calculates an

adaptive learning rate for each parameter based on the estimation of the first and second

moments of the gradients.

In simpler terms, Adam optimizer adjusts the learning rate for each weight in the neural

network during training, based on the average of the magnitude of the gradients for that
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weight and the rate of change of those gradients. The adaptive learning rate ensures that

the parameters are updated in a way that avoids overshooting or undershooting the optimal

values.

We initialized our optimizer with beta1 and beta2 values of 0.9 and 0.98 and epsilon value

for the stability of 10−9.

We tried different learning rates at the beginning but the loss was not decreasing after cer-

tain epoches so we used the costum schedule apporach to change learning rate as the step

increases which made the loss to decrease steadily.

Defining Losses

Sparse Categorical Crossentropy is a loss function that is commonly used in multiclass clas-

sification problems where the classes are mutually exclusive (i.e., an input can belong to only

one class). It measures the dissimilarity between the true labels and the predicted probabil-

ities for each class, with the goal of minimizing this dissimilarity during training.

The ”Categorical” part of the name refers to the fact that the loss is calculated using a cat-

egorical distribution, which is a probability distribution over mutually exclusive outcomes.

The ”Sparse” part of the name refers to the way that the labels are encoded. In contrast

to one-hot encoding, where each label is represented as a binary vector of length equal to

the number of classes, in sparse categorical encoding, each label is represented as an integer

value corresponding to the index of the true class.

In other words, if you have n classes, then the true label for each example will be an inte-

ger between 0 and n-1. The predicted probabilities for each class are also represented as a

probability distribution over the n classes, and the loss is calculated by comparing the true

labels to the predicted probabilities using the cross-entropy formula.

For the loss calculation we utilized the Sparse Categorical Crossentropy loss with parameters

from logits = True which says y Pred is expected to be a logits tensor and reduction applied

to loss to ’None’.

Masks, Checkpoints and Training Steps

The Transformer architecture uses a technique called masking to handle variable-length in-

put sequences. During training, certain tokens in the input sequence are masked to indicate

that they should not be used as input to the model. For example, in a machine transla-

tion task, the target sequence is shifted by one position relative to the input sequence, and

the first token of the target sequence is masked to prevent it from being used as input. In

TensorFlow, masking is usually implemented using a boolean mask that is multiplied by the
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input sequence to zero out certain tokens.

Checkpoints are saved snapshots of the model during training that can be used to resume

training or to evaluate the model on new data. Checkpoints typically include the weights

and biases of the model, as well as the optimizer state and other training parameters. In

TensorFlow, checkpoints are saved to disk in a binary format that can be restored later using

the ”tf.train.Checkpoint” and ”tf.train.CheckpointManager” classes.

Training a Transformer model typically involves many iterations of feeding input sequences

through the model, computing the loss, and using backpropagation to update the model pa-

rameters. Each of these iterations is called a training step. In TensorFlow, training steps are

typically organized into epochs, where each epoch consists of one pass through the training

data. During training, the model is optimized using an optimizer such as Adam or Stochastic

Gradient Descent (SGD), and the training progress is typically monitored using metrics such

as the loss and accuracy on a validation set.

During the training process we saved the checkpoints using the tensorflow checkpoint man-

ager after 5 epochs and the overall training is done in total of 40 epochs.

3.2.9 Inference

Inference in transformers refers to the process of using a trained transformer model to make

predictions or generate outputs for new input sequences that the model has not seen during

training.

During inference, the input sequence is fed into the transformer model, which processes it

through its encoder and decoder components to generate an output sequence. In the case

of language modeling, for example, the output sequence could be a sequence of words or

characters that correspond to a translated version of the input sequence.

One important aspect of inference in transformers is that the decoder generates the output

sequence one token at a time, using the previously generated tokens as context. This allows

the model to generate sequences that are coherent and fluent, since each token is generated

based on the context provided by the preceding tokens.

Another important consideration during inference is the use of beam search, which is a

heuristic algorithm for exploring the space of possible output sequences. Beam search con-

siders multiple candidate sequences in parallel, and selects the most likely sequence based on

a combination of the probability scores assigned by the transformer model and a beam width

parameter that controls the number of candidate sequences that are considered at each step.

Overall, inference in transformers is a critical component of natural language processing ap-

plications.

We implemented a evaluate() function to get the next output word from our model and we
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supply the input text to summarize() function which calls the evaluate() function to get the

final output text from our transformers.

3.3 Evaluation

Evaluating the effectiveness of summaries is a prominent topic in the field of natural language

processing. A number of methods can be used to perform the evaluation, including having

human evaluators and using precision/recall measurements.

3.3.1 BLEU Score

In natural language processing, the BLEU (Bilingual Evaluation Understudy) score is also

used as an evaluation metric for summarization tasks. It measures the similarity between

the machine-generated summary and one or more human-generated summaries of the same

text.

To calculate the BLEU score for a summary, the summary is first segmented into n-grams

(contiguous sequences of n words). Then, the n-grams of the machine-generated summary

are compared to the n-grams of the human-generated summaries to determine the degree of

overlap.

The BLEU score ranges from 0 to 1, with higher scores indicating greater similarity

between the machine-generated summary and the human-generated summaries. Typically,

the BLEU score is calculated for n-grams of different lengths (such as unigrams, bigrams,

trigrams, and so on) and then a weighted average is taken to obtain the final score.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(3.6)

where:

BP is the brevity penalty factor N is the maximum n-gram order wn is the weight assigned

to the n-gram order pn is the precision of the n-gram matches, defined as the number of n-

grams in the generated text that match at least one of the reference texts, divided by the

total number of n-grams in the generated text. The brevity penalty factor is defined as:

BP =

1 if c ≥ r exp
(
1 − r

c

)
if c < r

(3.7)

where c is the length of the generated text and r is the effective reference length, which

is the closest reference length to the generated text length.

Note that the weights assigned to each n-gram order can be set to any desired value, but

are typically set to 1/N .
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The steps we followed to calculate the BLEU score between a text and its summary

1. Collect a set of human-generated summaries of the text.

2. Preprocess the text and summary, which may include steps such as tokenization, stem-

ming, and stop word removal.

3. Choose the n-gram length to use for the calculation (usually 1-4).

4. Generate n-grams for both the machine-generated summary and the human-generated

summaries.

5. Calculate the precision of each n-gram in the machine-generated summary by counting

how many times it appears in the human-generated summaries.

6. Calculate the brevity penalty, which penalizes overly short machine-generated sum-

maries, by comparing the length of the machine-generated summary to the length of

the shortest human-generated summary.

7. Combine the precision scores with the brevity penalty to obtain a final score for the

machine-generated summary.

8. Repeat the process for each machine-generated summary and compute the average

BLEU score across all of them.
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Python script used to calculate BLEU score

import nltk

from nltk.translate.bleu_score import sentence_bleu

# Preprocess the document and summary (tokenization and lowercasing)

document_tokens = nltk.word_tokenize(document.lower())

summary_tokens = nltk.word_tokenize(summary.lower())

# Calculate BLEU score for 1-gram and 2-gram precision

bleu_1gram = sentence_bleu([document_tokens], summary_tokens, weights=(1, 0, 0, 0))

bleu_2gram = sentence_bleu([document_tokens], summary_tokens, weights=(0.5, 0.5, 0, 0))

3.3.2 ROUGE Evaluation

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a widely used evaluation

metric for automatic summarization in natural language processing. ROUGE measures the

overlap between the automatic summary and a reference or gold-standard summary, typically

generated by a human annotator. The overlap is computed as the number of common n-

grams (word sequences) between the two summaries, divided by the total number of n-grams

in the reference summary. The n-gram length is specified by the user, but the most common

values are unigrams (single words) and bigrams (word pairs). The ROUGE score ranges from

0 to 1, with a score of 1 indicating a perfect match between the automatic and reference

summaries. ROUGE is widely used because it is simple to compute and provides a quick

and intuitive evaluation of the quality of the automatic summary.

The formula for the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) score

between an automatic summary S and a reference summary R can be expressed as:

ROUGE =

∑N
n=1 count(n-gram(S) ∩ n-gram(R))∑N

n=1 count(n-gram(R))
(3.8)

where n-gram(S) and n-gram(R) are the sets of n-grams (word sequences of length n) in

the automatic and reference summaries, respectively, and N is the maximum length of the

n-grams.

The numerator of the formula computes the count of common n-grams between the two

summaries, while the denominator computes the total number of n-grams in the reference

summary. The resulting ROUGE score is a value between 0 and 1, with a score of 1 indicating

a perfect match between the automatic and reference summaries. The most common values

for n are 1 for unigrams (single words) and 2 for bigrams (word pairs).
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In ROUGE, ”r” (recall), ”p” (precision), and ”f” (f-score) are the three evaluation mea-

sures that are commonly reported.

• Recall (r) measures the proportion of relevant information in the reference summary

that is present in the generated summary.

• Precision (p) measures the proportion of relevant information in the generated sum-

mary that is present in the reference summary.

• F-score (f) is the harmonic mean of precision and recall and provides a single score

that balances both measures.

The steps that can be used to compare a document and its summary using ROUGE are:

1. Pre-processing: Clean and pre-process the document and its summary to remove any

unwanted characters, symbols, or stop words. This step is important for ensuring that

the ROUGE scores are meaningful and accurately reflect the quality of the summary.

2. Tokenization: Tokenize the document and its summary into individual words or

phrases, depending on the desired level of granularity.

3. Calculate n-grams: Calculate the n-grams (sequences of n words) in both the docu-

ment and its summary. The most commonly used n-grams are unigrams (single words)

and bigrams (pairs of words).

4. Compute recall: Compute the recall score, which is the number of n-grams in the

summary that appear in the document, divided by the total number of n-grams in the

document.

5. Compute precision: Compute the precision score, which is the number of n-grams

in the summary that appear in the document, divided by the total number of n-grams

in the summary.

6. Compute ROUGE-n score: Compute the ROUGE-n score, which is a weighted

harmonic mean of recall and precision scores. The weighting factor determines the

relative importance of recall and precision in the ROUGE-n score.

7. Repeat for different n-grams: Repeat the above steps for different values of n to

calculate the ROUGE-n scores for different levels of granularity.
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8. Interpret the results: The ROUGE scores can be interpreted to determine the

quality of the summary. A high ROUGE score indicates that the summary is a good

representation of the document, while a low ROUGE score indicates that the summary

is not a good representation of the document.
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Python script used to calculate ROUGE Score

from rouge import Rouge

# Define the document and summary text

document = ‘‘This is a long document with some important information.‘‘

summary = ‘‘This document contains important information.‘‘

# Create a Rouge object

rouge = Rouge()

# Calculate the ROUGE scores

scores = rouge.get_scores(summary, document)

Rouge-1 Score

ROUGE-1 score measures the unigram (word-level) recall between a candidate summary and

a reference summary. In other words, it calculates the number of overlapping words between

the candidate summary and the reference summary, divided by the number of words in the

reference summary. The score ranges from 0 to 1, with a higher score indicating a higher

level of overlap and a more accurate summary.

ROUGE-1 is commonly used for evaluating the quality of automatic summarization models,

as it provides a simple and intuitive measure of the amount of overlap between the candidate

summary and the reference summary. Additionally, ROUGE-1 can be used to compare the

performance of different summarization models and to evaluate the improvement of models

over time.

Rouge 2 Score

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a suite of evaluation metrics

for automatic summarization and machine translation. ROUGE-2 score is one of the metrics

in the ROUGE suite.

ROUGE-2 score measures the bigram recall between a candidate summary and a reference

summary. In other words, it calculates the number of overlapping bigrams (pairs of consec-

utive words) between the candidate summary and the reference summary, divided by the

number of bigrams in the reference summary. The score ranges from 0 to 1, with a higher

score indicating a higher level of overlap and a more accurate summary.
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ROUGE-2 is used in conjunction with ROUGE-1 to provide a more comprehensive evalu-

ation of the quality of automatic summarization models. While ROUGE-1 measures the

word-level overlap between the candidate summary and the reference summary, ROUGE-2

provides a measure of the phrasing and coherence of the candidate summary.

ROUGE-2 is commonly used in natural language processing (NLP) and information retrieval

(IR) to evaluate the quality of automatic summarization models, as well as machine trans-

lation models, dialogue systems, and other text generation models.

3.4 Significant word detection

Significant word detection, also known as keyword extraction, is the process of automatically

identifying important or meaningful words and phrases from a given text. This task is

essential in natural language processing and text analysis, as it allows researchers, businesses,

and other organizations to quickly understand the main topics, themes, and sentiments

present in large amounts of textual data.

There are various methods for detecting significant words from text, including statistical

techniques such as TF-IDF (Term Frequency-Inverse Document Frequency), which measures

the importance of a word in a document by considering its frequency in that document and

inversely proportional to its frequency in the whole corpus of documents. Other methods

include using machine learning algorithms like Naive Bayes or Neural Networks.

Significant word detection has numerous applications, including search engine optimiza-

tion, social media analysis, sentiment analysis, and automated text summarization. By

identifying the most important keywords and phrases in a piece of text, businesses and re-

searchers can gain valuable insights into consumer behavior, public opinion, and emerging

trends.

3.4.1 Identifying the key words and phrases

We use LSA (Latent Semantic Analysis) for identifying the most relevant terms in a given

document or corpus. It achieves this by analyzing the relationships between the terms and

their co-occurrence patterns, allowing it to identify the underlying semantic structure in

the text. The process of identifying key words with LSA involves preprocessing the text,

converting it into a term-document matrix, applying SVD to reduce its dimensionality, and

using the resulting matrix to identify the most important terms based on their association

with the underlying semantic structure. The key words identified by LSA can be used to

summarize the main topics or themes in the text, making it useful for information retrieval

and document categorization tasks. By leveraging LSA’s ability to identify latent semantic

structure, it can help identify the most relevant and important terms in a document or
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corpus, allowing for more effective analysis and understanding of the text.

3.4.2 Heading Generation

We use various modules from the Natural Language Toolkit (NLTK) library such as stop

words, wordtokenize , WordNetLemmatizer, and heapq to perform text processing tasks like

tokenization, lemmatization, stopword removal, and word frequency counting. The function

first preprocesses the article text by converting it to lowercase, tokenizing it into individual

words, and removing stop words and punctuations. Then it calculates the frequency of each

word in the preprocessed article text,then each word is frequency normalized and selects the

two most frequent words as the basis for the header. The header is returned as a list of the

two most frequent words joined together.

3.5 Software Development Approach

We intend to develop the project as a web application GUI (Graphical User Interface) based

on REACT that incorporates different NLP techniques, written in PYTHON to achieve the

entire desired tasks. Basically, the web application will run the python script in the local

host in order to trigger the ML model.

The overall software development process can be stated as:

1. Data Collection: Data collection will be done through a survey and some data could

be extracted from open source dataset collection like Kaggle, Watson studio, IBM

dataset, etc.

2. Training and testing: The best suitable ML algorithm will be chosen through dif-

fident experiments/trials and the obtained data is trained and tested for model devel-

opment

3. Model Development: Developing ML model based on train/test result

4. GUI Development: Graphical user interface development as a desktop application

5. Integrating models and the GUI: Integration of the developed model with the

web application to provide an attractive interface
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4. System Design

Figure 4.1: Overall System Design

At first, we collect text and preprocess it for the removal of punctuations and stop words.

We tokenize the text and extract features from the text such as frequency of words, Entropy,

length of sentences, the position of sentences, proper nouns, sentence-to-sentence similarities,

etc. Then our model summarizes the text and generates the output with a title and summary.

For numeric data, our model outputs it in a tabular format. Then the output is fed into the

Evaluation Model and Feedback is observed which is provided to our model and enhances

our model.
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4.1 System Elements

Figure 4.2: Full Block Diagram
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4.1.1 Pre-processing

Figure 4.3: Preprocessing Block Diagram

Before passing the data to the LSA Block we perform the following data processing on the

raw input data:

• At first the input data is tokenized by splitting the raw text into individual words.

• Each token is converted into lowercase to standardize the data and reduce the size of

vocabulary.

• Stop words and punctuation which does not carry much significance are removed
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• Each token is converted into its corresponding lemma ie. root form which reduce the

size of vocabulary.

• Numbers and special characters are removed.

• Each token is vectorize using the bag of words.

• Finally the data is subjected to LSA Processing.

4.1.2 Latent Semantic analysis

Figure 4.4: LSA Block Diagram

After pre-processessing, a term-document matrix is created, which represent the frequency

of therms in each documents. LSA uses Singular Value Decomposition(SVD) to reduce the

dimensionality of term document matrix and capture the latent semantic structure of the

text. The Latent semantic analysis (LSA) gives the weighted of document belonging to

different topics. Summarization is done by selecting the top N documents from each topic

depending on weighted.

This gives summarization where we get the higher weighted document form each of the topics

for the summary.

4.1.3 Sentence Mapping

Figure 4.5: Sentence Mapping Block Diagram
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After LSA , We get a list of significant words according to the correlation of those words. We

ask for the compression ratio for the summary and take those two and compare the words

with the original text which yeilds us the final extractive summary. Required words are

selected according to the compression ratio and the final extraction is done after mapping

those words with the original article.

4.1.4 Transformer

Figure 4.6: Transformers Block Diagram

After we obtain extractive summary, We supply it to the transformer and the greedy decoding

algorithm with the model and the extractive summary implements tokenizer and detokenizers

to give us the final abstractive summary.
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5. Results and Discussion

For the evaluation of our model, we have used 50 texts on random topics taken from different

internet sources and the reference summary is generated using ChatGPT.

5.1 Model Evaluation

The individual BLEU and ROUGE scores are mentioned below.

5.1.1 BLEU

We have calculated the BLEU score using 1-gram and 2-gram, comparing the summary

generated by our model with the original text and with the reference summary and the

obtained results are tabulated below.

With the original text

Summary Type Average BLEU-1 Score

Small 0.1257292

Medium 0.1352912

Large 0.1558831

Abstractive 0.1032881

Summary Type Average BLEU-2 Score

Small 0.06140072

Medium 0.08256357

Large 0.09292331

Abstractive 0.07532681

Table 5.1: Average BLEU Score With Original text

With the reference text

Summary Type Average BLEU-1 Score

Small 0.1032424

Medium 0.1164532

Large 0.12413142

Abstractive 0.1412331

Summary Type Average BLEU-2 Score

Small 0.1140072

Medium 0.0956359

Large 0.1097331

Abstractive 0.1053241

Table 5.2: Average BLEU Score With Reference Summary

This table above presents the results of evaluating machine-generated summaries using

the BLEU score metric.The first subtable shows the average BLEU-1 and BLEU-2 scores
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obtained when comparing machine-generated summaries with the original text. Overall,

theresults indicate that the machine-generated summaries have higher BLEU scores when

compared to the original text than when compared to human-generated reference summaries.

Additionally, the BLEU-1 scores are generally higher than the BLEU-2 scores for all types

of summaries.

5.1.2 ROUGE Evaluation

For small length summary

Rouge-1 Type Average Score

r 0.547341347

p 0.413546623

f 0.684176683

Table 5.3: Average Rouge-1 score of small length summary with reference summary

Rouge-1 Score Based on the values, it appears that the summarization algorithm has

a higher recall than precision, meaning that it tends to include more unigrams from the

reference summaries than necessary, but may miss some important content. The F-measure

score of 0.684 suggests that overall, the summarization algorithm is performing reasonably

well in terms of capturing the important content of the reference summaries.

Rouge-2 Type Average Score

r 0.219019805

p 0.1527248

f 0.168539058

Table 5.4: Average Rouge-2 score of small length summary with reference summary

Rouge-2 Score These scores indicate the performance of the summarization algorithm in

terms of its ability to capture the important bigram content of the reference summaries. The

scores are relatively low, suggesting that the summarization algorithm may not be performing

well in terms of capturing the important bigram content.

Rouge-l score These scores indicate the level of agreement between the generated sum-

mary and the reference text, with higher scores indicating better agreement.

The recall score indicates how much of the reference text was captured in the summary, while
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Rouge-l Type Average Score

r 0.40906756

p 0.3076767

f 0.334966801

Table 5.5: Average Rouge-l score of small length summary with reference summary

the precision score indicates how much of the summary is relevant to the reference text. The

F1-score is a harmonic mean of the recall and precision scores, giving equal weight to both

metrics.

Overall, these scores suggest that the generated summary has captured around 40% of the

information in the reference text, while including around 30% of relevant information. The

F1-score, which takes both recall and precision into account, is around 33%, indicating that

there is room for improvement in terms of the quality of the generated summary.

For medium length summary

Rouge-1 Type Average Score

r 0.465829322

p 0.413546623

f 0.356628296

Table 5.6: Average Rouge-1 score of medium length summary with reference summary

Rouge-1 Score The table shows the average Rouge-1 score for a medium length summary

compared to a reference summary. Rouge-1 is a measure of the overlap between the summary

and the reference summary based on unigrams. The average Rouge-1 recall score is 0.4658,

meaning that the summary contains 46.58% of the unigrams that are present in the reference

summary. The average Rouge-1 precision score is 0.4135, indicating that 41.35% of the

unigrams in the summary are also present in the reference summary. The average Rouge-1

F1 score, which is the harmonic mean of recall and precision, is 0.3566.

Rouge-2 Score The table shows the average scores for Rouge-2 evaluation metric for a

medium-length summary compared to a reference summary. The Rouge-2 metric measures

the overlap of bigrams (two consecutive words) between the two summaries. The ”r” score

of 0.2348 indicates that 23.48% of the bigrams in the reference summary are also present in

the generated summary. The ”p” score of 0.1411 indicates that 14.11% of the bigrams in the

generated summary are also present in the reference summary. The ”f” score of 0.1615 is the
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Rouge-2 Type Average Score

r 0.234789521

p 0.141130966

f 0.1614725

Table 5.7: Average Rouge-2 score of medium length summary with reference summary

harmonic mean of the ”r” and ”p” scores, indicating the overall similarity between the two

summaries. Overall, these scores indicate that there is some overlap between the generated

summary and the reference summary

Rouge-l Type Average Score

r 0.437873077

p 0.330837299

f 0.359466944

Table 5.8: Average Rouge-l score of medium length summary with reference summary

Rouge-l score This table shows the average Rouge-l score of a medium-length summary

compared to a reference summary. The Rouge-l score is a metric used to evaluate the quality

of a summary by comparing it to a reference summary. The average Rouge-l score is 0.437,

which means that the summary has captured 43.7% of the important information from the

reference summary. The precision score (p) is 0.330, which means that 33.0% of the summary

is relevant to the reference summary. The F1 score (f) is 0.359, which is the harmonic mean

of precision and recall, and indicates an overall balance between precision and recall.

For large length summary

Rouge-1 Type Average Score

r 0.583919428

p 0.291044855

f 0.373552029

Table 5.9: Average Rouge-1 score of large length summary with reference summary

Rouge-1 Score The table shows the average Rouge-1 scores for a large length summary

with a reference summary. Rouge-1 evaluates the overlap between unigram (single word)

sequences in the summary and reference summary. The results indicate that the recall score
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(r) is higher than the precision score (p), suggesting that the summary contains more of

the important information in the reference summary, but also more extraneous information.

The F1 score (f) is the harmonic mean of recall and precision, and provides a balanced

measure of performance. In this case, the F1 score is 0.3735, which indicates comprehensive

performance.

Rouge-2 Type Average Score

r 0.325176236

p 0.134177558

f 0.18023235

Table 5.10: Average Rouge-2 score of large length summary with reference summary

Rouge-2 Score These scores indicate the performance of the summarization system in

generating a summary that captures important information from the reference summary.

The Rouge-2 recall score suggests that the system is able to capture about 32.5% of the

important information from the reference summary. The precision score suggests that the

system generates some irrelevant content as well, as it captures only about 13.4% of the

important information from the reference summary. Finally, the F1 score provides a balanced

measure of both precision and recall, and it is 0.18023235 in this case.

Rouge-l Type Average Score

r 0.553862214

p 0.273217775

f 0.352078276

Table 5.11: Average Rouge-l score of large length summary with reference summary

Rouge-l score The table reports the average scores for recall (r), precision (p), and F1-

score (f). The average Rouge-l recall score is 0.553, which means that on average, the

generated summary contains 55.3% of the information present in the reference summary.

The average precision score is 0.273, indicating that on average, 27.3% of the information in

the generated summary is also present in the reference summary. The average F1-score is

0.352, which is the harmonic mean of the recall and precision scores.
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For abstractive summary

Rouge-1 Type Average Score

r 0.455062454

p 0.352343853

f 0.38316489

Table 5.12: Average Rouge-1 score of abstractive summary with reference summary

Rouge-1 Score This table shows the average Rouge-1 score for abstractive summary with

reference summary. The Rouge-1 recall score is 0.455062454, which means that the abstrac-

tive summary captures 45.5% of the important information from the reference summary.

The Rouge-1 precision score is 0.352343853, which means that 35.2% of the information in

the abstractive summary is relevant to the reference summary. The F1-score, which is the

harmonic mean of recall and precision, is 0.38316489. This indicates the overall effectiveness

of the abstractive summary in capturing important information while maintaining relevance

to the reference summary.

Rouge-2 Type Average Score

r 0.227004122

p 0.154357375

f 0.174448925

Table 5.13: Average Rouge-2 score of abstractive summary with reference summary

Rouge-2 Score The table shows the average Rouge-2 score for the abstractive sum-

mary with the reference summary. The Rouge-2 score for this summary is r=0.227004122,

p=0.154357375, and f=0.174448925. These scores indicate the quality of the abstractive

summary, with higher scores indicating better quality.

Rouge-l Type Average Score

r 0.422394129

p 0.324339566

f 0.353952306

Table 5.14: Average Rouge-l score of abstractive summary with reference summary

46



Rouge-l score The average Rouge-l score of the abstractive summary with the reference

summary is 0.422, indicating that the model’s performance is moderate in terms of capturing

the related information in the source text. The recall score (r) is 0.42, which means that the

model has identified 42% of the important information in the source text. The precision score

(p) is 0.32, indicating that the model has generated only 32% of the important information

present in the reference summary. The F1 score is 0.35, which is a harmonic mean of precision

and recall.
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6. Conclusion

The evaluation of the text summarization model in this project revealed some interesting

findings regarding the performance of the model. The Rouge scores obtained for differ-

ent summary lengths indicated that the model performed best for reference summaries of

medium length. This suggests that the model was most effective in summarizing texts that

were not too short or too long, which is an important consideration for real-world applica-

tions where texts of varying lengths need to be summarized.

Additionally, the Rouge scores were consistently higher for reference summaries than for ab-

stractive summaries, indicating that the model had more difficulty generating its own sum-

maries from the original text than simply extracting important sentences. This is a common

challenge in abstractive summarization, where the model needs to capture the essence of

the text and convey it in its own words. The finding highlights the importance of carefully

selecting the appropriate summarization technique for a given task, as well as continuing to

explore ways to improve the performance of abstractive summarization techniques.

However, it is important to note that the Rouge scores provide only a limited evaluation

of the summarization model, as they do not take into account the semantic coherence and

readability of the generated summaries. Therefore, it is necessary to supplement the Rouge

scores with other evaluation metrics that provide a more comprehensive assessment of the

quality of the summaries.

Despite these limitations, the Rouge scores and BLEU scores tables provided valuable in-

sights into the performance of the extractive and abstractive summarization techniques on

the given text dataset. These metrics can help in selecting the most suitable approach for

specific summarization tasks, as well as identifying areas for improvement and future re-

search. Overall, the evaluation of the text summarization model in this project provides a

solid foundation for further exploration and development of text summarization techniques.
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7. Web Application

The selection of a tech stack is a crucial decision in any web application development project,

as it can significantly impact the performance, scalability, and overall success of the applica-

tion. In the text summarization project, Flask and React JS were chosen as the tech stack

for building the web application.

Flask is a lightweight and highly customizable Python web framework that allows for rapid

development of web applications. It is known for its simplicity, flexibility, and ease of use.

Flask provides tools and libraries for handling web requests, managing data, and creating

APIs, making it a popular choice for building RESTful web services.

React JS, on the other hand, is a widely used JavaScript library for building user interfaces.

It enables the creation of highly scalable and interactive web applications with a component-

based approach. React is known for its high performance and reusability, making it a popular

choice for building modern web applications.

Together, Flask and React JS provide a powerful combination for building complex and

modern web applications. Flask provides the backend logic for the application, while React

allows for the creation of dynamic and responsive user interfaces. The two communicate

with each other through APIs, allowing for a seamless user experience.

In the project, Flask was used to handle the server-side logic, including data storage and

retrieval, while React was used to create a dynamic and responsive user interface for inter-

acting with the summarization model. The Flask backend provided a RESTful API for the

React frontend to consume, using the Axios library to make API calls. The React compo-

nents were designed and styled using Bootstrap, while state management was handled using

Redux.

The use of Flask and React JS allowed for the creation of a single-page application, where

the user interface was updated dynamically without requiring a page refresh. This provided

a seamless user experience, allowing users to quickly and easily input their text and view

the generated summaries.

Overall, the selection of Flask and React JS as the tech stack for the text summarization

project proved to be an effective choice, allowing for the creation of a high-quality web appli-

cation that could handle complex functionality while providing an engaging user experience.

The Flask and React JS combination provides developers with a powerful and flexible tech

stack that can be used to create a wide range of modern web applications.
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7.1 Application Screen-snaps

Home Screen

Figure 7.1: First Home Screen

Figure 7.2: Second Home Screen
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Figure 7.3: Third Home Screen

Figure 7.4: Fourth Home Screen
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Summary Genertion GUI

Figure 7.5: Summary Generation GUI

Figure 7.6: LSA Summary Generated in GUI
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Figure 7.7: Abstraction Summary Loading Screen

Figure 7.8: Abstraction Summary Finally Loaded
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8. Limitations and Future Enhancement

Despite the promising results achieved by the text summarization model developed in this

project, there are several limitations that should be considered when interpreting the findings.

8.1 Limitations

• The current summarization model may not work well for all types of text, such as

highly technical or specialized content.

• The evaluation metrics used to assess the quality of the summaries may not provide a

complete picture of their usefulness and effectiveness in real-world scenarios.

8.2 Future Enhancements

• The model can be improved by incorporating more advanced transformer models and

experimenting with different text representation techniques.

• The project can be enhanced by developing a more interactive approach that incorpo-

rates user feedback to produce more personalized summaries.

• The development of a more comprehensive evaluation framework can help provide a

more nuanced assessment of the quality of summaries.

• The project can be expanded to handle different types of text such as scientific papers

or social media posts by using specialized approaches.

• Exploring the potential of incorporating more diverse data sources, such as images or

videos, to produce more informative summaries.
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