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Abstract

Number of research and several methods have been proposed for 3D reconstruction

from 2D images. The first is a triangulation approach based on determining the

same points in images taken from different angles to approximate a point cloud in

3D space and then reconstructing the mesh. This is purely a computation-based

approach. Another approach is to redefine 3D reconstruction problems as recog-

nition problems and use the existing knowledge about 3D space and projection

to reconstruct, much like how humans do. This knowledge is approximated us-

ing deep learning models. However, in these approaches, the mesh reconstruction

part is extremely expensive. This cost can be reduced by trying to reconstruct the

view rather than trying to reconstruct the mesh. Neural Radiance Field (NeRF)

has been used to generate novel views. NeRF represents a scene using a fully-

connected deep network, whose input is a spatial location and viewing direction

and output is the volume density and view-dependent emitted radiance at that

spatial location. We synthesize views by querying 5D coordinates along camera

rays and use classic volume rendering techniques to project the output colors and

densities into an image. In this project, we have used the latter approach.

Keywords: 3D Reconstruction, NeRF, Point Cloud, Deep Learning

v



Contents

Page of Approval ii

Copyright iii

Acknowledgment iv

Abstract v

Contents vi

List of Figures xi

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Scope of Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 3

2.1 Related Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Microsoft’s Photosynth . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Variants of NeRF . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 Nerfstudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Theoretical Background 7

3.1 ORB SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 COLMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vi



3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.3 Geometric Verification . . . . . . . . . . . . . . . . . . . . . 9

3.3 Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Convert Quaternion to Rotation Matrix . . . . . . . . . . . 13

3.4.2 Convert Rotation Matrix to Quaternion . . . . . . . . . . . 14

3.5 Multi Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.1 Sigmoid or Logistic Activation Function . . . . . . . . . . . 16

3.5.2 ReLU (Rectified Linear Unit) Activation Function . . . . . . 16

3.6 NeRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.1 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . 19

3.6.2 Ray Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6.3 Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . 20

3.6.4 Hierarchical Sampling . . . . . . . . . . . . . . . . . . . . . 21

3.7 NeRF Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Nerfacto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8.1 Pose Refinement . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8.2 Piecewise Sampler . . . . . . . . . . . . . . . . . . . . . . . 23

3.8.3 Proposal Sampler . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8.4 Density Field . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8.5 Hash Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.9 Camera Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9.1 Perspective Camera Model . . . . . . . . . . . . . . . . . . . 25

3.10 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10.1 PSNR (Peak Signal to Noise Ratio) . . . . . . . . . . . . . . 26

3.10.2 SSIM(Structural Similarity Index) . . . . . . . . . . . . . . . 27

3.10.3 LPIPS(Learned Perceptual Image Patch Similarity) . . . . . 27

3.11 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.12 Technologies Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12.1 React . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12.2 ThreeJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



3.12.3 Redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12.4 COLMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12.5 Nerfstudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12.6 Pytorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12.7 GoogleColab . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Methodology 34

4.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Image Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Point Cloud Generation and Camera Pose Estimation . . . . . . . . 35

4.4 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Optimizing NeRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Render New Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6.1 Virtual Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Results & Discussion 39

5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Open Source Dataset . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Custom Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Open Source Dataset . . . . . . . . . . . . . . . . . . . . . . 41

5.2.2 Indoor Scene Dataset . . . . . . . . . . . . . . . . . . . . . . 44

5.2.3 Outdoor Scene Dataset . . . . . . . . . . . . . . . . . . . . . 46

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Web Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Epilogue 58

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Limitations and Further Enhancement . . . . . . . . . . . . . . . . 58

References 60

7 Appendix 64

viii



List of Figures

3.1 ORB SLAM Architecture . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Structure From Motion (COLMAP) . . . . . . . . . . . . . . . . . . 8

3.3 2D Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 2D Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 2D Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 2D Shearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.7 Homogenous Representation for 2D Coordinates . . . . . . . . . . . 12

3.8 Affine Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.9 Rotation Matrix to Quaternion . . . . . . . . . . . . . . . . . . . . 14

3.10 ReLU vs Sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.11 Simple Architecture of Neural Network . . . . . . . . . . . . . . . . 17

3.12 Neural radiance field scene representation and differentiable render-

ing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.13 Positional Encoding to capture fine details of the image . . . . . . . 20

3.14 Stratified Sampling Vs Normal Sampling . . . . . . . . . . . . . . . 21

3.15 Hierarchical Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.16 Architecture of NeRF . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.17 Nerfacto Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.18 Nerfacto Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.19 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.20 U-Net Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Camera Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 NeRF pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Application Architecture . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Synthetic Lego Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



5.2 Training on Lego Dataset(No Stratified Sampling) . . . . . . . . . . 42

5.3 Training on Lego Dataset(Stratified Sampling) . . . . . . . . . . . . 42

5.4 Fern Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Mesh for Fern Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 FlowerVase Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Results from ORB SLAM (Left) vs COLMAP(Right) . . . . . . . . 45

5.8 Pencil Holder Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.9 Ukulele ground truth(left) vs output(right) . . . . . . . . . . . . . . 46

5.10 Locus Ground ground truth(left) vs output(right) . . . . . . . . . . 47

5.11 Images taken in inward direction . . . . . . . . . . . . . . . . . . . 48

5.12 Architecture backyard ground truth(left) vs output(right) . . . . . . 48

5.13 ICTC ground truth(left) vs Output(right) . . . . . . . . . . . . . . 49

5.14 Zonal Division of Durbar Square(Left) and COLMAP(Right) . . . . 50

5.15 Durbar Square Ground Truth(Left) Vs Output(right) . . . . . . . . 50

5.16 Output after masking . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.17 Static Occluders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.18 Colmap of 32img16pos@30cm . . . . . . . . . . . . . . . . . . . . . 52

5.19 Colmap of 32img32pos@30cm . . . . . . . . . . . . . . . . . . . . . 53

5.20 Colmap of 32img32pos@20cm . . . . . . . . . . . . . . . . . . . . . 53

5.21 Colmap of combined experiment . . . . . . . . . . . . . . . . . . . . 54

5.22 Colmap of 64img32pos@20cm . . . . . . . . . . . . . . . . . . . . . 54

5.23 Colmap of 64img32pos@30cm . . . . . . . . . . . . . . . . . . . . . 55

5.24 3D reconstructed Mesh of Stupa . . . . . . . . . . . . . . . . . . . . 56

5.25 Output from the viewer . . . . . . . . . . . . . . . . . . . . . . . . 56

5.26 Output from the viewer next camera location . . . . . . . . . . . . 57

7.1 Table Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Stupa(Krishna Mandir) Dataset . . . . . . . . . . . . . . . . . . . . 64

7.3 Stupa(Swayambhu) Dataset . . . . . . . . . . . . . . . . . . . . . . 65

7.4 LICT Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.5 Office Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.6 White house day Dataset . . . . . . . . . . . . . . . . . . . . . . . . 66

7.7 White House Evening Dataset . . . . . . . . . . . . . . . . . . . . . 67

x



7.8 Output of Stupa Dataset . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



List of Tables

3.1 Perspective Camera Model . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Open Source Dataset Description . . . . . . . . . . . . . . . . . . . 39

5.2 Indoor Scene Dataset Description . . . . . . . . . . . . . . . . . . . 40

5.3 Outdoor Scene Dataset Description . . . . . . . . . . . . . . . . . . 40

5.4 Training Synthetic Lego . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Indoor Scene Training . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Indoor Scene Training . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Outdoor Scene Training . . . . . . . . . . . . . . . . . . . . . . . . 49

5.8 Experiment on Stupa Dataset . . . . . . . . . . . . . . . . . . . . . 55

xii



List of Abbreviations

2D 2 Dimension

3D 3 Dimension

4D 4 Dimension

5D 5 Dimension

CPP C Plus Plus

EVQ Enhanced Vector Quantizations

FCN Fully Convolutional Network

GPU Graphics Processing Unit

LPIPS Learned Perceptual Image Patch Similarity

MSE Mean Squared Errod

MLP Multi-Layer Perceptron

NeRF Neural Radiance Fields

NN Neural Network

OpenCV Open Computer Vision

ORB Oriented Fast and Rotated Brief

PSNR Peak Signal to Noise Ratio

RBFNN Radial Basis Functional Neural Networks

RGB-D Red Green Blue - Depth

RNN Recurrent Neural Network

SSIM Structural Similarity Index

SFM Structure From Motion

SIFT Structure Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SRN Scene Representation Network

xiii



1. Introduction

1.1 Background

Making a 3D representation of an object from 2D photos that are as accurate as

feasible is one of the most fundamental difficulties in image-based modeling and

computer vision. It is the opposite of projecting a 3D object into a 2D environ-

ment. By using prior knowledge of the structure and shape of previously viewed

objects, humans can resolve this issue with ease. With just one eye, they can

roughly estimate the size and geometry of any object in three dimensions. How-

ever, computers lack this inherent knowledge of 3D space, making it challenging

to extract the depth information needed for 3D reconstruction from 2D photos.

Numerous techniques for reconstructing 3D space from 2D photos have been pre-

sented, each with its own execution requirements, benefits, and drawbacks. To

create algorithmic answers to the poorly presented inverse problem, the initial

generation of techniques focused on comprehending and theoretically formalizing

the 3D to 2D projection process. These methods approached the problem geomet-

rically. By redefining the 3D reconstruction problem as a recognition challenge

and utilizing preexisting expertise, the second-generation technique attempts to

tackle this problem in a manner similar to how humans do it. This is accomplished

by utilizing deep learning models. This method relies on a sizable training dataset

because mesh-based 3D reconstruction is computationally expensive. This can be

reduced by a view synthesis rather than trying to reconstruct the mesh.

1.2 Objectives

The objectives of the project are:

• To be able to simultaneously localize and map the environment.

• To synthesize a realistic 3D-aware view from the images of the given scene

based on the mapping.

1



1.3 Problem Statement

With numerous uses in fields like gaming, virtual reality, and film production,

the creation of 3D models has been a long-standing issue in the field of computer

graphics. The manual creation of detailed models using conventional methods

is labor- and time-intensive and frequently requires skilled artists and designers.

As a result, automated 3D modeling methods have been created, with the goal

of streamlining the creation of 3D models by utilizing recent developments in

computer vision and machine learning. But using these automated technologies is

still computationally expensive.

1.4 Scope of Project

A critical technology with widespread uses in many industries is 3D reconstruction.

The capacity to create 3D models of the environment is essential for developing

many sectors, from virtual tourism to augmented reality, from medicine to digital

marketing, robotics mapping to gaming, and more. For instance, the creation

of 3D models has expanded the possibilities for displaying items in a virtual ex-

hibition in the fields of virtual environments and augmented reality. By taking

pictures with a camera, an environment’s 3D model can be built, and new items

can then be added to this 3D-aware environment. By blending the actual world

and the virtual one, this method gives viewers a more immersive and interactive

experience.

The capacity to create 3D worlds has completely changed how we encounter digital

objects within the realm of virtual reality. High-quality 3D models can be used to

create immersive experiences that allow users to explore historical sites as if they

were truly there. The ability to interact with virtual objects and environments as

if they were real has created new opportunities in entertainment, education, and

training.

2



2. Literature Review

2.1 Related Theory

The pipeline for 3D reconstruction consists of two main steps: mesh/texture ex-

traction and point cloud creation. In 1999, David G. Low used Scale Invariant

Feature Transform (SIFT), which enables corresponding features to be matched

even with significant variations in scale and viewpoint, as well as under circum-

stances of partial occlusion and changing illumination, to match corresponding

features in images and measure distances between them on the camera image

plane d, d’. [1].

To discover interest points for the object recognition problem in 1997, Schmid &

Mohr also used the Harris corner detector. From an orientation-invariant vector

of derivative-of-Gaussian image measurements, they created a local picture de-

scriptor at each interest point. These picture descriptors were used for accurate

object detection by looking for a number of matched descriptors that complied

with object-based alignment and placement limitations. This research was note-

worthy for its capability to handle congested photos and for how quickly it could

identify things in a sizable database [2].

Using the improved vector quantization (EVQ) technology, Stefano Ferrari and

colleagues took an approach to reduce and filter the 3D point cloud in 2007 [3].

This phase must be completed before starting the mesh reconstruction process.

In 2010, Fengxia Li et al. employed the Radial Basis Function Neural Network

(RBFNN) technique to uniformly sample the point cloud in terms of the fitting

line via nonlinear least square, reduce the point cloud, and then fill the holes that

were the defect on the surface produced by the scanner [4]. But the outcome

was still a point cloud. In 2011 Kun Zhou and colleagues introduced the octree

structure to carry out the current Poisson surface reconstruction approach on the

GPU [5].

The solution to more realistic transitions was to determine the depth of each pixel

3



using computer vision algorithms. In order to do this, it was necessary to exam-

ine each set of overlapping photos and compare items to determine their distance

from the camera. The researchers were able to streamline the data and create

3-D surfaces from a comparatively small number of planes by computing depth

for every pixel [6].

Realistic scenes with intricate geometry have not yet been able to be replicated us-

ing these techniques. A technique based on neural rendering was employed for 3D

context-aware view creation rather than attempting to extract the 3D geometry.

In [7], a technique called Neural Radiance Fields for View Synthesis was put out

that, by using a small number of input views to optimize an underlying continuous

volumetric scene function, produced state-of-the-art results for creating innovative

views of complicated scenes. The views were generated via 5D coordinate queries

along camera rays, and the resultant colors and densities were projected into an

image using traditional volume rendering techniques.

The theoretical foundation for NeRF gets back to 1908 with the introduction of

the plenoptic function.The plenoptic function describes the degrees of freedom of

a light ray as a wave with the parameters: Irradiance (aka brightness), position,

wavelength (aka color), time, angle, phase, polarization, and bounce. The equa-

tion was later simplified by removing polarization, bounce, time, and phase. But

it was done in a discrete space so, NeRF presents a novel approach that outper-

forms existing methods in generating new views of intricate scenes. The technique

involves optimizing a continuous volumetric function of the scene, with the help

of only a small number of input views.[8]

BakedSDF is based on learning signed distance functions (SDFs) and is optimized

for high-quality shape reconstruction and rendering. BakedSDF represents shapes

as an SDF volume and a set of texture maps and can be used for a range of applica-

tions including shape editing, rendering, and animation. The authors build upon

previous work in the field of shape representation and propose a novel method

for learning SDFs that captures both local and global shape information. They

train their model using a combination of supervised and unsupervised learning

and introduce a novel optimization method that improves the quality of the SDFs

and texture maps.[9]
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2.2 Related Work

2.2.1 Microsoft’s Photosynth

Microsoft’s Photosynth was one of the most popular 3D model reconstruction

programs on the Internet. The Photosynth cloud service allows users to upload

many images of the same object or real location, which is then processed into a

”synth”—a composite of overlapping photos that creates a 3-D model of the lo-

cation with extra depth and transitional images for natural 3-D viewing[10]. The

paper titled Piecewise Planar Stereo for Image-based Rendering proposed a way

to create more realistic transitions when moving from photograph to photograph

i.e panorama mode. Essentially, the flat screen after the flat screen was joined

together. But in real life, you’d see objects from different angles and depths as

you move along [11].

2.2.2 Variants of NeRF

MLP NeRFs can capture complex geometry, appearance, and lighting effects in a

single model, they are computationally expensive and slow to train and render.

To address these challenges, recent methods have proposed using alternative rep-

resentations such as voxel grids [12], grids of small MLPs [13], low-rank [14] or

multiscale hash encoding with a small MLP[15]. Karnewar et al. proposed using

voxel grids to represent the scene in their paper ”GridNeRF: Fast Neural Radi-

ance Fields from Voxel Grids” cite[12]. Sun et al. also used voxel grids in their

work ”NeRV: Neural Reflectance and Visibility Fields for Relighting and View

Synthesis”. Reiser et al. proposed using a grid of small MLPs to represent the

scene in their paper ”VLocNet++: Deep Voxel Localization Networks for Large-

Scale Indoor and Outdoor Navigation”[13]. Chen et al. proposed using a low-rank

grid representation in their paper ”Low-Rank Neural Radiance Fields”[14] Müller

et al. proposed using a multiscale hash encoding equipped with a small MLP in

their paper ”DeepSDF: Learning Continuous Signed Distance Functions for Shape

Representation”[15].
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2.2.3 Nerfstudio

Neural radiance fields (NRFs), a kind of deep learning model for 3D scene modeling

and rendering, can be created using the modular Nerfstudio platform. NRFs are

a hopeful tool for applications involving virtual and augmented reality because

they can represent geometry, appearance, and lighting effects in a single model.

The authors suggest a modular framework made up of scene representation, view

synthesis, and rendering modules, building on earlier research in the area of neural

radiance fields. The view synthesis and rendering modules are trained using the

continuous volumetric representation that the scene representation module creates

from 3D point clouds or models. The rendering module creates photorealistic views

while the view synthesis module creates novel views of the scene from arbitrary

viewpoints.[16]
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3. Theoretical Background

3.1 ORB SLAM

The computational challenge of creating or updating a map of an unknown envi-

ronment while simultaneously localizing an agent’s location within it is known as

simultaneous localization and mapping (SLAM). It is mostly used in autonomous

vehicles and robots. The data is from various sensors like LIDAR, GPS, camera,

Kinect, etc can be used for SLAM. Visual SLAM (VSLAM) is a subset of SLAM

that uses data from visual sensors only. These techniques depend upon image

processing for currently identifying various points in multiple images. One of the

efficient VSLAM algorithms is ORB SLAM.

ORB SLAM (Oriented Fast and Rotated Brief SLAM) is a versatile algorithm

capable of performing SLAM in real-time, and also able to perform loop-closing

for a large area. Oriented fast is a fast and robust key point detector and while

Rotated Brief is a visual descriptor that provides a unique identity to the de-

tected key points. ORB SLAM first extracts ORB (Oriented FAST and rotated

BRIEF) features then use a fast approximate nearest neighbor algorithm. After

that PROSAC (Progressive Sample Consensus) algorithm is used for point match-

ing in different images. For localization, the bundle adjustment algorithm is used

to estimate the camera localization for sparse geometrical reconstruction. This

process of simultaneously mapping the environment and localizing the camera

pose is iteratively run on a loop, each progressive run creating a more accurate

estimation, till the desired accuracy is achieved.
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Figure 3.1: ORB SLAM Architecture

Image Source: Qiang Li, Jia Kang, Yangxi Wang, and Xiaofang Cao. An improved

feature matching orb-slam algorithm. In Journal of Physics: Conference Series,

volume 1693, page 012068. IOP Publishing, 2020.18

3.2 COLMAP

COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo

(MVS) pipeline for reconstructing 3D models from ordered and unordered image

collections. The method of reconstructing a 3D structure from its projections into

a series of images is known as ”Structure-from-Motion” (SfM). The input consists

of a collection of sequential photos of the same object taken from various positions.

The output is a 3-D reconstruction of the object, and the reconstructed intrinsic

and extrinsic camera parameters of all images.

Figure 3.2: Structure From Motion (COLMAP)

Image Source: Schonberger, Johannes L., and Jan-Michael Frahm. ”Structure-

from-motion revisited.” Proceedings of the IEEE conference on computer vision

and pattern recognition. 2016.

The first steps are often feature extraction and matching, then geometric verifica-

tion. The resulting scene graph serves as the foundation for the rebuilding stage.

Correspondence search refers to feature extraction, matching, and geometric veri-

fication. In overlapping images, correspondence search identifies scene overlap and
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detects projections of the same points.

3.2.1 Feature Extraction

SfM finds a set of local features for each image at the locations indicated by an

appearance description. So that SfM can detect the features in the image uniquely

across different photos, the characteristics in the image must be invariant across

radiometric and geometric changes.

3.2.2 Matching

Matching is the process of using features as an appearance description of the

images to find images that share the same scene feature. The naive approach

compares the appearance of each feature in each image pair to locate the most

identical feature in order to find feature correspondences. This method checks

each image pair for scene overlap.

3.2.3 Geometric Verification

In the third stage, the potentially overlapping image pairings are confirmed. Due

to the fact that matching is only based on appearance, it is not guaranteed that

related features will actually map to the same scene point. SfM attempts to

estimate a transformation that uses projective geometry to map feature points

between images to confirm the matches. Depending on how they are arranged

spatially, several mappings describe the geometric relationship between a pair of

doubles.

3.3 Affine Transformations

In the real world, several entities are arranged together to create a scene. Further,

these entities are themselves collections of smaller parts that are assembled to-

gether and these objects are defined relative to each other. Complex pictures can

be treated as a combination of straight lines, circles, ellipses, etc. and if these basic

figures can be generated then combinations of them can also be generated. Trans-

formation in computer graphics is one of the basic operations that is performed to

change the position and orientation of an object. The set of operations providing

for all such transformations is known as the affine transforms. The affines include

9



translations and all linear transformations, like scale, rotation, and shear.

Consider a point X= (x,y) in 2D space. The affine transformations of x are all

transforms that can be written as following

X ′ =

ax+ by + c

dx+ ey + f

 (3.1)

where a,b,c,d,e and f all are scalars.

Consider a,e=1 and b,d=0 then result is a pure translation

X ′ =

x+ c

y + f

 (3.2)

Figure 3.3: 2D Translation

Consider b,d,c,f=0 then result is a pure scaling

X ′ =

ax
ey

 (3.3)

Figure 3.4: 2D Scaling

And, if a,e = cos θ, b = − sin θ, d = sin θ, and c, f = 0, then we result is a pure
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rotation about the origin.

X ′ =

 xcos θ - ysin θ

xsin θ + ycos θ

 (3.4)

Figure 3.5: 2D Rotation

If a,e=1, and c,f=0 then result is a shear transformation

X ′ =

x+ by

y + dx

 (3.5)

Figure 3.6: 2D Shearing

It would be very helpful to be able to represent all affine transforms by matrices

since the matrix form is so useful for creating complex transforms from simpler

ones. Matrix addition is required for translation, but matrix multiplication is

required for scaling and rotation. Translation is not a linear transform, which is

the problem in this situation. The solution to this dilemma is to convert the 2D

problem into a 3D problem in homogeneous coordinates.

For this each Cartesian co-ordinate position (x,y) is represented with homogeneous

triple coordinate (xh,yh,h) where x=
xh

h
and y=yh

h
. Thus, general homogeneous co-

ordinate representation can also be written as (xh,yh,h)=(h.x,h.y,h)
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where h may be any non zero value. But for convenience h=1 is used. So, 2D

position is represented with homogeneous coordinates (x,y,1)

Now, the affine matrix can be represented in homogeneous matrix as following
x′

y′

1

 =


a b c

d e f

0 0 1



x

y

1

 (3.6)

This is the same result as in 2D, with the exception of the extra w coordinate,

which remains 1. The homogeneous representation place all the 2D points on the

plane w = 1 in 3D space, and further all the operations are done on this plane but

the operations are still 2D operations.

Figure 3.7: Homogenous Representation for 2D Coordinates

Image Source: https://people.cs.clemson.edu/~dhouse/courses/401/notes/

affines-matrices.pdf

We can extend all of these ideas to 3D in the following way

• Convert all the 3D points to homogeneous coordinates


x

y

z

 =


x

y

z

1

 (3.7)

The extra (4th) coordinate is again called the w coordinate

• Use matrices to represent the 3D affine transforms in homogeneous form

Any combination of translation, rotations, scalings and shearing in 3D space can

be combined in a single 4 by 4 affine transformation matrix as shown above. The
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Figure 3.8: Affine Matrix

matrix shown above represents the affine matrix. The last column of the matrix

represents a translation (brown rectangle), and the upper-left 3 x 3 sub-matrix (red

rectangle) represents a rotation transform. When used as a coordinate system, the

upper-left 3 x 3 sub-matrix represents an orientation in space while the last column

vector represents a position in space.

3.4 Quaternion

Quaternions provide another way to describe rotations. A quaternion is a four-

dimensional quantity somewhat similar to a complex number. A complex number

has an imaginary part i in addition to its real part, whereas a quaternion has a vec-

tor component with three imaginary parts i, j, and k. A quaternion is represented

as q=q0+q1i+q2j+q3k

3.4.1 Convert Quaternion to Rotation Matrix

Given the rotation quaternion q = (q0, q1, q2, q3), the corresponding rotation matrix

is:

R =


1− 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 1− 2q21 − 2q23 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 1− 2q21 − 2q22

 (3.8)

Then the affine matrix can be obtained using the above rotation matrix and the
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translation vector T=(tx, ty, tz) as following

R =


1− 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2 tx

2q1q2 + 2q0q3 1− 2q21 − 2q23 2q2q3 − 2q0q1 ty

2q1q3 − 2q0q2 2q2q3 + 2q0q1 1− 2q21 − 2q22 tz

0 0 0 1

 (3.9)

3.4.2 Convert Rotation Matrix to Quaternion

Given the rotation matrix R:

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.10)

We can find the equivalent quaternion using two steps.

1. Find the magnitude of each quaternion component. This leaves the sign of

each component undefined.

|q0| =
√

1+r11+r22+r33
4

|q1| =
√

1+r11−r22−r33
4

|q2| =
√

1−r11+r22−r33
4

|q3| =
√

1−r11−r22−r33
4

2. To solve for the sign, find the largest of q0, q1, q2, q3 and assume its sign

is positive. Then calculate the remaining components as shown in the table

below. Using the maximum size avoids division by small numbers that would

reduce the precision of the number.

Figure 3.9: Rotation Matrix to Quaternion
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Image Source: https://danceswithcode.net/engineeringnotes/quaternions/

quaternions.html

3.5 Multi Layer Perceptron

An Artificial Neural Network (ANN) or simply a Neural Network(NN) is intercon-

nected layers of small units called nodes that perform mathematical operations to

detect patterns in data. The way NN algorithms are built reflects the way that

human neurons function. A Neural Network is composed of multiple neurons

arranged into layers. The building blocks of a Neural Network are as follows:

1. Neuron: It is a fundamental NN building block. It receives weighted values,

applies mathematical calculations, and generates results. Other names for

it are unit, node, and perceptron.

2. Input layer: The first layer, also known as the input layer, consists of n

nodes for an n-dimensional input.

3. Output Layer: The output layer, on the other hand, consists of t neural

units for a t-dimensional output.

4. Hidden Layer: Any layers between the input and output layers are called

hidden layers, and the number of hidden layers determines the depth of the

Neural Network.

5. Weights: These values describe how strong (important) a connection is be-

tween any two neurons.

6. Bias: It is a constant value that is added to the product of the input values

and their corresponding weights. It is used to fasten or slow down the

activation of a specific node.

7. Activation function: It is used to determine the output of the neural networks

like yes or no. The resulting values are mapped between 0 and 1 or -1 and

1, etc (depending upon the function).
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3.5.1 Sigmoid or Logistic Activation Function

The Sigmoid Function curve has an S-shaped shape. The sigmoid function

outputs between (0 to 1). As a result, it is particularly used for models

whose output is a probability prediction. The sigmoid is the best option

because anything has a probability that only occurs between 0 and 1.

3.5.2 ReLU (Rectified Linear Unit) Activation Func-

tion

ReLU is the activation function that is employed the most globally. Since

practically all convolutional neural networks and deep learning systems em-

ploy it. The ReLU is half rectified (from the bottom). When z is less than

zero, f(z) equals zero, and when z is more than or equal to zero, f(z) equals

z.

Figure 3.10: ReLU vs Sigmoid

Image Source: https://towardsdatascience.com/activation-functions-

neural-networks-1cbd9f8d91d6

Note: The trainable parameters in NN are weights and biases; i.e. the network

learns patterns by adjusting these parameters to get the best predictions.

An artificial neuron receives input values (which may include multiple values with

weights attached). The weighted inputs are added up inside the node, and an

activation function is then used to produce the outputs. The node’s output is

transmitted to the other nodes or, in the case of the network’s final layer, becomes
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the network’s overall output. The basic architecture of neural networks contains a

single input and output layer with multiple hidden layers. The following diagram

shows the architecture of a neural network with 2 hidden layers.

Figure 3.11: Simple Architecture of Neural Network

Image Source: https://towardsdatascience.com/the-basics-of-neural-networks-

neural-network-series-part-1-4419e343b2b

3.6 NeRF

NeRF (Neural Radiance Fields) is a revolutionary technique in computer graphics

and computer vision that allows for the high-quality reconstruction of 3D scenes

from 2D photos or videos. Unlike traditional methods, NeRF models a static scene

as a 5D vector-valued function. The input is a 3D location (x, y, z,) and 2D view-

ing direction(Θ, ϕ) that produces a volume density (σ) and emitted color (r,g,b).

Volume Density represents the presence/absence of an object at that point and

functions as a differential opacity, controlling how much light is accumulated by a

ray passing through the point. Direction is represented as a 3D cartesian vector

d. NeRF outputs the radiance emitted in each direction at each point in space.

To depict this function, NeRF uses a Multi-Layer Perceptron (MLP) model to
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regress from a single 5D coordinate to a single value volume density and view-

dependent RGB color. This enables NeRF to represent scenes with high detail

and complexity, including fine geometric details and intricate lighting effects. Fur-

thermore, NeRF can handle non-Lambertian surfaces, such as shiny or translucent

objects, and can generate photorealistic images with accurate lighting and shad-

ing.

By using NeRF, any scene can be rendered from a specific point of view by deter-

mining the radiance and opacity along each ray passing through the scene. This

enables the generation of novel views of the scene from any viewpoint or lighting

condition. The process of using NeRF (Neural Radiance Fields) to generate a

novel view of a scene involves several steps.

(a) NeRF march camera rays through the scene to generate a sampled set of

3D points. This involves determining the direction of each ray based on the

desired viewpoint and generating a set of equidistant points along the ray.

(b) These sampled sets of 3D points and their corresponding 2D viewing di-

rections are fed as input to the neural network. The neural network then

produces an output set of colors and densities for each point, which repre-

sents the radiance field at that point. This is achieved by using a Multi-Layer

Perceptron (MLP) model to regress from a single 5D coordinate to a single

value volume density and view-dependent RGB color.

(c) The classical volume rendering technique is used to accumulate those colors

and densities into a 2D image. This involves integrating the radiance field

along each ray passing through the scene to determine the color and opac-

ity of each pixel in the final image. This results in a photorealistic image

that accurately represents the scene from the desired viewpoint and lighting

condition.

(d) The loss function in NeRF is designed to achieve two goals: optimizing the

coarse network and optimizing the fine network. This is accomplished by

using the L2 distance with the RGB values as the loss, which can be esti-

mated using the ground truth 3D model. Since every step is differentiable,

the network can be optimized by the predicted RGB value of rays.
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Figure 3.12: Neural radiance field scene representation and differentiable rendering

procedure

Image Source: Mildenhall, Ben, et al. NeRF: Representing Scenes as Neural

Radiance Fields for View Synthesis. 2020.

NeRF alone is insufficient to achieve state-of-the-art quality. In order to portray

complex high-resolution scenes, concepts like positional encoding and hierarchical

sampling are used in NeRF. The positional encoding of the input coordinates

helps the MLP express high-frequency functions. Hierarchical sampling enables

an efficient sample of the high-frequency representation.

3.6.1 Positional Encoding

NeRF results in poor performance in representing high-frequency variation in color

and geometry when directly operated on the 5D coordinates. Positional encoding

facilitates the network to optimize the parameters by mapping input to higher-

dimensional space easily. NeRF showed that using a high-frequency function for

mapping original input enables better fitting of data that contains high-frequency

variation.[7] The encoding function is given as

γ(p) = [sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)] (3.11)
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Figure 3.13: Positional Encoding to capture fine details of the image

Image Source: Mildenhall, Ben, et al. NeRF: Representing Scenes as Neural

Radiance Fields for View Synthesis. 2020.

3.6.2 Ray Sampler

Along the rays of the cameras, sampling is done along the field and aggregated

to predict the pixel value (ie. color). In the ideal world, many dense samples are

computed along a ray. Unfortunately, each additional sample adds a computation

cost to the system as it needs to be processed by the field which is often a neural

network. As a result, it is common for NeRF methods to use on the order of 100

samples. Therefore, sample placement in the scene must be optimized. Different

techniques of sampling are used that are best suited based on their application.

3.6.3 Stratified Sampling

In NeRF, stratified sampling is used to improve the quality of the training data.

Stratified sampling aims to ensure that the training data represents the entire

scene and covers all possible viewpoints. This is done by dividing the scene into

smaller regions or ”strata” and sampling from each stratum based on its impor-

tance. Most samplers have the option to stratify the samples. When stratified,

each sample is randomly perturbed.

The magnitude of the perturbation is such that the sample order remains con-

sistent and the overall distribution statistics are not changed. Using stratified

samples during training generally improves the reconstructions as it helps prevent

overfitting. During inference, stratified sampling should be disabled as it can cause

noisy artifacts when the camera moves.
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Figure 3.14: Stratified Sampling Vs Normal Sampling

Image Source: https://docs.nerf.studio/

3.6.4 Hierarchical Sampling

In NeRF (Neural Radiance Fields), hierarchical sampling is used to speed up the

rendering process. Since NeRF generates high-quality 3D renderings by sampling

the underlying radiance field, it can be computationally expensive to render a

large scene with a high level of detail. It is important to sample the scene where

it has content otherwise the reconstruction quality will be reduced. Hierarchical

sampling starts with a coarse-level sampling of the scene and progressively refines

the sampling at finer levels. This allows the algorithm to allocate computational

resources more efficiently, focusing on areas of the scene that are most likely to

contribute to the final rendering.

Figure 3.15: Hierarchical Sampling
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3.7 NeRF Architecture

Figure 3.16: Architecture of NeRF

Image Source: Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan

T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural

radi- ance fields for view synthesis. In European conference on computer vision,

pages 405–421. Springer, 2020.

The given diagram depicts the architecture of NeRF, which is a simple fully-

connected model. The green blocks represent the input vectors, the blue blocks

represent the intermediate hidden layers, and the red blocks represent the output

vectors. The number inside each block indicates the dimension of the vector. The

model consists of standard fully-connected layers with different types of activa-

tions, such as ReLU, sigmoid, and concatenation.

The input location’s positional encoding ((x)) passes through eight fully-connected

ReLU layers, each having 256 channels. The output of the last layer is the vol-

ume density , which is rectified using ReLU to ensure non-negativity and a 256-

dimensional feature vector. This feature vector concatenates with the positional

encoding of the input viewing direction ((d)), and the resulting vector goes through

an additional fully-connected ReLU layer with 128 channels. Finally, a final layer

with sigmoid activation computes the emitted RGB radiance at position x as

viewed by a ray with direction d.
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3.8 Nerfacto

For real data captures of static scenes, Nerfstudio uses the NerFacto model as the

default model. The model have been found to work well for real data.

Figure 3.17: Nerfacto Pipeline

Image Source: https://docs.nerf.studio/

3.8.1 Pose Refinement

It is common to encounter inaccuracies in predicted camera positions, especially

when using poses obtained from devices like phones. These misaligned poses can

lead to hazy artifacts in the scene and a decrease in clarity and detail. The NeRF

framework provides a way to compute loss gradients that can be back-propagated

to refine and optimize the input pose estimations.

3.8.2 Piecewise Sampler

To generate the initial samples of a scene, a Piecewise sampler is employed that

divides the samples into two groups. The first half of the samples are distributed

evenly up to a distance of 1 from the camera, while the other half is distributed

such that the step size between each sample increases progressively. The step size

is selected such that the frustums of each sample are scaled versions of one another.

By increasing the step size gradually, objects that are far away can effectively be

sampled while maintaining a dense set of samples for objects that are nearby.

3.8.3 Proposal Sampler

To enhance the quality of the final render, a proposal sampler is employed that

focuses on the areas of the scene that have the most significant impact. This ap-

proach effectively consolidates the sample locations to the regions that contribute
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most to the reconstruction. However, the proposed network sampler requires a

density function for the scene, which can be implemented in various ways. It is

found that using a small fused MLP with hash encoding is a fast and sufficiently

accurate method for this purpose. Moreover, multiple density functions can be

chained together to further consolidate the sampling, but it is observed that using

more than two density functions does not yield significant improvements.

3.8.4 Density Field

To guide the sampling process, a basic density field is sufficient, and it can be cre-

ated using a hash encoding and a small fused MLP from tiny-cuda-nn to efficiently

query the scene. The encoding dictionary size and the number of feature levels

can be reduced to increase efficiency, without significantly affecting the quality of

the reconstruction. This is because the density function does not need to capture

high-frequency details in the early stages.

3.8.5 Hash Encoding

Hash Encoding is a technique used in NeRF to speed up the rendering of 3D scenes

by reducing the computational cost of evaluating the network at many points along

the camera ray. The hash table is constructed by partitioning the camera ray into

segments and computing a hash code for each segment based on the network

output at a single point within the segment. The hash table can then be used

to efficiently retrieve the network output for any point along the camera ray by

looking up the corresponding hash code and interpolating between the network

outputs for the neighboring segments. This results in a significant speedup in

rendering time without sacrificing image quality, making NeRF practical for real-

time applications.
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Figure 3.18: Nerfacto Field

Image Source: https://docs.nerf.studio/

3.9 Camera Models

Given a set of images, every pixel of the images is projected into 3D space. This is

accomplished by computing the camera ray for each pixel given information about

the type of camera and the location of the camera. Each image should have an

associated pose that consists of two properties, intrinsic and extrinsic parameters.

• Intrinsics: All of the parameters internal to the camera such as lense or

sensor properties.

• Extrinsic: All of the parameters external to the camera such as the location

and rotation relative to the world frame.

3.9.1 Perspective Camera Model

In computer graphics, the perspective camera model is a mathematical represen-

tation that simulates how an actual camera functions. To create a projected image

of a 3D scene, the model converts 3D coordinates into 2D coordinates. According

to the perspective camera model, light enters a camera through a lens and travels

in straight lines. A film or digital sensor, or another photosensitive plane inside

the camera, is where the light is focused by the lens. The size of the photosensitive

plane and the focal length of the lens determines the camera’s field of view.
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The perspective camera model is widely used in computer graphics to produce re-

alistic 3D scenes and animations. Objects in front of the camera seem bigger than

anything behind it. This effect is known as perspective foreshortening. 3D points

in the scene are converted to 2D points on the photosensitive plane of the camera

using the perspective projection matrix. The projection matrix determines the

appropriate perspective distortion for each object in the scene by considering the

camera’s position, orientation, field of view, and other factors.

Intrinsic Description

cx Number of pixels in the x dimension

cy Number of pixels in the y dimension

fx Focal length in the x dimension

fy Focal length in the y dimension

Table 3.1: Perspective Camera Model

3.10 Evaluation Metrics

There are several metrics used to evaluate the quality of reconstructed images.

Some of the commonly used metrics are:

3.10.1 PSNR (Peak Signal to Noise Ratio)

A metric called PSNR is used to evaluate how well a video signal or image has

been compressed or reconstructed. It calculates the difference between a signal’s

highest possible power and the power of the noise that degrades the accuracy of

its representation. The PSNR, which is measured in decibels (dB), is determined

by comparing the original and reconstructed or compressed signals. The clarity of

the compressed or reconstructed signal improves as PSNR increases. The PSNR

equation is:

PSNR = 10log10(
MAX2

MSE
) (3.12)

where MAX is the maximum possible pixel value of the image, and MSE is the

mean squared error between the original image and the reconstructed or com-

pressed image. The equation calculates the ratio of the maximum possible power

of a signal to the power of the noise that affects its fidelity. The result is ex-
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pressed in decibels (dB). The higher the PSNR value, the better the quality of the

reconstructed or compressed signal.

3.10.2 SSIM(Structural Similarity Index)

Structural Similarity Index, or SSIM, is a metric used to evaluate the quality of

an image or video signal that has been compressed or reconstructed. Contrasting

the luminance, contrast, and structural information of the two pictures determines

how similar they are structurally.

SSIM is a better indicator of perceptual quality than conventional measures like

PSNR since it is created to match the human visual system’s sensitivity to changes

in these parameters. The three variables that make up the calculation are lumi-

nance, contrast, and structure. A number between -1 and 1, where 1 denotes

complete resemblance between the two pictures, is used to express the SSIM in-

dex. The quality of the compressed or reconstructed signal increases with the

SSIM value.

The SSIM equation is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.13)

where x and y are the two images being compared, µx and µy are the mean values of

x and y respectively, σx and σy are the standard deviations of x and y respectively,

σxy is the covariance between x and y, and c1 and c2 are small constants to avoid

division by zero.

3.10.3 LPIPS(Learned Perceptual Image Patch Similar-

ity)

Learned Perceptual Image Patch Similarity, or LPIPS, is a metric used for evalu-

ating the perceptual quality of an image or video signal that has been compressed

or reconstructed. It calculates the perceptual distance between two images using

deep learning as a foundation.

To extract characteristics from both the original and the reconstructed or com-

pressed image, LPIPS uses a neural network that has been trained on a large

dataset of images. Then, the network calculates how similar the characteristics of

the two images are. An outcome is a single number, with a lower value denoting
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a greater perceptual quality, that indicates the perceptual distance between the

two pictures.

3.11 Image Segmentation

Many systems for visual comprehension depend on image segmentation. It involves

partitioning images (or video frames) into multiple segments or objects. Numerous

applications, such as medical image analysis (including tumor boundary extraction

and measurement of tissue volumes), autonomous vehicles (e.g. navigable surface

and pedestrian detection), video surveillance, and augmented reality, heavily rely

on segmentation. The number of image segmentation algorithms, ranging from

the earliest techniques, such as thresholding, histogram-based bundling, region

growing, k-means clustering, and watersheds, to more sophisticated ones, such as

active contours, graph cuts, conditional and Markov random fields, and sparsity-

based methods has been developed till date. The classification of pixels with

semantic labels (semantic segmentation) or the partitioning of individual objects

(instance segmentation) is two ways to frame the issue of segmenting an image.

While image classification predicts a single label for the entire image, semantic

segmentation performs pixel-level labeling with object categories (e.g., human,

car, tree, sky) for all image pixels. As a result, it is typically a more difficult task.

Figure 3.19: Image Segmentation

The U-Net, suggested by Ronneberger et al.[17], for segmenting pictures from

biological microscopy. Their network and training technique depends on data
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augmentation to efficiently learn from the low number of annotated photos. The

symmetric expanding path that allows for exact localization and a contracting

path that captures context make up the U-Net architecture. With a 3 X 3 convo-

lutional architecture, the downsampling or contracting portion extracts features.

Up-convolution (or deconvolution) is used during the up-sampling or expanding

phase to decrease the number of feature maps while increasing their dimensions.

To prevent losing pattern information, feature maps from the network’s down-

sampling portion are replicated in the up-sampling part. Finally, a 1 X 1 convolu-

tion processes the feature maps to generate a segmentation map that categorizes

each pixel of the input image.

Figure 3.20: U-Net Architecture

Image Source: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. ”U-net:

Convolutional networks for biomedical image segmentation.” Medical Image Com-

puting and Computer-Assisted Intervention–MICCAI 2015: 18th International

Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer

International Publishing, 2015.
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3.12 Technologies Used

3.12.1 React

React is a popular JavaScript library used for building user interfaces. It was

developed by Facebook and is currently maintained by Facebook and a community

of individual developers and companies. React allows developers to build reusable

UI components that can be easily composed to create complex interfaces. It uses

a declarative approach, which means that developers describe what the interface

should look like, and React takes care of updating the DOM as necessary. One of

the key benefits of React is its performance. It uses a virtual DOM, a lightweight

representation of the actual DOM that minimizes the number of updates that need

to be made to the page. This makes React applications fast and responsive. React

is also highly extensible and can be used with other libraries and frameworks. It is

commonly used with tools like Redux for managing application state, and React

Router for handling navigation. Overall, React is a powerful tool for building

modern, dynamic user interfaces.

3.12.2 ThreeJS

ThreeJS is an open-source JavaScript library used for creating 3D graphics and

animations in web applications. It is an open-source project that is actively main-

tained by a community of developers. It is a powerful tool that makes it easy to

build complex 3D scenes and interactive browsing experiences. The key features

of ThreeJS include:

1. Scene graph: Three.js uses a scene graph data structure to manage objects

in a 3D scene. It makes easy addition, manipulation, and removal of objects

in the scene.

2. Geometry and materials: Three.js provides a range of built-in geometric

shapes and materials, including spheres, cubes, and textures. It also sup-

ports importing 3D models created in other software like blender.

3. Lighting and shadows: Three.js supports a range of lighting options, includ-

ing directional, point, and spotlights. It also supports casting and receiving
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shadows that help provide a more realistic view.

4. WebGL Rendering: Three.js uses WebGL for hardware-accelerated 3D ren-

dering in the browser that allows high-performance graphics.

3.12.3 Redux

Redux is a popular JavaScript library used for managing application state in front-

end web applications in the React ecosystem. It follows a unidirectional data flow

pattern, where the application state is stored in a single object called the store.

The store is modified by dispatching actions, which are plain JavaScript objects

that describe the changes to be made to the state. One of the key benefits of

Redux is its ability to manage complex application states in a predictable and

maintainable way. By centralizing the application state in the store, it becomes

easier to reason about how changes to the state affect the rest of the application.

This also makes it easier to debug and test the application. It also provides a range

of middleware and extension points that can be used to extend its functionality. Its

popularity and strong community support make it a valuable skill for developers

working with React and other front-end frameworks.

3.12.4 COLMAP

COLMAP is an open-source software package for computer vision and photogram-

metry. It used two techniques, structure from motion (SfM) and multi-view stereo

(MVS) to reconstruct 3D models from 2D images. COLMAP provides a range of

tools and methods, such as feature extraction, matching, and bundle adjustment

for processing image data. It also includes a user-friendly graphical interface for

viewing and editing reconstructed models. The key features of COLMAP include:

1. Structure from motion (SfM): COLMAP automatically reconstructs 3D mod-

els from a set of 2D images using the SfM technique. This involves estimating

the camera parameters and 3D geometry of the scene from the image data.

2. Multi-view stereo (MVS): COLMAP performs multi-view stereo reconstruc-

tion, which involves estimating the depth information of the scene from

multiple views of the same object.
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3. Dense reconstruction: COLMAP produces dense 3D reconstructions by fus-

ing multiple sparse reconstructions and refining the results using MVS tech-

niques.

4. Texturing: COLMAP also applies high-quality textures to the reconstructed

models using image-based rendering techniques.

3.12.5 Nerfstudio

Nerfstudio is an open-source software package for working with neural radiance

fields (NeRFs), a technique for representing 3D scenes using neural networks.

The University of California, Berkeley research team created Nerfstudio with the

goal of making it easier to train and employ NeRFs for 3D scene reconstruction

and rendering. The range of tools and features required for working with NeRFs

include:

1. Data preparation: Nerfstudio provides tools for preparing and processing

images and 3D data for use with NeRFs. This includes tools for aligning

and normalizing images. It also includes tools for preparing 3D meshes and

point clouds.

2. Training and evaluation: Nerfstudio includes a user-friendly interface for

training and evaluating NeRF models using TensorFlow. It includes pre-

trained models for common datasets, making it easier to get started with

NeRFs.

3. Rendering: Nerfstudio includes tools for rendering high-quality images and

videos of 3D scenes using NeRF models. This includes support for path

tracing, importance sampling, and other advanced rendering techniques.

4. Visualization: Nerfstudio includes a wide range of visualization tools for

exploring and interacting with 3D scenes reconstructed using NeRFs. This

includes tools for viewing 3D point clouds, meshes, and textured surfaces.

3.12.6 Pytorch

PyTorch is an open-source machine-learning framework that is known for its sim-

plicity, flexibility, and ease of use. It is based on the Torch library and provides
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an efficient way to perform numerical computing and build deep learning models.

This library is used for all machine-learning components of the system.

3.12.7 GoogleColab

Google Colab is a cloud-based data science workspace that provides a powerful

resource to perform machine learning operations. Hence, we have trained our

models on this platform.
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4. Methodology

This project aims to reconstruct a 3D-aware view from a sequence of 2D images.

In order to achieve this, the Simultaneous Localization and Mapping (SLAM)

technique is used to generate point clouds and estimate the camera pose. Using

these data, a Neural Radiance Field (NeRF) network can be optimized. This

optimized NeRF is capable of creating novel views.

4.1 System Block Diagram

Figure 4.1: System Block Diagram

4.2 Image Collection

Multiple images of the scene to be rendered are captured. These images must

be captured from slightly different viewing angles and should have a high over-

lap(nearly about 70%)[11]. For complete reconstruction, the images should cap-

ture each and every surface of the scene. The images can be captured by a stan-

dard smartphone camera. To get a better-reconstructed model from the sequence

of images 360 cameras are preferred.
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4.3 Point Cloud Generation and Camera Pose

Estimation

By using a set of images of the same scene captured from slightly different points

of view, SLAM systems like ORB SLAM/COLMAP are able to create sparse 3D

maps of key points, which is also known as the point cloud., and simultaneously

estimate the pose of the camera capturing those images. Under the hood, the

SLAM system first detects important points in the images and represents them

as a unique vector using techniques like scale-invariant feature transform. Then,

it tries to find the same points in different images by calculating the difference

between the vectors associated with the points. Once it finds the matching points

in different views, it estimates the position of that point in 3D space and the pose

of the camera by triangulation. These data are then used by the NeRF to generate

a novel view of a complex scene.

Figure 4.2: Camera Pose Estimation

Image Source: Thormählen, Thorsten, et al. “Registration of Sub-Sequence and

Multi-Camera Reconstructions for Camera Motion Estimation.” Volume 7, 2010

4.4 Masking

Outdoor scenes contains several dynamic occluders(like a walking person). As

NeRF assumes its environment to be static the dynamic occluders can create a
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problem during the training of the NeRF like floating artifacts that generate incon-

sistent views in the result. So these occluders are masked and corresponding pixels

in the images are ignored during the training process of the NeRF. The majority

of the dynamic occluders were people in the outdoor scene, so the UNet model

trained on the OCHuman datasets was used for image segmentation(masking).

Figure 4.3: Masking

4.5 Optimizing NeRF

Neural Radiance Field, or NeRF, is a technique for creating new perspectives on

complex scenes. NeRF takes a set of input photos from a scene and interpolates

between them to render the entire scene. The result is a volume whose color and

density are determined by the direction of view and the radiance of emitted light

at that place. We get an output volume for each ray, and all of these volumes

make up the complicated scene.

4.6 Render New Views

NeRF tries to represent a continuous scene as 5D vector-valued function. The

input is a 3D location (x, y, z,) and 2D viewing direction(Θ, ϕ) that produces

a volume density (σ) and emitted color (r,g,b). Volume Density represents the

presence/absence of an object at that point. Direction is represented as a 3D

cartesian vector d. This function is approximated using a Multi-Level Perceptron

(MLP) network, which is the heart of the algorithm. Using each pixel as a data
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point, the MLP is overfitted which provides complete 3D information about the

scene.

Figure 4.4: NeRF pipeline

Image Source: Mildenhall, Ben, et al. NeRF: Representing Scenes as Neural

Radiance Fields for View Synthesis. 2020.

Scene Representation Networks (SRN) represent a continuous scene as an opaque

surface, which is implicitly defined by an MLP that maps each (x, y, z) coordinate

to feature vectors. A recurrent neural network is trained to march along a ray

across the scene representation by predicting the next step size along the ray

using the feature vector at any 3D point. The final stage decodes the feature

vector into a single color for that spot on the surface.

4.6.1 Virtual Tour

The novel view generated by the NeRF is used to create an immersive virtual tour

through the viewer. The framework for the viewer is constructed with ThreeJS

and integrated into a ReactJS application. To establish a connection between

the client viewer application and the server, a websocket is employed. The server

operates on the local machine and facilitates the generation of an environment

through NeRF. Interacting with other objects in the environment is made possible

through ThreeJS within the client application. To offer a clear understanding of

the viewer framework, a detailed depiction is shown in the accompanying figure.
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Figure 4.5: Application Architecture

The viewer consists of two modes: edit and play. The edit mode allows users

to create custom virtual tours by augmenting the customized 3D objects. These

tours can then be shared and viewed by other people through the playboard.

The basic application workflow can be described as follows:

1. The Bridge Server connects nerfstudio code with the Client App

2. The server has a TCP Request/Reply connection with the Viewer object

3. The Viewer class sends commands to the Bridge Server and receives replies

4. The Bridge Server dispatches commands to the Client App via a websocket

5. WebSockets are used for drawing primitives, setting object transformations,

and properties
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5. Results & Discussion

5.1 Dataset

5.1.1 Open Source Dataset

During the initial phase of the project, NeRF model was trained using the open-

source dataset obtained from NeRF data repository. This was done in order to

evaluate the performance of NeRF independent of the localization errors that

might have been generated from COLMAP when using custom data. The dataset

from NeRF repository used in the project was

Dataset Image Dimension No. of images Scene

Synthetic Lego 100*1000px 106 360

Fern Fern Dataset 20 Forward Facing

Table 5.1: Open Source Dataset Description

5.1.2 Custom Dataset

In order to train the NeRF model on a custom dataset several indoor and outdoor

scenes were captured using a normal mobile camera. Along with this, synthetic

images were also generated using a unity3D. Camera pose estimation for synthetic

images was also exported using unity3D.

Synthetic Dataset

The synthetic dataset consists of the 360-degree scene of the table created using

unity3D. It consists of 100 images, each image is an RGB image with a resolution

of 800*800 px.

Indoor Scene Dataset

These datasets are a collection of images that represent the inside of a building

or an enclosed space focusing on some particular items like flower vase, ukulele,
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pencil holders, stupa, and so on.

Dataset Image Dimension No. of images Scene

Flower Vase 640*480px 62 Forward Facing

Ukulele 500*800px 34 Forward Facing

Pencil Holder 1920*1080px 113 360

Stupa (Swayamabhu) 576*768px 60 360

Stupa (Krishna Mandir) 500*700px 250 360

LICT Hall 3024*4032px 84 360

Office 3456*4608px 154 360

Table 5.2: Indoor Scene Dataset Description

Outdoor Scene Dataset

The outdoor scene dataset consists of a collection of images captured in various

outdoor environments within the campus like Locus Ground, Architecture Depart-

ment, ICT Building, and from outside the campus like offices and temples.

Dataset Image Dimension No. of images

Locus Ground 3000*4000px 62

ICT Roof 1530*2040px 92

Architecture Ground 1920*1080px 113

White House Day 1476*3280px 155

White House evening 3456*4608px 155

Architecture Building 3456*4608px 123

Sundarichowk 576*1024px 128

Bhaktapur Durbar Square 440*979px 643

Patan Ground 720*1280px 218

Table 5.3: Outdoor Scene Dataset Description

5.2 Training

In this project, a series of experiments were conducted to create a 3D model of

various scenes using the NeRF and Nerfacto models with the dataset mentioned
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above. The models underwent multiple iterations of training and were evaluated

using various metrics.

5.2.1 Open Source Dataset

Lego Dataset

The initial training was carried out using the Lego dataset, and the results were

promising. The reconstructed image was found to be almost identical to the

ground truth image. Furthermore, the vanilla NeRF model was trained using

both stratified and non-stratified sampling techniques. This was done to find out

the effect of sampling on the overall result. The Lego dataset was trained for

10000 iterations.

Figure 5.1: Synthetic Lego Dataset

Dataset PSNR Training Time

Synthetic Lego(stratified sampling) 24.3456 1 hr 02 mins 09 secs

Synthetic Lego(no stratified sampling) 24.345 3 hrs 05 mins 20 secs

Table 5.4: Training Synthetic Lego

From this experiment, it was found that the stratified sampling technique helps to

reduce the computational time in training the model to achieve the same result.
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Figure 5.2: Training on Lego Dataset(No Stratified Sampling)

Figure 5.3: Training on Lego Dataset(Stratified Sampling)

Fern Dataset

After successfully training on a synthetic dataset, the experiment was carried out

on real-life images,i.e.Fern dataset. This dataset contains 20 high-resolution front-
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facing images, used by COLMAP for camera pose estimation. Also, the 3D mesh

was extracted for the given dataset.

Figure 5.4: Fern Dataset

Figure 5.5: Mesh for Fern Dataset
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It was observed that NeRF was able to reconstruct even from real-life images.

Furthermore, the extracted 3D mesh captured fine details. This is most likely due

to the dataset being prepared in a controlled condition.

5.2.2 Indoor Scene Dataset

Flower Vase Dataset

Later, the NeRF model has trained on a custom indoor scene dataset(Flower

Vase). While training, two methods (ORB SLAM and COLMAP) were utilized

to localize the camera points. The goal was to compare the performance of NeRF

on these two SLAM techniques.

Figure 5.6: FlowerVase Dataset

It was found that the results obtained using COLMAP were significantly better

than ORB SLAM. The results from the ORB SLAM were blurry which indicates a

high camera pose estimation error. This is more likely due to the fact, ORB SLAM

tries to localize in real time while COLMAP takes a little longer. COLMAP was

used in all further experiments.
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Figure 5.7: Results from ORB SLAM (Left) vs COLMAP(Right)

Dataset PSNR Training Time

Flower Vase(ORB SLAM) 21.126 1 hr 35 mins 30 secs

Flower Vase(COLMAP) 30.2 1 hr 23 mins 05 secs

Table 5.5: Indoor Scene Training

Ukulele, Pencil Holder Dataset

The training process was replicated for other custom datasets, including pencil

holders, ukuleles, stupas, and more. These experiments were specifically designed

to verify the assumptions derived from previous experiments.

Figure 5.8: Pencil Holder Dataset
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Figure 5.9: Ukulele ground truth(left) vs output(right)

Dataset PSNR Training Time

Pencil Holder 18.225 1 hr 36 mins 51 secs

Ukulele 25.916 1 hr 17 mins 08 secs

Table 5.6: Indoor Scene Training

5.2.3 Outdoor Scene Dataset

Locus Ground

Till now vanilla NeRF was used as a base model, but this model had two major

limitations. First, the computation time was very high(∼ 18-24hrs), and secondly,

due to the less file size(∼ 5MB), it couldn’t capture large areas with sufficient

details. As a result, a more efficient version of NeRF, known as Nerfacto, was

used as a base model instead. Nerfacto requires far less computation time(∼ 5-10

mins) and much large file size(∼ 300MB). As a result, more details were captured

even on large scenes. This model was first trained on Locus Ground(Dronacharya

Ground) dataset.
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Figure 5.10: Locus Ground ground truth(left) vs output(right)

The Nerfacto model was able to capture the fine details of the unbounded out-

door scene but still, there were floating artifacts that appeared most likely due to

inadequacy in distinct viewpoints while collecting the datasets.

Architecture Ground

To verify the above hypothesis, this dataset was captured from several different

directions so that every distinct viewpoint was included in the dataset. Firstly,

the images were captured from different positions pointing towards in assumed

center of the scene. Then some outward-facing images were also captured.
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Figure 5.11: Images taken in inward direction

Due to careful considerations while creating the dataset, highly realistic results

containing no artifacts were obtained. A similar approach was used in dataset

collection while capturing images of other locations like Sundari Chowk, and Patan

Museum Ground. All these results were also highly realistic and are attached in

the appendix section.

Figure 5.12: Architecture backyard ground truth(left) vs output(right)
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ICTC Rooftop

The goal of this experiment was to observe the number of training iterations re-

quired to obtain a satisfactory reconstruction of the scene. For this ICTC Rooftop

dataset consisting of 92 images, each f dimension 2448*3264 pixels were used. Peak

Signal Noise Ratio(PSNR) metric was used as an evaluation criterion.

Dataset Iterations PSNR

ICTC Roof Top 4000 26.32

ICTC Roof Top 6000 26.71

ICTC Roof Top 16000 26.92

ICTC Roof Top 20000 27.13

ICTC Roof Top 29000 27.29

Table 5.7: Outdoor Scene Training

Figure 5.13: ICTC ground truth(left) vs Output(right)

Durbar Square

Till now all experiments were done on static scenes i.e.containing no dynamic

objects in the captured image. However, this condition may not always be true,

especially while trying to capture culturally significant places. So, this experiment

was carried out to observe the reconstruction results in a scene with dynamic
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occluders.

For this experiment, the dataset of Bhaktapur Durbar Square was used. Since the

area of the square is quite large, it was not possible to capture the entire square in

a single go. Thus, 9 different zones were created, and each zone was independently

captured. These captures were later combined to train the NeRF.

Figure 5.14: Zonal Division of Durbar Square(Left) and COLMAP(Right)

Figure 5.15: Durbar Square Ground Truth(Left) Vs Output(right)

Because of the dynamic occluders, the reconstructed views contained a lot of float-

ing artifacts resulting in inconsistent views. However, the reconstruction of static

objects like buildings and statues was still satisfactory.
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Masked Durbar Square Dataset

Since the dynamic occluders were responsible for reducing the reconstruction qual-

ity, the occluders were removed using masking. The masked pixels were completely

discarded during NeRF training. As most of the dynamic occluders were people,

a U-Net architecture-based segmentation model was used to generate masks.

The resulting reconstruction was much cleaner with hardly any floating artifacts.

In addition to this, even the static occluders (like persons sitting in falcha) were

removed from the reconstruction. As different zones were captured on different

days, in the combined dataset the static occluders virtually behaved as the dy-

namic occluders.

Figure 5.16: Output after masking

Figure 5.17: Static Occluders
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5.3 Experiment

To further investigate the effects of varying the number of images used to train

a NeRF model, a small experiment was conducted. The distance of the camera

from the object was fixed while the camera position varied around a circle with a

specified radius. The experiment was performed for different numbers of images,

and a COLMAP was generated for each iteration. The results were analyzed using

evaluation metrics such as PSNR, SSIM, and LPIPS. The model was trained

for 20000 iterations on the same stupa dataset from various positions, and the

resulting 3D model was compared to the ground truth to determine the accuracy

of the reconstruction. All results and findings can be found in the appendix section

of this report.

Figure 5.18: Colmap of 32img16pos@30cm
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Figure 5.19: Colmap of 32img32pos@30cm

Figure 5.20: Colmap of 32img32pos@20cm
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Figure 5.21: Colmap of combined experiment

Figure 5.22: Colmap of 64img32pos@20cm
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Figure 5.23: Colmap of 64img32pos@30cm

Name Distance Training Time PSNR SSIM LPIPS

16img8pos 30cm - - - -

16img16pos 30cm 24mins - - -

32img16pos 30cm 26mins 14.9916868 0.28583031 0.68830150

32img32pos 30cm 25mins 13.9053392 0.12411347 0.47026792

64img32pos 30cm 25mins 17.8696765 0.68059253 0.12411347

16img8pos 20cm - - - -

32img32pos 20cm 26mins 11.0986557 0.14666181 0.60418546

64img32pos 20cm 27mins 19.1051521 0.76696425 0.23837579

Combined Both 26mins 20.0390663 0.76530569 0.13428217

Table 5.8: Experiment on Stupa Dataset

The 16img8pos experiments for both 30cm and 20 cm distances were not able to

generate the COLMAP because the images were not continuous enough to gener-

ate the COLMAP. The 16img16pos experiment was able to generate the COLMAP

but it was not able to reconstruct the image. Further, the best result for the ex-

periment was obtained when both the 64img32pos@30cm and 32img32pos@20cm

were combined. The 3D reconstructed mesh for the best experiment is shown

below.
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Figure 5.24: 3D reconstructed Mesh of Stupa

5.4 Web Viewer

The viewer is a web application that utilizes React and Three.js to create a virtual

environment. Through the utilization of WebSockets, it communicates with a

Nerf engine via a bridge server, transmitting camera coordinates and associated

transformation matrices. The Nerf engine generates corresponding images and

relays them back to the viewer, while the viewer itself is responsible for creating

and augmenting the interactive 3D space. Additionally, the viewer serves as a

visualization tool for keyframes.

Figure 5.25: Output from the viewer
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Figure 5.26: Output from the viewer next camera location
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6. Epilogue

6.1 Conclusion

This project attempts to develop a system that can produce accurate 3D views

of situations from a series of 2D photos, which is a difficult job in the field of

computer vision. The difficulty comes from the fact that the 2D photographs only

convey a portion of the scene’s 3D geometry and structure, such as how the scene

appears from a single point of view. The project uses the COLMAP, which is

frequently used in robotics and autonomous vehicles, to create a 3D point cloud

and determine the camera pose from the 2D photos in order to get around this

problem. The point cloud represents the 3D structure of the scene, while the

camera pose estimates the position and orientation of the camera relative to the

scene.

The project then uses the Neural Radiance Field (NeRF) network to model the

radiance field, which describes how light interacts with the scene, based on the 3D

point cloud and camera pose data. The NeRF network is a deep learning tech-

nique that learns to represent the scene’s appearance and texture from different

viewpoints by modeling the radiance field. The optimized NeRF is then used to

synthesize novel views of the scene from arbitrary viewpoints. The system can

generate high-quality 3D views of both indoor and outdoor scenes that accurately

capture the geometry, structure, and appearance of the scene from different view-

points. Finally, any interactive virtual system is created on top of the synthesized

views to augment other objects.

6.2 Limitations and Further Enhancement

While the system presented in this project is a significant advancement in 3D-

aware novel view synthesis, there are still some limitations to consider.

1. NeRF provided a realistic 3D-aware novel view, but it was not able to re-

construct in real time.
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2. The mesh generated by the NeRF model consists of a lot of noise, containing

several floating artifacts.

3. The generation of a novel view using NeRF is GPU intensive.
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7. Appendix

Figure 7.1: Table Dataset

Figure 7.2: Stupa(Krishna Mandir) Dataset
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Figure 7.3: Stupa(Swayambhu) Dataset

Figure 7.4: LICT Dataset
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Figure 7.5: Office Dataset

Figure 7.6: White house day Dataset
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Figure 7.7: White House Evening Dataset

Figure 7.8: Output of Stupa Dataset
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