
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A

PROJECT REPORT

ON

GUIDANCE, NAVIGATION AND CONTROL OF A VTOL VEHICLE TO

MAKE IT FOLLOW A PREDETERMINED TRAJECTORY

SUBMITTED BY:

SAKAR PATHAK (PUL075BEI030)

SAMUNDRA ACHARYA(075BEI032)

SHREEJAN SINGH SILWAL(075BEI035)

SWAYAM DHAKAL(075BEI046)

SUBMITTED TO:

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING

April 30, 2023

Page of Approval

TRIBHUVAN UNIVERSIY
INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS
DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certifies that they have read and recommended to the Institute of En-
gineering for acceptance of a project report entitled GUIDANCE , NAVIGATION

AND CONTROL OF A VTOL VEHICLE TO MAKE IT FOLLOW A PRE-

DETERMINED TAJECTORY FOR REUSABILITY submitted by Sakar Pathak,
Samundra Acharya, Shreejan Singh Silwal, Swayam Dhakal in partial fulfillment of
the requirements for the Bachelor’s degree in Electronics & Computer Engineering.

.............................
Supervisor
Nanda Bikram Adhakari

Assistant Professor
Department of Electronics and Computer
Engineering,
Pulchowk Campus, IOE, TU.

.............................
Internal examiner

..
Assistant Professor

Department of Electronics and Computer
Engineering,

Pulchowk Campus, IOE, TU.

.............................
External examiner

..
Assistant Professor

Department of Electronics and Computer Engineering,
Pulchowk Campus, IOE, TU.

Date of approval:

i

Copyright
The author has agreed that the Library, Department of Electronics and Computer Engineer-
ing, Pulchowk Campus, Institute of Engineering may make this report freely available for
inspection. Moreover, the author has agreed that permission for extensive copying of this
project report for scholarly purposes may be granted by the supervisors who supervised the
project work recorded herein or, in their absence, by the Head of the Department wherein
the project report was done. It is understood that the recognition will be given to the author
of this report and to the Department of Electronics and Computer Engineering, Pulchowk
Campus, Institute of Engineering in any use of the material of this project report. Copying
or publication or the other use of this report for financial gain without approval of to the
Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of En-
gineering and author’s written permission is prohibited.
Request for permission to copy or to make any other use of the material in this report in
whole or in part should be addressed to:

Head
Department of Electronics and Computer Engineering
Pulchowk Campus, Institute of Engineering, TU
Lalitpur,Nepal.

ii

Acknowledgments
We are overwhelmed in all humbleness and gratefulness to acknowledge the contributions of
all those who have helped us to put together these ideas. We have been inspired by many
people, institutions and situations for undertaking this difficult yet rewarding task.

We would like to express our humble gratitude to all who directly or indirectly helped us
to come up with the idea of this project. Our special gratitude to our supervisor Dr. Nanda

Bikram Adhikari for his valuable guidance and supervision as well as financial support.
We are also grateful to the Department of Electronics & Computer Engineering for
providing the opportunity to take part in this project.

On top of that, we would like to thank whoever is going to help us accomplish our goals
by helping us intellectually, motivating us, helping us financially or otherwise. Our gratitude
is also reserved for those who have taken keen interest in our project.

iii

Abstract
In interplanetary missions, the landing of space vehicles is typically accomplished using
parachutes. However, this simple method is not without its challenges, as these vehicles
are prone to parachute drifts that are difficult to predict, especially on planets with dense
atmospheres like Earth. As a result, significant attention has recently been given to the
development of active control systems for space vehicles, allowing for precise guidance, navi-
gation, and control over predetermined trajectories and enabling soft and accurate landings
on planetary surfaces.

The ability to follow a predetermined path and land softly and precisely using real-time
onboard control algorithms would greatly enhance the capabilities of vehicles for interplan-
etary travel, while also increasing the re-usability of space vehicles. This not only benefits
interplanetary travel but also improves space payload delivery systems by reducing costs and
increasing efficiency.

To this end, this project aims to implement control algorithms on an Electric Ducted
Fan (EDF) powered model of a Vertical Take Off and Landing (VTOL) vehicle, enabling
it to follow a fixed trajectory. A small CanSat payload will be attached to the vehicle and
deployed at a specific altitude, simulating the tasks required of a full-scale vehicle.

By utilizing these advanced control systems, space vehicles can navigate more accurately
and efficiently, reducing the risks and costs associated with interplanetary travel. With a
focus on trajectory control and precision landing, this project aims to contribute to the on-
going efforts to enhance space exploration and technology development.

Keywords: Electric Ducted Fan (EDF), Vertical Take Off and Landing (VTOL), Trajec-
tory

iv

Contents

Page of Approval i

Copyright ii

Acknowledgements iii

Abstract iv

Contents vii

List of Figures ix

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Problem statements . 3
1.4 Objectives . 4
1.5 Scope of Project . 5
1.6 Application . 6

2 Literature Review 7

3 Related theory 11

3.1 Harware and components . 11
3.1.1 Micro-controller Contrasting . 11
3.1.2 Flight Computer Components . 12

3.2 Sensor Fusion . 14
3.2.1 MPU6050 . 14
3.2.2 MPU9250 . 14
3.2.3 Madgwick Filter . 15
3.2.4 Extended Kalman Filter . 16

v

3.3 System Modeling . 17
3.3.1 First Principal Approach . 17
3.3.2 Data Driven Approach . 17
3.3.3 Linear and Non Linear models . 18
3.3.4 Time Invariance . 19
3.3.5 Block diagram of system for system identification 19
3.3.6 ARX Method For System Identification For SISO system 20
3.3.7 ARMAX Method for System Identification SISO system 21
3.3.8 Subspace method for system identification for MIMO system 22

3.4 Controller . 24
3.4.1 Open Loop Controller: . 25
3.4.2 Close loop control system: . 25
3.4.3 Proportional Integral Derivative (PID) Controller 26
3.4.4 Linear Quadratic Regulator (LQR): 27
3.4.5 MPC: . 27

4 Methodology 36

4.1 Flight Computer Working . 36
4.2 Thrust Vectoring mechanism (TVC) . 39
4.3 Thrust Test . 40

4.3.1 Thrust Testing Bed . 41
4.4 Sensor Fusion . 41

4.4.1 Preliminary Stage . 41
4.4.2 Improved Stage: . 42

4.5 System Modeling . 44
4.5.1 State Space Model for Altitude Control from First Principle 45
4.5.2 State Space Model for Pitch, Roll Control from First Principle 46
4.5.3 Block diagram of system for describing the movement around yaw,pitch

and roll axis . 50
4.5.4 Time Variance of Battery Voltage . 50
4.5.5 ARX method for estimating the transfer function for yaw movement

of the rocket . 51
4.5.6 ARMAX method for estimating the transfer function for yaw move-

ment of the rocket . 51
4.5.7 Subspace method for estimating the state space for yaw movement of

the rocket . 51

vi

4.6 Control . 53
4.6.1 PID Tuning . 53
4.6.2 Automatic Tuning: . 54
4.6.3 LQG Control . 54
4.6.4 Flow Chart of MPC: . 57
4.6.5 Single Shooting Algorithm . 58
4.6.6 Multiple Shooting Algorithm . 58

5 Results & Discussion 60

5.1 Thrust Test at Varying Throttle . 60
5.2 Comparison Between MPU’s internal DMP, Madgwick Filter and EKF . . . 61
5.3 ARX Model . 64
5.4 ARMAX Model . 65
5.5 Subspace Method . 66

5.5.1 Keeping ESC value in equilibrium . 66
5.5.2 Keeping vanes angle in equilibrium 67

5.6 Comparison Between ARX, ARMAX and Subspace Method 68
5.7 Open Loop Altitude Control . 70
5.8 Simulation of the LQG controller With Thrust Vectoring Nozzle 71
5.9 Result using LQG and Thrust Vectoring Nozzle 72
5.10 Simulation of the PID controller with Vanes 76
5.11 Result of the PID controller with Vanes . 77
5.12 Simulation Result of the MPC controller . 78

6 Conclusions 82

7 Limitations and Future enhancement 83

7.1 Limitations . 83
7.2 Future Enhancements . 83
References . 83
Appendices . 86

vii

List of Figures

3.1 Block diagram of system for system identification 19
3.2 Control Block . 25
3.3 Open Loop Block . 25
3.4 Close Loop Block . 25
3.5 PID Block Diagram . 26
3.6 Effect of different parameter’s of PID . 27
3.11 Single Step Action . 33

4.1 Atmega328P schematic diagram . 36
4.2 Teensy 4.1 schematic diagram . 37
4.3 Project Architecture . 38
4.4 Contrasting Thrust Vectoring Mechanism (TVC). First image is the use of

nozzle while second is of use of vanes for TVC 40
4.5 Block Diagram of Vehicle Input . 40
4.6 Thrust Testing Bed . 41
4.7 Sensor Fusion Block Diagram . 42
4.8 Rotational Dynamics of the Vehicle . 45
4.9 Determination of I and r . 48
4.10 Abstract Block Diagram of System for Describing the Movement Around YPR

Axis . 50
4.11 Implementation of LQG . 57

5.1 Throttle vs Time . 60
5.2 Battery Voltage vs Time at Changing Throttle 60
5.3 Thrust vs Time at Changing Throttle . 61
5.4 Madgwick vs EKF for Yaw, Pitch, Roll Stationary Data 62
5.5 GPS Stationary Data in NED Coordinate System 62
5.6 GPS Stationary Data After Sensor Fusion with IMU Data in NED Coordinate

System . 63
5.7 Comparison of EKF Output with GPS data 63
5.8 Attitude Data From Madgwick Filter . 63
5.9 Input and Output Comparison Plot for ARX Model Estimation 64

viii

5.10 Error Correlation Plot for ARX Model Estimation 64
5.11 Error Partial Auto-Correlation Plot for ARX Model Estimation 65
5.12 Input and Output Comparison Plot for ARMAX Model Estimation 65
5.13 Error Correlation Plot for ARMAX Model Estimation 66
5.14 Input Plot for State Space Model Estimation with motor at equilibrium . . . 66
5.15 Output Comparison Plot for State Space Model Estimation with motor at

equilibrium . 67
5.16 Error Correlation Plot for State Space Model Estimation with motor at equi-

librium . 67
5.17 Input Plot for State Space Model Estimation with vanes at equilibrium . . . 67
5.18 Output Comparison Plot for State Space Model Estimation with vanes at

equilibrium . 68
5.19 Error Correlation Plot for State Space Model Estimation with vanes at equi-

librium . 68
5.20 Step Response of ARX and ARMAX Model 69
5.21 Step Response of State Space Model . 69
5.22 Altitude Control Block Diagram . 70
5.23 Simulation Result of Altitude Control . 71
5.24 Attitude Control Simulation Block Diagram 72
5.25 Attitude Control Simulation Result . 73
5.26 Altitude Vs Time . 73
5.27 Angle Vs Thrust . 74
5.28 Angular velocity Vs Time . 75
5.29 Servo Angle Vs Time . 75
5.30 Throttle Vs Time . 76
5.31 PID Simulation Block Diagram with Vanes 76
5.32 PID Simulink Graph (AutoTune)(V anesangle± 10◦) 77
5.33 PID Simulation Graph (V anesangle± 40◦) 77
5.34 PID Simulation Graph (V anesangle± 10◦) 77

ix

List of Tables

5.1 Standard deviations for Madgwick and EKF 62
5.2 Standard deviations for GPS and EKF . 63

x

List of Abbreviations

GNC Guidance, Navigation and Control
VTOL Vertical Take Off and Land
EDF Electric Ducted Fan

ICBM Intercontinental Ballistic Missile
TVC Thrust Vectoring Control
MPC Model Predictive Control
ESC Electronic Speed Controller
LQE Linear Quadratic Estimator
LQR Linear Quadratic Regulator
LQG Linear Quadratic Gaussian
PRBS Pseudo Random Binary Sequence
PD Proportional Derivative
PID Proportional Integral Derivative
KP Proportional Gain
KI Integral Gain

KU Critical Gain or Ultimate Gain
TU Ultimate Period.

OCP Optimal Control Problem
NLP Nonlinear Programming Problem

IPOPT Interior Point Optimizer
QP Quadratic programs

UAVs Unmanned aerial vehicles
CPU central processing unit
GPS Global Positioning System
IMU Inertial Measurement Unit
PWM Pulse Width Modulation
SCL Serial Clock
SDA Serial Data

xi

1. Introduction

1.1 Background
This project is being undertaken by a team of four undergraduate students who are interested
in learning how rockets work. Rockets have been essential in space exploration and scientific
research, and the team believes that gaining a deeper understanding of how they function
will provide valuable insights into the field of aerospace engineering.

The team’s primary objective is to develop GNC algorithms for a VTOL vehicle that
replicates the flight of a full-scale model rocket. The vehicle will be powered by an EDF and
equipped with advanced control systems to follow a predetermined trajectory, simulating
the flight path of a larger rocket. The team plans to attach a small CanSat payload to
the vehicle, which will be deployed at a specific altitude, emulating the tasks required of a
full-scale vehicle.

By working on this project, the team hopes to gain hands-on experience in aerospace
engineering, specifically in the area of GNC for rockets. The project will provide an oppor-
tunity for the team to apply their theoretical knowledge to a practical application, giving
them a deeper understanding of how rockets work and the challenges involved in designing
and controlling them.

1

1.2 Motivation
The motivation for this project stems from the team’s interest in the field of aerospace engi-
neering and space exploration. The team believes that developing a deeper understanding of
how rockets work and how they can be controlled will be valuable not only for their personal
growth but also for advancing the field of aerospace engineering.

By working on this project, the team hopes to gain practical experience in developing
GNC algorithms for a VTOL vehicle that replicates the flight of a full-scale model rocket.
This will provide them with a deeper understanding of the challenges involved in designing
and controlling rockets, enabling them to apply this knowledge to future projects.

Moreover, the team believes that this project will contribute to the ongoing efforts to
enhance space exploration and technology development. By developing more advanced and
efficient space vehicles, we can better understand our universe and the challenges of space
travel. Additionally, the team believes that this project has the potential to contribute to
the development of more efficient and cost-effective payload delivery systems, which could
have significant benefits for scientific research and exploration.

2

1.3 Problem statements
The problem statements for above project are given below:

• Rockets are complex systems that require precise control and guidance to ensure safe
and efficient operation.

• Existing control systems for space vehicles are often limited in their ability to guide
the vehicle along a predetermined trajectory, hindering their efficiency and accuracy.

• There is a need for more efficient and cost-effective payload delivery systems to support
scientific research and exploration, which can be achieved by developing more advanced
and efficient space vehicles.

• The development of more advanced GNC algorithms for space vehicles is essential
for enabling precise control and navigation, ultimately supporting the development of
more efficient and cost-effective space vehicles.

3

1.4 Objectives
The objectives of this project are to:

• Develop a control system for a VTOL vehicle using Model Predictive Control Linear
Quadratic algorithms.

• Implement the MPC algorithms in a simulated environment and optimize the control
system parameters to achieve precise guidance, navigation, and control over a prede-
termined trajectory.

• Test the LQG control system’s performance in a real-world environment, evaluate its
effectiveness in enhancing the VTOL vehicle’s flight characteristics, and identify areas
for future improvement and development.

In summary, the project aims to demonstrate the feasibility and effectiveness of using
LQ and MPC algorithms in the design and control of a VTOL vehicle, and to contribute
to the ongoing efforts to enhance the capabilities of space vehicles and advance the field of
aerospace engineering.

4

1.5 Scope of Project
The project’s scope will focus on the implementation of active control systems for precise
guidance, navigation, and control over a predetermined trajectory, enabling the vehicle to
simulate the flight path of a larger rocket. The vehicle will be powered by an EDF and
equipped with advanced control systems.

The team will develop and test these control algorithms in a simulated environment before
deploying them on the physical vehicle. They will investigate the challenges associated with
developing and testing GNC algorithms for space vehicles, including scalability, precision,
and reliability. The project will also assess the limitations of existing control systems and
the potential benefits of developing more advanced GNC algorithms.

The project’s outcomes will provide valuable insights into the challenges involved in de-
signing and controlling rockets, enabling the team to apply this knowledge to future projects.
Moreover, the project will contribute to the ongoing efforts to enhance space exploration and
technology development. By developing more advanced and efficient space vehicles, we can
better understand our universe and the challenges of space travel.

5

1.6 Application
The GNC algorithms developed for the VTOL vehicle in this project have numerous potential
applications in the field of aerospace engineering and space exploration. Some of the potential
application areas of the project are:

• Interplanetary missions: The advanced control systems developed in this project
can enable space vehicles to land more precisely and safely on other planets with dense
atmospheres. The GNC algorithms can help to overcome the challenges associated
with unpredictable parachute drifts, making space exploration more efficient and cost-
effective.

• Payload delivery systems: The efficient and precise landing of space vehicles devel-
oped in this project can enhance the delivery of payloads, reducing cost and increasing
efficiency. This capability can be beneficial in various fields, including scientific research
and commercial applications.

• UAVsThe development of GNC algorithms for the VTOL vehicle can have applications
in the design and control of unmanned aerial vehicles, enabling them to navigate more
precisely and efficiently in different environments.

• Defense applications: The advanced control systems developed in this project can
have applications in the design and control of military drones, enabling them to navi-
gate and land more precisely and safely.

• Commercial applications: The GNC algorithms developed in this project can be
applied in the design and control of commercial drones, enabling them to perform
various tasks more efficiently, such as delivery and inspection services.

In summary, the GNC algorithms developed in this project have numerous potential ap-
plications in the field of aerospace engineering and space exploration, as well as in other
fields, including defense and commercial applications.

6

2. Literature Review
The development of flight computers for use in aerospace applications has become increas-
ingly important with the growth of UAV’s and other space exploration technologies. This
literature review focuses on the use of Atmega 328p and Teensy microcontrollers for building
flight computers, with reference to the works of Pathak et al. (2022) and Sørensen et al.
(2017).

Pathak et al. (2022) present the design and implementation of a flight computer for
sounding rockets, called the S3FC. The authors describe the use of an Atmega 328p micro-
controller as the CPU of the flight computer. The Atmega 328p was chosen due to its low
power consumption, low cost, and availability of development tools. The authors describe
the various subsystems of the S3FC, including power management, communication, and data
storage, and highlight the challenges of designing a flight computer for use in high-altitude
and high-speed environments.[1]

Sørensen et al. (2017) describe the use of a Teensy 3.2 microcontroller for building a low-
cost and flexible UAV sensor deployment system. The authors describe the various sensors
that can be integrated into the system, including cameras, temperature sensors, and air
quality sensors. The Teensy 3.2 was chosen for its high processing speed and flexibility, as
well as its compatibility with a wide range of sensors and communication protocols. [2]

Overall, the literature suggests that both the Atmega 328p and the Teensy microcon-
trollers can be effective choices for building flight computers for aerospace applications. The
Atmega 328p is a low-cost and low-power option that is well-suited for applications that do
not require high processing speeds, while the Teensy offers greater processing power and flex-
ibility for more complex applications. However, both options require careful consideration
of the specific requirements of the application, as well as the challenges of designing a flight
computer for use in high-altitude and high-speed environments.

Sensor fusion is a process of integrating data from multiple sensors to provide more
accurate and reliable information than can be obtained from any single sensor. Sensor
fusion has been widely used in navigation, where it is used to combine information from
different sensors, such as GPS, magnetometer, accelerometer, and gyroscope, to estimate the
position, orientation, and velocity of a moving object. In this literature review, we will discuss
recent research on sensor fusion for navigation using GPS, magnetometer, accelerometer, and
gyroscope.[3]

7

GPS is a widely used navigation system that provides accurate position and time infor-
mation. However, GPS signals can be blocked or degraded by buildings, trees, and other
obstacles. To overcome this limitation, researchers have proposed various approaches for
integrating GPS with other sensors.[4]

In a study by Rios et al. (2004), the authors proposed a GPS/IMU/magnetometer sensor
fusion system for navigation in diverse flight environments.[?] The system uses an Extended
Kalman filter to fuse the data from the sensors and estimate the position and orientation
of a mobile device. The results showed that the system achieved accurate position and
orientation estimation.[5]

Magnetometers are used to measure the magnetic field of the earth, which can be used
to estimate the orientation of a mobile device relative to the magnetic north. However,
magnetometers are sensitive to external magnetic fields, which can cause measurement errors.

In a study by Kayasal (2007), the authors proposed a magnetometer-aided inertial nav-
igation system for navigation. The system uses a Kalman filter to fuse the data from the
magnetometer and the accelerometer to estimate the position and orientation. The results
showed that the system achieved accurate position and orientation estimation.[6]

Accelerometers are used to measure the acceleration of a mobile device, which can be used
to estimate the velocity and position of the device. However, accelerometers are sensitive to
external forces, such as vibrations and shocks.

Gyroscopes are used to measure the angular velocity of a mobile device, which can be
used to estimate the orientation and position of the device. However, gyroscopes are sensitive
to temperature variations and drift over time.

In a study by Fan et al. (2019), the authors proposed a pedestrian dead reckoning (PDR)
system for indoor navigation. The system uses a Kalman filter to fuse the data from the
accelerometer and the gyroscope to estimate the position and orientation of a pedestrian.
The results showed that the system achieved accurate position and orientation estimation in
an pedestrians.[7]

System identification is a powerful technique used to model complex dynamic systems
using data-driven approaches. In this literature review, we will focus on the system identi-
fication of a Vertical Take-Off and Landing (VTOL) vehicle, specifically for the purpose of
yaw, roll, pitch, and altitude control. We will also discuss the use of both blackbox and gray
box modeling techniques for this application.

One study conducted by M. Gandhi et al. (2019) used system identification to develop
a nonlinear dynamic model of a small unmanned VTOL vehicle. The authors used data
collected from a real-world test flight to identify the system parameters, including the aero-
dynamic coefficients and the motor dynamics.[8]

8

Another study by Panizza et al. (2015) used a combination of blackbox and gray box
modeling techniques to identify the dynamic model of a quadrotor drone for yaw, roll, and
pitch control. The authors used a Least Mean Squares algorithm to model the black box
part of the system, which included the aerodynamic and motor dynamics. They then used
a maximum likelihood estimation approach to estimate the remaining parameters of the
model, which were considered to be the graybox part of the system. The resulting model
was shown to accurately capture the dynamics of the quadrotor and was used for control
design.[9]

In another study, Hann et al. (2010) used system identification to develop a minimal
model of rocket roll dynamics and disturbance. The authors analyzed roll dynamics of a
sounding rocket in a vertical wind tunnel. A novel method was developed which decou-
pled the disturbance from the rocket frame’s intrinsic roll dynamics and allowed accurate
prediction of roll rate and angle. [10]

Therefore, these studies demonstrate the usefulness of system identification for the mod-
eling and control of VTOL vehicles. Both blackbox and gray box modeling techniques can
be used, depending on the level of system understanding and the available data. System
identification can also be used for different control objectives, including yaw, roll, pitch, and
altitude control.

PID Control System has been widely used to in industrial process control and automation
systems because they are simple, reliable, and effective in regulating the output of a control
system.[11][12] O’Dwyer (2000) summarizes Pi and PID controller tuning rules for time delay
processes, which can be particularly relevant for VTOL vehicle control given the inherent
delays in the system. The author describes various tuning rules, including the Ziegler-Nichols
method and the Cohen-Coon method.[13]

We did thorough reviews on existing research experiments and papers before assuring
the design and implementation of Control system, Sensor Fusion and Guidance Navigation
of a VTOL for Precision Landing as subject for our final year project. We went through
the pros and cons of the methods and algorithms used on the development of MPC, GNC
and Sensor fusion so as to come up with efficient and practical implementation for our own
project. The problem of robot to a desired position and orientation is considered. In this
paper, a model predictive control (MPC) scheme based on tailored non quadratic stage cost
is proposed to fulfill this control task. We rigorously prove asymptotic stability while neither
stabilizing constraints nor costs are used. To this end, we first design suitable maneuvers to
construct bounds on the value function. Second, these bounds are exploited to determine
a prediction horizon length such that the asymptotic stability of the MPC closed loop is
guaranteed. Finally, numerical simulations are conducted to explain the necessity of having

9

non quadratic running costs.[14]
Precision landing of a rocket booster or any spacecraft is a relatively new concept. In a

paper published in 2015, Pascucci, Bennani Bemporad[15] discuss how MPC can be used
for landing a vehicle to a desired position without pre-configured path, taking into account
the full system dynamics and actuators and state constraints. They first predicted the linear
model of the nonlinear system by white box system identification method and used MPC
for thrust vectoring control to change the magnitude and direction of force generated by the
model’s engines. This research is the base for using model predictive control techniques in
precision landing. The paper describes landing within hundred meters from a target as a
future challenge. We have come a long way since then and rockets have been successfully
landed even on aircraft carriers.

10

3. Related theory

3.1 Harware and components

3.1.1 Micro-controller Contrasting

The parameters of microcontrollers used i.e. Atmega 328P and Teensy 4.1 are given below:
Clock frequency:

The Teensy 4.1 has a much higher maximum clock frequency of 600 MHz, compared to the
ATmega328P’s maximum clock frequency of 20 MHz.

Number of pins:

The Teensy 4.1 has 40 pins, while the ATmega328P has 28 pins.
Digital pins and analog pins:

The Teensy 4.1 has 34 digital pins and 18 analog pins, while the ATmega328P has 14 digital
pins and 6 analog pins.

Working voltage:

The ATmega328P can operate at a voltage range of 1.8V to 5.5V, while the Teensy 4.1 can
operate at a voltage range of 3.3V to 6.0V.

Program memory:

The Teensy 4.1 has 2MB of Flash program memory, while the ATmega328P has 32KB of
Flash program memory.

PWM pins:

The Teensy 4.1 has 22 PWM pins, while the ATmega328P has 6 PWM pins.
Interrupt pins:

The Teensy 4.1 has up to 26 interrupt pins, while the ATmega328P has two external interrupt
pins, INT0 and INT1.

I2C:

Both the ATmega328P and Teensy 4.1 have dedicated I2C pins, SCL and SDA . However,
on the Teensy 4.1 they are labeled SCL1 and SDA1.

Hardware interrupt pins:

Both the ATmega328P and Teensy 4.1 have hardware interrupt pins, with the Teensy 4.1
having up to 26 interrupt pins.

Hardware serial pins:

The ATmega328P has one hardware serial port, while the Teensy 4.1 has up to 8 hardware

11

serial ports.
Overall, the Teensy 4.1 has significantly higher performance than the ATmega328P in

terms of clock frequency, program memory, and number of digital and analog pins. It also
has more PWM and interrupt pins, as well as more hardware serial ports, which can be useful
for real-time control and data processing. Additionally, both microcontrollers have I2C pins
for communication with other devices, but on the Teensy 4.1 they are labeled differently.
The ATmega328P has a wider working voltage range, which can make it more versatile in
certain applications.

3.1.2 Flight Computer Components

MPU6050
The MPU6050 is a popular 6-axis motion tracking sensor that combines a 3-axis gyroscope
and a 3-axis accelerometer on a single chip. It is commonly used for orientation sensing
and motion tracking. The MPU6050 has programmable full-scale range settings for both
the accelerometer and gyroscope. The accelerometer can be set to ±2g, ±4g, ±8g, or ±16g,
while the gyroscope can be set to ±250°/s, ±500°/s, ±1000°/s, or ±2000°/s. These settings
determine the maximum measurable acceleration or angular velocity of the device. The
MPU6050 also has a Digital Low Pass Filter (DLPF) that can be used to reduce noise
and improve stability in the sensor readings. The DLPF can be programmed with different
settings, including a bandwidth of 260Hz for the gyroscope and 256Hz for the accelerometer,
or a bandwidth of 5Hz for both sensors. Choosing the appropriate DLPF setting depends on
the specific application and the desired trade-off between responsiveness and noise reduction.

The MPU6050 also includes an internal Digital Motion Processor (DMP) that can per-
form complex calculations on the raw sensor data to provide sensor fusion and motion pro-
cessing. The DMP can output quaternion data, which represents the orientation of the
sensor in 3D space, as well as other useful information such as gravity-compensated linear
acceleration and heading angle. The DMP can run at a maximum sampling rate of 1000Hz,
making it useful for real-time motion tracking applications. Overall, the combination of the
gyroscope, accelerometer, and DMP make the MPU6050 a powerful and versatile sensor for
motion tracking and orientation sensing.

MPU9250
The MPU9250 is another popular 9-axis motion tracking sensor, which includes a 3-axis
gyroscope, 3-axis accelerometer, and 3-axis magnetometer on a single chip. It is an upgraded
version of the MPU6050, with additional magnetometer functionality. The MPU9250 offers
similar programmable full-scale range settings for the accelerometer and gyroscope as the
MPU6050, with the accelerometer ranging from ±2g to ±16g and the gyroscope ranging from

12

±250°/s to ±2000°/s. However, the magnetometer can be set to a full-scale range of ±4800T,
which is much higher than the typical range of ±2.5 Gauss seen in most magnetometers.
The MPU9250 also includes a Digital Low Pass Filter (DLPF) for noise reduction, which
can be programmed with different bandwidth settings. The DMP in the MPU9250 is more
advanced than the one in the MPU6050, and it can perform sensor fusion on all three sensors
(gyroscope, accelerometer, and magnetometer) to provide highly accurate and stable motion
tracking data. The DMP in the MPU9250 can output quaternion data and other useful
information, such as calibrated sensor data and heading angle, at a maximum sampling rate
of 1000Hz.

BMP280
The BMP280 features a high-precision MEMS pressure sensor that can measure atmospheric
pressure with an accuracy of up to ±1 hPa, and a temperature sensor with an accuracy of up
to ±1°C. The sensor can operate over a wide temperature range of -40°C to 85°C, making it
suitable for use in harsh environments. The BMP280 is a digital sensor that communicates
over I2C and SPI interfaces, and it can be configured with different modes of operation to
optimize power consumption and accuracy. It also features an onboard 16-bit ADC (Analog
to Digital Converter) that can convert the analog sensor readings into digital data.

Lidar
The TFmini Lidar uses a pulsed laser diode and an optical receiver to measure the distance
between the sensor and an object in its field of view. It can accurately detect objects at a
distance of up to 12 meters, with a resolution of 5mm. The sensor has a wide field of view of
2.3 degrees, allowing it to capture data from a broad area in front of the sensor. The TFmini
Lidar communicates with a host device over a UART interface.

GPS Module
The NEO-M8N GPS module features a 72-channel GPS receiver that can receive signals
from multiple GPS satellite systems, including GPS, GLONASS, Galileo, and BeiDou. This
allows the module to provide highly accurate positioning data with a positional accuracy
of up to 2.5 meters. The module communicates with a host device over a UART interface
and supports a range of standard GPS protocols such as NMEA, UBX, and RTCM. It also
features a built-in data logger that can store up to 16 hours of GPS data for later analysis.

NRF24L01
The NRF24L01 is a transceiver uses the 2.4GHz ISM band and provides a range of up to 100
meters in open space, with a data transfer rate of up to 2Mbps. The module features a built-
in antenna, and it communicates with other devices over a SPI interface. The NRF24L01
supports a range of advanced features, such as automatic packet retransmission, dynamic
channel selection, and multi-level data pipe support. It can act as both a transmitter and

13

receiver

3.2 Sensor Fusion

3.2.1 MPU6050

The MPU-6050 is a popular integrated circuit that combines a 3-axis gyroscope and a 3-axis
accelerometer in a single package, along with an on-board Digital Motion Processor (DMP)
that can perform sensor fusion to output quaternions or Euler angles.

The MPU-6050 has a programmable low-pass filter for both the gyroscope and accelerom-
eter. The filter is implemented using a 2nd-order Infinite Impulse Response (IIR) filter, which
is defined by the following difference equation:

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]− a1y[n− 1]− a2y[n− 2] (3.1)

where x[n] is the input signal, y[n] is the output signal, b0, b1, b2 are the filter coefficients
for the input signal, and a1, a2 are the filter coefficients for the output signal.

The low-pass filter cutoff frequency is determined by the filter coefficients, which are
programmed using the MPU-6050 registers. The gyroscope and accelerometer low-pass filters
can be programmed independently with different cutoff frequencies.

The MPU-6050 also has an on-board Digital Motion Processor (DMP) that can per-
form sensor fusion to output quaternions or Euler angles. The DMP fuses the gyroscope,
accelerometer, and magnetometer (if available) data to estimate the device orientation.

The DMP uses a complementary filter to combine the gyroscope and accelerometer data.
The complementary filter is defined by the following equation:

qn+1 =
1√
2

[
qn ⊗ ωn∆t 1− 1

2
|ωn|2∆t2

] [
qn

1√
2

]
(3.2)

where qn+1 is the estimated quaternion at time n+ 1, qn is the estimated quaternion at
time n, ωn is the angular velocity measurement at time n, ∆t is the time step, ⊗ denotes
quaternion multiplication, and | · | denotes the Euclidean norm.

The DMP also includes a 6-axis Kalman filter for estimating the accelerometer and
gyroscope biases, as well as a magnetometer calibration algorithm for estimating the mag-
netometer biases and scale factors.

3.2.2 MPU9250

The MPU 9250 is an upgraded version of the MPU 6050 and includes additional sensors
such as a magnetometer, making it capable of 9-axis motion tracking. In terms of the
accelerometer and gyroscope performance, both sensors have similar ranges and sensitivities.

14

One major difference between the two sensors is the implementation of the Digital Motion
Processor (DMP). The MPU 6050 has an internal DMP which allows for the offloading of
sensor fusion calculations from the host microcontroller. The DMP includes features such
as low pass filters and the ability to calculate quaternions for orientation estimation.

The MPU 9250 also includes an internal DMP, but with additional features such as
support for the magnetometer data and a higher output data rate of up to 1000 Hz. The
DMP on the MPU 9250 also includes the ability to perform motion analysis, such as detecting
tap and shake gestures.

Overall, the MPU 9250 provides additional functionality and performance improvements
over the MPU 6050, but at a higher cost.

3.2.3 Madgwick Filter

The Madgwick filter is a popular algorithm for sensor fusion that is commonly used in low-
power embedded systems due to its computational efficiency. The filter uses a quaternion-
based representation of orientation, similar to the extended Kalman filter.

The Madgwick filter is based on a gradient descent optimization method, which mini-
mizes the error between the measured sensor data and the predicted values based on the
estimated orientation. The filter estimates the orientation of an object using a combination
of accelerometer, gyroscope, and magnetometer data.

The filter state is represented by a quaternion qk, which describes the orientation of the
object in space. The update equation for the quaternion is given by:

qk+1 = qk ⊗ exp

(
∆t

2
· ωbias

)
⊗ exp

(
∆t

2
· ωk

)
(3.3)

where ⊗ denotes the quaternion multiplication operator, ωbias is the gyroscope bias, ωk

is the angular velocity measurement, and ∆t is the time step.
The filter also estimates the gyroscope bias and uses it to correct for drift in the gyroscope

measurements. The gyroscope bias estimate is updated using the equation:

ωbias = ωbias + β ·
n∑

i=1

Jij · Fi (3.4)

where n is the number of sensors, Jij is the Jacobian matrix of the i-th sensor mea-
surement with respect to the j-th component of the quaternion, Fi is the error between the
predicted and measured values for the i-th sensor, and β is a tuning parameter.

The Madgwick filter also incorporates a magnetic distortion correction algorithm, which
corrects for the effects of magnetic interference on the magnetometer measurements. The
corrected magnetometer measurement is given by:

15

mk = Cm(mraw − bm) (3.5)

where mraw is the raw magnetometer measurement, bm is the magnetometer bias, and
Cm is the correction matrix.

3.2.4 Extended Kalman Filter

The extended Kalman filter (EKF) is a method for estimating the state of a dynamic system
based on noisy sensor measurements. The state vector, denoted by xk, includes the position,
velocity, and orientation of the object at time k, represented by pk, vk, and qk (a quaternion),
respectively. The dynamic model used in the EKF is based on the kinematic equations
of motion, which relate the acceleration, velocity, and position of an object. The state
propagation equation predicts the state estimate at the next time step, denoted by x̂−

k :

x̂k− = f(xk − 1, uk,∆t) (3.6)

where uk is the control input, and ∆t is the time step.
Each sensor is associated with a measurement model that relates the sensor measurement

zk to the state vector xk through a measurement function hk and measurement noise vk:

zk = hk(xk) + vk (3.7)

The EKF consists of two steps: the prediction step and the update step. The prediction
step uses the state propagation equation to predict the state estimate at the next time step:

x̂k− = f(x̂k − 1, uk,∆t) (3.8)

where x̂k−1 is the previous state estimate.
The update step corrects the predicted state estimate using the measurement data:

x̂k = x̂−
k +Kk(zk − hk(x̂

−
k)) (3.9)

where Kk is the Kalman gain, which is computed as:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (3.10)

where P−
k is the predicted state covariance matrix, Hk is the measurement Jacobian

matrix, and Rk is the measurement noise covariance matrix.
The state covariance matrix is updated as:

Pk = (I −KkHk)P
−
k (3.11)

16

where I is the identity matrix.
The EKF can be implemented asynchronously to efficiently process multiple sensors with

different update rates. Additionally, algorithms can be used to handle sensor failures and
initialize the filter when the sensor data is not available.

3.3 System Modeling

3.3.1 First Principal Approach

During the earlier phase of our project, we used a white-box modeling approach, also known
as the physics-based approach, for identifying the mathematical model of our system. This
approach involves deriving a model based on the physical laws and properties of the system.
We derived a simple mathematical model for pitch, roll, and altitude control of our rocket
model based on Newton’s laws. However, we found that the simplistic model was not able
to fully define our system, and many dynamics of the system remained unidentified.

While the white-box modeling approach is a powerful technique for modeling a system
based on physical laws, it has limitations. The approach relies on accurate knowledge of the
system’s physical properties, and if these properties are not well understood or if there are
other complex dynamics involved, the model may not be accurate or complete.

3.3.2 Data Driven Approach

Data-driven approaches, also known as black-box modeling or system identification, are a
class of techniques used to derive mathematical models of complex systems based solely
on measured input-output data. Unlike the white-box modeling approach, which relies on
knowledge of the physical laws and properties of the system, data-driven approaches aim to
infer the underlying dynamics of the system directly from observed input-output data.

System identification is the process of using data-driven techniques to build mathematical
models of a system, such as transfer functions, state-space models, or other types of models.
These models can then be used for analysis, simulation, and control of the system. Data-
driven approaches are particularly useful when the physical laws and properties of a system
are not well understood, or when the system is too complex to be modeled using white-box
techniques alone. Data-driven approaches can also be used to supplement white-box models
by identifying additional dynamics that are not captured by the physical laws.

Common techniques used in system identification include subspace methods, time-series
analysis, and parametric modeling techniques such as ARX and ARMAX models. These
techniques allow the identification of system dynamics, including the relationship between
inputs and outputs, and can be used to derive models suitable for control and analysis pur-
poses. Overall, data-driven approaches provide a powerful tool for identifying mathematical

17

models of complex systems, allowing for accurate analysis, simulation, and control of these
systems.

3.3.3 Linear and Non Linear models

System identification techniques can be used to derive both linear and non-linear models of
a system. Linear models are widely used in control theory and signal processing and are
characterized by a linear relationship between the system inputs and outputs. These models
are typically described by transfer functions or state-space models and can be identified using
frequency response analysis or time-domain analysis techniques.

On the other hand, non-linear models are characterized by non-linear relationships be-
tween the system inputs and outputs, making them more complex and challenging to iden-
tify. Non-linear models are often required for modeling complex systems such as biological
systems, chemical processes, and robotics, where the relationships between the inputs and
outputs are highly non-linear. System identification techniques can be used to identify non-
linear models, which can be useful for analysis, simulation, and control of these systems.

There are several approaches for identifying non-linear models, including the use of para-
metric models, neural networks, fuzzy logic systems, and kernel methods. These techniques
involve estimating the parameters of the non-linear model from the input-output data, and
can be used to construct a model that accurately captures the system’s behavior.

In general, linear models are simpler and easier to analyze than non-linear models. How-
ever, non-linear models can be more accurate and better suited for modeling complex sys-
tems. System identification techniques can be used to derive both linear and non-linear
models of a system, depending on the complexity of the system and the accuracy required
for analysis, simulation, and control.

While our rocket model is governed by non-linear dynamics, we chose to use a linear
model for control design due to its simplicity and ease of use with control techniques such
as LQR and MPC. The linear model was obtained by approximating the non-linear system
dynamics around the control values of interest.

While a non-linear model may have better represented the behavior of our system, the
linear approximation allowed us to design controllers that were effective at stabilizing the
system and achieving the desired control objectives. Additionally, the linear model was
simpler to work with, allowing for more straightforward analysis and implementation. It is
important to note, however, that the use of a linear model may have limitations in accurately
capturing the full behavior of our system. In future work, it may be worthwhile to explore
the use of non-linear models for control design, especially in cases where the system behavior
is highly non-linear and the control objectives are more complex. Overall, our decision to

18

use a linear model for control design was motivated by the desire for simplicity and ease
of use with existing control techniques. While a non-linear model may have provided a
more accurate representation of our system, the linear model was sufficient for achieving our
control objectives and provided a useful starting point for further analysis and exploration.

3.3.4 Time Invariance

Time invariance is a fundamental property of a system that describes how the behavior of
the system remains constant over time. A system is said to be time-invariant if its response
to a given input signal is the same regardless of when the input is applied. This means that
if an input signal is delayed or advanced in time, the output signal will also be delayed or
advanced in time by the same amount.

In mathematical terms, a system is time-invariant if and only if its impulse response is
the same for all time intervals.

The time invariance property is closely related to the principle of superposition, which
states that the response of a linear system to a sum of input signals is equal to the sum of
the individual responses of the system to each input signal.

3.3.5 Block diagram of system for system identification

Figure 3.1: Block diagram of system for system identification

In order to achieve proper hovering and trajectory following of our rocket model, it is essential
to have precise control over its movement in all four directions - yaw, pitch, roll, and altitude.
To achieve this level of control, we need to develop a mathematical model of the system that
accurately describes its behavior in each of these dimensions.

19

For instance, the yaw control requires a model that describes the movement of the rocket
around the vertical axis, while pitch control requires a model that describes the movement
around the lateral axis, and roll control requires a model that describes the movement around
the longitudinal axis. Additionally, altitude control requires a model that describes the
movement of the rocket in the vertical direction.

3.3.6 ARX Method For System Identification For SISO system

The ARX method is a commonly used technique for estimating the transfer function of a lin-
ear time-invariant system from input-output data. The transfer function can be represented
as a ratio of two polynomials:

G(s) = b0 + b1s(− 1) + ...+ bms(−m)/a0 + a1s(− 1) + ...+ ans(− n) (3.12)

where s is the complex frequency variable, and the coefficients b0, b1, ..., bm and a0,

a1, ..., an are unknown parameters to be estimated from input-output data. The ARX
model is used to approximate the true transfer function by fitting a polynomial ratio to the
input-output data. The model can be written as:

y(t) = b0u(t) + b1u(t− 1) + ...+ bmu(t−m)− a1y(t− 1)− ...− any(t− n) (3.13)

where y(t) is the output of the system at time t, u(t) is the input to the system at time
t, and m and n are the orders of the numerator and denominator polynomials, respectively.
The ARX method involves estimating the coefficients of the numerator and denominator
polynomials that best fit the input-output data. This is typically done using least squares
regression, where the sum of squared errors between the predicted output and the actual
output is minimized:

minimizesumi(y(i)− yhat(i))
2 (3.14)

where yhat(i) is the predicted output at time i based on the model parameters and the input
data.

Once the coefficients of the numerator and denominator polynomials have been estimated,
the transfer function can be calculated as:

G(s) = Y (s)/U(s) (3.15)

where Y(s) and U(s) are the Laplace transforms of the output and input signals, respectively,
and are given by:

Y (s) = b0U(s) + b1U(s)s(− 1) + ...+ bmU(s)s(−m) (3.16)

20

U(s) = 1/(a0 + a1s(− 1) + ...+ an ∗ s(− n)) (3.17)

In summary, the ARX method is a commonly used technique for estimating the transfer
function of a linear time-invariant system from input-output data. The method involves
fitting an ARX model to the input-output data and estimating the coefficients of the numer-
ator and denominator polynomials using least squares regression. Once the coefficients have
been estimated, the transfer function can be calculated as a ratio of two polynomials.

3.3.7 ARMAX Method for System Identification SISO system

ARMAX (AutoRegressive Moving Average with eXogenous inputs) model is a method of
system identification used to model the input-output relationship of a dynamic system with
external inputs. ARMAX models build upon ARMA models by adding exogenous input
terms. ARMAX models can be written in the following form:

A(q)y(t) = B(q)u(t− d) + C(q)e(t) (3.18)

where y(t) is the output of the system, u(t− d) is the delayed input to the system, e(t)
is the white noise disturbance, and A(q), B(q), and C(q) are polynomials in the lag operator
q−1.

The ARMAX model is specified by three parameters:

1. The order of the AR polynomial, denoted by na.

2. The order of the MA polynomial, denoted by nc.

3. The order of the exogenous input polynomial, denoted by nb.

The ARMAX model can be estimated from input-output data using least squares or
maximum likelihood methods. The transfer function of the ARMAX model can be obtained
by taking the ratio of the output polynomial to the input polynomial, which gives:

G(q) =
B(q)

A(q)

The variance of the white noise can be estimated from the residual obtained after fitting
the ARMAX model to the data. The residuals are the difference between the actual output
and the predicted output based on the ARMAX model. The variance of the residual can be
used to estimate the variance of the white noise. The ARMAX model is a powerful tool for
system identification as it allows the user to model the effects of exogenous inputs on the
system. This makes it useful for modeling and controlling systems with external disturbances.

21

However, it is important to note that ARMAX models are computationally intensive and
may require significant computational resources for large systems. Additionally, the accuracy
of the ARMAX model is dependent on the quality and quantity of the input-output data
used for Estimation.

3.3.8 Subspace method for system identification for MIMO system

Subspace identification methods are a class of model-based approaches for system identifi-
cation that can accurately estimate the state-space model of a linear time-invariant system
from input-output data. The MOESP (Multivariable Output Error State-space) algorithm
is a subspace identification method for continuous-time systems with a noise model and has
been used for the MIMO system identification of our rocket model.

The MOESP algorithm works by first constructing a block Hankel matrix from the input-
output data, which is then decomposed using singular value decomposition (SVD) to extract
the state and output subspaces of the system. The state and output subspaces are used to
estimate the system matrices, which are then combined to form the state-space model.

Mathematically, the MOESP algorithm can be described as follows. Consider a state-
space model of the form:

dx

dt
= Ax+Bu

y = Cx+Du

where x is the state vector, u is the input vector, y is the output vector, and A, B, C, and
D are the system matrices to be estimated. Let Y (t) = [y(t), y(t + T), ..., y(t + (N − 1)T)]

be the output data, and U(t) = [u(t), u(t+ T), ..., u(t+ (N − 1)T)] be the input data, where
T is the sampling time and N is the number of samples.

The MOESP algorithm constructs the following block Hankel matrix:

H =
[
Y (0) Y (T) . . . Y ((n− 1)T) U(T) U(2T) . . . U(nT)

]
where n is the number of columns in H. Next, we perform the SVD of the Hankel matrix:

H = U · S · V T

where U and V are orthonormal matrices, and S is a diagonal matrix containing the
singular values of H. The left singular vectors of U corresponding to the largest singular
values are used to estimate the state subspace of the system:

X =
[
U(:, 1) U(:, 2) . . . U(:, n− 1)

]
22

where X is an (n− 1)× n matrix. The output subspace of the system is estimated as:

Y =
[
CX CAX . . . CAn−2X

]
where Y is an m × ((n − 1)p) matrix, p is the number of inputs, and m is the number

of outputs. The system matrices are then estimated by solving the following optimization
problem:

min
D

∥Y −D · U∥2F subject to XTX = I

where D is a matrix that combines C and the estimated state-space matrices, and ∥.∥2F is
the Frobenius norm. The optimization problem can be solved using least-squares or other
numerical methods, which yields the estimated system matrices A, B, C, and D.

To account for measurement noise, the MOESP algorithm can be extended to include
a noise model. The noise model assumes that the output measurements are corrupted by
Gaussian white noise with zero mean and known covariance matrix R. The noise model is
incorporated into the Hankel matrix by adding an extra block:

H =
[
Y (0) Y (T) . . . Y ((n− 1)T) U(T) U(2T) . . . U(nT) N(0) N(T) . . . N((n− 1)T)

]
where N(t) is the noise vector at time t.

The optimization problem for the MOESP algorithm with noise model is then modified
to include the noise model:

min
D,G

∥Y −D · U −G ·N∥2F subject to XTX = I

where G is a matrix that combines the estimated system matrices and the noise covariance
matrix R, and ∥.∥2F is the Frobenius norm.

The optimal estimate of the system matrices can be obtained by solving the following
generalized least-squares problem:

[Â, B̂, Ĉ, D̂, K̂] = argmin
D,G

∥Y −D · U −G ·N∥2F subject to XTX = I

where K̂ is the estimated Kalman gain matrix that minimizes the mean squared error between
the estimated state and the true state.

The MOESP algorithm with noise model is a powerful technique for identifying continuous-
time systems from noisy input-output data. It can accurately estimate the system matrices,
even in the presence of measurement noise, and has been successfully applied in various
engineering applications, such as control system design, fault detection and diagnosis, and
process optimization.

23

In summary, the MOESP algorithm for continuous-time system identification with noise
model involves the following steps:

1. Construct a block Hankel matrix from the input-output data.

2. Perform SVD on the Hankel matrix to extract the state and output subspaces.

3. Estimate the system matrices by solving a least-squares optimization problem.

4. Incorporate a noise model into the optimization problem to account for measurement
noise.

5. Solve a generalized least-squares problem to obtain the optimal estimate of the system
matrices and the Kalman gain matrix.

The mathematical details of the MOESP algorithm with noise model can be included
in a project report to provide a clear and detailed explanation of the methodology used for
system identification.

3.4 Controller
Control systems have recently gained a more significant part in the growth and development
of technology. Almost all facets of our daily actions are influenced by some sort of control
system. All areas of industry use automatic control systems in some capacity, including
quality control of produced goods, automatic assembly lines, machine-tool control, space
technology and weaponry, computer control, power systems, robotics, and many more. In
the process industries, it is crucial for tasks like pressure, temperature, humidity, and flow
management. Modern control theory has recently been applied to non-engineering systems
like biological, biomedical, inventory control, economic, and socioeconomic systems.

All controllers have a specific use case to which they are best suited. We cannot just
insert any type of controller at any system and expect a good result – there are certain
conditions that must be fulfilled.
The fundamental components of a control system are as follows:

• Objectives of control.

• Control system components.

• Results or output.

24

Figure 3.2: Control Block

Types of Controller:

• Open Loop Controller

• Close Loop Controller

3.4.1 Open Loop Controller:

A system in which the output has no effect upon the input quantity is called open-loop
control system. Or simply any system which cannot control or correct the variation on
Output.

Figure 3.3: Open Loop Block

3.4.2 Close loop control system:

The control system in which the output has an effect upon the input quantity so as to
maintain the desired output is called closed-loop control system. Or one that measures its
output and adjusts its input accordingly by using a feedback signal.

Figure 3.4: Close Loop Block

Type of controller to use must be decided depending upon the nature of the plant and
the operating condition, including such consideration as safety, cost, availability, reliability,

25

accuracy, weight and size

3.4.3 Proportional Integral Derivative (PID) Controller

The term PID stands for proportional integral derivative and it is one kind of device used
to control different process variables. It produces an output signal consisting of three terms
–one proportional to error, another one proportional to integral of error signal and third one
proportional to derivative of error signal.

A closed-loop system like a PID controller includes a feedback control system. This
system evaluates the feedback variable using a fixed point to generate an error signal. Based
on that, it alters the system output. This procedure will continue till the error reaches Zero
otherwise the value of the feedback variable becomes equivalent to a fixed point.

The proportional controller stabilizes the gain but produces a steady state error. The
integral controller reduces or eliminates the steady state error. The derivative controller
reduces the rate of change of error.

• PID controller has higher stability.

• It has no offset.

• It has reduced overshoot.

With the PID control action; there is no offset, no oscillations with least setting time.
So there is improvement in both transient as well as steady state response.

Figure 3.5: PID Block Diagram

Mathematically:

Y (k)αe(k) +

∫
e(k) +

d

dt
e(k) (3.19)

26

Y (k) = KP e(k) +KI

∫
e(k) +KD

d

dt
e(k) (3.20)

Figure 3.6: Effect of different parameter’s of PID

3.4.4 Linear Quadratic Regulator (LQR):

It is well-known method that provides optimally controlled feedback gains to enable the
closed-loop stable and high performance design of system. The LQR algorithm is essentially
an automated way of finding an appropriate state-feedback controller. The LQR algorithm
reduces the amount of work done by the control system engineer to optimize the controller.
However the engineer still need to specify the cost function parameters, and compare the
result with the specified design goals. Often this means that controller construction will be
an iterative process in which the engineer judges the “optimal” controllers produced through
simulation and then adjusts the parameters to produce a controller more consistent with
design goal.

3.4.5 MPC:

MPC works by using a mathematical model of the system being controlled to predict future
behavior, and then optimizing control actions based on these predictions. In the case of the
VTOL prototype, the MPC algorithm uses a model of the VTOL to predict how the VTOL
will behave in response to control inputs, such as changes in EDF motor thrust or servo tilt
angle.

To implement MPC on the VTOL prototype, we that includes sensors like MPU9250,
BMP280, GPS, LIDER to measure the VTOL position, velocity, and other parameters, as
well as actuators to adjust the EDF motor thrust and Servo tilt angle. The MPC algorithm

27

runs on a computer, which receives input from the sensors and uses the model to predict
how the VTOL will behave.

The MPC algorithm then calculates the optimal control inputs to achieve a desired
trajectory, taking into account constraints such as the maximum thrust and the maximum
tilt angle. These control inputs are sent to the actuators, which adjust the thrust and tilt
angle in real-time.

The use of MPC on the VTOL prototype has several advantages. First, it allows for
precise control of the VTOL trajectory, which is essential for achieving the desired flight
path. Second, it can adapt to changing conditions, such as wind or other disturbances,
to ensure that the VTOL stays on course. Finally, it can handle constraints such as the
maximum thrust or tilt angle, ensuring that the rocket operates safely and efficiently and
versatility of this control strategy, and its potential to improve the performance and safety
of complex systems like VTOL’s.

Single Input Single Output:

x(k + 1) = f(x(k), u(k)) (3.21)

At decision Instant k, measure the state x (k)

Based on x (k), compute the optimal sequence of control over a prediction horizon N:

u∗(x(k)) = (u∗(k), u∗(k + 1),u∗(k +N − 1) (3.22)

Apply the control u∗)(k) on the sampling period [k, k+1].

28

(a) (b)

(c) (d)

(e) (f)

29

(a) (b)

(c) (d)

(e) (f)

30

Running Cost:

Also known as stage cost:

l(x, u) = ||xu − xr||2Q + ||u− ur||2R (3.23)

(a) Running cost of state
(b) Running cost of Input

Cost Function:

Evaluation of the running costs along the whole prediction horizon.

JN(x, u) =
N−1∑
(k=0)

l(xu(k), u(k) (3.24)

(a) Cost Function of State (b) Cost Function of Input

Optimal Control Problem (OCP):

To find a minimizing control sequence. Evaluation of the running costs along the whole
prediction horizon.

minimize

u
JN(x◦) =

N−1∑
(k=0)

l(xu(k), u(k)) (3.25)

31

subjectto : xu(k + 1) = f(xu(k), u(k)) (3.26)

xu(0) = x0, (3.27)

u(k)ϵU,∀kϵ[0, N − 1] (3.28)

xu(k)ϵX, ∀kϵ[0, N] (3.29)

Value Function:

Minimum of the cost function

VN(x) =
min

u
JN(x0, u) (3.30)

Nonlinear Programming Problem (NLP):

A standard problem formulation in numerical optimization having the general form:

min

w
∅(w) ObjectiveFunction (3.31)

s.t.g1(w) ≤ 0 InequalityConstraints (3.32)

g2(w) = 0 equalityConstraints (3.33)

Many NLP optimization algorithms (packages):-

• Ipopt

• Fmincon

For our problem we have choosen IPOPT for solving the NLP problem.

32

Interior Point Optimizer (IPOPT)

It is an open-source software package for solving large-scale nonlinear optimization problems.
It is widely used in the optimization community and is particularly well-suited for solving
nonlinear programming problems with a large number of variables and constraints. IPOPT
uses an interior point algorithm for solving nonlinear programming problems. This algorithm
works by minimizing a barrier function that is a combination of the objective function and
the constraints of the optimization problem. It can efficiently handle problems with tens of
thousands of variables and constraints. It is also highly customizable, allowing users to tailor
the algorithm to their specific problem requirements. IPOPT can handle a wide range of
nonlinear programming problems, including problems with nonlinear equality and inequality
constraints, nonconvex objective functions, and integer variables. It also provides options
for handling various types of constraints, such as bound constraints, linear constraints, and
nonlinear constraints. IPOPT is written in C++ and can be called from various programming
languages, including MATLAB, Python, etc.

Converting Problem Set from OCP to NLP

Figure 3.11: Single Step Action

Single Shooting:

Single shooting is a numerical method used to solve optimal control problems (OCPs) that
involve a finite number of decision variables and a set of dynamic constraints. It is a type of
shooting method that involves dividing the time horizon of the problem into a finite number
of subintervals, and solving the OCP by optimizing the control inputs over each subinterval
separately. The basic idea behind single shooting is to first guess the values of the control
inputs over each subinterval, and then integrate the system dynamics forward in time using
these control inputs to obtain a predicted trajectory of the system. The predicted trajectory
is then compared to the desired trajectory, and the control inputs are adjusted iteratively
until the predicted and desired trajectories match.

33

Single shooting is computationally efficient and can handle problems with a large number
of subintervals. However, it may not converge to the global optimum of the OCP and may
require multiple initial guesses to find a good solution. Additionally, it may not be suitable
for problems with complex dynamics or nonlinear constraints.
MAIN Drawback: Nonlinearity propagation: integrator function tends to become highly
nonlinear for large N. Not a suitable method for nonlinear and/or unstable systems when
optimizing over a long prediction horizon.

Multiple Shooting:

Multiple shooting is a numerical method used to solve optimal control problems (OCPs)
that involve a finite number of decision variables and a set of dynamic constraints. It is a
type of shooting method that involves dividing the time horizon of the problem into a finite
number of subintervals, and solving the OCP by optimizing the control inputs and the state
variables over each subinterval separately. The basic idea behind multiple shooting is to
first guess the values of the control inputs and the state variables over each subinterval, and
then use these guesses to solve a set of algebraic equations that relate the state and control
variables at the end of each subinterval. These algebraic equations are known as continuity
constraints, and they ensure that the state variables are continuous across the subintervals.

Multiple shooting is computationally efficient and can handle problems with a large num-
ber of subintervals. It also has better convergence properties compared to single shooting,
as it ensures that the state variables are continuous across the subintervals. However, it may
not converge to the global optimum of the OCP and may require multiple initial guesses
to find a good solution. Additionally, it may not be suitable for problems with complex
dynamics or nonlinear constraints.

CASADI:

CasADi is a software framework for numerical optimization and algorithmic differentiation,
which could be used for solving optimization problems and developing optimal control so-
lutions. It provides a powerful and efficient platform for modeling and solving complex
optimization problems, with a wide range of features that include automatic differentiation,
nonlinear programming, and real-time optimization. It provides efficient and accurate auto-
matic differentiation tools, which allow users to compute gradients and Hessians of nonlinear
functions without the need for symbolic differentiation. Also, it includes a suite of nonlinear
programming solvers, which can be used to solve optimization problems with constraints and
nonlinear objective functions. It has provided the interface on multiple platforms/interface

34

Python, Matlab which makes easy on scientific computation. The main advantage of it is
Free and Open-Source, flexible and efficient, which makes it a powerful tool for solving com-
plex optimization problems in a wide range of applications. CasADi can handle 4 standard
problems.

• QP’s (Quadratic programs)

• NLP’s (Nonlinear programs)

• Root finding problems

• Initial-value problems in Ordinary Differential Equations (ODE)/ Differential Alge-
braic Equations (DAE)

35

4. Methodology

4.1 Flight Computer Working

Figure 4.1: Atmega328P schematic diagram

36

Figure 4.2: Teensy 4.1 schematic diagram

The LM2596 buck converter is a type of voltage regulator that is used to convert a higher
voltage input to a lower voltage output. In this particular case, it is used to convert the
input voltage from a 6S 65C 5000mAh lithium polymer battery (which typically provides a
voltage output of around 22 volts) to 5 volts, which is then used to power the actuators in
the system.

The 5V output from the buck converter is further regulated to 3.3V using the AMS1117
voltage regulator. The 3.3V output is then used to power the teensy microcontroller,
NRF24L01, MPU9250, BMP280, lidar and GPS sensor. These components require a lower
voltage input and hence, the voltage is further reduced using the voltage regulator.

Overall, the combination of the LM2596 buck converter and the AMS1117 voltage regu-
lator provides a stable and regulated power supply to all the electronic components in the
system, ensuring optimal performance and reliability.

37

Figure 4.3: Project Architecture

38

Initially, an MPU6050 sensor, which had an accelerometer and a gyroscope, was used.
However, it was found that the system’s yaw angle was not satisfactory. Therefore, an
upgrade was made to an MPU9150 sensor, which had an additional magnetometer, resulting
in improved accuracy. To further improve accuracy, an MPU9250 sensor was utilized, which
had additional sensors to enhance performance. In addition, a GPS module was incorporated
to measure location accurately, which helped track the vehicle’s movement concerning the
desired trajectory. A BMP280 sensor was also utilized to measure altitude. However, it
was noticed that inaccurate data was obtained in direct sunlight. Therefore, the BMP280
sensor was enclosed in a box that allowed air to pass through but blocked sunlight, resulting
in more accurate altitude measurements. These sensor upgrades and improvements helped
achieve a highly accurate and reliable vehicle tracking system. The methodology involved
evaluating different sensors’ performance, testing them in various scenarios, and analyzing
the collected data to select the most appropriate sensors and improve the system’s overall
accuracy.

We also aimed to improve the accuracy of a vehicle tracking system by analyzing the
impact of external factors on sensor performance. We observed that the magnetometer
sensor worked fine when the EDF was not turned on, but it produced unreliable data when
the vehicle was launched. Further analysis revealed that the sensor’s position between the
battery and EDF was the primary reason behind this issue. Due to high current passing
through the wire from the battery, a magnetic field was generated, which ultimately affected
the magnetometer’s readings, leading to unreliable data. To address the issue of altitude
measurement, we used a BMP280 sensor, which produced accurate results. However, for a
soft touchdown, the altitude measurement needed to be very precise as the vehicle approached
the ground. Therefore, an extra LIDAR sensor, with a range of up to 12m, was added to
achieve more precise altitude measurements. For altitudes above 12m, the BMP280 sensor
was used. The methodology involved analyzing sensor performance in different scenarios,
identifying external factors affecting sensor accuracy, and selecting appropriate solutions to
enhance the system’s accuracy and reliability.

4.2 Thrust Vectoring mechanism (TVC)
We used two different approach in a progressive manner while coming in this phase of our
vehicle model. Firstly, we used nozzle mechanism for controlling the thrust direction and
controlling our VTOL and later proceed to using vanes as our thrust vectoring measure.

Unlike thrust vectoring nozzles, which can only provide limited control over the vehicle’s
direction of travel, vanes can actively manipulate the airflow around the vehicle to achieve
precise control over its yaw.

39

Figure 4.4: Contrasting Thrust Vectoring Mechanism (TVC). First image is the use of nozzle
while second is of use of vanes for TVC

By using vanes, the vehicle’s flight can be controlled with greater accuracy, allowing for
smoother transitions between hovering and forward flight modes. Additionally, vanes allow
for better maneuverability in the air, which can be important in situations where the vehicle
needs to navigate around obstacles or avoid collisions. A new flow control concept has been
proposed that uses vanes to reduce inlet flow distortion and improve hover performance.

4.3 Thrust Test
To apply the controller, it is necessary to know the inputs given to the plant. In our case
the actual input to the plant(vehicle) is the thrust generated by the motor. But we do not
have direct control over the thrust generated by the motor. However it can be controlled
through the throttle input which is actually a pwm signal given to the esc. At constant
throttle the thrust of the motor changes with the change of battery voltage. So indirectly
two parameters, throttle and battery voltage are affecting the thrust.

Figure 4.5: Block Diagram of Vehicle Input

40

4.3.1 Thrust Testing Bed

The motor was rigidly attached to the testing bed. A 10 kg load cell was used and the thrust
data, battery voltage data, throttle data and time data were collected.

Figure 4.6: Thrust Testing Bed

4.4 Sensor Fusion

4.4.1 Preliminary Stage

Setup:

We acquired the necessary equipment, including the MPU 6050 sensor module, ATmega328P
microcontroller, and a computer. We connected the MPU 6050 to the ATmega328P micro-
controller and interfaced it with the computer.

41

Sensor Calibration:

We calibrated the sensors by determining the sensor bias and sensitivity to ensure accu-
rate readings. The calibration procedure was performed by following the manufacturer’s
guidelines.

Sensor Fusion Algorithm:

We implemented a quaternion-based orientation estimation algorithm using the DMP of the
MPU 6050 and ATmega328P microcontroller. The algorithm was designed to use the data
from both the accelerometer and gyroscope sensors to estimate the orientation of the sensor
in 3D space. We set the sample rate to 50 Hz.

DataAcquisition:

We acquired data by reading the quaternion data output by the DMP of the MPU 6050. The
data was stored in a file format that was compatible with the software used for processing.

Data Processing and Analysis:

We processed the acquired data using the software. The quaternion data was converted to
Euler angles. We analyzed the data to determine the accuracy and reliability of the sensor
fusion algorithm. We evaluated the performance of the algorithm based on the accuracy of
the orientation estimates.

4.4.2 Improved Stage:

Figure 4.7: Sensor Fusion Block Diagram

Setup:

For this study, we used a different setup than the one described previously. We acquired a
MPU9250 sensor module with a magnetometer, an ublox GPS module, a BMP280 altitude

42

sensor, and a Teensy 4.0 microcontroller. We connected the MPU9250, magnetometer, ublox
GPS, and BMP280 to the Teensy 4.0 microcontroller and interfaced it with a computer.

Sensor Calibration:

We calibrated the MPU9250, magnetometer, and BMP280 sensors by determining the sensor
bias and sensitivity to ensure accurate readings. The calibration procedure was performed
by following the manufacturer’s guidelines. The ublox GPS module was configured using the
manufacturer’s recommended settings.

Calculation of Bias and Variance:

To use raw data from MPU9250 and u-blox GPS for EKF parameters, we collected data
and calculated mean, variance, and bias for each sensor measurement. Mean and variance
were used as parameters in the EKF to provide accurate estimates of the system state, while
bias accounted for systematic errors in sensor measurements to improve accuracy over time.
Accurately characterizing sensor measurements and accounting for bias are important steps
in preparing data for use in navigation and control applications with an EKF.

Sensor Fusion Algorithm:

We implemented a Madgwick filter for orientation estimation instead of the DMP used in
the previous setup. The Madgwick filter is a gradient-based algorithm that uses the data
from the MPU9250 sensors to estimate the orientation of the sensor in 3D space. We set the
sample rate to 250 Hz. We also used an Extended Kalman filter to fuse the data from the
ublox GPS and BMP280 sensors to estimate the position and altitude of the vehicle.

Data Acquisition:

We acquired data by reading the output of the Madgwick filter, Extended Kalman filter,
and one-dimensional LIDAR. The data was stored in a file format that was compatible with
the software used for processing.

Data Processing and Analysis:

We processed the acquired data using the software. The orientation, position, and altitude
data were analyzed to determine the accuracy and reliability of the sensor fusion algorithm.
We evaluated the performance of the algorithm based on the accuracy of the estimates.

43

For the altitude control, first the state space matrices of the rocket were derived and then
the model was simulated in simulink for the trajectory of our need.

4.5 System Modeling
The methodology used involved the modeling of the VTOL system using Newton’s law in
the roll, pitch, and altitude parts. However, it was noted that there was no yaw control
mechanism in the VTOL system at this stage, which meant that yaw was not included in
the initial system modeling.

To address this limitation, a yaw control mechanism was added to the VTOL system,
and the new system was analyzed. With the addition of the yaw control mechanism, the
system was now complete and able to operate in all four dimensions: yaw, pitch, roll, and
altitude.

After the completion of the system modeling, system identification was carried out in all
four dimensions of the VTOL system: yaw, pitch, roll, and altitude. This involved the use
of data collected from various sensors on the VTOL system, which was then analyzed using
mathematical models to identify the behavior and dynamics of the system.

44

4.5.1 State Space Model for Altitude Control from First Principle

Figure 4.8: Rotational Dynamics of the Vehicle

θ = angle made by the vehicle with earth vertical -axis in degrees
ϕ = angle made by the nozzle with vehicle’s vertical axis in degrees
FE = force generated by the motor in Newton
R = distance from center of mass to the nozzle in meters
It is assumed that the thrust is generated at the top end of the nozzle.
Force exerted in the direction of earth horizontal axis = FEsin(ϕ+ θ)

Force exerted in the direction of earth vertical axis = FEcos(ϕ+ θ)

ag = acceleration due to gravity = 9.81m/s2

z = altitude in meters
vz = velocity in z direction in meters per second
az = net acceleration in z direction in meters per second2

Sampling Time (Ts) = 20 milliseconds
Mass of rocket (m) = 2.5kg

we have,

45

az(k) =
FE(k).cos(ϕ(k) + θ(k))

m
− ag (4.1)

From equation (7) az(k) is maximum when FE(k) is maximum and az(k)is minimum when
FE(k) is minimum.

0 ≤ FE(k) ≤ 35.28N (4.2)

−9.81m/s2 ≤ az(k) ≤ 4.302m/s2 (4.3)

z(k+1) = z(k) + Ts.vz(k) +
T 2
s .az(k)
2

(4.4)

vz(k+1) = vz(k) + Ts.az(k) (4.5)

Now converting equation (10) and (11) into state space form taking az(k) as input. az(k)
can be converted to throttle using equation (7) and (6).[

z(k+1)

vz(k+1)

]
=

[
1 Ts

0 1

]
.

[
z(k)

vz(k)

]
+

[
T 2
s

2

Ts

]
.
[
az(k)

]
(4.6)

[
z(k)

]
=

[
1 0

]
.

[
z(k)

z(k)

]
+
[
0
]
.
[
az(k)

]
(4.7)

The controllability of the rocket was verified in matlab.

Here acceleration in z-direction is input given to the system while altitude is the system’s
output. For a real plant the acceleration in z-direction can be converted to the throttle using
equations (7) and (6). A predefined input to the vehicle was simulated which gave altitude
response of our need.

4.5.2 State Space Model for Pitch, Roll Control from First Principle

For attitude control of the vehicle moment of inertia (I) and distance between center of mass
and nozzle is required.

46

Determination of I and r

The moment of inertia (I) of the vehicle was determined experimentally. Two strings of
fixed length were fixed at either side of the center of mass of the vehicle at an arbitrarily
fixed distance. Then the vehicle was oscillated about the center of mass. The time period of
oscillation was recorded. Distance between center of mass and TVC nozzle was measured.
The mass of the vehicle was also measured.

Following data were obtained from the experiment:
Mass(m) = 2.5 kg
Distance between center of mass and the string attached point(d) = 0.3 m
String Length (l) = 0.205m
Distance between center of mass and the nozzle (r) = 0.46m

I =
mgt2d2

4π2l
= 0.2298kgm2 (4.8)

where,
g(acceleration due to gravity) = 9.81 m/s2

t(average time period of single oscillation) = 0.918 seconds

Therefore I was determined to be 0.2298 kgm2 and r was determined to be 0.46m.

47

Figure 4.9: Determination of I and r

Pitch, Roll Control

Due to the absence of a yaw control mechanism the yaw of the vehicle is not controllable.
But the pitch and roll can be controlled by appropriately vectoring the nozzle with the two
servo motors attached with it.
From figure (13)
ω = angular velocity in degrees/sec2

α = angular acceleration in degrees/sec2

I = moment of inertia in kgm2

r = distance between center of mass and the nozzle

Iα = −FEsinϕ.r

α = −FEsinϕ.r

I
(4.9)

θ(k+1) = θ(k) + Ts.ω(k) +
T 2
s .α(k)

2
(4.10)

ω(k+1) = ω(k) + Ts.α(k) (4.11)

48

From (15) for small ϕ(k)

α(k) = −
FE(k)ϕ(k).r

I
(4.12)

From equations (16), (17) and (18)

θ(k+1) = θ(k) + Ts.ω(k) −
T 2
s .r(FE(k).ϕ(k))

2I
(4.13)

ω(k+1) = ω(k) −
Is.r(FE(k).ϕ(k))

I
(4.14)

Converting equations (19) and (20) to state space form[
θ(k+1)

ω(k+1)

]
=

[
1 Ts

0 1

]
.

[
θ(k)

ω(k)

]
+

[
−T 2

s .r
2I

−Ts.r
I

]
.
[
FE(k).ϕ(k)

]
(4.15)

[
θ(k)

ω(k)

]
=

[
1 0

0 1

]
.

[
θ(k)

ω(k)

]
+

[
0

0

]
.
[
FE(k).ϕ(k)

]
(4.16)

x(k+1) = Ax(k) +Bu(k) (4.17)

y(k) = Cx(k) +Du(k) (4.18)

where,

x(k) =

[
θ(k)

ω(k)

]
(4.19)

y(k) =

[
θ(k)

ω(k)

]
(4.20)

Hence,

A =

[
1 Ts

0 1

]
(4.21)

B =

[
−T 2

s /2I

−Ts.r/I

]
(4.22)

C =

[
1 0

0 1

]
(4.23)

D =

[
0

0

]
(4.24)

49

From the above state space equations the input is FEk.ϕk. The nozzle angle ϕk can be
calculated from the input by dividing with thrust. The thrust input is given by altitude
controller from equation (7).

ϕ(k) = u(k)/FE(k) (4.25)

4.5.3 Block diagram of system for describing the movement around

yaw,pitch and roll axis

insert image

Figure 4.10: Abstract Block Diagram of System for Describing the Movement Around YPR
Axis

In order to make our system more easy to model and control, we decided to perform
system identification separately for yaw, pitch, roll, and altitude. For the control of yaw,
pitch, and roll, we have five control inputs in total, which are the duty cycle of the PWM
signals to the four servo motors that control the vanes, and the ESC connected to EDF motor
which acts as a thruster. However, in order to capture the dynamics of the system more
accurately, we considered the battery voltage as a measured disturbance to the system. The
outputs measured were the angles in yaw, pitch, and roll axes. By identifying the system
separately for each axis, we were able to obtain more accurate models for each specific control
objective, which would enable us to design better controllers for our system.

4.5.4 Time Variance of Battery Voltage

In our system, the time invariance property is an important consideration for accurate mod-
eling and control. However, we observed that the battery voltage is not time-invariant and
changes over time due to discharging. This means that the thrust of the motor at the

50

same input PWM value also changes with time, leading to a violation of the time invariance
property of the system.

To address this issue, we incorporated the battery voltage as a measured disturbance
in our system identification process. By doing so, we were able to account for the vary-
ing thrust of the motor due to the changing battery voltage and model the system more
accurately. With the battery voltage as a measured disturbance, we were able to approxi-
mate the behavior of our system as a linear time-invariant system. This allowed us to use
standard control techniques such as LQR and MPC for control design and optimization.
By accounting for the non-time-invariant battery voltage in our system model, we were able
to achieve better control performance and ensure that our system operates reliably over time.

4.5.5 ARX method for estimating the transfer function for yaw

movement of the rocket

To estimate the transfer function for the yaw control system, we used the ARX model. In
our case, we used the ARX model to predict the output yaw angle for a given vanes angle.

However, the ARX model has some limitations. It can only handle SISO (Single Input
Single Output) systems, so we had to neglect the effect of the ESC value in our model.
Furthermore, the measured input disturbance, which was the battery voltage in our case,
had to be neglected as well.

Despite these limitations, the ARX model provided us with a useful transfer function
that we could use for controller design and trajectory tracking.

4.5.6 ARMAX method for estimating the transfer function for yaw

movement of the rocket

After observing the auto-correlation of the residuals from the ARX model, we found that
the residuals were correlated up to two error terms behind, indicating the presence of a
second-order moving average (MA) process. Thus, an ARMAX model was fitted with the
order parameters [2 1 8 2], where the additional parameter 2 represents the order of the
MA process. By including the additional MA term, we aimed to capture the remaining
unexplained dynamics in the system and improve the accuracy of the model.

4.5.7 Subspace method for estimating the state space for yaw move-

ment of the rocket

We had two inputs that could directly change the yaw angle of the rocket: the vanes angle
and the thruster. While the vanes angle could both increase or decrease the yaw angle of the

51

rocket, the thruster could only decrease the angle, rotating the rocket in only a clockwise
direction. We considered the battery voltage as the measured disturbance. To identify
the whole system, we followed the following steps. First, we set the equilibrium value for
the thruster’s thrust equal to the rocket’s mass. Then, we found the corresponding ESC
value that would make the motor generate this amount of thrust at peak battery voltage.
We took this ESC value as the equilibrium value for the input ESC. Similarly, we found
the equilibrium value for the vanes angle by giving the motor the equilibrium thrust and
selecting the vanes angle that could almost cancel out the clockwise rotation of the rocket due
to the equilibrium thrust. After finding the equilibrium values for both inputs, we kept one
input constant at the equilibrium position and changed the other between two equidistant
values from the equilibrium position. Then, we conducted experiments and obtained data.
To better model the system, we preprocessed the data. We removed the initial bias from
the yaw and yaw velocity data, as well as from the ESC value and battery voltage. We also
noticed that the battery voltage got subjected to a large amount of noise due to the use of
buck converters which use switching in high frequency and edf which uses a large amount

Note: During the system identification process we kept the battery voltage as a second
input. Later after the A B C D and K matrix are computed the last column of the B matrix
is substituted to the D matrix and the second input is removed from the input matrix and
placed on the disturbance matrix.

Keeping ESC value in equilibrium

we initially used a pseudo-random binary sequence (PRBS) signal for the input vanes angle.
However, the results obtained with the PRBS signal were very poor. The system took a very
long time to show all its dynamics with the PRBS signal, but the battery could only last for
less than 2 minutes. As a result, we had to abandon the idea of using PRBS and instead
changed the vanes angle between two values based on the angular rate getting increased
or decreased by two values with the same magnitude but opposite direction. This method
proved to be much more effective in terms of capturing the system dynamics within the
battery life constraints.

Keeping vanes angle value in equilibrium

In contrast to the previous case, in this scenario, we used a pseudo-random binary sequence
(PRBS) signal to excite the input thruster. The system was run for a duration of 14 seconds,
during which all of the system’s important dynamics were captured. The use of a PRBS
signal proved to be effective in exciting the system’s dynamics and capturing them within

52

a relatively short amount of time. This approach allowed us to obtain comprehensive data
for system identification and model development. Overall, this experience highlights the
importance of carefully selecting the appropriate input signal for system identification and
model development. By utilizing a PRBS signal in this case, we were able to efficiently
capture the system dynamics and design an effective control system.

4.6 Control

4.6.1 PID Tuning

Tuning a PID controller is the process of adjusting its parameters to achieve the desired
control response. PID tuning methods: Manual Tuning:

Trial and error method:

This method involves manually adjusting the values of Kp, Ki, and Kd until the desired
control performance is achieved. This method is simple but can be time-consuming and may
not guarantee optimal performance.

Ziegler-Nichols method:

• Start with proportional gain (Kp):- Set the integral and derivative gains to zero and
increase the proportional gain until the system starts to oscillate. This is known as the
critical gain or ultimate gain (Ku).

• Determine the ultimate period (Tu): Measure the time it takes for the system to
complete one full oscillation cycle at the critical gain. This is the ultimate period.

• Calculate the controller gains: According to Ziegler-Nichols method to calculate the
proportional, integral, and derivative gains based on the critical gain and ultimate
period. The formulas for the gains are as follows:

– Kp = 0.6Ku

– Ki = 1.2 Ku
Tu

– Kd = 0.075 Ku Tu

• Adjust the gains: Once you have calculated the gains, adjust them as necessary to
achieve the desired control response. Increasing the proportional gain will increase
the system’s response time, while increasing the integral gain will reduce steady-state
error. Increasing the derivative gain will improve the system’s stability.

53

• Test and repeat: Test the system’s response to the adjusted gains and repeat the tuning
process as necessary until the desired control response is achieved.

4.6.2 Automatic Tuning:

It use algorithms and software to adjust the PID gains based on system response data,
without requiring manual intervention.

Matlab Simulink:

There are several built-in tools that can be used to automatically tune PID controllers. One
of the most commonly used tools is the PID Tuner, which is part of the Control System
Toolbox. Here’s how you can use the PID Tuner to automatically tune a PID controller:

• Add a PID Tuner block to the model along with PID controller.

• Open the PID Tuner block and select "Design Mode".

• In Design Mode, you can specify the desired response of the system using the built-in
response optimization criteria. For example, you can specify a step response with a
settling time of 0.1 seconds and a maximum overshoot of 10

• Click on "Tune" to automatically tune the PID gains based on the specified response
criteria.

• The PID Tuner will generate a new set of PID gains that meet the specified response
criteria, which you can apply to the PID controller in the Simulink model.

• Proportional Integral Derivative (PID) Controller

The PID Tuner also provides advanced tuning options, such as the ability to specify
constraints on the PID gains, to add additional filters to the controller, and to specify
different types of input signals for the system.

sssamundra

4.6.3 LQG Control

State Estimation with Kalman Filters

Kalman Filter is an optimal state estimator. In this project, we have employed kalman filters
in the roll and pitch of the rocket to estimate angle and angular velocity. The following are
the equations for kalman filter:

54

Prediction Phase
x(k) = Ax(k−1) +Bu(k) (4.26)

P(k) = AP(k−1)A
T +Q (4.27)

Correction Phase:
KG =

P(k)C
T

CP(k)CT +R
(4.28)

x(k) = x(k) +KG(y(k) − Cx(k)) (4.29)

P(k) = (I +KGC)P(k) (4.30)

Here, A,B and C matrices are the same as that of the state space equations in (27), (28)
and (29). P is the associated uncertainty associated with state matrix x. Q and R are the
covariance matrices.

LQG with Setpoint tracking and integral action for pitch roll control:

For integral action and setpoint tracking new matrices were made with some augmentations
from the original matrices.

z(k+1) = Aaug.z(k) +Baug.∆u(k) (4.31)

e(k) = Caug.z(k) (4.32)

where,

z(k) =

[
∆x(k)

e(k)

]
=

θ(k) − θ(k−1)

ω(k) − ω(k−1)

r(θ)− θ(k)

r(ω)− ω(k)

 (4.33)

where,
r(θ) = set point for angle
r(ω) = set point for angular velocity

Aaug =

[
A 0

−CA I

]
(4.34)

55

Baug =

[
B

−CB

]
(4.35)

Caug =
[
0 I

]
(4.36)

where, Aaug , Baug, Caug are matrices obtained by augmenting the A, B and C matrices
respectively from (27), (28) and (29)
∆uk is the required change in input

Now the cost function for the plant is:

costfunction :
∑

Z(k+i
T
) Q̄Z(k+i) +∆u(ki

T
) .R.∆u(k+i) (4.37)

where,

Q̄ =

[
0 0

0 Q

]
(4.38)

we get,
costfunction :

∑
e(k+i

T
) Qe(k+i) +∆u(k+i

T
) .R.∆u(k+i) (4.39)

From LQR,
∆u(k+1) = −kz(k) (4.40)

where, Q is the weight given to the states to the states and R is the weight given to the
input.
This cost function is solved to get an optimal feedback matrix K using the Riccati equation
in matlab.

Implementation of LQG

The LQG is implemented in the microcontroller as shown in the block diagram below. Here
Θrepresents the estimated values from measured values and input using Kalman filter.

First, the sensors in the vehicle give the output y(k). The output is then passed through
the kalman filter along with the actuator’s input u(k) which then gives an estimate of the
states of the vehicle as x̂(k).
Now for set point tracking and integral action the estimated values are subtracted with the
previously estimated values. A new column matrix z(k) is formed with the difference of
estimates and error. Error is calculated by subtracting the estimates from the set points.

56

Figure 4.11: Implementation of LQG

The z(k) is then multiplied by the optimal gain matrix K and negated to get the required
change in input ∆u(k+1) as,

∆u(k+1) = −K × z(k) (4.41)

Also,
∆u(k+1) = u(k+1) − u(k) (4.42)

Hence,
u(k+1) = ∆u(k+1) + u(k) (4.43)

4.6.4 Flow Chart of MPC:

• System identification

– Develop a mathematical model of the system

– Identify the system parameters

• Prediction

– Use the mathematical model to predict the behavior of the system over a finite
time horizon

– Take into account the current state of the system and the predicted future inputs

• Optimization

– Formulate an optimization problem that minimizes a cost function subject to
constraints

– The cost function is typically a weighted combination of performance objectives
such as tracking a reference trajectory, minimizing control effort, or satisfying
constraints

57

• Solution

– Solve the optimization problem using numerical optimization techniques such as
quadratic programming or nonlinear programming

– The solution provides the optimal inputs over the finite time horizon that minimize
the cost function subject to the constraints

• Implementation

– Apply the first control input from the optimal solution to the system

– Re-compute the optimization problem at each time step using updated
measurements of the system state and any new reference trajectory or constraint
information

– Repeat steps 2-5 at each time step

4.6.5 Single Shooting Algorithm

• Divide the time horizon into a finite number of subintervals, and discretize the control
inputs over each subinterval.

• Guess the initial values of the control inputs over each subinterval.

• Integrate the system dynamics forward in time using these control inputs to obtain a
predicted trajectory of the system.

• Compare the predicted trajectory to the desired trajectory, and calculate the error
between the two trajectories.

• Use the error to update the values of the control inputs over each subinterval, and
repeat steps 3-5 until the predicted and desired trajectories match.

• Once the optimal control inputs have been found, use them to integrate the system
dynamics forward in time to obtain the optimal trajectory of the system.

4.6.6 Multiple Shooting Algorithm

• Divide the time horizon into a finite number of subintervals, and discretize the control
inputs and the state variables over each subinterval.

• Guess the initial values of the control inputs and the state variables over each subin-
terval.

58

• Use the guessed values to integrate the system dynamics forward in time over each
subinterval, and calculate the values of the state variables at the end of each subinterval.

• Use the calculated values of the state variables and the guessed values of the control
inputs to solve a set of algebraic equations that relate the state and control variables
at the end of each subinterval. These equations are known as continuity constraints.

• Use the continuity constraints to update the guessed values of the state variables and
the control inputs over each subinterval, and repeat steps 3-5 until the predicted and
desired trajectories match.

• Once the optimal control inputs and state variables have been found, use them to
integrate the system dynamics forward in time to obtain the optimal trajectory of the
system.

59

5. Results & Discussion

5.1 Thrust Test at Varying Throttle

Figure 5.1: Throttle vs Time

Figure 5.2: Battery Voltage vs Time at Changing Throttle

60

Figure 5.3: Thrust vs Time at Changing Throttle

As the throttle to the ESC was increased over time, the output thrust of the motor also
increased. However, due to the slow decrement of the thrust from the EDF, the thrust
output decreased as the battery voltage dropped over time. This data has proven to be
very valuable in determining the appropriate throttle value for the rocket’s weight, which is
crucial during system identification and control.

5.2 Comparison Between MPU’s internal DMP, Madg-

wick Filter and EKF
The digital motion processor (DMP) of the MPU6050 is a powerful tool for obtaining high-
frequency data, with a theoretical limit of up to 1000Hz. However, during practical im-
plementation, only 167 samples per second were achieved. This lower sampling rate could
potentially affect the control of the rocket. To address this issue, a madgwick filter was used
in combination with a teensy 4.1 microcontroller. This allowed for a sampling rate of more
than 900Hz, but to prevent oversampling, the sampling rate was set to 250Hz. This resulted
in a smooth running system. While an extended Kalman filter (EKF) was used to fuse data
from the MPU and GPS for attitude and position estimation, it was found that the attitude
estimates, particularly the yaw angle, suffered from noise and drift. However, the position
estimates from the EKF were good. To address this issue, a combination of the madgwick
filter and EKF was used. The madgwick filter was used for attitude estimation, while the
EKF was used for position estimation. The beta parameter of the madgwick filter was ini-

61

tially set to a very small value, which caused a significant delay in the system. After tuning
the parameter to 0.3, an optimal balance was achieved between delay and accuracy for our
specific application. Overall, the combination of the madgwick filter and EKF allowed for
accurate and reliable estimation of both attitude and position, despite the limitations of the
DMP sampling rate.

Figure 5.4: Madgwick vs EKF for Yaw, Pitch, Roll Stationary Data

Standard deviation Yaw Pitch Roll

Madgwick 2.4291 0.4923 0.3536
EKF 105.6154 2.5318 3.1724

Table 5.1: Standard deviations for Madgwick and EKF

The standard deviation of the Madgwick filter can be even more increased by properly
tuning the beta parameter.

Figure 5.5: GPS Stationary Data in NED Coordinate System

62

Figure 5.6: GPS Stationary Data After Sensor Fusion with IMU Data in NED Coordinate
System

Standard deviation North East Down

GPS 16.3388m 11.7160m 8.9393m
EKF 0.5536m 0.3961m 4.1700m

Table 5.2: Standard deviations for GPS and EKF

Figure 5.7: Comparison of EKF Output with GPS data

Figure 5.8: Attitude Data From Madgwick Filter

63

5.3 ARX Model

Figure 5.9: Input and Output Comparison Plot for ARX Model Estimation

Figure 5.10: Error Correlation Plot for ARX Model Estimation

After obtaining the predicted data using the estimated transfer function, we calculated the
autocorrelation and cross-correlation between the prediction error and the input data. We
found that the correlation values were significant, indicating that there was still some infor-
mation left in the prediction error that was not captured by the estimated transfer function.
This means that the estimated transfer function was not able to completely eliminate the
noise present in the data.

64

Figure 5.11: Error Partial Auto-Correlation Plot for ARX Model Estimation

On further finding the partial autocorrelation of the residual data we found that the
current error was correlated up to (t-2) error terms behind.

Based on the significant correlation values between the error on predicted data and both
itself and the input, it was determined that the residual correlation was due to noise in
the system. Since the ARX model used in the initial system identification process could
not account for this noise, it was necessary to explore alternative modeling methods. As a
result, the ARMAX model was tested as an alternative, which is capable of handling input
and output noise in the system.

5.4 ARMAX Model

Figure 5.12: Input and Output Comparison Plot for ARMAX Model Estimation

65

Figure 5.13: Error Correlation Plot for ARMAX Model Estimation

Although the use of the ARMAX method eliminated the issue of significant residual cor-
relation in the error terms, it resulted in a substantially decreased fitness of the estimated
model compared to the ARX method. One possible explanation for this observation is that
while the error data were highly correlated in the ARX model, their magnitude was relatively
small, and therefore, had little impact on the model’s fitness. However, by introducing ad-
ditional parameters to the ARMAX model, the model may have become overparameterized,
leading to a decrease in the model’s performance. Additionally, the added complexity of
the ARMAX model can lead to a decrease in the accuracy of the model fit, especially if the
available data is limited.

5.5 Subspace Method
The result in both of the below cases are quite similar. A 3 order state space model was
predicted for both cases which very well fitted the output data on validation data. Similarly
the residuals of the predicted and actual noise had insignificant auto correlation and cross
correlation with the given inputs.

5.5.1 Keeping ESC value in equilibrium

Figure 5.14: Input Plot for State Space Model Estimation with motor at equilibrium

66

Figure 5.15: Output Comparison Plot for State Space Model Estimation with motor at
equilibrium

Figure 5.16: Error Correlation Plot for State Space Model Estimation with motor at equi-
librium

5.5.2 Keeping vanes angle in equilibrium

Figure 5.17: Input Plot for State Space Model Estimation with vanes at equilibrium

67

Figure 5.18: Output Comparison Plot for State Space Model Estimation with vanes at
equilibrium

Figure 5.19: Error Correlation Plot for State Space Model Estimation with vanes at equilib-
rium

5.6 Comparison Between ARX, ARMAX and Subspace

Method
response did not align with the physical model’s behavior. Specifically, the model’s predic-
tion indicated that the yaw angle would settle to a constant value in response to a step input,
whereas in reality the physical model would continue to increase its yaw angle in one direc-
tion. This discrepancy in the model’s prediction can be attributed to the short duration of
time over which the system was excited during experimentation. The limited battery capac-
ity prevented us from extending the experimentation time, resulting in insufficient data to
properly verify the model’s accuracy. In order to address this issue, longer experimentation
times could be utilized in future studies to ensure that the data captures the full range of
the system’s dynamics. This approach could provide more accurate modeling results and
improve the overall effectiveness of the control system design.

68

Figure 5.20: Step Response of ARX and ARMAX Model

Figure 5.21: Step Response of State Space Model

Compared to the ARX and ARMAX models, the subspace method provided a more ac-
curate approximation of the model’s behavior. Specifically, the step response of the subspace
model indicated that the yaw angle and yaw velocity would continue to increase in response
to a step input, which aligned with the physical model’s actual behavior. One possible ex-
planation for the superior performance of the subspace method is that it takes into account
the effect of the battery voltage, which was used as an input during experimentation. This
additional information likely improved the model’s accuracy by providing a more complete
representation of the system’s behavior.

Overall, the subspace method demonstrated significant advantages over other modeling

69

approaches in this case, highlighting the importance of carefully considering model selection
and input/output data when designing control systems.

5.7 Open Loop Altitude Control
The simulation was done in matlab simulink

Figure 5.22: Altitude Control Block Diagram

In the simulation, a discrete-time state space block was used which represented the trans-
fer function from first principal corresponding to altitude control of the rocket. A signal editor
block was used to generate input signals. The input was passed through the saturator which
set the boundaries to the input and the output from the saturator block was given to the
model. The input to the model and output from the model were plotted using a scope.

70

Figure 5.23: Simulation Result of Altitude Control

The above figure shows simulation results of open loop altitude control. Apogee was
reached in approximately 2.5 seconds. Landing took approximately 7 seconds in addition.
Total flight time was about 9 seconds.

5.8 Simulation of the LQG controller With Thrust Vec-

toring Nozzle
To find the optimal feedback matrix (K) a simulation environment was set up in simulink
using the state space model obtained from first principle. The values of Q and R were tuned
to adjust K until the required response from the simulation was obtained. Integral action
and set-point tracking were also analyzed.

The noise was also added in the simulation after properly measuring all the sensors and
measurement noise in the vehicle. Noise was present in the battery voltage measurement
which resulted in noise in thrust measurement as thrust measurement relied on battery
voltage. The signal to noise ratio of the BMP280 sensor was very high which was somehow
reduced by using its internal moving average filter. Noise present in MPU6050 was also
measured.

71

Figure 5.24: Attitude Control Simulation Block Diagram

The vehicle’s initial states were set to 5 degrees tilt with zero angular velocity and the
simulation was run. There was some noise in the states of the vehicle in spite of using a
kalman filter which was due to the noise in the input thrust. The nozzle angle was very less
which solved the burden of using constraints in the controller design. Small overshoot in
both states and input was also seen in the simulation. The vehicle took around 2 seconds to
come to a steady state which met our requirements.

5.9 Result using LQG and Thrust Vectoring Nozzle
The rocket took off satisfactorily and reached an apogee of about 1.5 meters taking approxi-
mately 2.5 seconds of time. Landing could not be achieved. Lack of yaw control mechanism
is the probable reason for it. The figure below shows change in altitude with time.

The vehicle was fairly straight initially as shown in the graph below. After the first
second, due to lack of yaw control wobbling and fast rotation in the yaw axis, our small
angle approximation failed thus making the vehicle unstable.

72

Figure 5.25: Attitude Control Simulation Result

Figure 5.26: Altitude Vs Time

73

Figure 5.27: Angle Vs Thrust

74

The angular velocity changed as shown below.

Figure 5.28: Angular velocity Vs Time

Figure 5.29: Servo Angle Vs Time

The above servo angle vs time also points out the fact that the vehicle was fairly stable
in the first second and became unstable after that.
The change in throttle with time is shown below:

75

Figure 5.30: Throttle Vs Time

5.10 Simulation of the PID controller with Vanes
To simulate the PID controller in MATLAB, the data obtained from the subspace method
was converted to a transfer function, where the input was the vane angle and the output was
the yaw angle. The resulting transfer function was then used with a discrete PID controller
to obtain the final results.

Figure 5.31: PID Simulation Block Diagram with Vanes

76

5.11 Result of the PID controller with Vanes

Figure 5.32: PID Simulink Graph (AutoTune)(V anesangle± 10◦)

Figure 5.33: PID Simulation Graph (V anesangle± 40◦)

Figure 5.34: PID Simulation Graph (V anesangle± 10◦)

The simulation results showed significant overshoot and required a considerable amount of
time to reach a steady state. The simulation was conducted with the vanes angle limit set to
a maximum of 10 degrees in both directions. The experimental results were consistent with

77

the simulation, as the rocket was successfully controlled in the yaw direction. /par However,
upon changing the vanes angle limit to 40 degrees, the same PID control parameter caused
the rocket to become very reactive to disturbances. While the output remained stable, it
became oscillatory with increased overshoot and settling time.

5.12 Simulation Result of the MPC controller

(a) MPC Single Shooting Takeoff Animation

(b) MPC Single Shooting Takeoff Graph

(a) MPC Single Shooting Landing Animation

(b) MPC Single Shooting Landing Graph

78

(a) MPC Single Shooting Takeoff Animation

(b) MPC Single Shooting Takeoff Graph

(a) MPC Single Shooting Landing Animation

(b) MPC Single Shooting Landing Graph

79

(a) MPC Multiple Shooting Takeoff Anima-

tion

(b) MPC Multiple Shooting Takeoff Graph

(a) MPC Multiple Shooting Landing Anima-

tion

(b) MPC Multiple Shooting Landing Graph

80

The MPC controller algorithm was tested using a very simplistic model. The parameters Q
matrix and R matrix were tweaked along with the prediction horizon. Both single shooting
and multiple shooting approach were tested, The multiple shooting approach turned out to
be 20 times faster than the single shooting approach. Now the task remaining is to change
the state space matrix in the MPC algorithm with the one determined from the subspace
method with a proper state observer and simulate the response.

81

6. Conclusions
Based on the progress made so far, it can be concluded that the project is well underway
towards achieving its objectives. The completion of sensor fusion for navigation and the
setup of the simulation environment are significant milestones that have been achieved. The
successful implementation of these steps will serve as the foundation for developing and
testing the control system for a VTOL vehicle using Model Predictive Control (MPC) and
Linear Quadratic (LQ) algorithms.

With these initial stages complete, the project team can move on to the next phase, which
involves implementing the MPC algorithms in the simulated environment and optimizing
the control system parameters to achieve precise guidance, navigation, and control over a
predetermined trajectory. Once this phase is completed, the team can then proceed to
test the LQG control system’s performance in a real-world environment and evaluate its
effectiveness in enhancing the VTOL vehicle’s flight characteristics.

Thus, the progress made so far is encouraging, and the team is well on its way towards
achieving the project’s objectives. The successful completion of this project will not only
demonstrate the feasibility and effectiveness of using LQ and MPC algorithms in the design
and control of a VTOL vehicle, but it will also contribute to the ongoing efforts to enhance
the capabilities of space vehicles and advance the field of aerospace engineering.

82

7. Limitations and Future enhancement

7.1 Limitations
• The current project only focuses on the use of Model Predictive Control and Linear

Quadratic algorithms for the design and control of a VTOL vehicle. Other control
algorithms and techniques were not explored, which could limit the overall performance
and effectiveness of the control system.

• The testing of the MPC control system’s performance in a real-world environment was
limited due to safety concerns and logistical constraints. Thus, the evaluation of the
control system’s effectiveness in enhancing the VTOL vehicle’s flight characteristics
may not be fully representative of its actual capabilities.

7.2 Future Enhancements
• Utilizing Reinforcement Learning (RL) algorithms for the control of the rocket to

enhance its overall performance and efficiency.

• Investigating the use of other advanced control algorithms and techniques, such as Non-
linear Model Predictive Control (NMPC) and Adaptive Control, to further optimize
the design and control of the VTOL vehicle.

• Conducting more extensive testing and evaluation of the control system’s performance
in real-world environments, utilizing more sophisticated sensors and instrumentation
to provide a more accurate assessment of its capabilities.

83

References
[1] Shekhar Pathak, Sameer Agarwal, Sohith Kakumanu, Siddharth Sudhakar, and G Srini-

vas. Design and implementation of flight computer for sounding rockets-s3fc. In 2022
6th International Conference on Electronics, Communication and Aerospace Technology,
pages 164–170. IEEE, 2022.

[2] Lars Yndal Sørensen, Lars Toft Jacobsen, and John Paulin Hansen. Low cost and flexible
uav deployment of sensors. Sensors, 17(1):154, 2017.

[3] Jurek Z Sasiadek. Sensor fusion. Annual Reviews in Control, 26(2):203–228, 2002.

[4] JZ Sasiadek, Q Wang, and MB Zeremba. Fuzzy adaptive kalman filtering for ins/gps
data fusion. In Proceedings of the 2000 IEEE International Symposium on Intelligent
Control. Held jointly with the 8th IEEE Mediterranean Conference on Control and Au-
tomation (Cat. No. 00CH37147), pages 181–186. IEEE, 2000.

[5] Ujjval N Patel and Imraan A Faruque. Sensor fusion to improve state estimate accuracy
using multiple inertial measurement units. In 2021 IEEE International Symposium on
Inertial Sensors and Systems (INERTIAL), pages 1–4. IEEE, 2021.

[6] Uğur Kayasal. Modeling and simulation of a navigation system with an imu and a
magnetometer. Master’s thesis, Middle East Technical University, 2007.

[7] Qigao Fan, Hai Zhang, Peng Pan, Xiangpeng Zhuang, Jie Jia, Pengsong Zhang,
Zhengqing Zhao, Gaowen Zhu, and Yuanyuan Tang. Improved pedestrian dead reckon-
ing based on a robust adaptive kalman filter for indoor inertial location system. Sensors,
19(2):294, 2019.

[8] Manan S Gandhi, Lee Whitcher, Evangelos Theodorou, and Eric N Johnson. Practical
system identification for small vtol unmanned aerial vehicle. In AIAA Scitech 2019
forum, page 1982, 2019.

[9] Pietro Panizza, Fabio Riccardi, and Marco Lovera. Black-box and grey-box identifi-
cation of the attitude dynamics for a variable-pitch quadrotor. IFAC-PapersOnLine,
48(9):61–66, 2015.

84

[10] Christopher E Hann, Malcolm Snowdon, Avinash Rao, Robert Tang, Agnetha Korevaar,
Greg Skinner, Alex Keall, XiaoQi Chen, and J Geoffrey Chase. Rocket roll dynamics and
disturbance—minimal modelling and system identification. In 2010 11th International
Conference on Control Automation Robotics & Vision, pages 1736–1741. IEEE, 2010.

[11] Michael A Johnson and Mohammad H Moradi. PID control. Springer, 2005.

[12] A O’Dwyer. Pi and pid controller tuning rules for time delay processes: a summary.
Technical report AOD-00-01, 2000.

[13] Aidan O’Dwyer. A summary of pi and pid controller tuning rules for processes with
time delay. part 1: Pi controller tuning rules. IFAC Proceedings Volumes, 33(4):159–164,
2000.

[14] Karl Worthmann, Mohamed W Mehrez, Mario Zanon, George KI Mann, Raymond G
Gosine, and Moritz Diehl. Model predictive control of nonholonomic mobile robots with-
out stabilizing constraints and costs. IEEE transactions on control systems technology,
24(4):1394–1406, 2015.

[15] Carlo Alberto Pascucci, Samir Bennani, and Alberto Bemporad. Model predictive con-
trol for powered descent guidance and control. In 2015 European Control Conference
(ECC), pages 1388–1393. IEEE, 2015.

85

Appendices

86

