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ABSTRACT

The work is focused on human thermal comfort, which depends not only on physical,

biological, and environmental heat transfer mechanisms but also on clothing param-

eters. In excessively hot or cold climatic conditions, the physiological imbalance and

overall human thermal comfort can be maintained through the proper management of

well-designed protective clothing. We have developed both linear and nonlinear math-

ematical models for heat transfer in the human body. For the linear case, Pennes’

model is extended incorporating clothing thermal conductivity, the thickness of cloth,

and clothing area factors. The extended model attempted to use the interface con-

dition between the human body and cloth. The usual Robin’s boundary condition is

modified by incorporating effective clothing area factor and convective heat transfer

coefficient as two important factors. Where the effective clothing area factor in-

cludes clothing insulation, air insulation, and clothing area factor. The convective

heat transfer coefficient includes air velocity and the walking speed of a person. The

interface between two non-homogeneous materials and the radiation-induced nonlin-

earity in Robin’s boundary condition makes the problem difficult and intricate to

solve analytically even in a simple geometry except for the steady state case. As

such, we investigated the thermal responses of clothing insulation, air velocity and

walking speed, metabolic and sweating effect, using numerical methods to the ex-

tended transient model and in varying spatial dimensions in cylindrical coordinates:

one-dimensional radial, two-dimensional axisymmetric, and three-dimensional. First,

we solved the one-dimensional model in radial direction numerically employing an

implicit finite difference method. Solvability, consistency, stability, and convergence

of the numerical scheme are established. Numerical simulation results exhibited that

the light garment system would be comfortable and easy for sweat drainage. To ad-

dress more realistic problems of finding both radial and longitudinal variations of the

temperature profile in human limbs, we extended our model to two-dimensional ax-

isymmetric case with time-dependent metabolism, temperature-dependent sweating,

and clothing effects during physical exercise. In the radial direction, the numerical

simulation results agree with the one-dimensional model whereas in the longitudinal

direction there seem no remarkable variations observed which were also expected as

the ratio of radial and axial length scales are significantly different. Finally, we further

extended the model to three-dimension with temperature-dependent thermophysical

parameters to address non-symmetric temperature variations in the abnormal tis-

sue. The simulated results using Finite Volume (FV) energy conservation techniques
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showed the nonlinear behavior of temperature in an abnormal tissue with an ini-

tial high temperature. Numerical tests with different lateral boundary conditions

exhibit some non-symmetric variations in temperature in the cross-section. Various

simulations for the axisymmetric model in (r, z)-direction were performed with zero

flux at the inner, bottom, and top of the limb and Robin’s boundary condition at

the lateral surface to reveal an axially symmetric temperature profile. While imple-

menting Robin’s boundary condition at the top and the lateral surface of the limb,

non-symmetric temperature variation in the skin surface and the top of the longitudi-

nal cross-sectional slice is obtained. Additionally, numerical experiments have shown

that various coefficients of temperature-dependent parameters, thermal conductivity

K(T ), metabolic heat generation qm(T ), and blood perfusion wb(T ), are directly pro-

portional to the temperature of abnormal tissue.

Keywords: Extended Pennes’ model, Interface condition, Modified Robin’s condi-

tion, Effective clothing area factor, Convective heat transfer coefficient, Temperature-

dependent parameters.
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CHAPTER 1

INTRODUCTION

The principles of heat transfer are the fundamental properties widely used in many

fields of science and engineering. Biological and therapeutic aspects of the linear and

nonlinear bioheat transfer equations have led the subject into one of the most diverse

and emerging areas of mathematics in the twenty-first century. Many problems re-

lated to heat and mass transfer such as blood flow within the vessels, heat transfer

through clothes, and their mathematical treatment for linear and nonlinear situations

governed by a partial differential equation with appropriate initial and boundary con-

ditions is combined and performed for a realistic numerical solution to the bioheat

transfer models.

The study of heat transfer in the human body is one of the deserving areas of research

for biomedical researchers, environmental scientists, and clothing designers as well.

A human body with a complex vascular structure has multiple features of physical

and physiological behaviors. Different environmental conditions as well as the body’s

personal heat transfer mechanisms are responsible for keeping the person in a comfort

zone with an equilibrium core temperature, 37◦C, within a narrow range (±0.6◦C).

Additionally, clothing protects the body from extreme climatic conditions and phys-

ical exercise helps maintain the person physically fit and healthy [38, 74]. Besides,

some climatic factors such as air temperature, air movement, humidity in the air, and

radiant heat are the basic components of the thermal environment. Thermal comfort

not only relies upon how an individual responds to those climatic factors but also

is affected by medication, the health condition of a person, the quantity of alcohol

used, the level of physical activity and metabolic power of the person, and the types

of clothes worn by an individual. It is a tedious to comprise all these factors and

develop a new model for thermal comfort.

Clothes, the mediator between the human body and the environment, act as a cor-
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nerstone in the study of human thermal comfort in the field of heat transfer in living

organs. The presence of clothing, indeed, makes a vital difference in that system and

the thermal comfort of living entities. Therefore, the thermal performance of clothing

for human comfort has appeared as the center of research excellence in current years

emphasizing the extension of existing Pennes’ bioheat transfer model in the human

body including the protective layer.

Because of the interface between two non-homogeneous matters-skin surface and

cloth-having different physical and physiological behaviors, the complex radiation-

induced nonlinearity in Robin’s boundary condition makes not only the problem more

challenging but also rear to handle it analytically. The numerical technique is a key

building block for many current and upcoming computational efforts since it is the

primary approach for solving partial differential equations of complexity in biological

systems. These computational approaches may, therefore, be the best ways to avoid

such complexity, and still have a great interest in the field of clothing science, tex-

tile industries, biological research as well as hyperthermia treatment of cancer in the

medical field.

1.1 Motivation and Context

Human body physiology is the study of the functioning of the organisms in the human

body. The two most crucial physiological components for human thermoregulation

are blood flow and metabolism. Perfusion is the process of delivery of arterial and

venous blood to a capillary in intricate vascular anatomy the biological tissue espe-

cially, human body which is crucial for the transportation of oxygen and nutrients

throughout all organs and tissues. The volumetric blood flow per tissue with enough

capillaries varies widely and is dependent on processes such as mass transfer to sustain

metabolism, systemic blood pressure regulation, and heat transfer for thermoregula-

tion. Depending on the temperature of the nearby tissues, blood can either be a

sink or a source. Blood is typically sent from the heart to the body’s remaining

warm parts throughout the winter. Additionally, blood flow can help keep the body’s

internal organs warmer and cooler areas at a comfortable temperature. Individual

differences exist in metabolism, which varies in response to physical activities such

as cleaning, running, swimming, etc. In addition, as the body’s metabolism speeds

up during exercise, the temperature rises as activity duration lengthens. In such a

situation, the person’s metabolism speeds up, raising the tissue temperature close to

the core. Due to the vapor pressure of the water on the skin and the air, sweating
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starts, and the temperature at the skin’s surface drops after a while. Moreover, in

unusual circumstances, external heating devices might reduce the effectiveness of the

treatment by causing cold tracks in the tissue during hyperthermia therapy for cancer

or tumors at a point of increased tissue temperature of nearly 45◦C. It is necessary

to keep in mind that the primary goals of the study of thermal comfort are: firstly,

physiological and physical heat transfer mechanism the body uses to maintain a stable

internal temperature, and secondly, an equally important component is to learn how

to safeguard the body against harmful surroundings and minor skin-surface wounds.

The consequence of wearing suitable clothing can be a significant impact on over-

all thermal comfort, keeping a person fully satisfied with the environment together

with his/her equilibrium core temperature. Pennes’ developed the experimental-based

model incorporating the blood perfusion term in heat balance equation for the nude

human forearm [93]. As the human being always appears with clothing, without in-

cluding the effect of clothes does not provide an accurate result for perfecting human

thermal comfort. The abnormal condition of a person due to the fluctuation of body

temperature in extreme cold or hot climatic conditions can only be overcome by wear-

ing sufficient clothing in winter and only light cloth in summer. When a person feels

fully comfortable in his/her workplace, he/she can properly devote and concentrate

to work and is able to do better performance.

This research work focuses not only on the extension of the model by adding the

clothing parameters in the existing Pennes’ model but also redefines the usual Robin’s

boundary condition by incorporating the insulation of air, insulation of cloth, clothing

area factors as well as time-dependent metabolism, temperature-dependent sweating

and the clothing parameters taken into consideration, which are lacking contexts

in the models previously developed by Pennes’ and other researchers in literatures

[3, 8, 52, 64, 77, 78, 99, 102, 109, 122]. On the other hand, the presence of clothing is

important for preserving thermal comfort at the equilibrium between body heat gen-

eration and heat loss. Clothing acts as an insulator and a medium for heat transfer

from the body to the world outside of us. It is the interface between the surface of the

skin and the environment. The main determinants of thermal comfort can be divided

into two categories: human characteristics and environmental influences.

The change in metabolic rate because of several other factors, including age, sex,

and health, is what determines thermal comfort. In addition, clothing is a significant

aspect that influences thermal comfort. Small adjustments in the layers of clothing

can make a significant difference in thermal comfort. Wearing a sweater and socks for

3



example, during the winter months improves comfort, whereas wearing light clothing

during the summer months improves comfort at work. The environmental elements

that contribute to thermal comfort by maintaining a comfortable environment in the

room include air temperature, moving air, radiant temperature, and relative humidity

correspondingly. Depending on the fabric’s structure, the radiation heat flux passes

through the fabric entirely at a particular depth, whereas the convection phenomenon

of the heat source does not. Suitable management of personal factors along with these

environmental influences provide better comfort at home, workplace (business, office,

study rooms etc).

The capacity of analyzing various types of bioheat transfer processes has been pur-

suaded with the development of advanced computational techniques for complex

mathematical models. Though many researchers [59, 125] utilized modern computing

power solving, complicated mathematical problems, and studies focusing on thermal

comfort and clothing system are not sufficient. Because of the adjustment which de-

pends upon the energy exchange with body-environment, physiological, emotional,

cultural, and social aspects of people makes cumbersome to evaluate thermal com-

fort. It is customarilly important to have a deep understanding of heat transfer in the

human body and the effect of clothing properties on the perceptivity of thermoreg-

ulatory and physiological conditions of a person with full satisfaction to the thermal

environment.

Clothing is a key factor that plays a crucial role in the thermal capacity of the body to

protect from external injury and to adapt to this thermal environment. So, a thermal

model with protective clothing is needed to predict the temperature in a biological

tissue together with a clothing layer. Despite the fact that numerous experiments

on heat transfer related to clothing and fabric materials have been conducted in a

well-equipped lab, the main internal physiological factor, the blood perfusion terms;

has yet to be integrated into these models [28, 30, 46, 47, 48, 49, 54, 55, 85]. There-

fore, a novel approach to minimize a remarkable gap in Pennes’ model as well as

clothing thermal comfort models, is the mathematical model for heat transport in

the human body in conjunction with protective layer. Furthermore, the proposed

two-dimensional axisymmetric bioheat transfer model in the human anatomic system

with the basic physiological properties of the tissue material as well as time-dependent

metabolism, temperature-dependent sweating, and the clothing parameters have to

be taken into account. Finally, three-dimensional nonlinear (temperature-dependent

thermophysical parameter) model with volumetric external heating source has been
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develoed through which the temperature profiles in an abnormal tissue organ is ob-

served in radial, r-direction, axial, z-derection, axisymmetric, (r, z)-direction, and

angular symmetric, (r, θ)-direction. These models may be applicable in aerospace,

textile industries, metrology, clinical, and biomedical fields.

1.2 Heat Transfer in Human Body

The area of biomedical science that examines the discoveries of the rate of energy

transmission in the human body is known as heat transfer. Due to temperature dif-

ferences, heat and energy can be transferred from one system to another. It moves

from a medium with a higher temperature to one with a lower temperature until both

have the same temperature. Humans have a core temperature of 37◦C. This core

temperature if rises up to ≥ 42◦C and drop down to ≤ 27◦C, might cause thermal

damage. So, it is important to maintain a body temperature closely 37◦C (± 0.6◦C).

In addition to using clothing, the body continuously releases heat through metabolic

processes, convection, radiation, respiration, and evaporation [38, 42, 78, 69].

The presence of a temperature difference, the basic requirement of heat transfer mech-

anism of normal clothed body can be seen in Figure 1.1.

Figure 1.1: Heat transfer mechanisms [Havenith] [46].
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1.2.1 Thermoregulation and Human Physiology

The discipline of human body physiology researches the operations of the human body

organism. It involves the complicated heat transfer process brought on various mutu-

ally reinforcing phenomena, including the respiratory system, the thermoregulatory

system, and the sense systems: the eye, receptor for sight, the ear, receptor for sound,

and the skin, receptor for the sense. The human body has an extremely intelligent

thermoregulatory system that uses thermo-receptors, which activate in response to

too-hot or too-cold weather, to maintain a heat-balanced condition with a normal

body core temperature [42]. In extreme climatic conditions, two cases might occur,

1. In an extremely hot atmosphere, the core temperature will be maintained at

37◦C if enough heat is transferred from the body to the environment through

perspiration. When the body’s temperature rises above the thermo-neutral zone,

which is around 38◦C in a hot climate [42], the body emits more heat into the

atmosphere. Most of the mechanisms only result in perspiration, which may

be comfortably managed provided sweat can be adequately drained. Further-

more, blood vessels expand when the body’s core temperature rises, increasing

the volume of blood that reaches the skin and promoting heat loss from the

body. The body will produce more heat for heat liberation and an increase in

core temperature that results in hyperthermia (beyond 41◦C) if the heat loss is

insufficient.

2. In a very cold environment, if the body’s heat is continuously released, the core

temperature falls, and as a consequence it causes hypothermia in which heat

loss continues and the temperature steadily declines until it reaches ≤ 32◦C .

If the temperature falls below ≤ 27◦C , the person loses consciousness, and the

heart stops beating [42]. People can, however, be brought back to awareness by

rewarming, even from the shallow core temperature if they can prepare properly

by wrapping themselves in a suitable warm cloth.

The human thermoregulatory system is depicted in Figure 1.2

6



Figure 1.2: Schemetic view of human thermoregulatory system [51].

1.2.2 Human Thermal Comfort

Thermal refers to a person’s experience of heat or cold, and comfort refers to how

he/she is feeling. Having a comfortable body temperature is a subjective phenomenon

known as human thermal comfort. According to ASHRAE (American Society of

Heating, Refrigerating, and Air Conditioning Engineering) [49], human comfort is

the mental state that communicates a person’s sense of happiness with their thermal

surroundings. A person’s comfort is not only affected by his/her physical state, psy-

chological state, and environmental impact, but also by his/her physiological response

to the weather and the amount of liquid moisture present. Another important issue

is how well the body regulates its temperature [46].

Every day, humans must deal with a variety of indoor, outdoor, and occasionally

unusual circumstances. These performance-based settings determine the thermally

comfortable zone. Workers in factories and other places of employment may get un-
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comfortable or ill as a result of poor workplace conditions. The occurrence of thermal

damage, a rare condition, is brought on by the body’s core temperature fluctuating

significantly above and below the normal range. If it rises, we refer to it as a hot

injury, and if it falls, we refer to it as a cold injury. Figure 1.3 depicts a schematic

view of the human thermal pleasant zone (hot and cold injury).

Figure 1.3: Human comfort zone.

1.2.3 Heat Transfer in Clothing System

Clothes serve as a shield between the body and the environment, protecting the body

from both hot and cold conditions. The body seeks to release much heat in a cooler

environment, but clothing also slows heat loss and keeps the body in a comfortable

position, as seen in Figure 1.3. The overall heat transmission and human thermal

comfort are influenced by a number of individual characteristics, including metabolism

and clothing, as well as environmental elements, including radiant temperature, air

temperature, relative humidity, and long and short wave solar-radiation absorption.

1.2.4 Clothing Insulation

The rate of heat exchange between the layers of trapped air and the environment is

known as thermal insulation whose measurement is taken as Clo value. The cloth-

ing thermal insulation is determined by fabric structure, types of materials and its
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layers [54, 74]. ASHARE 55, ISO 7730, and ISO (International Organization of Stan-

dardization) 9920 defines and measured the insulation of clothing ensemble using a

static, standing thermal manikin. Clothing heat exchange, however, depends upon

the movement of limb, posture, and moisture accumulation [49, 54]. Clo, the mea-

surement unit, is the thermal insulation of overall clothing worn by a person which

has 0.1 m/s air velocity at air temperature 21◦C and a relative humidity of less than

50%. Among the total heat produced by the metabolic reaction, 24% of heat is lost

through evaporation and respiration. Since

1 met = 50 kcal/m2 hr,

the evaporative and respiratory heat loss = 1 met × 24% = 50 kcal/m2 hr × 0.24 =

12 kcal/m2 hr.

The rest of the energy (50 - 12) kcal/m2 hr = 38 kcal/m2 hr

This remaining is transmitted through the clothing system by conduction, convection,

and radiation. The total insulation IT , the sum of clothing insulation Icl and air

insulation Ia. Here (IT = Icl + Ia) is calculated on the basis of the comfortable skin

temperature 330C as [74, 75]

IT =
(33− 21)◦C

38 kcal/m2hr
= 0.32m2 ◦C(hr/kcal)

With the help of these values together with 1 kcal/hr = 1.163 watt (W),

1 Clo unit is defined as

Icl (Clo) = 0.18 m2 ◦C (hr/kcal ) =
0.18 m2 ◦C

1.163W
= 0.1550 m2 ◦C/W.

Hence,

1 Clo = 0.1550 m2 ◦ C/W.

1.3 Objectives of the Study

1.3.1 General Objectives

• To develop mathematical models for heat transfer through a human body with

and without clothing, and to ascertain the thermal reactions.

• To examine its response in the human thermoregulatory system, the appropriate

linear and nonlinear mathematical models for axisymmetrical bioheat transfer in
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higher dimensions with time-dependent metabolism and temperature-dependent

thermo-physical parameters will be constructed and solved.

1.3.2 Specific Objectives

• To obtain the governing bioheat transfer equation using the cylindrical coordi-

nate system based on the Fick’s law of perfusion and the fundamental principle

of thermodynamics.

• Use the implicit Finite Difference (FD) approach to solve the bioheat transfer

equation for naked and expanded covered systems.

• To implement the extended model’s validity and stability analysis by establish-

ing a lemma and some theorems.

• To solve the axisymmetrical linear model by crank-Nicolson (CN) Scheme and

apply solution for the thermal response during different physical activities.

• To solve the three-dimensional nonlinear model by Finite Volume Method (FVM)

for analyzing temperature distribution in an abnormal tissue in radial, r-direction,

axial, z-direction, axisymmetric, (r, z)-direction, and angular symmetric, (r, θ)-

direction.

1.4 Rationale and Outline of Thesis

The analysis of temperature change and thermal responses in the human body because

of numerous internal and external occurrences, as well as an essential component, the

clothing factor, have been carried out in this research work. One-dimensional steady-

state and transient Pennes’ bioheat transfer models, mathematical models with pro-

tective clothing, axisymmetric models with time-dependent metabolism and sweating

effects, and nonlinear axisymmetric models with temperature-dependent thermophys-

ical parameters are some of the mathematical models that have been studied. In this

thesis, the numerical computation for the linear mathematical models has been carried

out with the finite difference (FD) approach. Another significant and of relevance in

the study of a nonlinear mathematical model is the Finite Volume (FV) approximation

of the transient biobeat transfer equation taking temperature-dependent thermophys-

ical factors into consideration.
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The preliminaries are covered in Chapter 2 along with several heat transmission pro-

cesses in the human body, formulation, and development of a mathematical model.

This chapter also includes the one-dimensional steady-state model with its analytical

solution, the transient Pennes bioheat transfer model with its numerical solution using

the implicit Finite Difference Method (FDM), and the impact of various parameters.

In Chapter 3 we describe the clothing heat transfer mechanism for human thermal

comfort in detail. A mathematical model with a protective clothing layer, the exten-

sion of Pennes’ bioheat model, has been developed. The numerical computation of

the model with the clothing parameters at the boundary as well as the bioheat equa-

tion with protective layer have been separately treated and solved by using FDM.

The special care is taken for heat flow within the human body and clothes, and also

the special treatment is followed for validity and stability of the developed model

by introducing some lemmas and theorems. The impact of various fiber parameters,

including thermal conductivity, density, the specific heat of fiber, clothing insulation,

air insulation, etc., has been examined by numerical simulation.

The study of two dimensional axisymmetrical bioheat transfer model with time- de-

pendent metabolism and sweating effect is the key focus of Chapter 4, where the de-

veloped model and its computational results will have been obtained from the Crank-

Nicolson FD scheme. The sweating and metabolic effect are studied as one of the

applications to the real world problems during the physical activities of a person.

Special attention is given to develop a three-dimensional nonlinear bioheat trans-

fer model in Chapter 5. Such models have verities of applications in physical and

biological problems. So, we developed the models for one-dimensional radial (r-

direction), axial, (z-derection), two-dimensional axisymmetric, ((r, z)-direction), and

angular symmetric,( (r, θ)-direction) from the three-dimensional nonlinear model in

the cylindrical coordinate system. The constant external heating source has also been

applied in the model. The computational resuts have been obtained by using Finite

Volume (FV) method, observe the temperature profile with it’s nonlinear behavior in

an abnormal tissue.

The major outcomes of the research findings, discussions, conclusions, and recom-

mendations are offered in the summary and conclusion, which is in Chapter 6.
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CHAPTER 2

BIOHEAT TRANSFER MODEL

2.1 Introduction

This chapter overviews fundamental ideas of various heat transfer mechanisms. They

are crucial in the development of the heat transfer equation, the standard parabolic

equation. Two different aspects, analytical and numerical approaches, to solve the

initial-value and/or boundary-value issues related to Pennes’ kind of linear bioheat

equation [93], each of which demonstrates a completely different technique of so-

lutions in the cylindrical geometry are particular attention. These approaches are

essential components of the complex heat transport and blood flow processes in a

living tissue, which presents challenges and opportunities for computational advance-

ment. First, the Modified Bessel function is useful for one-dimensional steady-state

problems to achieve the analytical technique in the solution procedure. The bioheat

transfer equation is converted into the form of a Modified Bessel equation, introducing

the dimensionless parameters [77, 123]. For the numerical part, the Finite Difference

(FD) scheme has been used for the one-dimensional transient situation where the dif-

ferential equation is transformed into a system of difference equations for each of the

nodes, and the cylindrical domain is discretized into a finite number of nodes. Before

solving the model, it is, therefore, crucial to establish certain conceptual frameworks

concerning the Bessel function and FD scheme.

Section 2.2 covers the fundamental concepts of heat transport processes, which are

crucial components of the human thermoregulatory system. The exact formulation

of the bioheat transfer equation in a cylindrical coordinate system, which typically

relies upon the heat transfer phenomena in conjunction with the basic idea of ther-

modynamics, is covered in section 2.3. A brief overview of development of bioheat

transfer model is presented in section 2.4. Section 2.5 discusses the one-dimensional
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steady-state model and its analytical solution using the modified Bessel function. The

various finite difference methods for unsteady-state models are described in section

2.6, and section 2.7 provides additional details on the implicit FD scheme for the

solution of one dimensional transient bioheat transfer model with its stability and

validity. The last section, 2.8, includes the conclusion of this chapter.

2.2 Heat Transfer Mechanisms

Heat transfer is energy transfer between two systems brought on by temperature

variations. In thermodynamic system analysis, the quantity of energy transferred as

a system transitions from one equilibrium system to another is of interest.

The science of thermodynamics focuses on calculating the rates of energy transmission,

including heat transfer. Heat is always transported from a hotter medium to a cooler

one, and it stops when the temperatures of the two media are equal. There must

be a temperature difference from a high-temperature medium to a lower-temperature

one for all three heat transfer mechanisms: conduction, convection, and radiation

[16, 50, 86, 97].

2.2.1 Thermal Conduction

Thermal conductivity is the property of a material that has an ability to conduct

heat through it. Conduction, the movement of heat through a stationary solid or

liquid media is one of the important heat transfer mechanisms in a living tissue. Heat

is transferred from a location with a higher temperature to a region with a lower

temperature by the atomic and molecular action known as heat conduction.

In the overall heat exchange system, for nude persons, around 3% of heat transfer

occurs through conduction. Fourier’s Law of Conduction serves as the foundation

for the thermal conduction-related heat transfer, which states that the quantity of

thermal energy transferred by conduction through a medium is inversely proportional

to the length across the medium, cross-sectional area, and temperature difference

[16, 42]. Now,

Rate of heat conduction ∝ (area)(temperature difference)

thickness

Q̇cond = −KA∆T

∆x
, (2.1)
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where
Q̇cond : rate of heat conduction (W)
K : thermal conductivity of the material (W/m ◦C)
A : cross-sectional area (m2)
∆T : temperature difference (◦C)
∆x : thickness or length (m).

The second law of thermodynamics mandates the minus sign in Fourier’s law, as

thermal energy transfer resulting from a thermal gradient must be from a warmer to

a colder zone.

The temperature gradient in the direction normal to the area of the medium is the

limiting case of the equation 2.1 as ∆x→ 0. So

Q̇cond = −KAdT
dx
. (2.2)

The two/three-dimensional form of the Fourier’s law is given as:

Q̇cond = −K∇T . (2.3)

T : tissue temperature (◦ C)
∇T : temperature gradient (◦C/m)
K : constant, for an isotropic medium.

The geometry, thickness, and material of a medium, as well as the temperature dif-

ference across the medium affects the rate of heat conduction through it.

2.2.2 Convection

Convection is a process through which energy causes motion in the molecules of the

fluid. In our context of blood flow in the body, the cell transfers heat due to the sur-

rounding air, and convection also takes place. The process of convection from heated

sources such as human skin is classified as “free convection” and “forced convection”.

Free convection due to density differences in the fluid associated with temperature

gradient and forced convection due to external forces such as wind. Approximately

15% of the body heat is lost through convection [12, 16, 42, 67]. Newton’s law of

cooling states that the rate of a body’s temperature change is directly proportional

to the difference in temperature between the body and its surroundings under the

influence of mild wind, has an impact on this. The rate of convection heat transfer

Q̇conv (W) is given by

Q̇conv ∝ (Ts − T∞) .
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After inserting the proportionality constant hconv, the convective heat transfer coeffi-

cient (W/m2 ◦ C, the rate by Newton’s law of cooling is expressed as

Q̇conv = hconvA (Ts − T∞) , (2.4)

where
A : area of the surface (m2) through which convective heat transfer occurs.
Ts : surface temperature (◦C)
T∞ : ambient temperature (◦C).

Heat transfer coefficient hconv is the experimentally determined parameter, not the

property of the fluid but it depends upon the fluid’s property and other mediums

such as surface geometry, the nature of the fluid motion, air velocity, etc. [15]

Now, the energy balance equation at the surface boundary is

Energy inflow into the system = Energy outflow from the system,

or

(Energy conducted into the boundary) = (Energy convected from the boundary).

−K∂T

∂η

∣∣∣∣∣
at skin surface

= hconvA (Ts − T∞) , (2.5)

where η : outward pointing unit normal vector.

2.2.3 Thermal Radiation

The transmission of heat without any medium or any physical contact between two

objects is called radiation. A primary cause of heat loss is the emission of heat from

a body into the environment as well as the diffusion of heat via the air from a warm

body to comparatively cold objects. When the temperature in the surrounding envi-

ronment drops below the body’s core temperature, thermal radiation from the body’s

surface is produced. The body surface emits thermal radiation in the range of 0.1,m to

100 m wavelengths. The middle infrared spectra range, between 5000 nm and 10000

nm, has strong absorptivity in the human skin, animal fur, and many non-metallic

biological surfaces.

The surface of human body continuously radiates heat in the form of electromagnetic

waves. The rate of emission depending on the absolute temperature of the radiat-

ing surface. This electromagnetic wavelength ranges from 10−10 µm to 1010 µm with
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different rays, such as cosmic rays, γ rays, X rays, ultraviolet, thermal infrared, mi-

crowaves, radio waves, and TV waves, having varying values [4, 16, 125].

The emissivity in the middle infrared is also close to 100% due to high absorptivity in

this region. So, heat loss from the surface of the human body via radiation is virtually

the same as a black body, the perfect emitter and absorber of radiation [16, 66].

Josef Stefan in 1879 determined experimentally and Ludwig Boltzmann verified the-

oretically in 1884 that the radiation energy emitted by a black body per unit area

per unit time is proportional to the fourth power of the absolute temperature and

expressed as

Q̇black body = σAT 4, (2.6)

where
Q̇black body : black body emissive power (W)

σ : proportionality constant (W/m2 K4)
A : area of surface (m2).

This proportionality constant σ is called the Stefan - Boltzmann constant with the

value 5.67× 10−8 (W/m2 K4).

Equation (2.6) is the Stefan-Boltzmann law of thermal radiation, according to which

the net radiant exchange between two surfaces is proportional to the fourh power of

the difference in absolute temperature and is expressed as [98]

Q̇black body = σA
(
T 4

1 − T 4
2

)
. (2.7)

Approximately 60% of body heat is lost through radiation. The amount of radiated

energy between two surfaces at a given wavelength depends upon the emissivity of the

surface. According to same law, the radiation with emissivity of the surface, ε depends

on the material and the structure of the corresponding surface given by [55, 97]

Q̇rad = σεA
(
T 4

1 − T 4
2

)
, (2.8)

where

ε =
Q̇rad

Q̇black body

,

such that {
ε = 1, for black body.

0 < ε < 1, non-black body.
(2.9)
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The radiation from the human body surface increases when it is exposed to the en-

vironment, and the associated energy balance equation for radiation is determined

by

−K∂T

∂η

∣∣∣∣∣
at skin surface

= σεA
(
T 4
s − T 4

∞
)
, (2.10)

where
Ts : surface temperature
T∞ : ambient temperature.

2.2.4 Evaporation

Evaporation is the process of transforming liquid into vapor. The high heat of vapor-

ization is a very efficient cooling process, for attaining thermal equilibrium. Perspi-

ration, a cooling process, can be viewed as a good example of evaporation. Insensible

loss of fluids or perspiration happens at about 600 gm/day. The skin begins to per-

spire insensibly at 37◦C, and as the skin’s temperature rises, so does the amount of

sweat produced. According to Guyton and Hall [42], in a tropical climate, the natural

maximum perspiration rate is at 1.5 Lt/h, but after 4 to 6 weeks of acclimatization,

it can reach 3.5 Lt/h. The liquid’s mass, the surrounding temperature, and the rel-

ative humidity influence the evaporative energy loss during latent heat change. The

difference between the water vapor pressure at the skin, ambient air, and skin wetness

determine the moisture on the skin through evaporative or latent heat loss from the

skin. Approximately 22% of the body’s heat loss occurs due to evaporation. However,

by controlling the rate of sweating, it is possible to prevent the loss of heat caused by

sweat evaporation [42]. The energy which changes a gram of a liquid into the gaseous

state at the boiling point is called the latent heat of vaporization, Lv. For pure water,

Lv = 2.25106J/kg, but sweat, which is 99% water with sodium chloride as solute, is

an electrolyte with Lv = 2.43106 J/kg . The evaporation of 1 gram of sweat removes

580 kcal or 2426 kJ of heat energy [4].

The formula for evaporation cooling rate is expressed as

Q̇evap = ELv, (2.11)

where
Q̇evap : rate of heat exchange due to evaporation (W)
E : rate of sweat evaporation (kg/sec) Lt/h. [1 Lt/h = 0.00020 kg/sec]
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The metabolic rate rises as an individual engages in physical activity. The body’s

metabolism is speeding up, which results in extra heat energy. Energy lost by con-

duction, convection, and radiation is insufficient for maintaining a constant body core

temperature. Evaporation, then, represents the fourth way that the body loses, en-

ergy. The energy balance equation owing to evaporation at a surface boundary is

provided by

−K∂T

∂η

∣∣∣∣∣
at skin surface

= ELv. (2.12)

The surface medium, ambient air humidity, and air convection are the key determi-

nants of the evaporative heat exchange. Before evaporating into the air, evaporated

perspiration may condense in a certain state, delivering heat to the layer of clothing.

This will be covered in detail in Chapter 3.

2.2.5 Combined Heat Exchange Between Skin Surface and Environment

If the body is exposed to the environment and the thickness of the human limb is

thought to be measured from the inner core towards the outer skin surface, then heat

loss between the outer skin surface and environment (boundary) happens as a result

of convection, radiation, and evaporation. If heat is escaping from the body, then

the relationship between the combined heat exchange of the skin’s surface with the

environment is

−K∂T

∂η

∣∣∣∣∣
at skin surface

= hconvA (Ts − T∞) + σεA
(
T 4
s − T 4

∞
)

+ ELv. (2.13)

2.2.6 Blood Perfusion

Another crucial heat transmission technique that uses arteries and veins with counter-

current flow is blood perfusion, the heat exchange process that occurs in a living thing,

the complicated channels inside the tissue. The rate of blood perfusion in various

human tissues varies greatly based on a variety of physiological and environmental

factors as well as physical activities [78, 109]. Based on Fick’s law of perfusion, Harry

Pennes’ first proposed a concise expression for the term ”blood perfusion” in 1948. He

proposed that the rate of heat transfer from blood to tissue per unit volume, Q̇Perfusion

is proportional to the volumetric blood flow per unit time and the difference between

the blood temperature entering small capillaries at an arterial, Ta and the outflow of
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substance via the venule blood, Tv [93].

In order to maintain a comfortable position and a steady body core temperature,

blood circulation plays a crucial function in either dispersing or warming the cooled

area. The perfusion term expressed by Pennes’ for the exchange of thermal energy

between the blood and surrounding tissue is given by

Q̇Perfusion = ρb cb (φa Ta − φv Tv) , (2.14)

where
ρb : blood density
cb : specific heat of blood
φa : arterial blood flow per unit volume
φv : venule blood flow per unit volume.
Ta : arterial temperature
Tv : venulel temperature.

Even though the values of φa, φv, Ta and Tv will be different from each other for the

deeper tissues of various organs of human body, there is hardly any difference between

these values under normal conditions. The tissue temperature T always dominates

the value of Tv.

So, by assuming wb = φa = φv, the perfusion term in equation (2.14) can be rewritten

as

Q̇Perfusion = ρb cbwb (Ta − T ) . (2.15)

2.2.7 Metabolic Heat Generation

The chemical process known as metabolism that occurs when energy is moved between

different chemical molecules in the body, leading to the production of heat energy.

This involves a sequence of chemical adjustments that occur within an organism and

allow for the production, consumption, and elimination of waste. Metabolism includes

two phases: catabolism and anabolism.

• Catabolism

Catabolism, the process of breaking down organic matter, produces heat energy

in the body. By breaking down big complex molecules into smaller ones, the

process makes it easier to absorb molecules and as a consequence, potential en-

ergy changes into kinetic energy. In this process, food consumed is transformed

into various necessary acids that the body requires.
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• Anabolism

Anabolism, the process of forming molecules that are essential for the body’s

functionality, requires energy which is absorbed from the catabolic process. The

anabolic process conversely transforms kinetic energy into potential energy.

Metabolism rises over time as a person’s level of activity increases and varies from

layer to layer, with the bone producing the least amount of heat (0 W/m3) and the

brain producing the greatest heat (13400 W/m3). These metabolic values are related

to body volume and are therefore calculated using the unit W/m3 [48, 78]. The

Thermal Environmental Condition for Human Occupancy, ANSI (American National

Standards Institute) 2017, referenced the Met unit to indicate the rate of transmis-

sion of energy into heat by individual metabolic processes, typically connected to skin

surface area (AD) of a person or body mass. The nude body surface area proposed

by D. DuBois in 1916 [49] is

AD = 0.202 w0.425 h0.725,

where
AD : body surface area (m2)
w : weight (mass) of the body (kg)
h : height of the body (m).

For an average size man, 173 cm and 70 kg, AD = 1.8 m2.

The rate of production of the energy of an average person seated at rest is given by

[49]

1 Met = 50 k cal/m2 hr = 58.2 W/m2.

Monitoring the rate of respiratory oxygen consumption, which varies from roughly

0.2 L/min at rest to ≥ 2 L/min during vigorous exercise, can provide a more precise

estimate of metabolism. The additional resistance that clothing offers to dissipate

heat will be discussed later in Chapter 3, but generally, as metabolic rate increases,

garment surface temperature decreases. The following equation can be used to allow

for the rate of change of heat in tissue medium caused by metabolic heat generation.

Q̇metabolic = qm, (2.16)

where qm is the rate of metabolic heat generation per unit volume.
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2.3 Bioheat Transfer Equation

The foundation for heat transmission is derived from the basic idea of thermodynam-
ics, which is concerned with the equilibrium state of the body’s temperature as a
result of the energy balance. The relationship between heat loss and gain perceived
by the body is represented by the heat balance equation [78].

Heat gain = Heat Loss,

( Net heat input rate ) + (Heat generation rate) = (Change in internal energy) . (2.17)

The diffusion equation due to heat conduction in the system from equations (2.2)

using the cylindrical coordinates (r, θ, z) is given by [16, 86]

ρ c
∂T

∂t
= K

[
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2
+

1

r2

∂2T

∂θ2

]
. (2.18)

ρ : density
c : specific heat(kg).

All of the heat transfer mechanisms described in above section 2.2 are responsible

for the derivation of bioheat transfer equation suggested by Harry Pennes’ in 1948

[93, 119].

The rule of conservation of energy, which explains the diffusion of thermal energy in

a homogeneous medium, is a prerequisite for this heat balancing equation to work.

It can be used to simulate steady-state and unsteady-state diffusion equations, solid

tumour growth, and heat transport. All of the heat transfer mechanisms described

in above section 2.2 are responsible for the derivation of bioheat transfer equation

suggested by Harry Pennes’ in 1948.

Energy conservation with volumetric perfusion and source term within the living tissue

∆V are shown in schematic diagram Figure 2.1.

Figure 2.1: Schematic diagram of (left) energy balance inside small tissue element ∆V

and (right) mechanistic representations of single blood vessel-tissue heat transfer[51].
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The heat balance equation, obtained in (2.18), has been combined by adding energy
conservation term via blood perfusion from equation (2.15) as shown in Figure 2.1,
and metabolic term from equation (2.16) gives rise to the modified form of bioheat
equation in human tissue element ∆V , considered as computational domain Ωr

ρ c
∂T

∂t
= K

[
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂θ2
+
∂2T

∂z2

]
+ ρbwbcb (Ta − T ) + qm. (2.19)

The equation (2.19) with the total amount of heat stored in the body per unit of

time is typically represented as

ρc
∂T

∂t︸ ︷︷ ︸ = ∇ · (K∇T )︸ ︷︷ ︸+ ρbwbcb (Ta − T )︸ ︷︷ ︸+ qm︸︷︷︸ . (2.20)

Heat Storage Diffusion Perfusion Metabolism

The left hand side of this equation (2.20), is the total heat storage; the first and

second terms of the right hand side are, respectively, diffusion and perfusion, whereas

the third term is the rate of metabolic heat production. This well-known bioheat

equation is called Pennes’ bioheat transfer equation and was suggested by Harry

Pennes’ in 1948.

2.4 A Brief Overview of Development in Bioheat Transfer Models

Pennes’ pioneering work from 1948 resulted in the well-known bioheat transfer model

(2.20), which is based on experimental observation and includes the blood perfusion

term for the heat movement within the tissue. He conducted research at Columbia

University’s College of Physicians and Surgeons [93]. His concept of a perfusion heat

source is a realistic approximation of the thermal effect of blood under certain cir-

cumstances. Blood flow in a large vessel is perpendicular to the temperature gradient

of the human tissue element. The bioheat transfer equation was then run successively

by several researchers. Perl in 1962 [94] performed Fick’s law and combined it with

heat conduction and source term. The basic example of the equation for a spherically

symmetric heat source embedded in an infinite tissue medium was finally solved by

Perl after a ten-year period.

Further, Keller and Seiler in 1971 [63], Wulff in 1974 [120], Chen and Holmes in 1980

[18], and Weinbaum and Jiji Model in 1985 [117] modified the Pennes’ model with

major criticism that Pennes’ model was centered on the idea that blood flow is a

non-directional heat source or sink [8].

In 1972, Cooper and Trezek [20] discovered a mathematical solution to the heat dif-

fusion equation for brain tissue that negligibly took blood flow and metabolic heat
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production into account. An instrumental method for the direct measuring of heat

loss from a man in his usual working mode was developed by Hodgson in 1974 [53].

Chao and Yang 1975 [17] applied steady- state and unsteady-state models to the issue

of heat flow in the skin and sub-dermal tissues by keeping all the parameters constant.

Patterson in 1976 [91] made an experimental attempt to ascertain the temperature

profiles in the skin and subcutaneous tissue. These experimental findings only offer

scant details, where a model is created to represent the temperature effects of blood

flow in human skin. This model accurately accounted for the intricate mechanism of

heat convection within the tissue. A paper about the case of intradermal temperature

profiles under transitory thermal conditions was also published in 2018 [40].

Rubinsky and Pegg [99] proposed a mathematical model in 1988 that used the con-

cept of a repeating structure made up of a tissue cylinder with an axial blood artery

to study the freezing processes in biological tissues. The model was examined using

irreversible thermodynamics, and the results of the experiments were contrasted with

the mathematical findings in liver tissue [8]. In the clinical treatment of cancers with

local hyperthermia, the paper further emphasizes thermal dose equivalence and the

level of thermal damage or destruction of tissue. Despite numerous thermophysical

criticism of Pennes’ model and suggestions for alternate bioheat transport models, it

is still commonly utilized because of its flexibility, and computational simplicity.

Saxena launched a study to investigate the problem of heat transfer in the skin and

subcutaneous tissues. The 1980s are responsible for these significant contributions.

In 1981, Saxena and Arya, in 1983 [100], Saxena and Bindra in 1986 [101], Rubinski

and Pegg in 1988 utilized the well-known Pennes’ model, and Saxena and Yadav in

1988 made a significant addition to the field of biomathematics [7, 8, 40]. Later, in

1999 Liu et al. [71] developed a model in a skin structure with a composition of

three layers namely, the epidermis, dermis and subcutaneous layer, to investigate the

behaviour of bioheat equation occurred in the thermal injury in the skin subjected

to instantaneous heating. Throughout a couple of decades, 1990s and 2000s, other

scholars, including Shih et al. in 2005, Rubinsky in 2003, Kai Yue Xinxin Zhang

Fan Yu in 2004, Pardasani and Shakya in 2005, Yildirim in 2005, Zhao Zenifer 2005,

Gurung 2007, Gustavo Gutierrez in 2007, Gurung and Saxena 2009, and Gurung and

saxena 2010 [8, 39, 40, 41, 87, 105, 123, 124] analyzed Pennes’ bioheat equation for

thermal interaction between the tissue and perfused blood with a point heat source of

constant density at the center of the spherical domain using analytical and numerical

methods.
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Lv et al. [79] purposed a new approach to evaluation of the physiological comfort

of biological tissue in correlation with the thermal effect on neuron response and the

thermal environment and investigated thermal sensory responses of human skin un-

der various environmental conditions with major variables are air temperature, air

velocity, metabolism, level of physical activities, and health condition. Effective tem-

perature Te = 25◦C, widely accepted comfort temperature, just passes the comfort

zone, has been selected as the average value of the variables in the Pennes model to

reduce the uncertainty.

Zhao et al. [124] developed new two-level finite difference scheme for one dimensional

Pennes’ bioheat equation assuming the continuity of thermal conductivity across the

domain boundaries of a three-layered skin model and proved that the stability criteria

for the scheme. The constant physiological characteristics utilized in many models,

such as Gurung in 2010, Luitel et al. in 2018, and Wissler in 1998 [38, 77, 119] are not

adequately given for the hyperthermia therapy of cancer because of the non-uniform

inner body structure of humans. Furthermore, Acharya et al. extended the Pennes’

triple-layered skin model up to five-layered model in 2014 and 2015 [3, 4] to eval-

uate sex-related perfusion and metabolic effect in thermoregulation on human male

and female skin, respectively. Gokul et al. [34] studied the transient heat transfer

model in the human eye, where the thermal impacts of blinking are examined with

different blinking rates, lid closures, and lid openings imitate. In 2020, Shrestha et al.

studied a one-dimensional model in cartesian coordinate system with time-dependent

metabolism during different physical activities. Most researchers have concentrated

on using the finite element method [3, 4, 34, 37, 107].

With the abundance of research conducted throughout the 2010s, including techniques

such as applying the fractional derivative and optimal control theory, the applications

of the bioheat transfer model have quickly been expanded for the hyperthermia treat-

ment against cancer [6, 27, 64, 69, 83]. Szasz et al. in 2016 used the bioheat transfer

model to observe the connection between the Specific Absorption Rate (SAR) and

the local temperature [111].

Rashkovska, Iljavz et al., Sharma and Kumar [59, 96, 103] presented the model tak-

ing blood perfusion and metabolic heat generation rate based on Van’t Hoff Q10 [19]

which speculates the reaction rate of perfusion and metabolic heat generation is dou-

bled when the temperature increases by 10◦C. Its effects with sensitivity coefficient

have been used in the literature of Davidson et al., Gupta and Shakya, Selmi et al.

[25, 36, 102] model the temperature change of basal metabolic heat generation rate

24



in the living tissue.

Within these two years period in 2019, Iljaz et al.[59] developed the numerical model-

ing of tumor tissue at the skin with dynamic thermography as the function of tempera-

ture. Zomordikhami et al. in 2020 [126] analyzed the nonlinear bioheat heat transfer

equation in magnetic hyperthermia. They also examined the role of temperature-

dependent blood perfusion in by the delivery of drugs during hyperthermia. Hobiny

et al. in 2020 [52] studied the nonlinear analysis of the bioheat model in living tissues

induced by laser irradiation by using the finite elemant method where they obtained

a numerical solution of the thermal damage of such tissue using the dual phase lag

model. In the same year Farahat [31], Sharma and Kumar [103], and Selmi et al. [102]

developed a model describing the heat transfer in the tumor tissue element by apply-

ing the external heating source during hyperthermia treatment in the different parts

of the human body. Recently, Wust et al. in 2021 [121] critically analyzed the non-

thermal membrane effects of electromagnetic fields and therapeutic applications in

oncology especially in radio frequency (RF) and microwave (EMF). The nonlinearity

of the model is referred to in Chapter 5.

2.5 One Dimensional Steady-State Bioheat Transfer Model

Though the investigators have developed alternative models for describing the perfu-

sion rate and the difference between arterial blood and the local tissue temperature,

no general thermal model suitable for anyone has so far been developed, especially

for the description of convection heat transfer by blood in perfused tissue. The bio-

heat equation of Pennes’ model still has acceptable results to predict the transient

temperature due to its simplicity and flexibility. The governing differential equation

is used as the basic mathematical model (2.20) for the heat transfer suggested by H.

Pennes’ in cylindrical form for radial direction is given by [93]

ρc
∂T

∂t
= K

[
1

r

∂

∂r

(
r
∂T

∂r

)]
+ ρbwbcb(Ta − T ) + qm. (2.21)

This section analyzes the Pennes bioheat equation for a one-dimensional steady-state

case with suitable boundary conditions. To get precise answer, one of the most pow-

erful analytical methods—the modified Bessel function approach—was applied. So,

we introduce the Bessel differential equation and Bessel’s function in the modified

version, along with the boundary conditions. Generally, the solutions of governing

equations provide information on the temperature inside the domain. The informa-

25



tion on the temperature at the boundary ∂Ωr is equally important to get the complete

temperature profile within the tissue element. Basically, three types of boundary con-

ditions, namely Dirichlet (constant), Neumann (flux), and Robin’s (Mixed) boundary

conditions, are encountered in the solution of boundary value problems.

Left Boundary (Inner Boundary)

As the body core temperature is approximately 37◦C, the flux boundary (Neumann

boundary), the inner boundary condition of the living tissue; is taken as

dT

dr

∣∣∣∣∣
r=0

= 0. (2.22)

Right Boundary (Outer Boundary)

As the outermost part of the human body, the skin, is exposed to the nearby the

environment, where the heat flux occurs from the skin surface to environment and

vice versa. So, Robin’s boundary conditions (The mixed boundary condition) due

to convection, radiation together with sweat evaporation guided by Newton’s law of

cooling is given by

−KdT

dr

∣∣∣∣∣
at skin surface

= hconvA (Ts − T∞) + σεA
(
T 4
s − T 4

∞
)

+ ELv, (2.23)

where hconv, E, Lv, and T∞ represent the heat transfer coefficient due to convection

W/m2 ◦C, rate of sweat evaporation kg/sec, Lv is latent heat vaporization J/kg, and

ambient temperature ◦C respectively.

The appearance of the nonlinear radiation factor in the boundary condition causes

the bioheat issue to become nonlinear. For such complexity, we employ the reduced

form of the boundary condition:

−KdT

dr

∣∣∣∣∣
at skin surface

= (Ts − T∞)
[
hconv + σεA (Ts + T∞)

(
T 2
s + T 2

∞
)]

+ ELv

= (hconv + hr) (Ts − T∞) + ELv

= hc (Ts − T∞) + ELv. (2.24)
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where hc is the combined heat transfer coefficient due to convection and radiation

given as

hc = hconv + hr and hr = σεA (Ts + T∞)
(
T 2
s + T 2

∞
)
.

2.5.1 Bessel Differential Equation and Bessel Function

One of the most significant classes of special functions is the Bessel function. By

changing the boundary conditions and applying the appropriate number of zeros and

coefficient values to the Bessel function argument, the system equation can be reduced

to Bessel’s differential or modified equation [72, 123]. Bessel’s equation and Bessel

function occur in connection with many problems of physics and engineering. The

Bessel function is presented as a power series solution to a second-order differential

equation and appears in many diverse scenarios, particularly in situations involving

cylindrical symmetry. So, we use the Bessel function as a tool to get the analytical

solution of the cylinderical form of Pennes’ bioheat equation.

The second order partial differential equation of the form

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − p2

)
y = 0 (2.25)

is called the Bessel’s equation of order p, where p is any real number.

Bessel Function

The solution of equation (2.25) yields Bessel Function of the first kind Jp(x) and

second kind Yp(x) of order p as given by

y(x) = AJp(x) +BYp(x), (2.26)

where A and B are arbitrary constants to be determined from boundary conditions,

Jp(x) =
∞∑
n=0

(−1)n

Γ(n+ 1) Γ(n+ p+ 1)

(x
2

)2n+p

,

Yp(x) =
cos pπJp(x)− J−p(x)

sin pπ
.

2.5.2 Modified Bessel Differential Equation

The general form of the standard Modified Bessel equation is

x2 d
2y

dx2
+ x

dy

dx
−
(
β2x2 + p2

)
y = 0. (2.27)
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Modified Bessel Function

The solution of Modified Bessel equation (2.27) is called Modified Bessel function of

first kind with Ip(βx) and Bessel function of second kind with Kp(βx) of order p which

is given by

y(x) = CIp(βx) +DKp(βx), (2.28)

where C and D are arbitrary constants to be determines from the boundary condi-

tions,

Ip(βx) = i−pJp(iβx),

and

Kp(βx) =
π

2 sin pπ
[I−p(βx)− Ip(βx)] .

2.5.3 Assumptions of the Steady State Model

In the model (2.21), we primarily assume that the computational domain is cylindri-

cally symmetric, and we ignore the angular and axial directions of heat flow. The

thermal conductivity and all other control parameters are considered in Table 2.1.

From the computational viewpoint, nondimensionalization of the equation (2.21) and

the boundary conditions (2.22) and (2.24) are performed by introducing the following

characteristic quantities [77]

r̃ =
r

R
and T̃ =

T− T∞
Ta − T∞

. (2.29)

2.5.4 Analytical Approach for Solution of the Model

One dimensional steady-state model is obtained from equation (2.21) is

d2T

dr2
+

1

r

dT

dr
+M(Ta − T ) + S = 0, (2.30)

where

M =
ρbwbcb
K

and S =
qm
K
.
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Differentiation of equation (2.29) yields

dr̃

dr
=

1

R
dT

dr
=

d

dr̃
[(Ta − T∞) + T∞]

dr̃

dr

= (Ta − T∞)
dT̃

dr̃

1

R
dT

dr
=

(Ta − T∞)

R

dT̃

dr̃

d2T

dr2
=

(Ta − T∞)

R2

d2T̃

dr̃2
(2.31)

Simplification and differentiation of equation (2.30) yields

(Ta − T∞)

R2

d2T̃

dr̃2
+

1

Rr̃

(Ta − T∞)

R

dT̃

dr̃
+M (Ta − T∞)

(
1− T̃

)
+ S = 0

d2T̃

dr̃2
+

1

r̃

dT̃

dr̃
+MR2

(
1− T̃

)
+

R2S

(Ta − T∞)
= 0,

d2T̃

dr̃2
+

1

r̃

dT̃

dr̃
+ M̃

(
1− T̃

)
+ S̃ = 0,

d2T̃

dr̃2
+

1

r̃

dT̃

dr̃
+ M̃

(
1− T̃

)
+ S̃ = 0, (2.32)

where, M̃ = MR2, and S̃ =
R2S

(Ta − T∞)
Equation (2.31) with the use of equation (2.32) and (2.39) reduces to

d2T̃

dr̃2
+

1

r̃

dT̃

dr̃
−MT̃ +

(
M̃ + S̃

)
= 0. (2.33)

Again we replace M̃ + S̃ by U , M̃ by V and (U − V T ) by φ in equation (2.33) to

make calculation easier, then we get

r̃2d
2φ

dr̃2
+ r̃

dφ

dr̃
− V r̃2φ = 0 (2.34)

which is in Modified Bessel’s equation of the form (2.27). The solution of equation

(2.34) for φ is

φ = C1I0(
√
V r̃) + C2K0(

√
V r̃), (2.35)

where C1 and C2 are arbitrary constants to be determined from the boundary condi-

tions.

I0(
√
V r̃) and K0(

√
V r̃) are the Modified Bessel function of first and second kind of
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order 0, respectively.

Differentiating equation (2.35) we get

dφ

dr̃
= C1

√
V I1(
√
V r̃) + C2

√
V K1(

√
V r̃).

Also, we have

T̃ =
U

V
− 1

V
φ,

or
dT̃

dr̃
= − 1

V

dφ

dr̃
,

therefore :
dT̃

dr̃
= − 1

V

[
C1

√
V I1(

√
V r̃) + C2

√
V K1(

√
V r̃)

]
. (2.36)

In terms of dimensionless parameters, the inner boundary condition (2.22) at the

body core is

dT̃

dr̃

∣∣∣∣∣
r̃=0

= 0. (2.37)

The use of dimensionless parameters leads to the outer boundary condition (2.24) as

−KdT̃

dr̃

∣∣∣∣∣
skin surface

= RhcT̃ +
RELv
Ta − T∞

(2.38)

Again introducing the dimensionless parameters,

h̃ =
Rhc
K

and Ñ =
ELvR

K (Ta − T∞)
.

dT̃

dr̃

∣∣∣∣∣
skin surface

= −h̃T̃ − Ñ (2.39)

From equation (2.36) and (2.37) we get,

C2

√
V K1(

√
V r̃) = 0, since K1(

√
V r̃) 6= 0, C2 = 0 gives

dT̃

dr̃
= − 1

V

[
C1

√
V I1(
√
V r̃)

]
.

Right Boundary at skin surface is also given as

dT̃

dr̃
= −h̃T̃ + Ñ at r̃ = R, r̃ = 1,

30



so, −h̃T̃ + Ñ = − 1

V

[
C1

√
V I1(

√
V )
]
,

or, −h̃
[
U

V
− 1

V
φ

]
+ Ñ = − 1

V

[
C1

√
V I1(

√
V )
]
,

therefore, −h̃
[
U

V
− 1

V

(
C1I0(

√
V r̃) + 0.K0(

√
V r̃)

)]
+ Ñ = − 1

V

[
C1

√
V I1(

√
V )
]
.

The calculation yields the value of constant C1 as

C1 =

[
h̃U + ÑV

h̃I0(
√
V ) +

√
V I1(
√
V )

]
.

Afrer calculation the solution for T̃ is

T̃ =
U

V
− 1

V


(
h̃U + ÑV

)
I0(
√
V r̃)

h̃I0(
√
V ) +

√
V I1(

√
V )

 .
Finally a solution for T is

T = (Ta − T∞) T̃ + T∞

= T∞ + (Ta − T∞)

U
V
− 1

V


(
h̃U + ÑV

)
I0(
√
V r̃

h̃I0(
√
V ) +

√
V I1(

√
V )


 . (2.40)

2.5.5 Analytical Results and Discussion

To determine the impact of these variables on the distribution of body temperature,

the values of physical and physiological parameters from various works of literature

are summarized in Table 2.1. Simulated results with and without sweat evaporation

have been exihibted in Figures 2.2 – 2.6 to observe the effect of different atmospheric

temperatures, thermal conductivities, blood perfusion rates, and metabolic heat gen-

eration.

Graphs in Figure 2.2 show the body temperature decreasing from the body core to-

wards the skin surface in the case of lower environmental temperature than the body

core temperature. The graphs in right-hand Figure 2.2 reveal that the body temper-

ature decreases more quickly towards the skin surface than in left-hand Figure 2.2,

this is due to the evaporation effect. On the contrary, in the case of high atmospheric

temperature, the body temperature increases from the core of the body towards the

skin surface, the graphs in right-hand Figure 2.3 show that the temperature increases
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Table 2.1: Thermophysical parameters [77, 78, 123]

Parameters Symbols Values Units
Thermal Conductivities K 0.48 W/m ◦CC

Blood specific heat cb 3850 J/kg ◦CC

Blood density ρb 1000 kg/m3

Blood perfusion rate wb 3 kg/m3 s

Metabolism qm 1085 W/m3

Arterial temperature Ta 37 ◦C

Convectional heat transfer coefficient hc 10.023 W/m2 ◦C
Latent heat of vaporization Lv 2400000 J/kg

Evaporation rate E 0.00004 kg/s
Environmental temperature Ts 28 ◦C

Figure 2.2: Temperature profile along radial direction with T∞ ≤ 37◦C when (left)

evaporation (E = 0) and (right) evaporation (E 6= 0).

more slowly towards the skin surface than in the graphs in left-hand Figure 2.3. This

is due to the presence of sweat, which helps cool down the body temperature. Ac-

cording to left-hand Figure 2.4, the temperature of the body inside rises as thermal

conductivity grows, whereas the temperature of the body’s surface falls rapidly in

right-hand Figure 2.4, due to the impact of sweat evaporation. The graphs in the left

and right halves of Figure 2.6 show that the temperature in the radial direction de-

creases as blood perfusion rises. In the right-hand Figure 2.5 in comparison with the

left-hand Figure 2.6, the temperature decreases sharply as it approaches the body’s

surface because of the evaporation effect and blood perfusion.

As seen in the graphs on the left-hand and right-hand Figure 2.6, the values of

metabolic heat generation have a slight impact on the distribution of body tem-

perature. The change in metabolic heat from 542 W/m3 to 1085 W/m3 make the
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Figure 2.3: Temperature profile along radial direction with T∞ ≤ 37◦C when (left)

evaporation (E = 0) and (right) evaporation (E 6= 0).

Figure 2.4: Temperature profile for different values of thermal conductivities when (left)

evaporation (E = 0) and evaporation (E 6= 0).

small change in body temperature almost 0.1◦C whereas its effect on the skin surface

is negligible. This happens due to the negligible concentration of blood vessels toward

the skin surface. The impact of metabolic heat is essentially nonexistent when sweat

evaporation is present, as seen in the right-hand Figure 2.6.

2.6 One Dimensional Transient Bioheat Transfer Model

The bioheat transfer problem changes into a transient state or unsteady condition

when the temperature T is a function of both the spatial variable r and the time

variable t. Equation (2.21) is the Pennes model’s one-dimensional transient bioheat

equation. We use the Finite Difference (FD) approach in achieving the numerical

solution of Pennes’ one-dimensional model after obtaining an analytical solution for
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Figure 2.5: Temperature profile for different rates of blood perfusion when (left) evapo-

ration (E = 0) and (right) evaporation (E 6= 0).

Figure 2.6: Temperature profile for different metabolic rates when (left) evaporation

(E = 0) and (right) evaporation (E 6= 0).

the steady state case. Rewriting (2.21)

ρc
∂T

∂t
= K

[
1

r

∂

∂r

(
r
∂T

∂r

)]
+ ρbwbcb(Ta − T ) + qm, in Ωr. (2.41)

The primary assumption of this model is that the temperature depends on both the

spatial variable r and the time variable t. The computational domain is cylindrical

symmetry and heat flow always occurs in the radial direction, not only in the steady

state-case but also in various time steps. The thermal conductivity and all other

control parameters are taken into account and tabulated in Table 2.1. The spatial

domain is discretized into a finite collection of points for computing purposes, as

shown in Figure 2.7.
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Figure 2.7: (left) Circular limb of the human body part and (right) spatial discretization
in radial direction.

2.6.1 Numerical Approach for Bioheat Transfer Equation

Even though an analytical approach is a powerful tool for solving a PDE, the ac-

tual problem with complicated geometry cannot be solved using this approach. The

numerical simulation methodology turns into an alternative method for obtaining an

approximation of the answer to such a challenging problem. The two main components

of numerical systems are accuracy and stability. In the subject of biomathematics, a

number of methods have been created and are frequently used to find solutions to such

heterogeneous problems. These methods include the finite difference method (FDM),

the finite element method (FEM), and the finite volume method (FVM). The linear

equation in this thesis work has been solved using FDM, in Chapter 2 – 4, while the

nonlinear bioheat transport equations have been solved using FVM, later in Chapter

5.

2.6.2 Finite Difference Scheme

L. Euler employed the Finite Difference Method (FDM) for the first time in 1768.

Additionally, C. Runge expanded it in the case of two dimensions in 1908. The foun-

dational theoretical article by Courant, Friedrichs, and Lewy from 1928 contain the

solution to the mathematical physics issues using finite differences. Before the 1960s,

numerical applications and theoretical findings regarding the accuracy, stability, and

convergence of finite-difference techniques had been published [10, 22, 86, 90]. In the

field of physics and engineering, the FDM has recently emerged as one of the most

popular methods for the numerical solution of partial differential equations. In the

year 1999, Liu et al. [71] used the FDM to simulate and study the Pennes’ bioheat

equation in a triple-layered skin structure made up of the epidermis, dermis, and sub-
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cutaneous tissues.

Euler’s explicit method, Euler’s implicit method, and Crank-Nicolson (CN) [21] meth-

ods are the three main schemes for the finite difference method. The implicit and CN

schemes are more stable than the explicit system. In numerical computations, the im-

plicit technique has been used to obtain better results. In this method, the derivative

at each grid point is approximated by difference equations at nearby grid points by

discretizing the computational domain into a uniform collection of intervals in each

spatial coordinate. Compared to an explicit scheme, an implicit scheme is uncondi-

tionally more stable. The accuracy of the numerical solution is determined by the

increase in the number of points [10, 22, 70, 81]. Harfash A.J. in 2008 [43] developed

a high accuracy finite difference scheme for a three-dimensional micoscale heat trans-

port equations. They have used a fourth order compact Finite Difference scheme with

Crank-Nicolson technique to prove the unconditional stability and computationally

more accurate than second order in Zhao et.al. [124].

2.6.2.1 Finite Difference Framework

The computing cylindrical domain, (0 ≤ r ≤ L), is discretized into uniform intervals in

each spatial coordinate having total R numbers of steps in r direction to create a grid

in the finite difference framework, where ∆r = L/R. In the center of the computing

area, central finite difference techniques can be applied; however, near the boundaries,

special boundary stencils are required. The employment of a boundary stencil that

is equally accurate as the inner stencil is preferred from the perspective of accuracy.

However, due to stability issues, the boundary stencil’s accuracy is frequently reduced

[45, 81, 90, 116].

The discretized finite number of points in space [0, L] and time [0, N ] are shown in

Figure 2.8. The open squares stand for known initial values, closed squares for known

boundary values, and open circles for interior nodes to be filled by this method.

2.6.2.2 Taylor’s Series Expansion

The key technique of FD approximation is the consequence of Taylor series expansion.

Recalling Taylor series expansion for T(r) about the point r0 is

∂T

∂r
= lim

∆r→0

T (r0 + ∆r)− T (r0)

∆r
. (2.42)
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Figure 2.8: Discretization of mesh in FD scheme with open square for flux boundary,
closed square for Robin’s boundary with known values and open circles for interior nodes

The reasonable approximation of
∂T

∂r
for a sufficiently small but finite ∆r.

Forward Difference Scheme

The Taylor series expansion for T (r) about the point ri (positive r) is given by

T (ri + ∆r) = T (ri) + ∆r
∂T

∂r

∣∣∣∣∣
ri

+
∆r2

2

∂2T

∂r2

∣∣∣∣∣
ri

+
∆r3

3!

∂3T

∂r3

∣∣∣∣∣
ri

+ · · · (2.43)

Backward Difference Scheme

The Taylor series expansion for T (r)about the point ri (negative r) is given by

T (ri −∆r) = T (ri)−∆r
∂T

∂r

∣∣∣∣∣
ri

+
∆r2

2

∂2T

∂r2

∣∣∣∣∣
ri

− ∆r3

3!

∂3T

∂r3

∣∣∣∣∣
ri

+ · · · (2.44)

The basis for developing finite difference approximations for the first derivative
∂T

∂r
,

at r0 can be formed from the rearrangement of these two expressions (2.43) and (2.44)

for forward and backward respectively

∂T

∂r

∣∣∣∣∣
ri

=
T (ri + ∆r)− T (ri)

∆r
− ∆r

2

∂2T

∂r2

∣∣∣∣∣
ri

− ∆r2

3!

∂3T

∂r3

∣∣∣∣∣
ri

+ · · · (2.45)
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∂T

∂r

∣∣∣∣∣
ri

=
T (ri)− T (ri −∆r)

∆r
− ∆r

2

∂2T

∂r2

∣∣∣∣∣
ri

+
∆r2

3!

∂3T

∂r3

∣∣∣∣∣
ri

− · · · (2.46)

higher-order derivatives, as well as nodal values of T , are present in the first derivative

expression, as expected. We cannot achieve our goal by including these higher-order

derivatives in the approximation because they are obviously unknown. Since there

is no better representation, we create an error term to stand in for all higher-order

derivatives in equations (2.45) and (2.46) containing the following terms:

∂T

∂r

∣∣∣∣∣
ri

=
T (r0 + ∆r)− T (r0))

∆r
+O(∆r), (2.47)

∂T

∂r

∣∣∣∣∣
ri

=
T (r0)− T (r0 −∆r))

∆r
+O(∆r), (2.48)

whereO(∆r) is the order of truncation error or discretization error associated with the
finite difference approximation. This represents the difference between the derivative
and its finite difference representation. The infinite Taylor series was terminated after
a few terms in order to get the expression for the derivative that is being approximated,
hence the name ”truncation error.”

O(∆r) =
∂T

∂r

∣∣∣∣∣
ri

− T (ri + ∆r)− T (ri)

∆r
− ∆r

2

∂2T

∂r2

∣∣∣∣∣
ri

− ∆r2

3!

∂3T

∂r3

∣∣∣∣∣
ri

+ · · · (2.49)

Central Difference Scheme

The central difference approximation is obtained by subtracting equation (2.48) from

equation (2.47)

∂T

∂r

∣∣∣∣∣
ri

=
T (r0 + ∆r)− T (r0 −∆r))

2∆r
+O[(∆r)2] (2.50)

where

O[(∆r)2] ≡ (∆r)2

3!

∂3T

∂r3

∣∣∣∣∣
ri

+
(∆r)4

5!

∂5T

∂r5

∣∣∣∣∣
ri

+ · · · (2.51)

The truncation error in central difference approximation approaches zero very faster

than that in the case of backward and forward given in expression (2.51).

After removing the error terms O [(∆r)], from equation (2.47) and (2.48), O
[
(∆r)2]
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from equation (2.50), and the use of Ti ≈ T (ri), Ti+1 ≈ T (ri + ∆r) and Ti−1 ≈
T (ri − ∆r), the approximate solution for the exact solution in the corresponding

equations, respectively yield

∂T

∂r

∣∣∣∣∣
ri

≈ Ti+1 − Ti
∆r

. (2.52)

∂T

∂r

∣∣∣∣∣
ri

≈ Ti − Ti−1

∆r
. (2.53)

∂T

∂r

∣∣∣∣∣
ri

≈ Ti+1 − Ti−1

2∆r
. (2.54)

2.6.2.3 Second Order Central Difference Scheme

We again manipulate the Taylor series expansion about T (r) of the equation (2.50)

to get the central difference approximation for second order derivative.

∂2T

∂r2

∣∣∣∣∣
ri

=
T (r0 + ∆r)− 2T (r0) + T (r0 −∆r)

(∆r)2
+O[(∆r)2], (2.55)

where O[(∆r)2] ≡ (∆r)2

12

∂4T

∂r4

∣∣∣∣∣
ri

+ · · · ,

after removing the error term O
[
(∆r)2], second order in space from equation (2.55),

approximate the derivative as follows:

∂2T

∂r2

∣∣∣∣∣
ri

≈ Ti−1 − 2Ti + Ti+1

(∆r)2.
(2.56)

2.6.3 Different Forms of Finite Difference Scheme for Transient Case

In the transient case, the equation includes both derivatives with respect to time and

space. If R and J be the total number of steps in r and t directions, ∆r = L/R

and ∆t = N/J be the step sizes in r and t directions, respectively. In the limit, the

answer using such a numerical technique converges to the true value with the exact

solution as the mesh spacing (∆r and ∆t) in the cylindrical version of the equation

goes to zero. As mentioned above, there is a brief description of the three distinct

systems in the transient condition with time domain (0 ≤ t ≤ N) and the space

domain (0 ≤ r ≤ L).
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2.6.3.1 Euler’s Explicit Method

The first order time derivative in forward scheme of equation (2.41) is

∂T

∂t
=

[T (r, t+ ∆t)− T (r, t)]

∆t
+O(∆t). (2.57)

With truncation error O(∆t) = ∆t
2
∂T
∂t

. We approximate first order time derivative

with forward scheme at the point at (ri, tn) is given by

∂T

∂t

∣∣∣∣∣
tn,ri

≈ T n+1
i − T ni

∆t
(2.58)

Using central difference approximation for first and second order derivative of T at ri

for all terms at time step tn, we get

∂T

∂r

∣∣∣∣∣
tn,ri

≈
T ni+1 − T ni−1

2∆r
(2.59)

∂2T

∂r2

∣∣∣∣∣
tn,ri

≈
T ni−1 − 2T ni + T ni+1

(∆r)2
. (2.60)

2.6.4 Euler’s Implicit Method

The first order time derivative in backward scheme of equation (2.41) is

∂T

∂t
=

[T (r, t)− T (r, t−∆t)]

∆t
+O(∆t). (2.61)

With truncation error O(∆t) = ∆t
2
∂T
∂t

. We approximate first order time derivative

with forward scheme at the point at (ri, tn+1) is given by

∂T

∂t

∣∣∣∣∣
tn+1,ri

≈ T n+1
i − T ni

∆t
. (2.62)

Using central difference apprroximation of first and second order derivative of T at

ri for all terms at time step tn+1, we get

∂T

∂r

∣∣∣∣∣
tn+1,ri

≈
T n+1
i+1 − T n+1

i−1

2∆r
(2.63)

∂2T

∂r2

∣∣∣∣∣
tn+1,ri

≈
T n+1
i−1 − 2T n+1

i + T n+1
i+1

(∆r)2
. (2.64)
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2.6.5 Crank-Nicolson Scheme

For the purpose of improving the temporal accuracy, two Taylor series expansions

must be employed for the time derivative. Though the Crank-Nicolson scheme is the

combination of Euler’s Explicit method and Euler’s Implicit method, in this method

the governing equation is satisfied neither at time index n in Explicit nor at time

index n+ 1 in Implicit. It is satisfied at n+ 1
2
.

We first think about the time step size ∆t
2

in the Crank-Nicolson approach in an

analogous manner. The time instant t + ∆t
2

is represented by the time index n + 1
2
.

We won’t actually use these time instants or time indices. They are just inserted

to facilitate derivation, and they will be removed in the course of that process. The

extension of Taylor’s series is then carried out in two steps: first, the solution at t+∆t

is extended about the solution at t+ ∆t
2

, followed by the solution at t+ ∆t
2

, and last,

the solution at t. The following is a description of the processes:

Tn+1
i = T

n+ 1
2

i +
∆t

2

∂T

∂t

∣∣∣∣∣
i,n+ 1

2

+
1

2

(
∆t

2

)2 ∂2T

∂t2

∣∣∣∣∣
i,n+ 1

2

+
1

6

(
∆t

2

)3 ∂3T

∂t3

∣∣∣∣∣
i,n+ 1

2

+ · · · (2.65)

T ni = T
n+ 1

2
i − ∆t

2

∂T

∂t

∣∣∣∣∣
i,n+ 1

2

+
1

2

(
∆t

2

)2
∂2T

∂t2

∣∣∣∣∣
i,n+ 1

2

− 1

6

(
∆t

2

)3
∂3T

∂t3

∣∣∣∣∣
i,n+ 1

2

+ · · · (2.66)

Subtracting and rearranging, we get

Tn+1
i − Tni

∆t
=

∂T

∂t
+

(∆t)2

24

∂3T

∂t3

∣∣∣∣∣
i,n+ 1

2

+ · · ·

Tn+1
i − Tni

∆t
=

∂T

∂t
+O

[
(∆t)2

]
. (2.67)

After removing the error term O
[
(∆t)2], second order in time from equation (2.67),

approximate the derivative as follows:

∂T

∂t
≈ T n+1

i − T ni
∆t

. (2.68)

The second derivative term in spacial direction with eliminating the second order
error term can be written in similar manner

∂2T

∂r2
≈

T
n+ 1

2
i−1 − 2T

n+ 1
2

i + T
n+ 1

2
i+1

(∆r)2
. (2.69)
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In reality, the quantities on the right-hand side of (2.69) must be further approxima-
tions because there is no temporal node at n+ 1

2
.

T n+1
i ≈ T ni + T n+1

i

2
− 1

8

∂2T

∂r2
. (2.70)

When the corresponding value from equation (2.70) is substituted into equation
(2.69), we obtain

∂2T

∂r2
≈ 1

2

[
Tni−1 − 2Tni + Tni+1

(∆r)2
+
Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1

(∆r)2

]
. (2.71)

2.7 Finite Difference Scheme for Bioheat Equation

In the one-dimensional spatial domain (0 ≤ r ≤ L) and the time domain (0 ≤ t ≤ N),

we consider the temperature, T as a function of r and t. We then use the FD scheme

to obtain a discrete difference equation that approximates the continuous partial

differential equation for T (r, t) at a finite set of r in Ωr. By increasing the number

of meshes, the numerical solution can be made more accurate. Central difference

methods are employed in the interior of the computational domain, while special

boundary stencils are required at the boundary to make it as accurate as an interior

stencil.

2.7.1 Euler Explicit Method for Bioheat Equation

Using the corresponding difference approximations (2.58), (2.59) and (2.60) into the
bioheat transfer equation (2.41) yields

ρ c
Tn+1
i − Tni

∆t
= K

[
Tni−1 − 2Tni + Tni+1

(∆r)2
+

1

ri

Tni+1 − Tni−1

2∆r

]
+ Wbcb

(
Ta − Tn+1

i

)
+ qm.

Tn+1
i = Tni +

D∆t

(∆r)2

[
Tni−1 − 2Tni + Tni+1 +

∆t

2ri

(
Tni+1 − Tni−1

)]
+M∆t

(
Ta − Tn+1

i

)
+ S∆t, (2.72)

where, D =
K

ρc
, λ =

D∆t

(∆r)2
, and µ = D

∆t

∆r

and M =
Wbcb
ρc

, S =
qm
ρc
, and F = ∆t (MTa + S) .

Tn+1
i =

(
λ− µ

2ri

)
Tni−1 + (1− 2λ−M∆t)Tni +

(
λ+

µ

2ri

)
Tni+1 + F, (2.73)

with i = 1, 2 · · · , R− 1.
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2.7.1.1 Stability Criteria for Explicit Method

The condition for numerically stable of explicit scheme (2.73) is

1− 2λ−M∆t ≥ 0,

or 1 ≥ (2λ+M∆t) ,

or λ ≤ 1−M∆t

2
,

therefore λ ≤ 1−M∆t

2
=

1

2
− M∆t

2
≤ 1

2
.

The explicit scheme is only stable and the approximations in this scheme iterate to

steady-state only for the suitable small time step size which is ≤ 0.5. The explicit

scheme, therefore, is conditionally stable. This criteria is called CFL stability criteria

(after Courant–Friedrichs–Lewy (CFL)).

2.7.2 Euler Implicit Method for Bioheat Equation

Finite difference equation for (2.41) using Implicit scheme, we get as

ρc

∆t

[
Tn+1
i − Tni

]
= K

[
Tn+1
i−1 − 2Tn+1

i + Tn+1
n+1

(∆r)2

]
+
K

ri

[
Tn+1
n+1 − T

n+1
n−1

2∆r

]
+ Wbcb

(
Ta − Tn+1

i

)
+ qm, i = 1, 2 · · · , R− 1, (2.74)

Further simplification yields(
−λ+

µ

2ri

)
Tn+1
i−1 + (1 + 2λ+M∆t)Tn+1

i +

(
−λ− µ

2ri

)
Tn+1
i+1 − F = Tni , (2.75)

i = 1, 2 · · · , R− 1.

Equation(2.75) is the Finite difference (FD) approximation for interior nodes of the

equation (2.41).

2.7.3 FD Scheme for Inner Boundary (at Body Core) r0 = 0

The radial distance is measured from the body core towards the skin surface in the
cylindrical human body as shown in Figure 2.7. At the body core, both r and the
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heat flux
∂T

∂r
, are zero, then

1

r

(
∂T

∂r

)
approaches to indeterminate form

0

0
as r → 0.

Using L’Hospital rule,

1

r

∂T

∂r

∣∣∣∣∣
r=0

=

∂

∂r

(
∂T

∂r

)
∂

∂r
(r)

∣∣∣∣∣
r=0

=
∂2T

∂r2

∣∣∣∣∣
r=0

.

In this case, FD approximation of equation (2.41) at r = 0 is

−2λT n+1
−1 + (1 + 4λ+M)T n+1

0 − 2λT n+1
1 − F = T n0 . (2.76)

The FD scheme for left boundary
∂T

∂r
= 0 at r = 0 is

T n+1
−1 = T n+1

1 . (2.77)

Using equation (2.77) in equation (2.76), we obtain

(1 + 4λ+M∆t)T n+1
0 − 4λT n+1

1 − F = T n0 . (2.78)

2.7.4 FD Scheme for Outer Boundary (Skin Surface) rR = L

The central difference approximation is

T n+1
R+1 = T n+1

R−1 −
2∆rhc
K

(
TR

n+1 − T∞
)
. (2.79)

Then FD approximation at r = R is

−2λTn+1
R−1 +

[
(1 + 2λ+M∆t)−

(
−λ− µ

2rR

)
2hc∆r

K

]
Tn+1
R + FR − F = TnR, (2.80)

where

FR =
2∆rBR

K
(hcT∞) .

Writing the equations (2.78), (2.75), and (2.80) in the matrix equation form

A T n+1 = T n +B, (2.81)

where

T n =
[
T n0 T n1 T n2 · · · T nR

]′
,
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A is the corresponding tridiagonal matrix of order (R + 1) × (R + 1), T (n+1) and B

are of column vectors of order (R + 1)× 1.

A =



E0 −4λ 0 0 · · · 0
D1 E1 B1 0 · · · 0
0 D2 E2 B2 · · · 0
...

...
...

. . . . . .
...

0 0 . . . . . . −2λ

(
ER −BR

2hc∆r

K

)


,

T n+1 =


T n+1

0

T n+1
1

T n+1
2
...

T n+1
R

 , and B =



F
F
F
...
F

F − FR


,

where

E0 = (1 + 4λ+M∆t) , Ei = (1 + 2λ+M∆t) , for i = 1, 2, · · · .R

Di =

(
−λ+

µ

2ri

)
, Bi =

(
−λ− µ

2ri

)
, for i = 1, 2, · · · , R.

2.7.5 Stability Analysis of Transient Model

To perform the solvability, consistency, stability, and convergence of FD scheme for

T n+1, we introduce a column vector T n of size (R + 1) × 1 which represents the

numerical solutions at time step tn as

T n = [T0
n T1

n · · ·TNn · · ·TRn]
′
.

Since the matrix A in equation (2.81) is invertible and diagonally dominant, the

system is solvable. We have matrix A = [al,j](R+1)×(R+1)

|ajj| ≥
∑
|alj| ∀ l, j.

Hence the system (2.81) is unconditionally solvable for each time step n.

To show the consistency of the model, we have approximated our model (2.41) by

FD scheme in (2.78), (2.75), and (2.80), which has truncation error τ(∆r,∆t) =
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O [(∆r)2 + ∆t].

So

τ(∆r,∆t) = O
[
(∆r)2 + ∆t

]
,

as

∆r,∆t→ 0, τ(∆r,∆t)→ 0,

therefore

lim
∆r,∆t→0

τ (∆r,∆t) = 0.

So the model is consistent.

Theorem 2.7.1 (Gershgorin). For each λ, the eigenvalues of a square matrix A =

[al,j] with size (R + 1)× (R + 1), for j = 0, 1, 2, · · · , R.

|λ− al,j| ≤
∑

l=0, l 6=j

|al,j| . (2.82)

As the consequence of the Gershgorin theorem 2.7.1, we have the following two in-

equalities.

(i)

|λ| ≤ |λ− aj,j| ≤
∑

l=0, l≤j

|al,j| .

(ii)

|λ| ≥ |aj,j| − |λ− aj,j| ≥ |aj,j| −
∑

l=0, l≤j

|al,j| .

Lemma 2.7.1. If λl for l = 1, 2, · · · , R represents the eigenvalues of the square

matrix A and ‖.‖2 represents the second matrix norm (‖A‖2 = maxl |λl|), then we

have following results.

(i)

|λl| ≥ 1 +M∆t, for 1 ≤ l ≤ R.

(ii) ∥∥A−1
∥∥

2
≤ 1

1 +M∆t
≤ 1−M∗∆t ≤ 1, for 1 ≤ l ≤ R.

where M∗ is the positive constant.
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Proof. (i) For l = 0, We have

|aj,j| = |1 + 4λ+M∆t| , and
∑

l=0, l 6=j

|al,j| = |−4λ| ,

|aj,j| −
∑

l=0, l 6=j

|al,j| = |1 + 4λ+M∆t| − |−4λ| ≥ 1 +M∆t.

For l = 1, 2, · · · , R− 1, we have

|aj,j| = |1 + 2λ+M∆t| ,

and ∑
l=0, l 6=j

|al,j| =
∣∣∣∣−λ+

µ

2rl

∣∣∣∣+

∣∣∣∣−λ− µ

2rl

∣∣∣∣ ,
|aj,j| −

∑
l=0, l 6=j

|al,j| = |1 + 2λ+M∆t| −
∣∣∣∣−λ+

µ

2rl

∣∣∣∣+

∣∣∣∣−λ− µ

2rl

∣∣∣∣ ≥ 1 +M∆t.

Now from Gershgorin theorem 2.7.1 for each eigenvalues λl for l = 0, 1, 2, · · · , R of

square matrix A in equation (2.81)

|λl| ≥ |aj,j| −
∑

l=0, l≤j

|al,j| ≥ 1 +M∆t.

Hence,

|λl| ≥ 1 +M∆t.

(ii) We have

|λl| ≥ 1 +M∆t.

‖A‖2 = max
1≤l≤R

{|λl|} . (2.83)

Without loss of generality, we can assume at least one value of A, satisfy (2.83), then

A is diagonally dominant, so, A−1 exists, then

AA−1 = A−1A = I.

We obtain,

A−1 =
1

A
I,

where, I is (R + 1)× (R + 1) unit matrix.

Now, taking norm on both sides,∥∥A−1
∥∥

2
=

1

‖A‖
‖I‖ ,

47



or ∥∥A−1
∥∥

2
≤ 1

max1≤l≤R
{‖λl‖} .

Therefore∥∥A−1
∥∥

2
≤ 1

1 +M∆t
≤ 1−M∗∆t ≤ 1, for l = 0, 1, 2, · · · , R.

Theorem 2.7.2. The Finite Difference (FD) scheme (2.81) is stable with respect to

initial data if ∥∥En+1
∥∥

2
≤
∥∥E0

∥∥
2
, for n ≥ 1, (2.84)

where,En+1 is the error equation, obtained from difference between exact solution

T ∗(n+1) and solution T (n+1) from FD scheme at time level (n+ 1).

Proof. We have error equation of (2.81) in the form of

En+1 = A−1En. (2.85)

Using above relation (2.85) repeatedly, we get

En+1 = (A−1)En−1 = · · · = [(A−1)nE◦C], for n = 1, 2, · · · , N. (2.86)

The relation with second norm is∥∥En+1
∥∥

2
≤
∥∥A−1

∥∥n
2

∥∥E0
∥∥

2
. (2.87)

Using Lemma 1.1, we get ∥∥En+1
∥∥

2
≤
∥∥E0

∥∥
2
. (2.88)

This shows that FD scheme (2.81) is uncondinally stable with respect to initial data.

In the limit as the mesh spacing ∆r and ∆t in the cylindrical form of bioheat transfer

equation goes to zero, the solution from such numerical method converges to the true

value with the exact solution as shown in next theorem.

Theorem 2.7.3 (Convergence). Finite difference schemes (2.78), (2.75), and (2.80),

are unconditionally convergence.
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Proof. Let us consider the error vector Ẽn+1 such that

Ẽn+1 = T̃ n+1 − T n+1. (2.89)

Where we have introduced the vector T̃ of size (R+ 1)× 1 that represents the exact

solution at the time step tn such that

T̃ n = [T (r0, t
n), T (r1, t

n), T (r2, t
n), ..., T (rR, t

n)] , (2.90)

then, the matrix form with exact solution be

AT̃ n+1 = T̃ n +B + τn+1, (2.91)

where τn+1 is the vector of truncation error at level tn. Now, the vector Ẽ in (2.89)

on the substraction of (2.81) from (2.91) gives the relation

Ẽn+1 = A−1Ẽn + A−1τn+1

= A−1
(
A−1Ẽn−1 + A−1τn

)
+ A−1τn+1.

Using above relation (2.91) repeatedly, we get

Ẽn+1 = (A−1)nẼ◦C +
∑
k=0

(
A−1

)k
τn−k. (2.92)

Taking second norm on (2.92) we get,∥∥∥Ẽn+1
∥∥∥

2
≤

∥∥A−1
∥∥n ∥∥∥Ẽ◦C∥∥∥

2
+

(
n∑
k=0

∥∥A−1
∥∥k

2

)
max

1≤k≤R

{∥∥τ k∥∥
2

}
.

As initially no error occurs at t = 0, we take T ◦C = 0 and get Ẽ = 0

Applying ‖A−1‖2 ≤ 1 from lemma 1.1, we have

∥∥∥Ẽn+1
∥∥∥

2
≤

(
n∑
k=o

∥∥A−1
∥∥k

2

)
max

1≤k≤R

{∥∥τ k∥∥
2

}
.

The truncation error τ(∆r,∆t) gives∥∥τ k∥∥
2
→ 0 as ∆r → 0, ∆t→ 0.

Which implies ∥∥∥Ẽn+1
∥∥∥

2
→ 0, as 1 ≤ k ≤ R.

Hence the system is unconditionally convergent.
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2.7.6 Numerical Results and Discussion

The different biological and thermophysical characteristics listed in Table 2.1 affect

the numerical outcomes of the heat transfer model in living tissue. A cylindrical

limb is evenly discretized into a certain number of nodes in the domain along the

radial direction of heat flow from the body’s core toward the skin surface. Figure 2.9

displays temperature profile for low (left) and high (right) heat transfer coefficients,

while Figure 2.10 calculates temperature profiles for heat loss through lower (left)

and greater (right) thermal conductivities at various time steps. The space domain’s

(tissue thickness’) measurement is L = 0.03 m. The parameter values have been

considered as [78, 123]

K = 0.48 W/m ◦C, cb = 1000 J/kg◦C, wb = 3.5 kg/m3 sec, Ta = 37◦C,
Lv = 24× 105J/kg, E = 4× 10−5 kg/s, and T∞ = 22◦C.

The temperature profile for the two different values of thermal conductivity K, and

heat transfer coefficients hc are considered,respectively as

K = 0.24 W/m ◦C, K = 0.24 W/m ◦C,

hc = 10.023,W/m2 ◦C, hc = 30.23 W/m2 ◦C,
and are represented by the graphs in Figures 2.9 and 2.10, from the system of equation

(2.81).

Figure 2.9: Radial temperature profile at (left) hc = 10.023 W/m2 ◦C and
(right)hc = 30.023 W/m2 ◦C.

The surface of naked human body directly interacts with the outside environment,

where the convection and radiation heat transfer coefficients are present. The striking

impact of varied heat transfer coefficients for temperature distribution with temper-
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Figure 2.10: Radial temperature profile at (left) K = 0.24 W/m ◦C and (right)
K = 0.72 W/m ◦C.

ature profile at rest, 60 sec, 120 sec, and 180 sec is depicted in Figure 2.9. After

reaching a specific radial distance from the body’s center, the temperature in the skin

is steady state and gradually decreases as it approaches the skin’s surface. In the

left-hand Figure, 2.9 the temperature at the skin’s surface is 33◦C after 60 sec, 31◦C

after 120 sec, and 29◦C after 180 sec. On the other hand, in the right-hand Figure

2.9, the rate at which the body’s core heats up the skin as it approaches the skin’s

surface slows noticeably.

The graphs in the picture illustrate how various thermal conductivities affect the

skin’s temperature, which up to a given radial distance is uniform like in the case

of heat transfer coefficients or steady-state. The temperature at the skin’s surface

then rapidly drops to 31◦C in 60 sec, 29◦C in 120 sec, and 27◦C in 180 sec, as in the

left-hand Figure 2.10. In the right-hand Figure 2.10, it is found that the temperature

profile in the skin drops smoothly downward from the body’s center to the skin’s

surface. The temperature reaches 33.7◦C in 60 sec, 32◦C in 120 sec, and goes up to

29◦C in 180 sec. The result shows that skin surface temperature increases with the

increase in thermal conductivities.

2.8 Conclusion

In order to analyze the heat transfer coefficient and conduction effect in the cylindri-

cal shape of the human body, the analytical solution of the one-dimensional Pennes

bioheat equation in cylindrical form with mixed boundary conditions and the latent

heat of sweat evaporation in a steady-state case has been obtained. This has been

followed by a numerical solution using the implicit finite difference method. Using
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the analytical and numerical solutions produced in this model, the effects of the tem-

perature changes in different air temperatures, thermal conductivities, metabolic heat

generation rates, blood perfusion rates, and heat exchange coefficients have been in-

dividually observed. In order to investigate the derived numerical FD scheme for the

transient model, various theorems with justifications for its consistency, stability, and

convergence have been established.

The analytical investigation reveals that factors such as air temperature, blood per-

fusion rates and heat transfer coefficients have a greater impact on skin surface tem-

perature than that on the body core. As the ambient temperature, blood perfusion

rates, and heat transfer coefficients rise, the temperature in the radial direction falls.

It is possible to detect a very small change in body core temperature as well as a

slight rise in metabolic heat production, both of which have very little impact on the

skin’s surface. In comparison to the scenario proposed by Luitel et al. and Yue K.

et al. [73, 77, 123], the various parameters utilized in this model certainly have a

notable impact on the temperature distribution in the human body. The numerical

results verify that as the heat transfer coefficient increases in the various time steps,

the temperature at the skin surface goes down significantly. The temperature on the

skin surface rises as thermal conductivity increases. The graphs demonstrate that a

major portion of the heat loss from the skin surface is due to heat transfer coeffi-

cients. This Chapter provides an essential and comprehensive overview of the body’s

thermoregulatory system as well as information about the physiological disturbance

caused by a variety of circumstances.
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CHAPTER 3

MATHEMATICAL MODEL FOR HEAT TRANSFER IN
HUMAN BODY WITH PROTECTIVE LAYER

3.1 Introduction

This Chapter aims to develop a mathematical model that combines the ideas of heat

transport within the human body with the characteristics of clothes. Special focus is

given to incorporating the protective layer in the well-known bioheat transfer model

by adding the clothing parameters into that of Pennes’ equation. Starting with the

fundamentals of clothing heat transfer phenomena in section 3.2, a brief overview of

some developments in clothing and human thermal comfort in section 3.3, we estab-

lish the main model in section 3.4. Decoupling the model equation, implementing the

fully implicit finite difference method with Neumann boundary conditions, modify-

ing Robin’s boundary condition by adding clothing parameters in the usual one, and

combining the separate solution of decoupled equation by using interface condition,

is the major task of this Chapter given in section 3.5. In section 3.6, we analyze the

existence, validity, stability, and convergence of the implicit scheme via some theo-

rems. Using the model with modified Robin’s boundary conditions, we also observe

the effect of garment insulation, air insulation, air velocity, and walking speed which

have a significant impact on the temperature variation in the human body.

3.2 Clothing Heat Transfer Mechanisms

Heat transfer through the cloth mainly depends upon the clothing insulation, radiant

temperature, clothing area factor, the thermal conductivity of clothes, the thickness of

clothes, convective heat transfer coefficient, walking speed, air velocity, and ambient

temperature. These clothing heat transfer mechanisms together with physical and

53



physiological elements mentioned in Chapter 2 provide better comfort for human

thermoregulatory system than that of the nude body.

3.2.1 Clothing Insulation for Human Thermal Comfort

Clothing, an important insulator for the human body and a mean that maintains

thermal comfort, strongly influences the heat exchange phenomena and hence controls

body temperature. American Society for Heating, Refrigerating and Air Condition-

ing Engineering (ASHRAE) [29, 49] in thermal environmental conditions for human

occupancy, has mentioned that the thermal comfort is the individual’s feeling that ex-

presses the satisfaction with the thermal environment, and the insulation of clothing

is the resistance to sensible heat transfer by garments. Thermal insulation of clothing

systems is determined by the properties and the construction of fabric materials, the

air layers between them, and also the layers of trapped air [55]. Generally clothing

insulation expressed by the Clo unit (1 Clo = 0.155 m2 ◦C/W) [74, 75]. The total

insulation IT is the sum of clothing insulation Icl, and air insulation Ia, as shown in

left-hand Figure of 3.1, where, IT = Icl + Ia. For the active occupant who is moving

Figure 3.1: Schemetic view of (left) total insulation IT and (right) IT in the circular
limb [74, 75].

or involved in some activities, the clothing insulation can be determined as follows

[49].

Icl, active = Icl,rest × (0.6 + 0.4/Mt),

where
Mt : metabolic rate
Icl,rest : clothing insulation (m2 ◦C/W) without movement.
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ASHRAE in the same project; specified the two zones accordingly Clo values of cloth-

ing insulation, 0.5 Clo for one and 1.0 Clo for the other. The linear interpolation be-

tween these two Clo values determines the comfort zones for the intermediate value

of Icl by the relation

Tmin,Icl =
1

0.5
[(Icl − 0.5 Clo) Tmin,1.0 Clo + (1.0 Clo− Icl) Tmin,0.5 Clo] .

Tmax,Icl =
1

0.5
[(Icl − 0.5 Clo) Tmax,1.0 Clo + (1.0 Clo− Icl) Tmax,0.5 Clo] .

Clothing area factor, fcl, the ratio of clothed human body surface area, Acl and Dubois

(nude body) surface area, AD, according to ISO-9920 (International Organization for

Standardization), ASHARE standard 55, ISO 7730, [49, 75] has been calculated as

fcl =
Acl
AD

.

The clothing area factor can also be estimated in terms of clothing insulation, as

suggested by McCullough and Jones in 1984 [115] is

fcl = 1 + 0.31Icl. (3.1)

When 1 Clo = 0.155 m2 ◦C/W, mentioned in ASHRAE standard 55 and ISO 9920,

which provides a database on the clothing area factor and intrinsic clothing ther-

mal resistance of many non-Western and Western, Gulf region and Korean clothing

ensembles [49, 115], are given as

fcl = 1 + 1.977Icl. (3.2)

The clothing efficiency factorFcl (dimensionless quantity), as shown in Figure 3.1 with

total insulation and clothing area factor fcl is given by [48, 49]

Fcl =
Ia
IT

=
Ia

Icl + Ia/fcl
. (3.3)

3.2.2 Insulation for Entire Clothing (Icl =
∑
icl)

Clo is a unit of thermal insulation of overall clothing, total garment including tops,

bottoms innerwear and everything (including even socks, gloves, etc), each of which

is indicated by icl. The total clothing and its insulation for a person in summer and

winter is given in Table 3.1.
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Table 3.1: Total clothing insulation for a person [49, 75].

Cloth item Clo value (m2 ◦C/W) Cloth item Clo Value (m2 ◦C/W)
(Summer ) (icl) (Winter) (icl)
Half shirt 0.19 Full shirt 0.28
Underware 0.04 Underware 0.04

Pant 0.11 Pant 0.25
Shocks 0.02 Thick shocks 0.05
Shoes 0.02 Shoes 0.04

Sweater 0.28
Total (Icl) Σicl = 0.38 Total (Icl) Σicl = 0.91

3.2.3 Radiant Temperature in Clothing System

The heat exchange between body and environment by radiation is the energy emitted

by a black body per unit area per unit time is proportional to the fourth power of the

absolute temperature [3, 38]. As most of the human body parts are always wrapped

with appropriate clothes, the radiative heat losses from the outer surface of the cloth

to the environment is expressed in this case by

Q̇rad = σεAcl
(
T 4
cl − T 4

∞
)
. (3.4)

The energy balance equation due to radiation in the clothing system now is provided

as

−Kcl
∂Tcl
∂η

∣∣∣∣∣
at cloth surface

= σεAcl
(
T 4
cl − T 4

∞
)
, (3.5)

where
Kcl : thermal conductivity of cloth (W/ m◦C)
Tcl : temperature of cloth (◦C)
Acl : surface area of human body including cloth (m2).

3.2.4 Convective Heat Exchange with Air Velocity and Walking Speed

In general, walking speed is the measurement of the person’s basic walking ability in

which a person travels a certain distance in a specific direction in a time. Air velocity

directly comes into contact in the human body and makes the body immediately cool.

Moving air in warm or humid conditions can increase heat loss through convection

without any change in air temperature. If there is no movement of air, humid con-

ditions increase, and if increase in air movement, the body will be cooler because of
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convective heat loss. Air velocity may be corrected to account for a person’s level

of physical activity because it also increases air movement. According to ISO-7933

the convective heat transfer also depends upon the walking speed Ws and relative air

velocity Vair is given by [54, 74]

hconv = 8.7 Vair and Vair = va +Ws, (3.6)

and

Ws = 0.0052(Mt − 58), (3.7)

where
Vair : total relative air velocity (m/s)
va : air velocity (m/s)
Ws : walking speed (m/s)
Mt : metabolic heat generation rate (W/m2).

The air velocity has a significant impact on the amount of overall heat loss from the

body. This is affected by Newton’s law of cooling, which states that, in the presence

of a light breeze, the rate at which a body’s temperature changes is proportional to

the difference in temperature between the surface of the body and its surroundings.

The formula for the convective heat transfer rate is

−Kt
dTt
dr

∣∣∣∣∣
at skin surface

= hconvA (Ts − T∞) , (3.8)

where
Kt : thermal conductivuty of tissue (W/m◦C)
Tt : tissue temerature (temerature for body part) (◦C)

In the clothing system, the sensible heat loss from skin to clothing and then from

clothing to environment. So, the boundary condition of Robin type due to convection

guided by Newton’s Law of cooling for convection is given by [48, 49]

−Kcl
dTcl
dr

∣∣∣∣∣
at cloth surface

= hconvAcl (Tcl − T∞) . (3.9)

Though many researchers [28, 30, 46, 48, 49, 54, 85, 88] have played a major role for a

significant turn in the field of thermal comfort through protective clothing by taking

the heat balance equation and focusing on the heat transfer only through clothing.

There is still lacking for the study of energy and heat balance in the internal human

body part and clothing as well. Our area of interest is, therefore, to extend the
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bioheat transfer equation. The investigation of human thermal comfort in garment

systems has benefitted greatly from the work of numerous researchers. The majority

of researchers [3, 40, 59, 61, 62, 65, 77, 78] studying the temperature distribution

in the human body using Pennes’ model, however, have not included the boundary

conditions of clothing insulation, walking speed, and air velocity. Therefore, one of

the focuses of this research effort is the modification of the typical boundary condition

of the Robin type, incorporating a connection to these characteristics.

3.3 A Brief Overviews of Studies in Clothing and Human Thermal Com-
fort

Initial knowledge regarding to clothing insulation was used for military applications.

Soldiers wearing garments with proper insulation were mobilized to put out the fire.

For protection against thermal risks, Liu et al. [71] have created thermal protective

clothing that can convey heat in the 20W/m2-160W/m2 range through radiation,

conduction, or convection.

In ISO-1986, a number of techniques are provided for figuring out clothing’s thermal

characteristics. It also includes a database of dry, intrinsic garment insulation values,

Icl, based on readings from a heated thermal manikin, primarily for indoor clothing

worn [89]. The air gap and thermal insulation have a significant impact on skin burn

injuries. Thermal insulation shields the body from the cold and also protects against

burn damage at the skin’s surface. The air gap offers thermal insulation that restricts

heat transmission to the skin when exposed to fire, preventing burn injuries. It’s still

worthwhile to think about issues with bioheat transfer and thermal comfort in cloth-

ing. A number of researchers [48, 49, 54, 57, 114] have made significant advancements

for the understanding of thermal comfort in clothing system considering the linear

equation only for cloth with clothing area factor. The experiment was done within

the various human manikins including a database of non-Western ensembles’ static

apparel thermal insulation and vapor permeability values for ASHARE standard 55,

ISO-7730 (International Organization for Standardization) ISO-9920 [49].

The UC Berkeley Comfort Model was recommended by Holmer in 2006 [55] and

Voelker in 2009 [114] for heat and moisture transmission through clothing. To ex-

amine how moisture affected Nomex materials’ heat resistance, and water vapor per-

meability, Baczek and Hes [9] utilized seven ensembles as test subjects and measured

them in a lab. In their experimental work measuring the thermal conductivity of wet
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fabric, Slavinec et al. in 2016 [110] investigated the effect of moisture on the thermal

conductivity of fabric, compared their linear model with the estimation of a theo-

retical model, and focused on measuring the thermal conductivity of cotton fabrics

for increasing relative amounts of water.

Shen et al. in 2018 [104] developed the heat transfer model along the longitudinal and

transverse directions in the fabric to show that the high thermal conductivity causes

the heat transfer significantly faster along the longitudinal direction than along the

transverse direction of the fabric. For the purpose of improving the safety and pro-

duction efficiency of workers in very hot environments, Dung and Anh in 2019 [26]

proposed the thermal protective design for industrial working at high temperature,

and further investigated the degree of skin burn, the effect of fabric and air-gap thick-

ness and compared the simulated results concluding both, fabric thickness, and air

gap to improve the thermal protective properties.

The study of the human body’s thermal comfort in such non-uniform environments

is insufficient unless clothing properties are incorporated. In real life situations about

(75−90)% of the human body’s surface area is always covered with protective clothing

system as shown in Figure 1.1. Pennes’ bioheat equation (2.21), has been, therefore,

extended for the clothing system in this Chapter. Despite numerous improvements

that have been made in the bioheat transfer model as mentioned in the previous

Chapter 2 [3, 4, 40, 77, 93, 107, 109, 123, 124], the application in clothing science is

still limited because clothing has not been taken into account in these models. Var-

ious studies [30, 33, 46, 49, 55, 82, 84, 85, 118] have been done by utilizing dry and

sweating thermal manikins in an advanced laboratory to assess the thermal qualities

of clothes, such as insulation and evaporative resistance. These studies, however,

continued ignoring the blood perfusion concept. So, our work combines both subject

areas (bioheat transfer in human tissue and clothing), has the potential to have a

significant impact on biomedicine as well as clothing and environment designers.

3.4 Mathematical Model of Heat Transfer with Protective Clothing

The extension of Pennes’ bioheat equation (2.20) with protective clothing system is
given by [75, 76]

ρc
∂T

∂t︸ ︷︷ ︸ = ∇ · (K∇T )︸ ︷︷ ︸+ ρbwbcb (Ta − T )︸ ︷︷ ︸+ qm︸︷︷︸+Pcl (Ts − Tcl)︸ ︷︷ ︸ in ΩL(3.10)

Heat Storage Diffusion Perfusion Metabolism Clothing
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Where the total heat storage on the left-hand side is the combination of the first,

second, and third terms of the right-hand side, respectively diffusion, perfusion, and

metabolic heat generation. The additional term Pcl (Ts − Tcl) is the protective cloth-

ing, where

Pcl =
Kcl

Acl
(W/m3 ◦C). (3.11)

L : final point of the radial length of human tissue element with cloth(m)
ΩL : computational domain
Kcl : thermal conductivity of cloth(W/m◦C)
Acl : surface area of clothed human body (m2)
Ts : skin surface temperature (◦C)
Tcl : surface temperature of cloth(◦C).

3.4.0.1 One Dimensional Extended Bioheat Equation in Cylindrical Form

The overall goal of the thesis is to investigate the temperature distributions through-

out the human body’s cylinderical structure. The cylindrical form of this bioheat

equation in a radial direction is, therefore, performed here

ρc
∂T

∂t
= K

[
1

r

∂

∂r

(
r
∂T

∂r

)]
+ ρbcbwb(Ta − T ) + qm + Pcl (Ts − Tcl) , in ΩL. (3.12)

3.4.0.2 Initial Condition

The initial condition for the time-dependent boundary value problem is given by

T (r, 0) = T0(r). (3.13)

where

T =


Tt, for body part 0 ≤ r ≤ N.

Tcl, for clothes part N ≤ r ≤ R.

(3.14)

3.4.0.3 Neumann Condition at the core (Inner Boundary)

As the body core temperature is constant, the Neumann boundary condition, flux

boundary for the interior part of the living tissue; is considered uniform as in equation
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(2.22)

at r = 0,
∂Tt
∂r

∣∣∣∣∣
at body core

= 0. in ∂ΩL (3.15)

3.4.0.4 Robin Boundary Condition at Clothing Surface (Outer Boundary)

The right side is fitted with clothes and directly exposed to the environment. The

continuous heat flux occurs between clothes surface and the atmosphere, and as a

consequence, the body losses heat to the surroundings via clothes. So, the boundary

condition of Robin type, due to the convection and radiation is guided by Newton’s

Law of cooling and Stefan Boltzmann law separately for convection and radiation

along with effective clothing area factor is given by [48, 49, 75]

−Kcl
∂Tcl
∂rcl

∣∣∣∣∣
at clothes surface

= Fcl
[
hconv (Tcl − T∞) + εσ

(
T 4
cl − T 4

∞
)]
,

atR = L, in ∂ΩL, (3.16)

where
Fcl : effective clothing area factor given in equation (3.3) (dimensionless)
hconv : convective heat transfer coefficient (W/m2 ◦C)
ε : emissivity (0 ≤ ε ≤ 1)
σ : Stefan Boltzmann constant (W/m2 K4) = 5.57×10−8

Tcl : temperature of cloth (◦C)
T∞ : ambient temperature (◦C)
rcl : thickness of the clothes (m).

The appearance of nonlinear radiation term in the boundary condition makes the

bioheat transfer problem nonlinear. In this case, we minimize this complexity by

simplifying and introducing a suitable iterative procedure if (Tcl + T∞) (T 2
cl + T 2

∞)

is known, then equation (3.16) becomes linear and can be treated as a convective

boundary condition.

−Kcl
∂Tcl
∂rcl

∣∣∣∣∣
at clothes surface

= Fcl
[
hconv (Tcl − T∞) + εσ (Tcl − T∞) (Tcl + T∞)

(
T 2
cl + T 2

∞
)]

= Fcl (Tcl − T∞)
[
hconv + εσ (Tcl + T∞)

(
T 2
cl + T 2

∞
)]

−Kcl
∂Tcl
∂rcl

∣∣∣∣∣
at clothes surface

= Fcl (hconv + hr) (Tcl − T∞) ,

−Kcl
∂Tcl
∂rcl

∣∣∣∣∣
at clothes surface

= hA (Tcl − T∞) , (3.17)
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where

Fcl =
Ia

Icl + Ia/fcl

hr = εσ (Tcl + T∞)
(
T 2
cl + T 2

∞
)

hA = Fcl (hconv + hr) .

At time step tn = n

−Kcl
∂T1cl

∂rcl

∣∣∣∣∣
at clothes surface

= F1cl (hconv + hr) (T n1cl − T∞)

−Kcl
∂T1cl

∂rcl

∣∣∣∣∣
at clothes surface

= F1cl (hconv + hr) (T n1cl − T∞) (3.18)

hr = εσ
(
T n−1

1cl + T∞
) (

(T n−1
1cl )2 + T 2

∞
)
, (3.19)

where
T n1cl : the temperature sequences for n = 1, 2, 3, · · ·
T 0

1cl : initial guess of temperature.

The iteration will continue until the convergent condition is reached.

∥∥T n1cl − T n−1
1cl

∥∥ ≤ δ,

where δ is iteration tolerance.

It is extremely difficult to investigate heat transport in such nonhomogeneous materi-

als, including the human body and clothing. The equation (3.12), therefore, has been

decoupled into two parts, body, and clothes.

3.4.1 Model with Interface

The mathematical model in cylindrical form with clothing at the boundary is taken

in the case of a negligible air gap or tight-fitting clothing. The main assumption in

this model is the heat flows from the body core toward the skin surface, in the radial

direction. N th node is considered as the interface between the skin surface and clothes,

and the clothing appears in the boundary as shown in Figure 3.2, where Rth node

represents the clothes surface that expose to the environment. The computational

domain and its discretization can be seen in Figure 3.2.

Basically, we perform the following five steps.
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Figure 3.2: Discretization of mesh in the radial direction from core to the skin
surface with the interface.

1. Decoupling of model (3.12) into two separate parts, for human tissue, and cloth.

2. Separate construction of Finite Difference (FD) schemes for each of both parts.

3. Use of the interface and boundary conditions, and combining the solutions of

each part to obtain a solution of the model (3.12)

4. Proof of solvability, consistency, stability, and convergence of the FD scheme.

5. Display numerical results graphically.

3.4.2 Model for Body Part (Absence of Clothing )

In the absence of clothing, from the model (3.12), Pcl = 0, we have

ρc
∂Tt
∂t

= Kt

[
1

r

∂

∂r

(
r
∂Tt
∂r

)]
+ ρbcbwb(Ta − Tt) + qm, in ΩN , (3.20)

where
ΩN : computational domain for human tissue including N nodes
Tt : tissue temperature (temperature for body part)(◦C).

3.4.3 Model for Clothing Part (Absence of Perfusion and Metabolism)

In the absence of perfusion and metabolism from the model (3.12), wb = 0, and

qm = 0, we have

ρc
∂Tcl
∂t

= Kcl

[
∂2Tcl
∂r2

+
1

r

∂

∂r

(
∂Tcl
∂r

)]
+ Pcl(Ts − Tcl), in ΩL−N , (3.21)

where
ΩL−N : computational domain for human tissue including L−N nodes
Tcl : cloth temperature (temperature for clothing part) (◦C).
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3.5 Numerical Method for the Model

The solution procedure is followed by applying the fully implicit Finite Difference

Method (FDM) to both of the decoupled equations (3.20) and (3.21). We discretize

the bioheat Equation (3.12) having R points altogether in the domain, taking N points

in the body part, equation (3.20), and R − N points in the clothing part, equation

(3.21) as shown in Figure 3.2.

3.5.1 Constructions of Finite Difference Scheme

As the foundation of our model, we first create a one-dimensional form of cylindrical

tissue for a body part that is separated into N discrete points that are each individu-

ally characterized by spatial indices, with the assumption that ri = i∆r in the radial

direction. Figure 3.2 illustrates the discretization of a circular cross-section of the

peripheral human limb where axial temperature flow is considered uniform.

3.5.2 FD Scheme for Body part

We use the FD scheme by writing equation (3.20) using an implicit finite difference
scheme.

ρc
Tn+1
i − Tni

∆t
= Kt

[
Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1

∆r2
+
Tn+1
i+1 − T

n+1
i−1

2i∆r

]
+ ρbcbwb

(
Ta − Tn+1

i

)
+ qm. (3.22)

The construction in equation (3.22) implies that of FD scheme for the interior grid
has the truncation error of order O (∆r2 + ∆t) for each interior point (tn, ri), n ≥ 1,
0 < i < N .
when

D =
Kt

∆r2
, α = D

∆t

∆r2
, M =

wbcb
ρc

, S =
qm
ρc

, and F = ∆t (MTa + s) .

Equation (3.22) becomes

DiT
n+1
i−1 + EiT

n+1
i +BiT

n+1
i+1 − F = Tni (3.23)

where Di =
(
−α+

α

2i

)
, Ei = (1 + 2α+M∆t), and Bi =

(
−α− α

2i

)
.

3.5.2.1 FD Scheme at Boundary r = 0 (Body core)

The cylindrical thickness r is measured from body core as shown in Figure 3.2.

At the body core, both r and the heat flux
∂Tt
∂r

, are zero, then
1

r

(
∂Tt
∂r

)
approaches
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to indeterminate form
0

0
as r → 0. The use of the L’Hospital rule then gives

1

r

∂Tt
∂r

∣∣∣∣∣
r=0

=

∂

∂r

(
∂Tt
∂r

)
∂

∂r
(r)

∣∣∣∣∣
r=0

=
∂2Tt
∂r2

∣∣∣∣∣
r=0

.

Now equation (3.7) becomes

∂Tt
∂t

= 2D

(
∂2Tt
∂r2

)
+M(Ta − Tt) + S. (3.24)

The FD scheme of equation (3.24) at r = 0 is

−2αT n+1
−1 + (1 + 4α +M∆t)T n+1

0 − 2αT n+1
1 − F = T n0 .

E0T
n+1
0 − 4αT n+1

1 − F = T n0 . (3.25)

3.5.2.2 Right Boundary for Skin Surface (Interface Condition at i = N)

The skin surface is covered by clothing. So, At i = N , the interface between body

and clothes, we take the rightmost Dirichlet boundary condition at this point as

Tc

∣∣∣∣∣
i=N

= Tcl

∣∣∣∣∣
i=N

= Tint.

FD scheme at i = N

DNT
n+1
N−1 + ENT

n+1
N +BNTint − F = T nN . (3.26)

The system of equations (3.25), (3.23) and (3.26) can be written in the matrix form

as

A1 T
n+1
t = T nt +B1, (3.27)

where A1 is the corresponding tridiagonal matrix of order (N + 1)× (N + 1),

A1 =



E0 −4α 0 0 · · · 0
D1 E1 B1 0 · · · 0
0 D2 E2 B2 · · · 0
...

...
...

. . . . . .
...

0 0 . . . DN−1 EN−1 BN−1

0 0 . . . . . . DN EN


T n+1
t and B1 are column vector of order (N + 1)× 1 as

T n+1
t =

[
T n+1

0 T n+1
1 T n+1

2 . . . T n+1
N

]′
,

and

B1 =
[
F F F . . . F −BNTint

]′
,
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3.5.3 FD Scheme for Clothing Part

3.5.3.1 Left Boundary at Cloth i = N

As we have mentioned above, the skin surface is the interface between the body and
clothing part at i = N , the left boundary for cloth whose FD scheme is given by

DNT
n+1
N−1 + ENT

n+1
N +BNT

n+1
N+1 = TnN , (3.28)

where
DN =

(
−α1 +

α1

2N

)
, BN =

(
−α1 −

α1

2N
+ P1

)
EN = (1 + 2α1 + P1) , and α1 =

Dcl∆t

(∆rc)2
.

3.5.4 Interface Condition at i = N (Between Skin and Cloth)

It is vital to assess the interface thermal conductivity KN before taking the tempera-

ture at the point where the skin’s surface and clothing meet. The thermal conductivity

of non-homogeneous materials, such as the body and clothing, which contains a va-

riety of physiological qualities, is not consistent. So it is highly desirable to have the

correct formulation for nonuniform KN . According to Luitel et al. [75] and Patankar

[90], the interface conductivity KN is to be assumed to vary linearly between two

points N and N + 1. The interfaces between the adjacent blocks must in this situ-

ation be subject to appropriate interface conditions. As a result, numerical interface

treatments become challenging, even though they are supposed to ensure stability

and maintain the high accuracy of the numerical scheme.

KN = fNKt + (1− fN)Kcl,

where
fN : interpolation factor, = ∆rc/∆r
∆rc : spatial length between the adjacent nodes in the clothing part.

For the interface gridpoint N , we consider the control volume surrounding N is filled

with the uniform conductivity Kt of body tissue, one around N+1 with a conductivity

Kcl of clothes. The good representation of heat flux over the composite domain

between N and N + 1 leads to [90]

qN = −K TN+1 − TN(
∆r

Kt
+

∆rc
Kcl

) .
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3.5.4.1 Interface Conditions at i = N (Left Boundary for Cloth Part)

The heat flux occurs at the skin surface, and the leftmost boundary of clothes at
i = N is given by

−Kt
∂Tt
∂r

∣∣∣∣∣
i=N

= qN . (3.29)

FD formulation for (3.29),

Tn+1
N+1 − T

n+1
N−1

2∆r
= −K TN+1 − TN(

∆r

Kt
+

∆rc
Kcl

) .
Tn+1
N−1 = Tn+1

N+1 − 2RcqN . (3.30)

Now equation (3.28) with left boundary condition (3.30) can be written as

ENT
n+1
N + (−2α1 − P1)Tn+1

N+1 − FN = TnN , (3.31)

where FN = DN2RcqN .

3.5.4.2 FD Scheme for Interior Node

FD scheme for each interior gride point (tn, ri), with i = N + 1, · · · , R− 1

in the clothing part is given by

DiT
n+1
i−1 + EiT

n+1
i +BiT

n+1
i+1 = T ni . (3.32)

where Di =
(
−α1 +

α1

2i

)
, Ei = (1 + 2α1 +M∆t), and Bi =

(
−α1 −

α1

2i

)
.

As in the previous case (3.23), the construction in (3.32) implies that of FD scheme

have the truncation error of order O (∆r2 + ∆t) for each interior point (tn, ri), n ≥ 1,

N < i < R.

3.5.4.3 Boundary Conditions at i = R (At Surface of Cloth)

The heat flux occurs at the outer surface of the rightmost boundary of clothes at i = R

with the modified heat transfer coefficient hA due to convection, radiation along with

clothing parameters in relation (3.17) is given by

−Kcl
∂Tcl
∂rc

∣∣∣∣∣
i=R

= hA(T n+1
cl − T∞).
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T n+1
R+1 = T n+1

R−1 − 2hARc

(
T n+1
R − T∞

)
.

FD scheme at i = R is now given by

(−2α1 − P1)T n+1
R−1 + (ER −BR2hARc)T

n+1
R − FR = T nR. (3.33)

The system of equations (3.31), (3.32), and (3.33) can be written in the matrix form

as

A2 T
n+1
cl = T ncl +B2, (3.34)

where A2 is the corresponding tridiagonal matrix of order (R−N)× (R−N),

A2 =



EN −2α1 − P1 0 0 · · · 0
DN+1 EN+1 EN+1 0 · · · 0

0 DN+2 EN+2 BN+2 · · · 0
...

...
...

. . . . . .
...

0 0 . . . DN−1 EN−1 BN−1

0 0 . . . . . . −2α1 − P1 ER − 2hARcBR


,

and T n+1
cl and B2 are column vector of order N + 1× 1 as

T n+1
cl =

[
T n+1
N T n+1

N+1 T n+1
N+2 · · · TR−1 T n+1

R

]′
,

B2 =
[
FN 0 0 · · · −FR

]′
.

3.6 Analysis of the Model

We perform the solvability, consistency, stability, and convergence of the FD scheme

for T n+1 by introducing a vector T n of size (R + 1) × 1 as a piecewise function that

represents the numerical solutions at time step tn as

T n(T nt , T
n
cl) =

[
T n0 T n1 T n2 . . . T nN · · · T nR−1 T nR

]′
,

such that

T n =


T nt =

[
T n1 T n2 T n3 . . . T nN−1 T nN

]′
, for 1 ≤ l ≤ N.

T ncl =
[
T nN T nN+1 T nN+2 . . . T nR−1 T nR

]′
, for N ≤ l ≤ R.

(3.35)

and the FD Scheme for both body and clothes part can be combinedly written as

T n+1 = A−1T n +B, (3.36)
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where

A =


A1, for 1 ≤ l ≤ N (Body part).

A2, for N ≤ l ≤ R (Cloth part).

B =


B1, for 1 ≤ l <≤ N (Body part).

B2, for N ≤ l ≤ R (Cloth part).

For the continuity condition Tt = Tcl at the interface l = N . The solvability result

can be stated in the next theorem.

Theorem 3.6.1 (Solvability). The equation (3.36) is solvable unconditionally for

each time step n.

Proof. To show the solvability of equation (3.36), we need to prove that the matrix A

is invertible, that is the matrix A is diagonally dominant. We show A1 and A2 both

are diagonally dominant.

For matrix A1

R1(1st row ):

|ajj| ≥
∑
|alj| since |1 + 4α +M∆t| > |−4α| .

Ri(i
th row):

|ajj| ≥
R−2∑

l=0, l 6=j

|alj|,

since

|1 + 2α +M∆t| >
∣∣∣−α +

α

2i

∣∣∣+
∣∣∣−α− α

2i

∣∣∣ > |−2α| .

(N − 1)th row ):

|ajj| ≥
∑
|alj| ,

since

|EN−1 +BN−1| > |DN−1 − βBN−1|+ |BN−1| ,

|(1 + 2α +M∆t)| >

∣∣∣∣(−α +
α

2(N − 1)
) + (−α− α

2(N − 1)
)

∣∣∣∣ = |−2α| .
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RN(N th row ):

|ajj| ≥
∑
|alj| , since |EN | > |DN | .

Since each row is diagonally dominant, matrix A1 is invertible. Hence (3.27) is un-

conditionally solvable. For matrix A2

RN(N th row:

|(1 + 2α1 + P1)| > |−2α1 + P1| ,

therefore

|ajj| ≥
∑
|alj| .

Rth
i row:

|ajj| ≥
R−1∑

l=N+1, l 6=j

|alj|,

since

|1 + 2α + P1| >
∣∣∣∣−α1 +

α1

2(N + 1)

∣∣∣∣+

∣∣∣∣−α1 −
α1

2(N + 1)
+ P1

∣∣∣∣ > |−2α1 + P1| .

RR ( Rth row):∣∣∣∣(1 + 2α1 + P1) + 2hARcl

(
α1 +

α1

2(R)

)∣∣∣∣ > |−2α1 + P1| .

Hence

|ajj| ≥
∑
|alj| , forl = N + 1, N + 2, · · · , R.

Since each row is diagonally dominant, matrix A2 is invertible. Hence the system

(3.34) is unconditionally solvable. Being each row in A1 and A2 is diagonally domi-

nant, they are invertible. So is matrix A. Hence the system (3.36) is unconditionally

solvable.

Lemma 3.6.1. If λl for l = 0, 1, 2, ..., R represents the eigenvalues of the square

matrix A and ‖.‖2 represents the second matrix norm (i.e. ‖A‖2 = maxl |λl|) then we

have the following results

1.

|λl| ≥


1 +M∆t, for 1 ≤ l ≤ N − 1.

1 + P1, for N ≤ l ≤ R.

(3.37)
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2.

|λl| ≥


1 +M∆t, for 1 ≤ l ≤ N − 1.

1 + P1, for N ≤ l ≤ R.

(3.38)

where M∗ and P ∗1 are some positive constants.

Proof. The lemma is the direct consequence of Gershgorin Theorem 2.7.1 as the ma-

trices A1and A2 are invertible.

Theorem 3.6.2 (Consistency). A Finite Difference(FD) scheme for model (3.12)

with truncation error τ(∆r,∆t) is consistent if

τ(∆r,∆t)→ 0 as ∆r,∆t→ 0.

Proof. We have approximated our model (3.12) by FD scheme in (3.23) and (3.32),

which has truncation error τ(∆r,∆t) = O ((∆r)2 + ∆t).

So,

lim
∆r,∆t→0

τ (∆r,∆t) = 0,

so as ∆r,∆t→ 0,

τ(∆r,∆t)→ 0.

Hence the model is consistent. The stability result will be obtained in next theorem.

Theorem 3.6.3 (Stability). The FD scheme of equation (3.12) is stable with respect

to initial data if ∥∥En+1
∥∥

2
≤

∥∥E0
∥∥

2
. (3.39)

Proof. For the stability of (3.36), it is sufficient to prove that both of T n+1
t and T n+1

cl

are stable.

For T n+1
t

A1 T
n+1
t = T nt +B1. (3.40)

Premultiplying to the system (3.40) by A−1
1 we obtain

T n+1
t = A−1

1 T nt + A−1
1 B1.

71



Take T
∗(n+1)
t be small perturb in T n+1

t , then

A1 T
∗(n+1)
t = T

∗(n)
t +B1.

Assume the error equation

En+1
1 = T n+1

t − T ∗(n+1)
t ,

then

En+1
1 =

(
A−1

1 T nt + A−1
1 B1

)
−
(
A−1

1 T ∗nt + A−1
1 B1

)
En+1

1 = A−1
1 (T nt − T ∗nt )

= A−1
1 En

1

= A−1
1 (A−1

1 En−1
1 )

= (A−1
1 )2(En−1

1 )

= (A−1
1 )2(A−1

1 En−2
1 )

= (A−1
1 )3(En−2

1 )
...

= (A−1
1 )nE0

1 , for n = 1, 2, · · · , N.

So we have

En+1
1 = (A−1

1 )nE0
1 for n = 1, 2, · · · , N.

With respect to the second norm∥∥En+1
1

∥∥
2
≤

∥∥A−1
1

∥∥n
2

∥∥E0
1

∥∥
2
.

From Lemma 3.6.1 we have
∥∥A−1

1

∥∥
2
≤ 1,

so ∥∥En+1
1

∥∥
2
≤

∥∥E0
1

∥∥
2
.

Also ∥∥En+1
1

∥∥
2
≤ C1

∥∥E0
1

∥∥
2
, for C1 = 1. (3.41)

Similar process can be followed for the system (3.34) to get∥∥En+1
2

∥∥
2
≤ C2

∥∥E0
2

∥∥
2
, for C2 = 1. (3.42)
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where En+1
2 = T n+1

cl − T ∗(n+1)
cl be the error equation and T

∗(n+1)
cl is small perturb in

T n+1
cl

We, then see that (3.41) and (3.42) both are bounded. Therefore

||En+1||2 ≤ C||E0||2. (3.43)

Hence by the Lax-Richtmyer theorem both systems are unconditionally stable with

respect to initial data. Hence the system (3.36) is unconditionally stable.

3.6.1 Convergence

A system (3.36) is said to be convergent to the exact solution of partial differential

equation (3.12) if

lim
∆r,∆t→0

∣∣En+1
∣∣ = 0.

Theorem 3.6.4 (Convergence). The FD schemes of equation (3.12) is uncondition-

ally convergent.

Proof. Let us introduce the vector T̃ n of size (R + 1)× 1 which represents the exact

solution at the time step tn such that

T̃ n =


T̃t
n

=
[
T (r0, t

n) T (r1, t
n) . . . T (rN , t

n)
]′
, for 1 ≤ l ≤ N.

T̃cl
n

=
[
T (rN , t

n) T (rN+1, t
n) . . . T (rR, t

n)
]′
, forN ≤ l ≤ R.

(3.44)

where

A T̃ n+1 = T̃ n +B =


T̃t
n

+B1 + τn+1
1 , for 1 ≤ l ≤ N.

T̃cl
n

+B2 + τn+1
2 , forN ≤ l ≤ R.

(3.45)

where, τn+1
1 and τn+1

2 are the vectors of truncation error at level tn and satisfying

continuity at interface condition at l = N that is, Tt = Tcl, and T̃t = T̃cl. We have

the numerical solution in T as

T n (T nt , T
n
cl) =

[
T (r0, t

n) T (r1, t
n) . . . T (rN , t

n) . . . T (rR, t
n)
]′
,

where

A T n+1 = T n +B =


Tt
n +B1, for 1 ≤ l < N.

Tcl
n +B2, forN ≤ l ≤ R.

(3.46)
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Equation (3.46) is based on the construction of discretization schemes.

Now substracting (3.46) from (3.45) we get

A(T̃ n+1 − T n+1) = (T̃ n − T n) + τn+1

AẼn+1 = Ẽn + τn+1

where the error vector Ẽn+1 is given by

Ẽn+1 = T̃ n+1 − T n+1

Ẽn+1 = A−1Ẽn + A−1τn+1

En+1 = A−1En + A−1τn+1

= A−1(A−1Ẽn−1 + A−1τn) + A−1τn+1

= (A−1)2(A−1Ẽn−2 + A−1τn−1) + (A−1)2τn + A−1τn+1

= (A−1)3Ẽn−2 + (A−1)3τn−1 + (A−1)2τn + A−1τn+1

...

= (A−1)nẼ0 +
n∑
k=0

(A−1)kτn−k (3.47)

Ẽn+1 = (A−1)nẼ0 +
n∑
k=0

(A−1)kτn−k (3.48)

Taking second norm on (3.48), we obtain the following result∥∥∥Ẽn+1
∥∥∥

2
≤

∥∥A−1
∥∥n

2

∥∥∥Ẽ0
∥∥∥

2
+

(
n∑
k=0

||A−1||k2

)
max

1≤k≤R

{∥∥τ k∥∥
2

}
.

Initially we take T 0 = 0, since initially no error occurs at t = 0, so Ẽ0 = 0.

From Lemma 3.6.1 1, ‖A−1‖2 ≤ 1, we have∥∥∥Ẽn+1
∥∥∥

2
≤

(
n∑
k=0

∥∥A−1
∥∥k

2

)
max

1≤k≤R

{∥∥τ k∥∥
2

}
.

The construction of τ(∆r,∆t), gives∥∥τ k∥∥
2
→ 0 as ∆r → 0,∆t→ 0.

This implies ∥∥En+1
∥∥

2
→ 0, for 1 ≤ k ≤ R.

Hence the system is unconditionally convergent.
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3.7 Numerical Results, Graphical Verification, and Discussion

The bioheat equation (3.12) has been decoupled into equations (3.20) and (3.21) to

yield the numerical solution for heat transmission in the human body with the protec-

tive layer. The temperature obtained from the solution of equation (3.20) for the skin

surface has been used to calculate the temperature for the protective clothing layer.

So far the effect of cloth is concerned, the thickness of clothes 0.005 m is added to the

tissue thickness 0.03 m and the new thickness L = (0.03 m + 0.005 m ) = 0.035 m .

For the numerical experiment, the physical and physiological parameters in Table 2.1

(for the body part) and in Table 3.2 (for the clothing part) have been considered.

Table 3.2: Physical parameters related to clothing properties [1, 38, 49, 55, 114]

Parameters Symbols Values Units
Thermal conductivities of body Kt 0.48 W/m◦C
Thermal conductivity of cloth Kcl 0.305 W/m◦C
Thickness of clothes (Domain) Lcl 0.0050 m

Density of clothes ρcl 1550 kg/m3

Specific heat of clothes ccl 1340 J/ kg ◦C
Clothing Insulation Icl 0.17 m2 ◦C/W

Air insulation Ia 0.0992 m2 ◦C/W
Area of nude body Ab 1.7 m2

Clothing area factor fcl 1.75 dimensionless

3.7.1 Effect of Clothing Insulation

The effect of clothing and air insulation has been observed at the different time steps.

The temperature profile with these effects is also compared with the temperature

profile in the nude body. The tissue thickness 0.03m is taken as the size of the space

domain. The solution of the system of equation (3.25) with these parametric values

and the additional values [48, 49] in left-hand Figure 3.3 illustrates the graphs for the

time-dependent temperature profiles with clothing insulation Icl and air insulation Ia.

The parametric values from Table 3.1 without additional parameters are used to plot

the graph of the temperature variation within the nude body in right-hand Figure

3.3.

The results show that cloth keeps the body warm and comfortable by trapping a

layer of air between the person’s skin and the fabric. The presence of insulation in
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Figure 3.3: The variation of skin surface temperature (left) Icl = 0.172 m2 ◦C/W, Ia=

0.0992 m2 ◦C/W, vair=0 m/s, and ws=0 m/s (right) Icl = 0.172 m2 ◦C/W, Ia =0.0992

m2 ◦C/W, va = 4.1 m/s, ws = 0.42 m/s

left-hand Figure 3.3 shows the rate of heat transfer from the body representing the

temperature profiles at rest and different time steps. When a person removes clothing

from his/her body, he/she starts to feel that the layer of trapped air dissipates and

reacts to the cooler air around him/her. The rate of heat transfer from the body

in this situation is higher than that of the clothing case. Except for rest (t = 0) in

both cases (clothed and naked body), the temperature in the skin from the body core

with a certain radial distance is uniform, that is, steady-state, and then in left-hand

Figure 3.4, it goes down towards the skin surface and reaches 35.6◦C in 60 sec, 35◦C

in 120 sec and 34.5◦C in 180 sec. The results, in this case, are the consequences of

the insulation of clothes as well as air insulation.

On the other hand, the temperature at the nude skin surface is 29◦C in 60 sec, 26◦C

in 120 sec, and 24◦C in 180 sec, respectively, represented in right-hand Figure 3.3.

The result is due to the absence of protective cloth in the body.

3.7.2 Effect of Air Velocity and Walking Speed

The velocity of wind and person’s walking speed have an important role in heat

loss from the body. The values of thermophysical and clothing parameters have

been calculated and assigned from Tables 2.1 and 3.2, respectively. Aditionally the

parametric values related to air velocity and walking speed have been cited from

[48, 54] to evaluate the variation of temperature within the body.

The graphs in Figure 3.4 stand for the temperature profile at the different time steps

starting from 0 second up to 180 seconds. Even though the air velocity and walking

speed occur, it results in a small variation in temperature at the skin surface than
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Figure 3.4: Variation in temperature with (left) Va = 0 m/s ws = 0 m/s , Icl = 0
m2 ◦C/W, Ia= 0 m2 ◦C/W, and (right) Va= 4.1 m/s, ws= 0.42 m/s, Icl = 0 m2 ◦C/W, Ia
= 0 m2 ◦C/W.

that of the temperatures in left-hand Figure 3.4. This outcome is due to the presence

of clothing insulation. Right-hand Figure 3.4 brings out the effects of wind velocity

and walking speed without clothing insulation. These significant variations in tem-

peratures in right Figure 3.4 at skin surface in different time steps are upshot of the

relative velocity of air.

The graphs in a single Figure 3.5, with the colors red, green, pink, and purple, re-

spectively, stand for the body temperature with the effect of air velocity and walking

speed only, the body temperature including the effect of all parameters, and the body

temperature with the effect of clothing parameters only. All of the results in Figures

3.3 and 3.4 have been accumulated in this Figure 3.5.

From all these Figures, there is no doubt that clothing insulation helps to decrease

the rate of heat loss from the body whereas air velocity gives rise to heat loss from

the body.

3.7.3 Temperature Profile of the Body with Clothing

The values of clothing and thermophysical parameters have been tabulated in Tables

2.1 and 3.2, then the temperature profile have been performed in the left-hand and

right-hand Figure 3.6 in time step ∆t = 0.01 sec, and 3.7 in time step ∆t = 0.4 sec

with different mesh sizes ∆r = 0.001 m,, and 0.0005 m respectively. Similarly, the

left-hand Figure and the right-hand Figure 3.8 show the temperature profile of the

human body with the clothing layer in time steps ∆t = 0.01 sec and ∆t = 0.4 sec,

respectively with mesh size ∆r= 0.00005 m.

The curves in the left-hand Figures 3.6 and 3.7 slightly deviate when rN = N∆rN
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Figure 3.5: Temperatures at skin surface for nude body and clothed body with clothing

insulation and air velocity, R = 0.03 m.

= 0.030 m, at the skin surface due to the interface condition between two materials

having nonhomogeneous behavior. The curves in right-hand Figures 3.6 and 3.7 are

less deviated than in left-hand Figures 3.6 and 3.7 while the graphs in left-hand and

right-hand Figure 3.8 are smoother than in the previous four Figures 3.6 and 3.7.

The comparison in graphs indicates that the increment in the number of grid points

makes the graphs smoother, more accurate, reliable, and independent of mesh sizes

as well. All the graphs in Figures 3.6, 3.7, and 3.8 show that the temperature remains

steady up to a certain distance of 0.02 m from the body core, then decreases towards

the skin surface and further then towards clothes. The temperature profile obtained

in 60 sec, 120 sec, and 180 sec, respectively remains the same regardless of the mesh

sizes.

3.7.4 Graphical Verification

The stability of developed FD schemes (3.25) and (3.32) for one dimensional Pennes’

bioheat equation (3.12) has also been verified by considering the body with protective

clothing system at the boundary node and the effects of different parameters men-

tioned in Table 2.1 and in Table 3.2 have been investigated for different grid points 25,

40, and 55, and points 100, 500, and 1000 in both non-clothing and clothing cases are

taken at the increment to demonstrate the validity and applicability of the developed

78



Figure 3.6: Temperature profile along radial direction in ∆t = 0.01 sec (left) Mesh size

∆r = 0.001 m (right) mesh size ∆r= 0.0005 m.

Figure 3.7: Temperature profile along radial direction in ∆t = 0.4 sec (left) mesh size

∆r= 0.001 m (right) mesh size ∆r = 0.0005 m .

Figure 3.8: Temperature profile along radial direction with mesh size ∆r = 0.0005 m at

time step (left) ∆t = 0.01 sec (right) ∆t = 0.4 sec.

numerical implicit FD scheme at time increment in 0.01 sec in Figures 3.9 and 3.10.

The tissue thickness of the human cylindrical limb in this model is taken L= 0.03 m

[73, 123], from the body core to the skin surface in addition to the thickness of clothes
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0.005 m [38], the results are calculated with the new thickness L = 0.035 m .

Figure 3.9: Temperature profile along radial direction in 180 sec with gride points 25,

40, and 55 (left) nude and (right) clothed body.

Figure 3.10: Temperature profile along the radial direction in 180 sec with gride points

100, 500, and 1000 (left) nude and (right) clothed body.

Figure 3.11: Temperature profile at the interface (skin surface) with different mesh sizes

(left) at ∆t = 0.01 sec and (right) at 0.4 sec.
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Figure 3.12: Temperature profile at the interface (clothes surface) with different mesh

sizes (left) at ∆t = 0.01 sec and (right) at 0.4 sec.

Figure 3.13: Temperature profile when ∆r= 0.0005 m at different small time steps ∆t.

The numerical verification has been performed in Figure 3.9 with three different mesh

sizes (different grid points) 25, 40, and 55 at time increment ∆t = 0.01 sec for non-

clothing left-hand and clothing right-hand system of the human body. The tempera-

ture of the nude body (left) at the skin surface is 28◦C. In the clothing state (right),

on the contrary, the temperature rises up to 32◦C. This result is because of the effect

of clothing insulation and other parameters related to clothes in Table 3.2. A Similar

outcome has appeared in Figure 3.10 with different grid points (mesh sizes) 100, 500,

and 1000 at time increment (step) ∆t = 0.01 sec. This observation has taken up to

3 min. The temperature in Figure 3.9 and in Figure 3.10 coincides on the same curve

even though the mesh sizes are different for non-clothing, the nude body left-hand

and the corresponding temperature for the clothed body right-hand are almost the

same. In both cases, the Figures are independent no matter what the mesh sizes are.

These results verify the stability of the implicit FD scheme for a newly developed

model with clothing at the boundary.

81



In the case of the protective layer, the interface temperature (skin surface ) obtained

from results having different mesh sizes at time step 0.01 sec and 0.4 sec are repre-

sented in graphs of left-hand and right-hand Figure 3.11 and exhibited in Tables 3.3

and 3.4, respectively.

Similarly, the temperatures at the surface of cloth with different mesh sizes at time

steps 0.01 sec and 0.4 sec are represented in graphs of left-hand and right-hand Figure

3.11 and exhibited in Tables 3.5 and 3.6, respectively. Furthermore, the temperature

profile at different time steps 0.05 sec, 0.1 sec, 0.4 sec, and 0.5 sec when mesh size is

0.0005 m has been presented in Figure 3.13 and tabulated in Table 3.7.

Table 3.3: Temperature profile at the interface (skin surface) when ∆t = 0.01 sec.

∆r (m) Temperature Temperature Temperature
in 60 sec in 120 sec in 180 sec

0.001 36.76374598 36.30866076 35.85715129
0.0001 36.76037207 36.30920285 35.86597663
0.00005 36.7602856 36.309688591 35.86747444

Table 3.4: Temperature profile at the interface (skin surface) when ∆t = 0.4 sec.

∆r (m) Temperature Temperature Temperature
in 60 sec in 120 sec in 180 sec

0.001 36.76374598 36.30866076 35.85715129
0.0001 36.76037207 36.30920285 35.86597663
0.00005 36.7602856 36.309688591 35.86747444

Table 3.5: Temperature profile at the clothing surface when ∆t = 0.01 sec.

∆r (m) Temperature Temperature Temperature
in 60 sec in 120 sec in 180 sec

0.001 34.8052701 33.88093058 33.19336681
0.0001 34.80522479 33.9068697 33.2500773
0.00005 34.80551148 33.91018652 33.25706422

As the graphs presented in Figure 3.11 with temperature profile in Tables 3.3 and 3.4

for body parts and in Figure 3.12 with temperature profile inTables 3.5 and 3.6 for

clothes coincide respectively. It can be concluded that the numerical solution of the

model is stable and convergence with respect to the grid.

The temperatures in Table 3.7 and graphs in Figure 3.13 at different time steps
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Table 3.6: Temperature profile at the clothing surface when ∆t = 0.4 sec.

∆r(m) Temperature Temperature Temperature
in 60 sec in 120 sec in 180 sec

0.001 34.79948362 33.87632483 33.18921782
0.0001 34.80522479 33.9068697 33.2500773
0.00005 34.79994767 33.90584859 33.25312605

Table 3.7: Temperature profile when ∆r = 0.0005 m at different time steps.

∆r (m) Temperature Temperature Temperature
in 60 sec in 120 sec in 180 sec

0.05 34.80467674 33.8804583 33.19294127
0.1 34.803935 33.87986792 33.19240934
0.4 34.79948362 33.87632483 33.18921782
0.5 34.79799948 33.8751435 33.18815399

∆t = 0.05 sec, ∆t = 0.1 sec ,∆t = 0.4 sec, and ∆t = 0.5 sec with ∆r = 0.0005 m,

coincide, respectively. So, all graphs are independent of the time step sizes.

These results help to verify the stability and convergence of the FD scheme for the

model.

3.7.5 Validation of the Results

The solution of the bioheat transfer equation depends upon the feature of human

body organs, blood flow, and environmental situation. The behavior of the solution

procedure is also influenced by the specified initial and boundary conditions and the

insulation values of the structure of the fabric. Both Neumann boundary condi-

tion—the flux boundary condition and the modified Robin boundary condition—a

mixed boundary conditions are used in this work. The Differential equation is approx-

imated into the systems of difference equations using Taylor’s series method. Euler’s

implicit finite difference method is used with these initial and boundary conditions to

solve the models independently for the human tissue element and the insulating layer,

then combine the results with the interface condition. By constructing a lemma and

a few theorems, it has also been proven that the proposed FD schemes for the cylin-

drical shape of the body with a protective garment system and its effects are solvable

(existence), consistent, stable, and convergent. The developed model, therefore, is

theoretically valid. Additionally, the numerical computational results in this work

seem to agree with the similar values of experimentally tested and verified clothing
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parameters by ISO-7730, ASHARE standard 55 [48, 49], and the results Figures 3.9

and 3.10 for clothing at the boundary have good agreement with the results of Zhao

et al. [124].

3.8 Conclusion

The mathematical model of the Pennes type has been expanded by incorporating the

clothing parameter as a protective layer. The model has been solved using a fully

implicit, finite difference method. The body temperature decreases up to 17.5◦C for

the nude body after the addition of wind velocity and walking speed to the modified

convective term, in the existing Robin’s condition. On the contrary, the temperature

of the body reaches 34.5◦C while adding the effective clothing area factor in the usual

Robin’s boundary condition. Additionally, wearing clothing simultaneously prevents

the body from a quick drop in skin temperature. Suitable management of clothing in

harsh climatic conditions keeps the body at a highly satisfactory and comfort level.

The lemma and theorems have been established for analyzing the solvability, consis-

tency, stability, and convergence of the implicit FD scheme of the model. We conclude

that the developed model with the clothing phenomena is stable, consistent, and con-

vergent on the basis of grid points as well as time step sizes. The mathematically

verified model is useful for clothing and environmental designers as well as biomedical

researchers, who can be benefitted from the knowledge of microclimate temperature

and can accordingly design workplace and functional clothing so that people can feel

comfortable for better performance. The developed model also fosters advanced cloth-

ing systems to provide better comfort to the human body. The results seem to agree

with the similar values of clothing parameters, which are experimentally verified in

ASHRAE [49], and Figure 3.10 for clothing at the boundary has good agreement with

the results by Zhao et al. [124].
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CHAPTER 4

TWO-DIMENSIONAL AXISYMMETRIC MODEL WITH
TIME-DEPENDENT METABOLISM AND PHYSICAL
ACTIVITIES

4.1 Introduction

Previously developed models, especially based on one dimensional bioheat model, we

have analyzed the temperature distribution only in the radial direction. In this Chap-

ter, we develop a two-dimensional axisymmetrical bioheat transfer model in cylindri-

cal coordinates, assuming symmetry in the angular direction incorporating a time-

dependent metabolic heat generation during physical activities and the temperature-

dependent sweating effect at boundary conditions.

Although there are considerable research articles available on the two-dimensional

axisymmetrical bioheat model [5, 23, 58, 59, 80], we did not find any work which has

incorporated clothing in their research. We have also included clothing parameters in

the two-dimensional model. This model accounts for the basal physiological proper-

ties of the tissue material based on ASHRAE Standard 55-2017 and other literatures

[38, 48, 49, 77, 84, 93, 124] as well as time-dependent metabolism and temperature-

dependent sweating. The proper result cannot be recognized if the clothing system

and its significance for preserving human thermal comfort are ignored. Thus, this

chapter also covers garment parameters at boundary conditions. Sweating is an im-

portant mechanism of heat loss from the human body. Evaporation accounts for 22%

of heat loss under typical resting settings. The body’s primary method of heat dis-

sipation is sweating, especially while exercising. Physical exercise leads to heat loss

from the body and keeps the body in a comfortable condition. All these primary con-

texts are covered in section 4.2. Modifying the existing Robin’s boundary condition

by taking clothing and nonlinear sweating into account is the major focus in section
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4.3. Development and implementation of the numerical methods, simulation results

and discussion, and conclusion of the Chapter 4 are presented in sections 4.4, 4.5, and

4.6 respectively .

4.2 Role of Clothing, Physical Activities, Metabolism and Sweating

Clothing safeguards the body from extreme climatic conditions, and physical activity

helps to keep a person physically fit and healthy. The human anatomical structure,

which involves multiple heat transfer phenomena, is extensively responsible for main-

taining the person in a comfort zone with an equilibrium core temperature [38, 42, 78].

One would be able to easily drain perspiration and feel comfortable in the light cloth-

ing system. In contrast, wearing thick, impermeable clothing will prevent the body

from rapidly warming up in hot environments due to reduced evaporation and exercise

maintains a person’s physical health and fitness.

4.2.1 Physical Activities and Metabolism

The rate of production of energy due to the utilization of oxygen and food is known

as the metabolic rate. ISO 8996, ANSI/ASHRAE standard 55− 2017 defines that

the metabolic rate is the heat obtained from the transformation of chemical energy

and mechanical work from personal activities [48, 49]. The amount of metabolic heat

generation rate highly depends upon the various physical activities at the different

time levels. The large amount of metabolic energy that produces more heat due to

more physical activities may sometimes create a problem in blood circulation and lead

to a heart attack if the storage metabolism cannot dissipate properly. The heat and

vapor transfer properties of clothing worn by a person have a major role in his/her

strength in the workplace. Many researchers Havenith, Lundgren, Kuklane, Van Hoof,

Oĝulata [48, 49, 55, 85, 113] who got involved in the field of clothing thermal comfort,

have used metabolism related to body surface area or body mass with its unit of

W/m2 mentioning the metabolism of seated person is 1 MET = 58.2 W/m2. So far

as research related to biomedical is concerned [29, 31, 65, 74, 123], the activity-based

metabolic heat generation rate is generally considered as related to body volume with

its unit W/m3.

Healthy human tissue has 1114 W/m3 [108], the average basal metabolic rate (BMR),

which is the metabolic heat generation rate in the rest condition of a person. The

more blood flow, the more metabolic rate. It may change according to age, sex, and
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the different activities. Shrestha and Acharya [106, 107] recently studied 1D mathe-

matical model for thermoregulation in the human dermal part during sarcopenia and

the metabolic differences during physical exercise. The finite element method for the

cartesian coordinate system has been applied considering only the case for the non-

clothing body. The metabolic rates 3266.67 (W/m3), 3889 (W/m3) and 7918 (W/m3)

during cleaning, walking and running, respectively [48, 107] in 2000 seconds are taken

and presented in the Figure 4.1.

Figure 4.1: Metabolism in different activities.
.

The nature of this S-shaped graph in Figure 4.1 shows the logistic behavior of time-

dependent metabolism in which a person’s metabolic rate initially rises when he/she

engage in various activities and then remains stable after a period of 750 seconds.

4.2.2 Physical Activities, Evaporation and Sweating

The human body regulates its temperature through perspiration by losing heat as

tiny water drops from the skin’s surface. The evaporative heat loss may be sensible

and insensible. The sensible heat loss occurs by regulatory sweating and insensible

heat loss by skin diffusion. The level of different physical activities determines the

sweat evaporation in the body, which depends on skin temperature Tsk. The sweat

evaporation rate Esk, as the function of skin surface temperature, is given by [56, 78,

107]

Esk = 8.47× 10−5 [(0.1× Tsk + 0.9× Ta + 0.9)− 36.6] . (4.1)

87



Evaporative heat transfer coefficients

17.008×10−6(W/m2 sec), 24.792×10−6(W/m2 sec), 33.190×10−6(W/m2 sec). at rest-

ing, cleaning and running are taken and presented in left-hand Figure 4.2.

The absorption of water vapor with anhydrous calcium chloride across a surface area

of skin results in insensible perspiration, which is the water evaporation from the skin’s

surface without the presence of visible sweat droplets. At a high ambient tempera-

ture and high metabolic rate, the body produces more sweat than at a low ambient

temperature and at rest.

The insensible perspiration from the surface of the skin Esk that depends upon the

level of activity and ambient temperature is given by [31, 60]

Esk = ηeAsk(Pw,sk − Pw, air) (4.2)

and Pw,sk = w Tsk − S (4.3)

where
ηe : 0.35, evaporative coefficient ( W/m2 mm Hg)
Ask: skin surface area (m2)
Pw, air: 14.69, vapor pressure of air (Kpa)
Pw,sk : water vapor pressure at the skin with constant value S= 2.53.

The vapor pressure of water Pw,sk, the function of the skin surface temperature with

different values of w, is presented in right-hand Figure 4.2.

Both the evaporative heat transfer coefficient Esk and the vapor pressure of water

Pw, sk have a linear relationship with the skin surface temperature that can be seen

in Figure 4.2.

Figure 4.2: (left) Evaporative heat transfer and (right) water vapour pressure.
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4.3 Two-Dimensional Axisymmetric Bioheat Transfer Model

The human body is shaped like a cylinder, including individual body parts. Therefore,

we employed the cylindrical coordinate system for the course of this investigation. For

computational purposes in this section, we prefer an axisymmetric two-dimensional

bioheat transfer model that simulates a three-dimensional object in reality.

4.3.1 Assumptions of the Model

Cylindrical shapes are considered for numerical and analytical techniques in a vari-

ety of engineering and scientific computations. These forms are typically considered

normal shapes for heat transfer. In Chapter 2, the bioheat transfer equation in a

three-dimensional cylindrical coordinate system (r, θ, z) is presented. The general

form of the equation (2.20) can be applied for the study of heat flow in radial, an-

gular, and axial directions r, θ, and z, respectively. Keeping the angular direction

constant in many situations, axisymmetric computations may now be performed with

angular symmetry as shown in Figure 4.3. The transient bioheat transfer equation,

Figure 4.3: Cylindrical coordinate system.

formulated for the thermal response of the living tissue, incorporates the heat transfer

mechanisms due to physical and physiological activities [93, 108] is given by

ρc
∂T

∂t
= ∇ · [K∇T ] + ρbcbwb(Ta − T ) + qm(t), (4.4)
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where
ρ : tissue density (kg/m3)
c : tissue specific heat (J/kg◦C)
K : thermal conductivity of tissue(W/m◦C)

∇ · [K∇T ] = K

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2

)
(4.5)

wb : blood perfusion rate (kg/m3 sec)
cb : blood specific heat (J/kg◦C)
Ta : arterial blood temperature (◦C)
qm(t) : metabolic heat generation (W/m3) implemented as [107]

qm(t) =

[
qb +

(qA − qb)
1 + e−αc (t−tm)

]
(4.6)

where
qb : basal metabolic rate (W/m3)
qA : activity threshold metabolism (W/m3)
tm : sigmoid midpoint
αc : activity control parameter per unit time (0 ≤ αc ≤ 1).

The bioheat equation (4.4) is a modification of the bioheat equation suggested by

Pennes’ in 1948 with total heat storage on the left-hand side; the first, second, and

third terms of the right-hand side are diffusion, perfusion, and metabolic heat gener-

ation, respectively. The modified term qm(t) expressed in (4.6) is the metabolic heat

generation during physical exercise. The symbols r and z used in equation (4.5), be

the radial and the axial distance from the core towards the boundaries, represented

by OA and OC respectively in left-hand and right-hand Figure 4.4.

The shape of human body parts appears to be axially symmetric whose cylindri-

cal limb and a cross-sectional slice are shown in Figure 4.4. So, two-dimensional

axisymmetrical unsteady-state temperature profiles from the bioheat equation (4.4)

have been performed in both the radial and axial directions by using a cylindrical

coordinate system with temperature as the function of (r, z, t) only.

4.3.2 Boundary Conditions

The boundary conditions with inner boundary D1 at the core, outer boundary D2 at

the skin surface (expose to the environment), bottom and top boundaries D3 and D4

in Figure 4.3 are given by

−K∂T

∂r

∣∣∣∣∣
r=0

= 0, for t = 0 inD1. (4.7)
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Figure 4.4: Cylindrical human body shape and Cross-sectional slice (Ω) with boundaries.

−K∂T

∂r

∣∣∣∣∣
r=R

= hA(T − T∞) + Esk, for t > 0 inD2. (4.8)

−K∂T

∂z

∣∣∣∣∣
z=0

= 0, for t > 0 inD3. (4.9)

−K∂T

∂z

∣∣∣∣∣
z=Z

= 0, for t > 0 inD4. (4.10)

where Esk is the sweat evaporation given in equation (4.1), and (4.2) for sensible and

insensible perspiration, h∞ be ambient temperature and hA be the combined heat

transfer coefficient due to convection and radiation along with clothing insulation

which is given by

hA = Fcl (hconv + hr) and Fcl =
Ia

Icl + Ia/fcl
.

4.3.3 Initial Condition

The initial condition at t = 0 in the model is

T (r, z, t = 0) = T0(r, z).

As the irregular shape of the human body organs poses a challenge for obtaining

the exact solution, the numerical scheme is chosen to provide a better approximation

solution for a two-dimensional bioheat transfer model with sweating and clothing

effect at the outer boundary.
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4.4 Numerical Methods for Two-Dimensional Axisymmetric Bioheat Equa-
tion

Solving the bioheat transfer problems using numerical methods is of great interest in

the field of physiological and biological research for observing the effect of the fluc-

tuation in temperature due to various factors. In one dimensional case, as discussed

in previous Chapters, the temperature is assumed to flow only along the radial (r)-

direction whereas in the axisymmetric two-dimensional (r, z) case, it flows in both the

radial and axial directions. Here we describe the finite difference discretization pro-

cess and deduce the Euler’s Explicit, Euler’s Implicit, and Crank- Nicolson methods

in such a cylindrical geometry as shown in Figure 4.5.

Figure 4.5: FD discretization of spatial domain (Ω) in radial and axial direction with

time domain.

4.4.1 Finite Difference Discretization

We set up a two-dimensional (r, z) mesh on a cylindrical-shaped human limb by

dividing the radial length [0, R] into Mr sub intervals and the axial length [0, Z] into

Mz subintervals with ∆r = R/Mr and ∆z = Z/Mz, respectively and construct a

three-dimensional grid (ri, zj, tn) with ri = i∆r, i = 0, 1, 2, · · · ,Mr, zj = j∆z, j =

0, 1, 2, · · · ,Mz and tn = n∆t, n = 1, 2, · · · , N as shown in Figure 4.5
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Explicit Scheme

Consider that T ni,j denotes T (ri, zj, tn).

The partial differential equation (4.4) can be approximated using explicit scheme as

∂T

∂t

∣∣∣∣∣
(ri,zj ,tn)

≈
T n+1
i,j − T ni,j

∆t
(4.11)

∂T

∂r

∣∣∣∣∣
(ri,zj ,tn)

≈
T ni+1,j − T ni−1,j

2∆r
(4.12)

∂2T

∂r2

∣∣∣∣∣
(ri,zj ,tn)

≈
T ni−1,j − 2T ni,j + T ni+1,j

∆r2
(4.13)

∂2T

∂z2

∣∣∣∣∣
(ri,zj ,tn)

≈
T ni,j−1 − 2T ni,j + T ni,j+1

∆z2
(4.14)

With the help of equations (4.11), (4.12), (4.13), and (4.14), the Explicit scheme for

axisymmetric bioheat transfer equation (4.4) at time level tn becomes

Tn+1
i,j − Tni,j

∆t
= D

[
Tni−1,j − 2Tni,j + Tni+1,j

∆r2
+
Tni+1,j − Tni−1,j

2ri∆r
+
Tni,j−1 − 2Tni,j + Tni,j+1

∆z2

]
+ β

(
Ta − Tni,j

)
+ γnm,i,j , (4.15)

where D =
K

ρc
and β =

wb cb ρb
ρ c

, γm =
qm(t)

ρc
.

The construction of grid for two-dimensional cylindrical geometry in Explicit scheme

is shown in Figure 4.6.

4.4.1.1 Implicit Scheme

In the equation (4.5) we denote T (ri, zj, tn+1) by T n+1
i,j . The partial differential

equation (4.5) can be approximated using an implicit scheme as

∂T

∂t

∣∣∣∣∣
(ri,zj ,tn+1)

≈
T n+1
i,j − T ni,j

∆t
(4.16)
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Figure 4.6: Schematic representation of the relationship between the variables at two

successive time steps in Explicit method with 5 by 5 grid system.

∂T

∂r

∣∣∣∣∣
(ri,zj ,tn+1)

≈
T n+1
i+1,j − T n+1

i−1,j

2∆r
(4.17)

∂2T

∂r2

∣∣∣∣∣
(ri,zj ,tn+1)

≈
T n+1
i−1,j − 2T n+1

i,j + T n+1
i+1,j

∆r2
(4.18)

∂2T

∂z2

∣∣∣∣∣
(ri,zj ,tn+1)

≈
T n+1
i,j−1 − 2T n+1

i,j + T n+1
i,j+1

∆z2
. (4.19)

With the help of equations (4.16), (4.17), (4.18), and (4.19), the Implicit scheme for
equation (4.4) at time level tn+1 becomes

Tn+1
i,j − Tni,j

∆t
= D

[
Tn+1
i−1,j − 2Tn+1

i,j + Tn+1
i+1,j

∆r2
+
Tn+1
i+1,j − T

n+1
i−1,j

2ri∆r
+
Tn+1
i,j−1 − 2Tn+1

i,j + Tn+1
i,j+1

∆z2

]
+ β

(
Ta − Tn+1

i,j

)
+ γn+1

m,i,j (4.20)
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Figure 4.7: Schematic representation of the relationship between the variables at two

successive time steps in Implicit method with 5 by 5 grid system.

Crank-Nicolson Scheme

FD scheme using a weighted average θ ( 0 ≤ θ ≤ 1) of the derivatives
∂T

∂r
,
∂2T

∂r2
, and

∂2T

∂z2
at two times label tn and tn+1 is given by [21]

1

∆t

[
T n+1
i,j − T ni,j

]
− θ

[
D

(
T n+1
i−1,j − 2T n+1

i,j + T n+1
i+1,j

(∆r)2
+

1

2ri∆r

(
T n+1
i+1,j − T n+1

i−1,j

))]

+θ

[
D

(
T n+1
i,j−1 − 2T n+1

i,j + T n+1
i,j+1

(∆z)2

)
+
(
βT n+1

i,j − γn+1
m,i,j

)]

= (1− θ)
[
D

(
T ni−1,j − 2T ni,j + T ni+1,j

(∆r)2
+

1

2ri∆r

(
T ni+1,j − T ni−1,j

))]
+ (1− θ)

[
D

(
T ni,j−1 − 2T ni,j + T ni,j+1

(∆z)2

)
+ βT ni,j + γnm,i,j

]
or (1−∆tθβ)T n+1

i,j − θ
[
Fr
(
T n+1
i−1,j − 2T n+1

i,j + T n+1
i+1,j

)
+

Fr1
2ri∆r

(
T n+1
i+1,j − T n+1

i−1,j

)]
+θ
[
Fz
(
T n+1
i,j−1 − 2T n+1

i,j + T n+1
i,j+1

)
+ ∆tγn+1

m,i,j

]
= (1− θ)

[
Fr
(
T ni−1,j − 2T ni,j + T ni+1,j

)
+

Fr1
2ri∆r

(
T ni+1j − T ni−1,j

)]
+ (1− θ)

[
Fz
(
T ni,j−1 − 2T ni,j + T ni,j+1,j

)
+ (1−∆tβ)T ni,j + ∆tγnm,i,j

]
. (4.21)

Equation 4.21 is difference scheme having truncation error of order O (∆t2 + ∆z2 + ∆r2) ,
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where Fr =
D∆t

(∆r)2
, Fr1 =

D∆t

(∆r)
, and Fz =

D∆t

(∆z)2
.

The construction of a grid for two-dimensional cylindrical geometry in the Crank-

Nicolson scheme is shown in Figure 4.8.

Figure 4.8: Schematic representation of the relationship between the variables at two

successive time steps in the Crank-Nicolson method with 5 by 5 grid system.

According to the value of weighted average ′θ′, we can decide whether the finite scheme

is explicit, implicit, or Crank-Nicolson method as follows

θ =


0 Scheme is explicit

0.5 Scheme is Crank-Nicolson

1 Scheme is implicit

Mesh Points Numbering

A system of the algebraic equation (4.21), coupled at the new time level n + 1, has

been organized as a structured matrix system of time-dependent metabolism. We

must solve a system of (linear) algebraic equations, given below

AT = b, (4.22)
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where A is the coefficient matrix that is sparse, T is the vector of unknowns, and b

is the vector on the right-hand side. Let p be the single index corresponding to the

position of the mesh point (i, j). Then we have a two-dimensional nodal arrangement

as shown in Figure 4.9

Figure 4.9: 2D mesh discretization with boundaries.

Now introducing a mapping m(i, j) from a mesh point with indices (i, j) to the

corresponding unknown position p in Figure 4.9 from the equation system

p = pos(i, j) = j × (Mr + 1) + i.

For the interior points of the left-hand side in equation (4.21)

Apos(i,j),pos(i,j) = Ap,p = 1 + 2θ (Fr + Fz) + β∆t

Ap,pos(i−1,j) = Ap,p−1 = θ

(
−Fr +

Fr1
ri

)

Ap,pos(i+1,j) = Ap,p+1 = θ

(
−Fr −

Fr1
ri

)

Ap,pos(i,j−1) = Ap,p−(Mz+1) = −θFz
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Ap,pos(i,j+1) = Ap,p+(Mz+1) = −θFz

The corresponding right-hand side vector in the equation system has the entries bp

where p represents the corresponding number of the equations. We have from the

right-hand side of equation (4.21)

bp[i, j] = T ni,j + (1− θ)
[
Fr1(T

n
i+1,j − T ni−1,j)

ri
+ Fr

(
T ni−1,j − 2T ni,j + T ni+1,j

)]
+ Fz

(
T ni,j−1 − 2T ni,j + T ni,j+1

)
+ (1−∆tβ)T ni,j + ∆t γm (ri, zj, tn)

+ ∆t θ γm (ri, zj, tn+1) , for j = 1, · · · ,Mz, for i = 1, · · · ,Mr. (4.23)

4.4.1.2 FD Scheme of Boundary Conditions

FD scheme for Neumann boundary with zero flux at inner D1, bottom D3, and top

D4 in equations (4.7), (4.9), and (4.10) are boundaries of the computational domain

Ω, respectively. These fluxes at corresponding boundaries are implemented for time

steps n and n+ 1 as follows.

T n−1,j = T n1,j, T ni,−1 = T ni,1, T ni,Mz+1
= T ni,Mz−1

and

T n+1
−1,j = T n+1

1,j , T n+1
i,−1 = T n+1

i,1 , T n+1
i,Mz+1

= T n+1
i,Mz−1

The outer body surface D2, covered by clothing, is exposed to a hot and cold envi-

ronment. So, Robin boundary condition (4.8) due to convection, radiation, as well as

the effective clothing area factor and sweat evaporation, is implemented for the outer

boundary. The FD scheme in this outer boundary is given by

T nMr+1,j = T nMr−1,j −
2hA∆r

k

[(
T nMr,j − T∞

)
+ Esk

]
T nMr+1,j = TMr−1,j − 2Bi

[(
T nMr,j − T∞

)
+ Esk

]
, (4.24)

and

T n+1
Mr+1,j = T n+1

Mr−1,j −
2hA∆r

k

[(
T n+1
Mr,j − T∞

)
+ Esk

]
T n+1
Mr+1,j = T n+1

Mr−1,j − 2Bi
[(
T n+1
Mr,j − T∞

)
+ Esk

]
, (4.25)
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where Bi =
hA ∆r

K
be the Biot number.

After implementation of the above FD scheme of inner, bottom, top and outer bound-
ary conditions for the corresponding (scheme) of the expression bp[i, j] in equation
(4.23) for each boundary respectively prescribes the discretized equations as follows

bp[0, j] = Tn0,j + (1− θ)
[
Fr1(Tn0+1,j − Tn0−1,j)

ri
+ Fr

(
Tn0−1,j − 2Tn0,j + Tn0+1,j

)]
+ Fz

(
Tn0,j−1 − 2Tn0,j + Tn0,j+1

)
+ (1−∆tβ)Tn0,j + ∆t γm (r0, zj , tn)

+ ∆t θ γm (r0, zj , tn+1) , for j = 1, · · · ,Mz, for i = 0. (4.26)

bp[i, 0] = Tni,0 + (1− θ)
[
Fr1(Tni+1,0 − Tni−1,0)

ri
+ Fr

(
Tni−1,0 − 2Tni,0 + Tni+1,0

)]
+ Fz

(
Tni−1,0 − 2Tni,0 + Tni+1,0

)
+ (1−∆tβ)Tni,0 + ∆t γm (ri, z0, tn)

+ ∆t θ γm (ri, z0, tn+1) , for i = 1, ...,Mr for j = 0. (4.27)

bp[i,Mz] = Tni,Mz
+ (1− θ)

[
Fr1(Tni+1,Mz

− Tni−1,Mz
)

ri
+ Fr

(
Tni−1,Mz

− 2Tni,Mz
+ Tni+1,Mz

)]
+ Fz

(
Tni,Mz−1 − 2Tni,Mz

+ Tni,Mz+1

)
+ (1−∆tβ)Tni,Mz

+ ∆t γm (ri, zMz , tn)

+ ∆t θ γm (ri, zMz , tn+1) , for i = 1, · · · ,Mr, for j = Mz. (4.28)

bp[Mr, j] = (1− θ)
[
Fr
(
2TnMr−1,j − 2(1 +Bi)TnMr,j

)
+

Fr1
2rMr∆r

(
−2BiTnMr,j

)]
+ (1− θ)

[
Fz
(
TnMr,j−1 − 2TnMr,j + TnMr,j+1,j

)
+ (1−∆tβ)TnMr,j

]
+ (1− θ)

[
∆tγm + 2BiFr

(
1 +

Fr1
2rMr

)
T∞

]
, (4.29)

for j = 1, · · · ,Mz, for i = Mr.

4.5 Numerical Results and Discussions

The rate of metabolic heat generation increases when a person is doing some house-

work and other activities. With the help of the sparse matrix in equation (4.22),

as well as the initial condition T (r, z, t = 0) = T0(r, z) and boundary conditions for

each in equations (4.7), (4.8), (4.9), and (4.10), their effects on body temperature are

revealed. In these circumstances, the sweating case’s axial and radial temperature

profiles are compared to those for the non-sweating case. Meanwhile, we should be
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conscious of the nature of fabric throughout the physical activity period [88]. The

activity-based metabolic rate during running, the evaporation coefficient, the activity

control parameter, and the basal metabolic rate are cited from [31, 107] and tabulated

in Table 4.1. The material properties of the human tissue and clothes have already

been summarized in Table 2.1 of Chapter 2 and in Table 3.2 of Chapter 3 for the

numerical verification of the results. The results obtained from the Crank-Nicolson

scheme of the equation (4.4) are presented in Figures 4.10–4.13.

Table 4.1: Physical parameters related to metabolism and vapor pressure [31, 108]

.
Parameters Symbols Values Units

Basal metabolism qb 1114 W/m3

Activity based metabolism (running) qA 7918 W/m3

Activity control parameter α 0 ≤ α ≤ 1 / sec

Sigmoid midpoint 300

Evaporation coefficient β 4.66628 W/m2 Pkpa

Surface area of body part Ask 0.09990 m2

Vapor pressure of water at air Pw,air 14.69 Pkpa

Environmental temperature T∞ 24 ◦C

In the case of non-sweating at t = 150 sec in left-hand Figure 4.10, the tempera-

ture of a runner increases at a distance of 0.002 m is 37.2◦C . The temperature is

approximately equal to 37.3◦C at a distance from 0.005 m to 0.020 m. After then,

the temperature decreases slightly in the radial direction and it becomes 36.90◦C at

the skin surface due to the convective and radiative heat transfer at the boundary.

The same nature of the remaining graphs is depicted in the same Figure 4.10 at

300 sec, 450 sec, 600 sec, where the temperature also decreases slowly from the core

towards the skin surface up to 37.01◦C, 37.2◦C and 37.4◦C respectively. These radial

temperature profile in Table 4.1, have been observed at the middle of the length in

the longitudinal direction at z = 0.25 m.

Table 4.2: Radial temperature profile at body core to the skin surface at various lengths

in the (left) non-sweating case at zj= 0.25 m.

Time(s) 0.002(m) 0.005(m) 0.010(m) 0.015(m) 0.020(m) 0.025(m) 0.030(m)

150 37.20◦C 37.30◦C 37.30◦ C 37.30◦C 37.30◦C 37.18◦C 36.90◦C

300 37.40◦C 37.55◦C 37.60◦ C 37.59◦C 37.50◦C 37.32◦C 37.01◦C

450 37.55◦C 37.75◦C 37.85◦ C 37.85◦C 37.81◦C 37.70◦C 37.20◦C

600 37.70◦C 37.95◦C 38. 10◦C 38.75◦C 37.90◦C 37.70◦C 37.40◦C

When sweat evaporation of a runner is taken into consideration, the graphs in the
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Figure 4.10: Radial temperature profile of a runner in the case of (left ) non-sweating
and (right) sweating.

right-hand Figure 4.10 depict the temperature profile at 150 sec the equivalent tem-

peratures at distances of 0.002 m to 0.005 m as in the left-hand Figure 4.10, shown in

Table 4.3. In 300 sec, 450 sec, 600 sec the temperature increases near core and reaches

up to 37.39◦C, 37.50◦C, and 37.60◦C, again increasing slightly from core to the radial

distance 0.015 m then drops sharply when it approaches the skin’s surface, where it

hits 36.63◦C, 36.63◦C 36.63◦C, and 36.63◦C in 150 sec, 300 sec, 450 sec, 600 sec, re-

spectively. It occurs because sweat evaporation is the major cause of heat loss through

the skin. The details of its impacts on temperature distribution are shown in Table

4.3 at axial distance z = 0.25 m from the bottom or middle of the height of the limb.

Table 4.3: Radial temperature profile at body core to the skin surface at various lengths

in the sweating case at zj= 0.25 m.

Time (s) 0.002(m) 0.005(m) 0.010(m) 0.015(m) 0.020(m) 0.025(m) 0.030(m)

150 37.20◦C 37.30◦C 37.30◦ C 37.30◦C 37.21◦C 37.05◦C 36.63◦C

300 37.39◦C 37.50◦C 37.57◦ C 37.50◦C 37.40◦C 37.10◦C 36.75◦C

450 37.50◦C 37.70◦C 37.77◦ C 37.70◦C 37.50◦C 37.20◦C 36.78◦C

600 37.60◦C 37.88◦C 37. 95◦C 37.90◦C 37.62◦C 37.30◦C 36.80◦C

Table 4.4: Longitudional temperature profile at body core to the skin surface at various

length in non-sweating case at r = 0.01 m.

Time (s) 0 (m) 0.025(m) 0.1(m) 0.2(m) 0.25(m) 0.3(m) 0.4(m) 0.475(m)

150 35.50◦C 36.50◦C 37.25◦C 37.27◦C 37.25◦C 36.50◦C 35.50◦C

300 35.75◦C 36.75◦C 37.50◦C 37.51◦C 37.50◦C 36.75◦C 35.75◦C

450 36.01◦C 37.00◦C 37.70◦C 37.75◦C 37.70◦C 37.00◦C 36.01◦C

600 36.25◦C 37.25◦C 37.78◦C 38.00◦C 37.78◦C 37.25◦C 36.25◦C
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Figure 4.11: Longitudinal temperature profile of runner in the case of (left ) non-sweating

and (right) sweating.

Table 4.5: Longitudional temperature profile at body core to the skin surface at various

length in sweating case at r = 0.01 m.

Time (s) 0 (m) 0.025(m) 0.1(m) 0.2(m) 0.25(m) 0.3(m) 0.4(m) 0.475(m)

150 35.50◦C 36.50◦C 37.25◦C 37.27◦C 37.25◦C 36.50◦C 35.50◦C

300 35.75◦C 36.75◦C 37.48◦C 37.50◦C 37.48◦C 36.75◦C 35.75◦C

450 36.00◦C 36.80◦C 37.60◦C 37.65◦C 37.60◦C 36.80◦C 36.00◦C

600 36.20◦C 37.25◦C 37.75◦C 37.80◦C 37.75◦C 37.25◦C 36.20◦C

Longitudinal temperature profile at different time levels up to 600 sec at 0.01 m, the

radial distance from body core is observed and presented in Figure 4.11. The sym-

metrical graphs in Figure 4.11 during running have a time-dependent metabolism.

These axial temperature increase as exercise time increases and reaches up to 37.27◦C,

37.51◦C, 37.75◦C, and 38.00◦C, at 150 sec, 300 sec, 450 sec, 600 sec, respectively in

the left-hand Figure 4.11 for the non-sweating case. There is only a slight varia-

tion in temperature with similar nature of graphs in the left-hand side of Figure

4.11 and these temperature reach up to 37.27◦C, 37.50◦C, 37.65◦C, and 37.80◦C, in

150 sec, 300 sec, 450 sec, 600 sec respectively in sweating case. These results can be

seen in the right-hand Figure 4.11. This is because of the presence of water vapor

pressure on skin and air during perspiration. All the graphs in Figure 4.11 and the

corresponding values of temperature in Tables 4.4 and 4.5 ensure the axially symmet-

ric temperature profile with clothing and sweating effect in the human limb during

physical activities special in running cases.

Heat maps (contour and surface plots) for the temperature profile with the same pa-

rameter values as in radial and longitudinal case at 600 sec are shown in Figures 4.10

and 4.11 for the non-sweating and sweating case. Both contour and surface plots are

also axially symmetrical and both, core and skin temperatures in the right-hand plots

of Figures 4.12 and 4.13 are less than that of the temperatures in the left-hand plots
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of Figures 4.10 and 4.11. These results are again due to the effect of sweat evapora-

tion. On the other hand, the presence of clothing at the outer boundary works as an

insulator and prevents the body from losing heat quickly. So, only a slight variation

in temperature at right-hand plots in Figures 4.10 and 4.11 can be seen even though

sweat evaporation occurs.

Figure 4.12: Contour Plot of a runner in the case of (left ) non-sweating and (right)
sweating.

Figure 4.13: Surface Plot of a runner in the case of (left ) non-sweating and (right)
sweating.

4.6 Conclusion

A two-dimensional axisymmetric bioheat transfer model with a time-dependent metabolic

rate has been developed with a modification to Pennes’ bioheat transfer model. The

effect of clothing and perspiration has been considered while assigning the modified

Robin boundary condition. The temperature-dependent sweating term in (4.8) makes

the axisymmetric problem nonlinear with the modified boundary condition of mixed

type. To get a more precise estimate of thermal responses during physical activity,
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the Crank-Nicolson FD technique has been implemented. From the perspective of

implementation, explicit systems are incredibly straightforward and practical. The

limitation on time step size imposes a cost on the scheme’s numerical stability. Al-

though implicit schemes are unconditionally stable, they have a significant computa-

tional cost. So, in this study, the bioheat equation is solved using the Crank-Nicolson

method.

Changing the mixed boundary flux at the curved surface of the limb and the top,

bottom, and inner flux boundaries at the core, we fix a two-dimensional grid and

carry out the task using the axial direction as the height of the limb and the radial

direction as the radius of the circular section extending from the core to the outside.

The effect of time-dependent metabolic heat generation at various time steps has been

demonstrated to cause an increase in body core temperature as time passes. The goal

of this Chapter is to draw the conclusion that a runner with a high metabolic rate

raises his/her body temperature as the running period increases. The sweat gland be-

gins to produce perspiration immediately after a predetermined period of time, and as

the sweat evaporates, the radial temperature drops. Clothing, additionally, prevents

rapid loss of skin temperature at the same time. There is minimal variation in body

core temperature in the axial direction while changes in metabolic rate and insensible

sweat evaporation which is due to flux boundaries at the inner, bottom, and top.

We discovered that the outcomes from the one-dimensional model agree with the nu-

merical simulation findings for the same experiment as in one dimension imposing

the flux and modified mixed boundary conditions in the outer surface. Therefore, the

longitudinal profile and the one-dimensional model agree. Thus the model may have

a significant contribution in the field of bioheat transfer as well as sports science and

clothing design.
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CHAPTER 5

THREE-DIMENSIONAL NONLINEAR MATHEMATICAL
MODEL

5.1 Introduction

The heat transmission in living tissue is no longer linear in abnormal (tumor) tis-

sue organs and extreme environmental conditions (laser ablation) the heat transmis-

sion in living tissue is not necessarily linear. The biomedical sector primarily uses

the revolutionary nonlinear PDE technology for cryosurgery, hypothermia, burn in-

jury treatment, and hyperthermic cancer treatment. The human thermoregulatory

system behaves in a highly nonlinear manner due to the complicated internal vas-

culature architecture and multiple sensors. There are additional mathematical and

computing challenges brought when switching from a linear to a nonlinear model.

There is currently no general theory that can solve all nonlinear problems analyti-

cally. On the other hand, when attainable, analytical approaches are beneficial since

they establish the key aspects of the issue and give insight into different system char-

acteristics that affect heat transport [2, 24, 68, 69]. Heat transmission in the living

organ is greatly influenced by various temperature-dependent thermophysical factors,

including thermal conductivity, blood perfusion, metabolism, and heat transfer co-

efficient. This is especially the case in abnormal tissues. Analyzing how biological

phenomena react to temperature gradients is essential to improving the efficacy of

thermal techniques. Tissues undergoing hyperthermic and ablative treatments may

experience structural and mechanical changes as a result of a number of thermally

induced processes, including protein denaturation, dehydration, shrinkage, and me-

chanical stiffening [6, 14, 32, 44, 83, 112]. The linear PDE bioheat equation served as

the foundation for the mathematical models that were created in the previous chap-

ters. The temperature-dependent thermophysical parameters are important avenues

for heat transport in complicated geometries, especially human tissue organs [92].
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In Chapter 4 we considered a two-dimensional axisymmetric model with time-dependent

metabolism during physical activity for the linear case. In complex geometry, nonlin-

earity still becomes more crucial to obtain a more consistent temperature distribution.

In this Chapter, we discuss the nonlinear behavior and method of obtaining the nu-

merical solution of the nonlinear bioheat equation. The nonlinearity is adopted by

the use of the relationship between thermo-physical parameters and temperature. A

nonlinear model with an external heating source has been prescribed in section 5.2.

The numerical procedure, based on the Finite Volume (FV) discretization of PDE,

simulation results and discussion, and conclusion of the Chapter have been included

in section 5.3, 5.4, and 5.5, respectively.

The physical and physiological parameters may be linearly, quadratically, cubically,

or exponentially [6, 11, 13, 24, 35, 65] depending upon the temperature.

5.2 Nonlinear Bioheat Transfer Model

To study the nonlinear behavior of heat transfer in a cylindrical-shaped abnormal
tissue organ, we express the Pennes bioheat transfer equation using time-dependent

/temperature-dependent physiological parameters c(t), K(T ), wb(T ), qm(T ) [11, 13]
along with the external heating source qe in the cylindrical coordinates as

ρc
∂T

∂t
=

[
1

r

∂

∂r

(
K(T ) r

∂T

∂r

)
+

1

r2

∂2T

∂θ2
+
∂2T

∂z2

]
+ cb ρbwb(T )(Ta − T ) + qm(T ) + qe, (5.1)

where
K : temperature-dependent thermal conductivity
wb : temperature dependent blood perfusion
qm : temperature dependent metabolic heat generation
qe : external heating source (W/m3).

We consider a cylindrical-shaped small limb of the human forearm with a tumor in

the specific location as shown in Figure 5.1.

Initial and Boundary Conditions

We prescribe the initial temperature distribution as some known function of position
T (r, z, θ, 0) = T0(r, z, θ) and the boundary conditions are prescribed as follows.

−K∂T

∂r

∣∣∣∣∣
r=0

= 0, inD1 (5.2)

−K∂T

∂r

∣∣∣∣∣
R

= hc(T − T∞) + Esk, inD2 (5.3)
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Figure 5.1: Schematic view of the cylindrical limb with the location of tumor tissue at

ri = 0.015m and zj = 0.21m.

−K∂T

∂z

∣∣∣∣∣
z=0

= 0, inD3 (5.4)

−K∂T

∂z

∣∣∣∣∣
Z

=

{
0, for Neumann,

hc(T − T∞) + Esk, for Robin,
inD4. (5.5)

5.3 Finite Volume Discretization for Bioheat Transfer Equation

In the Finite Volume Method (FVM), we discretize the domain into a finite number of

control volumes, that’s why called the Finite Volume. A local energy balance equation

(5.1) is written on each “finite volume” and an integral formulation of the fluxes

over the boundary (faces) of the finite volume is then obtained using the Divergence

Theorem. Then the fluxes are approximated in terms of the discrete unknowns. The

best feature of the finite volume method is that it maintains the conservation law at

the discrete level because it is based on the “balance” approach.

Let Mr ∈ N, Mz ∈ N, and Mt ∈ N, then we set up a three dimensional (r, z, θ) mesh

of the cylindrical domain 0 < r < R, 0 < z < Z, 0 ≤ θ < 2π with Mr ×Mz ×Mt

nodes

M = Vi,j,m for i = 1, 2, · · · ,Mr; j = 1, 2, · · · ,Mz; m = 1, 2, · · · ,Mt.

Let us consider the uniform grid with

∆r = R/Mr, ∆z = Z/Mz, and ∆θ = 2π/Mt.
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For i = 1, · · · , R, let r1/2 = 0, ri+1/2 = ri−1/2 + ∆r, rMr+1/2 = R,

for j = 1, · · · , Z, let z1/2 = 0, zj+1/2 = zj−1/2 + ∆z and zMz+1/2 = Z,

for m = 2, · · · ,Mt−1, let θ1/2 = θMt+1/2 = 2π − ∆θ
2

, θ 3
2

= ∆θ
2
, θm+1/2 = θm−1/2 + ∆θ

and the control volume

Vi,j,m =

∫ ri+1/2

ri−1/2

∫ zj+1/2

zj−1/2

∫ θm+1/2

θm−1/2

r dθ dz dr. (5.6)

The areas of the radial (Ari−1/2,j,m), axial (Azi,j−1/2,m), and angular (Aθi,j,m−1/2) faces

are respectively∫ zj+1/2

zj−1/2

∫ θm+1/2

θm−1/2

r dθ dz,

∫ ri+1/2

ri−1/2

∫ θm+1/2

θm−1/2

r dθ dr, and

∫ ri+1/2

ri−1/2

∫ zj+1/2

zj−1/2

dz dr. (5.7)

Let (ri)i=0,1,··· ,Mr+1, (zj)j=0,1,··· ,Mz+1, and (θm)m=0,1,··· ,Mt+1, such that

ri−1/2 < ri < ri+1/2, for i = 1, 2, · · · ,Mr, r0 = 0, rMr+1 = R,
zj−1/2 < zj < zj+1/2, for j = 1, 2, · · · ,Mz, z0 = 0, zMz+1 = Z,
θm−1/2 < θm < θm+1/2, for m = 1, 2, · · · ,Mt, θ0 = θMt , θ1 = θMt + 1 = 0,

(5.8)

and let xi,j,m = (ri, zj, θm), for i = 1, 2, · · · ,Mr; j = 1, 2, · · · ,Mz;m = 1, 2, · · · ,Mt.

We also define rb = Mr + 1, zb = Mz + 1, tb = Mt + 1 for the indices at the boundary

nodes.

Time discretization is performed with variable time steps.

Let T > 0 be the time, {t0 · · · , tNmax}, a partition of [0, T ], and ∆tn = tn+1 − tn is

the time step size.

Let Un
i,j,m denote the mean value of T over the control volume Vi,j,m. The value of

Un
i,j,m is also the numerical approximations of T (ri, zj, θm, tn). Consider the PDE in

divergence form:

∂T

∂t
+∇ ·Φ = s1 + s2(T ), (5.9)

where

Φ =

〈
D
∂T

∂r
,
D

r

∂T

∂θ
,D

∂T

∂z

〉
, D =

K(T )

ρc(t)
, s1 =

ρbcbwbTa
ρc(t)

, s2(T ) =
ρbcbwb(T ) + qm(T )

ρc(t)
.

In order to obtain the numerical scheme, we integrate formally equation (5.9) over

each control volume Vi,j,m and time interval [tn, tn + ∆tn], n = 0, 1, · · · , Nmax∫
Vi,j,m

(T (tn+1)− T (tn)) dV +

∫ tn+∆tn

tn

∫
∂Vi,j,m

Φ · ni,j,m dA dt

=

∫ tn+∆tn

tn

∫
Vi,j,m

[s1 + s2(T )] dV dt , (5.10)
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where

ni,j,m : the outward unit normal to the control volume Vi,j,m.

Let us define tn+ϑ := tn + ϑ∆tn = (1 − ϑ) tn + ϑ tn+1, with 0 ≤ ϑ ≤ 1 to be some

intermediate time. Then (5.10) takes the form:

1

∆tn

∫
Vi,j,m

(T (tn+1)− T (tn)) dV +

∫
∂Vi,j,m

Φ(tn+ϑ) · ni,j,m dA dt

=

∫
Vi,j,m

[s1 + s2(T (tn+ϑ))] dV (5.11)

From this we get

Un+1
i,j,m = Un

i,j,m +
∆tn
Vi,j,m

[
(AΦ)n+ϑ

i−1/2,j,m + (AΦ)n+ϑ
i+1/2,j,m + (AΦ)n+ϑ

i,j−1/2,m

+ (AΦ)n+ϑ
i,j+1/2,j,m + (AΦ)n+ϑ

i,j,m−1/2 + (AΦ)n+ϑ
i,j,m+1/2

]
+ ∆tn

[
s1 + s2(T n+ϑ

i,j,m)
]

(5.12)

for i = 1, · · · ,Mr, j = 1, · · · ,Mz, m = 1, · · ·Mt, n = 0, 1, · · · , Nmax.

The flow rates for equation (5.12) are given by

(AΦ)n+ϑ
i−1/2,j,m = −αi−1/2,j,mKi,j,m

(
Un+ϑ
i,j,m − Un+ϑ

i−1,j,m

ri − ri−1

)
, (5.13)

i = 1, · · · ,Mr + 1, j = 1, · · · ,Mz, m = 1, · · ·Mt,

(AΦ)n+ϑ
i+1/2,j,m = αi+1/2j,mKi,j,m

(
Un+ϑ
i+1,j,m − Un+ϑ

i,j,m

ri+1 − ri

)
, (5.14)

i = 1, · · · ,Mr + 1, j = 1, · · · ,Mz, m = 1, · · ·Mt,

(AΦ)n+ϑ
i,j−1/2,m = −αi,j−1/2,mKi,j,m

(
Un+ϑ
i,j,m − Un+ϑ

i,j−1,m

zj − zj−1

)
, (5.15)

i = 1, · · · ,Mr, j = 1, · · · ,Mz + 1, m = 1, · · ·Mt,

(AΦ)n+ϑ
i,j+1/2,m = αi,j+1/2,mKi,j,m

(
Un+ϑ
i,j+1,m − Un+ϑ

i,j,m

zj+1 − zj

)
, (5.16)

i = 1, · · · ,Mr, j = 1, · · · ,Mz + 1, m = 1, · · ·Mt,

(AΦ)n+ϑ
i,j,m−1/2 = −αi,j,m−1/2

Ki,j,m

ri

(
Un+ϑ
i,j,m − Un+ϑ

i,j,m−1

θm − θm−1

)
, (5.17)

i = 1, · · · ,Mr, j = 1, · · · ,Mz, m = 1, · · ·Mt+1,

(AΦ)ni,j,m+1/2 = αi,j,m+1/2
Ki,j,m

ri

(
Un+ϑ
i,j,m+1 − Un+ϑ

i,j,m

θm+1 − θm

)
, (5.18)

i = 1, · · · ,Mr, j = 1, · · · ,Mz, m = 1, · · ·Mt+1,
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Both explicit and implicit scheme can be obtained by using ϑ = 0 and ϑ = 1, respec-

tively in (5.12).

Using one-dimensional, and two-dimensional control volumes

Vi =
(
ri+1/2 − ri−1/2

)
, Vj =

(
zj+1/2 − zj−1/2

)
, Vi,j =

(
r2
i+1/2 − r2

i−1/2

) (
zj+1/2 − zj−1/2

)
,

and Vi,m =
(
r2
i+1/2 − r2

i−1/2

) (
θm+1/2 − θm−1/2

)
in equation (5.12), we can derive the

Finite Volume numerical algorithms for one-dimensional radial (r-direction), one-

dimensional longitudinal (z-direction), two-dimensional axisymmetric ((r, z)-direction),

and two-dimensional angular symmetric ((r, θ)-direction) models.

Explicit Finite Volume schemes for one-dimensional cases are

In radial (r-direction)

Un+1
i = Un

i +
∆tn
Vi

[
(Φ)n+ϑ

i−1/2 + (Φ)n+ϑ
i+1/2

]
+ ∆tn

[
s1 + s2(T n+ϑ

i )
]

(5.19)

The flow rates in r-direction are:

(Φ)n+ϑ
i−1/2 = −αi−1/2Ki

(
Un+ϑ
i − Un+ϑ

i−1

ri − ri−1

)
, (5.20)

(Φ)n+ϑ
i+1/2 = αi+1/2Ki

(
Un+ϑ
i+1 − Un+ϑ

i

ri+1 − ri

)
(5.21)

for i = 1, · · · ,Mr + 1, n = 0, 1, · · · , Nmax.

In longitudinal (z-direction)

Un+1
j = Un

j +
∆tn
Vj

[
(Φ)n+ϑ

j−1/2 + (Φ)n+ϑ
j+1/2

]
+ ∆tn

[
s1 + s2(T n+ϑ

j )
]

(5.22)

The flow rates in z-direction are:

(Φ)n+ϑ
j−1/2 = −αj−1/2Kj

(
Un+ϑ
j − Un+ϑ

j−1

zj − zj−1

)
, (5.23)

(Φ)n+ϑ
j+1/2 = αj+1/2Kj

(
Un+ϑ
j+1 − Un+ϑ

j

zj+1 − zj

)
(5.24)

for j = 1, · · · ,Mz + 1, n = 0, 1, · · · , Nmax.

Explicit Finite Volume schemes for two-dimensional cases are:
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In axisymmetric ((r, z)-directions)

Un+1
i,j = Un

i,j +
∆tn
Vi,j

[
(AΦ)n+ϑ

i−1/2,j + (AΦ)n+ϑ
i+1/2,j + (AΦ)n+ϑ

i,j−1/2 + (AΦ)n+ϑ
i,j+1/2

]
+ ∆tn

[
s1 + s2(T n+ϑ

i,j )
]

(5.25)

for i = 1, · · · ,Mr, j = 1, · · · ,Mz, n = 0, 1, · · · , Nmax.

Flow rates in (r, z)-directions are:

(AΦ)n+ϑ
i−1/2,j = −αi−1/2,jKi,j

(
Un+ϑ
i,j − Un+ϑ

i−1,j

ri − ri−1

)
, (5.26)

(AΦ)n+ϑ
i+1/2,j = αi+1/2,jKi,j

(
Un+ϑ
i+1,j − Un+ϑ

i,j

ri+1 − ri

)
, (5.27)

i = 1, · · · ,Mr + 1, j = 1, · · · ,Mz.

(AΦ)n+ϑ
i,j−1/2 = −αi,j−1/2Ki,j

(
Un+ϑ
i,j − Un+ϑ

i,j−1

zj − zj−1

)
, (5.28)

(AΦ)n+ϑ
i,j+1/2 = αi,j+1/2Ki,j

(
Un+ϑ
i,j+1 − Un+ϑ

i,j

zj+1 − zj

)
, (5.29)

i = 1, · · · ,Mr, j = 1, · · · ,Mz + 1.

In angular symmetric ((r, θ)-directions)

Un+1
i,m = Un

i,m +
∆tn
Vi,m

[
(AΦ)n+ϑ

i−1/2,m + (AΦ)n+ϑ
i+1/2,m + (AΦ)n+ϑ

i,m−1/2 + (AΦ)n+ϑ
i,m+1/2

]
+ ∆tn

[
s1 + s2(T n+ϑ

i,m )
]

(5.30)

for i = 1, · · · ,Mr, m = 1, · · · ,Mt, n = 0, 1, · · · , Nmax.
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Flow rates in (r, θ) directions are:

(AΦ)n+ϑ
i−1/2,m = −αi−1/2,mKi,m

(
Un+ϑ
i,m − Un+ϑ

i−1,m

ri − ri−1

)
, (5.31)

i = 1, · · · ,Mr+1, m = 1, · · · ,Mt.

(AΦ)n+ϑ
i+1/2,m = αi+1/2,mKi,m

(
Un+ϑ
i+1,m − Un+ϑ

i,m

ri+1 − ri

)
, (5.32)

i = 1, · · · ,Mr + 1, m = 1, · · · ,Mt.

(AΦ)n+ϑ
i,m−1/2 = −αi,m−1/2Ki,m

(
Un+ϑ
i,m − Un+ϑ

i,m−1

θm − θm−1

)
, (5.33)

i = 1, · · · ,Mr, m = 1, · · · ,Mt + 1.

(AΦ)n+ϑ
i,m+1/2 = αi,m+1/2Ki,m

(
Un+ϑ
i,m+1 − Un+ϑ

i,m

θm+1 − θm

)
, (5.34)

i = 1, · · · ,Mr, m = 1, · · · ,Mt + 1.

The results in nonlinear heat transfer are calculated for an abnormal tissue, simulated

in python, exhibited graphically, and discussed in the next section 5.4.

5.4 Numerical Results and Discussion

The Initial condition for two-dimensional (r, z)-direction is T (r, z, t) = T0(r, z), and

for three-dimensional (r, z, θ) is T (r, z, θ, t) = T0(r, z, θ) at time t = 0. Imposing the

boundary conditions given in equations (5.2) - (5.5), in radial and axial faces of the

control volume, effects on the aberrant tissue temperature in the body have been ob-

served. Figures 5.2–5.9 show the corresponding outcomes of the equation (5.1), θ with

continuous periodicity, for one-dimensional radial direction, one-dimensional axial di-

rection, two-dimensional axisymmetric (r, z)-direction, and the cross-section profile in

angular symmetric (r, θ)-direction, respectively, for which the used parametric values

are given in the Table 5.1 for abnormal tissues. The graphs in Figures 5.6 –5.8,

on the left up to 2 min and on the right up to 10 min, respectively, demonstrate the

nonlinear temperature profiles of K(T ), wb(T ), and qm(T ) with their corresponding

coefficients for constant, linear, and quadratic cases, respectively. The choice of cor-

responding coefficients makes the results more accurate and reliable. We, therefore,

need to be aware of the choice of coefficients throughout the nonlinear investigation.

To observe the temperature in an aberrant cell, an external heating source of 250

W/m3 has also been provided [64], which is important.
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Table 5.1: Thermophysical parameters related to abnormal tissue [31, 59, 95].

Parameters Symbols Units Values (tumor )

Thermal conductivities k0 W/m◦C 0.642

Blood specific heat cb J/kg◦C 3850

Blood density ρb kg/m3 1040

Blood perfusion rate wb kg/s m3 7× 10−4

Metabolism qm W/m3 33800

Arterial temperature Ta
◦C 37

Total thickness of domain L m 0.03

The constant coefficient ε n. d. 1× 10−7

Convectional heat transfer coefficient hA W/m2 ◦C 30.035

Surrounding temperature Tair
◦C 28

The tumor is assumed to be located at 0.015m radial direction from the core of the

body towards the skin surface and 0.22 m axial meters from the bottom of the limb

towards the top. That is, the position of the target place is (ri, zj) = (0.015m, 0.22m),

for which the tumour dimension, 4 mm× 4mm in size.

5.4.1 One-Dimensional Radial Temperature Profile (r-direction)

Graphs of left-hand and right-hand Figure 5.2 display the radial temperature profiles

of malignant tissue up to 2 min and 10 min, respectively, which are tabulated in Table

5.2. The graphs in left-hand Figure 5.2 depict the radial temperature profiles at a

Figure 5.2: Radial temperature profiles when zj = 0.22 m (left) at 2 min (right) at
10 min.

different time up to 2 min. The radial temperature is 37◦C from 0 min up to 0.010 m

then increases quickly and reaches 41◦C in the interval (0.13 m, 0.117 m) in the initial

phase, then smoothly decreases from pick at the point 0.015 m and reaches 39.20◦C,

38.50◦C, 38.25◦C, and 38.15◦C, in time 0.47 min, 1.00 min, 1.47 min, and 2.00 min,
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Table 5.2: Radial temperature profile at body core to the skin surface at various lengths

with tumor tissue at zj= 0.22 m .

Time 0.00 0.005 0.007 0.010 0.013 0.015 0.017 0.020 0.025 0.030
(min) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

0.00 37.00 37.00 37.00 38.00 41.00 41.00 41.00 37.00 37.00 37.00

0.47 37.00 37.00 37.00 37.50 38.00 39.20 38.00 37.50 37.00 35.00

1.00 37.00 37.10 37.50 38.00 38.40 38.50 38.40 37.50 36.70 34.40

1.47 37.00 37.20 37.50 38.00 38.20 38.25 38.20 37.50 36.50 33.98

2.00 37.00 37.50 37.80 38.00 38.05 38.15 38.05 37.50 36.10 33.50

5.00 37.00 37.00 37.60 37.50 37.25 37.00 36.90 36.50 35.00 33.50

10.00 37.00 37.00 36.75 36.50 36.25 36.00 36.75 36.50 33.90 32.50

respectively. On the contrary, the temperature at the distance of 0.005 m from the

body core up to the heating point increases smoothly, and decreases smoothly from

the heating point (0.015 m, 0.022 m) up to (0.022 m) and then again decreases sharply

towards the skin surface and reaches 35◦C, 34.40◦ C, 33.98◦C, and 33.50◦C, in times

0.47 min, 1.00 min, 1.47 min, and 2.00 min, respectively, as depicted in left-hand Fig-

ure 5.2 and Table 5.2. The behavior of curves in this left-hand Figure 5.2 are sinusoidal

within the interval (0.008 m, 0.022 m), the neighborhood of the location of the tumor.

These results show the nonlinear behavior of heat transfer within abnormal tissue.

The curves in right-hand Figure 5.2 show the radial temperature profile at different

time steps up to 10 min where the temperature at 2.33 min slightly increases up to

38◦C within the radial interval (0.008 m, 0.022 m) then smoothly decreases towards

the skin surface. The remaining curves indicate the smooth decrease in temperature

towards the skin surface and reach 33.5◦C, 33◦C, and 32.5◦C in 5 min, 7.33 min, and

10 min, respectively. The temperatures of 5 min and 10 min are also accumulated in

the Table 5.2.

5.4.2 One-Dimensional Longitudinal Temperature Profile (z-direction) with
Neumann Boundary Condition

The longitudinal temperature profiles of malignant tissue up to 2 min and 10 min,

respectively, are shown in Figure 5.3. The relevant axial temperatures are tabulated

in Table 5.3. The graphs in left-hand Figure 5.3 and Table 5.3 demonstrate the

axial temperature profile at various time periods up to 2 min at 0.015 m radial dis-

tance from the body core. The heating point for an unhealthy type of tissue is the

middle of the axial distance zj = 0.22 m. When the external heat source is applied to

the tumor tissue for hyperthermic treatment of tumor cell initially, the temperature

114



Figure 5.3: : Longitudinal temperature profile when ri= 0.015 m (left) at 2 min
(right) at 10 min with flux boundary.

Table 5.3: Longitudinal temperature profile at body core to the skin surface at various

length in(right), abnormal tissue at ri= 0.015 m .

Time 0.00 0.10 0.19 0.20 0.22 0.25 0.30 0.40 0.45
(min) (m) (m) (m) (m) (m) (m) (m) (m) (m)

0.00 37.00 37.00 37.00 41.00 41.00 41.00 37.00 37.00 37.00

0.47 37.00 37.00 37.00 39.25 39.25 39.25 37.00 37.00 37.00

1.00 37.00 37.00 37.00 38.50 38.52 38.50 37.00 37.00 37.00

1.47 37.00 37.00 37.00 38.20 38.25 38.20 37.00 37.00 37.00

2.00 37.00 37.00 37.00 38.10 38.12 38.10 37.00 37.00 37.00

5.00 36.50 36.50 36.50 37.00 37.15 37.00 36.50 36.50 36.50

10.00 35.50 35.50 35.50 35.80 36.00 35.80 35.50 35.50 35.50

increases up to 41◦C, and as time increase the temperature gradually decrease from

39.25◦C, 38.52◦C, 38.40◦C, and 38.12◦C up to 2.00 min, respectively, within the in-

terval (0.19 m, 0.25 m) in the axial face as shown in left-hand Figure 5.3. Except for

this interval, the axial temperature is steady state. From the observation, there is no

large variation in the axial temperature in Figure 5.3 due to the zero flux boundary

conditions at the bottom and top of the limb. As in the radial flow, the initial tem-

perature in the axial direction is high because of the characteristic of tumor tissue

as well as the external spatial heating source as shown in Figure 5.2 and Figure 5.3.

All of these curves in the axial direction are also sinusoidal in nature within the axial

interval (0.19 m, 0.25 m).

The curves in the right-hand Figure 5.3 exhibit the axial temperature profile with peak

temperatures 41◦C, 37.8◦C, 37.15◦C, 36.5◦C, and 36◦C at 0 min, 2.33 min, 5 min,

7.33 min, and 10 min, respectively within the axial interval (0.19 m, 0.25 m) and

steady-state otherwise.

These results verify that the effect of external heating is initially high and lowers the
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effects as time lengthens. Both radial and longitude temperature decreases in 10 min

than in 2 min. After a certain period, the axial temperature becomes a steady-state in

the entire domain due to the Neumann boundary condition applied and no repetition

of external heating in the abnormal tissue. From these observations, we further claim

that the temperature distribution is axially symmetrical while plugging the zero flux

at both sides, bottom, and top.

5.4.3 One-Dimensional Longitudinal Temperature Profile (z-direction)
with Neumann and Robin Boundary Conditions

Figure 5.4: :Longitudinal temperature profile when ri = 0.015m (left) at 2 min
(right) at 10 min with flux boundary at bottom and Robin at top.

The left-hand Figure 5.4 shows the temperatures of aberrant tissue within the axial

interval (0.19m, 0.22m) for 41◦C, 39◦C, 38.5◦C, 38.25◦C, and 38◦C in 0 min, 0.47 min,

1 min, 1.47 min, and 2 min, respectively, and the right-hand Figure 5.4 shows the

decrease in temperature up to 36◦C in 10 min. The temperature of the limb’s apex

suddenly drops to 32◦C, in 2 min and 31◦C, in 10 min. Additionally, Figure 5.4 shows

that the axial temperature is constant from the bottom to 0.19 m and from 0.22 m

to 0.42 m height, and declines gradually from 0.42 m to 0.44 m radial distance, and

then drops sharply at the topmost of the limb. These outcomes show the nonlinear

behavior of the temperature in the axial direction which is the consequence of the

characteristic of the tumor cell, the Robin boundary conditions at top, zero flux at

the bottom, and the external heat source.

5.4.4 Temperature Profiles of Nonlinear Thermophysical Parameters

In this section, we observe the effect of various temperature-dependent thermophys-

ical parameters such as thermal conductivity, metabolic heat generation rate, blood
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perfusion, and time-dependent specific heat for tumor tissues when ri= 0.015 m and

zj= 0.22 m, and exhibited in Figure 5.5 – 5.8. The thermal conductivity of abnormal

Figure 5.5: Temperature profile with various thermal conductivity coefficients upto
(left ) 2 min (right) 10 min.

Figure 5.6: Temperature profile with various coefficients of metabolic heat genera-
tion upto (left ) 2 min (right) 10 min.

Figure 5.7: Temperature history with various blood perfusion coefficients upto (left
) 2 min (right) 10 min.

tissue is 0.642 W/m◦C, [95]. Choosing the linear, quadratic, and cubic coefficients
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of values control thermal parameters, k0 = 0.4728, k1 = 0.003, and k2 = 0.0001,

k3 = 0.00001, respectively [13], and graphically presented in Figure 5.5 in 2 min

and 10 min. In the left-hand Figure 5.5 the tumour temperature decreases sharply

from 41◦C, to 39.4◦C, 39.4◦C, 39.25◦C, and 38.75◦C, in 0.25 min for constant, linear,

quadratic, and cubic thermal conductivities, respectively. After then the graphs de-

crease slowly up to 38◦C, 37.9◦C, and 37.75◦C in the case of constant, linear, quadratic,

and cubic thermal conductivities, respectively. Similarly, in right-hand Figure 5.5 the

temperature decreases and each curve reaches 36◦C in 10 min. In the case of constant

and linear thermal conductivity, the curves in both of the Figures coincide. This

observation shows that with the decrease in coefficients of thermal conductivities the

temperature decreases in the small range. The curve in the case of constant and

linearly dependent thermal conductivity coincides with temperature 41◦C initially, in

0 min in both of the Figure 5.5 for abnormal tissue. The extreme temperature is

due to the initially applied constant heating source and also the high rate of thermal

conductivity in the abnormal tissue. As the cubic coefficient of thermal conductivity

decreases from 0.0001 to 0.00001 the temperature lowers to 37.75◦C in 2 min and

36◦C, in 10 min

For the computational purpose of the temperature history, we set up the different

metabolic coefficients qb1 = 105, qb2 = 103, and qb3 = 10 with qb = 33800 for tu-

mour tissues. Temperature profiles with these values at various times up to 2 min

can be seen in Figure 5.6 in the graphs of left-hand Figure 5.6. The observation of

the temperature profile for tumour tissue shows that the temperature is high 41◦C in

the initial phase then decreases sharply from 41◦C to 40◦C, in 0.125 min and coin-

cides with all categories, constant, linear, quadratic, and cubic metabolic rates. After

then the temperature decreases slowly to 38◦C, 36.98◦C, 36.5◦C, and 36.4◦C in 2 min.

The temperature reaches down to 36◦C, 31.98◦C, 30◦C, and 29.98◦C in 10 min for

the case of constant, linear, quadratic, and cubic, respectively. As the coefficients of

metabolism decrease and time lengthens, the temperature increases and the extreme

temperature is the cause of the initially applied constant spatial heating source.

The temperature profiles for different coefficients of blood perfusion is observed at

the same position at 0.015 m, the radial distance from the core, and 0.22 m, axial dis-

tance from the bottom. Various perfusion coefficients with wb0 = 3, basal perfusion

rate, and wb0 = 0.0007, for tumour tissue, are chosen. Besides this, the coefficients

wb1 = 0.0005, wb2 = 0.0002, and wb3 = 0.0000001 [59, 65] for constant, linear, and

quadratic case are chosen and presented the temperature profile for the tumor in the

Figure 5.7 with graphs in left-hand up to 2 min and right-hand up to 10 min. All
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the graphs in both Figures coincide in the case of low values of constant and linear,

and quadratic coefficients. Tissue temperature decreases from 41◦C up to 38.0◦C in

2 min in left-hand Figure 5.7 and reaches up to 36◦C in 10 min. With the increase

or decrease of blood perfusion coefficients in a small range, there is no remarkable

change in temperature. This outcome is brought by the neglegible concentration of

blood vessels at the skin’s surface.

5.4.5 Axisymmetric Temperature Profile in (r, z)-direction (Contour and
surface Plot)

The plots in the first row of Figures 5.8, 5.9, and 5.10 are obtained by using Robin

boundary at the lateral and zero flux at the inner, bottom, and top. The plots in

second row of the same Figures 5.8- 5.10 show the case, where the Robin boundary is

used at the lateral surface and top, with zero flux in the inner and at bottom of the

limb.

5.4.5.1 Initial Temperature Profile in contour and surface Plot

The initial temperature profiles at time t = 0 min is presented in Figure 5.8. Each of

Figure 5.8: Initial temperature profiles when ri= 0.015 m and zj= 0.022 m for (left)
contour plot and (right) surface plot.
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the contour (left) and surface (right) plots in Figure 5.8 display the extreme temper-

ature 41◦C within the tumour tissue and 37◦C elsewhere initially at t = 0, no matter

which of the boundary conditions are used. Because of the external heat source used

in the abnormal tissue, the initial temperature is much higher than that of the normal

one.

5.4.5.2 Axisymmetric Temperature Profile in (r, z)-direction (Contour and
surface Plot)

For the unsteady state, the contour and surface plots are shown in Figure 5.9 and

Figure 5.10, respectively, simulated in 1 min, 2 min, and 10 min. The first row in

both Figures is obtained by using the Robin boundary condition at the lateral surface

with zero flux at the inner, bottom, and top.

The second row in both Figures are obtained by using the Robin boundary condition

at the lateral surface and top, with zero flux at the inner and bottom. Each of the

Figure 5.9: Contour plot for temperature profile in tumor tissue (first row) Robin bound-
ary lateral and (second row) Robin boundary at lateral and top in 0 min, 1 min, 2 min, and
10 min when ri= 0.015 m and zj= 0.022 m.

contour and surface plots in Figures 5.9, and 5.10, with a red color and the peak

in Figure 5.10 indicates high temperature in tumor tissue that was initially 41◦C in

0 min in Figure 5.8. The temperatures in the first row of the Figure 5.9, contour

and 5.10, surface, are axially symmetric with high temperature 38.5◦C, 38◦C, and

37.6◦C at peak in 1 min, 2 min, and 10 min respectively. The temperature slows

down to 37◦C, 36.50◦C, and 35◦C, respectively in tumour area, and then drop down
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to 34.5◦C, 34◦C, and 32◦C, respectively in 1 min, 2 min, and 10 min, near the skin

surface. The temperature flattens slowly and spreads within the peripheral region of

the tumour in the radial direction as in a similar manner in left-hand Figure 5.2 and

axially same as in the one-dimensional case of Figure 5.3. The same results are shown

in the surface plots of the first row of Figure 5.10 which verifies the good agreement

with one-dimensional results. These axially symmetrical results are due to the zero

flux in the inner, at the bottom, and top of the limb. Except for the axial interval

Figure 5.10: surface plot for temperature profile in tumor tissue (first row) Robin bound-
ary lateral and (second row) Robin boundary at lateral and top in 0 min, 1 min, 2 min, and
10 min when ri= 0.015 m and zj= 0.022 m.

(0.42 m, 0.45 m) near the top, where the temperature declines in each slice over the

course of 1 min, 2 min, and 10 min, respectively, the temperatures in the second row

of the Figures 5.9 and 5.10 are axially symmetric. Low temperatures of 31◦C, 30◦C,

and 28.5◦C in 1 min, 2 min, and 10 min, respectively, and high temperatures of 39◦C,

39◦C, 37.5◦C at peak have been observed. According to the first row of Figure 5.2,

the temperature gradually flattens and spreads around the tumor’s periphery in both

radial direction and axial directions mostly similar to the one-dimensional scenario as

shown in Figure 5.5. The same nature of diffusion is seen in the first row of Figure

5.9 as in each of the plots in the second row of Figure 5.10. These outcomes are due

to the presence of Robin boundary conditions at the lateral surface and at the top of

the limb.
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5.4.6 Cross-Sectional Temperature Profile

Finally, we show the temperature in the cross-section of the limb from a three-

dimensional simulation. We can apply these simulations for the observation of the

temperature of slices at different points of interest. The boundary conditions, differ-

ent locations, and different sizes of tumor cause variations in the temperature profile.

The three plots in the first row of Figure 5.11 show the cross-sectional temperature

of normal tissue with a viewpoint of the limb at z = 0.11 m, one-fourth of the limb

height, with Robin boundary condition at the lateral and top surface, with a zero-flux

boundary condition at the bottom. The three plots in the second row of Figure 5.11

indicate the cross-sectional temperature in the case of abnormal tissue with Robin

boundary condition at the lateral and the top of the surface, and zero flux boundary

condition for the inner and bottom.

In the first three plots of Figure 5.11, the temperature is uniformly diffused in all

Figure 5.11: Cross-sectional temperature profile (first row) normal (second row) in tu-
mour in 0 min, 1 min, and 2 min when ri = 0.015 m, zj= 0.011 m, and θm = 2π in (r, θ)
direction.

directions and the overall temperature goes on decreasing and reaches to 34◦C, 32◦C,

and 30◦C in 0 min,1 min, and 2 min, respectively in normal tissue. For the abnormal

tissue, the initial temperature is high and the temperature within the cross-section

drops generally, though not consistently as in the case of normal tissue. In a minute,

the temperature of aberrant tissue drops from high temperatures down to 40◦C in

some areas, and temperature between 35◦C, and 36◦C within some other parts of the

tumor then drops down to 32◦C. The temperature rises in some areas of the abnormal
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tissue reaching upto 42◦C, and then falls in other areas of the abnormal tissue ranging

from 34◦C, to 36◦C, reaching down to 34◦C, in 2 min. In this way, the nonlinearity of

the temperature profiles within the abnormal tissue are observed in the cross-section.

5.5 Conclusion

The three-dimensional bioheat transfer model with temperature-dependent thermo-

physical parameters has been investigated, and numerically solved by applying the

Finite Volume (FV) method, and computationally simulated numerical results have

been obtained via python. These temperature-dependent thermophysical parameters

make the model (5.1) highly nonlinear. The obtained results are applied to observe

their effects in the variation of temperature, in tumor tissue at different times, 0 min,

0.47 min, 1 min, 1.47 min, and 2 min in the left-hand Figure 5.2, and 0 min, 0.33 min,

5 min, 7.33 min, and 10 min in the right-hand Figure 5.2. When the tumor tissue is

continuously heated, the temperature at the heating point first rises, then starts to

spread as the time period lengthens, the peak temperature decreases smoothly and

the peripheral temperatures increase as related to the previous time step in the radial

direction. That is, the peak of the curves flattens at different times. This outcome is

the consequence of Robin’s boundary condition which was applied to the outer surface

of the body organ. In comparison to healthy tissues, the temperature at the skin’s

surface is noticeably high in aberrant tissue. Due to the application of the Neumann

condition being applied to the bottom and top of the computational living organ, the

longitudinal temperature in the axial direction decreases as time passes on but does

not spread as much in the peripheral region as it does in the radial direction.

We found that the results for the one-dimensional model, obtained by using modified

Robin boundary condition in the lateral surface agree with the results obtained from

the numerical simulation for one-dimensional (r-direction), and one-dimensional (z-

direction), nonlinear models. Though the implicit scheme is unconditionally stable,

rare in the case of the nonlinear model. So, in this Chapter, the three-dimensional

bioheat equation is explicitly solved by the Finite Volume method. The nonlinear be-

haviors of the one-dimensional models in r-direction, and z-direction, two-dimensional

axisymmetric, (r, z)-directions, angular axisymmetric, (r, θ)-direction heat flow to-

gether temperature history with nonlinear thermal conductivities, metabolic rates,

and blood perfusion rates are taken into account.

The numerical observation of all of these simulated results with obtained sinusoidal
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curves within the radial (0.008 m, 0.022 m) and axial (0.19 m, 0.25 m) intervals for

2 min and the additional results for 10 min demonstrate the nonlinear behavior of

thermophysical parameters with higher temperature in abnormal tissue due to the

characteristics of the tumor and initially applied external heating source.
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CHAPTER 6

SUMMARY AND CONCLUSION

The main objective of this work was to develop reliable, and efficient numerical so-

lutions to the extended Pennes’ linear and nonlinear mathematical models. One-

dimensional with and without clothing, two-dimensional axisymmetric, and three-

dimensional nonlinear are the major focuses of the work. We summarized the overall

work, conclusions, and some research plans for future directions.

6.1 Summary

The basic terminologies and conceptual frameworks, along with information on the

physiological disturbances in the human body under different circumstances, are con-

cisely covered in Chapter 2. Also, the analytical approach for the one-dimensional

steady-state model and the numerical approach for the one-dimensional transient

model in the cylindrical nude body are also described in detail. In Chapter 3, Pennes’

model is extended by incorporating the clothing phenomenon, and it is further ex-

tended to an axisymmetric two-dimensional bioheat transfer model with the clothing

effect at the boundary in Chapter 4. In addition to these, the model is extended to

the three-dimensional nonlinear form in Chapter 5 to observe the non-symmetry of

temperature variation in the abnormal tissue. The developed transient models have

been solved numerically and computationally simulated in Python.

6.2 Conclusion

The work consists of three parts: (a) the extension of the bioheat transfer model by

incorporating clothing as a protective layer (b) the construction of an axisymmetric

model with time-dependent metabolism, clothing, and sweating effect during physical
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activities, and (c) the extension to a three-dimensional nonlinear model.

In the first part, we extended the model by adding the clothing parameters: thermal

conductivity of cloth, clothing area factor, and thickness of the cloth as a protective

layer. To reduce the computational complexity caused by the diverse physiological

behaviors of two non-homogeneous materials, cloth, and the human body, the inter-

face condition has been used. The usual Robin’s boundary condition is modified by

incorporating two important factors: the effective clothing area factor and the con-

vective heat transfer coefficient. The effective clothing area factor includes clothing

insulation, air insulation, and the clothing area factor. The convective heat transfer

coefficient, on the other hand, includes air velocity and the walking speed of a person.

The results obtained from the implicit finite difference method show that thermal

comfort and thermal insulation depend on the properties of the fabric, and human

physical, and physiological factors. The simulation results with two types of modified

Robin’s boundary conditions demonstrated that using clothing insulation with mild

air velocity and walking speed provides better comfort than the case of using effective

clothing area factor, only or using relative air velocity only. That is, clothing insu-

lation helps decrease the rate of heat loss from the body whereas air velocity causes

heat loss from the body, as described in Figure 3.5. Solvability, consistency, stability,

and convergence of the implicit finite difference scheme are verified by a lemma and

some theorems, based on grid points and time step sizes as well.

The second part of this work was to extend Pennes’ model in an axisymmetric two-

dimensional (2D) form with time-dependent metabolism, clothing, and sweating ef-

fects during physical activities. This extended 2D model has been solved by using

the Crank-Nicolson FD technique and applied to observe the effect of time-dependent

metabolism. It has been demonstrated that a high metabolic rate causes the body

temperature increases during exercises and metabolic heat generation at various time

steps causes an increase in body core temperature with time. The insulation of cloth-

ing material prevents a quick drop in skin temperature with the change in metabolic

rate and maintains the body temperature even in the case of sweat evaporation dur-

ing physical exercise. A minor symmetrical change has been noticed in the body core

temperature in the longitudinal direction, due to the significantly different ratio of

radial and axial length scales and the flux boundary at the inner, bottom, and top of

the limb.

The third part of the work was to extend the model to a three-dimensional nonlinear

model with temperature-dependent parameters and external heat sources in order
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to understand the behaviors of the temperature variation in the abnormal tissue.

This model consists of one-dimensional (radial r-direction), one-dimensional (axial,

z-direction), two-dimensional axisymmetric (r, z)-direction, and angular symmetric

(r, θ)-direction. The models have been solved by using the finite volume (FV) energy

conservation law for the investigation of the temperature profile in 1D radial, 1D ax-

ial, 2D axisymmetric, and 2D angular symmetric, together with the nonlinear-thermal

conductivity, blood perfusion rate, and metabolism having a linear, quadratic, and

cubic relationship with temperature. It has been found that the temperature increases

quickly and reaches 41◦C in the interval (0.13 m, 0.17m) with external heat of 250

W/m3, applied initially, and later drops quickly to normal conditions. The tempera-

ture profile goes on flattening with the lengthens of time, as described in Figures 5.2

-5.11, which happens with respect to the size of the tumor. The temperature spreads

within the periphery and the curves flatten out over time, the skin’s surface temper-

ature is substantially high in aberrant tissue, and the longitudinal temperature in

the axial direction drops over time but does not propagate as much in the peripheral

area as it does in the radial direction. In the longitudinal direction, it is observed

that there are no notable variations in temperature due to zero flux boundary at the

bottom and top, which was also expected, as the ratio of radial and axial length scales

is significantly different. However, switching from the zero-flux boundary to Robin’s

boundary condition at the top, non-symmetric and nonlinear behavior is observed

in the longitudinal temperature profile. The numerical simulation results in the ra-

dial direction agree with the one-dimensional model. The numerical observation of

all these simulated results with sinusoidal curves obtained within the radial (0.008m,

0.022m) and axial (0.19m, 0.25m) intervals for 2 min; and the results in additional

time for 10 min revealed that the temperature decreases from the core to the skin

surface in a similar manner as in the normal case of the radial temperature profile.

A further numerical investigation has been carried out for up to 2 min and then up

to 10 min with linear, quadratic, and cubic coefficients of temperature-dependent pa-

rameters to perceive their effect on the temperature variation in abnormal tissue,

which shows that these various coefficients of thermal conductivity K(T ), metabolic

heat generation qm(T ), and blood perfusion wb(T ), are directly proportional to the

temperature within the target tissue. Various simulations for an axisymmetric model

in the (r, z)-direction have been performed with zero flux at the inner, bottom, and

top of the limb and Robin’s boundary condition at the lateral surface, which revealed

an axially symmetric temperature profile. Imposing Robin’s boundary condition at

the top and lateral surfaces of the limb revealed non-symmetric temperature variation
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in the skin surface and the top of the longitudinal cross-sectional slice. The simulation

results for angular symmetric model (r, θ)-direction with various lateral boundary con-

ditions demonstrate non-symmetric variations in the temperature in the cross-section

of the tumor tissue.

6.2.1 Suggestions for Future Directions

Future work

• Consideration of the thermal transmission characteristic of textile for human

thermal comfort.

• Consideration of the Specific Absorption Rate (SAR) into account hyperthermia

treatment against cancer.

• Use of electromagnetic radiation for the hyperthermia treatment against cancer.
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+e human thermal comfort is the state of mind, which is affected not only by the physical and body’s internal physiological
phenomena but also by the clothing properties such as thermal resistance of clothing, clothing insulation, clothing area factor, air
insulation, and relative humidity. In this work, we extend the one-dimensional Pennes’ bioheat transfer equation by adding the
protective clothing layer. +e transient temperature profile with the clothing layer at the different time steps has been carried out
using a fully implicit Finite Difference (FD) Scheme with interface condition between body and clothes. Numerically computed
results are bound to agree that the clothing insulation and air insulation provide better comfort and keep the body at the thermal
equilibrium position. +e graphical representation of the results also verifies the effectiveness and utility of the proposed model.

1. Introduction

+e study of thermal comfort in the complex vascular ge-
ometry of the human body with a protective clothing system
is not only the subjective domain but also the physiological
factors inside the body. According to the American Society
of Heating, Refrigerating, and Air Conditioning Engineers
(ASHRAE), thermal comfort is the state of the mind when
one can feel and express the satisfaction with the thermal
environment [1]. +ermoregulation is the process of con-
trolling the internal body temperature through the hypo-
thalamus heat production and heat loss center.+e body also
uses other processes of thermodynamical systems that
constantly produce energy by metabolic activity together
with dilating or constricting blood vessels, shivering, and
sweating [2, 3].

+e presence of clothes, on the other hand, plays a vital
role for maintaining the thermal comfort at the equilibrium
condition of heat production and heat loss by the body.
Clothing, the interface between the skin surface and the
environment, works as an insulator and also transports the
heat from the body to the outer environment around us. +e
key factors affecting thermal comfort are categorized as

(1) Personal factors
(2) Environmental factors

1.1. *e Personal Factors. Metabolism, determined by age,
sex, health, etc., is one of the human personal factors which
makes a difference in thermal comfort. Besides, another
major factor which affects thermal comfort is clothing. A
significant difference in thermal comfort can be caused by
small changes in clothing layers. In the winter season,
wearing a sweater and socks makes better comfort, whereas
in summer, wearing light clothes makes better comfort in the
workplace.

1.2. Environmental Factors. Air temperature, moving air,
radiant temperature, and relative humidity are the envi-
ronmental factors that help to maintain thermal comfort by
keeping the room comfortable. +e radiation heat flux, on
the other hand, penetrates a certain depth passing entirely
through the fabric, depending on the fabric structure and
radiative wavelength. In contrast, the convection portion of
the heat source could reach the fabric surface only [4].
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Usually, heat transfer in the body through the garment
occurs from heat conduction and heat radiation; then, the
temperature rises and transfers into the air gap. Suitable
clothing along with these environmental factors, therefore,
maintains better comfort at home and workplace (business,
office, study room, etc.).

2. Role of Clothing

2.1.*ermal Resistance and Clothing Insulation. +e ratio of
temperature difference between two faces of material to the
rate of heat flow per unit area is defined as thermal resis-
tance. In the study of thermal insulation of clothing, thermal
resistance is a very important parameter defined as the
function of thickness and thermal conductivity of clothes.
+ermal Resistance Rth m2 · (°C/W) is given by [5]

Rth �
ΔT
q

�
L

k
, (1)

where L is the thickness of cloth (m), ∆T is the temperature
difference (°C), and q is the heat flow rate (W/m2). +ough
the heat transfer in the clothed body consists of conduction
and radiation, the primary determinant of the insulation is
the thickness of clothes on which the insulation is very much
dependent. +e limbs of human body with insulation pa-
rameters can be seen in Figure 1.

+ermal insulation, together with the air gap, does not
only provides comfort at the skin surface and body from a
cold environment but also protects from burn injuries.
While sitting by the fire, the air gap provides thermal
insulation that limits heat transfer to skin and protects the
skin from excessive heat.

2.1.1. Clo Unit. Clo unit is the measure of thermal resistance
and includes the insulation provided by any layer of trapped
air between skin and the insulation value of clothing itself. 1
Clo is defined as the insulation of the clothing system that
requires maintaining a sitting-resting average male com-
fortable in a normally ventilated room. Clo is the thermal
insulation of overall clothing worn by a person. It has 0.1m/s
air velocity at air temperature 21°C and relative humidity less
than 50%. Among the total heat produced by the metabolic
reaction, 24% heat is lost through evaporation and respi-
ration. As 1 met� 50 kcal/m2h, the evaporative and respi-
ratory heat loss� 1 met× 24%� 50× 0.24�12 kcal/m2h.
Remaining 38 kcal/m2h is transmitted through the clothing
system by conduction, convection, and radiation. +e
comfortable skin temperature is 33°C, so the total insulation
of clothing and air layer (IT � Icl + Ia) is given by [8]

I �
33 − 21
38

� 0.32,

Ia � 0.14m2
· °C (h/kcal),

Icl � 0.32 − 0.14( m2
· °C (h/kcal) � 0.18m2

· °C (h/kcal),
(2)

where Ia is the insulation of air and Icl is the insulation cloth.

Since 1 kcal/h� 1.163 watt (W), so 1 Clo unit is defined as

0.18m2
· °C �

0.18
1.163
≡ 0.155m2

·(°C /W). (3)

2.2. Convective and Radiative Heat Transfer. Clothing works
as the mediator of heat exchange through convection as well
as radiation. +e standard measurement condition in ISO
9920, four different manikins in three different laboratories,
were used and determined the male and female clothing
thermal insulation values of 52 nonwestern clothing con-
figuration [9]. If hc(m2 · (°C/W)) and hr(m2 · (°C/W)) are
the heat exchange due to convection radiation, respectively,
then the convective and radiative heat exchange is defined in
[7, 9] by

hc + hr �
ΔT
Icl

. (4)

2.3. Clothing Area Factor. +e dimensionless parameter,
clothing area factor fcl, is the ratio between the surface area
of clothed human body Ab (m2) and the surface area of nude
human body Ab (m2) which is given by

fcl �
Acl

Ab

. (5)

+e prediction equation for clothing area factor fcl, based
on western clothing and listed in ISO Standard 9920-2009
(ISO 2009), can also be found in various publications. +e
equation for fcl is given [1, 9, 10] as

InClo, fcl � 1 + 0.31 Icl,

In m2
· (°C/W) , fcl � 1 + 1.97 Icl.

(6)

2.4. Clothing Efficiency Factor. +e clothing efficiency fac-
tor(dimensionless) depends upon the air insulation Icl(m2 ·

(°C/W)) and the thermal insulation of overall clothing, not
only the particular garment but also the entire garment,
including tops, bottoms, innerwear, and everything

Body

Enclosed air
layer

Surface air
layer

Clothing

IT

Ia

Icl

Figure 1: A cylindrical model with clothing and air insulation
[6, 7].
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(including even socks and gloves). +e total clothing
insulation (IT � Icl � iIcli) (where Icli is the insulation of
each fabric item) for a person in summer and winter is given
in Table 1. So, the clothing efficiency factor Fcl (dimen-
sionless) is provided by [4, 7, 8]

Fcl �
Ia

Icl + Ia/fcl( 
. (7)

Pennes [11], a famous researcher, established a bioheat
transfer model in 1948 based on experimental observation
incorporating the blood perfusion term for heat flow within
tissue. Various methods related to the biological model using
Pennes’ equation is tackled by many researchers one after
another. Zhao et al. [12] developed a two-level finite dif-
ference scheme for one-dimensional Pennes’ bioheat
equation and established the stability and convergence
condition taking only one initial condition. Gurung and
Saxena [13], Luitel et al. [2, 14, 15], Agrawal et al. [3],
Acharya et al. [16], and Parsons [17] used Pennes’ model for
steady-state and unsteady-state temperature distribution
within the human dermal part using finite element and finite
difference methods.

So far as the study of clothing is concerned, a number of
research studies [1, 4, 9, 10, 18] have turned significant
stones in regards of thermal comfort in the human body
under the protective clothing by taking the dry and evap-
orative heat loss with the significant clothing area factor
within the different human manikins only by the experi-
mental method taking the equation only in the clothing part.
Havenith et al. [9] published a database of static clothing
thermal insulation and vapor permeability values’ non-
western ensembles for ASHARE standard 55, ISO-7730
(International Organization for Standardization), and ISO-
9920.

Gurung and Saxena [13] studied the transient temper-
ature distribution in the human dermal part with a pro-
tective layer at low atmospheric temperature, considering
the bioheat equation to observe only the effect of thickness

and mass of the protective layer. So, the mathematical study
of the bioheat equation along with the impact of clothing
insulation, air insulation, and clothing area factor is still
lacking and is one of our research interests.

On the contrary, in the cold environment, the cold re-
ceptor becomes active and vasoconstriction of blood vessel
takes place. Shivering of muscle also appears in this case. If
the body core temperature goes down around 30°C, then one
goes in the unconscious condition, and, if the body tem-
perature goes down up to 27°C, his/her heart beating stops.
Similarly, in the hot climatic condition, the hot receptor
becomes active and vasodilation takes place and sweating
occurs. +e increment in body temperature up to 42°C
causes hyperthermia [14–16, 19]. To overcome all these
unusual conditions, the human body needs proper well-
designed protective clothing because only the internal
physiological conditions cannot cope up with such extreme
cold and hot climatic condition without wearing sufficient
clothing in winter and putting on only light clothing in
summer. So, this study, heat transfer in the human body with
protective clothing, is indispensable for proper management
of clothing to keep the body highly comfortable condition.

+e heat transfer in the human body with a protective
clothing system is a heterogeneous phenomenon. +e an-
alytical solution of such material is not an easy task. So, the
study of the numerical approach for getting an approxi-
mation solution is essential for this purpose. +e recent
paper aims to extend one-dimensional Pennes’ bioheat
equation with unconditionally stable state and convergence
which incorporates various personal and environmental
factors on the one hand and protective clothing on the other
hand. +e graphical representation of convergence for the
FD scheme will be shown for the use of the model.

3. Mathematical Formulation of the Model

+e bioheat transfer equation with the protective clothing
system is given by

ρc
zT

zt
� k

z
2
T

zx
2 +

z
2
T

zy
2 +

z
2
T

zz
2  + wbcb Ta − T(  + qm + P Tsk − Tcl( , (8)

where ρ is tissue density (kg/m3), c is tissue specific heat (J/
kg°C), k is thermal conductivity (W/m°C), Wb is blood
perfusion rate (kg/m2·s), cb is blood specific heat (J/kg°C), Ta is
arterial blood temperature (°C), qm is metabolic heat gen-
eration (W/m3), and the symbol P in the last term is given by

P �
kcl

Acl

W
m3

· °C
  , (9)

where Acl � Abfcl, kcl is thermal conductivity of clothes
(W/m·°C), Tsk is the skin temperature (°C), and (Tcl) is the
cloth temperature (°C).

+e bioheat equation (8) is the extension of the equation
suggested by Pennes’ in 1948. +e left-hand side is the total
heat storage; the first, second, and third terms of right-hand
side are diffusion, perfusion, and metabolic heat generation.
respectively. +e extra term P (Tsk − Tcl), with clothing
parameters, is the heat transfer from the skin to clothing
layer.

One-dimensional unsteady-state temperature profiles in
the cylindrical shape of the human body with the clothing
system and the bioheat equation (8) in radial direction are
performed and given below:
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ρc
zT

zt
� k

z
2
T

zr
2 +

1
r

zT

zr
  + wbcb Ta − T(  + qm + P Tsk − Tcl( ,

(10)

where r is radial distance from the center of core towards
skin surface (m).

+e study of heat transfer in such a nonhomogeneous
phenomenon, the human body, and the protective clothing
system is really cumbrous. So, we decouple equation (10)
first and then combine by using the interface condition
between the body and clothing part.

3.1. Heat Transfer Equation for Body. As P � 0 in the body
part so the bioheat equation for the body part is given by

ρc
zTt

zt
� kt

z
2
Tt

zr
2 +

1
r

zTt

zr
  + wbcb Ta − Tt(  + qm. (11)

3.2. Heat Transfer Equation for Clothing. +e heat equation
for clothing with Wb � 0 and qm � 0 is therefore given by

ρc
zTcl

zt
� kcl

z
2
Tcl

zr
2 +

1
r

zTcl

zr
  + P Tsk − Tcl( . (12)

3.3. Boundary Conditions. +e inner boundary condition of
the living tissue is considered uniform and taken as

at r � 0,
zTt

zr
� 0. (13)

+ere is continuous heat flux between clothing surface
and atmospheric environment as the outer surface of clothes
is exposed to external environment [7, 17]. In this case, heat
loss from the body via clothes is caused by convection and
radiation. +e Robin boundary condition due to convection
condition is guided by Newton’s law of cooling, and the term
due to radiation is guided by the Stefan Boltzmann law and is
given as

at r � R, − kcl

zTcl

zr
� Fcl hc Tcl − T∞(  + ∈σ T

4
cl − T

4
∞  ,

(14)

where Fcl is the effective clothing area factor given in
equation (14), hc is the heat transfer coefficient due to
convection, ∈, the emissivity that lies between 0 to 1,
σ � 5.67×10− 8 is Stefan Boltzmann constant, and T∞is the
atmospheric temperature.

+e bioheat problem becomes nonlinear when the
nonlinear radiation term in the boundary condition appears.
In this case, it becomes difficult to formulate. To avoid such
complexity, we apply the simplified form of boundary
condition as

− kcl

zTcl

zr
� Fcl hc Tcl − T∞(  + ∈σ Tcl − T∞(  Tcl + T∞(  T

2
cl − T

2
∞  ,

� Fcl Tcl − T∞(  hc + ∈σ Tcl + T∞(  T
2
cl − T

2
∞  ,

� Fcl hc + hr(  Tcl − T∞( ,

� hA Tcl − T∞( .

(15)

3.4. Initial Condition. For the time dependent boundary
value problem, the initial condition is given by

T(r, 0) � T0(r), where, T � T Tt, Tcl( . (16)

4. Solution of the Model

For the solution of model (10), we perform the following
steps:

Table 1: Total insulation of clothes in Clo unit 8, 10.

Cloth item (summer) (Icli) Clo value Cloth item (winter) (Icli) Clo value

Half shirt 0.19 Full shirt 0.28
Underwear 0.04 Underwear 0.04
Pants 0.11 Pants/trousers 0.24
Socks 0.02 Socks 0.03
Shoes 0.02 Shoes 0.04
— — Suit jacket 0.48
Total 0.38 Total 1.11
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(1) Construction of the Finite Difference (FD) scheme
for models (11) and (12)

(2) Getting solution of (11)
(3) Using the solution of (11) to get the solution of (12)

and applying the interface and boundary conditions
(4) Representing the combined results in graph by

computer algebraic software

4.1. Construction of FD Scheme. One-dimensional form of
cylindrical tissue for the body part is divided into N discrete
points uniquely specified by spatial indices, ri � i∆r, in the
radial direction. +e discretization of circular cross-section
of peripheral human limb, where the temperature flow in
axial direction is uniform, is shown in Figure 2.

In the time discretization, ∆t is denoted by the discrete
time step size, and the total time to evaluate the temperature
is tn � nΔt.

4.2. FD Scheme for the Nodes in Body Part. We use FD
scheme by writing equation (11) using implicit finite dif-
ference (central difference) scheme for right-hand terms and
forward difference for left-hand term.

4.2.1. FD Scheme at Boundary r� 0 (Body Core). +e cy-
lindrical thickness r is measured from body core, as shown in
Figure 2. At the body core, both r and the heat flux (zTt/zr)

are zero; then, (1/r)(zT/zr) approaches to indeterminate
form (0/0) as r⟶ 0.

+e use of Hospital rule then gives

1
r

zTt

zr
|r�0 �

(z/zr) zTt/zr( 

(z/zr)(r)
|r�0 �

z2Tt

zr2
|r�0. (17)

Now, equation (11) becomes

ρc
zTt

zt
� 2D

z
2
Tt

zr
2  + M Ta − Tt(  + S, (18)

E0T
n+1
0 − 4αT

n+1
1 − F � T

n
0, (19)

where D � (kt/ρc), α � (DΔ t/Δr2) , M � (wbcb/ρc),
S � (qm/ρc), and F � Δt(MTa + S).

As shown in Figure 2, we solve the problem in two phase
body part and clothing part. For the body part, we take the
interior nodes from i � 1, 2, . . . N − 1, and the FD scheme of
equation (11) is given by

DiT
n+1
i− 1 + EiT

n+1
i + BiT

n+1
1 − F � T

n
i , (20)

where Di � (− α + (α/2i)), Ei � (1 + 2α + MΔt), and
Bi � (− α − (α/2i)) .

+e construction in (20) implies that FD schemes have a
truncation error in the order O(Δr2 + Δt) for each interior
point (tn, ri), n≥ 1, 0< i<N.

At i � N, the skin surface is the interface between body
and clothes. So, the FD scheme at i � N is

DNT
n+1
N− 1 + ENT

n+1
N + BNT

n+1
N+1 − F � T

n
N. (21)

4.2.2. Interface Condition at i � N (at Skin Surface). +e
interface temperature between the skin surface and clothes at
i � N. +e right-most Dirichlet boundary at this point is

Tt|i�N � Tcl|i�N � Tint. (22)

FD scheme, at i � N, is

DNT
n+1
N− 1 + ENT

n+1
N + BNT

n+1
int − F � T

n
N. (23)

+is construction implies that FD schemes have an error
in the order O(Δr2 + Δt) for the gride point (tn, rN), at
i � N.

+e system of equations (19), (20), and (23) can be
written in the matrix form as

A1T
n+1
t � T

n
t + B1, (24)

where Tn
t � [Tn

0, Tn
1, Tn

3, . . . , Tn
N ]′.

A1 is the corresponding tridiagonal matrix of order (N +

1) × (N + 1) and Tn+1
t and B1 are of column vectors of

(N + 1) × 1. A1 matrix is diagonally dominant since the
absolute value of each leading diagonal element satisfies the
relation:

ajj



≥ 
N

i�0, i≠j
aij



. (25)

4.3. FD Scheme for Clothing Part. As we have mentioned
above, the skin surface is the interface between the body and
clothing part ati � N; the FD scheme for (12) yields

DNT
n+1
N− 1 + ENT

n+1
N + BNT

n+1
N+1 � T

n
N, (26)

where EN � EN+1 � EN+2 � · · · � ER � (1 + 2α + P1).

4.3.1. Interface Condition at i � N (between Skin and Cloth).
Before taking the interface temperature between skin surface
and clothes, it is necessary to evaluate the interface thermal
conductivity K. +e nonhomogeneous material such as body
and clothes which consists different physiological properties,
has nonuniform thermal conductivity. +us, the proper
formulation for nonuniform K is highly desirable. +e in-
terface conductivity K is to assume a linear variation of K
between two points N and N + 1 is given by [20]

K � fNkt + 1 − fN( kcl, (27)

where fN is the interpolation factor defined by fN � (Δrc/Δr)

and ∆rc is the mesh size in protective layer.
For the interface grid point N, we consider the control

volume surrounding N is filled with the uniform conduc-
tivity kt of body tissue, one around N + 1 with a conductivity
kcl of clothes.+e good representation for a heat flux over the
composite domain between N and N + 1 leads to
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qN �
T

n+1
N+1 − T

n+1
N

Δr/kt(  + Δrc/kcl( ( 
. (28)

4.3.2. Interface Conditions at i � N (Left Boundary for Cloth
Part). +e heat flux occurs at the skin surface, and the left
most boundary of clothes at i � N is given by

− kt

zT

zr
� qN. (29)

FD formulation for (29):

T
n+1
N+1–T

n+1
N− 1

2 zr
� − K

T
n+1
N+1–T

n+1
N

Δr/kt(  + Δrc/kcl( ( 
,

T
n+1
N− 1 � T

n+1
N+1 − 2RcqN.

(30)

Now, equation (26) with left boundary condition can be
written as

DNT
n+1
N− 1 + 2α1 − P1( T

n+1
N+1 − FN � T

n
N, (31)

where FN � 2DNRcqN.
FD scheme for each interior gride point

(tn, ri), n≥ 1, N< i<R in the clothing part with a truncation
error of the order O(Δr2 + Δt) is given by

DiT
n+1
i− 1 + EiT

n+1
i + BiT

n+1
1 − F � T

n
i , (32)

where Di � (− α1 + (α1/2i)), Ei � (1 + 2α1 + MΔt),
Bi � (− α1 − (α1/2i)), and α1 � (DclΔt/(Δrc)

2).

4.3.3. Boundary Conditions at i � R (at the Surface of the
Cloth). +e heat flux occurs at the outer surface of the right-
most boundary of clothes at i � R which is given by

− kcl

zTcl

zrc

� hA Tcl − T∞( ,

T
n+1
R+1 � T

n+1
R− 1 − 2hARc Tcl − T∞( .

(33)

FD scheme at i � R is now given by

− 2α1 − P1( T
n+1
R− 1 + ER − 2BRhARc( T

n+1
R − FR � T

n
R.

(34)

+e system of equations (31), (32), and (34) can be
written in the matrix form as

A2T
n+1
cl � T

n
cl + B2, (35)

where Tn
cl � [Tn

N, Tn
N+1, Tn

N+2, . . . , Tn
R− 1, Tn

R]′.

A2 is the corresponding tridiagonal matrix of order
(R − N) × (R − N), and Tn+1

cl and B2 are of column vectors
of order(R − N)×1.

A2 is diagonally dominant matrix since the absolute
value of each leading diagonal element of A2 satisfies the
relation:

ajj



≥ 
R

i�N, i≠j
aij



. (36)

Since each matrices A1 and A2 are diagonally dominant,
so A− 1

1 and A− 1
2 exist and systems (24) and (35) are separately

solvable.
+e constructed FD scheme (20) and (31) in our model

has truncation error τ(Δr,Δt) � O(Δr2 + Δt). So, as
Δr, Δt⟶ 0 as τ(Δr,Δt)⟶ 0 separately for body part
(0≤ i≤N) and clothes part (N≤ i≤R), hence, the model is
consistent.

+e notion of the second matrix norms of invertible
matrices ‖A1‖2, ‖A2‖2 and their inverses ‖A− 1

1 ‖2, ‖A− 1
2 ‖2

together with Gregorian +eorem [12] imply the relation

E
n+1����

����2 ≤ E
0����
����2 (37)

where En+1 �
T

(n+1)
t − T

∗ (n+1)
t ,

T
(n+1)
cl − T

∗(n+1)
cl .



T
∗ (n+1)
t and T

∗(n+1)
cl are small perturb in T

(n+1)
t and

T
(n+1)
cl , respectively.
+en, by Lax–Richtmyer theorem, one can claim that the

model is unconditionally stable with respect to initial data.
Finally, the stability and consistent imply the convergence.
Hence, the model is unconditionally convergent.

5. Numerical Results and Discussion

+e numerical solution of heat transfer in human body with
a protective clothing layer is obtained from the bioheat
equation (10) by decoupling it into equations (11) and (12)
and applying finite difference scheme separately. +e tem-
perature obtained from the system of (11) (skin surface) is
used in equation (12) to calculate the temperature for clothes
layer on the body. For the numerical experiment, the fol-
lowing parametric values in Tables 2 and 3 are chosen.

5.1. Graphical Representation. +e effects of different pa-
rameters mentioned in Tables 1–3 have been investigated for
heat transfer in a cylindrical-shaped clothed human body.
Different mesh sizes are taken to demonstrate the validity
and applicability of the developed numerical FD schemes
(20) and (32). +e tests of the combined solution of systems

r0 = 0 r1 r2 rN–1 rR–1 rR = RrN rN+1 ......

Cloth

Interface

Body

Figure 2: Discretization in radial direction with interface.
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Table 2: +ermophysical parameters related to the body part 15, 21.

Parameters Symbols Values Units
+ermal conductivities kt 0.48 W/m°C
Blood specific heat cb 3850 J/kg°C
Blood density ρb 1000 kg/m3

Blood perfusion rate Wb 3 kg/s·m3

Metabolism qm 1085 W/m3

Arterial temperature Ta 37 °C
+ickness of tissue (domain) N 0.03 M
Temperature at right boundary Tb 24 °C

Table 3: Physical parameters related to clothing properties.

Parameters Symbols Values Units References for the values
+ermal conductivities kcl 0.305 W/m°C Abbas et al. [22]
+ickness of clothes Lcl 0.0050 m Gurung and Saxena [13]
Total thickness (tissue and cloth) R 0.035 m —
Density of clothes ρcl 1550 kg/m3 Holmer et al. [4]
Specific heat of clothes ccl 1340 J/kg°C Holmer et al. [4]
Clothing insulation Icl 0.17 m2 · (°C/W) Holmer et al. [4], Havenith et al. [9]
Air insulation Ia 0.0992 m2 · (°C/W) Havenith et al. [9]
Area of nude body Ab 1.7 (m2) http://www.medicinenet.com
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Figure 3: Continued.
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Figure 3: Temperature profile with various mesh sizes at time step Δt � 0.01 sec. (a) Mesh size Δr � 0.001m, Δt � 0.01 s. (b) Mesh size
Δr � 0.0005m, Δt � 0.01 s. (c) Mesh size Δr � 0.00005m, Δt � 0.01 s.

37.0

36.5

36.0

35.5

35.0

34.5

34.0

33.5

33.0

T 
(r

)

r
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

t = 0 sec
t = 60 sec

t = 120 sec
t = 180 sec

(a)

37.0

36.5

36.0

35.5

35.0

34.5

34.0

33.5

T 
(r

)

r
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

t = 0 sec
t = 60 sec

t = 120 sec
t = 180 sec

(b)

Figure 4: Continued.
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(24) and (35) have been performed and tabulated in (a–c) of
Figure 3 in time step Δt � 0.01 sec and (a–c) of Figure 4 in
time step Δt � 0.4 sec with different mesh sizes 0.001m,
0.0005m, and 0.00005m respectively.

In Figures 3(a) and 4(a), the curves are slightly deviated
when rN � NΔrN � 0.030m at the skin surface due to the
interface condition between two materials having nonho-
mogeneous behavior.+e curves in Figures 3(b) and 4(b) are
less deviated than Figures 3(a) and 4(a), while the graphs in
Figure 3(c) and Figure 4(c) are smoother than in previous
four Figures. On the one hand, the comparison in graphs
concerns that the increment in numbers of grid points
makes the graphs smoother, more accurate, and reliable; on
the other hand, the graphs are independent of mesh sizes. All
the graphs in Figures 3 and 4 indicate that the temperature
remains steady up to certain distance (0.02m) from the body
core, then decreases towards the skin surface and further

then towards clothes. +e temperature profile obtained in 60
seconds, in 120 seconds, and in 180 seconds are, respectively,
the same no matter the mesh sizes are how small and large.
+e interface temperature (skin surface temperature) ob-
tained from results having different mesh sizes at time steps
0.01 second and 0.4 second are, respectively, shown in Ta-
bles 4 and 5 and graphically shown in Figures 5(a) and 5(b).
Similarly, the temperature in Tables 6 and 7 and Figures 6(a)
and 6(b) represent these results exactly same way as in the
previous case at the skin surface. As the graphs presented in
Figure 7 and obtained temperature profile in Table 6 for
body part and in Table 7 for clothes coincide, respectively, it
can be concluded that the numerical solution of the model is
stable and convergence with respect to the grid.

+e temperatures in Table 8 and graphs in Figure 7 at
time steps Δt � 0.05 s, Δt � 0.1 s, Δt � 0.4 s, and Δt � 0.5 s

with Δr � 0.0005m, respectively, coincide. So, all graphs are
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Figure 4: Temperature profile with various mesh sizes at time step Δt � 0.4 sec. (a) Mesh size Δr � 0.001m, Δt � 0.4 s. (b) Mesh size
Δr � 0.0005m, Δt � 0.4 s. (c) Mesh size Δr � 0.00005m, Δt � 0.4 s.

Table 4: Temperature profile at the interface (skin surface) when Δt � 0.01 s.

∆r (m) Temperature in 60 (s) Temperature in 120 (s) Temperature in 180 (s)
0.001 36.76374598 36.30866076 35.85715129
0.0001 36.76037207 36.30920285 35.86597663
0.00005 36.7602856 36.309688591 35.86747444

Table 5: Temperature profile at the interface (skin surface) when Δt � 0.4 sec.

∆r (m) Temperature in 60 (s) Temperature in 120 (s) Temperature in 180 (s)
0.001 36.75829838 36.30752624 35.85570826
0.0001 36.76037207 36.30920285 35.86597663
0.00005 36.7582809 36.30809916 35.866122888
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Figure 5: (a) Temperature profile at the interface (skin surface) at Δt � 0.01 s. (b) Temperature profile at the interface (skin surface) at
Δt � 0.4 s.

Table 6: Temperature profile when Δt � 0.01 s.

∆ r(m) Temperature in 60 (s) Temperature in 120 (s) Temperature in 180 (s)
0.001 34.8052701 33.88093058 33.19336681
0.0001 34.80522479 33.9068697 33.25005773
0.00005 34.80551148 33.91018652 33.25706422

Table 7: Temperature profile when Δt � 0.4 sec.

∆r (m) Temperature in 60 (s) Temperature in 120 (s) Temperature in 180 (s)
0.001 34.79948362 33.87632483 33.18921782
0.0001 34.80522479 33.9068697 33.25005773
0.00005 34.79994767 33.90584859 33.25312605

10 Mathematical Problems in Engineering



independent of the time step sizes as well. +ese results help
to verify the stability and convergence of the FD scheme for
the model.

6. Conclusion

A one-dimensional time dependent bioheat transfer model
with a protective clothing system has been established and

solved using the fully implicit, unconditionally stable finite
difference method. Because of the heterogeneous domain
having two distinct physiological and physical behaviors of
body and clothes, the differential equation models for two
distinct parts (body and clothes) are solved separately using
implicit scheme and then combined by using interface
condition. +e model is the extension of Pennes’ bioheat
equation with nonlinear Robin’s boundary condition. +e
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Figure 7: Temperature profile when Δr � 0.0005m at different time steps.

Table 8: Temperature profile when Δr � 0.0005m at different time steps.

∆t (s) Temperature in 60 (s) Temperature in 120 (s) Temperature in 180 (s)
0.05 34.80467674 33.8804583 33.19294127
0.1 34.803935 33.87986792 33.19240934
0.4 34.79948362 33.87632483 33.18921782
0.5 34.79799948 33.8751435 33.18815399
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Figure 6: (a) Temperature profile at the interface (skin surface) at Δt � 0.01 s. (b) Temperature profile at the interface (skin surface) at
Δt � 0.4 s.
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developed model with the clothing phenomena is stable,
consistent, and convergent on the basis of grid points as well
as time step sizes. +e numerical verification of the con-
vergence and stability of the model has also been represented
graphically. +e result shows that suitable management of
clothing, in cold and hot climatic condition, keeps the body
in a highly satisfactory and comfortable level. +e numerical
computational results in this paper seem to agree with the
similar values of clothing parameters which are experi-
mentally verified in [1, 9].+e proposedmodel may be useful
for the clothing and environmental designers as well as
biomedical researchers.

Future work should include extension of the model to
higher dimensions and use of fractional derivatives as
studied in [23–25].
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Abstract 

This paper studies the stability and convergence of im-

plicit Finite Difference (FD) scheme of the bioheat transfer 

model of Pennes’ type with the clothing effect at the bound-

ary node. Robin’s boundary condition, in this study, incor-

porates the clothing insulation, effective clothing area factor 

in the combined heat transfer coefficient and observes their 

effects for the thermal comfort in the human body. Lemma 

and theorems for consistency, stability and convergence of 

FD scheme are established and the numerical results are 

graphically presented for validation of the model. 

Ključne reči 

• prenos bio-toplote 

• uticaj odeće 

• shema konačnih razlika (FD) 

• faktor efikasnosti površine odeće 

Izvod 

U radu je proučena stabilnost i konvergencija implicitne 

sheme konačnih razlika (FD) prenosa bio-toplote prema 

modelu tipa Penesa, sa uticajem odeće u graničnim čvoro-

vima. Ovde Robinov granični uslov sadrži izolaciju odeće i 

faktor efikasnosti površine odeće u okviru kombinovanog 

koeficijenta prenosa toplote, i posmatraju se njihovi uticaji 

na termičku ugodnost tela čoveka. Definisane su Leme i 

teoreme za konzistentnost, stabilnost i konvergenciju sheme 

FD, a numerički rezultati su predstavljeni grafički radi 

provere modela. 

INTRODUCTION 

The knowledge of temperature as well as heat transfer is 

essential for the treatment of cancer hyperthermia, cryosur-

gery, brain hypothermia and burn injury. A number of ther-

apeutic and clinical applications of bioheat transfer models 

in the current century, including /1-3/, can be found in the 

field of biomathematics. The first and most popular bioheat 

transfer model based on the classical Fourier law was devel-

oped by H. Pennes /2/ in 1948 by incorporating the volume-

try blood flow rate in tissue. Though many researchers /3-6/ 

have developed a bioheat transfer model, Pennes’ model is 

still famous and widely used to study the human thermo-

regulatory system with the equilibrium human body tem-

perature. Dai and Zhang /7/ developed and proved a three-

level unconditionally stable and convergence of FD scheme 

for solving 1D Pennes’ bioheat equation in a triple-layered 

skin structure by using discrete energy method. Zhao et al. 

/3/ developed two-level FD scheme for 1D Pennes’ bioheat 

equation and proved unconditionally stable and convergence. 

Tuzikiewicz and Duda /8/ discussed on the stability of ex-

plicit scheme of bioheat transfer equation by Von Neumann 

approach. The physical and physiological factors along with 

clothing resistance are equally important phenomena for the 

thermoregulatory systems of the human body. Suitable 

management of clothes, on the other hand, provides better 

insulation and keeps a person in comfort position. Previ-

ously established models by Dai and Zhang /7/ and Zhao et 

al. /3/ have ignored the Robin’s type boundary condition 

and also did not mention the effect of clothing resistance 

and insulation. These quantities cannot be neglected in the 

real-life situation. So, this paper focuses to study the math-

ematical model by incorporating the heat flux with clothing 

resistance, clothing area factor, and air insulation on the 

boundary. We construct the implicit finite difference scheme, 

establish and prove the theorems to show the FD scheme of 

our model is unconditionally stable and convergence having 

the same order of accuracy. 

Role of clothes 

The amount or rate of heat resists being transferred 

through clothes is defined as the clothing heat resistance. 

For thermal conductivity of clothes (W/m°C), / 9/, 

 cl
cl

L
k q

T
=


, 

where: Lcl is the thickness of cloth (m); T the temperature 

difference (°C); q is heat flow rate (W/m2). The thermal 

resistance Rcl (m2°C/W) is given by, /9/, 

 cl
cl

cl

LT
R

q k


= = . 

MATHEMATICAL MODEL 

1D Pennes bioheat equation in cylindrical form is given 

by /2/ as 

mailto:kabi123luitel@gmail.com
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1

( )b b a m
T T

c kr w c T T q
t r r


  

= + − + 
  

, (1) 

where:  is density (kg/m3); c specific heat (J/kg°C); k ther-

mal conductivity of tissue (W/m°C); wb rate of blood perfu-

sion (kg/m3s); cb specific heat of blood (J/kg°C); Ta arterial 

temperature (°C); qm metabolic heat production (W/m3). 

The distance from the body core towards skin surface is 

denoted by r (m). The bioheat Eq.(1) with the clothing 

parameter P (W/m3), /9/, is written as 

 
2

2

1
( )b b a m

T T T
c k w c T T q P

t r rr


   
= + + − + + 

   

, (2) 

where: P = Pcl(Tsk - Tcl); and Pcl = kcl /Acl (W/m3°C); Acl is 

the surface area of clothed human body (m2). 

Left boundary condition at r = 0 (body core) 

The boundary condition for the interior part of the living 

tissue is considered uniform as  

 at   r = 0,   0tT

t


=


. (3) 

Right boundary condition at the clothes surface 

The right side is fitted with clothes and directly exposed 

to the atmospheric environment, so boundary condition of 

the Robin type is 

 at   r = R,   ( )cl
cl A cl

cl

T
k h T T

r



− = −


, (4)  

where: rcl is thickness of clothes; hc the convective heat 

transfer coefficient (W/m2°C); hr radiative heat transfer coef-

ficient (W/m2°C); Tcl clothes temperature (°C); T atmos-

pheric temperature (°C). The clothing efficiency factor Fcl 

(dimensionless) is given by, /9-12/, 

 a a
cl

T cl a cl

I I
F

I I I f
= =

+
, 

where: Icl is the clothing insulation (m2°C/W); Ia (m2°C/W) 

air insulation (m). The dimensionless clothing factor is the 

ratio of clothed surface and naked body surface area, fcl = 

Acl /Ab. 

METHODOLOGY 

Finite difference (FD) scheme is used as the numerical 

method. The main assumptions in this study are heat flows 

from body core toward the skin surface in radial direction, 

(R - 1)-th node is the interface between the skin surface and 

clothes. Clothing appears in the boundary, the R-th node is 

the clothes surface exposed to the environment. So, we use 

the boundary condition Eq.(4). The domain discretization 

can be seen in the circular limb of the body in Fig. 1. 

 

Figure 1. Discretization of mesh in radial direction. 

Finite difference (FD) scheme  

We consider the cylindrical coordinate system covered 

by the cylindrical differential mesh with step size r in 

radial direction. In this case we also take n, n + 1 as two 

successive time level with time step t. Taking the implicit 

FD scheme for the internal i-th node with i = 1, 2, 3,, R-1 

is given by 

 
1 1 1 1

1 1

2

2

2

n n n n n
i i i i i t

t

T T T T T k
c k

t i rr


+ + + +
− +− − +

= + 
 

  

 ( ) ( )1 1 1
1 1

n n n
i i b a i mT T w T T q+ + +
+ − − + − + . (5)  

The construction of FD scheme in Eq.(5) has truncation 

error of order 0(r2 + t) for (tn, ri) on each interior gride 

point n ≥ 1, 0 < i < R-1. 

When, D = kt /c,  = Dt/r2, M = wbcb /c, S = qm /c, 

and F = t(MTa + S). Rewriting the above Eq.(5), we have 

for 0 < i < R-1, 

 1 1 1
1 1

n n n n
i i i i i iD T E T B T F T+ + +

− + + − = , (6) 

where: 
2

iD
i




 
= − + 
 

; (1 2 )iE M t= + +  ; 
2

iB
i




 
= − − 
 

. 

FD scheme for left boundary condition at i = 0 

Due to the constant temperature at the core, when r = 0, 

then 
1

0tT

r r


→


. In this situation we use L’Hospital rule to 

remove this indeterminate form at the left boundary node 

and get the equation at i = 0 as 

 
2

2
2 ( )t t

a t

T T
c D M T T S

t r


  
 = + − +
   

. (7) 

FD scheme at i = 0 with the help of boundary condition 

given in Eq.(3) is 

 1 1
0 0 1 04n n nE T T F T+ +− − = . (8)  

FD scheme for skin surface at the interface at i = R - 1 

 1 1 1
1 2 1 1 1 1

n n n n
R R R R R R RD T E T B T F T+ + +
− − − − − −+ + − = . (9) 

Equation (9) is FD scheme at R - 1, the system is taken 

as tight fitting or negligible air gap between body and clothes 

at i = R-1, the contact point between skin and clothes. 

The interface thermal conductivity in /13/ is 

 
( )t cl cl

t cl
cl t cl

k k r r
k k

k r k r

 +
= =

 + 
. (10) 

The continuity and interface condition is given by /13/ 

at i = R-1, sk cl
t cl

cl

T T
k k

r r

 
=

 
, 

1 1 1 1
1 2

n n n n
R R R R

t cl
cl

T T T T
k k

r r r

+ + + +
− −− −

=
  +

. 

From Eq.(10) we get, 
1 1 1 1

2 1
n n n n
R R R R

t cl cl
T cl

T T T T
k k k

k r

+ + + +
− −− −

=


, 

where: rcl is thickness of clothes; r is mesh size for body 

part; and kT = kclr + ktrcl. 

Now, suppose  = ktrcl/kT, then 

 ( )1 1 1 1
1 2

n n n n
R R R RT T T T+ + + +

− −= + − . (11) 

With the help of Eq.(11), Eq.(9) can be written as  



Stability and convergence of implicit finite difference scheme for  Stabilnost i konvergencija implicitne sheme konačnih razlika za   

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 21, Specijalno izdanje (2021), str. S23–S28 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 21, Special Issue (2021), pp. S23–S28 

 

S25 

 ( )1 1 1 1 1
1 2 1 1 1 1 2 1

n n n n n n
R R R R R R R R RD T E T B T T T F T+ + + + +
− − − − − − − −

 + + + − − =
  

, 

 1 1 1
1 1 2 1 1 1 1 1( ) ( )n n n n

R R R R R R R RD B T E E T BT F T + + +
− − − − − − − −− − + + − = . (12) 

Now, at r = R, M = 0, S = 0, the Eq.(6) for clothing part 

is given in FD scheme as 

 1 11
1 1 1 1 1 1(1 2 )

2

n n
R R RP D T P T

R


 + +

− −
 
− + − + + + + 
 

 

 11
1 1

2

n n
R RT T

R


 +

+
 

+ − + = 
 

, (13) 

where: 1 2( )

cl

cl cl cl

k t

c r





=


; 1

cl cl

P t
P

c


= . 

Boundary condition at the clothing surface at i = R 

The right boundary condition at the clothing surface in 

Eq.(4) is 

at   r = R   ( )cl
cl A cl

cl

T
k h T T

r



− = −


. 

FD scheme for boundary condition is 

 1 1
1 1 2 ( )n n

R R A clT T h T T+ +
+ − = − − . (14) 

From Eqs.(13) and (14), the FD scheme for the right 

boundary node is 

1 11
1 1 1 1 1 1( 2 ) (1 2 )

2

n n
R RP T P T

R


  + +

−
 

− − + + + + + + 
 

 

 1
12

2

n
A cl Rh R T T

R




 
+ − − = 

 
, 

1 1
1 [ 2 ]n n

Rcl R Rcl A cl Rcl RD T E h R T B T+ +
− + − +  

 1
12

2

n
A cl Rh R T

R




 
+ − − = 

 
. (15) 

 1 1( 2 )RclD P= − − ,   1 1(1 2 )RclE P= + + , 

 1
1

2
RclB

R




 
= − − 
 

,   1
12

2
R A clF h R

R




 
= − − 

 
. 

The systems Eqs.(8), (6) and (15) together can be written 

as the matrix equation of the form 

 1n nAT T B+ = + , (16) 

where: A is (R+1)(R+1) tridiagonal square matrix; B is the 

column vector of size (R+1)1 and 

 
   for   1 1

   for           

n
tn

n
cl

T i R
T

T i R

   −
= 

=

 (17) 

ANALYSIS OF THE MODEL 

To prove solvability and stability of Eq.(2), we introduce 

a column vector of size (R+1)1 representing the numerical 

solution at time step tn as Tn = [T0
n, T1

n,  , Ti
n,  , TR

n]. 

Theorem 1 (solvability of the model): for each time step n, 

Eq.(16) is unconditionally solvable. 

Proof. To show solvability of Eq.(16), it is sufficient to 

prove that the matrix A is invertible, i.e. the matrix A is 

diagonally dominant, where the absolute value of diagonal 

element of each row of the coefficient matrix A in Eq.(16) 

is greater than the sum of the absolute value of remaining 

elements in corresponding row of matrix A. Then we have 

R1 (1st row):   ajj ≥ aij   since   1 + 4 + Mt > -4 

Ri (i-th row):   ajj ≥ 
2

2,

R

ij
i i j

a
−

= 
 . 

Since  1 2iE M t= + +  , 
2

iD
i


= − + , 

2
iB

i


= − − , 

So, 1 2 2
2 2

M t
i i

 
   + +   − + + − − = − , 

RR-1 (R-1)-th row:   ajj ≥ aij 

Since   1 1 1(1 2 )
2( 1)

R RE B P
R


 − −

 
+ = + + + − − 

− 
 

 1 1 1(1 )
2( 1)

R RE B P
R


− −

 
+ = + + − 

− 
  

on the other hand, DR-1 – BR-1 + BR-1 ≥ DR-1 = 

2( 1) 2( 1)R R

 
 
   

= − − = −   
− −   

. 

So   1 1 1 1 1R R R R RE B D B B − − − − −+  − + . 

RR R-th row:   ajj ≥ ajj 

Since   ERcl – BRcl > DRcl 

1
1 1 1 1 1 1(1 2 ) 2 2 2

2 )
A clP h R P P

R


   

 
 + + + +  − − = + 

 
. 

Clearly, each row is also diagonally dominant. So, matrix 

A is invertible. Hence Eq.(16) is unconditionally solvable. 

Lemma 1. If λi for i = 0,1,2, , R represents the eigenvalues 

of the square matrix A and ‘  2’ represents the second 

matrix norm (i.e. 
2

max i
i

A = , then we have the follow-

ing results 

(i) 
1

1    for   1 1

1        for           
i

M t i R

P i R


+    −
= 

+ =
 

(ii) 
1

2

1

1
1   for   1 1

1

1
1       for           

1

i R
M t

A

i R
P

−


   − + 

 
  =

+

 

Theorem 2 (consistency): a finite difference (FD) scheme 

of Eq.(2) with truncation error (r,t) is consistent if  

 τ(r,t) → 0   as   r, t → 0. 

It can be easily said that we have approximated our 

model Eq.(2) by FD scheme in Eqs.(8), (6), (12) and (13), 

which has truncation error (r,t) = O((r)2 + t). 

So, 
, 0
lim ( , ) 0

r t
r t

  →
  = . 

Hence, the FD scheme of our model Eq.(2) is consistent.  

Theorem 3 (stability): The FD scheme of Eq.(2) is uncondi-

tionally stable with respect to initial data if  



Stability and convergence of implicit finite difference scheme for  Stabilnost i konvergencija implicitne sheme konačnih razlika za   

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 21, Specijalno izdanje (2021), str. S23–S28 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 21, Special Issue (2021), pp. S23–S28 

 

S26 

 1 0

2 2

nE E+  , 

where: E n+1 = T n+1 – T*(n+1) is an error equation; T*(n+1) is 

the small perturb in T n+1. 

Proof. Operating Eq.(17) by A−1 we obtain 

 1 1 1n nT A T A B+ − −= + . (I) 

Take T*(n+1) be small perturb in T n+1, then  

 *( 1) *( )n nAT T B+ = + . 

 *( 1) 1 *( ) 1n nT A T A B+ − −= +  (II) 

Assume that 
1 1 *( 1)n n nE T T+ + += −  be the error equation, then from Eq.(I) 

and Eq.(II) we get 
1 1 1 1 *( ) 1( ) ( )n n nE A T A B A T A B+ − − − −= + − +  

1 1 *( ) 1 1 1 1( ) ( )n n n n nE A T T A E A A E+ − − − − −= − = = =  

1 2 1 1 2 1 2 1 3 2( ) ( ) ( ) ( )n n nA E A A E A E− − − − − − −= = = =  

1 0( )nA E−= =    for   n = 1, 2,  , n. 

So, we have, 1 1 0( )n nE A E+ −=    for   n = 1, 2,  , n. 

With respect to second norm, 1 1 0

2 2 2

nE A E+ − . 

From Lemma 1, we apply 1

2
1A−  , which implies 

 1 0

2 2

nE E+  . 

Hence, by Lax-Ritchtmyer’s Theorem the FD scheme of 

the extended bioheat equation with clothing system is uncon-

ditionally stable with respect to initial data. 

Theorem 4 (convergence): FD scheme of Eq.(2) is uncondi-

tionally convergent. 

Proof. Let 

 0 1[ ( , ), ( , ), , ( , ), , ( , )]
n n n n n

i RT T r t T r t T r t T r t =    of size 

(R + 1)1 be the exact solution at time step tn such that  

 
1 1n n nAT T B 
+ += + + , (18) 

where:  n+1 be the truncation error vector at level tn. We 

have the numerical solution in T in Eq.(16) based on the 

discretization schemes. 

If 
1 1 1n n nE T T
+ + += −  is an error equation, then Eq.(16) 

and Eq.(18) yield 
1 1n nAE E 
+ += +  

1 1 1 1n n nE A E A 
+ − − += + =  

11 1 1 1 1( )
n n nA A E A A 
−− − − − += + + =  

21 2 1 1 1 1 2 1 1( ) ( ) ( )
n n n nA A E A A A  
−− − − − − − += + + + =  

21 3 1 3 1 1 3 1 1( ) ( ) ( )
n n n nA E A A A  
−− − − − − += + + + =  

01 2 1( ) ( )
n

k n k

k

A E A − − −= = +  

 1 01 2 1( ) ( )
nn k n k

k

E A E A 
+ − − −= + . (19) 

Initially we take T0 = 0, since initially no error occurs at 

t = 0. So, 
0

0E = , and taking norm on both sides of Eq.(19) 

gives the following result, 

21 01 1

2 2 212 2 0

max
n kn k

k Rk

E A E A 
+ − −

 =

 
 + 

 
  

Since 
0

0E =  and from Lemma 1 we have 1

2
1A−  , 

1 0 1

2 212 2 0

max
n kn k

k Rk

E E A 
+ −

 =

 
 + 

 
 . 

By the construction of (r + t), we have  

 
2

0k →    as   r → 0, t → 0. 

This implies  

 
1

, 0 2

lim 0
n

r t
E

+

  →
=    for   1 ≤ k ≤ R.  

Hence the system is unconditionally convergent. 

NUMERICAL VERIFICATIONS 

One dimensional Pennes bioheat equation given in Eq.(2) 

is numerically discretized in Eq.(6) with Backward Scheme 

in Time and Central Difference Scheme in Space (BTCS). 

The tissue thickness of the human cylindrical limb in this 

model is taken R = 0.03 m /5, 14/ from body core to skin 

surface. So far the clothes effect is concerned, the thickness 

of clothes 0.005 m /4/ is added to tissue thickness and the 

results are calculated with the new thickness R = 0.03 + 

0.005. Other various physical and physiological parameters 

from Table 1 (for human body ) and Table 2 (for clothing 

parameters) are chosen for the numerical experiments. 

Table 1. Thermophysical parameters /6, 14, 15/. 

Parameters value unit 

Thermal conductivity kt 0.48 W/m°C 

Specific heat of blood cb 3850 J/kg°C 

Blood density b 1000 kg/m3 

Blood perfusion rate wb 3 kg/s∙m3 

Metabolism qm 1085 W/m3 

Arterial temperature Ta 37 °C 

Convectional heat transfer coefficient hc 10.023 W/m2∙°C 

Environmental temperature Ts 28 °C 

Table 2. Thermophysical parameters /9, 10, 12, 16/. 

Parameters value unit 

Thermal conductivities of clothes kcl 2.0462 W/m°C 

Thickness of clothes Lcl 0.010 m 

Density of clothes cl 1550 kg/m3 

Specific heat of clothes ccl 1340 J/kg°C 

Clothing Insulation Icl 1.34 m2∙°C/W 

Air insulation Ia 0.025 m2∙°C/W 

Area of nude body Ab 1.6 m2 

Clothing area factor fcl 1.75 - 

GRAPHICAL REPRESENTATION 

The stability of the developed FD scheme Eq.(16) for 

cylindrical shape of the body with protective clothing system 

at the boundary node and its effects has also been verified 

by considering different parameters mentioned in Tables 1 

and 2. 

Different mesh sizes 25, 40, and 55, as well as mesh sizes 

100, 500 and 1000 in both non-clothing and clothing cases 

are taken for the validity and applicability of the numerical 

(implicit FD) scheme Eq.(16) at time t = 0.01 s. 
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This numerical verification has been performed in Fig. 2 

and Fig. 3 with three different meshes of 25, 40 and 55 with 

the time increment t = 0.01 s for non-clothing and clothing 

system of the body. In Fig. 2, the temperature of nude body 

at skin is 28 °C. In clothing state, on the other hand, the 

temperature becomes 32 °C in Fig. 3 which is because of the 

effect of clothing insulation and other parameters related to 

clothes. Similar results can be seen in Figs. 4 and 5 with 

mesh sizes 100, 500 and 1000 at time step t = 0.01 s in 

180 seconds. The temperatures obtained in Figs. 2 and 4 

almost coincide on the same curve even though the mesh 

sizes are different for the non-clothing case (nude body).  

 

  Figure 2. Radial temperature profile in 180 s.  

 

 Figure 3. Radial temperature profile with clothing in 180 s. 

 

Figure 4. Radial temperature profile in 180 s. 

 

Figure 5. Radial temperature profile with clothing in 180 s. 

The results in Figs. 3 and 5 in the clothing system are 

almost the same. In both cases, the figures are independent 

no matter what the mesh sizes are. These results verify the 

stability of implicit FD scheme for newly developed model.  

CONCLUSION 

In this study, an Implicit Finite Difference (FD) scheme, 

for one-dimensional transient bioheat transfer model with 

protective clothing at the boundary node of cylindrical body 

has been developed. The theorems are established and proven 

for analysing solvability, consistency, unconditionally stable 

and convergence of the model. 

Also, the numerical verification of the model is repre-

sented graphically showing its stability and validity on one 

hand, and the presence of clothes of significant effect for 

thermal comfort of the person, on the other. The developed 

model fosters the advanced clothing system to achieve the 

comfort state of the human body. 
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Abstract: Clothing plays a major role in protecting the human body from 

cold and hot environment by working as an insulator. The physical factors 

such as conduction, convection, radiation, evaporation and the 

physiological factors such as blood flow and metabolism within the body 

together with clothing system help to maintain human thermal comfort and 

the human thermoregulatory system. On the other hand, body is 

continuously losing a small amount of heat from the air gap between skin 

surface and protective clothes. This paper studies the role and effect of the 

insulations of clothes and air for dry heat loss and the moisture transfer due 

to air velocity along with walking speed and observes how they work 

together for temperature distribution in human body. Pennes’ bioheat 

equation is taken as a model and Backward in Time and Central in Space 

(BTCS) scheme is used for obtaining the solution of the model. Clothing 

parameters, wind speed and walking speed have been added in the 

boundary condition in Pennes’s model among them the clothing insulation 

helps prevent the heat loss whereas air velocity escalate heat loss from the 

body. The numerical results are implemented in Python. 
 

Keywords: Thermal Comfort, Thermoregulatory System, Bioheat Transfer, 

Clothing and Air Insulation, Air Velocity 

 

Introduction 

Human’s thermal comfort is not only the state of 

mind for satisfaction with environmental condition, but 

also balancing the body’s core temperature 37C (within 

the range 0.6C.) and thermoregulatory system. Body’s 

internal physical and physiological phenomena such as 

conduction, convection, radiation, sweat evaporation, 

blood flow and metabolism in addition with the 

insulation of clothes and air and clothing area factors are 

the key thermal properties for balancing the uniform 

body temperature (Hall and Hall, 2020; Özişik et al., 

2017; Luitel et al., 2018). These important components 

of the heat balance under the transient condition, the 

thermal energy generated by metabolism or transferred 

from solar radiation to the body part may go to alter the 

amount storage inside it. 

Thermal comfort is one of the physiological concepts 

that effects by the human personal and environmental 

factors. Metabolism and clothes are the personal factors, 

if they change in little amount, the person’s thermal 

comfort also changes. Radiant temperature, air 

temperature, long-wave radiation and radiation exchange 

with environment and short-wave absorption of solar 

radiation, on the other hand, can be categorized as the 

environmental factors (Holmér, 1995). 

Human body continuously produces heat through 

metabolism, which is the rate of energy with time, 

therefore, has unit Watt(W). During the estimation of 

metabolic heat production rate of a specific activity, the 

value is generally related to the body volume (Pennes, 

1948). So, the unit W/m3 is used for the metabolic heat 

generation in the internal body temperature in bioheat 

transfer equations whereas (Voelker et al., 2009; 

Havenith et al., 2002; Holmér, 1995; Oğulata, 2007) 

used this metabolic heat generation rate in W/m2 in 

relation with body surface area. MET is sometimes used 

for metabolic rate where the metabolic rate of seated 

person is given by: 

 

1 50 / . 58.2 /MET kcal m h W m   
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Body temperature may fall or rise according to the 

changes in external environment, internal physical and 

physiological parameters. Persons can minimize and 

keep the temperature balance by engaging themselves in 

exercise and using the comfort clothes during cold and 

sweating during hot environment (Havenith, 1999). 

The heat exchange between human and surrounding 

can be written in the heat balance equation per unit body 

surface area as (Havenith, 1999; Luitel et al., 2019; 

Oğulata, 2007): 

 

  e s r r kM W C R E C E C         (1) 

 

Nomenclature 

Ab Surface area of nude body (m2) 

Acl Surface area of clothed body (m2) 

C Heat loss through convection (W/m2) 

c Tissue specific heat (j/kgC) 

cb Blood specific heat (j/kgC) 

Ck Heat loss through thermal conduction (W/m2) 

cr heat loss through respiration (W/m2) 

Ea Heat loss through evaporation (W/m2) 

Er Respiratory evaporative heat loss (W/m2) 

Fcl Clothing efficiency factor (dimensionless) 

fcl Clothing area factor (dimensionless) 

hA Combined heat transfer coefficient (W/m2.C) 

hc Convective heat transfer coefficient (W/m2.C) 

Ia Insulation of air (m2.C/W) 

Icl Insulation of clothes (m2.C/W) 

k Thermal conductivity of body (W/m.C) 

qm Metabolic heat generation (W/m3) 

r Radial distance (m) 

 Tissue density (W/m2) 

Ta Arterial temperature(C) 

T Tissue (body) temperature (C) 

T Surrounding temperature(C) 

va Velocity of air (m/s) 

vair Relative air velocity (m/s) 

Wb Relative air velocity (kg/m3) 

We External work (W) 

Ws Walking speed (m/s) 

 

Heat Transfer at the Skin Surface Due to 

Clothing 

The skin releases the amount of latent heat which 

is caused either by the hot climatic condition or by the 

high physical exercise and secondly, the human 

body’s evaporation is limited to the surrounding vapor 

pressure (Voelker et al., 2009; Parsons, 1988). 

Thirdly, fabric structure having different level of 

porosity, has different amount of entrapped air in the 

fabric. Tightly woven fabric having less permeability 

to air prevents heat loss. 

Thermal Insulation of Clothes 

The thermal resistance and the insulation provided by 

any layer of trapped air and the insulation value of 

clothes whose measurement is generally taken in Clo 

unit. The standard measurement of insulation in 

ASHARE Standard 55, ISO 7730 and ISO-9920 

(Havenith et al., 2015) measured the clothing surface 

area and insulation which is based on the photographic 

method on the cylindrical limb of manikin. Some of 

these experimentally finding values of insulation for the 

non-western ensembles, are used in this study. The 

thermal resistance and the insulation provided by any 

layer of trapped air and the insulation value of clothes 

whose measurement is generally taken in Clo unit. 

1 Clo is defined as the insulation of clothing system 

that requires to a comfortably sitting-resting average 

male in a normally ventilated room. It is the thermal 

insulation of overall clothing worn by the person not 

only the particular garment in 0.1 m/s air velocity at air 

temperature 21C and relative humidity less than 50%. 

Among the total heat produced by metabolic reaction, 

24% heat is lost through evaporation and respiration. 

The limbs of human body with insulation parameters 

can be seen in Fig. 1. 

Clothing Efficiency Factor and the Convective Heat 

Transfer Coefficient 

The ratio of clothed human body surface area Acl and 

nude body surface area Ab is defined as the clothing area 

factor. The average body surface area of man is nearly 

1.8 m2. ISO-9920 (Voelker et al., 2009; Havenith et al., 

2015) have calculated this factor fcl as: 

 

cl
cl

b

A
f

A
  

 

 
 
Fig. 1: Circular limb with clothing and air insulation 

(Havenith et al., 2015) 

Ia 

Icl 

Surface air 

layer 

Clothing 

Enclosed 

air layer 

Body 

IT 
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The equation for this fcl in ISO-9922 is calculated 

as the function of clothing insulation Icl in Clo value 

and given by: 

 

1 0.31cl clf I   

 

As 1 Clo = 0.155 m2.C/W, the same equation 

becomes: 

 

1 1.97cl clf I   

 

ASHARE standard 55 (Havenith et al., 2015) 

prescribes the clothing efficiency factor without air 

velocity is given as: 

 

/

a a
cl

T cl a cl

I I
F

I I I f
 


 (2) 

 

The total insulation of clothing and air IT = Icl + Ia is 

the sum of surface air layer (insulation of air) Ia, 

enclosed air layer Icl as shown Fig. 1, the cross-sectional 

cylindrical limb of clothed human body. 

The human comfort system is the balanced condition 

between the heat produced by the internal metabolism 

and losing the heat from body by the means of 

conduction, convection and radiation. The heat transfer 

coefficient plays a vital role for maintaining this 

equilibrium position. The combined heat transfer 

coefficient hC due to convection hc and radiation hr is 

given by (Havenith et al., 2002): 

 

   cl sk
C cl c r sk

a cl T

T T T T
h F h h T T

I f I

 


 
      

 

The convective heat transfer according to ISO-7933 

on the other hand, depends upon the relative air velocity 

vair and walking speed given as (Oğulata, 2007; Holmér, 

1995; Havenith et al., 2002): 

 
0.68.7c air air a sh v and v v W    

 

and: 

 

 0.0052 58 .sW M   

 

The convective heat exchange hC (Oğulata, 2007) in 

heat balance equation in Equation 1 is determined by: 

 

 C c cl clh h f T T   

 

During last few decades various form of the heat 

transfer model in biological tissue with protective 

clothes are tackled by various researchers after (Pennes, 

1948). Gurung and Saxena (2010) have used the finite 

element approach to investigate the one-dimensional 

transient temperature distribution in human dermal parts 

with protective clothing at low atmospheric temperature. 

Havenith (1999) has developed the heat balance wearing 

protective clothing. Further (Havenith et al., 2002; 2015; 

Holmér, 1995; Van Hoof et al., 2010; Parsons, 1988; 

Oğulata, 2007) have developed the model for heat and 

moisture transfer through clothes by considering various 

environmental factors and insulation properties. 

Though many researchers have played a major role 

for significant turn into the thermal comfort through 

protective clothing by taking the heat balance equation 

and focused on the heat transfer only through clothing, 

there is still lacking for the study of energy and heat 

balance in internal human body part and clothing as well. 

It, therefore, led us to initiate the study of bioheat 

equation together with these types of clothing insulation 

properties and air velocity and walking speed. 

If one understands the thermal behavior of clothing 

property as well as human thermo physiological 

behavior, s/he will be able to determine the thermal 

comfort. So, this study focuses on both thermal 

properties of human body and the clothing properties 

such as insulation of clothes and air, clothing area factor 

which deals with the heat transfer from skin to 

environment via clothing and maintain the comfort level. 

Mathematical Model 

The study is being carried out on the cylindrical 

shape of the human body. So, in this study we imply the 

cylindrical form of one dimensional transient bioheat 

equation developed by (Pennes, 1948) incorporating the 

blood perfusion term in heat equation, is given by: 

 

 
1

b b a m

T T
c k r W c T T q

t r r r


    
     

    
 (3) 

 

Boundary Conditions 

The temperature at the body core of the living tissue 

is almost constant (approximately 37C). So, the 

equation for boundary condition is given as: 

 

0, 0
T

at r
r


 


 (4) 

 

As skin is covered by the clothes and outside the 

cloth is exposed to the environment, there is continuous 

heat flux between the cloth surface and the environment. 

In this case heat loss from the body to clothes and then 

clothes to environment is caused by convection, 

radiation, evaporation and the clothes insulation factors. 



Kabita Luitel et al. / Journal of Mathematics and Statistics 2020, Volume 16: 224.232 

DOI: 10.3844/jmssp.2020.224.232 

 

227 

The mixed boundary condition with the heat transfer 

coefficient in terms of clothing insulation and air 

insulation is given by: 

 

 , A

T
at r R k h T T

r



   


  (5) 

 

The combined heat transfer coefficient hA due to 

convection and radiation along with clothing area 

factor and clothing insulation properties Fcl in Eq. (2) 

is given by: 

 

 A cl c rh F h h    (6) 

 

Initial Condition 

The initial condition for the transient boundary value 

problem is given by: 

 

   0,0T r T r   (7) 

 

Solution of the Model 

While the analytical method is not feasible with 

non-homogeneous medium, numerical technique will 

be a strong tool to handle such type of complex 

problems. So, we perform the Finite Difference (FD) 

scheme as the numerical method where one 

dimensional form of cylindrical tissue is divided into J 

+ 1 discrete points uniquely specified by spatial 

indices, rj in the radial direction. The discretization of 

peripheral human limb where the temperature flow in 

radial direction is shown in Fig. 2. 

In the time discretization, we use backward finite 

difference scheme. The discrete time step size is 

denoted by t and the total time to evaluate the 

temperature is: 

max .t n t   

 

The differential equation is approximately expressed 

in the system of difference equation in finite difference 

scheme by using Taylor’s series expansion. Central 

difference schemes are used in the interior of the 

computational domain, while the special boundary 

stencils are needed near the boundary to make it as 

accurate as interior stencils. Writing Eq. 3 by using 

(BTCS) scheme for j = 1, 2, …, J-1 we get: 

 

 

 

1

1 1 12
1 1

22

1 1

1 1

2

1
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n n
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T c
c T T
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After plugging these terms into Eq. 3 with: 

 

 

2
, , ,

,b b m
a

k D t D t
D

c r r

W c q
M S and F t MT S

c c

 


 

 
  

 

    

 

 

the system converts into the form: 

 

 1 1

1

1

1

1 2
2

1,2, , 1
2

n n

j j

j

n n

j j

j

T M t T
r

T F T with j J
r


 




 







 
      
 
 

 
       
 
 

 (8) 

 

Equation 8 is Finite Difference (FD) approximation 

for interior nodes of the Eq. 3. 

FD Scheme at Boundary (Body Core) r = 0 

The thickness r is me assured from body core 

towards the skin surface in the cylindrical human 

body as shown in Fig. 2. At the body core, both r and 

the heat flux 
T

r




, are zero, then 

1 T

r r

 
 
 

 approaches to 

indeterminate form 
0

0
as r0. 

 

 
 

Fig. 2: Discretization in radial direction 

Body core Skin surface 

r0 = 0 r1 r2 … rj-1 rj rj+1 … rJ-1 rJ = R 
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The use of L’Hospital rule, then gives: 

 

 

2

2

0 0

0

1

r r

r

T

T Tr r

r r r
r

r
 



   
             


 

 

Now Eq. 3 becomes: 

 

 
2

2

2 b b m
a

T k T W c q
T T

r c r c c  

  
    

  
 (9) 

 

FD approximation of Eq. 7 at r = 0 is: 

 

 1 1 1

1 0 1 02 1 4 2n n n nT M t T T F T    

         (10) 

 

The FD scheme for 
T

r




= 0 is: 

 
1 1

1 1

n nT T 

   (11) 

 

Using Eq. 11 in Eq. 10, we obtain: 

 

  1 1

0 1 01 4 4n n nM t T T F T         (12) 

 

FD Scheme at Boundary (Skin Surface) r = J 

The central difference approximation of Eq. 5 

gives: 

 

 1 1 1

1 1

2
.n n nA

J J J

rh
T T T T

k

  

  


    (13) 

 

Then FD approximation at r = J of Eq. 7 is: 

 

 1 1

1

2
2 1 2

2

n nA
J J

J

n

J J

h r
T M t T

r k

F F T


   



   
         

   

  

 (14)  

 

where, FJ =  
2 J

A

rB
h T

k



. 

Writing the Eq. 12, 8 and 14 in the matrix equation 

form: 

 
1 ,n nAT T B    (15) 

 

were, 0 1 2 ,n n n n n

JT T T T T
     

A is the corresponding tridiagonal matrix of order 

(J + 1)  (J +1), Tn +1 and B are of column vectors of 

order (J +1) 1. 

Results and Discussion 

The heat and moisture transfer through clothes for 

living tissue depends upon the various biological, 

physiological, environmental as well as clothing 

properties. In this study the limb of cylindrical human 

body part is uniformly discretized into the number of 

small nodes. The heat flow in radial direction occurs 

from body core towards skin surface. 

The role of effective clothing area factor with air 

insulation can be seen in dry heat transfer and the values 

of air velocity and walking speed for moisture transfer 

make changes in temperature of the human body as 

shown in Fig. 3-7. The values of parameter related to the 

body part are given in Table 1. 

Effect of Clothing Insulation 

The effect of clothing insulation and air insulation 

has been observed at the different time steps. The 

temperature profile with these effects is also compared 

with the temperature profile in the nude body. The tissue 

thickness 0.03 m is taken as the size of space domain. 

The values of parameters related to internal body parts 

have been assigned from Table 1. The solution of the 

system of Eq. 15 with these parametric values and the 

additional values (Havenith et al., 2002; 2015). Figure 

3 illustrates the graphs for the time dependent 

temperature profiles with clothing insulation Icl and 

air insulation Ia. The parametric values from Table 1 

without additional parameters, on the other, are used 

to obtain the graph of the temperature variation within 

the nude body in Fig. 4. 

Normally surrounding air is cooler than the body’s 

temperature. So, it flows from body core to outer 

environment as shown in Fig. 2. The cloth keeps the 

body warm and comfort by trapping a layer of air 

between person’s skin and the fabric. This warmed up 

layer in Fig. 3 shows the rate of heat transfer from the 

body representing the temperature profiles at rest and 

different time steps. When a person removes clothing 

from her/his body, s/he starts to feel that the layer of 

trapped air dissipating and reacting to the cooler air 

around her/him. The rate of heat transfer from body in 

this situation is higher than that of clothing case. Except 

rest (t = 0) in both case (Clothed and Naked body), the 

temperature in skin from the body core with certain 

radial distance is uniform, i.e., steady state and then in 

Fig. 3 it goes down towards the skin surface and reaches 

35.6C in 60 sec, 35C in 120 sec and 34.5C in 180 sec. 

The results in this case, are the consequences of the 

insulation of clothes as well as air insulation. 

On the other hand, the temperature at nude skin 

surface are 29C in 60 sec, 26C in 120 sec and 24C in 

180 sec respectively, represented in Fig. 4. Such a result 

is due to the absence of protective cloth in the body. 
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Fig. 3: Variation of skin surface temperature when Icl = 0.172 m2.C/W, Ia = 0.0992 m2.C/W, vair = 0 m/s and Ws = 0 m/s 
 

 
 

Fig. 4: Radial temperature profile at nude body 
 

 
 

Fig. 5: Variation of skin surface temperature with Icl = 0.172 m2.C/W, Ia = 0.0992 m2.C/W, va = 4.1 m/s and Ws = 0.42 m/s 
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Fig. 6: Variation in temperature with Va = 4.1 m/s and Ws = 0.42 m/s, Icl = 0 m2.C/W and Ia = 0 m2.C/W 
 

 
 

Fig. 7: Temperature profile at skin surface for nude body and clothed body, R = 0.03 m  

 
Table 1: The body’s internal and surrounding parametric values (Yue et al., 2004; Luitel, 2017) 

Parameters  Symbols  Values  Units 

Thermal conductivities k  0.48  W/mC 
Blood specific heat cb  3850.00  j/KgC 
Blood density b  1000.00  kg/m3 
Blood perfusion rate wb  3.00  kg/s.m3 
Metabolism qm  1085.00  W/m3 
Arterial temperature Ta  36.98  C 

Tissue thickness R  0.03  m 
Environmental temperature T  30.00  C 

Nude body surface area Ab  1.70  m2 

 

Effect of Air Velocity and Walking Speed 

The velocity of wind and person’s walking speed 

have an important role for heat loss from the body. The 

values have been calculated and assigned from Table 1 

along with all additional parametric values related to the 

air velocity and walking speed and clothing insulation 

(Havenith et al., 2002; Holmér, 1995) to observe the 

variation of temperature within the body. 

The graphs in Fig. 5 stand for the temperature 

profile at the different time steps starting from 0 sec up 

to 180 sec. Even though the air velocity and walking 
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speed occur, there is only small variation in 

temperature at the skin surface than that of the 

temperatures in Fig. 3. This outcome is due to still 

occurrence of clothing insulation. Figure 6 brings out 

the effects of wind and walking speed while taking the 

values of parameters from (Havenith et al., 2002; 

Holmér, 1995), where no insulation of clothing takes 

place. These significant variations in temperatures in 

Fig. 6 at skin surface in different time steps are upshot 

of the relative velocity of air. 

Finally, the graphs in Fig. 7 display the significant 

variation in temperatures at the skin surface with and 

without clothing parameters at the time steps 0, 60, 120 

and 180 sec. From all of these figures, there is no doubt 

that the clothing insulation helps decrease the rate of heat 

loss from the body whereas air velocity gives rise to heat 

loss from the body. 

Conclusion 

A cylindrical form of one dimensional Pennes’ model 

for heat transfer through protective clothing is implicitly 

solved by using the finite difference method. The dry 

heat transfer and moisture transfer are studied in the 

microclimate region (between naked and clothed skin 

environment). Dry heat exchange due to thermal 

insulation of clothes and the air and moisture transfer 

due to air velocity with walking speed are compared 

and analyzed at the different time steps. In this study, 

the mixed boundary condition incorporating convective 

heat transfer coefficients with clothing parameters for 

dry heat exchange and air velocity and walking speed 

for moisture transfer is added in the in the Pennes’ 

bioheat model. The result shows that the presence of 

cloth makes major difference in the human thermal 

comfort level. This paper may helpful for the 

biomedical researchers as well as environmental 

designers. They can get benefit from the knowledge of 

microclimate temperature and accordingly they can 

design workplace and functional clothing so that people 

can feel comfort for better performance. 
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polynomial time complexity for the problem as well as modeling the problem with fixed

holding capacity at the intermediate nodes would be the immediate research directions.
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Abstract: The human thermal comfort is affected by the bodys heat exchange mechanism conduction, con-

vection, radiation, and evaporation. The mode of heat transfer between the body and environment depends

upon the human internal physiological phenomena, together with the boundary conditions. The present

paper provides the comprehensive overview of the thermoregulatory system of human body and studies the

numerical solution of unsteady-state one dimensional Pennes bio-heat equation with appropriate boundary

conditions. The solution is used to observe the temperature profiles at different thermal conductivities,

and different heat transfer coefficients in the living tissue at the various time steps. Various physical and

physiological factors across the cylindrical living tissue have been incorporated in the model.

Key Words: Thermoregulatory control, Heat exchange mechanism, Unsteady - state, Cylindrical living

Tissue

AMS (MOS) Subject Classification. 92C35 80A20

1. Introduction

Human body has the complex vascular geometry involving the multiple physical and

physiological phenomena such as conduction, convection, radiation, sweat evaporation,

blood flow and metabolism. Heat produced by human body may either preserved or trans-

mitted to the environment. When the internal body core temperature is nearly 370C,

human feels better comfort. So this temperature is considered as the normal temperature

which is as the result of heat generation and the heat loss by the body[11]. According to

Report of WHO, published in 1969, It is not recommended that body core temperature

exceeds 380C for a daily exposure to heavy work.” The fluctuation in this uniform body

temperature so far above and below causes the disturbance in thermoregulatory system. So

one should always try to keep balance the body temperature around 370C within the range

±0.60C.
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Thermoregulation is the process controlling the internal body temperature through the hy-

pothalamus heat production and heat loss center. The body also uses other processes like

dilating or constricting blood vessels, sweating and shivering.

Metabolism, the major source of heat generation which differs from layer to layer with the

highest heat generation in brain almost 13400w/m3 and in contrast, no heat production

in bone 0w/m3[23]. In this study heat is assumed to be generated uniformly by metabolic

and chemical reactions through the cylindrical living tissue. On the other hand, arterial

and venous including the small blood vessels located in tissues also play a vital role for

heat transfer between blood capillaries, and the tissues. The assumption and calculation

made here is based on the Fick’s law of perfusion. These important components of the heat

balance under the transient condition, the thermal energy generated or transferred to the

body part may go to alter the amount storage inside it.

The physical process of several mechanisms such as conduction, convection, sweat evapo-

ration and radiation are the causes for the heat loss from the body. Though convection is

the major part for heat loss from the body, in hotter environment heat loss depends more

on evaporation. The heat exchange between skin surface and environment is determined by

the amount of body area expose to outer environment [4, 20]. Evaluation of these physical

and physiological parameters is a major task for the analysis of the heat transfer, and the

thermoregulatory control.

Sweating is an essential process to regulate homeostasis in the human body. The brain,

and body work within a delicate balance to ensure that the person’s temperature is neither

too high nor too low. At a constant core temperature, the sweating rate is proportional

to the skin temperature and vice versa [20]. The weighted mean value of body, and skin

temperature is taken to calculate sweat rate which is given by the valid equation [11].

E =
[
8.47× 10−5(0.1× Ts + 0.9× Ta)− 36.60C

]
(kg/m2.s)

where, Ts = skin surface temperature, and Ta = body core temperature.

Since last few decades the study of bioheat transfer problems became emerging area

for research. Various models related to the heat transfer in biological tissue using Pennes’

bioheat equations are handled by several researchers after the Pennes’ model in 1948 [9].

Gurung and Saxena [5], have used the Finite Element Approach to invistigate the one di-

mensional steady-state temperature distribution in the dermal parts with quadratic shape

function. Saxena and Bindra [21] have used Pseudo-Analytical Finite Partition Approach

to the temperature distribution problem. In [20], Gurung and Acharya have simulated nu-

merically the sex-related differences in the sensivity of the sweating heat response to change

in body temperature. Khandey and Hussian [14] have investigated about the human pe-

ripheral tissue temperature during exposure to serve cold stress. They have used explicit

formula of finite difference method for simulation. Gurung and Saxena [4] have studied

about the transient temperature distribution in human dermal part with protective layer at

low atmospheric temperature. Recently Roohi et al. [19] have developed the comprehensive

model for the numerical study of space-time fractional bioheat equation. They have used

NUMERICAL STUDY OF TRANSIENT BIO-HEAT TRANSFER MODEL... 17

fractional-order Legendre function in their study.

As human body has the complex vascular distribution pattern embedded inside the tissue,

the study of heat transfer in such living biological tissue is really a cumbrous phenomena.

Bioheat transfer processes in living tissues are affected by various physical and physio-

logical parameters, surrounding environments, initial and boundary conditions along with

temperature-dependent metabolic heat generation [20].

As the body temperature may fall or rise according to the changes in external environment

and other above mentioned physical and physiological parameters, one can be minimize

and keep the temperature balance by engaging himself in exercise during cold and sweating

during hot environment[6]. The heat balance given in the relation is

Heat Store = Heat Production - Heat Loss

Here,

Heat Production : Metabolic Heat Generation,

and

Heat Loss: Conduction + convection + Radiation + Evaporation

+Evaporation + Respiration

Negative heat storage shows the more heat loss than production and in this case body starts

cooling whereas positive heat storage shows the metabolic rate is higher than the sum of

all heat losses and the body temperature rises.

The transient temperature profiles in the human body may helpful for the medical persons

who monitor the temperature fluctuations in the tissue during the hyperthermia treatment

against cancer .

The present paper focuses the study of transient solution of one dimensional bioheat trans-

fer model and apply it to estimate the effect of higher and lower thermal conductivities

in cylindrical living tissue. The model, Pennes’ bioheat equation is solved by using finite

difference technique with appropriate boundary conditions at the various time steps. Tem-

perature profiles at various heat transfer coefficients and the metabolic heat generations

have also been observed.

2. Model for Heat Transfer

One dimensional time dependent governing differential equation is used as the basic

mathematical model for the heat transfer which is given by

ρc
∂T

∂t
= k

∂2T

∂x2
+Wbcb(Ta − T ) + qm(2.1)

This bioheat equation (2.1) is suggested by H. Pennes’ in 1948. The left hand side is the

total heat storage; and the first and second terms of right hand side are, respectively guided

by Fick’s laws of diffusion and perfusion whereas the third term is the rate of metabolic

heat generation.
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Thermoregulation is the process controlling the internal body temperature through the hy-

pothalamus heat production and heat loss center. The body also uses other processes like
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and venous including the small blood vessels located in tissues also play a vital role for

heat transfer between blood capillaries, and the tissues. The assumption and calculation

made here is based on the Fick’s law of perfusion. These important components of the heat

balance under the transient condition, the thermal energy generated or transferred to the

body part may go to alter the amount storage inside it.

The physical process of several mechanisms such as conduction, convection, sweat evapo-

ration and radiation are the causes for the heat loss from the body. Though convection is

the major part for heat loss from the body, in hotter environment heat loss depends more

on evaporation. The heat exchange between skin surface and environment is determined by

the amount of body area expose to outer environment [4, 20]. Evaluation of these physical

and physiological parameters is a major task for the analysis of the heat transfer, and the

thermoregulatory control.

Sweating is an essential process to regulate homeostasis in the human body. The brain,

and body work within a delicate balance to ensure that the person’s temperature is neither

too high nor too low. At a constant core temperature, the sweating rate is proportional

to the skin temperature and vice versa [20]. The weighted mean value of body, and skin

temperature is taken to calculate sweat rate which is given by the valid equation [11].

E =
[
8.47× 10−5(0.1× Ts + 0.9× Ta)− 36.60C

]
(kg/m2.s)

where, Ts = skin surface temperature, and Ta = body core temperature.

Since last few decades the study of bioheat transfer problems became emerging area

for research. Various models related to the heat transfer in biological tissue using Pennes’

bioheat equations are handled by several researchers after the Pennes’ model in 1948 [9].

Gurung and Saxena [5], have used the Finite Element Approach to invistigate the one di-

mensional steady-state temperature distribution in the dermal parts with quadratic shape

function. Saxena and Bindra [21] have used Pseudo-Analytical Finite Partition Approach

to the temperature distribution problem. In [20], Gurung and Acharya have simulated nu-

merically the sex-related differences in the sensivity of the sweating heat response to change

in body temperature. Khandey and Hussian [14] have investigated about the human pe-

ripheral tissue temperature during exposure to serve cold stress. They have used explicit

formula of finite difference method for simulation. Gurung and Saxena [4] have studied

about the transient temperature distribution in human dermal part with protective layer at

low atmospheric temperature. Recently Roohi et al. [19] have developed the comprehensive

model for the numerical study of space-time fractional bioheat equation. They have used
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fractional-order Legendre function in their study.

As human body has the complex vascular distribution pattern embedded inside the tissue,

the study of heat transfer in such living biological tissue is really a cumbrous phenomena.

Bioheat transfer processes in living tissues are affected by various physical and physio-

logical parameters, surrounding environments, initial and boundary conditions along with

temperature-dependent metabolic heat generation [20].

As the body temperature may fall or rise according to the changes in external environment

and other above mentioned physical and physiological parameters, one can be minimize

and keep the temperature balance by engaging himself in exercise during cold and sweating

during hot environment[6]. The heat balance given in the relation is

Heat Store = Heat Production - Heat Loss

Here,

Heat Production : Metabolic Heat Generation,

and

Heat Loss: Conduction + convection + Radiation + Evaporation

+Evaporation + Respiration

Negative heat storage shows the more heat loss than production and in this case body starts

cooling whereas positive heat storage shows the metabolic rate is higher than the sum of

all heat losses and the body temperature rises.

The transient temperature profiles in the human body may helpful for the medical persons

who monitor the temperature fluctuations in the tissue during the hyperthermia treatment

against cancer .

The present paper focuses the study of transient solution of one dimensional bioheat trans-

fer model and apply it to estimate the effect of higher and lower thermal conductivities

in cylindrical living tissue. The model, Pennes’ bioheat equation is solved by using finite

difference technique with appropriate boundary conditions at the various time steps. Tem-

perature profiles at various heat transfer coefficients and the metabolic heat generations

have also been observed.

2. Model for Heat Transfer

One dimensional time dependent governing differential equation is used as the basic

mathematical model for the heat transfer which is given by

ρc
∂T

∂t
= k

∂2T

∂x2
+Wbcb(Ta − T ) + qm(2.1)

This bioheat equation (2.1) is suggested by H. Pennes’ in 1948. The left hand side is the

total heat storage; and the first and second terms of right hand side are, respectively guided

by Fick’s laws of diffusion and perfusion whereas the third term is the rate of metabolic

heat generation.
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As the recent paper aims the study of temperature profiles in cylindrical shape of the human

body. The cylindrical form of this bio heat equation in radial direction is performed here.

ρc
∂T

∂t
= k

[
1

r

∂

∂r

(
r
∂T

∂r

)]
+ Wbcb(Ta − T ) + qm(2.2)

Where, ρ: tissue density(kg/m3), c: tissue specific heat (j/kg0C)

k: thermal conductivity (w/m0C), Wb: blood perfusion rate (kg/m3.s)

cb : tissue specific heat(j/kg0C), Ta: arterial blood temperature (0C).

qm: metabolic heat generation(w/m3), r: radial distance from centre of core towards skin

surface(m)

2.1. Boundary Conditions: The inner boundary condition of the living tissue is consid-

ered uniform and taken as;

at r = 0,
∂T

∂r
= 0(2.3)

There is continuous heat flux between the skin surface and atmospheric environment as

outer surface of skin is exposed to external environment [17]. In this case heat loss from the

body is caused by convection, radiation and evaporation. The Robin boundary condition

guided by Newton’s law of cooling is given by

at r = R, −k
∂T

∂r
= hc(T − T∞) + LE(2.4)

Where, hc: combined heat transfer coefficient due to convection and radiation

L: latent heat, E: sweat evaporation, T∞: Environmental temperature

2.2. Initial Condition: For the time dependent boundary value problem, the initial con-

dition is given by

T (r, 0) = T0(r)(2.5)

3. Finite Difference Scheme for Solution of The Model

One dimensional form of cylindrical tissue is divided into R+1 discrete points uniquely

specified by spatial indices, ri = i∆r′ in the radial direction The discretization of circular

cross section of peripheral human limb where the temperature flow in axial direction is

uniform as shown in figure 1

In the time discretization, ∆t is denoted by the discrete time step size, and the total time

to evaluate the temperature is tn = n∆t.

In finite difference scheme the differential equation with continuous derivative is approxi-

mately expressed in the system of difference equation by using Taylor’s series expansion.

Writing equation (2.2) by using implicit finite difference scheme for RHS terms, and forward
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Figure 1. Circular cross section of peripheral human limb

difference for the term in left side we get,

ρc

∆t

[
Tn+1
i − Tn

i

]
= k

[
Tn+1
i−1 − 2Tn+1

i + Tn+1
i+1
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+

k
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Tn+1
i+1 − Tn+1

i−1

2∆r

]

+ Wbcb
(
Ta − Tn+1

i

)
+ qm i = 1, 2 · · · , R− 1(3.1)

For D =
k

ρc
,λ =

D∆t

∆r2
, µ =

D∆t

∆r,
M =

Wbcb
ρc

, S =
qm
ρc

, F = ∆t (MTa + S)

we have,
(
−λ+

µ

2ri

)
Tn+1
i−1 + (1 + 2λ+M)Tn+1

i +

(
−λ− µ

2ri

)
Tn+1
i+1 − F = Tn

i

DiT
n+1
i−1 + EiT

n+1
i +BiT

n+1
i+1 − F = Tn

i(3.2)

with i = 1, 2 · · · , R− 1

where, Ei = (1 + 2λ+M), Di = (−λ+
µ

2ri
) and Bi = (−λ− µ

2ri
)

for, i = 1, 2, . . . , R

The equation (3.2) is Finite difference scheme for interior nodes of the equation (2.2).

3.1. FD Scheme at Boundary r = 0: The cylindrical thickness r is measured from body

core as shown in figure 2. At the body core, both r and the heat flux ∂T
∂r , are zero, then

1
r (

∂T
∂r ) approaches to indeterminate form 0

0 as r → 0.

Figure 2. Discretization in radial direction
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The use of L’Hospital rule, then gives

1

r

∂T

∂r

∣∣∣
r=0

=
( ∂
∂r )(

∂T
∂r )

∂
∂r (r)

=
∂2T

∂r2

∣∣∣
r=0

Now equation (2.2) becomes,

∂T

∂t
=

2k

ρc

(
∂2T

∂r2

)
+

Wbcb
ρc

(Ta − T ) +
qm
ρc

(3.3)

The finite different scheme of equation (3.3) at r = 0 is

−2λTn+1
−1 + (1 + 4λ+M)Tn+1

0 − 2λTn+1
1 − F = Tn

0(3.4)

The FD scheme for ∂T
∂r = 0 is

Tn+1
−1 = Tn+1

1(3.5)

Using equation (3.5) in equation (3.4), we obtain

E0T
n+1
0 − 4λTn+1

1 − F = Tn
0(3.6)

where, E0 = (1 + 4λ+M)

3.2. FD Scheme at Boundary r = R: The central difference approximation is,

Tn+1
R+1 = Tn+1

R−1 −
2∆rhc

k

(
TR

n+1 − T∞
)
− 2∆rLE

k
(3.7)

Then FD equation at r = R of equation (2.2) is

−2λTn+1
R−1 + (ER − 2∆rhcBR/k)T

n+1
R + FR − F = Tn

R(3.8)

where, FR = 2∆rBR
k (hcT∞ − LE)

Writing the equations (3.6), (3.2), and (3.8) in the matrix equation form

ATn+1 = Tn +B(3.9)

where, Tn =
[
Tn
0 Tn

1 Tn
2 . . . Tn

r

]′

A =





E0 −4λ 0 0 . . . 0

D1 E1 B1 0 . . . 0

0 D2 E2 B2 . . . 0
...

...
...

. . .
. . .

...

0 0 . . . . . . −2λ
(
ER −BR

2hc∆r
k

)





Tn+1 =





Tn+1
0

Tn+1
1

Tn+1
2
...

Tn+1
R





and B =





F

F

F
...

F

F − FR
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4. Results and Discussion

The heat transfer model in living tissue depends upon the various biological proper-

ties as well as thermophysical parameters. In this study the cylindrical limb is uniformly

discretized into the number of nodes in the radial direction where the heat flow is started

from the core of the body towards skin surface as already shown in the figure 2.

The effect of various values of heat teansfer coefficients and thermal conductivities are

shown in figures 3 and 4 respectively. The graphs in these figures are obtained by using the

computer software Python.

4.1. Effect of Heat Transfer Coefficient: Temperature profiles in the case of a high

and low heat transfer coefficients has been observed at the different time steps. The size

of space domain (tissue thickness) R has been taken 0.03 m. In this case, the values of

parameters have been assigned as follows [11].

k = 0.48w/m0C, cb = 1000 j/kg 0C, Wb = 3.5 kg/m3.s, Ta = 370C,

L = 24× 105 j/kg, E = 4× 10−5 kg/m2.s, and T∞ = 220C.

The system of equation (3.9) with these parametric values gives the graphs in figure 3(a),

and figure 3(b) for the time dependent temperature profiles when the heat transfer coeffi-

cients hc are 10.023w/m2.0C and 30.23w/m2.0C respectively [11]. The nude human body

Figure 3. Radial Temperature profile at(a) hc = 10.023w/m2.0C (b) hc = 30.023w/m2.0C

surface is directly affected by the outer environmental condition where the convection and

radiation heat transfer coefficient appears. Figure 3(a) represents the temperature profiles

at rest, 60, 120, and 180 seconds. Except rest (t = 0) the temperature in skin from the body

core with certain radial distance is uniform, i.e. steady state and then it goes down slowly

towards the skin surface. The temperature at skin surface is 33.50C in 60 second, 320C in

120 second, and 290C in 180 second. On the other hand, in figure 3(b), the temperature

in the skin from body core from the core of body towards the skin surface slows sharply

down. In 60 second, the temperature reaches 260C, in 120 second 220C, and in 180 second

it reaches to 180C. This is due to higher heat transfer coefficient. Thus higher heat transfer

coefficient has more capacity to reduce the body surface temperature than that of the lower

heat transfer coefficient.
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4. Results and Discussion

The heat transfer model in living tissue depends upon the various biological proper-

ties as well as thermophysical parameters. In this study the cylindrical limb is uniformly

discretized into the number of nodes in the radial direction where the heat flow is started

from the core of the body towards skin surface as already shown in the figure 2.

The effect of various values of heat teansfer coefficients and thermal conductivities are

shown in figures 3 and 4 respectively. The graphs in these figures are obtained by using the

computer software Python.

4.1. Effect of Heat Transfer Coefficient: Temperature profiles in the case of a high

and low heat transfer coefficients has been observed at the different time steps. The size

of space domain (tissue thickness) R has been taken 0.03 m. In this case, the values of

parameters have been assigned as follows [11].

k = 0.48w/m0C, cb = 1000 j/kg 0C, Wb = 3.5 kg/m3.s, Ta = 370C,

L = 24× 105 j/kg, E = 4× 10−5 kg/m2.s, and T∞ = 220C.

The system of equation (3.9) with these parametric values gives the graphs in figure 3(a),

and figure 3(b) for the time dependent temperature profiles when the heat transfer coeffi-

cients hc are 10.023w/m2.0C and 30.23w/m2.0C respectively [11]. The nude human body

Figure 3. Radial Temperature profile at(a) hc = 10.023w/m2.0C (b) hc = 30.023w/m2.0C

surface is directly affected by the outer environmental condition where the convection and

radiation heat transfer coefficient appears. Figure 3(a) represents the temperature profiles

at rest, 60, 120, and 180 seconds. Except rest (t = 0) the temperature in skin from the body

core with certain radial distance is uniform, i.e. steady state and then it goes down slowly

towards the skin surface. The temperature at skin surface is 33.50C in 60 second, 320C in

120 second, and 290C in 180 second. On the other hand, in figure 3(b), the temperature

in the skin from body core from the core of body towards the skin surface slows sharply

down. In 60 second, the temperature reaches 260C, in 120 second 220C, and in 180 second

it reaches to 180C. This is due to higher heat transfer coefficient. Thus higher heat transfer

coefficient has more capacity to reduce the body surface temperature than that of the lower

heat transfer coefficient.
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4.2. Effect of Thermal Conductivities: Heat loss through the lower and higher thermal

conductivities have been calculated by assigning the following parametric values [11].

hc = 20.023w/m2.0C, T∞ = 220C, cb = 1000 j/kg0C, Wb = 3.5 kg/s.m3,

Ta = 370C, L = 24× 105 j/kg, and E = 4× 10−5 kg/m2.s,

The system of equation (3.9) gives the graph in figure 4(a) and figure 4(b) for time de-

pendent temperature profiles at the values of thermal conductivities k are 0.24w/m0C and

0.72w/m0C respectively [11].

From Figure 4(a), we observe that except rest, the temperature in the skin from body

Figure 4. Radial Temperature profile at (a) k = 0.24w/m.0C (b)k = 0.72w/m.0C

core upto certain radial distance is uniform as in the case of heat transfer coefficients, i.e.

steady state. After then the temperature decreases rapidly towards the skin surface and

the temperature at skin surface is 270C in 60 second, 230C in 120 second, and 210C in 180

second. On the other hand, in figure 4(b), it is found that the temperature profile in the

skin from the body core towards the skin surface decreases smoothly down. In 60 second,

the temperature reaches 310C, in 120 second 280C, and in 180 second it reaches up to 260C.

Thus higher thermal conductivities causes to rise in the skin surface temperature than the

lower thermal conductivity.

5. Conclusion

A time dependent bioheat transfer model is solved using the implicit finite difference

method for analyzing the heat transfer coefficient and conduction effect in the cylindrical

shape of human body. The result shows that the temperature at the skin surface decreases

significantly on the increase of heat transfer coefficient in the different time steps. While

increasing in thermal conductivity the temperature on the skin surface increases. On one

hand the graphs show the role of convection and conduction for heat loss from skin sur-

face, on the other hand, this paper provides the knowledge of prevention of physiological

disturbance due to several phenomena and the important and comprehensive overview of

the thermoregulatory system of human body. There is inverse relation in time and temper-

ature if T∞ < 370C. This paper is bound to be helpful for those who involve themselves
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in the medical field, such as hyperthermia treatment against cancer and the biomedical

researcher for further investigation in thermal disturbance. This paper can be extended in

annular, and axial direction by incorporating the clothing effect in thermoregulatory system.
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Abstract: We consider a simplified model for the simulation of suspended ellipsoidal particles in fluid flow

presented in [1] and investigate the calibration of the model from lab size experiments. Data have been

recorded using a camera set-up and post-processing of the pictures. The model uses a simplified description

for the orientation and position of the particles based on Jeffery’s equation. Additionally, particle-particle

interaction and particle-wall interaction are taken into account.

Key Words: Ellipsoidal particles; Jeffery’s equation; CFD simulation; experimental validation; immersed

rigid body
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1. Introduction

In many industrial applications the simulation of the motion of particles suspended

in a fluid is required. In the present work we consider non-spherical, ellipsoidal particles

with particle-particle and particle-wall collisions. We describe the movement of ellipsoidal

particles in a fluid using a simplified Langevin approach, see [1]. This means we use a system

of stochastic differential equations based on Newtonian laws of mechanics and stochastic

terms and calibrate the model with experimental data. To model the forces acting on the

particles in the fluid, we use the model of Jeffery [5, 12, 7]. While spherical particles allow for

a simple calculation of the forces acting on them, calculating the forces acting on deformed

particles is more complicated, compare [17, 18]. Here, the particle-particle interaction of the

ellipses are described via pairwise interaction potentials and a random force. The potentials

we use are common in the literature of polymers [10, 6, 3, 9, 13, 8], where the shape of the

ellipses are modeled with the help of Gaussian type functions. This leads to a model similar

to the one described in [15, 2, 14, 7]. For macroscopic approximations of this particle model,

see [1]. We note that for the applicability to a wider range of industrial applications such
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 This paper is the extension of the work originally presented in 2nd International 

Conference on Man and Machine Interfacing (MAMI 2017) and the paper of Yue et al.  

The present study aims at observing the effect of various parameters on temperature 

distribution profiles at various environmental temperature, tissue thermal conductivities, 

metabolic rates, blood perfusion rates, and heat transfer coefficients. The analytic solution 

of Pennes’ bioheat equation in the steady-state case is obtained by using the Modified 

Bessel’s equation incorporating the effect of sweating and non-sweating state of the body. 

From the study, it was observed that the variation of atmospheric temperature and heat 

transfer coefficients have a significant effect for the temperature distribution in the body 

towards the skin surface.  
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1. Introduction 

Heat transfer plays a very important role in the living system. 

This is the complex process, which includes not only some 

physical factors—conduction, convection, radiation, evaporation 

but also the physiological factors—blood flow and metabolism. 

These physical and physiological factors help maintain the 

constant human body temperature around 370C which is the 

equilibrium point of the production of heat and loss of heat by the 

body. The extreme temperatures from the normal body 

temperature influence the function of biological tissue and the 

whole system of the body. Death may occur if the body 

temperature is 270C and below and if 420C and above.  So we 

should maintain the body temperature around 370C. The heat 

transfer in the blood vessel also helps to maintain uniform body 

core temperature regardless of changes in environmental 

temperature. Metabolism, another important source of heat gain is 

the chemical process that occurs in the living organism to grow 

and produce, maintain their structure, and respond to their 

respective environment [1, 2, 3]. 

Sweat evaporation is one of the effective parameters in the 

thermoregulatory process, which is the only way to lose heat when 

the ambient temperature is higher than the normal body (36.10C - 

37.20C) temperature. Due to the sweat evaporation, 22% of heat 

losses from the body. Evaporative heat exchange also involves the 

loss of heat through the evaporation of sweat from the skin surface. 

We generally calculate the rate of sweat evaporation as the 

weighted mean value of the body core and skin temperature. The 

reasonable equation for the sweat rate is [4, 5]. 

𝐸 = 8.47 × 10−5{(0.1 × 𝑇𝑠𝑘 + 0.9 × 𝑇𝑏) − 36.6℃}𝐾𝑔/𝑚2/𝑠𝑒𝑐 

      Where 𝑇𝑠𝑘 =  skin surface temperature  

     and  𝑇𝑎 = 37℃   (body core temperature)   

It has been proved that the transfer of latent heat from the 

living being to its environment is often estimated by multiplying 

the loss in weight attributable to evaporation by the latent heat 

vaporization of water ‘L’ which decreases from 2501J/g at 00C to 

2406 J/g at 400C[6]. Havenith et al.[7] however, have mentioned 

the values for ‘L’ ranging from 2,398 J/g to 2,595J/ g. and finally 

suggested the latent heat of evaporation is only dependent on 

temperature giving a number of 2,430J/g at 300C. 

Acharya et al. [5] used variational finite element (FEM) 

method to prepare one dimensional heat transfer model for the 

comparative study of temperature profiles of human male and 
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temperature profiles of female luteal and follicular phases of the 

menstrual cycle. 

Havenith et al. [7] studied experimentally by using thermal 

manikin to determine the effective cooling power of moisture 

evaporation. They measured both heat loss and mass loss 

independently by allowing a direct calculation of an effective 

latent heat of evaporation. 

The knowledge of heat transfer is equally important in the 

field of biomedical research as well as in the treatment of cancer, 

now a great threat to the existence of humanity. Bioheat transfer 

models have therapeutic and clinical importance. These models 

are helpful  for the more effective treatment of cancer than it is 

now. As per Arkin et al., the effect of hyperthermia treatment 

depends on the temperature and duration of heating. If a constant 

temperature could be maintained, the duration of heating would 

be a reasonable way of expressing thermal dose [8].  

Over a hundred years’ time, the effects of the blood flow have 

been examined on the heat transfer of living tissue. After Bernard 

came up with an experimental study in 1876, physicians, 

physiologists, and engineers are interested in the mathematical 

modeling of the complex thermal interaction between the vascular 

systems of the body.  

In 1948 pennes’ H.H. [9] proposed the simple linear 

mathematical model based on experimental observation for 

describing heat flow within the tissue. Many other researchers, 

one after another, have developed alternative models for 

describing the perfusion rate and difference between the arterial 

blood temperature and the local tissue temperature. But Pennes’ 

model still has an acceptable result to predict the transient 

temperature due to its simplicity and flexibility [1]. 

Previous researchers such as Acharya et al. [5], Khandey 

and Saxena [10], Gurung and Saxena [11], Aijar and Dar [12], 

Nadel [13] observed the effect of latent heat of sweat evaporation 

for temperature variation in the human body only by using 

numerical (Specially FEM) techniques. Numerical methods give 

the approximation result whereas if the analytic solutions of these 

equations are attainable, they will give the exact result. Even 

though the analytical method was used by Yue et al.[2] to solve 

the model, but this model has not incorporated the effect of Latent 

heat and sweat evaporation.  The analytical approach for the study 

of such problems is still lacking. So the present study focuses on 

a mathematical model of the body temperature based on the 

Pennes’ bioheat equation due to the sweat evaporation. The 

temperature at various physical and physiological conditions in 

the sweating case in comparison with the non-sweating case will 

be observed in the study 

2. Mathematical Model   

 The governing differential equation used in the model is 

given by [9]. 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻. (𝐾𝛻𝑇) + 𝑀(𝑇𝑎 − 𝑇) + 𝑆                  (1) 

Where, ρ = density of tissue (kg/m3), c = specific heat (J/Kg.  0C), 

K = thermal conductivity (W/m0C), 𝜌𝑏 = density of blood (Kg/m3), 

wb = blood perfusion rate per unit volume (m3/s.m3), cb = blood 

specific heat (J/kg.0C), M = 𝜌𝑏𝑤𝑏𝑐𝑏  (W/m3.0C), S = metabolic 

heat generation (W/m3), 𝑇𝑎= temperature of arterial blood (0C), T 

= tissue temperature (0C). 

2.1. Boundary Conditions 

Heat loss takes place from the surface of the human body due 

to convection, radiation, and evaporation because the human body 

surface is exposed to the environment. So the boundary conditions 

used in this study is given by 

R = 0,       
𝑑𝑇

𝑑𝑟
 = 0                                                   (2) 

 

R = r,        −𝐾
𝑑𝑇

𝑑𝑟
= ℎ𝐶(𝑇 − 𝑇∞) + 𝐿𝐸               (3) 

 

Where R is the radius of concerned tissue (m), ℎ𝐶 is the coefficient 

of heat transfer on the surface of the tissue (W/m2.0C), T∞ is 

atmospheric temperature (0C), L is the latent heat (J/Kg) and E 

denotes the evaporation rate (Kg /m2.sec). 

3.  Analytic Solution 

Being human body cylinder in shape, equation (1) has been 

converted into the cylindrical form. The one dimensional steady–

state equation in the radial direction is expressed as, 

        
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) +

𝑀

𝐾
(𝑇𝑎 − 𝑇) +

𝑆

𝐾
  = 0    (4) 

 

To perform the non-dimensionalization of (4) with boundary 

conditions (2) and (3), we introduce the following characteristic 

quantities and dimensionless parameters, 

�̃� =
𝑟

𝑅
 , and �̃� =  

𝑇−𝑇∞

𝑇𝑎−𝑇∞
,                     (5) 

�̃� =  
𝑀𝑅2

𝐾
, �̃� =  

𝑆𝑅2

𝐾(𝑇𝑎−𝑇∞)
,                       (6a) 

ℎ�̃� = 
ℎ𝐶𝑅

𝐾
,         �̃� =

𝐿𝐸𝑅

𝐾(𝑇𝑎−𝑇∞)
                (6b)    

Differentiating (5) with respect to ‘r’ then, substituting in (4) we 

get  

1

�̃�

𝑑

𝑑�̃�
(�̃�

𝑑�̃�

𝑑�̃�
) +

𝑅2𝑀(1− �̃�)

𝐾
+

𝑆𝑅2

𝐾(𝑇𝑎−𝑇∞)
 = 0 (7) 

 With the use of (6a) and (6b), (7) reduces after calculating to   

1

�̃�

𝑑

𝑑�̃�
(�̃�

𝑑�̃�

𝑑�̃�
) − �̃��̃� + (�̃� + �̃�) = 0             (8) 

For computational simplicity, again we put  

𝑴 + 𝑵 = U 

�̃�= V 

∅ = U – VT 
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And get the (9) as follows 

�̃�2 𝑑2∅

𝑑�̃�2 + �̃�
𝑑∅

𝑑�̃�
− 𝑉�̃�2∅ = 0                                (9) 

This equation is the Modified Bessel’s equation of zero order and 

comparing it with Modified Bessel equation  

[
 
 
 𝑥2

𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦 

𝑑𝑥
− (𝛽2𝑥2 + 𝑝2)𝑦 = 0 

𝑊ℎ𝑜𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦

𝑦 = 𝐴𝐼𝑝(𝛽𝑥) + 𝐵𝐾𝑝(𝛽𝑥) ]
 
 
 

 

   The solution of equation (9) for ∅ can be written as  

∅ = 𝑐1𝐼0(√𝑉�̃�) + 𝑐2𝐾0(√𝑉�̃�) 

    Where c1 and c2 are arbitrary constants. 

After differentiating ∅  with respect to �̃� , calculating and 

substituting the corresponding values with boundary conditions, 

the solution for �̃�and then the solution for T can be written as in 

(10) and (11). 

�̃� =  
𝑈

𝑉
−

1

𝑉
[{

ℎ𝑐�̃�+�̃�𝑉)𝐼0(√𝑉�̃�)

ℎ�̃�𝐼0(√𝑉�̃�)+√𝑉𝐼1(√𝑉�̃�)
}]                 (10) 

𝑇 =  𝑇∞ + (𝑇𝑎 − 𝑇∞) [
𝑈

𝑉
−

1

𝑉
{

(ℎ�̃�𝑈+𝑉�̃�)𝐼0((√𝑉�̃�))

ℎ�̃�𝐼0(√𝑉�̃�)+√𝑉𝐼1(√𝑉�̃�)
}]      (11) 

Table 1: Thermo-physical parameters [1, 14] 

Parameters Symbols Values Unit 

Thermal conductivity      K 0.48 W/m0C 

Blood specific heat 𝑐𝑏 3850 J/Kg0C 

Blood density      𝜌𝑏 1000 Kg/m3 

Perfusion rate 𝑤𝑏 3  Kg/s.m3 

Metabolism       S 1085 W/m3 

Arterial temperature 𝑇𝑎 36.98 0C 

Tissue thickness        R 0.03 M 

Heat transfer coefficient      ℎ𝐶 10.023 W/m2.0C 

Latent heat      L 2400000 J/Kg 

Evaporation rate     E 0.00004 Kg/m2.sec 

Environmental temperature     𝑇∞ 30 0C 

The effect at various temperature profiles based on the above 

parameters values are presented graphically and discussed below.  

4. Results and Discussions 

The analytical solution of the bioheat equation for the 

cylindrical body and its respective results of physical properties 

depends on various factors. So the following values of parameters 

from table 1 have been used in equation (11) to observe the effect 

of different atmospheric temperature, thermal conductivities, 

blood perfusion rates, metabolic heat generation, and heat transfer 

coefficients.  

4.1.  Effect of Atmospheric Temperature 

 The temperature profiles at a various atmospheric 

temperature below 370C (normal body temperature) at 𝑇∞ =
 250𝐶 , 280𝐶 , 310𝐶 and 340𝐶 , and above 370C at 𝑇∞ =
 380𝐶 , 410𝐶 , 440𝐶 and 470𝐶 , are considered and  shown 

respectively in Figures 1(a), 1(b) and 1(c), 1(d).  

            Although the graphs in both Figures 1(a) and 1(b) show 

that the body temperature decreases from the core of the body 

towards the skin surface if the atmospheric temperature is less 

than the body core temperature, the graphs in Figure 1(b) show 

that the body temperature decreases more quickly towards the skin 

surface than in Figure 1(a). This is due to the evaporation effect. 

On the other hand, if the atmospheric temperature is higher than 

the body core temperature, the body temperature increases from 

the core of the body towards the skin surface, which can be seen 

in Figures 1(c) and 1(d). Moreover, the graphs in Figure 1(d) show 

that the temperature increases more slowly towards the skin 

surface than in the graphs in Figure 1(c) due to sweat evaporation, 

which helps to cool down the body temperature. 

 
Figure 1(a): Effect of 𝑇∞ < 370C when E= 0 

 
Figure 1(b): Effect of 𝑇∞ < 370C with LE 
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Figure 1(c): Effect of 𝑇∞ > 370C when E= 0 

 
Figure 1(d): Effect of 𝑇∞ > 370C with LE 

4.2. Effects of Thermal Conductivities  

The temperature profiles at various thermal 

conductivities K = 0.24W/m0C, 0.48W/m0C, 0.60W/m0C and 

0.72W/m0C are shown graphically in Figures 2(a) and 2(b). With 

the increase in thermal conductivities, the inner part of body 

temperature increases but the temperature on the body surface 

decreases sharply as the thermal conductivities increase. It 

happens due to the conduction process at the body surface.  

 

Figure 2(a): Effect of thermal Conductivities when E= 0 

 

Figure 2(b):  Effect of thermal Conductivities with LE 

4.3. Effect of Blood Perfusion 

The various values of blood perfusion are taken as 𝑤𝑏 = 1.5 

Kg/s.m3, 2 Kg/s.m3, 2.5 Kg/s.m3 and 3 Kg/s.m3 to observe their 

effect on the temperature of the body. The graphs in Figures 3(a) 

and 3(b) indicate that the gradient temperature variation in radial 

direction decreases with the increase of the blood perfusion. 

Figure 3(b) shows that the temperature falls more sharply towards 

the surface of the body than in Figure 3(a) because of the 

evaporation effect together with the blood perfusion.  

 

Figure 3(a): Effect of blood perfusion when E= 0 

 
Figure 3(b): Effect of blood perfusion with LE 
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4.4. Effect of Metabolic Heat Generation 

The various values of metabolic heat generation 𝑞𝑚 = 141.05 

W/m3, 271.25 W/m3, 542W/m3 and 1085 W/m3 are taken. Graphs 

in Figures 4(a) and 4(b) show that the values of metabolic heat 

generation have a very small effect on temperature distribution in 

the human body. The change in metabolic heat from 542W/m3 to 

1085 W/m3 make the small change in body temperature almost 

0.10C whereas its effect on the skin surface is negligible. This 

happens due to the negligible concentration of blood vessels 

towards the skin surface. In the case when sweat evaporation is 

present (Figure 4(b)), the effect of metabolic heat is almost 

negligible.    

 

Figure 4(a): Effect of metabolism when E = 0 

 

Figure 4(b): Effect of metabolism with LE 

4.5. Effect of Heat Transfer Coefficients 

The various values of heat transfer coefficients are considered at 

ℎ𝐶 = 5.023 W/m2.0C, 10.023 W/m2.0C, 15.023 W/m2.0C and 

20.023 W/m2.0C. The significant effect of the heat transfer 

coefficient can be seen in Figures 5(a) and 5(b). The curves in 

these figures indicate that the gradient temperature in the radial 

direction decreases with the increase of the heat transfer 

coefficients.  

 
Figure 5(a): Effect of ℎ𝐶  when E= 0 

 
Figure 5(b): Effect of ℎ𝐶with LE 

5. Conclusion 

In the present study, the analytical solution of the cylindrical 

form of Pennes’ bioheat equation with boundary conditions 

including the latent heat of sweat evaporation in the one-

dimensional steady-state case is obtained. The effect of the 

temperature changes in various atmospheric temperature, thermal 

conductivities, metabolic heat generation rates, blood perfusion 

rates, and heat exchange coefficients has been observed by using 

the solution obtained from this model. The study reveals that the 

atmospheric temperature, blood perfusions, and the heat transfer 

coefficients have a more significant effect on the temperature 

variation on the skin surface than in the body core. The gradient 

temperature in the radial direction decreases with the increase of 

the ambient temperature, the blood perfusion rates, and the heat 

transfer coefficients. There is a slight variation in body core 

temperature even an increase in metabolic heat generation. Its 

effect on the skin surface is negligible.  The various parameters 

used in this model have certainly a more remarkable effect on the 

temperature distribution in the human body than the case 

suggested in [1, 2]. Such a model may be useful for the researcher 

as well as thermal diagnosis and hyperthermia treatment of cancer. 

The analytic solution obtained in this paper can also be extended 

in the axial and angular direction as well as unsteady state case. 
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