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Abstract

One of the long-standing ambitions of the modern science and engineering has been to cre-

ate a non-human entity that manifests human-like intelligence and behavior. One step to

achieving the goal is executing a communication just like the humans do. Human speech

is often accompanied by a variety of gestures which add rich non-verbal information to the

message the speaker is trying to convey. Gestures add clarity to the intention and emotions

of the speaker and enhance the speech by adding visual cues alongside audio signal. Our

project aims to synthesize co-speech gestures by learning from individual speaker’s style. We

follow a data-driven approach instead of rule-based approach as the audio-gesture relation

is poorly captured by a rule-based system due to issues like asynchrony and multi-modality.

As is the current trend, we train the modal from in-the-wild videos embedded with audio

instead of relying on the motion capture of subjects in lab for video annotation. For es-

tablishing the ground truth for the data set of video frames, we rely on an automatic pose

detection system. Although the ground truth signal tends to be not as accurate as manually

annotated frames, the approach relieves us of time and labor expense. We perform the cross-

modal translation from monologue speech of a single speaker to their hand and arm motion

based on the learning of temporal correlation between the sequence of pose and audio sample.

Keywords: Gesture synthesis, Supervised learning, Human Computer Interaction, Multi-

modality, Pose Estimation, Temporal Context

v



Contents

Page of Approval ii

Copyright iii

Acknowledgements iv

Abstract v

Contents vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5

2.1 Conversational gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Co-speech gesture synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Evaluation metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Theoretical Background 7

3.1 Multimodal machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 MFCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Body-25 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.2 COCO Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Dense Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



3.6 Time Distributed Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Methodology 19

4.1 Problem Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Data Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.1 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.2 MFCC extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 System Design 25

6 Implementation 26

6.1 BaseLine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Tested Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Implemented Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Model Performance 31

7.1 Performance of GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Performance of NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.3 Performance of RNN: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Results 34

8.1 Baseline Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.2 GAN Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.3 RNN Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9 Limitation 36

10 Conclusion 37

11 Future Possibilities 38

12 Timeline 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



List of Figures

3.1 MFCC calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Body-25 Keypoints Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Hand Keypoints Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Architecture of GAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Architecture of Dense layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Architecture of Time Distributed Layer. . . . . . . . . . . . . . . . . . . . . 16

3.7 Architecture of GRU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Input image to the Openpose Model. . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Visualization of extracted keypoints from Openpose Model. . . . . . . . . . . 22

4.3 Visualization of MFCC features of a random sample without temporal context. 23

4.4 Visualization of MFCC features with temporal context. . . . . . . . . . . . . 24

5.1 System Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Generator architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Discriminator architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Model Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1 Loss curve of GAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Loss curve of NN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.3 Loss curve of RNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.1 Output of baseline model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.2 Output of GAN model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12.1 Gantt Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



List of Abbreviations

HCI Human Computer Interaction

PCK Percent of Correct Keypoints

FTD Frechet Template Distance

ECA Embedded Conversational Agent

GAN Generative Adversial Network

VAE Variational Auto Encoder

MFCC Mel-Frequency Cepstral Coefficients

GRU Gated Recurrent Unit

RNN Recurrent Neural Network

ANN Artificial Neural Network

NN Neural Network

LSTM Long-short Term Memory

BPTT Backpropagation Through Time

CNN Convolution Neural Network

CVC Computer Vision Center

COCO Common Objects in Context

MAP Mean Average Position

ix



1. Introduction

1.1 Background

Science today is obsessed with the idea of making a replica of a human that has human-

like intelligence, behavior and morphology. There are many researches and projects being

conducted to make the idea a reality. Some of these include lip-syncing, face swapping, pose-

retargeting at which we achieved success to a major extent. However, the task of co-speech

gesture synthesis is a challenging one as it must deal with the challenge of understanding

the inherent human cognition.

When we talk, our voice is most often accompanied by hand and arm gestures thus aug-

menting our audio channel of communication with a visual channel. Although most of the

information a speaker is trying to convey is provided by the speech, the visual information

delivered by the gestures about the emotion, attitude and intention of the speaker cannot be

disregarded. Gestures allow individuals to communicate a variety of feelings and thoughts,

from contempt and hostility to approval and affection, often together with body language in

addition to words when they speak. Gesticulation and speech work independently of each

other but join to provide emphasis and meaning.

The tendency to gesture in humans in communication can be attributed to evolution. In an-

cient times, when no verbal media of communication had originated, archaic humans solely

relied on the visual medium for communicating. Decoding gestures from fellow humans was

vital to survival when hunting in bands or being attacked by some wild beast. When the

languages developed, although humans no longer needed gesticulation for communication,

the evolutionary hysteresis caused the upcoming generations to still use gestures as a mech-

anism of communication.

In other words, Gesture synthesis refers to the generation of natural and expressive body

movements or gestures by computational methods. It involves developing algorithms and

models that can synthesize realistic and meaningful gestures that can be used for a variety of

applications, such as animation, virtual reality, robotics, and human-computer interaction.

Gesture synthesis can be achieved using different techniques, including rule-based methods,

data-driven methods, and hybrid approaches. Rule-based methods involve defining a set of

rules or constraints that govern the generation of gestures based on certain parameters, such

as the context or the intended meaning. Data-driven methods, on the other hand, involve

training models on large datasets of motion capture data or videos of human movements to
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learn patterns and generate new gestures.

Recent advances in machine learning and deep learning have led to the development of so-

phisticated models for gesture synthesis, such as generative adversarial networks (GANs),

variational auto-encoders (VAEs), and recurrent neural networks (RNNs). These models can

generate highly realistic and natural-looking gestures that capture the nuances and intrica-

cies of human movements.

Applications of gesture synthesis include virtual characters and avatars that can commu-

nicate with humans using gestures, robots that can perform tasks more naturally and effi-

ciently, and interactive systems that can recognize and respond to human gestures in real

time. Gesture synthesis has the potential to revolutionize the way we interact with machines

and create more immersive and engaging experiences for users.

1.2 Motivation

Our decision to focus on gesture synthesis for our major project was driven by several key

factors. Firstly, gesture synthesis has the potential to create more immersive and interactive

experiences in fields such as virtual reality and gaming, enabling users to control virtual

environments and objects using natural and expressive body movements. Secondly, gesture

synthesis can automate the animation process, reducing the time and effort required to create

complex and nuanced movements for characters or other virtual objects, leading to increased

efficiency. Thirdly, gesture synthesis can improve human-robot interaction by enabling more

effective and natural communication through intuitive body language. Fourthly, gesture syn-

thesis can enhance accessibility for individuals with physical disabilities, enabling them to

control virtual environments, communicate more effectively, or participate in physical ther-

apy and rehabilitation. Fifthly, gesture synthesis can also improve sign language recognition

systems, allowing for more natural and expressive communication between individuals who

use sign language and those who do not. Lastly, gesture synthesis can be used to study

human movement and biomechanics, providing insights into the mechanics of natural and

expressive body movements. While the motivations for gesture synthesis vary depending

on the specific application, they are generally focused on improving the efficiency, effective-

ness, and naturalness of human-computer or human-robot interactions, as well as enhancing

accessibility and understanding of human movement.

1.3 Problem statements

Gesture synthesis is the process of generating natural and expressive body movements, such

as hand gestures or full-body poses, that can be used in a variety of applications, such

as virtual reality, animation, and robotics. This involves designing algorithms that can

2



automatically generate these movements, either based on input from a human operator

or from an artificial intelligence system. However, gesture synthesis poses a number of

challenges that must be overcome to achieve this goal. One of the primary challenges is

creating natural and expressive body movements that can convey a range of emotions and

meanings. Additionally, generating movements that are physically plausible and realistic,

while taking into account the biomechanical constraints of the human body, is another major

challenge. Gesture synthesis often requires a large amount of training data, which can be

difficult and expensive to obtain, and the quality of the data can impact the quality of the

synthesized gestures. There is also a wide range of variation in how different people perform

the same gestures, which makes it challenging to generalize across individuals. Furthermore,

gesture synthesis often involves modeling complex interactions between different body parts,

which can be computationally intensive. Generating coordinated and well-timed movements

is another challenge, particularly when trying to synchronize movements with other actions

or events. Finally, gestures can take many different forms, including hand movements,

facial expressions, and body posture, making it challenging to synthesize a wide range of

multimodal gestures in a coherent and natural way. These challenges highlight the need

for sophisticated algorithms that can handle complex and nuanced movements while taking

into account the physical and cognitive constraints of the human body. Overall, the goal

of gesture synthesis is to create algorithms that can generate natural and expressive body

movements in a way that is both efficient and effective, and that can be easily integrated

into a variety of applications.

1.4 Objectives

The main objectives of our project are as follows:

• Create an end-to-end model that maps audio to a gesture sequence

• Learn individual styles of gesticulation

• Extend the work in data-driven approach to gesture synthesis

1.5 Scope

Gesture synthesis has a wide range of potential applications in various fields. One such

application is in virtual reality, where gesture synthesis can be used to create more immersive

experiences by allowing users to interact with virtual objects and environments using natural

and expressive body movements. In animation, gesture synthesis can automate the animation

process, freeing up animators to focus on more creative aspects of the animation. Gesture

synthesis can also be used in robotics to program robots to perform complex movements,

3



which enables them to interact more effectively with humans in various settings. In gaming,

gesture synthesis can create more interactive experiences by allowing players to control game

characters using natural and intuitive body movements. In healthcare, gesture synthesis can

be used in physical therapy and rehabilitation to help patients regain movement and strength

in injured limbs or to monitor and track treatment progress. Finally, gesture synthesis can be

used to develop more natural and expressive sign language recognition systems, allowing deaf

or hard-of-hearing individuals to communicate more effectively with others. These examples

illustrate the vast potential of gesture synthesis across different fields and industries.
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2. Literature Review

2.1 Conversational gestures

There are basically four kinds of categorizations of co-speech gestures: iconic gestures,

metaphorical gestures, beat gestures, and deictic gestures. Iconic and metaphorical ges-

tures both carry meaning and are used to visually enrich our communication[1]. An iconic

gesture can be an up and down movement to indicate, for example, the action of slicing

a tomato. Instead, a metaphoric gesture can involve an empty palm hand that is used to

symbolize ‘presenting a problem’. In other words, metaphoric gestures have an arbitrary

relation to the concept they communicate, and iconic gestures have a form that is visually

related to the concept being communicated. Iconic and metaphoric gestures not only differ

in terms of content and presentation but are also processed differently in the brain. Beat

gestures do not carry semantic meaning, and they are often used to emphasize the rhythm

of speech. Beat gestures have been shown to both facilitate speech and word recall and are

the most frequent type of gesture. Finally, deictic gestures are used to point out elements

of interest or to communicate directions. Not only do they enhance spoken communication,

they also facilitate learning.

Regarding the origin of speech and gesture in reference to one another, it is suggested that

gesture and speech originate from a common source and thus should co-occur in time accord-

ing to well-defined rules[1]. Although, it is also found in some research that gesture starts

before the corresponding utterance[2]. Others even contend that there is still uncertainty

regarding the temporal links between speech and gesture and that a gesture may come prior

to, following, or in the middle of an utterance.

2.2 Co-speech gesture synthesis

Synthesizing co-speech gestures has been an active topic in robotics, graphics, and vision. A

recent trend in this task is using in-the-wild videos rather than those collected in lab scenarios

with sensors, extending the variety of the synthesized gestures. The ambiguity of the job,

however, results in the under-fitting of the data and lack of expressiveness of the outputs,

which is a hurdle in the path of genuine co-speech gesture production[3]. Although Ginosar et

al.[3] implemented adversarial learning to improve gesture quality, the model still significantly

relies on the regression loss to generate synchronized motions with the audio, resulting in a

deterministic, monotonous outcome. By enclosing each gesture in a shared style space across
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subjects and accomplishing style transfer or preservation by changing the style embedding,

it is found that it is possible to untangle the style and content of gestures[4]. With only

one typical gesture for each subject, the styles are specified separately for each subject. The

probabilistic model MoGlow, based on normalizing flows [5], is introduced by Alexanderson

et al. [6] to represent the mapping from gestures to Gaussian distributions conditional

on the input audio. This model can accurately represent the one-to-many mapping by

sampling latent vectors from Gaussian distributions during inference. The normalizing flows

model [5] only enables linear operations, which restricts the model’s expressiveness. With

template vector learning, our model eliminates the ambiguity of one-to-many mapping and

achieves diverse generations by sampling the template vector during inference. A more

recent approach by Qian et al. [7] relieves the ambiguity of one-to-many mapping template

vector learning and accomplishes diverse generation by sampling the template vector when

inferencing.

2.3 Evaluation metric

The regression loss (L1) has been found to be used the most for the evaluation of the accuracy

of the synthesized gestures [3] [8]. L1 Loss Function is used to minimize the error which is the

sum of the all the absolute differences between the true value and the predicted value. There

are works done in this regard using the PCK where, if a predicted keypoint is within max(h,

w) pixels of the ground truth keypoint, where ‘h’ and ‘w’ are the height and breadth of the

person bounding box, respectively, then it is considered to be correct. MG (Mo-Glow) system

without style control, has found to be used where the main metrics found to be used are MG-

H (hand height control), MG-V (velocity control), MG-R (gesture radius control) and MG-S

(gesture symmetry control) [6]. Basically, most of the methods that have used quantitative

evaluation metrics, have used a baseline model to compare with the synthesized model and

checked for the correctness using fundamentally the aforementioned techniques. Although

few qualitative methods have also been used they are not that signigicant in determining

the success of the synthesization. Different variations of Frechet distance, particularly FTD,

have also been used as an evaluation metric in similar works as variety is discouraged when

a generated gesture sequence’s distance from reality is measured directly [7].
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3. Theoretical Background

3.1 Multimodal machine learning

Multimodal machine learning is a subfield of artificial intelligence and machine learning that

focuses on developing algorithms and models that can analyze and interpret data from mul-

tiple modalities, such as text, images, video, audio, and sensor data. The goal of multimodal

machine learning is to combine information from different modalities to create a more com-

plete and accurate representation of the data. For example, combining text and image data

to better understand the content of a social media post, or using audio and sensor data

to detect anomalies in industrial equipment. Multimodal machine learning algorithms can

be used for a wide range of applications, including natural language processing, computer

vision, speech recognition, and robotics. One of the main challenges in multimodal machine

learning is how to effectively integrate information from different modalities, as each modal-

ity may have different features, formats, and levels of noise.

Recent advances in deep learning, neural networks, and reinforcement learning have greatly

improved the performance of multimodal machine learning models, making it possible to

achieve state-of-the-art results in many tasks. As the amount and variety of multimodal

data continues to grow, multimodal machine learning is expected to play an increasingly

important role in solving complex problems and developing more advanced AI systems. It

involves the following major challenges[9]:

1. Representation: A first fundamental challenge is learning how to represent and sum-

marize multimodal data in a way that exploits the complementarity and redundancy

of multiple modalities. The heterogeneity of multimodal data makes it challenging to

construct such representations. For example, language is often symbolic while audio

and visual modalities will be represented as signals.

2. Translation: A second challenge addresses how to translate (map) data from one modal-

ity to another. Not only is the data heterogeneous, but the relationship between modal-

ities is often open-ended or subjective. For example, there exist a number of correct

ways to describe an image and and one perfect translation may not exist.

3. Alignment: A third challenge is to identify the direct relations between (sub)elements

from two or more different modalities. For example, we may want to align the steps
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in a recipe to a video showing the dish being made. To tackle this challenge, we need

to measure similarity between different modalities and deal with possible long-range

dependencies and ambiguities.

4. Fusion: A fourth challenge is to join information from two or more modalities to

perform a prediction. For example, for audio-visual speech recognition, the visual

description of the lip motion is fused with the speech signal to predict spoken words.

The information coming from different modalities may have varying predictive power

and noise topology, with possibly missing data in at least one of the modalities.

5. Co-learning: A fifth challenge is to transfer knowledge between modalities, their repre-

sentation, and their predictive models. This is exemplified by algorithms of co-training,

conceptual grounding, and zero shot learning. Co-learning explores how knowledge

learning from one modality can help a computational model trained on a different

modality. This challenge is particularly relevant when one of the modalities has lim-

ited resources (e.g., annotated data).

3.2 MFCC

The Mel-Frequency Cepstral Coefficients (MFCCs) is a commonly used feature extraction

technique in the field of speech recognition and signal processing. MFCCs are based on the

human auditory system and are used to represent the spectral characteristics of a speech

signal.

The Mel scale is a perceptual scale of pitches arranged in such a way that the distance be-

tween each pitch is perceived as equal by the human ear. MFCCs are based on the Mel scale,

which maps the frequency range of a speech signal onto a non-linear frequency scale. The

Mel filterbank is a set of overlapping triangular filters that are used to extract the spectral

characteristics of a speech signal. Each filterbank is designed to capture the energy of a

specific frequency range in the Mel-scale.

After the speech signal has been filtered through the Mel-filterbank, the resulting spectral

energies are compressed using a type of transform called the Discrete Cosine Transform

(DCT). The DCT reduces the dimensionality of the feature vector and decorrelates the fil-

terbank energies.

The final output of the MFCC extraction process is a vector of MFCCs, which are the am-

plitudes of the DCT coefficients. MFCCs represent the spectral envelope of a speech signal

and are commonly used as features for speech recognition systems.

In summary, MFCCs are a feature extraction technique that captures the spectral charac-

teristics of a speech signal using a Mel-filterbank and DCT. MFCCs are commonly used as
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features for speech recognition systems because they are effective in capturing the spectral

envelope of a speech signal, which contains important information for identifying phonemes

and words.

Figure 3.1: MFCC calculation.
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3.3 Pose Estimation

Pose estimation refers to the process of estimating the position and orientation of objects in

images or videos. In computer vision, pose estimation is often used to track human move-

ment in applications such as motion capture, activity recognition, and virtual reality.

The first step in pose estimation is to detect salient features in the image or video. These

features could be corners, edges, or other distinctive points that can be used to identify the

object and track its movement over time.

Once the features have been detected, the next step is to match them across multiple frames

in the video sequence. This is typically done by computing descriptors for each feature,

such as SIFT, SURF, or ORB, and matching them based on their similarity. To estimate

the 3D pose of an object from a 2D image, it is necessary to know the camera parameters,

such as its intrinsic and extrinsic parameters. Intrinsic parameters include the focal length,

principal point, and distortion coefficients, while extrinsic parameters describe the position

and orientation of the camera relative to the scene.

There are several approaches to estimating the pose of an object, including model-based

methods, feature-based methods, and deep learning-based methods. Model-based methods

use a 3D model of the object to match against the image features, while feature-based meth-

ods estimate the pose directly from the image features. Deep learning-based methods use

convolutional neural networks (CNNs) to directly regress the 2D or 3D pose of the object

from the image.

The accuracy of pose estimation algorithms can be evaluated using various metrics, such

as mean squared error, average angular error, or percentage of correct keypoints. Ground

truth data, such as motion capture data or manual annotations, can be used to evaluate the

performance of the algorithm.

Therefore, pose estimation involves detecting and matching salient features in images or

videos, calibrating the camera parameters, and estimating the 3D pose of the object using

various algorithms. Pose estimation is a fundamental problem in computer vision with many

applications in areas such as robotics, augmented reality, and human-computer interaction.

3.3.1 Body-25 Model

Body-25 is a 2D human pose estimation model that can detect 25 key points on the human

body, including joints, head, neck, shoulders, elbows, wrists, hips, knees, and ankles. The

model is based on a convolutional neural network (CNN) architecture and is trained on a

large dataset of labeled images.
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The Body-25 model was introduced by researchers at the Computer Vision Center (CVC) at

the Universitat Autònoma de Barcelona. It is an extension of the original Body-17 model,

which can detect 17 key points in the human body.

The Body-25 model consists of several convolutional layers followed by max-pooling layers

and fully connected layers. The input to the model is a grayscale image of a person, and the

output is a set of 25 2D coordinates representing the location of the key points on the body.

The 25 key points detected by the Body-25 model are:

Head top, Neck, Right shoulder, Right elbow, Right wrist, Left shoulder, Left wrist, Right

hip, Right knee, Right ankle, Left hip, Left knee, Left ankle, Chest, Right ear, Left ear,

Right eye, Left eye, Right heel, Left heel, Right big toe, Left big toe, Right small toe, Left

small toe.

Body keypoints are given as a sequence of 25 points and each of left hand keypoints and

right hand keypoints are given as a sequence of 21 keypoints. The indexing of keypoints is

based on a specific format. The body keypoints are in BODY 25 format. BODY 25 format

is shown below:
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Figure 3.2: Body-25 Keypoints Format.
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Left hand keypoints and right hand keypoints are not specified in the BODY-25 format.

The format for these is shown in the figure below:

Figure 3.3: Hand Keypoints Format.

The Body-25 model has achieved state-of-the-art performance on several benchmarks, includ-

ing the MPII Human Pose dataset and the COCO dataset. It is widely used in applications

such as human-computer interaction, action recognition, and sports analytics.

3.3.2 COCO Model

The COCO model refers to a set of deep learning models that have been trained on the

Common Objects in Context (COCO) dataset for object detection, segmentation, and other

related tasks. The COCO dataset is a large-scale object detection, segmentation, and cap-

tioning dataset that contains over 330,000 images with more than 2.5 million object instances
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labeled across 80 different object categories.

The COCO model is typically based on a CNN architecture, such as Faster R-CNN, Mask

R-CNN, or YOLO. These models are trained to detect and classify objects in images, and

in the case of Mask R-CNN, to also perform instance segmentation by predicting a binary

mask for each detected object.

The COCO model is widely used in computer vision applications, such as autonomous driv-

ing, surveillance, and robotics. It has achieved state-of-the-art performance on several bench-

marks, including the COCO dataset itself and the PASCAL VOC dataset.

The COCO model is also used as a backbone for many other object detection models that

are fine-tuned on specific datasets or tasks. For example, the RetinaNet model uses a COCO

pre-trained backbone and is fine-tuned on the PASCAL VOC dataset for object detection.

The COCO model has become a standard benchmark for evaluating object detection and

segmentation models in computer vision research. The performance of the models is typically

evaluated using mean average precision (MAP) and other related metrics on the COCO test

set.

3.4 GAN

Figure 3.4: Architecture of GAN.

GAN stands for Generative Adversarial Network, which is a type of deep learning algo-

rithm used in artificial intelligence and machine learning. GANs are composed of two neural

networks, a generator and a discriminator, that work together to generate realistic outputs.
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The generator generates synthetic data, such as images or sounds, by trying to mimic real

data from a training set. The discriminator, on the other hand, tries to differentiate between

the synthetic data and the real data. During training, the generator and discriminator play

a game where the generator tries to fool the discriminator into thinking its synthetic data

is real, while the discriminator tries to correctly identify the synthetic data as fake. Over

time, the generator becomes better at generating realistic data, and the discriminator be-

comes better at identifying synthetic data, resulting in the production of more realistic and

high-quality outputs.

3.5 Dense Layer

A dense layer is a fundamental building block of neural networks that is responsible for

processing input data and producing output predictions. It consists of a set of neurons that

are fully connected to the previous layer, allowing it to learn complex representations of the

input data. The term ”dense” refers to the fact that each neuron in the layer is connected to

every neuron in the previous layer. During training, the weights and biases of the neurons

in the dense layer are adjusted through back propagation, allowing the network to improve

its predictions over time. The output of a dense layer can be further processed by additional

layers or passed to the output layer for final predictions.

Figure 3.5: Architecture of Dense layer.

A dense layer, also known as a fully connected layer, is one of the most commonly used

layer types in deep learning. It is typically used in the middle of a neural network, between
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the input layer and output layer, to process and transform the input data.

Each neuron in a dense layer is connected to every neuron in the previous layer, which

means that the layer has a large number of parameters that can be learned during training.

This allows the dense layer to capture complex relationships between the input and output,

making it well-suited for a wide range of tasks, such as image classification, natural language

processing, and speech recognition.

3.6 Time Distributed Layer

The TimeDistributed layer in deep learning is a powerful tool for handling sequential data,

such as videos, audio recordings, and time-series data. This layer applies a given neural

network model to each time step of the input sequence independently, allowing the model to

capture temporal dependencies and patterns in the data. In other words, it takes the output

of one time step and feeds it as input to the next time step, thus enabling the model to learn

from past events and predict future ones. The TimeDistributed layer is particularly useful in

tasks such as speech recognition, sentiment analysis, and action recognition in videos, where

understanding the temporal relationships between events is critical for accurate predictions.

The TimeDistributed layer is a type of layer in recurrent neural networks (RNNs) and is

Figure 3.6: Architecture of Time Distributed Layer.

often used in combination with other layers, such as LSTM or GRU layers. It is designed to
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handle sequential data with a fixed number of time steps, which can vary depending on the

length of the input sequence.

3.7 GRU

Gated Recurrent Unit (GRU) is a type of RNN that was introduced in 2014 by Cho et al.

GRU is similar to LSTM networks and is designed to address the vanishing gradient problem

in RNNs.

RNNs are a type of neural network that is designed to handle sequential data such as time-

series, natural language, and speech signals. In RNNs, each neuron receives an input and a

hidden state from the previous time-step, and produces an output and a new hidden state

that is passed to the next time-step.

Figure 3.7: Architecture of GRU.

GRU is a variant of RNNs that has two gates, a reset gate and an update gate. The reset

gate controls how much of the previous hidden state is combined with the current input,

while the update gate controls how much of the new hidden state is kept and how much is

updated.
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Mathematically, the GRU update equations are as follows:

Reset gate : r t = sigmoid(W r ∗ [h t− 1, x t]) (3.1)

Update gate : z t = sigmoid(W z ∗ [h t− 1, x t]) (3.2)

Candidate hidden state : h′ t = tanh(W h ∗ [rt ∗ h t− 1, x t]) (3.3)

Final hidden state : h t = (1− z t) ∗ h t− 1 + z t ∗ h′ t (3.4)

where h t is the hidden state at time t, x t is the input at time t, r t is the reset gate, z t

is the update gate, h’ t is the candidate hidden state, and W r, W z, and W h are weight

matrices that are learned during training. The reset gate allows the network to selectively

forget or remember parts of the previous hidden state, while the update gate allows the

network to update the hidden state based on the current input. The candidate hidden state

is then computed by combining the previous hidden state and the current input using the

reset gate, and this candidate hidden state is combined with the previous hidden state using

the update gate to produce the final hidden state.

GRUs are computationally efficient and can be trained using BPTT. They have been shown

to outperform traditional RNNs on a variety of sequence modeling tasks, including speech

recognition, language modeling, and machine translation.

In summary, GRU is a type of RNN that uses two gates, a reset gate and an update gate,

to selectively forget or remember parts of the previous hidden state and update the hidden

state based on the current input. GRUs have several advantages over traditional RNNs and

have been shown to be effective on a variety of sequence modeling tasks.
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4. Methodology

4.1 Problem Framing

The problem of audio-to-gesture translation is an example of multi-modal machine learning.

The term ”multimodal learning” refers to a sort of machine learning in which the model

is trained to comprehend and process various types of input data, such as text, images,

and audio. These various data kinds reflect the various modalities, or ways in which it is

perceived. In general terms, a modality refers to the way in which something happens or is

experienced. More specifically, it is a problem of cross-modal translation. In our case the

two modalities involved are audio and video and the translation is from speech(audio) to

pose(video). The speaker video containing gesture and corresponding speech of the speaker

is available to us. To construct a machine learning model capable of translating the audio

features to a sequence of gestures in accordance with the speech is the problem our project

aims to deal with.

4.2 Data Acquisition

We have used the dataset used in [3]. It is a large 144-hour video dataset specifically

tailored to studying speech and gesture of individual speakers in a data-driven fashion. The

dataset contains in-the-wild videos of 10 gesturing speakers that were originally recorded for

television shows and university lectures. It has several hours of video per speaker, so that

each one of the speakers’ gesture style can be modeled individually. The speakers are chosen

from a wide range of topics and gesturing styles. The dataset contains 5 talk show hosts, 3

lecturers and 2 televangelists.

4.3 Data Understanding

The dataset consists of video intervals for ten speakers: ’jon’, ’almaram’, ’angelica’, ’rock’,

’ellen’, ’chemistry’, ’shelly’, ’seth’, ’conan’, and ’oliver’.

We have two csv files available to us: ‘videos links.csv’ and ‘intervals df.csv’.

‘videos links.csv’ file contains all the video links for all the speakers.

Shape: 2710 rows × 3 columns
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Table 4.1: videos links.csv

Column Name Description Type Unique

’speaker’ Name of the Speaker String No

’video fn’ Video’s full name String Yes

’video link’ Link to the video String(URL) Yes

‘intervals df.csv’ file contains all the intervals in the videos included in ‘videos links.csv’

which have clean gesture and speech.

Shape: 59482 rows × 6 columns

Table 4.2: intervals df.csv

Column Name Description Type Unique

’speaker’ Name of the Speaker String No

’video fn’ Video’s full name String Yes

’dataset’ ’train’,’test’, ’dev’ String Enumeration No

’start time’ Start time of the interval Time No

’end time’ End time of the interval Time No

Video links for some of the videos were missing and some were dead links. Such records

were discarded.

4.4 Data Selection

The aim is to learn a gesture style of a specific speaker. So, we need to select a speaker

whose style we intend to generate. We decided to carry this out for Conan O’Brien, an

American television host, comedian, writer, and producer. Conan O’Brien is most known

for his nearly 28 years as the host of late-night talk shows, including Late Night with Co-

nan O’Brien (1993-2009), The Tonight Show with Conan O’Brien (2009–2010), and Conan

(2010–2021) on the cable network TBS. He is an articulate speaker with immaculate ges-

ture. The tables corresponding to the two csv files were natural joined on the ‘video fn’ and

selection was performed for the rows which had ‘speaker’ as ‘conan’. The query is captured

by the relational-algebra expression below:

Πvideo fn,video link,interval id,dataset,start time,end time(σspeaker=′conan′(videos links

▷◁videos links.video fn=interval df.video fn interval df)) (4.1)
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This provides all the videos only of Conan and the clean intervals in a single table. It

is saved to a separate csv file of its own and we need to concern ourselves only to this file

which is related to Conan.

There are total of 3959 intervals from 326 videos of Conan. The sum of duration of all

intervals is over 15 hours. With a sample rate of 20 Hz, this corresponds to over 1 million

frames.

Of the 326 videos, we decided to train only on 100 of the videos. The total number of

intervals resulted from 100 videos is 1008. The total duration of the intervals in the 100

videos is over 4 hours with nearly 3 hundred thousand frames when sampled at the sampling

frequency of 20 Hz.

4.5 Feature Extraction

Feature extraction refers to the process of transforming raw data into numerical features

that can be processed while preserving the information in the original data set. The input

features are the MFCCs extracted from the audio. The output features are the sequence of

poses extracted from the video. MFCCs and poses are extracted for all the intervals in the

selected videos. This is done for a fixed regular duration to match a sample frequency of 20

Hz. This sample frequency is a design choice.

4.5.1 Pose Estimation

Before performing the pose estimation, it is necessary to download all the videos in the

dataset. We used the Python API for OpenPose to estimate pose for the frames in the

intervals in dataset, sampled at 20 Hz rate. The body keypoints, left hand key points,

and right hand keypoints are extracted while the face keypoints are not considered. Body

keypoints are given as a sequence of 25 points and each of left hand keypoints and right

hand keypoints are given as a sequence of 21 keypoints. The indexing of keypoints is based

on a specific format.

Below is a sample body pose in some random frame estimated by the OpenPose model. We

have not shown all the predicted keypoints. Few of them have not been plotted intentionally.
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Figure 4.1: Input image to the Openpose Model.

Figure 4.2: Visualization of extracted keypoints from Openpose Model.
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4.5.2 MFCC extraction

Before calculating the MFCC features, we extracted the audio from the video with the

sampling rate of 44100 Hz. To create a one-to-one correspondence between MFCCs and

pose, we chose the hop length for calculation as 441 and the default windows length of 512.

Then every five other MFCCs were averaged to match to one pose. We implemented this

task using Python’s Librosa library.

Below is a visualization MFCCs of some random sample in the dataset.

Figure 4.3: Visualization of MFCC features of a random sample without temporal context.
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However, to make generated gestures more plausible, temporal context i.e. using 20

samples before the current sample and 20 samples after the current sample, was found to

be more reasonable. As a result, instead of using MFCCs features of current sample only,

we used MFCCs features based on temporal context. Therefore, MFCC feature format of

(41,13) was used for every training frame. Below is the visualization of MFCCs features with

temporal context.

Figure 4.4: Visualization of MFCC features with temporal context.
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5. System Design

Figure 5.1: System Design.

The design for our system is shown in the block diagram above. We have video URLs

available to us to begin with. The videos are downloaded to the local machine using tools

like youtube-dl. In the next stage, audio and video content of the file are separated for

carrying out separate processing on them. The extracted audio is processed to calculate the

corresponding Mel Frequency Cepstral Coefficients (MFCCs). This is done using a Python

library called Librosa. A pose estimation model is employed to estimate the pose sequence

in the videos. Specifically, the pose estimation model used in the project is OpenPose. For

training our models, audio MFCCs are input signals and their corresponding pose sequences

are the ground truth signals.
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6. Implementation

6.1 BaseLine Model

For the baseline model, we can have a model that always predicts a median pose regardless

of the input audio. This is feasible if the speaker spends most of their time in a rest position.

Besides, we can also have a model that predicts pose randomly. This method however is

not quite plausible. We decided to go with a neural network that predicts pose without the

temporal context in the input. The pose of some specific time is predicted using only the

MFCCs at that specific time.

6.2 Tested Model

We carried out the implementation on a Generative Adversarial Network (GAN). We tried

different configurations of GAN. However, we did not manage to lower the loss. So, we

decided to try other alternatives. Also, we tried a neural network without the use of temporal

context in the input data. This model also did not seem to perform well. So, we discarded

this model too.
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Figure 6.1: Generator architecture.
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Figure 6.2: Discriminator architecture.
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6.3 Implemented Model

We experimented on different models like simple ANN, GAN and RNN with GRU as a

recurrent unit. Of all, we found RNN to be the best performing for our dataset. The

architecture of the model is summarized in the table below:
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Figure 6.3: Model Architecture.
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7. Model Performance

We carried out experiments with NN, GAN and RNN. Based on the model performances,

we decided to choose RNN over NN and GAN. The performance evaluation of each of the

models is described below:

7.1 Performance of GAN

Figure 7.1: Loss curve of GAN.

The generator loss and discriminator loss values for the GAN did not seem to decrease

over several epochs. Due to this reason, the loss curves for GAN is not lowering towards the

right as shown above.
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7.2 Performance of NN

Figure 7.2: Loss curve of NN.

Although the training loss decreased sharply when training the baseline model, the model

was unable to generalize to the validation dataset. The model was predicting the mean

position for entire input samples.
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7.3 Performance of RNN:

Baseline model with further modification was used as our implemented model. We shuffled

the dataset provided to the model which significantly improved the results. We also replaced

the middle time distributed dense layer with simple dense layer. Also, the learning rate was

set to 0.0003, epochs to 50 and batch size to 512. In this model, we used a temporal size of

41, with 20 MFCCs previous of current time, one MFCCs at current time and 20 MFCCs

from the future. This is purely a design choice and can be adjusted to be larger or smaller.

This is done because the pose at some specific time depends not only on speech at present

but also on the utterance in the past as well as what the speaker is about to say. Below is

the loss curve for the model when training for 50 epochs.

Figure 7.3: Loss curve of RNN.

Both the training loss and validation loss decrease significantly as the epoch progresses as

shown in the loss curve. This is the model we used for making predictions.
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8. Results

The final trained model is used to make the predictions of pose from the input audio. While

qualitative analysis of the predicted gesture is subjective, the performance metric on a test

data was convincing. Also, the predicted poses when put together to create a motion, it was

plausible.

From the uploaded audio, first the MFCCs are extracted and the features are fed as in-

put to the trained network which generates a sequence of keypoints. The keypoints are

plotted in sequential order to match a certain frame rate.

8.1 Baseline Output

Figure 8.1: Output of baseline model.

Baseline model was converging to mean position of the training keypoints. So the model

was generating same keypoints result for every input sample.

8.2 GAN Output

Figure 8.2: Output of GAN model.
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Gan model was not able to understand hand structure which resulted in unclear hand

keypoints.

8.3 RNN Output

The below figure is a sequence of predicted poses for 5 frames. The final deliverable allows

user to upload a clip of speech. From the uploaded clip, a gesture sequence is predicted.

The gesture sequence and the audio clip are played simultaneously. This video clip is our

project’s result.
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9. Limitation

Audio can provide some information about the speaker’s emotional state and tone of voice,

but it is not always accurate. Limited expressiveness, noise and interference, and the quality

of the audio used for gesture synthesis can all have an impact on the accuracy and effective-

ness of the process. Cultural and linguistic differences can also make it difficult to accurately

synthesize gestures using audio, as what may be considered a common gesture in one culture

may not be used or recognized in another culture.
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10. Conclusion

The project successfully implemented a gesture synthesis system that generates realistic and

diverse gestures based on input parameters such as mfcc. The system was evaluated using

various metrics such as naturalness, expressiveness, and coherence, and showed promising

results compared to existing methods.

The project identified some limitations and challenges of the current approach, such as the

need for more training data or more sophisticated modeling techniques to handle complex

gestures. The major hinderance we faced during the course of this project was to extract

keypoints from training videos using OpenPose.

Future work could include expanding the scope of the system to generate gestures in different

domains or for different applications, or integrating the system with other modalities such

as speech or facial expressions to create more immersive and natural interactions.
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11. Future Possibilities

There is still much room for future extensions and improvements to our project. Here are

some potential areas for future extension of gesture synthesis:

• Improved Naturalness:

One of the significant limitations of gesture synthesis is the lack of naturalness in

the generated gestures. Researchers could explore ways to improve the naturalness

of generated gestures by incorporating more sophisticated algorithms and machine

learning techniques. For instance, developing algorithms that can better capture subtle

differences in body language, facial expressions, and other nonverbal cues could enhance

the naturalness of the generated movements.

• Better Data Collection:

Gesture synthesis algorithms require significant amounts of data to learn and generate

realistic movements. However, collecting and curating this data can be time-consuming

and challenging. Researchers could explore ways to improve data collection methods,

such as developing new sensors and cameras that can capture more precise movement

data. They could also work on creating larger and more diverse datasets to improve

the accuracy and range of the generated movements.

• Cross-Cultural Gestures:

Gestures can vary significantly across cultures, and gesture synthesis algorithms may

not be able to account for these differences. Researchers could explore ways to de-

velop cross-cultural gesture synthesis algorithms that can generate movements that

are appropriate and relevant across different cultures. This could include creating ges-

ture synthesis algorithms that can learn and adapt to different cultural contexts and

nuances.

• Multimodal Gestures:

Gestures are not just limited to body movements; they can also include facial ex-

pressions, vocalizations, and other nonverbal cues. Researchers could explore ways to

develop multimodal gesture synthesis algorithms that can generate movements across

different modalities. This could enhance the naturalness of the generated movements

and make them more human-like.
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• Personalized Gestures:

Gestures are highly personalized and can vary significantly between individuals. Re-

searchers could explore ways to develop personalized gesture synthesis algorithms that

can generate movements that are specific to an individual’s body shape, size, and

movement patterns. This could lead to more natural and authentic movements that

are unique to each individual.
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12. Timeline

Figure 12.1: Gantt Chart.
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