
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A

FINAL REPORT

ON

IOE APP

SUBMITTED BY:

NISHA SHARMA (PUL075BCT056)

SAGAR TIMALSINA (PUL075BCT071)

SANDIP PURI (PUL075BCT077)

UDESHYA DHUNGANA (PUL075BCT095)

SUBMITTED TO:

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING

May, 2023

Page of Approval

TRIBHUVAN UNIVERSIY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certifies that they have read and recommended to the Institute of Engineer-

ing for acceptance of a project report entitled ”IOE App” submitted by Nisha Sharma,

Sagar Timalsina, Sandip Puri, Udeshya Dhungana in partial fulfilment of the require-

ments for the Bachelor’s degree in Electronics & Computer Engineering.

.............................

Supervisor

Prof. Dr. Sashidhar Ram Joshi

Professor

Department of Electronics and Computer

Engineering,

Pulchowk Campus, IOE, TU.

.............................

Internal examiner

.............................

External examiner

Date of approval:

ii

Copyright

The author has agreed that the Library, Department of Electronics and Computer Engineer-

ing, Pulchowk Campus, and Institute of Engineering may make this report freely available

for inspection. Moreover, the author has agreed that permission for extensive copying of this

project report for scholarly purposes may be granted by the supervisors who supervised the

project work recorded herein or, in their absence, by the Head of the Department wherein

the project report was done. It is understood that recognition will be given to the author

of this report and to the Department of Electronics and Computer Engineering, Pulchowk

Campus, Institute of Engineering in any use of the material of this project report. Copying

or publication or the other use of this report for financial gain without the approval of the

Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of En-

gineering and the author’s written permission is prohibited.

Request for permission to copy or to make any other use of the material in this report in

whole or in part should be addressed to:

Head of Department

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering, TU

Lalitpur, Nepal.

iii

Acknowledgments

The completion of this project owes its status to all the individuals and organizations who

have provided their valuable guidance and support at different stages of the project. It is

with great pleasure that we express our sincere gratitude to all those who have contributed

towards the successful completion of our project.

Firstly, we would like to extend our heartfelt appreciation to the Department of Electronics

and Computer Engineering at Pulchowk Campus for providing us with the opportunity

to apply our knowledge in a real-world setting and for facilitating the development of our

teamwork skills.

Additionally, we would like to express our deepest gratitude to our esteemed supervisor,

Prof. Dr Shashidhar Ram Joshi, for his invaluable guidance and support throughout the

project.

We would also like to acknowledge the support and mentorship provided by Rara Labs, and

in particular, Prayash Koirala, Flutter developer at Rara Labs, for his insightful suggestions,

constructive feedback and a generous allocation of time and resources towards the successful

completion of our project.

We consider ourselves fortunate to have had such incredible support from all these individ-

uals, and we sincerely thank them for their contributions towards our project.

Sincerely,

Nisha Sharma

Sagar Timalsina

Sandip Puri

Udeshya Dhungana

iv

Abstract

The Institute of Engineering (IOE) in Nepal is utilizing various platforms for providing ser-

vices to its students and staff. IOE APP is being developed as a comprehensive platform

with a user-friendly interface integrating all the services in a place. This platform aims to

integrate existing services while providing additional features through the use of plugin-like

technology. The IOE APP strives to provide seamless services to its users and enhance the

efficiency and centralization of college activities. The Agile methodology approach has been

adopted to ensure that the IOE APP meets the requirements of its target audience. Fur-

thermore, the IOE APP’s microservice architecture allows for scalability and extensibility,

which can pave the way for similar applications to be developed for other organizations. This

framework represents a shift away from manual-dependent systems and towards a completely

application-based service.

Keywords: IOE, Nepal, platform, Agile methodology, microservice architecture, scalability,

EMS

v

Contents

Page of Approval ii

Copyright iii

Acknowledgements iv

Abstract v

Contents viii

List of Figures ix

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Background . 1

1.2 Problem statements . 1

1.3 Objectives . 2

1.4 Scope . 2

1.5 Motivation . 2

2 Literature Review 3

2.1 Related work . 3

3 Related theory 5

3.1 Microservice architecture . 5

3.2 HTTP . 6

3.3 MVC Pattern . 6

3.4 REST API . 7

3.4.1 GET . 8

3.4.2 POST . 8

3.4.3 PUT . 8

vi

3.4.4 PATCH . 9

3.4.5 DELETE . 9

3.5 Wireframes . 9

3.6 Quantum Computing . 9

3.6.1 Grover’s Algorithm . 9

4 Methodology 11

4.1 Backend . 11

4.1.1 Campus Microservice . 12

4.1.2 Student Microservice . 15

4.1.3 Teacher Microservice . 16

4.1.4 Authentication Microservice . 17

4.1.5 Curriculum Microservice . 18

4.1.6 Attendance Microservice . 20

4.1.7 Internal Marks Submission Microservice 22

4.1.8 Result Publication Microservice . 23

4.2 Front-End . 24

4.2.1 Web App . 25

4.2.2 Mobile App . 27

5 System design 29

5.1 Campus Microservice ERD . 29

5.2 Authentication Microservice ERD . 30

5.3 Student Microservice ERD . 30

5.4 Curriculum Microservice ERD . 31

5.5 Teacher Microservice ERD . 31

5.6 Attendance Microservice ERD . 32

5.7 Internal Marks Microservice ERD . 32

5.8 Result Publication Microservice ERD . 33

5.9 Communication Between Microservices . 33

6 Technologies used 35

6.1 Front-End . 35

6.1.1 React . 35

6.1.2 Typescript . 35

6.1.3 Tailwind CSS . 35

6.1.4 Figma . 36

vii

6.1.5 Flutter . 36

6.2 Back-End . 36

6.2.1 Gorilla MUX (Golang) . 36

6.2.2 Node.js . 36

6.2.3 Django . 37

6.2.4 PostgreSQL . 37

6.2.5 JWT Token . 37

6.2.6 Sequelize . 37

7 Output 39

7.1 Teacher App . 41

7.1.1 Home . 41

7.1.2 Attendance module . 42

7.1.3 Internal Marks Submission module 46

7.2 Student App . 48

7.2.1 Attendance Page . 48

7.2.2 Attendance Page . 49

7.2.3 Internal Marks Page . 50

7.2.4 Results Page . 51

7.2.5 Notice . 52

7.2.6 Result Page . 53

7.3 Admin Dashboard . 53

8 Conclusion 54

9 Limitations and Future enhancement 55

References . 56

viii

List of Figures

3.1 MVC pattern . 7

3.2 REST Api . 8

5.1 ER Diagram of Campus Microservice . 29

5.2 ER Diagram of Authentication Microservice 30

5.3 ER Diagram of Student Microservice . 30

5.4 ER Diagram of Curriculum Microservice . 31

5.5 ER Diagram of Teacher Microservice . 31

5.6 ER Diagram of Attendance Microservice . 32

5.7 ER Diagram of Internal Marks Microservice 32

5.8 ER Diagram of Result Publication Microservice 33

5.9 Android Dashboard . 34

7.1 Android Homepage . 41

7.2 Attendance page . 42

7.3 Adding a new course . 43

7.4 Taking attendance . 44

7.5 Viewing Attendance . 45

7.6 Internal Marks Submission Page . 46

7.7 Assign Marks . 47

7.8 Student Home . 48

7.9 Attendance Page . 49

7.10 Internal Marks Page . 50

7.11 Results Page . 51

7.12 Notice Page . 52

7.13 Android Dashboard . 53

ix

List of Tables

4.1 Columns of Campus table and their description 12

4.2 Columns of Department table and their description 13

4.3 Columns of Programme table and their description 13

4.4 Columns of CampusDepartment table and their description 13

4.5 Columns of CampusProgramme table and their description 14

4.6 Columns of Batch table and their description 14

4.7 Columns of Notice table and their description 14

4.8 Columns of Section table and their description 16

4.9 Columns of Student table and their description 16

4.10 Columns of teacher table and their description 17

4.11 Columns of User table and their description 18

4.12 Columns of User Subject and their description 19

4.13 Columns of Practical table and their description 19

4.14 Columns of Course table and their description 20

4.15 Columns of Lecture table and their description 21

4.16 Columns of AttendanceRecord table and their description 21

4.17 Columns of Course table and their description 22

4.18 Columns of InternalMarkRecord table and their description 23

4.19 Columns of Gradesheet table and their description 24

4.20 Columns of SymbolNumber table and their description 24

x

List of Abbreviations

API Application Programming Interface

App Application

CDN Content Delivery Network

CGPA Cumulative Grade Point Average

CSS Cascading Style Sheets

DOM Document Object Model

HTTP Hyper Text Transfer Protocol

ID Identity Document

IOE Institute of Engineering

JSON Javascript Object Notation

JWT JSON Web Token

MVC Model View Controller

ORM Object Relational Mapping

PHP Hypertext Preprocessor

REST Representational State Transfer

SDK Software Development Kit

UMS University Management System

UI User Interface

URL Uniform Resource Locator

xi

1. Introduction

1.1 Background

Institute of Engineering (IOE) is the leading technical education institution in Nepal and

offers undergraduate and graduate programs in various fields of engineering, such as civil

engineering, mechanical engineering, electrical engineering, electronics and communication

engineering, computer engineering, and architecture. It currently carries out administrative

and academic tasks both offline and online. While some services have been shifted to on-

line platforms, others such as attendance systems and semester result publication still to be

shifted online. Moreover, there is a lack of a centralized website or application to access all

IOE facilities. The Coronavirus pandemic has highlighted the need to expedite the process of

moving services online. To address this, we propose the development of a mobile application

that can integrate all IOE services and is flexible for future enhancements through plugin-

like features. Our aim is to provide a convenient and efficient platform for IOE users while

ensuring easy integration of existing offline processes. We anticipate that this application

will be highly advantageous to the Institute of Engineering.

1.2 Problem statements

Some of the challenges faced in current IOE services are highlighted as:

• The current services of IOE are mostly manual and offline, leading to delays and

inefficiencies.

• Online services such as entrance registration and library management are not integrated

and are run separately.

• The current system lacks real-time updates and fails to provide timely and relevant

information to students.

• A modernized system, such as a mobile app, is needed to provide a centralized platform

for communication, access to course materials, and other relevant resources.

1

1.3 Objectives

Our project aims to develop an app that is easily scalable and integrable, allowing for

easy access to all activities offered by IOE. The objectives of our project are highlighted

below:

• To create an easily scalable and integrable IOE APP.

• To improve online access to the educational system and mitigate current problems by

using microservice architecture.

1.4 Scope

The Institute of Engineering (IOE) currently lacks an application for conducting its activities

or communicating with stakeholders. A proposed app aims to serve as an external interface

for IOE and its users, facilitating activities such as result publication and online attendance.

The app will be designed with a suitable architecture to integrate existing systems, enabling

IOE to better serve its stakeholders by providing an efficient and effective way to access

important information and engage with the institution.

1.5 Motivation

The idea for the IOE app was born out of the students’ own need for a comprehensive and

easily accessible platform for IOE-related information. With the transition to virtual classes

due to COVID-19, this need became even more apparent. As students of IOE, our team

behind the app project saw an opportunity to give back to the institution by proposing

a solution that would benefit both the students and the institute. By creating an app

that facilitates activities like online attendance and result publication, IOE can improve its

services and communication with its stakeholders. Ultimately, the motivation behind the

IOE app is to create a more seamless and efficient experience for students and other users,

while also helping IOE to better manage its resources and serve its community.

2

2. Literature Review

Mobile application development has been one of the most emerging fields in IT in the last

decade. With the growing field, various technologies have been studied and tested along

with many frameworks being introduced time and again. Two widely used frameworks are

React Native and Flutter -a widget-based system. Due to the standardization by Google

and high security, Flutter can revolutionize React native design with simpler syntax neatness

and SDK[1].

A system has a microservice architecture when that system is composed of many collabo-

rating microservices; typically without centralized control [2]. Microservice architecture has

been used for scalability, agility and reliability in various applications[3]. Since its intro-

duction in a white paper by Martin Fowler and James Lewis it has since become a de-facto

standard for developing large-scale applications.

2.1 Related work

Android App for Kathmandu University displays information about the university, university

calendar, course registration, applying for transcripts, news, notice and student activities.

It gives information about student welfare, the central library, publication and research of

the university. This App brings all the major components of their website into a single

dashboard with added benefits of Personalization.[4]

An application for Islamic University Gaza(Student Portal) displaying the courses’ schedule

and exams schedule for students from anywhere and anytime, also notifying the students of

student lectures’ schedule and exams automatically, viewing the academic information and

grades report (marks transcript) for the students, providing silence schedule because most

of the students forget their mobile phones in normal mode during the lectures, but by the

intended application, mobile phones will be automatically switched to silent mode during

the lectures. But this system depends on the university Web site directly[5].

3

An application for Stanford University, Stanford Mobile allows users to explore campus din-

ing options, upcoming events, featured news stories, campus and shuttle maps etc. Stanford

community members with a SUNet ID can log in and access the Stanford Health Check and

Mobile ID features. Health Check gives you quick and convenient access to the self-reporting

tool. Mobile ID displays the information that you find on your physical Stanford ID card:

your name, photo, affiliation, University ID, and barcode number.

Jose De Souza created a mobile application, Gestation[6] using microservice architecture

which is capable of meeting requests from pregnant women via mobile application and allow-

ing health professionals to monitor the pregnancy evolution of a health unit. The architecture

was designed to offer satisfactory performance, scalability and simplicity.

4

3. Related theory

3.1 Microservice architecture

Microservice architecture is a software development approach that involves building an ap-

plication as a collection of small, independently deployable services. Every service has its

own functionality which when combined makes a full application. Due to the features like

scalability and flexibility, it has gained popularity in designing the complex system.

In a microservice architecture, each service is built independently that communicates with

each other using the API calls or messaging system. This design known as modular design

helps for easy maintenance, as each service can be updated, replaced or deleted without

affecting the whole system. Also, the independent modules greatly add to the parallelism,

improving productivity and allowing for faster development.

Microservice architecture support scalability. Services can be scaled up or down as needed as

services are built independently without affecting other services and the rest of the system.

This allows to better use of resources as only necessary systems are scaled up to handle the

increase in demand. Furthermore, vertical scaling is also possible enabling service to scale

up or down.

Another important benefit of microservice architecture is its flexibility. Since the services

are built as an independent module, they can be built using any technology stack according

to the need of not only the system but also the services. This means that different services

can be built using different programming languages, databases, or frameworks. Furthermore,

this flexibility enables developers to choose the best tools for each task or function, without

being to choose a single stack for the whole system.

Microservice Architecture also makes the complex system resilient. As the services are inde-

pendent modules, failure in service won’t affect the rest of the system. Since a microservice

has unique features it is easy to monitor which significantly helps to improve system perfor-

mance and search for errors.

However, implementing microservice architecture also has its challenges. One of the main

challenges is the complexity involved in designing and coordinating the interactions between

services. This requires careful planning and design, as well as the implementation of robust

5

testing and monitoring procedures. Additionally, because each service is responsible for a

specific function, it can be difficult to ensure consistency across the entire system, leading

to issues such as data inconsistencies or duplicate functionality.

3.2 HTTP

HTTP is a Hypertext Transfer Protocol which is used for the transfer of data between

servers and browsers. It is the foundation of the World Wide Web. Being the primary way

of transmitting and receiving data over the net, it is designed to be a simple and extensible

protocol. HTTP is a request-response protocol referring to the client-originated data transfer.

The client requests the data or information from the server and the server responds with the

same. The request can be of many components with the HTTP method, the requested URL

and any other additional header. Server with responses with data and predefined status

code. HTTP is simple and extremely easy to use. Because it is a text-based protocol, it is

understood easily. Additionally, its extensibility allows for the creation of new functionality

or features without disrupting the existing protocol.

HTTP is a stateless protocol i.e. it doesn’t store the state of the client in the server machine

and responds only to the requested data. Since HTTP itself don’t encrypt the data it relies

on other higher-level protocol for encryption. Also, HTTPS was developed for the same

purpose.

3.3 MVC Pattern

MVC Pattern is a software design pattern in which the applications are divided into three

distinct components: model, view, and controller. It separates the program into the user

interface, business logic and application data.

6

Figure 3.1: MVC pattern

The Model component consists of the data and business logic of the application. It contains

the data and provides access to the database for the purpose of manipulating it. The model

can be tested independently as it doesn’t depend on the view or controller.

The view components are the way of presenting data to the user i.e. it consists of a user

interface. It is a visual representation of the models’ data on a platform like a web, mobile

application or desktop application window. The views receive updates from the model.

The Controller component acts in the middle between the view and the model. It receives

input from the user from the view and updates the model accordingly. It also updates the

view based on changes in the model. It binds together the view and the model and eases

data communication between these two.

MVC has many benefits. To include a few it separates the application’s concerns into three

distinct components, each component can be developed and tested independently of the oth-

ers. This can lead to more modular and maintainable code and can make it easier to add

new features or make changes to existing ones.

3.4 REST API

REST is an architectural approach for developing web services. A RESTful API (Applica-

tion Programming Interface) is built using REST (Representational State Transfer)concepts.

RESTful API transfers a representational state of the resource to the endpoint or requester.

The information can be of any format like JSON, HTML, PHP, XML etc.

7

REST APIs are used for the data exchange between client and server. They communicate

with the server via HTTP (Hypertext Transfer Protocol) techniques. GET, POST, PUT,

PATCH, and DELETE are the most often used HTTP methods in RESTful APIs.

Figure 3.2: REST Api

3.4.1 GET

The GET method is used when data is needed to retrieve from the server. It reads the data

from the server. It is used to retrieve data like user profiles, product information, or other

resources.

3.4.2 POST

THE POST method is used to send the data to the server. It is useful for creating new

resources to be retrieved later in the server.

3.4.3 PUT

The PUT method is used to update an existing resource on the server. It replaces the exist-

ing resource with the new one that is sent in the request.

8

3.4.4 PATCH

The PATCH method is similar to the PUT method, but it only updates the specified fields

of an existing resource. It is used when only a portion of a resource needs to be updated,

rather than replacing the entire resource.

3.4.5 DELETE

The DELETE method is used to delete a resource from the server. It removes the resource

from the server and makes it unavailable for further use.

3.5 Wireframes

Wireframes help to visualize the app’s basic structure and layout, enabling the designer

and developer to spot the problems early on in development. It can also be useful for

interacting with the user and getting feedback from the user . Besides aiding the design

process, wireframes are also useful for user testing to get feedback on the app’s usability

and identify areas for improvement. Including wireframes in a mobile and web app-based

project report provides readers with a tangible example of the app’s look and feel, as well as

insights into the design process. It allows them to better understand the app’s functionality,

usability, and design decisions.

Overall, wireframes are a crucial tool for designing successful mobile and web applications.

They can help define the app’s overall structure, prioritize essential features, and improve

communication between designers and developers.

3.6 Quantum Computing

A quantum computer is a computer that uses various phenomena of quantum mechanics.

At small scales, in the order of nanometers, the phenomena of physical matter exhibiting

properties of particles and waves become significant, and quantum computing uses special

devices to take advantage of these properties. Due to their quantum nature, they can act

exponentially faster than classical computers, as demonstrated by the breaking of symmetric

cryptography algorithms in O(n) time complexity. [7]

3.6.1 Grover’s Algorithm

Grover’s Algorithm is a quantum computing algorithm that is used to search data in an

unsorted database in O(
√
n) time complexity. Quantum mechanical systems can be in a

superposition of states and simultaneously examine multiple names. By properly adjusting

9

the phases of various operations, successful computations reinforce each other while others

interfere randomly. [8]

10

4. Methodology

Our project is a full-stack web as well as a mobile app project. The backend part of the

project was built using a microservice-based architecture, which is a software development

technique that focuses on creating small, modular, and independently deployable services

that can work together to form a larger system.

The front for the admin panel was built using a web-based React app which is a popular

JavaScript library for building user interfaces and is widely used for developing web appli-

cations.

The mobile app which we made for the teachers and students was built using Flutter.

The detailed description of each of these components is explained in the following sections.

4.1 Backend

The IOE App is built using a microservices architecture, which allows for the development

of a complex application by breaking it down into smaller, independent services that can be

developed, tested, and deployed independently. The app is comprised of several microser-

vices, including the campus microservice, which provides information about the campus and

its facilities; the teacher microservice, which handles teacher-related functionalities such as

managing course content and assessments; the student microservice, which manages student

profiles and enrollment information; the curriculum microservice, which manages course and

curriculum information; the authentication microservice, which handles user authentication

and authorization; the attendance microservice, which tracks attendance for classes; the

internal mark submission microservice, which allows teachers to submit internal marks for

students; and the result microservice, which calculates and publishes student results. Each

microservice is designed to perform a specific set of tasks and can communicate with other

microservices through well-defined APIs, allowing for efficient and scalable development of

the application.

Below is a brief overview of each microservice and its functionality:

11

4.1.1 Campus Microservice

The campus microservice architecture contains a database that houses data on the campuses

provided by IOE, the departments provided by each campus, and the programs offered by

each department and campus. A primary key is given to each campus, which is utilized for

accessing other database tables. This method enables effective data retrieval and connectivity

between the various tables in the campus microservice. For instance, the primary key for

that campus is utilized as a foreign key in the linked tables to retrieve the relevant data to

retrieve information about the departments offered by that campus. The models are listed

below, along with a description of each one:

This microservice is built using Golang, with Gin framework for routing, and Gorm library

for ORM.

Models

• Campus

• Department

• Programme

• CampusDepartment

• CampusProgramme

• Batch

• Notice

Campus

This table is used to store information on campuses of the IOE. The columns of this table

are:

Table 4.1: Columns of Campus table and their description

Column Description

id Primary key

name Name of the campus

location Location of the campus

12

Department

It includes information on all the generic departments in the IOE.

Table 4.2: Columns of Department table and their description

Column Description

id Primary key

name Name of the department

Programme

This table contains information about the programs offered by the IOE.

Table 4.3: Columns of Programme table and their description

Column Description

id Primary key

name Shorthand description, eg BCT

full name Full name of the programme

department id Foreign key specifying the offering department

CampusDepartment

This table contains the list of associations specifying the departments present on each cam-

pus.

Table 4.4: Columns of CampusDepartment table and their description

Column Description

id Primary key

department id Foreign key specifying the department

campus id Foreign key specifying the campus

13

CampusProgramme

This table contains the list of associations specifying the list of programmes offered by

departments of campuses.

Table 4.5: Columns of CampusProgramme table and their description

Column Description

id Primary key

campusdepartment id Foreign key specifying the row in CampusDepartment table

programme id Foreign key specifying the related programme

Batch

This table contains the list of batches in IOE.

Table 4.6: Columns of Batch table and their description

Column Description

id Primary key

year Year of that batch

Notice

This is for the publication of any new notices for all the campuses. For example, the notice

regarding the entrance examination, exam form, admission procedure, etc.

Table 4.7: Columns of Notice table and their description

Column Description

id Primary key

title The title of the notice

description Description about the notice

As an example, let’s consider Pulchowk Campus, which is one of the campuses under IOE

and is assigned a primary key of 1 in the campus table of the database. Using this primary

key, we can retrieve information about the departments offered by Pulchowk by querying the

department’s table with the primary key for Pulchowk. The departments of the Pulchowk

Campus are the Department of Architecture, Department of Civil Engineering, Department

of Electronics and Computer Engineering, and so on. Similarly, the campus microservice

14

includes data about departments offered by each campus of IOE, as well as data about the

programs offered by each department and campus. This data is stored in separate tables

in the database and can be queried and retrieved using the primary keys assigned to each

campus, department, and program.

Overall, the use of primary keys to link related data in the campus microservice database

ensures that data can be efficiently retrieved and linked across the various tables in the

database, making it easier to query and retrieve information about departments, programs,

and other data associated with a particular campus or department.

4.1.2 Student Microservice

The student microservice is a crucial component of the IOE app architecture as it handles

data related to the students enrolled in the institute, including information about their per-

sonal details, academic records, attendance, and other related information. It is designed

to communicate with other microservices, including the campus microservice, to store and

retrieve student data efficiently. The student microservice also includes sections where stu-

dents belonging to different sections are kept, making it easier for the app to manage and

organize student data.

The student microservice is built using the Node.js platform. The microservice uses Node.js

to handle requests from other microservices and respond with the appropriate data. The

student microservice database includes tables for storing student details, for example, the

history of academic records.

The tables of this microservice are:

• Section

• Student

Section

It is used to store the sections to which students belong. Additionally, this table references

the CampusProgramme and Batch table from Campus Microservice.

15

Table 4.8: Columns of Section table and their description

Column Description

id Primary key

name Name of the section

batch batch from the Batch table

campusprogramme id Id specifying the unique row in CampusProgramme table

Student

It is used to store the detailed information of the students in the IOE.

Table 4.9: Columns of Student table and their description

Column Description

id Primary key

name Name of the section

section id Foreign key specifying the section

citizenshipNumber The unique identification of the student

dateOfBirth Date of birth of the student

As of now, further columns need to be added to the table to store the student, for example,

the past academic record, admission type, and entrance examination result.

For example, suppose Smriti is enrolled in IOE in the Electrical Engineering department,

Section A. The student microservice would store Smriti’s personal details.

4.1.3 Teacher Microservice

The teacher microservice in the IOE App is built using the Django web framework, which is

a high-level Python web framework that allows developers to build web applications quickly

and efficiently. The teacher microservice contains information such as the name, contact

details, email address, and other relevant details of the teachers in the institute.

As of now, there is only one table in this microservice, Teacher.

Teacher

It is used to store the detailed information of the teachers in the IOE.

16

Table 4.10: Columns of teacher table and their description

Column Description

id Primary key

name Name of the teacher

post Post designated to them

title Title designated to them

campusDepartmentId Id referencing the CampusDepartment to which they belong to

This microservice is utilized in various other fields such as attendance management, internal

marks management, and other related services within the IOE App. The teacher microservice

communicates with other microservices such as the attendance microservice and internal

marks submission microservice to retrieve and store the data relevant to each teacher. By

utilizing the Django web framework, we were able to build a robust and scalable microservice

that can handle a large amount of data and provide efficient responses to client requests.

We have also implemented a function to search for a teacher’s record using Grover’s algorithm

for fast retrieval. Since there is no currently fully functioning quantum ORM software or

library for any databases, we have implemented this by following the steps.

1. Retrieving all the database items into a python list

2. Encoding the id of teacher to be searched in quantum state

3. Using Grover’s algorithm to search through the list using quiskit library

4.1.4 Authentication Microservice

The authentication microservice plays a critical role in the IOE app architecture as it pro-

vides a secure and efficient way to manage user authentication and authorization. This

microservice includes features such as login, register, and verification, which allow users to

create and manage their accounts within the system. The authentication microservice is

designed to provide three different types of accounts, namely admin, student, and teacher,

each with their specific roles and permissions.

This microservice contains only the account information about the users of the IOE app.

17

User

It is used to store the information on user accounts of the IOE app.

Table 4.11: Columns of User table and their description

Column Description

id Primary key

username Unique username of each user

passwordHash Hashed password of the user

role Role can be either TEACHER, STUDENT, ADMIN

studentId Id referencing the CampusDepartment to which they belong to

teacherId Id referencing the CampusDepartment to which they belong to

To authenticate users and verify their roles, the authentication microservice provides a token

that is generated based on the user’s credentials. This token is used to identify and authorize

users, ensuring that only authorized users can access the protected resources within the

system. The authentication microservice is built using the Node.js platform, which is well-

suited for creating scalable, high-performance applications. Node.js allows the authentication

microservice to handle a large number of requests, ensuring that user authentication is fast

and reliable.

The authentication microservice stores a secret key in each microservice, which is used to

verify the authenticity of the requests. When a user tries to access a protected resource, the

authentication microservice checks the user’s credentials and generates a token that contains

information about the user’s role and permissions. This token is then passed to the other

microservices, allowing them to verify the user’s identity and ensure that only authorized

users can access the resources.

4.1.5 Curriculum Microservice

The curriculum microservice is a critical component of the IOE app architecture, as it con-

tains information about the courses offered by the institute. This microservice comprises

data related to the courses, such as the course code, name, department offering the course,

whether it is practical or theoretical, and other relevant information. By using this mi-

croservice, students and teachers can easily access course-related information and plan their

academic schedules accordingly.

18

The curriculum microservice is built using Node.js, which provides several benefits in terms

of performance, scalability, and reliability. It uses Node.js to handle requests from other

microservices and respond with the appropriate course data. The microservice database

includes tables for storing course details, such as the course code, name, department offering

the course, and other relevant information.

The tables of this microservice are:

• Subject

• Practical

The detailed information on each table is provided below.

Subject

It is used to store the information on the subjects offered by the IOE.

Table 4.12: Columns of User Subject and their description

Column Description

id Primary key

courseId Course code in the IOE registry

fullName Full name of the subject

marks Full marks of the subject

passPercent Minimum percentage of marks required for passing

Practical

It is used to store the information the practical subject associated with each subject.

Table 4.13: Columns of Practical table and their description

Column Description

id Primary key

marks Full marks on the practical

passPercent Minimum percent of marks required for passing

subjectId Foreign key indicating which subject it belongs to

19

This microservice can be extended to include the course contents of each subject. Further

tables can be created for storing the chapters under each subject and also providing their

notes in markdown format which can be hosted in a CDN.

4.1.6 Attendance Microservice

The attendance microservice is responsible for managing attendance data for students en-

rolled in courses at the IOE. This microservice allows teachers to create courses by merging

curriculum information with student section information. Once a course has been created,

teachers can evaluate the daily attendance of students and record their presence or ab-

sence.

The attendance microservice is built using the Node.js platform, which allows for the efficient

handling of large amounts of data. The microservice database includes tables for storing

course information, student section information, and attendance records. Teachers can create

courses by selecting the curriculum for the course and merging it with the section information

for the students enrolled in the course.

The tables included in this microservice are as follows

• Course

• Lecture

• AttendanceRecord

The details on these tables are as follows:

Course

A course is an educational offering of a particular subject to a particular section. It is used

by teacher to create the registry of attendance of students.

Table 4.14: Columns of Course table and their description

Column Description

id Primary key

subjectId Id specifying which subject is offered in the course

sectionId Id specifying to which section it is offered

teacherId Id specifying by which teacher it is offered

name Name given to the course

20

Lecture

A course usually has multiple lectures, taking place at different dates. This table is used to

store the lecture conducted in a certain course.

Table 4.15: Columns of Lecture table and their description

Column Description

id Primary key

courseId Foreign key specifying to which course the lecture belongs to

AttendanceRecord

To store the presence of students in a certain lecture, this table is used.

Table 4.16: Columns of AttendanceRecord table and their description

Column Description

id Primary key

studentId Id specifying which student is present in the lecture

lectureId Foreign key referencing the belonging lecture

Once a course has been created, teachers can use the attendance microservice to record the

daily attendance of students. The microservice allows teachers to mark students as present

or absent for each lecture of the course. Attendance data is stored in the attendance records

table.

For example, let’s say a teacher named John wants to record the attendance of students

in a course called ”Introduction to Computer Science.” John would use the attendance

microservice to create the course by selecting the curriculum information for the course and

merging it with the section information for the students enrolled in the course. Once the

course has been created, John can use the attendance microservice to mark students as

present or absent for each day of the course.

Overall, the attendance microservice is an essential component of the IOE app architecture,

allowing teachers to efficiently manage attendance data for students enrolled in courses at

21

the institute. By using Node.js, the microservice is scalable and can handle large amounts

of data, ensuring that attendance records are always available when needed.

4.1.7 Internal Marks Submission Microservice

The Internal Marks Submission microservice is a critical component of the IOE app archi-

tecture as it handles the submission and storage of students’ internal marks for each course.

The microservice is designed to be used by teachers, who can access the platform to submit

the internal marks for each of their students.

The microservice is built using the Node.js platform, which is ideal for building scalable,

high-performance applications. The microservice interacts with other microservices, such as

the authentication microservice and the teacher microservice, to ensure that only authorized

teachers can access the platform and submit internal marks for their students. The tables

of this microservice are:

• Course

• InternalMarkRecords

The description of each table is provided below:

Course

This table is used to store the course offered. This table is kept separate from the course table

of attendance record table because the same teacher may not be responsible for submitting

internal marks as the ones who are taking attendance.

Table 4.17: Columns of Course table and their description

Column Description

id Primary key

subjectId Id specifying which subject is offered in the course

sectionId Id specifying to which section it is offered

teacherId Id specifying by which teacher it is offered

name Name given to the course

22

InternalMarkRecord

To store the internal mark record of each student in a course, this table is used.

Table 4.18: Columns of InternalMarkRecord table and their description

Column Description

id Primary key

studentId Id specifying which student is present in the lecture

courseId Foreign key referencing the belonging lecture

marksObtained The marks obtained by the student in the course

remarks Any related remarks about the student

To use the Internal Marks Submission microservice, a teacher must first create a course

by merging the section and curriculum. Once the course has been created, the teacher can

access the platform to submit the internal marks for each student. The microservice includes

a table for storing the internal marks for each course, along with the student’s name, student

ID, and other relevant information.

So, the Internal Marks Submission microservice is a crucial component of the IOE app

architecture, providing an efficient and secure way for teachers to submit internal marks for

their students.

4.1.8 Result Publication Microservice

The Result Publication microservice is a critical component of the IOE app architecture as

it handles the submission and storage of students’ mark sheets. The microservice is used by

students to find out the marks and mark sheet on the day the result is published.

The tables used in this microservice are as follows:

• SymbolNumber

• Gradesheet

Gradesheet

It is used to store the grade of a symbol number.

23

Table 4.19: Columns of Gradesheet table and their description

Column Description

id Primary key

symbolnumber Symbol number of a student

subjectcode Foreign key specifying the id of the subject

internal Marks obtained in internal

theory Marks obtained in theory

practical Marks obtained in practical

SymbolNumber

It is used to relate symbolnumber and student roll number.

Table 4.20: Columns of SymbolNumber table and their description

Column Description

id Primary key

rollnumber Roll number of a student

symbolnumber Symbol number of a student

To use the Result Publication Submission microservice,an administrator will provide the

ledger sheet of marks of all student and a record matching symbol number and roll number

of students in csv format which would then map the ledger to roll number and provides the

result.

Hence, the Result Publication microservice is a crucial component of the IOE app architec-

ture, providing an efficient and secure way for students to get the result on time and at the

time of publication. By using Node.js, the microservice is highly scalable and can handle a

large number of requests.

4.2 Front-End

Our IOE App project provides users with the option of using either a web or mobile app.

We’ve made sure to include several features to make the app easy to use and enjoyable for

24

our users. Whether one is using the web or mobile app, we’ve designed the IOE App to be

user-friendly and interactive.

4.2.1 Web App

The web app for IOE App is a browser-based version of our mobile app that runs on desktop

and laptop devices. It offers the same features and functionalities as the mobile app, such

as attendance tracking, marks management, result viewing, event notifications, and notices.

The web app is built using React and CSS, which are powerful web development technologies

that allow for fast and seamless user experiences. The user interface is designed to be

responsive, intuitive, and optimized for different screen sizes and resolutions, providing a

smooth user experience across various web browsers and operating systems.

Our web app comprises of several features including :

React Framework

React is a popular JavaScript library for building user interfaces. It allows for the creation

of dynamic and responsive user interfaces by breaking down the UI into small, reusable

components. React is widely used in web development because of its efficiency, flexibility,

and ease of use.

Reusable components

React’s component-based architecture allows developers to create reusable UI components.

This means that developers can create components once and use themmultiple times through-

out the app. This makes the app more modular and maintainable because changes made to

a component are reflected throughout the app.

Database

The database is the heart of the web app, where data is stored and organized in a way that is

easy to search and retrieve. The database can include information about students, teachers,

courses, schedules, events, and other relevant data. This information can be used to generate

reports, analyze trends, and make data-driven decisions.

Table Display

The database is presented to users in the form of a table, which allows users to easily view and

sort the data. The table can also include filtering and search options, which make it easier

for users to find the information they need. This can be especially helpful for administrators

who need to manage large amounts of data.

25

API Calls

The web app uses API calls to communicate with external resources and services. This

allows the app to interact with the database, add new data, modify existing entries, and

perform other actions as needed. API calls are an important part of the app’s functionality

because they allow the app to connect with other systems and services.

Admin Panel

The admin panel provides a secure area where authorized administrators can manage and

control various aspects of the app. This can include adding new users, modifying data,

managing notifications and other important updates. An admin panel is an important tool

for administrators because it allows them to manage the app and its data with ease.

Dashboard

The dashboard is a central hub where users can view important data and metrics at a glance.

The dashboard can include information such as upcoming events, recent notifications, and

other important updates. This can help users stay informed and up-to-date with the latest

information.

User Profiles

The web app allows students and teachers to create profiles that include their personal

information, course schedules, and other relevant data. User profiles can help users stay

organized and keep track of important information such as class schedules, grades, and

upcoming assignments.

Notifications and Announcements

The web app allows users to view notifications, read notices and announcements, and manage

their own profile information. Notifications and announcements can be an important way to

keep users informed about important updates and events.

Customization

The web app can be customized to meet the needs of specific schools or universities. This

can include customizing the colour scheme, logo, and other visual elements to match the

branding of the institution. Customization can help to create a cohesive and personalized

experience for users. These features can enhance the user experience, improve data manage-

ment, and provide valuable insights to help institutions make data-driven decisions.

26

4.2.2 Mobile App

The IOE mobile app is an innovative solution designed to meet the academic needs of stu-

dents and teachers at the Institution of Engineering (IOE). The app provides a seamless

platform for managing academic records, staying up-to-date with events, and receiving im-

portant notices. It is built using the Flutter framework, which is a popular cross-platform

development tool that enables the efficient creation of high-quality mobile apps for both iOS

and Android platforms. The Flutter framework offers numerous benefits, including rapid

development, hot reload, and easy customization, making it an ideal choice for mobile app

development.

We used the Dart programming language, which is an object-oriented, client-optimized lan-

guage designed for building user interfaces and applications. Dart offers a range of features,

such as static typing, garbage collection, and a just-in-time compiler, that make it ideal for

building high-performance mobile apps. Additionally, Dart has a robust community of de-

velopers who contribute to the open-source language and its ecosystem, providing a wealth

of resources, documentation, and libraries to support developers. By leveraging the power

of Flutter and Dart, the IOE mobile app has been developed to provide an intuitive, user-

friendly platform that enables students and teachers to manage their academic records and

stay informed about important events and notices.

The development of the IOE mobile app using Flutter followed a structured methodology to

ensure the app met the needs and requirements of its users. The methodology can be broken

down into the following stages:

Requirements Gathering

The first stage of the methodology involved gathering requirements from the stakeholders,

including students, teachers, and staff members, to understand the features and functionality

required in the app. This involved conducting surveys, focus group discussions, and one-on-

one interviews to gather feedback and suggestions.

Design

Once the requirements were identified, we used a user-centred design approach to create

wireframes and prototypes of the app. This involved creating mockups of the app screens

and testing them to ensure that the design met our needs and preferences.

Development

The development stage involved building the app using Flutter, a powerful framework that

allowed for rapid development and testing of the app. We followed agile development prac-

27

tices, which involved building the app in small increments and testing it regularly to identify

and fix bugs and issues.

28

5. System design

We first present the ERD diagrams of all the microservices present in our project, and then

we present the communication pattern between the microservices.

5.1 Campus Microservice ERD

Figure 5.1: ER Diagram of Campus Microservice

29

5.2 Authentication Microservice ERD

Figure 5.2: ER Diagram of Authentication Microservice

5.3 Student Microservice ERD

Figure 5.3: ER Diagram of Student Microservice

30

5.4 Curriculum Microservice ERD

Figure 5.4: ER Diagram of Curriculum Microservice

5.5 Teacher Microservice ERD

Figure 5.5: ER Diagram of Teacher Microservice

31

5.6 Attendance Microservice ERD

Figure 5.6: ER Diagram of Attendance Microservice

5.7 Internal Marks Microservice ERD

Figure 5.7: ER Diagram of Internal Marks Microservice

32

5.8 Result Publication Microservice ERD

Figure 5.8: ER Diagram of Result Publication Microservice

5.9 Communication Between Microservices

The first point of communication is from teachers microservice to the campus microservice.

The teacher microservice queries the CampusDepartment table from Campus microservice

for the verification of existence of a CampusDepartment instance, since a teacher belongs to

a department of a campus.

Another communication point is from student microservice. Student microservice references

CampusProgramme instance and Batch instance from Campus microservice, this requires

communication with campus microservice for verification of existence of entities with given

id.

Similarly, attendance microservice, internal marks submission microservice and result pub-

lication microservice needs cross-microservice references to store references to curriculum

microservice and student microservice. Attendance microservice references subject from

subject microservice, and student as well as section from student microservice. The commu-

nication pattern of internal marks microservice and result publication microservice is exactly

same as that of attendance microservice.

33

Figure 5.9: Android Dashboard

34

6. Technologies used

6.1 Front-End

6.1.1 React

React, an open-source project developed by Facebook is a JavaScript library that permits

developers to create an interactive user interface for web applications. It helps in simplifying

the building of complex user interfaces.

The major work of React involves breaking down the UI into reusable components that are

then utilized to construct the more complex UI elements. It supports code reusability and

makes the use of state changes easier within the application. In React, there is the virtual

DOM whose implementation helps to improve the time and performance for rendering the

content in DOM.

6.1.2 Typescript

To add the optional static typing to the language, a superset of JavaScript is used which

is known as TyeScript. It is better known to improve code quality and maintainability by

catching the bugs at the time of compiling. It comprises several features like auto-completion,

code navigation, and helping to prevent common errors during programming. With the help

of TypeScript, the developers write more maintainable and scalable code creating a better

user experience for their applications.

6.1.3 Tailwind CSS

Tailwind CSS provides developers with a set of pre-defined CSS classes in order to style

their web applications, making it a utility-first CSS framework. It helps to simplify the

development process with a predictable as well as consistent set of CSS styles that the

user can change as per his/her requirements. Also, the developers don’t have to write the

custom CSS code because of which they can fully focus on building the functionality for the

applications.

Reducing the amount of CSS code to improve the performance of the application is the next

big usability of Tailwind CSS.

35

6.1.4 Figma

Figma is a design tool that is used by designers and developers for creating user inter-

faces which are responsive in nature. It comprises features like vector editing tools, design

templates, and interactive prototyping capabilities that enable the users for bringing their

ideas in a user-friendly way. It supports real-time collaboration as well as feedback features

by which the work in the team becomes more effective. Also, it has an extensive plugin

ecosystem that allows it to be integrated with other tools.

6.1.5 Flutter

Flutter is an open-source mobile application development framework that is created by

Google. Building visually appealing, interactive and high-quality applications for ios, An-

droid as well as the web by the help of a single codebase. There are several distinct features

of Flutter as built-in tooling, and architecture based on a widget that allows the develop-

ers for creating complex user interfaces and delivering an interactive user experience. It

also has hot- a reloading feature to streamline the development process because of which

the developers can quickly iterate and make choices for the developers with all the skill

levels.

6.2 Back-End

6.2.1 Gorilla MUX (Golang)

Gorilla MUX is a Golang package providing URL matcher as well as HTTP router. Handling

HTTP requests and routing them to the correct handler functions based on the requested

URL path and HTTP method. It is better known for its performance, flexibility as well

as easy-to-use feature and provides a variety of features like middleware support for au-

thentication and logging, as well as helping to build RESTful APIs by the robust APIs. It

is preferred by many developers to use Gorilla Mux for the building of reliable as well as

scalable web applications.

6.2.2 Node.js

Node.js is a popular and powerful backend framework that enables developers to build fast,

scalable, and event-driven applications using JavaScript. It’s known for its efficient I/O

operations, non-blocking I/O model, and a vast library of modules and packages via its

package manager, npm. Node.js is also flexible and easy to learn, thanks to its JavaScript

syntax and supportive community. With Node.js, developers can build robust and high-

performance backend systems for web and mobile applications alike.

36

Node.js is a powerful framework for the back end that enables developers for building scalable,

faster as well as event-driven applications with the usage of JavaScript. It is better known

for its non-blocking I/O model, efficient input-output operations as well as a vast library of

modules and packages via npm. It is also quite easier to learn Node.js and build robust as

well as high-performance back-end systems for web as well as mobile applications.

6.2.3 Django

Django is a well-known Python web framework for simplifying web development. It provides

built-in components for the common needs of web development. Following the Model-View-

Controller(MVC) pattern and including features such as Object-Relational Mapping makes

Django more reactive. The developers can interact with databases and handle their appli-

cations in a more efficient manner. It is also modular and scalable and has become the ideal

choice for building complex web applications with ease.

6.2.4 PostgreSQL

PostgreSQL is widely used by all sized organizations for storing as well as managing their

data. This is also a powerful, free and open-source database management system. It has

the ability to handle complex transactions and robust features of security. Developers can

extend as well as customize PostgreSQL for matching their specific needs. This is a reliable

database solution which is a boon for any organization that are intending to store as well as

manage their data efficiently.

6.2.5 JWT Token

JWT Token stands for JSON Web Token which is an extensively used standard for trans-

mitting information between the parties securely as a JSON object. There are three main

parts in JWT Token: a header, a payload, and a signature. The header comprises metadata

about the token, the payload consists of the transmitted data like scopes of authorization

or the information of the user, and the signature is created using a secret key, allowing the

receiver for verifying the token’s integrity. These are used generally for authentication as

well as authorization in APIs, microservices as well as web applications, since they provide

a stateless way ti transmit information between systems.

6.2.6 Sequelize

Sequelize is known as an Object-Relational Mapping (ORM) library for NODE.js. It offers

an easy-to-use interface for interacting with relational databases like MySQL, PostgreSQL

etc. It also allows the developers for writing the database queries using JavaScript Syntax

which makes it more readable and manageable. Sequelize provides several powerful features

37

as validation of data, database schema creation as well as modification, and query opti-

mization. It even supports advanced concepts such as transactions and associations, that

allows developers to easily model complex relationships between entities. It is widely used

in Node.js web applications and consists of a large as well as active circle of users as well as

contributors.

38

7. Output

A short description of each of the tabs and pages in the mobile application is provided

below.

Attendance Tab

The attendance service is a crucial feature of the app that allows students to view their

attendance records and teachers to take attendance for their classes. The app should al-

low teachers to take attendance through their mobile devices, and students to view their

attendance records in real-time.

Internal Marks Submission Tab

The internal mark submission feature allows students to submit their marks for internal

assessment, and teachers to access and manage the marks of their students. The app should

have a user-friendly interface that allows students and teachers to upload and view the marks

easily.

Result Section

The result section of the app allows students to view their examination results. The app

should retrieve the result data from the database and display it in an organized way, such as

using a table or graph or graph/chart, and provide options for students to filter and search

their results based on their courses, semesters, and other relevant criteria.

Notice Page

The notice page displays important notices from the institution, such as exam schedules, fee

payment deadlines, and other relevant information. The app should allow users to view the

notices in a list or grid format, and provide options to filter and search the notices based on

their categories and tags.

Navigation

The app should have a smooth navigation system that allows users to move from one page

to another seamlessly. This can include a navigation drawer, a bottom navigation bar, or

any other intuitive navigation system. The app should also have a consistent visual design

and layout across all the screens, using appropriate typography, colours, and icons.

Overall, the IOE mobile app using Flutter can offer several features that can help students

39

and teachers stay up-to-date with their attendance, marks, results, events, and notices. The

app should have a simple and intuitive interface that allows users to navigate through the

app easily, and provide options to customize the app settings and preferences based on their

needs and preferences. By leveraging the power of Flutter, the IOE mobile app can provide

a seamless and engaging user experience to its users.

The output of our project can be visualized as below:

40

7.1 Teacher App

7.1.1 Home

Figure 7.1: Android Homepage

41

7.1.2 Attendance module

Figure 7.2: Attendance page

42

Figure 7.3: Adding a new course

43

Figure 7.4: Taking attendance

44

Figure 7.5: Viewing Attendance

45

7.1.3 Internal Marks Submission module

Figure 7.6: Internal Marks Submission Page

46

Figure 7.7: Assign Marks

47

7.2 Student App

7.2.1 Attendance Page

Figure 7.8: Student Home

48

7.2.2 Attendance Page

Figure 7.9: Attendance Page

49

7.2.3 Internal Marks Page

Figure 7.10: Internal Marks Page

50

7.2.4 Results Page

Figure 7.11: Results Page

51

7.2.5 Notice

Figure 7.12: Notice Page

52

7.2.6 Result Page

7.3 Admin Dashboard

Figure 7.13: Android Dashboard

53

8. Conclusion

In conclusion, the IOE App project has been developed and implemented to provide the

Institute of Engineering with an integrated application through which all the activities of

the IOE can be tracked. It helps students to get easy access to academic information and

resources. The present scenario of IOE using various outsourcing applications with separate

databases can be easily tackled with this application. The app has a user-friendly interface,

which allows students to quickly find important information, such as schedules, exam results,

course materials, and announcements. Moreover, the app can reduce the workload of the

administrative staff by automating routine tasks. Moving forward, the project team can

enhance the app by incorporating additional features based on user feedback and emerging

technology trends. The IOE App project is a valuable contribution to the IOE community,

and it has the potential to significantly improve the experience of stakeholders of IOE by

providing them with easy access to essential information.

54

9. Limitations and Future enhancement

In the course of implementing our project, several limitations have been observed, which, if

addressed, could further improve the system’s performance and functionality. The limitations

include:

Firstly, the communication between microservices is currently in synchronous mode. The

introduction of event-based communication could enhance the system’s efficiency and re-

sponsiveness.

Secondly, a pipeline from attendance to internal marks and result publication could be built

to automate the process of result generation and make it more streamlined.

Thirdly, the implementation of identity and access management could significantly improve

the system’s authorization and flexibility. Additionally, introducing campus-level admin

access for admin accounts could provide better control over the system.

Finally, the implementation of artificial intelligence for tasks such as login using an ID card

for students could improve the system’s usability and security.

It is important to note that these limitations and future enhancements are not exhaustive and

that there may be other potential areas of improvement that could be explored. However,

addressing the above-mentioned limitations would enhance the functionality and overall per-

formance of the system. Therefore, in future works, we recommend further exploring these

areas to improve the system’s overall quality and user experience.

55

References

[1] Kewal Shah, Harsh Sinha, and Payal Mishra. Analysis of cross-platform mobile app devel-

opment tools. In 2019 IEEE 5th International Conference for Convergence in Technology

(I2CT), pages 1–7. IEEE, 2019.

[2] Sam Newman. Building microservices. ” O’Reilly Media, Inc.”, 2021.

[3] Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for scalability,

agility and reliability in e-commerce. In 2017 IEEE International Conference on Software

Architecture Workshops (ICSAW), pages 243–246. IEEE, 2017.

[4] Kathmandu university - apps on google play.

[5] Samy S Abu-Naser, Mahmoud Abu Ghosh, and Rasha R Atallah. Mobile cloud comput-

ing: Academic services for palestinian higher education institutions (mccas. 2015.

[6] Jose George Dias de Souza and Daniel Scherer. Gestation: A microservice architecture

for a prenatal care application. In 2021 IEEE 45th Annual Computers, Software, and

Applications Conference (COMPSAC), pages 683–687. IEEE, 2021.

[7] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia. Breaking

symmetric cryptosystems using quantum period finding. 2016.

[8] Lov K. Grover. A fast quantum mechanical algorithm for database search, 1996.

56

