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Abstract

‘Automatic Music Generation’ composes short pieces of music using different parameters like
notes, pitch interval, and chords. This project uses the concept of RNN (Recurrent Neural Network)
and LSTM (Long Short Term Memory) to generate music using models. The traditional way of
composing music requires much trial and error. With automatic music generation, we can predict
suitable follow-up music using AI rather than testing music in a studio, effectively saving time.

The main focus of this project is to use the LSTM-NN model and algorithm approach to generate
music while ensuring that the output is synchronized between two separate outputs. The dataset
used in this project was sourced from the ESAC Folk database[1]. The original format of the dataset
was in .kern file format, which was converted into MIDI format for use in this project. MIDI files
were used as a music data source, encoded into a time-series notation format, and used to train the
model. This project uses the concept of dependencies on the time series music sequence to train
a model. The trained model can generate time series notation and decode our generated music to
obtain a music file.

Furthermore, we used the concept of tone matrix for the algorithmic approach to generate music
that accepts the image as input and creates music based on the image. The image is resized, and a
parameter is given to the tone matrix according to pixel intensity. This music can be synchronized
with music generated by the AI model to get consistent and pleasing music.

Keywords: music, midi, lstm, generation, model, notes, tone-matrix
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1. Introduction

Music has always been integral to human culture and can evoke strong emotions and memories.
With the advancements in technology, it is now possible to use machine learning techniques to
generate original pieces of music. In this project, we implement an AI music generation system
using Python and machine learning, which allows users to generate new music by specifying the
musical instruments.

We will describe the implementation of our AI music generation system in detail, including the
machine learning models and techniques used, the dataset and preprocessing steps, generation of
music, and evaluation of the generated music. We will also incorporate an algorithmic approach to
generate music based on input images.

We plan to use a real music dataset to train our machine-learning model. Real music can provide
a more diverse and representative dataset for training, as it contains a wide range of musical styles
and genres. This can help the models learn to generate more realistic music. This project aims to
contribute to the growing body of research on AI music generation and demonstrate the feasibility
of using machine learning to generate creative music.

1.1 Background

Music has always played a central role in human culture, and the development of new technolo-
gies has significantly impacted how we create, consume, and share music. Bringing music to the
computer has been advancing for over half a century. Multiple scientific branches, including mu-
sicology, mathematics, computer science, signal processing, and psychology, have been united in
numerous ways, creating an impactful collision of art, science, and technology. This interdisci-
plinary growth has constantly been moving and challenging. The introduction of AI and ML has
proved to be a significant milestone.

There are several approaches to AI music generation, ranging from rule-based systems that follow
predetermined musical structures to machine learning algorithms that learn patterns in existing
music and use this knowledge to generate new compositions [3]. Machine learning algorithms, in
particular, have shown great promise in the generation of music, as they can analyze large amounts
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of data and generate new compositions that are coherent and follow the conventions of a particular
genre or style.

Algorithmic composing using formalizable methods—Guido of Arezzo was the first to contain the
music theory, mainly known as “solfeggio”, in 1025 [4]. He created a method to automate the con-
version of text into melodic phrases. Electronic instruments communicate with computers through
a Musical Instrument Digital Interface (midi) protocol containing information such as pitch and
duration. We can use midi for the composer to compose an orchestra without having the orchestra
itself. We could create every part of the orchestra from midi with a synthesizer.

MIDI is a protocol for playing, editing, mixing, and recordingmusic. MIDI note notationmaps note
names to a certain number. It makes it easy to represent music and analyze music using a computer.
The basic form ofmusic is composed of different notes in various ways to form a pleasing sound. So
the musical synthesizer also used a midi file while composing, mixing, and recording song audio.

In the early 1950s, Iannis Xenakis used the concepts of Statistics and Probability to compose music
– popularly known as StochasticMusic [5]. He definedmusic as a sequence of elements (or sounds)
that occurs by chance. Hence, he formulated it using stochastic theory. His random selection of
elements was strictly dependent on mathematical concepts. Instead of using specific mathematical
concepts, we use a model to train and generate on a probabilistic basis concerning previous notes
and trained models.

An audio file has three main parts explained below:

• Pitch: Pitch explains the measure of how high or low a sound is.

• Notes: A, B, C, D, E, F, and G are the notes included in the music.

• Octave: The octave explains the pitch range of any note.

We can change the music can by transposition. Transposition is changing the pitches of a musical
note by certain intervals. In transposition, the key changes, but the musical content remains the
same. We can generate new music by creating a sequence of notes that is pleasing to hear. This
project also focuses on generating music based on previous notes.

This project focuses on generating music automatically using Recurrent Neural Network (RNN)
and LSTM. We do not necessarily have to be music experts to generate music; even a non-expert
can generate decent-quality music using RNN. Being able to generate decent music using AI is a
giant leap for the industry of music.
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1.2 Problem Statement

Several techniques have been proposed and implemented to enable automatic music generation
using machine learning, such as recurrent neural networks (RNNs) [6] and generative adversarial
networks (GANs) [7]. While some systems have been developed to generate music based on user
input, the results are often unpredictable. The generated music lacks the complexity and originality
of human-generated music. There is still a need to improve the accuracy and variability of the
generated music.

One challenge is the need to capture music’s complex and diverse structure, including melody,
harmony, rhythm, and timbre, and generate creative and original music rather than simply repro-
ducing existing compositions. The project will involve researching, designing, and testing machine
learning algorithms and techniques with algorithmic approach of generating music. It involves the
novel concept of using AI music with algorithmic generated music to create pleasing music.

1.3 Objectives

The objectives of this project are as follows:

• Understand musical theory and symbolic music representation.

• Analyze music by pre-processing it into a symbolic representation and handle time-series
data and prediction using Neural Networks.

• Train a model on a large dataset of musical compositions to learn genre or style-specific
features and patterns.

• Implement an interface for users to input their desired instrument and genre to receive a
generated musical composition as output.

• Evaluate different directions music can go using prediction and model network.

• Use the concept of the tone-matrix algorithm to generate music based on given image inten-
sity.

• Developing a novel concept that combines AI music with algorithmic-generated music to
create pleasing and unique compositions.

3



1.4 Scope

This project focuses on generating music using computers without the involvement of musicians.
As technology advances from simple calculations to diagnosing patients, we can also add its scope
to the musical industry. Instead of going to a studio to develop music, we can use AI to generate
music for our songs.

Music, as one of the core inheritances since ancient times, has the effect of healing mental trauma,
expressing one’s feelings, providing mood to work, and many more. Music is more than just an art
form; it is a richly rooted culture with amplified importance in today’s technologically driven and
socially-diverse world. Music can be one of the finest ways to connect people. So automatic music
generation is a project that can bring computer AI closer to human beings.

The gaming industry and content creation space require diverse musical sounds to engage with
their audiences. However, copyright issues can make it challenging to access and utilize copy-
righted music. Automatic music generation projects can help solve this problem by allowing for
the creation of diverse, copyright-free music.

Incorporating automatic music generation technology in the gaming industry and content creation
space can enhance customer engagement and retention. By generating music that is unique and
diverse, businesses can create an immersive and engaging experience for their audience. This can
ultimately lead to a more successful and profitable business model.

Automatic Music generation can improve the music industry by producing different musical sound
effects in melody and bringing various ways to enhance current musical culture. Automatic music
generation helps newbies with no expertise and music experts as they can get new ideas from
generated random music. It can also help people generate music using an algorithmic approach
and compare its output with the generated output from the Neural Network model. It can also
work in music arrangement by using algorithms to rearrange existing pieces of music to create
new versions or remixes. This is done by changing the original piece’s instrumentation, tempo, or
structure or adding new elements, such as vocals or effects.

As musical instruments are expensive to buy and need a team of musicians to create music, we can
use AI to generate music for songs. It makes creating music fast and cost-effective within a limited
time. Variability, interactivity, and creativity are the major challenges and remarkable potentialities
in the functioning of such a model.
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2. Literature Review

Whilewe speculatemusic generation is as old as human society existing for utilitarian to celebratory
purposes, it’s been a short while since the wave of automatization has influenced this faculty. For a
few decades, various research and projects have been carried out for this sole purpose. It is making
music-related actions from classification and completion to generation more computerized. And,
surely, this endeavor will be a long, complex one with results or, evenmore importantly, great utility
and influence. Even the imagination of an intelligent, hugely automated (if not wholly) dynamic
music system is inspirational.

We can see many music-automatizing types of research, projects, and apps. We can divide the deep
learning-based computer systems that generate music into two basic categories [8]:

• Autonomous music-making systems (like Amper Music and Jukedeck) that produce creative
music for commercials and documentaries.

• Computer-based settings that support live musicians (e.g., FlowComposer and OpenMusic)

Like the more conventional and hugely digitized, automated study subjects such as computer vision
and NLP, music is sequential, multiple-channeled, and explorable with other variables. But it has
proven to be challenging to work on music due to the following reasons [9]:

• It is temporally hierarchical and dependent.

• Interdependence of an innumerable number of instruments.

• Multiple and complexly interacting basic variables. Jooya Teaching Resources enumerates
eight elements of music: timbre, form, texture, rhythm, melody, harmony, tonality, and dy-
namics.

Human intelligence and creativity are at their peak during music inception, generation, or com-
prehension. It is a very complex development: artificial structuralization of music in its totality
rather than the quality of quantitative information acquisition, analysis, and control. It is a subtle
phenomenon, an abstractly scalable growth. It is understood that musical inspiration in humans,
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even in simplest forms, is un-exactly-generalizable. That doesn’t influence making a system more
and more effective as an intelligent tool for musical susception and creation. There has been much
research on the audio domain. From text-to-speech to AI assistants, we can see many changes
brought about by developing AI. The development in this field also signifies we are close to mak-
ing an intelligent machine. Music generation also falls under the audio domain since we mainly
deal with musical sound generation. Many approaches are proposed for the generation of music
and similar projects.

From the Dice Game by Mozart in 1787, the use of musical grammar (library with comprehension
of necessary knowledge for proper combinations of musical elements), use of concepts of Prob-
ability and Statistics in the early 1950s (stochastic theory) for music generation, we’ve come a
long way today with currently present architectures of deep learning. In the 1970s, the search for
musical grammar was probably the most important development in computer-assisted music anal-
ysis. While computer-assisted analytical approaches drawing on statistics and information theory
developed further, many research projects conducted during the 1980s aimed at the development of
new methods of computer-assisted music analysis. Computer-assisted analytical methods shifted
from statistical methods to methods drawn from Artificial Intelligence and cognitive sciences in
the 1990s.[10] Earlier music generation techniques have used RNNs incorporating temporal de-
pendency. Skuli(2017) and Nelson(2020) used LSTMs to generate musicĊonvolutional neural
networks (CNNs) have recently been successfully utilized to create music, with DeepMind demon-
strating the efficiency of WaveNet[11] in 2016, which employs dilated convolutions to produce
raw audio. MidiNet was developed by Yang (2017) and employed Deep Convolutional Genera-
tive Adversarial Networks (DCGANs) to produce multi-instrument music sequences that can be
conditioned on both the chord of the current bar and the music from the preceding bar. With
MuseGAN, which uses several generators to produce synthetic multi-instrument music that re-
spects inter-dependencies between instruments, Dong advanced the GAN concept in 2017. Dong
employed theWasserstein-GANwith Gradient Penalty (WGAN-GP) for more regular training.[12]
Lastly, attempts have been made to use transformers for music production, like how the most re-
cent developments in NLP have been done with attention networks and transformers. Shaw (2019)
developed MusicAutobot, a multi-task engine that can produce new music and construct harmony
dependent on other instruments. It combines BERT, Transformer-XL, and Seq2Seq [13].

Following is a brief overview of major works in musical automatization:
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2.1 Magenta

Magenta is Google Brain Team’s open-source deep learning research project working to explore
creativity in sketches, images, and music. It was originally envisioned to explore other sides of
developing algorithms that can work as a tool to generate compelling art potentially. It has built
a wide community of coordinating artists, coders, and ML researchers. The core team built open-
source infrastructure around Tensorflow to make art and music, the field and subject exploratory,
exciting, and useful.

It was open-sourced in June 2016 and implements a regular RNN and two LSTMs. It can handle
any monophonic midi file, and the documentation is good, so it’s easy to set up.

Magenta has provided the model trained on tens of thousands of midi files. The advantage of
employing these pre-trained models is that we can start producing new midi files immediately.
Magenta can now only produce a single stream of notes, although efforts have been made to add
piano, guitar, and drums to the created melodies.

The first blog on Magenta [14] shared the following outline of where magenta was headed to:

• Generation: Algorithmic

• Attention and surprise: Artistic

• Storytelling: Combining generation, attention, and surprise, thereby generating a compelling
story

• Evaluation: With evolution, from a suitable audience.

• Other Google efforts: The Artists and Machine Intelligence (AMI) project to connect and
communicate how the two disciplines can interrelate.

Magneta first released a music-generating RNN in TensorFlow after converting the MIDI files to a
format understandable to TensorFlow. This release predicted the next note to a given sequence of
notes by learning probability distribution theorems and analyzing patterns, creating even an entire
melody (unsupervised). Derivation of labels and trying to predict the next note in a sequence made
the model supervised.

This was followed by using lookback RNN or attention RNN (LSTM) to generate long-term struc-
ture in songs, closely followed by connecting a TensorFlow model to a MIDI controller and syn-
thesizer in real-time. Gradually, the use of Reinforcement Learning(RL) to tune RNN, A.I.Duet
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(an interactive experiment allowing duet with a computer by Google Creative Lab, NSynth (Neural
Audio Synthesis), JavaScript API called Magneta.js to help generate music and art on the web, in-
teractive exploration of music styles through Multitrack MusicVAE, and many more with gradual
and remarkable progress in terms of quality of product, the intersection of creativity and machine.
The latest reports of magenta talk outputs like DDSP-VST (neural audio synthesizer for digital au-
dio workstation) and auto-regressive long-context music generation with Perceiver AR( generates
music with long-term coherence and structure in both symbolic and audio domains). Magenta has
proved fairly effective in its mission, evolving further as a remarkable pioneer in automatic music
generation [15].

2.2 Deep Jazz

Built-in a thirty-six-hour hackathon by Ji-Sung Kim, deep jazz uses two libraries for deep learning:
Keras and Theano, to generate jazz music. It uses a two-layer LSTM that learns from a midi file
as its input [16]. It is thus a computational music project to create original jazz compositions using
AI. DeepJazz introduces several techniques to enhance the quality of generated music, including a
melody harmonization strategy, a chord progression mapping technique, and a note recombination
mechanism.

2.3 Aiva

Artificial Intelligence Virtual Artist (AIVA), founded in February 2016, focuses on writing classi-
cal and symphonic music, generally emotional soundtracks. It became the first virtual composer
in the history of the world to be honored by a music society (SACEM). AIVA can recognize mu-
sical patterns by reading a sizable collection of previous classical music compositions (authored
by human composers like Bach, Beethoven, and Mozart) and, on this basis, writing on its own.
Deep learning and reinforcement learning architecture form the foundation of the AIVA algorithm.
Since January 2019, the business has made its commercial product, Music Engine, available. It can
create short compositions in various styles that last up to three minutes (rock, pop, jazz, fantasy,
shanty, tango, etc.).AIVA could grasp the principles of music theory and comprehend the art of
music composition thanks to learning from the great figures in musical history.

Additionally, it aided AIVA in building a mathematical model representing what music is. Aiva
then employs this model to create wholly original music. AIVA utilizes CUDA, TITAN X Pascal
GPUs, cuDNN, and the reinforcement of deep learning algorithm principles available in Tensor-
Flow. However, AIVA can only currently write music for the piano; orchestration, composition,
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and production of the piece all require human expertise. It’s also crucial to note that AIVA lever-
ages GPU computing, which has produced a plagiarism checker that can determine whether a track
was composed entirely or partially using data from the database AIVA learned from. In addition,
additional Turing tests with music professionals were done. Participants concur that it is impossible
to differentiate the compositions of AIVA as AI generation or human fabrication [17].

2.4 OpenAI Jukebox

Jukebox is a neural net for music generation as raw audio in various genres and styles. It overcomes
the limitations of symbolic music generators like piano roll (specifying the timing, pitch, velocity,
and instrument of each playable note), like the inability to capture the human voice and other subtler
timbres, dynamics, and expressivity without which music is bland. Direct generation as raw audio
is challenging (Very long sequence: At CD quality, a song of 4 minutes has more than 10 million
timesteps). Jukebox uses an auto-encoder that compresses music as discrete codes to address this
long-range dependency problem.

An approach called VQ-VAE based on quantization is used in which audio is compressed to a
discrete space. Architecture is modified to alleviate codebook collapse (use of random restarts),
maximize the use of upper levels (use of separate decoders, level-wise independent reconstruction
of input), and allow reconstruction of higher frequencies with ease (add a spectral loss to penalize
norm of the difference between input and reconstructed spectrograms). Three levels of VQ-VAE
are used to compress audio by 8x(bottommost level, which produces the best reconstruction), 32x,
and 128x (top level, which retains only essential information), respectively, wherein much of the
audio detail is lost, it sounds noisier but essential information on pitch, timbre, and volume are
retained.

Further, transformers are used to generate codes. Prior models are taught the music code output by
VQ-VAE and generate music in this discrete space. From top to bottom level prior with decreasing
value of compression. Outputs of top-level prior used for long-range music structure have lower
audio quality than others but can capture high-level semantics. These are trained using a simplified
variant of Sparse Transformers as autoregressive models, each having 72 layers of factorized self-
attention in a context of 8192 seconds, corresponding to 24, 6, and 1.5 seconds of raw input at the
top-to-bottom levels, respectively.

Codes are generated using priors, unsampled by un-samplers, and decoded back into raw audio
space using the VQ-VAE decoder. Songs are thus sampled. They curated a new dataset of 1.2
million songs from the web paired with corresponding lyrics and metadata (artist, album, genre,
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year of songs, common moods, or playlist keywords associated) from LyricWiki to train the model.
They did the training on 32-bit, 44.1 kHz raw audio, and random downmixing of right and left
channels was done as data augmentation to produce mono audio. The model clusters the similarity
of data and metadata after learning in an unsupervised way, thus enabling the functionality of artist
and genre conditioning. Furthermore, the encoder-decoder attention layer is structured to align
lyric music, thus enabling lyric conditioning.

From remarkable gap with human-created music, presence of discernable noise, slow (not usable
for interaction), absence of inclusivity of music types in the dataset, and more, there are limits to
what the Jukebox can do; the team is continuously efforting to expand the musicality, other features,
connectivity, inclusivity in this exciting creative space [18].

2.5 MusicBERT

MusicBERT is a large-scale pre-trained model for Symbolic music understanding developed by
Microsoft Research Asia[19]. It focused on understanding music through its symbolic represen-
tation(such as MIDI format). MusicBERT was inspired from BERT (Bidirectional Encoder Rep-
resentations from Transformers) architecture, which has been used in natural language processing
tasks. Due to the presence of additional structural elements in music (such as bars and positions)
and a wider range of diverse information (such as tempo, instruments, and pitch), using pre-training
techniques from natural language processing (NLP) on symbolic music data may result in only
minimal improvements in performance. To improve pre-training techniques for symbolic music
data, the MusicBERT paper proposes several mechanisms, including OctupleMIDI encoding and
bar-level masking strategy [19]. MusicBERT has various applications in music, such as melody
completion, accompaniment suggestion, genre classification, and style classification.

MusicBERT has developed a novel encoding method, OctupleMIDI method [19]. OctupleMIDI
encodes nodes into tuples with eight elements, representing different aspects of music, including
instrument, tempo, time signature, bar position, pitch, duration, and velocity. This reduces the
length of the music sequence compared to REMI encoding, which eases modeling music sequences
by Transformer. MusicBERT uses a bar-level masking strategy as opposed to the masking strategy
in the original BERT for NLP to prevent information leakage while training themodel. MusicBERT
achieved state of the art performance on the symbolic music understanding task.
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2.6 More Researches

Multidisciplinary research and project outputs are observable for music generation using AI taking
different input forms. Many physical to cognitive dimensions are found to have abundantly been
experimented upon. To state a few:

• Researches on sound generation based on image color spectrum using the recurrent neural
network; implementation of transition between color and music characteristics with rationale
for choosing have been done. The neural network has generated musical compositions by
analyzing the correlation between color and musical characteristics. It begins by determining
the most suitable type of neural network for this task, which was found to be recurrent neural
networks with long short-term memory (RNN LSTM). It concludes with an experiment in
which the model is trained on Beethoven’s compositions, and compositions are generated
and evaluated by experts for harmony and melodiousness. The results indicate that the pro-
gram generates melodic compositions but that the model was trained on a small number of
compositions [20].

• Based on the Pix2Pix architecture, a conditional GAN sound is generated from an image by
successively labeling and pairing images and sounds from various points in time and styles,
extracting shared features from the data by investigating several techniques for music feature
extraction, adding multi-modal layers to the GAN and use of a technique for composing
original musical compositions implementing the features generated for generation of sound.
Thus the composition of music this way exemplifies a solution to the question: How does
that image sound? [21]

• A framework to generate music corresponding to the emotion of the person predicted by
a model divisible as the Image Classification Model(identification and classification of the
facial expression into one of the seven major sentiment categories: Happy, Disgust, Angry,
Fear, Sad, Surprise and Neutral by using CNN) and the Music Generation Model(essentially
a Doubly Stacked LSTM architecture to generate corresponding music) [22].

• Generation of music from images connecting the visual and auditory domains using emotion.
The resulting music enriches visual art and provides a form of translation to facilitate the
perception of visual art without relying on the visual system. They used pre-trained image
representations, RNN, and Transformer architectures to build underlying models [23].

• MelNet is a generative model for audio in the frequency domain that DeepAI introduced
in 2019. It was based on a variant of Transformer architecture that introduces the idea of

11



recurrence to the deep self-attention network [24]. MelNet was trained on a large raw audio
dataset, allowing it to generate a wide range of sounds and styles. Additionally, its multi-
scale architecture enables it to generate audio with a high temporal resolution, meaning that
it can generate audio that is more realistic and less choppy than other models

MelNet creates high-resolution spectrogramswith realistic structures on both local and global
scales by combining a highly expressive autoregressive model with a multiscale modeling
approach.MelNet is considered one of the state-of-the-art models for speech synthesis(music
generation is also its part), with its ability to generate high-quality audio, diverse styles, and
genres and its application for other use cases such as speech and environmental sounds.

• In 2016, researchers at Google DeepMind introduced WaveNet[11], a deep neural network
architecture for generating raw audio waveforms. The WaveNet architecture is based on a
fully convolutional neural network (CNN) that uses dilated convolutions to increase the re-
ceptive field of the network without increasing the number of parameters. The model is fully
probabilistic and autoregressive, meaning that the predictive distribution for each audio sam-
ple is conditioned on all previous ones. When applied to text-to-speech, WaveNet achieves
state-of-the-art performance[11].

When used to model music, WaveNet generates novel and often highly realistic musical frag-
ments. For the production of musical sound, it was found that enlarging the receptive field
was crucial. But, Even with a receptive field of several seconds, the models did not enforce
long-range consistency, resulting in second-to-second variations in genre, instrumentation,
volume, and sound quality. Nevertheless, the samples were often harmonic and aesthetically
pleasing, even when produced by unconditional models. WaveNet[11] can also be used as
a conditional music model, generating music given tags specifying, for example, genre or
instruments. The paper reported using the MagnaTagATune dataset, which was cleaned up
by merging similar tags and removing those with too few associated clips[11]. The results
were reasonably good.

• The research paper titled ”DeepJ: Style-Specific Music Generation” presented an end-to-end
generative model that can compose music conditioned on a specific blend of composer styles.
The paper employed the Biaxial LSTM architecture to generate musically plausible results
with measure-level structure[25]. The dataset utilized in this study consisted of music from
various composers, which defined a specific artistic style. The paper advanced the Biaxial
model by incorporating volume and style, resulting in improved quality of the generated
music.

• In the paper ”MIDINET: A CONVOLUTIONAL GENERATIVE ADVERSARIAL NET-
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WORK FOR SYMBOLIC-DOMAIN MUSIC GENERATION”[26], the authors introduce
a model for generating MIDI files using a combination of convolutional neural networks
(CNN) and generative adversarial networks (GAN).The architecture used in this paper is
similar to that of WaveNet. Unlike WaveNet[11], which work on raw audio files, this paper
focuses on understanding music from a symbolic representation of music (ie, MIDI file).
The proposed model includes a conditional mechanism that leverages available prior knowl-
edge, enabling the generation of melodies from scratch, by following a chord sequence, or
by conditioning on the melody of previous bars. This approach allows for greater control
and flexibility in generating music.

• The research paper, ”Automatic Generation of Music with Recurrent Neural Networks” by
François Pachet (2013), proposes a method of generating music using recurrent neural net-
works (RNNs). The author trains an RNN on a dataset of MIDI files and generates new
music by sampling from the learned probability distribution.

The paper begins by discussing the importance of melody and harmony in music and how
these elements can be generated using machine learning techniques. The author then intro-
duces RNNs as a suitable model for music generation due to their ability to handle sequential
data.

The training data for the RNN is a dataset of MIDI files, which contain information about the
pitch, duration, and velocity of notes played in a music piece. The RNN is trained to predict
the next note in a sequence given the previous notes. The model is trained using a maximum
likelihood estimation approach and the cross-entropy loss function.

To generate new music, the RNN is fed with a sequence of notes, and it samples from the
learned probability distribution to predict the next note in the sequence. The author uses
a temperature parameter to control the randomness of the generated music. Higher tem-
peratures produce more random music, while lower temperatures produce more predictable
music.

The paper evaluates the model by conducting a subjective test where human listeners are
asked to rate the quality of the generated music. The results show that the generated music
is perceived as coherent and interesting by human listeners.

One of the advantages of the proposed method is that it generates music with a natural-
sounding structure and melody. However, the paper also notes some limitations of the
method, such as the inability to generate long-term structure and the tendency to produce
repetitive patterns.

So, the paper demonstrates the effectiveness of RNNs in generating music and highlights
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some of the challenges that remain to be addressed in automatic music generation. The
method proposed in the paper can be extended and improved using more advanced neural
network architectures and training techniques[27].

• The paper ”Classical Music Generation with Neural Networks” by Gaëtan Hadjeres and
François Pachet (2016)[28] proposes a method of generating music using a combination of
recurrent neural networks (RNNs) and deep belief networks (DBNs).

The authors use a dataset of MIDI files and train an RNN to predict the next note in a se-
quence. They then use a DBN to model the distribution of notes in the training set, which
allows them to generate new music that is coherent and interesting. The DBN captures the
long-term dependencies and patterns in the music, while the RNN handles the short-term
dependencies and generates new sequences[28].

The paper evaluates the model based on a subjective test where human listeners rate the
generated music based on its coherence and interest. The results show that the generated
music is perceived as more interesting and coherent than randomly generated music.

One of the strengths of this approach is that it can capture the complex structure of music and
generate music that is not only coherent but also interesting. The DBN allows the model to
capture the high-level structure of the music, such as chord progressions and melodic motifs,
while the RNN generates variations and fills in the details.

Another advantage of this approach is that it can generate music in multiple styles. The
authors show that the model can generate music in different styles, such as classical, jazz,
and pop, by training the model on different datasets.

One limitation of this approach is that it requires a large dataset of MIDI files to train the
model. The authors use a dataset of over 23,000 MIDI files, which may not be feasible for
some applications. Additionally, the model is trained offline, and generating music in real
time may require significant computational resources.

The paper by Hadjeres and Pachet presents a promising approach to music generation using
a combination of RNNs and DBNs. The model can generate music that is both coherent and
interesting and can be trained on different datasets to generate music in multiple styles. How-
ever, it requires a large dataset and may not be suitable for real-time music generation[28].
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3. Related Theory

3.1 MIDI

MIDI (Musical Instrument Digital Interface) is a standard protocol for communicating musical
information between digital devices, such as computers and synthesizers[29]. It allows different
devices to connect and exchange information about musical events, such as pitches, rhythms, and
timbres. MIDI data consists of messages that specify various types of musical information, such as
the pitches and duration of notes, the tempo of a piece, and the values of various control parameters
(e.g., volume, panning, pitch bend).

Each MIDI file is a collection of tracks containing events. Events represent notes on/off, tempo,
instrument type, meta-information about the music, etc. Also, each event contains a tick number
and a payload. The tick number is the lowest level of time resolution. The tick number of each
event describes how many ticks passed from the previous event to the current one. The notion of
time in music is defined using the tick, tempo, and resolution. Tempo is the number of beats per
minute (BPM), also called Quarter note per minute (QPM). The resolution is the pulses per quarter
note (PPQ), thus describing how many ticks per quarter note are being played past. The higher the
resolution, the shorter in time one tick.

3.2 Music Theory

Music theory is the study of the principles and practices of music. Music theory includes the study
of scales, modes, keys, notes, and chords, as well as the rules for combining these elements to create
musical compositions. It also includes the study of musical notation, the system used to represent
music in written form, and the study of musical instruments and their characteristics.

3.2.1 Notes

A note is a unit of symbolic representation of a musical sound. This representation is specified
by the following primary features, and there are various ways to express the value of each feature:
[30]
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• Pitch

– How high or low a note sounds depends on its pitch. In Hertz (Hz), the note’s frequency
determines its pitch.

– Pitch is specified by the position vertically on a score.

– Pitch notation consists of a number (often notated in subscript) denoting the pitch class
octave that is a part of the [-1,9] discrete interval, together with the name of the musical
note, e.g., A, A#, B, etc., which is its pitch class.

• Duration

– Absolute values give it, measured in milliseconds(ms) or

– It is defined as a relative value, expressed as a fraction or multiple of a reference note’s

duration, i.e., the whole note �. Some examples are a quarter note ♩ and half note .
• Dynamics

– It is specified by absolute and quantitative value, given by decibels (dB).

– It is also specified by qualitative value, a notation on a score describing how to play
a note that is part of the discrete set [pp, mp, p, mf, f, ff ], ranging from pianis-
simo(softest) to fortissimo(loudest).

3.2.2 Chords

A simultaneous-sounding harmonic set of three or more notes forms a chord. Chords are classified
based on the notes and the extent to which they define the chord’s quality or by inversion, i.e., the
order of stacking notes. Triads, chords with three distinct notes, are themost frequently encountered
chords. From a root note, chords are constructed (also known as the starting note). A chord’s root
note, typically the note with the lowest pitch, serves as its foundation. The type of chord being
played will determine the remaining notes. In music notation, chords are typically represented by a
symbol called a chord symbol, consisting of the chord’s root note and a chord quality. For example,
a C major chord would be represented by the chord symbol ”C,” while a D minor chord would be
represented by the chord symbol ”Dm.”

Chords can also be represented in music notation by showing the notes that make up the chord. This
is typically done by writing the chord’s notes in stacked thirds, with the root note at the bottom.
For example, a C major chord would be represented by the notes C, E, and G, stacked on top of
each other, with the C at the bottom.
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3.2.3 Time Signature

The time signature determines the rhythmic feel of a piece of music. The time signature is usually
written at the beginning of a piece of music and applies to the entire piece unless it is changed
later. It is important to follow the time signature when reading and interpreting music notation, as
it determines the duration and placement of the notes in the music.

A time signature is typically expressed as a fraction, with two numbers written vertically. The
top number of the fraction indicates the number of beats in each measure. The bottom number
represents the type of note that receives one beat. For example, in the time signature 4/4, the
numerator indicates that there are four beats in each measure, and the denominator indicates that a
quarter note receives one beat.

3.2.4 BPM

Beats per minute (BPM) measures the tempo of a piece of music. The BPM value indicates the
number of beats that occur in one minute of music. Tempo indicates the pace of the musical com-
position. Music with a fast tempo, such as dance music, tends to be energetic and lively, while
music with a slow tempo, like ballads, tends to be more mellow and relaxed. It is also important
to consider when mixing and mastering music, as it can affect how it sounds when played back at
different speeds.

3.2.5 Sheet Music

Sheet music is a written representation of music. It is a series of symbols and notations that indicate
how a piece of music should be played. Musicians use sheet music to learn and perform music,
which is an important tool in creating and disseminating music. Sheet music is typically written on
a staff, with five horizontal lines and four spaces on which musical notation is written. Each line
and space on the staff corresponds to a specific pitch, with higher pitches written higher and lower
pitches written lower on the staff. Sheet music also includes symbols and notation that indicate the
duration of notes (how long they are held for), the rhythm of the piece, and other musical elements
such as dynamics (loudness and softness) and articulation (how the notes are played). Fig (3.1)
shows a diagram of notes, rests, names, and values in music theory.
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Figure 3.1: Notes and rests symbol[2]

3.3 Music21

Music21 is introduced as ”a toolkit for computer-aided musical analysis and computational musi-
cology”. It is a Python-based project containing a collection of specialized tools and objects for
music-related general-purpose functions like the study of music, generation of music, analysis of
the symbolic representation of music, and more. It is used for manipulating and analyzing data one
already has or is generating. It doesn’t have a native data format and can work with many common
formats, even extendable to work with more. Based on the type of data, storage of music21 data,
which is not generally required, can be done in various formats corresponding to the type of data
storable.

Music21 works by manipulating symbolic musical data, which is further used to synthesize musical
sound waves. Thus, sound wave generation, exploration, and studies are facilitated by music21.

3.4 Tone Matrix

The tone matrix is a 16×16 sequencing grid consisting of 256 cells. Each row in the grid represents
different notes, and each column represents time. In simple term, the vertical axis represents fre-
quency in increasing order and the horizontal axis represent the time axis. A cell in a tone matrix
gives us frequency at a given time. It allows to create the sound patterns by turning on and off cells
in a grid. It can be used to create short musical patterns or loops that can be repeated and combined
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to create longer pieces of music. The 16x16 grid size is a common format in music sequencing soft-
ware and hardware, as it provides a large enough space to create complex patterns while remaining
manageable and intuitive to use.

Figure 3.2: Example of Tone Matrix with ON (x) and OFF cells

Images of any dimension are provided as input. It’s converted to a black-and-white image of spe-
cific pixels. Then, the image is mapped with the parameters of the tone matrix. The cells with
white pixels are referred to as the ON cells. Finally, the music is obtained.

Our approach to creating the tone matrix from an image has potential applications in music, art, and
multimedia fields. It offers a new and creative way for individuals to express themselves through
sound and allows for a more dynamic and immersive experience for the audience.

Using an image to create a musical sequence can be an innovative and creative approach to mu-
sic composition and a useful tool for musicians and producers. Using visual patterns to generate
musical sequences, new and unique compositions can be created that might not have been possible
using traditional methods.
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3.5 RNN and LSTM

A Recurrent Neural Network can be defined as the generalization of a feed-forward neural network
having an internal memory for performing the same function for every input data. In contrast, the
output of the current input depends on the past computation. In other neural networks, all inputs
are independent, but RNNs can use memory’s internal state to process related sequences. The basic
block diagram of RNN is shown in the figure below.

Figure 3.3: RNN

AsRNNs cannotmemorize data for a long time, Long Short TermMemory (LSTM) solves the long-
term dependency problems of RNNs. The Vanishing Gradient problem can be solved using LSTM.
The model minimizes the loss after every time step by calculating loss concerning some weights
to get the best result. LTSM deals with vanishing and exploding gradient problems by introducing
new gates, such as input and forget gates, which allow for better control over the gradient flow and
better preservation of ‘long-range dependencies’. [31]
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Figure 3.4: LSTM

LSTM solves the problem of long-term dependency. LSTM uses a forget gate to replace data
stored in memory cells if it is not needed in further prediction. Unlike RNN, LSTM consumes
more memory as it stores data for a long period, but it is more suitable for solving problems that
require data dependency in prediction. This project needs LSTM mainly because the generation
of music generally depends on the dependency of earlier notes more accurately to generate more
artistic music.

3.5.1 Forget Gate

The forget gate ft is the first block in the LSTM design. The sigmoid activation function receives
data from the current input Xt and the previous hidden state ht. Past data will be forgotten if the
output value is close to 0 and maintained but hidden if the output value is close to 1. This gate is
employed to remove unimportant data from the model training process. The operation performed
in forget gate is given by[31]:

ft = σ (Wf · [ht − 1, xt] + bf ) (3.1)

where,
t = time-step
ft = forget gate at t
xt = input at t
ht−1 = Previous hidden state
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Wf = Weight matrix between forget gate and input gate
bt = bias at t

3.5.2 Input Gate

The input gate is responsible for the quantification of the importance of new information. In the
input gate, the second sigmoid function receives two arguments: the current state Xt and the pre-
viously hidden state ht−1, which transforms the value between 0(important) to 1(not important).
The tanh function will receive identical data from the hidden and current states. The tanh operator
will build a vector C̃t containing every possible value between -1 and 1 to control the network.
The output values produced by the activation functions are ready for multiplication point-by-point.
Mathematically[31],

it = σ (Wi · [ht−1, xt] + bi) (3.2)

C̃t = tanh (WC · [ht−1, xt] + bC) (3.3)

where,
t = time-step
it = input gate at t
W i = Weight matrix of sigmoid operator between input gate and output gate
bt = bias vector at t
C̃t = value generated by tanh
W c = Weight matrix of tanh operator between cell state information and network output
bc = bias vector at t, w.r.tW c

3.5.3 Cell State

The input gate and forget gate have provided the network with sufficient information. Making a
decision and storing the data from the new state in the cell state comes next. The forget vector ft
multiplies the previous cell state Ct−1. Values will be removed from the cell state if the result is
0. The network then executes point-by-point addition on the output value of the input vector it,
updating the cell state and creating a new cell state Ct. Mathematically[31],

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.4)
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where Ct, ft, it and C̃t are cell gate, forget gate, input gate, and value generated by tanh at time t
respectively and C̃t−1 is cell state information in time t− 1.

3.5.4 Output Gate

The output gate regulates the hidden gate ht. The current input Xt and prior hidden state Xt−1 are
supplied to the sigmoid function, which is then multiplied with the output of the tanh function to
obtain the present hidden state. The final outputs from a traditional LSTM unit are the current state
Ct and the current hidden state ht. Mathematically[31],

Ot = σ (Wo [ht − 1, xt] + bo) (3.5)

ht = Ot ∗ tanh (Ct) (3.6)

whereOt and ht are output gate and LSTM output at time-step(t). Wo and bo are the Weight matrix
of the output gate and bias vector, w.r.tWo, respectively.

3.5.5 Activation function

The sigmoid function, also known as a squashing function, has a set of all real numbers as its
domain, whose range is between 0 and 1. As a result, the output is always between 0 and 1 regardless
of whether the function is given a very big positive or very large negative value as input. The
sigmoid function is used in LSTM networks as a gate activation function to control the flow of
information through the cell state.

In an LSTM cell, the sigmoid function is used in the input gate and forget gate to decide whether
to allow new input into the cell state and whether to forget the previous cell state information. The
output gate of the LSTM cell also uses the sigmoid function to decide how much of the cell state
to output to the next time step.

The sigmoid activation function [32] is given by:

σ(x) =
1

1 + e−x
(3.7)

where x is the input to the function.

The tanh activation function role is similar to the sigmoid function. It has a domain of a set of
all real numbers, and unlike sigmoid, its range is between -1 to 1. In LSTM neural networks, the
hyperbolic tangent (tanh) activation function is used in the cell state update equation and output
gate. In the cell state update equation, the tanh function is used to scale the candidate values and
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control the cell state information flow. It squashes the input values between -1 and 1, which helps
to prevent the cell state from exploding or vanishing during the training process.

In the output gate, the tanh function is used to squish the cell state value between -1 and 1 before
multiplying it with the output gate value. This ensures that the output value is also bounded and
does not grow too large or small. The tanh function also enables the LSTM to selectively forget
or remember information based on the input and previous state values.

The tanh activation function [33] is calculated as follows :

tanh(x) =
ex − e−x

ex + e−x
(3.8)

where x is the input to the activation function.

Softmax is a type of activation function that is commonly used in neural networks, particularly for
multi-class classification problems. The softmax function[34] takes a vector of real-valued inputs
and returns a probability distribution over the possible output classes.

The function works by exponentiating each input value and then normalizing the resulting values
so that they sum to 1. This produces a set of values between 0 and 1 that can be interpreted as the
probabilities of each class being the correct output.

The softmax function[34] can be expressed mathematically as:

σ(−→z )i =
ezi∑K
j=1 e

zj
(3.9)

where z is the input vector of length,K is number of classes in the multi-class classifier, and σ(z)i
is the output probability for class i, ezi is standard exponential function for input vector. The sum
in the denominator ensures that the output probabilities sum to 1.

3.6 Optimizer

An optimizer is an algorithm used to adjust the parameters of a model to minimize the loss function.
The loss function measures how well the model fits the training data, and the goal of training a
machine learning model is to find the set of parameters that minimizes the loss function.

Optimizers are a key component of many machine learning algorithms, including neural networks,
and they play a crucial role in improving the performance of a model on a given task. The opti-
mizer used in this project is Adam Optimizer. Adam (Adaptive Moment Estimation) is a variant
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of stochastic gradient descent that uses moving averages of the parameters to provide running esti-
mates of the second raw moments of the gradients; the term adaptive in the algorithm’s name refers
to the fact that the algorithm ”adapts” the learning rates of each parameter based on the historical
gradient information.

The Adam update rule can be written as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt = θt−1 −
η√

v̂t + ϵ
m̂t

(3.10)

wheremt and vt are the first and second raw moment estimates at time step t, β1 and β2 are hyper-
parameters that control the decay rates of the momentum estimates, m̂t and v̂t is the bias-corrected
versions of the momentum estimates with η step-size, and ϵ is a small constant added to the de-
nominator to prevent division by zero.

3.7 Loss

The loss function measures how well the model can predict the correct output for a given input.
Training a deep learning model aims to find the set of model parameters(i.e., weights and bias) that
minimize the loss function. The loss function used in the project model is KL divergence.
The Kullback–Leibler divergence denotedDKL(P ∥ Q), is a type of statistical distance: a measure
of how one probability distribution P is different from a second, reference probability distribution
Q[35]. It is used in machine learning and information theory to quantify the amount of information
lost when approximating one probability distribution with another.
Mathematically, KL divergence is defined as:

DKL(P∥Q) =
N∑
i=1

p(xi) · (log p(xi)− log q(xi)) (3.11)

where, p and q are two probability distributions.

KL divergence is used as a loss function in machine learning models that are trained to model a
target distribution. KL divergence is used in the generative model, as it measures the difference
between a target distribution and the generative model and minimizes the difference.

25



3.7.1 Regularization

Regularization is a technique that is used to adjust loss function to prevent overfitting and underfit-
ting problem in machine learning models. L1 and L2 regularization are mostly used regularization
techniques to overcome overfitting and underfitting model.

L1 regularization, also known as Lasso Regularization works by adding a penalty term to the loss
function of a model. This penalty term is equal to the sum of the absolute values of the model’s
coefficients multiplied by a regularization parameter, lambda(λ). The greater the value of λ, the
stronger the regularization. Mathematically[36],

L1 = λ
N∑
i=0

|wi| (3.12)

The effect of L1 penalty is to shrink the magnitude of the model’s coefficients towards zero. The
coefficients that are shrunk to zero effectively remove the corresponding features from the model,
resulting in a simpler and more interpretable model[36].

L2 regularization, also known as Ridge regularization, adds a penalty to the loss function that is
proportional to the squared magnitude of the weights. This penalty encourages the model to spread
out the weight values more evenly across all features and can help to reduce the impact of individual
features on the overall model[36].

L2 = λ
N∑
i=0

w2
i (3.13)

Elastic Net regularization is combination of L1 and L2 regularization. It adds a penalty to the loss
function that is a combination of the L1 and L2 penalties. Elastic Net regularization is effective
in cases where there are many features that are highly correlated with each other, as it can help
to identify groups of features that are jointly important for predicting the target variable. The L1
penalty encourages sparsity in the feature weights, while the L2 penalty encourages smoothness
and stability. Then the loss function with Elastic Net regularization is given by[36]:

Loss = Error(y, ŷ) + rλ
N∑
i=0

|wi|+
1− r

2
λ

N∑
i=0

w2
i (3.14)

where,
Error(y, ŷ) is loss function which can be MSE, Kl-divergence, etc
rλ

∑N
i=0 |wi| is penalty of L1 Regularization

1−r
2
λ
∑N

i=0 w
2
i is penalty of L2 Regularization

r is a hyperparameter that controls the relative weighting of the L1 and L2 penalties.
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4. Methodology

Music creation is a complex and multi-faceted field that involves a wide range of factors, including
harmony, melody, rhythm, and other elements. One important aspect of music creation is deter-
mining the next note that harmonizes with the previous note, as this can have a significant impact
on the overall sound and feel of the music. Our model is also based on a prediction of the next
notes based on a sequence of the previous note. We used Long Short Term Memory(LSTM) as a
core concept for developing a generative model for music generation.

We employed the concept of a tone matrix to generate music through an algorithmic approach,
which was inspired by ToneMatrix by Audiotool. Our approach utilized an image to generate a
switch for the tone matrix input. By turning the switch ON or OFF based on the intensity distribu-
tion in the image, we were able to produce pleasant music.

Our research methodology employs a novel concept that combines AI and algorithmic models to
produce aesthetically pleasing music.

The methodology for working on AI generative model is discussed below.

4.1 Block Diagram of Basic Model

The block diagram shown in Figure (4.1) is a general outline of the music generation process using
machine learning. It shows how this project was approached. The various block in the diagram is
discussed below.

Figure 4.1: Basic Block Diagram of AI Model
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4.1.1 Data acquisition

The first step in music generation using machine learning is to collect a dataset of existing music.
The dataset can be in various formats, such as MIDI and kern files for solving music generation
problems. The dataset used in this project was sourced from the ESACFolk database[1]. The ESAC
(Essen Associative Code) and Folk database is a collection of over 21,000 folk music recordings
from various regions across Europe. The database is maintained by the European Broadcasting
Union (EBU) and is freely accessible to the public.

A custom dataset of different piano tracks of Hindi music was also used to train in the same archi-
tecture of the model while experimenting with the model. The purpose of using this custom dataset
was to observe the performance of our generative model when trained with diverse music. The
output generated from that trained model was also pleasing to hear.

4.1.2 Data pre-processing

The next step after collecting the dataset is, pre-processing of data. The library used for the anal-
ysis and pre-processing of the music files was Music21. Music21 is a Python-based toolkit for
computer-aided musicology. Music21 is one of the most used music analysis tools while working
with symbolic music representation. The ESAC Folk database[1] contains music data in the .kern
format. Humdrum Kern is a music notation file format used for representing musical scores. It is a
plain text format that uses a specific syntax to encode musical information, including notes, chords,
and other musical symbols.

The music data from the dataset was converted to MIDI format for use in this project. MIDI is
a commonly used format for representing music data and is well-suited for use in deep learning
models. Midi file is converted to a music21 object using the Music21 library for further analysis
and processing.

4.1.3 Feature extraction

After pre-processing of data, the relevant features of themusic are extracted from the dataset. Music
is composed of different features such as notes, tempo, duration, key, bpm, melody, rhythm, etc.
which make out how music is being played. It is important to choose the most important features
while training the model. And basic construct of music is notes played and the duration up to which
notes are being played.
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Since the main feature of the music is its notes, chords, and rest with their duration for occurrence,
they are taken as the main feature for the training model. For easier interpretation, the parsed
music21 object is first chordify, i.e., notes are changed to chord. Then chords, rest, and duration
are extracted as their primary features for further operation.

When the original file is chordify to extract the feature, and that extracted feature is used to re-
construct the original file, there is a slight difference in the generated file since music depends on
other factors such as bpm, time-signature, etc. But the difference(loss of information) is not quite
significant. The waveform of the raw audio file and its reconstructed file for a duration of 2 seconds
is shown below:

Figure 4.2: Original file waveform of duration 2 sec

Figure 4.3: Reconstructed file waveform of duration 2 sec
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The waveform of a piece of music can be affected by various factors, including the tempo, time
signature, and other rhythmic elements of the music. However, these factors may not necessarily
have a significant impact on the overall sound of the music when it is listened to by a human.

In this project, the extracted notes and durations are initially encoded by mapping them to a unique
integer value, which is then used for training the model. This approach enables the model to process
andmanipulate the music as a sequence of numerical values instead of symbolic data. The encoding
technique employed in this project is one-hot encoding, which involves representing each unique
value in the data as a binary vector with a length equal to the total number of unique values. This
enables the model to better differentiate between different categories of data.

4.1.4 Model training

Once the data has been pre-processed and the relevant features have been extracted, notes and
duration are fed into the embedding layer. The embedding layer represents the notes and duration
of the music as numerical vectors that can be input into a model. An embedding layer is a neural
network layer that learns a low-dimensional representation of the input data. The embedding layer
can learn a representation of the different notes and durations in the music, allowing the model to
process and manipulate these elements more meaningfully.

After the notes and duration had been embedded, they were concatenated into a single layer and
passed through an LSTM (Long Short-Term Memory) layer. LSTM layers are a type of recurrent
neural network layer that is designed to capture long-term dependencies in sequential data. LSTM
was used to model the temporal structure of the music and make predictions about the next notes
and their duration based on the patterns learned from the data.

For our model, we utilized the Adam optimizer with a learning rate of 0.001 and employed the
Kullback-Leibler Divergence (KL-divergence) as the loss function. The model consists of two
dense layers - one for predicting notes and the other for predicting their duration in the music. To
account for the different outputs, we defined separate loss functions for each, with both utilizing
KL-divergence. The operation of the entire model is illustrated below:
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Figure 4.4: Model

Loss Tracking

Tracking of loss is the most important step in any ML-related project, which shows how the model
behaves while training data is visualized using a Loss Graph. The loss graph is a plot that shows
the value of the loss function over time during the training of a machine learning model. The model
always tries to minimize loss.

The loss function used in the training model is KL-Divergence. KL-divergence is used to mea-
sure the difference between two probability distributions. The brief explanation for loss function
KL-divergence used in the model is discussed above. The loss graph of this model while training
ESAC Folk database[1] is shown below:
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Figure 4.5: Training loss

As the model was trained using notes and duration, its respective loss and total loss are shown
in (Figure 4.5). The total loss is the sum of the KL divergences calculated between the predicted
output distribution and the target distribution over all samples in the training set. The model is
then trained to minimize this total loss over multiple iterations. The figure shows that the model is
trained well as loss converges.

Tune hyper-parameter

Tuning the hyper-parameters of a model was done to increase the performance of the model. The
loss function was tracked and observed for the tuning parameter and tested generated output. The
tuned parameter in the LSTM model was several hidden layers and loss function by watching the
training loss and validation loss graph. Through repeated experiments, it was found adding one
or two layers doesn’t change loss much and the model converges quickly with high loss. So the
neuron and layers used in this model are optimum for doing an experiment on a small scale as doing
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research in ML depends on computing power and the size of the dataset to work with.

While working with our custom dataset, we faced difficulties due to the large number of generated
tokens, which led us to introduce L1 regularization for the notes output. As our custom dataset was
diverse yet relatively small, the generated tokens were substantial, and L1 regularization helped
optimize the training process by driving the weights of irrelevant or minimally relevant features to
zero. For the duration output, we used L1L2 regularization, where the L1 part of the regularization
helped in feature selection, while the L2 part helped in reducing the model’s variance.

While working with ESAC dataset[1], which had a greater volume of data and fewer tokens, we
found that regularization was unnecessary as themodel was able to effectively learn the dependency
patterns without it.

4.1.5 Music generation

After training the model, it can be used to generate new music. For music generation, we need
to provide a seed input to the model. We provided a random seed to the model, and it predicts
the follow-up notes and duration based on the patterns it had learned during training. The output
generated by the model is in encoded form, which is then decoded into known notes and durations.
The decoded output is then converted into a music21 stream object and saved as a ’midi’ file.

The music generation program provided additional options for users to control the output music.
Users were able to pass in the time signature and bpm as parameters, which allowed them to control
the rhythm of the music generated by the program. In addition, users were also able to select the
instrument that they wanted to use to play the music. These options gave users a degree of control
over the style and sound of the generated music.

4.1.6 Evaluation

The generated was then evaluated to assess its quality and determine whether it meets the desired
criteria. It was mainly done by listening to music and getting feedback from musicians. This can
provide valuable insights into the overall sound and feel of the music and can help identify any
areas where the generated music may be lacking or could be improved.

4.2 Algorithmic Approach

The block diagram for music generation using an algorithmic approach is shown in fig (4.6).
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Figure 4.6: Block Diagram for music generation using algorithmic approach

The various steps involved in music generation using an algorithmic approach are discussed below:

1. Input: The algorithmic approach used in this project for generating music relies on image
processing and a tone matrix. The processed image serves as a trigger to determine which
note is played by the tone matrix. Additionally, metadata specifying the instrument is pro-
vided to select the appropriate instrument for playing the music.

2. Image Processing: To reduce the dimensionality of the input image, it is first converted into
grayscale. The grayscale image is then resized into a 16x16 pixel image.

The resulting image is then converted into two distinct colors, black and white. The black
and white image of the 16x16 matrix is used as a switch for the tone matrix. The white color
represents the ON switch, and the black color represents the switch is OFF.

There are two methods used to change the grayscale image to ON and OFF switches.

a Max-intensity method: Max-intensity method is used as the default method to generate
monophonic music. In this method, the grayscale image is checked column-wise, and
maximum intensity in that column is made ON and the rest are made OFF. If there is
a presence of more than 3 pixels with the same intensity as the max intensity in the
column, then only three switch positions were chosen for the ON state and others in
the OFF state. This was done to avoid noise in generating music as more than 3 notes
played at the same time didn’t sound good.

b Min-intensitymethod: TheMin-intensitymethod is similar to themax-intensitymethod,
but instead of maximum intensity, the minimum intensity was chosen to make a switch
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to the ON state, and the rest were in the OFF state. Like the max-intensity method,
this method also limits the 3 ON state of the switch in a column. This method was
developed to generate a second musical instrument in an Algorithmic approach.

3. Tone Matrix: The basic concept of tone matrix used in this project is discussed above in the
Related Theory section. The tone matrix has the time axis on the horizontal and frequency on
the vertical axis. While the frequency axis remains constant, the length of the time axis can
be adjusted by increasing or decreasing the number of columns to create music of a specific
length. The ON and OFF switches are used to map the matrix.

The length of the music is determined by the size of the image, which should typically be
around 16xN. Increasing the value of N can extend the duration of the music accordingly.

The processed image with the ON and OFF switches is mapped to the tone matrix. The ON
switches on the same column play simultaneously. Music21 library creates a sequence of
notes or chords that will be played in the MIDI file.

4. Output: The tone matrix generates the music based on the switch (processed image) which
is turned ON. The obtained output depends on the input image and instrument selection. The
generated music is short and can be played in a loop, which is pleasant to hear.

The experiment was done to produce polyphonic music. One part of the music melody using an
instrument was produced by processing the maximum intensity of the image and using it as a switch
for the tone matrix. While another instrument music Melody was produced in a similar manner
but using the minimum intensity of the image as a switch for the tone matrix. Two melodies are
combined together to get a multi-instrument effect on the final music.

4.3 AI Sync Algorithm

Our project aims to enhance the quality of AI-generated music and provide a greater degree of
control and uniqueness to the music by combining AI and algorithmic approaches. While AI-
generatedmusic can be unique, it may not always be enjoyable to listen to. Algorithmic approaches,
on the other hand, offer more precise control to the user but require expertise to create diverse and
unique compositions.

Our research focuses on a hybrid approach that combines the strengths of both AI and algorithmic
approaches. We utilize image intensity to generate a melody from a tone matrix, which is then
used to control and generate an AI melody. The resulting melodies are combined to create a more
pleasing and unique sound. The block diagram of the AI sync algorithmic approach is shown below:
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Figure 4.7: Block Diagram For AI sync Algorithm Approach

4.3.1 Working Mechanism

For synchronization of AI music with Algorithmic generatedmusic, we first passed an input, i.e., an
image to the system, which was used to generate music using the tone matrix algorithm. The notes
and durations of algorithmic-generated music were extracted and passed as seeds used for gener-
ating music using AI. For the rhythm of algorithmic-generated music to sync with AI-generated
music, the time signature and bpm of algorithm-generated music were also extracted and passed as
metadata for constructingmusic from generated notes and duration from the generativemodel. This
ensures that the AI-generated music matches the tempo and rhythm of the algorithmic-generated
music. The obtained output from AI generative model and tone matrix are synchronized to get
pleasant music.
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4.4 UML Diagram

4.4.1 Use Case Diagram

Figure 4.8: Use Case Diagram
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4.4.2 Activity Diagram

Figure 4.9: Activity Diagram

38



5. Experiment and Result

The LSTM was used as a generative model while working on this project. The dataset used to
train the model was converted to the ’.mid’ file format. Notes and duration were extracted from the
dataset as features to train the model. Since the model was generative, evaluation metrics used only
tracked loss while training data. The loss function used in the model was KL-Divergence. Loss of
model was tracked while training to visualize how the model is being trained.

While experimenting with our model with the custom dataset, we aimed to minimize loss and in-
crease model robustness. To achieve this, we experimented with several regularization techniques
such as L1, L2, and L1L2. After conducting repeated experiments with sample data, we found that
L1 regularization was the most effective for our model. Notably, the loss did not converge when
regularization was not utilized. As a result of these experiments, we concluded that L1 regular-
ization should be applied to the notes classification output, while L1L2 regularization should be
applied to the duration output.

While working with ESAC Folk database[1] no regularization was used. The model was trained
up to 100 epochs. Once the model was trained successfully, we generated music using the trained
model. Parameters such as time signature, instrument type, and bpm are in control of the user in
generated music. The seed given to the generative model changes every time, which is responsible
for the type of music it generates. Generated music is the continuity of seed music when decoded.

The sheet music for one of the decoded seeds while experimenting is shown in Fig(5.1). The
generated music produced by the model using seed of Fig(5.1) is shown in Fig(5.2). The generated
music is an original composition created by the model using the given seed as a starting point.

Figure 5.1: Decoding seed in sheet-music1
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Figure 5.2: Generated music1

We used a simplified version of the tone matrix for the algorithmic approach with slight modifica-
tions. The image was taken as input, and it was first converted into grayscale and then resized into
16x16 pixels. Then the maximum pixel intensity of the image was taken column-wise, which was
then used as a switch for the 16x16 tone matrix of fig (3.3). If there was more than two maximum
intensity, the priority of the switch was given to note with minimum frequency. And a maximum
number of switches that could be opened in one column was 3. For the image as shown in fig (5.3)
when passed as input, the switch configuration of tone matrix is given by fig (5.4). The white pixel
is ON, and the black pixel is OFF. The instrument used in this generated music is the piano. The
music generated by the tone matrix in sheet music is shown in fig (5.5).

Figure 5.3: Image used for algorithmic approach music generation
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Figure 5.4: Switch configuration using maximum intensity pixel

Figure 5.5: Sheet music generated by switch of fig (5.4)

For multi-instrument music, the experiment was done with an algorithmic approach. For the second
instrument music, the minimum intensity of pixel was taken. Here also, the maximum switch that
can be opened in a column was set to 3. The minimum intensity switch configuration by using the
image of fig (5.3) is shown in fig (5.6). The instrument used in this generated music is the flute.
Its sheet music is in fig (5.7). Two music obtained from the minimum intensity and maximum
intensity were configured to get the multi-instrument effect in music. The two-instrument music
sheet music is shown in fig (5.8).
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Figure 5.6: Switch configuration using minimum intensity pixel

Figure 5.7: Sheet music generated by switch of fig (5.6)

Figure 5.8: Sheet music of multi-instrument music

To synchronize AI-generated music with algorithmically generated music, we conducted several
experiments. Initially, we utilized the algorithmic approach of tone matrix to create the music.
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To ensure the rhythm of the final output is consistent, we extracted the time signature and beats
per minute (BPM) of the music generated using the tone matrix and passed it as metadata when
generating music using AI.

To maintain consistency between the tone matrix music and the AI-generated music when played
synchronously, we used a 16x128 matrix to generate music using the algorithmic approach. This
allowed us to ensure that the tone matrix music remained synchronized with the AI-generated mu-
sic. Fig (5.10) is Sheet music which is obtained by synchronizing tone-matrix music (played with
flute) of fig (5.5) and AI music (played with piano) of fig (5.9).

Figure 5.9: Sheet music for AI generation

Figure 5.10: Sheet music for AI sync Algorithm
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6. Output Demo

The following figures show the UI for generating music and sheet music of generated music.

Figure 6.1: AI Music Generation Page

Figure 6.2: Instrument Selection
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Figure 6.3: AI Music Generation Output Page

Figure 6.4: Sheet Music for AI-Generated Music
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Figure 6.5: Algorithmic Music Generation Page

Figure 6.6: Algorithmic Music Generation Output Page
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Figure 6.7: Sheet Music for Algorithmic Generated Music

Figure 6.8: AI Sync Algorithm Music Generation Page
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Figure 6.9: AI sync Algorithm Music Generation Output Page

Figure 6.10: Sheet Music for AI sync Algorithm Generated Music
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7. Conclusion

In this project, we focused on developing machine-learning techniques for music generation that
could help musicians compose and refine music interactively. Notes, chords, and their duration
were taken as the core components of music for the training model. We generated notes and du-
ration, which then was used for music reconstruction. Since many other parameters change the
rhythm of how music is played. We allowed the passing of another argument, such as time signa-
ture, bpm, and instruments as user input while generating music, allowing the user to control the
rhythm of the music. This brings greater flexibility to control the rhythm of the music. Combin-
ing AI-generated melody pieces with algorithmic tone matrix-generated melody pieces to produce
music is more pleasing, and the degree of control of generated music is in the hands of the user.

However, our work also encountered several challenges, including insufficient high-quality, labeled
music data, musical complexity, etc. Despite these challenges, we believe that our approach holds
great promise for the future of the music generation, and we hope that our work will inspire further
research in this area.

There are many potential directions for future work. It will likely involve new techniques like
enhancing the learning process to produce more satisfying music, exploring the reinforcement
learning algorithm, fusing emotion with music creation to investigate how music can influence
human emotions, enhancing human-AI connection to enhance the objective of music, integrating
autonomous music generating technologies into daily life and so on.

We believe these directions will lead to even greater advances in music generation, and we look
forward to seeing the progress that will be made in the coming years.
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