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ABSTRACT

In this research, we delve into three distinct topics within the realm of non linear fluid
dynamics, namely the generalized Korteweg-de Vries (KdV)-type equation, the regular-
ity of solutions in the 2D Surface Quasi-Geostrophic (SQG) equation, and the behavior

of water waves under indefinite boundary constraints.

Firstly, we undertake an analytical and numerical examination of the following general-

ized KdV-type equation.
Uy + auy, + 2butt, + Uy, — dug, = 0,u(x,0) = uo(x) (D)

where a, b, ¢, d are real parameters. Our study involves allowing the coefficients a, b, c,
and d to approach zero in the limiting sense, while contrasting the outcomes with the
scenario in which each coefficient is precisely zero. By analyzing this nonlinear partial
differential equation in one dimension, we trace the impact of the nonlinear term on
the solution. Furthermore, we extend our findings to a two-dimensional equation with

structures comparable to those in the 2D SQG equation.

Secondly, we focus on the regularity of solutions in the following 2D SQG equation

00 +u.Vl+rk (—A) =
Vu = 0 (2)
0(1’,0) = 90(1‘)

where x > 0 and o > 0 are parameters, conducting a thorough analysis that addresses a
notable gap in analytical and numerical research. The SQG equation exhibits numerous
characteristics similar to the 3D Euler equation and the Navier-Stokes equation, with
the regularity of the latter being recognized as one of the Clay Institute of Mathematics’
millennium problems. To bridge this gap, we concentrate on various aspects of the SQG
equation, exploring both inviscid and dissipative instances. In the dissipative case, we
categorize the instances as subcritical, critical, and supercritical. Analytical solutions
have recently been derived for the subcritical and critical scenarios, while the question
of regularity in the supercritical case remains unresolved. Our research focuses on nu-
merical calculations of the inviscid and supercritical SQG equations, with particular

attention to the proximity of level curves, the L? norm, and the expansion of the |V10)|



quantity. We meticulously examine the nature of the solution, particularly in the region

1

where oo = 3

Finally, we turn our attention to the study of the following water waves
Ol + (U.V)i+ VP = —ge,, divi=0 (3)

where w is the velocity, P is the pressure, and g is the acceleration due to gravity, which
are typically modeled using Euler equations with unit density. We address an outstand-
ing open problem concerning the existence of closed orbits for water waves under indef-
inite boundary constraints. Our investigation begins with a discussion of advancements
in water wave structure under finite bottom conditions. We then shift our focus to the
behavior of water waves at the kinematic barrier of infinite depth. By employing the
Crandall-Rabinowitz theorem to construct water wave profiles for scenarios with zero
and constant vorticity, we present our findings as a contribution towards addressing this

problem.

Vi
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Chapter 1

Introduction

1.1 Introduction

A mathematical model is a description of natural or artificial systems using mathemati-
cal concepts and languages. The process of developing a mathematical model is known
as mathematical modeling. These models are used in the natural sciences and engineer-
ing disciplines as well as in the social sciences. Mathematical models can take many
forms, including dynamical systems, statistical models, and differential equations. In
some cases, the quality of a scientific field depends on how well the mathematical mod-
els developed on the theoretical background. In physical sciences, a traditional math-
ematical model contains most of the following elements: governing equations, supple-

mentary sub-models, assumptions, and constraints with initial and boundary conditions.

Fluid dynamics is the study of the flow of liquids and gases, usually into and around
solid surfaces. It can be further subdivided into aerodynamics and hydrodynamics.
Aerodynamics studies the air flows around airplanes and automobiles, whereas hydro-
dynamics deals with the flow of water in different situations, such as in pipes, around
ships, underground, etc. Fluid flow is a part of fluid mechanics which deals with fluid
dynamics. It involves the motion of a fluid subjected to unbalanced forces, and the
motion continues as long as unbalanced forces are applied. There are different types
of fluids, such as Newtonian, Non-Newtonian, compressible, incompressible, etc. Sci-
entists use both experiments and mathematical models and calculations to understand
fluid dynamics. The fluid flow is affected by the viscosity, density, and velocity of the
fluid and changes in the fluid temperature. Daniel Bernoulli was the first person to study

fluid flow mathematically. To study these phenomena, there are different models in the



form of differential equations. Among these, our study is focused on the three types of
the equations namely, Korteweg de Vries (KdV) equation, Surface Quasi-Geostrophic

(SQG) equation and the water wave equation.

The first equation we have studied is the KdV equation. It was first introduced by
Boussinesq and later rediscovered by D. Korteweg and G. de Vries in 1895 to model
the water waves on shallow water surfaces. This KdV equation is an example of an
exactly solvable nonlinear partial differential equation. We study the generalized KdV
type equation by letting different coefficients go to zero and comparing it with the case
when the coefficients are exactly zero. By choosing the particular values of constants,
the equation is reduced to the transport, burger and KdV equations. The numerical
study is carried out by using the pseudospectral method. Our study shows that there
is no difference between the behavior of the solutions in the limiting case and when

corresponding coefficients are exactly zero.

The second equation we have considered in our study is the 2D SQG equation. J.G.
Charney derived the general 3D quasi geostrophic equations in 1940s. The 3D quasi-
geostrophic system is a widely used model in oceanography and meteorology to de-
scribe large-scale oceanic and atmospheric circulation. These equations have been very
successful in describing the major features of large-scale motions in the atmosphere
and oceans in the midlatitudes (Pedlosky, 1987). The dynamics of these 3D geostrophic
equations with uniform potential vorticity reduces to the Surface Quasi- Geostrophic
(SQG) equation. This SQG equation models the evolution of buoyancy or the potential
temperature on the 2D horizontal boundaries. The inviscid SQG equation is useful in
modeling the atmospheric phenomenon such as frontogenesis, the formation of strong
fronts between the masses of hot and cold air. Also, the SQG equation (2.13) withx = 0
is an important example of an active scalar and an important testbed for turbulence theo-
ries due to some of its distinctive features (Blumen, 1978; Held, Pierrehumbert, Garner,
& Swanson, 1995). The SQG equation with o = % and x > 0 arises in geophysi-
cal studies of strongly rotating fluids (A. J. Majda & Tabak, 1996; Pedlosky, 1987).
This equation shows similarity with 3D Euler equations and hence with Navier-Stokes
equation in many aspects. We also note that the regularity of the solution of the Navier-
Stokes equation is one of the millennium problems, as enlisted by the Clay Institute of

Mathematics.

A detailed survey of Surface Quasi-Geostrophic Equations shows that there exists a gap
in the numerical as well as the analytical study. It is basically classified into inviscid

and dissipative cases. Further, the dissipative case is divided into subcritical, critical,



and supercritical cases. The analytical solution for the subcritical and critical cases
were obtained by the previous researchers. But the regularity issue for the supercritical
case is still open. The numerical computations for inviscid SQG and supercritical SQG

equations are presented in this work.

Finally, we have studied the water wave equation. Stokes water waves are nonlinear
and periodic surface waves on an inviscid fluid layer of constant mean depth, which
were introduced in the mid nineteenth century. These water waves, which propagate on
the water surface of the sea or river, are progressive periodic two dimensional waves.
The issue of whether there is a closed orbit in the water waves in an infinite boundary
condition is an outstanding open problem. We first discuss the various developments
in the structure of water waves in the context of finite bottom conditions, and then
concentrate on the behavior of water for the kinematic boundary for the infinite depth.
We have created water wave profile for the zero and constant vorticity conditions for the

Newtonian fluid is created through the application of the Crandall Rabinowitz theorem.

We work on the KdV type equations. We use numerical techniques to compare the
results when the coefficients tend to zero in the sense of limit with the case when the
coefficients are exactly zero. Secondly, we work on the SQG equation, with the help of
which we are able to identify the research gaps regarding the regularity of the solution of
the SQG equation. The open problem is the regularity issue of inviscid and supercritical
SQG equations. This is important because it shares similarity with 3D Euler equations,
and hence with NS equations, which is a millennium dollar prize problem as enlisted by
Clay Institute of Mathematics. If we explore the regularity issues of the solution of SQG
equation, then it will be great contribution to the mathematical community to get ideas
and hints about the solution of NS equations. Lastly, we work on the wave profile for the
water waves. In this regard, we extend the finite depth boundary condition to the infinite
depth boundary condition and guarantee the traveling wave solution for the Newtonian

fluid with zero and constant vorticity using the Crandall Rabinowitz theorem.

Our thesis is divided into six chapters. The first chapter discusses the preliminaries.
The second one deals with introduction. The issue concerned with KdV type equations
and its solutions are discussed in the third chapter. Following this, in fourth chapter, we
discuss mainly about the regularity of solutions of inviscid and the supercritical SQG
equations numerically. In the fifth chapter, we discuss about the water wave profile with
the extension of finite depth boundary condition to infinite depth. The sixth chapter
includes the summary and conclusion of this research work and recommendations for

further work.



1.2 Rationale

Our result will make a positive contribution to the scientific community. In our work, we
study the regularity of the solution of the inviscid SQG and supercritical SQG equations
numerically. With our findings and predictions, other interested researchers can begin
their study to find the solution of 3D Euler equations and hence NS equations which is
an outstanding open problem as well as a millennium dollar prize problem as enlisted
by Clay Institute of Mathematics. Another contribution is that we have created traveling
wave solution extending the finite depth to infinite depth boundary, which will give a
hint for the extension of finite to the infinite boundary condition in other problems of

fluid dynamics as well as from Newtonian to Non-Newtonian fluids.

1.3 Objectives

We pursue our research work to fulfill the following objectives:

1. To study the regularity of the solutions of inviscid SQG and supercritical SQG

equations numerically.

2. To study the nature of the solution of generalized KdV type equations when the
coefficients tend to zero in the limiting sense and compare the results with the

case when the coefficients are exactly zero.

3. To create a traveling wave solution for water waves with constant and zero vortic-

ity extending the result from a finite depth to an infinite depth boundary condition.



Chapter 2

Preliminaries

2.1 Basic Terminology

Let © be a domain in R™ and let f : Q@ — R. We call a vector « = (aq, ag, -+, qy)
a multi-index of order |a| = oy + @2 + - - + «,, where each component «; is a non
negative integer. The set D({2) represents the set of C'™°(£2) functions with compact

support in €.

Locally Integrable Function:
A locally integrable function is a function which is integrable on every compact subset

of its domain of definition.

Lebesgue Spaces:

For 1 < p < oo, the set of p-integrable measurable functions is denoted by L?(£2) and

is defined by
LP(Q) = {u : / |u(z)Pdz < oo}
Q

%
lulley = ([ torpae)” <o
Q

||u|| o = ess suplu|.

together with norm

When p = oo, we set

Weak Derivative:
Given a multi-index «, the derivative D f(x) is given by

0l f(x)

D f(z) = =l

_ Q] (0%
_am aﬁ: .

5



We say that a given function [ € Li oc Das a weak derivative D/ f, provided there exists

. 1
a function g € L1 oc such that

/Q g(@)$(z)dz = (~1)\ / (@) (@)da

for all test functions ¢ € D(S2).
If such a g exists, we define DS f = g and g is called the ot weak partial derivative of
f. The subscript w is discarded from D¢ and simply written as D“. Note that if weak

derivative exists then it is unique upto a set of measure zero.

Lipschitz and Holder Continuous functions:
Assume U C R™ isopenand 0 < v < 1. A function v : U — R is said to be Lipschitz

continuous (Evans, 2010) if
lu(z) —u(y)| < Clz —yliz,y €U 2.1

for some constant C'. Further, function v : U — R is said to be Hélder continuous with

exponent v (Evans, 2010) if
lu(@) —u(y)| < Cle —y[: w2,y €U (2.2)

for some 0 < 7 < 1 and a constant C'.

Holder Space:
The Holder space (Evans, 2010) is denoted by C’W(U) which consists of all functions
u € C*(U) together with norm

|l ok @y = Z [[Du| ey + Z [D%u] oy < 00 (2.3)

o<k lal=Fk

Here C*7(U) is the set of functions which are k-times continuously differentiable and
k' partial derivatives are bounded and Hélder continuous with exponent .
C>(U) is the space of infinitely differentiable functions ¢ : U — R with the compact

support U and the function ¢ is called the test function.

Sobolev Space:
Sobolev Space (Evans, 2010) is defined as the set

WmP(Q) ={u e LP(Q) : D*u € LP(R),0 < |a] < m}

where m is a non-negative integer and 1 < p < oo together with the norm

P

lallF (@) =19 > [1D"ulf,(2)

0<|e|<m

6



Homogeneous and Inhomogeneous Sobolev Space:

The homogeneous space H*(R") is the completion of C>°(R") together with norm

e = 1€ £ 2@ -

Similarly, the homogeneous space H*(R") is the completion of C2°(R™) together with

norm
1 fllre = 11+ €7D F(€) 22 mny.

Here is s is non-negative number.

Besov Space:
Given a function u : RY — R, forevery h € R,i =1,--- , N, and v € R", we define

AlMu(z) = u(z + he;) — u(z;) = u(x;, ; + h) — u(a}, z;) (2.4)

where e; is the i" vector of the canonical basis in RY. If N = 1, we write A"y = Alu.
Let1 <p,§ <ocoand0 < s < 1. A function v € L} .(RY) belongs to Besov space
B*P?(RY) (Leoni, 2017) if

||u||Bs,p.9(RN) = ||U||Lp(RN) + |U|Bs,p,9(]RN) < 00.

Weak Solution:

Consider a boundary value problem as
Lu=f in U;u=0 on oU (2.5)

where U is open, bounded subset of R” and u : U — R is unknown with u = u(x).
Also note that f : U — R is given and L is a second order partial differential operator

having the either form

n

Lu= =Y (a"(z)uq,) +Zb Yy, + c(2)u (2.6)

B,j=1
or

n

Lu=—Y" a" ()., + Z b (2)uy, + c(x)u (2.7)

i,j=1

for given coefficient functions a/, b, (i, 5 = 1--- ,n). Note that the PDE Lu = f is in

divergence form if L is given by ( 2.6) and is non-divergence form if L is given by ( 2.7).

The function u € Hi(U) is a weak solution (Evans, 2010) of the boundary value prob-
lem ( 2.5) if

Blu,v] = (f, ) (2.8)
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forallv € H}(U), where (, ) denotes the inner product in L*(U). Here B, ] is a bilinear

form associated with ( 2.6) and is given by

Blu,v] = / {Z a7 ug, vy, + Z b, v + c(x)uv} dx (2.9
U

ij=1 i=1
In simple word, weak or generalized solution is a function for which the derivatives may
or may not exist but which satisfy the differential equation in some precisely defined
sense. The most important weak solution is based on the notion of distributions. The
differential equation is rewritten such that there is no derivatives of the solution in the
equation which is known as the weak formulation and the corresponding solutions are

called weak solutions.

Leray Hopf weak solution:
0 is a Leray Hopf weak solution to initial value problem for the SQG equation on [0, T")
if

1. 6 e L>([0,T), L2(R?)) N L2([0,T), H*(R?)) then
Joo O (@ t2)da + [ [La(A%O(, 7))2da dr < [, 6%(x,t1)da for
0<ti<ta< T.

2. fand u = R(6) satisfy the SQG equation in distribution sense where R is singular

integral operator.

Fourier Transform:

The Fourier Transform of function f(x) is denoted by F' and is given by

F(k) = \/% /_OO f(x)e 2Tk gy,

Similarly, f(x) is called the inverse Fourier Transform of F’ and is given by

Fz) = \/% /_ Pk,

Here the functions f and F are taken as continuous in the given range.

2.2 Background

Fluid mechanics is the field of physics that deals with the physical mechanics of fluids
such as plasma, gases, and liquids and the forces acting on them. It is broadly catego-

rized into fluid statics and fluid dynamics. The first deals with the fluid at the state of
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rest and the second deals with the impacts of forces on the fluids in motion. It is a pro-
lific research field that is generally mathematically complex. There are many problems
that are wholly or partly unsolved and effectively addressed by numerical techniques
with the use of computers. There is a numerical technique generally called computa-
tional fluid dynamics. There are many factors affecting the natural phenomena behave
differently. Their activities can be modeled with the help of differential equations, as

the parameters show similarity with those factors.

2.2.1 Mathematical Modeling

A mathematical model uses mathematical concepts and languages to describe natural
or artificial systems. Mathematical modeling is the process of creating a mathematical
model. These models are employed not only in the social sciences but also in the sci-
entific sciences and engineering fields. Different types of mathematical models exist,
such as dynamical systems, statistical models, and differential equations. The major-
ity of the following components can be found in a standard mathematical model in the
physical sciences: regulating equations, supporting submodels, presumptions, and con-
straints, including initial and boundary conditions. The following are the steps involved

in mathematical modeling:
1. Assumptions and hypothesis
2. Mathematical formulation
3. Obtain the solution
4. Display the prediction of model

5. Check the models predictions with known facts

6. Make necessary change in assumptions if necessary

2.2.2 Navier-Stokes Equation

A mathematical description of fluid motion characterized by density, velocity, pressure
together with conservation of mass, Newton’s second law of motion and material prop-

erty. The Navier—Stokes equations describe the dynamics of the incompressible fluid.



The 3D incompressible Navier- Stokes equation is given by

ou+ (u.V)u = —% + vV, Vau=0 (2.10)

where v = viscosity, p = density, u = flow velocity, V = divergence, V2 = Laplacian,

P = pressure, ¢ = time.

Here the term (u.V)u is the divergence on a velocity. In a simpler term, it means how
the divergence affects the velocity. The term —% is thought to refer to how the par-
ticles move as pressure changes and their tendency to move away from areas of higher
pressure. The term v'V2u contains two key parts: viscosity (v) and Laplacian(V?). It
can be thought of as the difference between what a particle does and what its neighbors
do. When the motion of a particle in a high viscous substance is considered, then it will
induce particles to move, while in a less viscous fluid such as water or milk induce, it

will have a less effect on its neighbors.

Whether the classical solutions of three dimensional incompressible Navier-Stokes equa-
tions can develop a finite time singularity or globally regular for all time from smooth
initial data with finite energy is an outstanding open problem in fluid dynamics. There
is no analytical proof as well as no numerical result for the finite time singularity for the
NS equations. It is also a millennium problem as enlisted by Clay Institute of Mathe-

matics and offered prize money of a million US dollars.

2.2.3 Euler Equation

The Euler equation is the set of quasilinear partial differential equations. This equation
corresponds to NS equation with zero viscosity and zero thermal conductivity. These
equations are equally applicable to incompressible as well as compressible fluids and
basically reflect the conservation of mass, momentum, and kinetic energy. The first
comprehensive mathematical model of a fluid was proposed by Euler in the 1750s. The

3D Euler equation is given by
VP
hu+uVu=——, Vu=0 2.11)
P

where u, the velocity field; P, the fluid pressure and p is the density.
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2.2.4 3D Quasi-Geostrophic Equations

J. G. Charney derived the general 3D quasi geostrophic equations in 1940s. It is given
by
OHAY +V YVAY = 0
0,(0,0) +V YVAdY = A (2.12)
(0,z,2) = o(z,x)

We note that VL@D is the velocity field which transport the potential vorticity At and
Neumann derivative 0,1. The above system includes two coupled equations: Transport
equation on the vorticity, and equation satisfied by d,1. The 3D quasi-geostrophic sys-
tem is a widely used model in oceanography and meteorology to describe large-scale
oceanic and atmospheric circulation. These equations have been very successful in de-
scribing the major features of large-scale motions in the atmosphere and oceans in the
midlatitudes (Pedlosky, 1987). The dynamics of these 3D geostrophic equations with

uniform potential vorticity reduces to the SQG equation.

2.2.5 Surface Quasi-Geostrophic Equation

The two dimensional (2D) Surface Quasi Geostrophic (SQG) equation is given by

00 +u. N0+ 1 (~A)0 =
e(fE,O) = 90(1')

where k > 0 and o > 0 are parameters, § = 0(x1,x,t) is a scalar representing the
potential temperature and © = (uy, us) is the velocity field determined from ¢ by the

stream function ¢ with the auxiliary relations

(U], u2) = (—aww»au@)), (_A)1/27/} = 0.

2.2.6 KdV Equation

The KdV equation is given by

up + Uy + 20ty + Otggy =0 (2.14)
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which is a nonlinear partial differential equation of third order. Here u = u(z,1) is a
scalar function of x and ¢ where x € R and ¢ > 0 and ¢ is a positive parameter. u

represents the amplitude of wave and term du,,, produces the dispersive broadening.

2.2.7 Water Wave Equation

The equation of motion of the wave is given by
du+uVu=-VP+F, Vu=0 (2.15)

where u is the velocity, P is the pressure, and ' = (0, —g). This is the Euler equation

with p = 1. In Cartesian form, the equation (2.15) is given by

U + uuy + vuy, = =P, (2.16)
v+ uv, +vvy, = P, —g 2.17)

where P(t, z,y) denotes the pressure and g is the gravitational constant of acceleration.
The boundary conditions for the water wave problem are
P = Pym ony = n(t, z) (2.18)
Pytm being the constant atmospheric pressure. The kinematic boundary conditions
v =1y +uny ony =n(tx) (2.19)
and
v=0ony = —d (2.20)

In the presence of waves y = 7(t, z) will be the free surface and (u(t, x,y),v(t,x,y))

will be the velocity field.

2.3 Numerical Methods

There are many natural phenomena which can be modeled with the help of differen-
tial equations which may be partial or ordinary. Mathematicians usually try to obtain

the analytical solution for the given equations. But many of the differential equations
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involve the terms which are nonlinear in nature and cannot be solved analytically. So
an alternative approach will be used to get the approximate solution for the equations
instead of actual solution. There are many approaches to obtain the approximate solu-
tion for the given instance. The numerical methods are used to approximate the actual
solution of the given equation. With the help of these methods, approximate solutions

are obtained. The various numerical methods are discussed.

2.3.1 Discrete Fourier Transform

Integral transforms are useful tools for solving problems involving partial differential
equations especially when their solutions on the corresponding domains of definition
are difficult to deal with. Hence there is algorithm scheme for solving PDEs on a de-
fined domain by means of integral transform (Klamkin & Newman, 1961). Euler intro-
duced integral transforms to solve the second-order differential equation (DE) problems
(Deakin, 1985). Many integral transforms are suitable for solving the PDEs but most
common transforms are Laplace and Fourier. The Fourier Transform has been proved
to be extremely useful when applied to signal and image processing and for analyzing

quantum mechanics phenomena. The details of it are found in (Franklin, 1933).

Jean Baptiste Joseph Fourier’s was the first who introduced the Fourier Transform. It
is the special case of continuous Fourier Transform, sometimes called the finite Fourier
Transform. It is widely used in signal processing and related fields to analyze the fre-

quencies contained in a sampled signal.

Consider a function u(z) and © € [a,b]. The interval is divided into n equal parts
by the points xg, x1, T2, - - ,x,. The Discrete Fourier Transform (DFT) of sequence

{‘U(fj)}?:_ol is given by the formula
u(k): U(Ij)e n ;k=0717...7n_1wherei2=_1'

Similarly inverse Discrete Fourier transform (IDFT) of the sequence in the Fourier space

is given by

1
u(zr) = — u(zj)e”» ;5=0,1,2,--- ,n—1.
n
The DFT is a linear transformation, so it can be considered as the transformation of a
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vector « to another vector X of the same dimension by the relation

—_

X = Anmx?

where

‘&W,zexp<—2wﬁflij%¥313)>.

2.3.2 Fast Fourier Transform

In DFT, N2 complex multiplications are required for a set of NV elements. But in 1942,
it was discovered that DFT of length /N could be rewritten as the sum of two Fourier
Transforms of length % This concept can be recursively applied to the data set until
it is reduced to transforms of only two points. In 1965, Cooley and Tukey (Brigham,
1988) applied this concepts to filter noisy signals at Bell Labs. This method is known
as Fast Fourier Transform which reduces the number of complex multiplications from
N? to the order of N log, N.

The DFT sequence (xAk) of N complex valued numbers give another sequence of data

x(n) of length N according to formula

N-1
(k) =Y z(n)Wr0<k<N-1

n=0
where Wy = e & Similarly, inverse Discrete Fourier Transform is given by the
formula

PN
x(n) = ¥ c(K)Wy™0<n< N —1.
k=0

A~

For each value of k, direct computation of z (%) involves N complex multiplications (4 N
real multiplication) and N — 1 complex additions (4N — 2 real additions). Consequently
to compute all N values of the DFT requires N? complex multiplications and N2 — N
complex additions. For fastening the process of computation, we make the following
two basic properties:

Symmetry property: I/V;ff% =-Wk

Periodicity property: Wi = Wk

In this process, the DFT of size /V is divided into two intervaled DFT’s of size % One

of those formed from the even numbered points of the original N whereas another from
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the odd numbered points. We can write

N-1

_2mi
X, = E Lpe” Nk
n=0
N N
i 2mi = 2
_£Te _2mi

_ E :m%e Vank | E :£E2n+16 7 (2n+1)k

N N

N , Ny

\ —Zink _anip X — 2 nk
= E Tope 2 +e N E Topy1€ 2

n=0 n=0

= Xi+WEXR

Here X and X} denote the DFTs of even and odd numbered indexed inputs respec-
tively. The complex constant W = ¢~ stands for twiddle factor. We note that X  and

X, are periodic in k with length 5.

2.3.3 Spectral Methods

Spectral methods are a class of techniques used in applied mathematics and scientific
community to solve differential equations numerically which was first developed by
Steven Orszag in 1969 in series of papers (Orszag, 1979) and also in (Boyd, 2001;
Canuto, Hussaini, Quarteroni, & Zang, 2007). In this method, solution of the differen-
tial equation is expressed as the sum of a certain basis functions and the coefficients are
chosen in order to satisfy the differential equation. This method uses the global smooth
function to solve the ODEs, PDEs and eigenvalues problem. For the time dependent
PDEs, the solution is written as sum of the basis function with time dependent coeffi-
cients and after substituting in PDEs yields a system of ODEs which can be solved by

appropriate numerical methods.

2.3.4 Pseudospectral Method

Pseudospectral method is the special case of spectral method (Dutykh, 2016; Ohlsson,
Schlatter, Mavriplis, & Henningson, 2011). This method is applied specially to time de-
pendent PDEs and we find numerical solution for the given PDEs with certain boundary
condition so that the residual is minimum. The test functions which are orthogonal to
residuals and special points are considered with x,,(z) = é(z—=x,),n =0,1,--- ,N—1
which are called collocation points. After the application of DFT, given PDEs are con-

verted into a system of ODEs. We now explain procedure for solving PDEs with a
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Pseudospectral or collocation method. Here x,,(z) = d(z — x,) where (x,,) constitute
the collocation points. The smallness condition for the residuals is

(Xn,R) =0V¥n € {0,--- ,N}

(0(x —x,),R) =0

[

S Lon(wn)ii, = ().

k=0

The boundary condition is

N M
DD dibpgyly) = 0.

k=0 p=0

M + 1 rows are dropped in the linear system and then solves the system

N
> Low(@a )iy = s(2,),0 <n <N — M —1,
k=0

>t

k=0

i
=
IA
<

2.3.5 Approximate Solution of PDEs using Numerical Methods

Consider a PDEs with boundary condition
Lu(x) = s(x), in £, Bu = 0 on 0f) (2.21)

where L and B are linear differential operators. A function @ is considered which
satisfies the equation Bu = 0 so that the residuals R = Lu — s becomes small. The
residuals is made small in the frame work of method of weighted residuals(MWR). @ is
found in a finite dimensional subspace Py of some Hilbert space W. The solution  is

expanded in terms of trial functions as

N
D ITTAC
n=0
where ¢,, are the trial functions. Test functions (X1, X2, - , X») are used to define the
smallness of residuals R by means of the Hilbert scalar product which is given by

Vne{0.--- N}, {(xn, R) =0
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The trial functions vary according to numerical methods. For instance if the method is
finite difference then the trial functions are overlapping local polynomials of low order
whereas in case of finite element method they are smooth functions i.e. polynomials of
fixed degree which are nonzero only on subdomains of €2. Similarly, in case of spectral

method the trial functions are the global smooth functions, in particular Fourier series.

In all the spectral methods, the trial functions are complete family of smooth global
functions. For the Galerkin method, test and trial functions coincide, y,, = ¢, and
each ¢, satisfy the boundary condition. Also, in case of collocation or pseudospectral
method, the test functions are the delta functions at special points, called the collocation

points which are given by x,, = 0(z — z,,).

Now we discuss how to solve the PDEs by Galerkin method. Since x,, = ¢,, the

smallness condition for the residuals , Vn € {0, -+ , N},
<~ (¢p,Lu—s)=0

!

(b, L tini) — (bn,s) =0

k=0

N
— Zﬂk(gb"’ L¢k> - <¢m 3> =0

k=0

N
— Z Lnkﬂ;v — <(bna S>
k=0

where L, denotes the matrix L, = (¢, L¢y). Here solving the last steps means

solving linear system which leads to the (IV + 1) coefficients uy, of .
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Chapter 3

KdV Type Equations

3.1 KdV Type Equations

The generalized Korteweg de Vries (KdV) is given by
Uy + Qg + 20Uty + Cllgry — AUz, = 0,u(x,0) = ug(x) 3.1

where a, b, ¢, d are real parameters. By choosing a particular value for the parameters,
the equation (3.1) is reduced to transport, burger, and KdV equations, respectively. This
KdV equation is a mathematical model of waves on the shallow water surface and is a
notable example of exactly solvable nonlinear PDEs. This equation arises in the study
of nonlinear dispersive waves, which was first derived by Bossinesq and then improved
by Korteweg and de Vries in 1895. This equation is used to model waves in a shallow
canal (Darrigol, 2005; Korteweg & De Vries, 1895). The KdV equation is given by

U + Uy + 2Ully + OlUggy = 0 (3.2)

which is a nonlinear partial differential equation of third order. Here u = u(x,t) denotes
a scalar function of x and ¢, x € R and ¢ > 0 and ¢ is a positive parameter. Physically
u represents the amplitude of the wave. The possibility of shock waves entering the
solution is due to the nonlinear term. The dispersive broadening is produced by the
term du,., that can exactly compensate the narrowing caused by nonlinear term under

proper condition.

The KdV equation has numerous applications in physical sciences and engineering
fields, such as plasma physics, ion acoustic solitons (Das & Sarma, 1998), geophysical

fluid dynamics, long wave in shallow seas and deep oceans (Osborne, 1995; Ostrovsky
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& Stepanyants, 1989), and modeling waves in cold plasma. This equation has been
studied by using various methods, such as tanh method in (Malfliet, 1992), sine-cosine
method in (Yan & Zhang, 2001), and the homogeneous balance method (Lei & Ying-
hai, 2002) with appropriate initial condition (Kruskal, Gardner, Green, & Miura, 1967).
Similarly, other methods such as FEM (Aksan & Ozde§, 2006), FDS (Bahadir, 2005),
and the spectral method (He-ping & Ben-yu, 1987) were introduced. The existence and
uniqueness of solutions of the KAV equation was shown by (Kruskal et al., 1967). The
author in (Rashid, 2007) introduced the artificial viscosity to reduce the round off error

of pseudospectral method.

The KdV equation was studied in 2012 by Kolabaje and Oyewande analytically and
numerically by using finite difference method and Adomian decomposition method.
The approximate solution was obtained considering two possible scenarios, hyperbolic
tangent and sinusoidal initial condition. With these considerations, they observed that
the valid analytical solutions are restricted to the time values close to the initial time
(Kolebaje & Oyewande, 2012).

The authors in (Alexander & Morris, 1979) used Galerkin techniques including cubic
spline weight and interior functions with quintic polynomial boundary functions. The
collocation method with septic splines was studied by (Soliman, 2004a) to obtain the
solution of the KdV equation. The numerical solution of the KdV equation was ob-
tained by using variational method by the authors in (Inc, 2007; Soliman, 2006). The
modified Bernstein polynomials were used for the solitons type solution of it (Zabusky,
1967) and using the method of similarity reduction for PDEs were used to develop the
schemes for solving the KdV equation by the authors in (Soliman, 2000, 2004b; Soli-
man & Ali, 2006) .

3.2 Exact Solution of KdV Equation

The special KdV equation is given by
Uy + 6uty + Uy = 0 3.3)

The solution of (3.3) is supposed to be of the form u(x,t) = f(x — c¢t) = f(n). The

ordinary differential equation is obtained after the substitution of this value in (3.3),
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which is given by

df df f
dT} +6 f d"] (3.4)
On integration, we have,
2
—cf +3f%+ d f = (3.5)

where c; is the constant of integration. After multiplication Wlth and then integrating,

we get
d
- f2 + f3 (—f> = C]f =+ Co (36)
dn
For @ — 400, we should have z — 0, fz; — 0, ;lnf — 0. For these requirements, we
must have ¢; = co = 0. Then the above equation reduces to
df 2
= -2 3.7
(L) = pe-2) a7

By separation of variables, we have

/f%:/o"dz (3.3)

Without loss of generality, the lower limit of integration can be chosen 0 as the starting

point can be transformed linearly. With the substitution y = %c sech? w, we have,

c—2y= ctanh? w 3.9)
and
dy sinh w
— = —C 3.10
dw cosh® w (3-10)
This implies that f changes to
2
w=sech™'n Tf (3.11)
After using the previous results, we have,
2 (v 1 sinh w duw 2
= —— - = ——=w.
Y Ve o sech? wtanhw cosh® w Ve
Further, simplifying we get, f(n) = $sech® %Ey.
Finally with our assumption, we get
u(a, t) = gsech2 [%(x - ct)] (3.12)

The same exact solution can be obtained by using Backlund transform (Brauer, 2000).
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3.3 Spectral Method for the Generalized KdV Equation

The generalized KdV equation is given by
U + auy + 2butiy + Clyrr — dty, = 0,u(2,0) = up() (3.13)

in the (z,t) space where v = u(z,t). Consider z € [0,27],¢t > 0. The interval is
divided into N equal parts where N is power of 2. The discrete transform of u(x,t) is

given by

2

-1 .
» 2riz;k
u(z,t) = u(zxj, t)e” T

k=0,1,--- N —1.

<.
Il
o

Taking the discrete Fourier transform on both sides of ( 3.13), we get

Gy, t) 4 ikati(k, t) + ikbu? (k, t) + (ik)3ci(k, t) — (ik)2da(k,t) = 0,a(k, 0) = g (k)

(3.14)
Solving (3.13) in (z,t) space is equivalent to solving (3.14) in interval [0, 27]. To solve
(3.14), we proceed as follows: Given initial function wuy(x), we first find the discrete

values at the N points and get a sequence {ug(z;)}" '

j—o - Then, we find the discrete

Fourier transform {%(k)};vz ' and {u%(k)} Ly which are given by the formulas
=

N—-1

. _2mix ik ‘
ok, 1) = 3 ulrj, e = Sk = 0,1, N~ 1
7=0
and
N-1

_2miz ik

%(k,t)zZuQ(xj,t)e ;k=0,1,--- N — 1.

]:
The Fast Fourier Transform is used to fasten the process. After finding the values of

~ N-1
{ap(k)}Y! and {ug(k’)} . from FFT, ( 3.14) can be solved numerically by using
]:

=0
Euler method. For Euler method, @;(k, t) in equation ( 3.14) can be written as
Gk, h) —a(k,0)

h
a(k, h) ~ a(k,0) — hlikat(k,0) + ikbu?(k,0) — ik>ci(k,0) + k*da(k, 0)]

a(k, h) ~ a(k) — hlikaa(k) + ikbu2(k) — ik ca(k) + k>da(k)).

~ —ikat(k,0) — ikbu?(k,0) + ik3ca(k,0) — k2da(k, 0)

Additionally, we can also use the implicit Euler method. In this case, the formula from
t=jhtot=(j+ 1)hisgiven by
ik, (j +1)h) — a(k, jh)
h
which is due to implicit Euler formula. Further simplification implies
a(k) — ikh [aa(k., jh) + bu(k, jh)}
1 — h[ik3c — k2d]

~ —ikai(k, jh)—ikbu?(k, jh)+ik>ci(k, jh) — k> da(k, jh)

u(k, (j+1)h) =
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3.4 Numerical Results

The generalized KdV equation is given by
U + aty + 2butly + Clgrr — dtg, = 0,u(z,0) = f(x) (3.15)

where «a, b, ¢, d are parameters. Our main focus is in the behavior of the solution of the
equation (3.15) as the different parameters a, b, ¢, d tend to zero in the limiting sense
and compare the situation with the cases when the values of the parameters are exactly

Z€ro.

3.4.1 Transport Equation

With b = ¢ = d = 0, the equation (3.15) becomes
u + au, = 0,u(x,0) = f(z) (3.16)

which is the transport equation. We have created different set of values of a and observe
the scenario of the solution as the value of a tends to zero with the case when the value
of a is exactly zero. The graphs of solution for the different values of a are presented in
the following Figures[ 1, 2, 3,4, 5, 6, 7, 8].

t= 0.9, max norm of u =1.0, max normof u x =10 t=0.95, max norm of u =1.0, max norm of u_x =1.0
100 — 100 —

o 40 > QO

X X

Figure 1: Plot of transport equation with a = 0.1
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Figure 2: Plot of energy and power spectrum
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Figure 3: Plot of transport equation with a = 0.01
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Figure 4: Plot of energy and power spectrum
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Figure 8: Plot of energy and power spectrum

The results of the numerical calculations show that the solution has a similar character

when the coefficients are exactly zero and when the coefficients are zero in the limiting
sense.

3.4.2 Burger Equation and Viscous Burger Equation

With a = 0,0 = 1, ¢ = 0, the equation (3.15) takes the form
U + 22Uty — dug, = 0,u(x,0) = f(x) (3.17)

This cquation is called the viscous Burger cquation and if d = 0 then cquation ( 3.17)
is called the inviscid Burger equation. The different data sets for the different values of
d are obtained. Also, the nonlinearity in the solution is observed as the value of d tends

to zero. Some of the graphs of the solutions are shown Figures [ 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19].
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Figure 9: Plot of energy and power spectrum b = 0.5, d = 0.07
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Figure 19: Plot of energy and power spectrum b =0.5,d =0

Based on the data obtained from numerical computations, it has been observed that
there is no substantial difference in the solution when the coefficients are exactly zero

compared to when the coefficients approach zero in a limiting sense.

3.4.3 The Linearized KdV Equation

With b = d = 0, the equation (3.15) takes the form
Ut + AUy + CUpee = 0,u(x,0) = f(x) (3.18)

which is known as the lincarized Korteweg de Vries(KdV) equation. The different data
sets are observed as the value of d varies and also, the nature of the solution is monitored
when the value of d tends to zero in the limiting sense. Some of the graphs of the
solutions are presented in Figures [ 20,21, 22, 23, 24, 25, 26, 27].
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Figure 20: Plot of kdv equation with a =1, ¢ = 0.005
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Figure 23: Plot of energy and power spectrum, a =1, ¢ = 0.003
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Figure 27: Plot of energy and power spectrum,a=1,c=0

From the data obtained from the numerical computations, it is observed that the two
different cases one when the coefficients are exactly zero and other the coefficients are

zero in limiting sense show no drastic difference in the nature of solution.
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Chapter 4

2D Surface-Quasi Geostrophic

Equation

41 SQG Equation

Atmospheric and oceanographic flows take place over horizontal lengths which are very
large as compared to vertical lengths and hence they can be described using the shallow
water equations. The quasi-geostrophic equations are approximations of the shallow
water equations when the Rossby number is small. In particular, if the Rossby num-
ber is zero, then we have geostrophic flow. The quasi-geostrophic equations were first
formulated by Jule Charney (see in (A. Majda & Wang, 2000)).

The 3D quasi geostrophic equations are given by
AAY +V YVAY = 0
0,(0,0) +V YVAd Y = At 4.1
¥(0,z,2) = o(z,x)
where ¢ is the stream function. These equations (4.1) have been very successful in
describing the major features of large-scale motions in the atmosphere and oceans in

the midlatitudes (Pedlosky, 1987). The dynamics of these 3D geostrophic equations

with uniform potential vorticity reduce to the SQG equation.

The two dimensional (2D) Surface Quasi-Geostrophic (SQG) equation is given by

00 +uVl+r(—A)* = 0
Vu = 0 4.2)
0(z,0) = 6Gy(x)

33



where k > 0 and a > 0 are parameters, § = 0(x1,x5,1) is a scalar representing the
potential temperature and u = (uy, us) is the velocity field determined from 6 by the

stream function v with the auxiliary relations
(w1, ug) = (=040, 05y ), (—A)2¢ = 6.
Assuming A = (—A)Y? and V* = (-48,,, d,,), the above relation can be written as
u=V+A70 = (—=Ry0, R,0),

where R; and R, are the usual Riesz transforms. The spatial domains concerned here is
the periodic box T2 or R2.

The SQG equation models the evolution of buoyancy or the potential temperature on
the 2D horizontal boundaries. The inviscid SQG equation is useful in modeling the
atmospheric phenomenon such as frontogenesis, the formation of strong fronts between
the masses of hot and cold air. Also, the SQG equation with x = 0 is an important
example of an active scalar and an important testbed for turbulence theories due to some
of its distinctive features (Blumen, 1978; Held et al., 1995). The SQG equation with
a = % and x > 0 arises in geophysical studies of strongly rotating fluids (A. J. Majda
& Tabak, 1996; Pedlosky, 1987).

Depending upon £ and «, the equation can be divided into the following categories:

1. When £ = 0, the Equation ( 4.2) is called the inviscid SQG equation.
2. When k > 0, the Equation ( 4.2) is called the dissipative SQG equation.

(a) When a > %, the Equation ( 4.2) is called the subcritical SQG equation.
(b) When a = % the Equation ( 4.2) is called the critical SQG equation.

(¢) When a < %, the Equation ( 4.2) is called the supercritical SQG equation.

The subcritical and critical cases have been solved but the supercritical case is still an

open problem regarding the regularity of the solution. The 3D Euler equation is

P
o+ u.Vu = _VT +g, Vu=0 4.3)
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where u, the velocity field; P, the fluid pressure and p, fluid density.

Similarly, the 3D Navier Stokes equation is given by

P
o +u.Vu = —VT +vVu, Vau=0 4.4)

The fractional Laplacian (—A)® is defined through the Fourier transform as

—

A f (k) = [k (F). 4.5)
Using (4.5), the velocity « in the Fourier space can be expressed in terms of 6 as

i(—ke0, k10)

U =——"". (4.6)

I

The global existence and uniqueness of the solutions of the equations for a,x > 0
in time and space, both analytically and numerically are reviewed and explored by re-
searchers in the field of fluid dynamics. The 2D inviscid SQG and 3D Euler equations
share several common features which will be shown later. Similarly, there are some
similarities between the 3D Euler Equation and 3D Navier-Stokes Equations. So, we
pursue this review to reveal the current status of the SQG equation so that we may know
about the possibility of further extension of the existing results to the 3D Euler and

hence the Navier-Stokes equations.

The details of similarity with 3D Euler equation is expressed in the following subsec-
tion. The SQG equation is broadly discussed with its special cases and corresponding

results in the following subsections.

4.1.1 Inviscid SQG Equation: Local Wellposedness and Regularity

In this section, we consider the inviscid SQG equation given by

0; +u. VO =0 4.7
with the velocity field u given by

u=(—Rqf, R10)

where R, and R, are the Riesz transforms. The following theorem guarantees the global
existence of weak solution of ( 4.7). The main issue is: given an initial data, does the

inviscid 2D SQG equation have a unique solution that is global in space and time.
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Theorem 4.1. For a given 6y € L*(R?) or L*(T*), there exist a global weak solution

T
A /W@jwﬁuﬂ+MmﬂuV@Mdﬂﬁ/%umuﬁMm:0

for smooth test function ¢(x,t) and 7" > 0, where ¢(x,7) = 0.

This theorem was proved in the Ph.D. thesis of (Resnick, 1995).

The following theorem by (Beale, Kato, & Majda, 1984) gives a precise mathematical
criterion in which smooth solutions of 3D Euler equation can become singular in finite

time.

Theorem 4.2. Let u be the solution of the 3D Euler equation in the class C'([0, T%); H*)N
C*([0,T.); H*') and if there is a time T, beyond which the solution u cannot continue.
Then |~

w(t)|eedt = oo, and in particular im supyz.|w(t)|Le = 0.

The local existence results can be applied to the solution of 2D SQG equation ( 4.7).
More specifically , if the initial value 6(x,0) = 6y(x) € H*(R™) for some integer s > 3,
then there is a smooth solution 0(x, t) of equation ( 4.7) that also belongs to H*(R") for
any time ¢ in a sufficiently small time interval i.e., ¢ € [0, T.). Furthermore, if 7, is a

maximal interval of existence of smooth solution and is finite,i.e., 7, < oo, then
|0(.,t)]|s = o0 ast — T..

The following theorem is analogous to theorem ( 4.2) in the case of inviscid 2D SQG

equation.

Theorem 4.3. Let 6y € H*(R?) with s > 2 and T < oo. Then the interval 0 < ¢ < T,
is a maximal interval of existence of the solution of inviscid 2D SQG equation if and

only if
T
/ﬁwm@@am%t%n

0
Theorem 4.4. Let 6, € C" N LP withr > 1 and p > 1. Then there exists

T = T(||60||crarr) > 0 such that the inviscid 2D SQG equation has a unique solution
6 on [0, T]. In addition, § € L>([0,T];C" N L*).

4.1.2 Dissipative SQG Equation

In this section, we present some recent results for the dissipative SQG equation with
k> 0 and « > 0. As in the inviscid case, the main issue is : given a smooth

0(x,0) = Oy(x), does the equation have global classical solution for all x > 0 and
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a > 07 Recently, many important results have been obtained. For more details, we can
see the works of (Caffarelli & Vasseur, 2010), (Carrillo & Ferreira, 2008), (Chen, Miao,
& Zhang, 2007), (Chae, 2003, 2007), (P. Constantin, Cordoba, & Wu, 2001), (Cérdoba,
Coérdoba, & Fontelos, 2005), (Cordoba, 1998; Cordoba & Fefferman, 2002b), (Cordoba
& Fefferman, 2002b), (Deng, Hou, & Yu, 2005, 2006), (Kiselev, Nazarov, & Volberg,
2007), (Kiselev et al., 2007), (Ohkitani & Yamada, 1997), (Resnick, 1995), (P. Con-
stantin, Majda, & Tabak, 1994), (Caffarelli & Vasseur, 2010), (P. Constantin & Wu,
2008; Wu, 2005), (Ohkitani & Yamada, 1997) and others.

The global regularity of the dissipative SQG equation depends on the parameter a. The
index o = % is important for the theoretical point of view. If o > %, the dissipative term
(—A)“d is sufficient to control the nonlinear term. In this case, energy type estimates
can be used to show that the solutions are global in time (P. Constantin & Wu, 1999).
If oo < %,
phenomenon inturn makes the study of long time behavior of the solution much more

the dissipative term is not sufficient to control the nonlinear term. This

difficult. So, to study the long time behavior of solution, we have to depend on the
numerical results. Thus, we take the index o = % to be our starting value of parameter

and let its value approach zero for our numerical study.

4.1.3 The Critical SQG Equation

When a = %, the dissipative SQG equation becomes
00 +uV0+k (—A)20 =0,V.u =0 (4.8)

Taking Fourier transform of ( 4.8), we have

. o0 00—
6; + ula—xl + UQa—aa + H(—A)§9 =0

Using the definition of derivative in Fourier space and equation ( 4.5), we have

D)+ itynd (1) + ild(11) + 1AL T) =

where [ = (I, [>) is the wave number and i = \/—1. Using equation ( 4.6), it can be
further written as

G0 + 0D = — Y o nick,
I 5 5 = - 1= ) s V).
di =
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With these expression, we can say that nonlinearity and dissipation are comparable.
This also gives the hint about the important role of « in the long time behavior of the
solution. There are some theorems which are about the global existence of solution of
the equation ( 4.8) with small L*° initial data which was established by in (P. Constantin
et al., 2001).

Theorem 4.5. Assume in Equation ( 4.8), 6, € H? and
[6o|[ e < Ci (4.9)
Then there exists a unique global solution 6 of equation (4.8) satisfying
HOC, Dl < 100]| 122

Theorem 4.6. The critical SQG Equation ( 4.8) with periodic smooth initial data 6, has

a unique global smooth solution. Moreover,
[IVO||~ < C||VOo||~exp exp C||6o|| =, (Kiselev et al., 2007).
Theorem 4.7. Consider the SQG equation
00 +uNVo+k (—A)0 =0,z €R"t >0 (4.10)

with o = % and u satisfying V.u = 0,u = R(f) where R is a singular integral operator.

Let 6y € L*(R™) and let 0 be a Leray-Hopl weak solution, namely
0 € L([0,00): L*(R™)) N L*([0. 00): H 2 (R™)).
Then 4 is a classical solution for ¢ > 0. In fact, for any ¢t > 0

0 € C°(R" x [t,00)).

This theorem was established by (Caffarelli & Vasseur, 2010) and the proof is to im-
prove the regularity of @ successively from L? to L*°, from L* to Hoolder and from
Hoolder to C"*°.

4.1.4 Supercritical SQG Equation

We consider the equation

1
00 +u.VO+k (—A)0 =0,k >0, < B 4.11)
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The global regularity of equation ( 4.11) is extremely difficult as it is hard to apply the
classical energy type estimates. (Chae & Lee, 2003), (Chen et al., 2007), (P. Constantin
et al., 1994), (Cérdoba & Cérdoba, 2004), (Cérdoba & Coérdoba, 2004), (P. Constantin
& Wu, 1999, 2008, 2009), (Zhifei, 2005) and others obtained the small data global

regularity in various functional settings.

Definition 4.1. Let f € L} (R") (i.e. for every set E of finite measure, f € L?(E) and

loc

for every dyadic cube

Ei(f) = % / Jde, EX(f) = Er(f — Ed(f)).

Then f € BMO(R") if || || snio = sup, (E3(f))? < oo

Theorem 4.8. Let 0y € L*(R") and 0 be a Leray-Hopf weak solution of Equation ( 4.11).
Then for any ¢ > 0,

Ooll 72 Ooll 72
Wollez 1o o saro () < c 100l

t4a t4a
Theorem 4.9. Let 6, € L?(R") and ¢ be a Leray-Hopf weak solution of ( 4.11). Let u

be associated velocity field. If we know that for some 0 < #; < ¢; < o0,

10C, B[l < C

u € LOC([tQ, tl); CI_QQ(Rn)),

then
0 € L>([to, t1); C°(R™))

for some § > 0.

Theorem 4.10. Let 6, € L?(R") and 6 be a Leray-Hopf weak solution of ( 4.11). If, for
some 0 < {g < t1 < o0,
0 € L2([to, t1); C°(R™)),

with § > 1 — 2«, then
0 e COO((tQ,tl] X Rn)

4.2 Analytical Results

The general 3D quasi geostrophic equations, first derived by J.G. Charney in 1940’s,
have been very successful in describing the major features of large-scale motions in the
atmosphere and the oceans in the midlatitudes (Pedlosky, 1987). Also, the inviscid SQG
is an important example of an active scalar and is an important testbed for turbulence

due to some of its distinctive features (Blumen, 1978; Held et al., 1995).
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In 1994, (P. Constantin et al., 1994) studied the formation of strong and potentially sin-
gular fronts in a two dimensional quasi geostrophic active scalar through the symbiotic
interaction of mathematical theory and numerical experiments. They revealed the for-
mation of geophysical flows in the atmosphere and the issues of frontogenesis, the for-
mation of strong fronts between the masses of hot and cold air within quasi geostrophic
approximations without explicitly incorporating ageostrophic effects. This studies de-
veloped the striking physical and mathematical analogies between the 2D inviscid SQG

equation and the 3D Euler equation for the incompressible flow.

The quantities V6 and w = V x v play the similar role in two different situation, one
in SQG equation and the second one in the 3D Euler equation respectively. The 3D
incompressible Euler equation in vorticity-stream function form is given by
%U; = (Vo)w (4.12)
where D% = % + u.V,v = (v, v9,v3) is the three dimensional velocity field with div
v = 0and w =V X v is the vorticity vector.
The 2D QG active scalar is given by the equation
%:%+U.V¢9:O (4.13)
with the two dimensional velocity v = (vy, v2) determined from 6 by a stream function
Y is given by (v, v2) = (—1,,, 1, ). Differentiating equation ( 4.13), we have
DV+0
Dt
Here the velocity v in ( 4.12) is determined from the vorticity w by the Biot-Savart law

(Vu)V+He. (4.14)

and the strain matrix .S, the symmetric part of the velocity gradient. The right hand side

of (4.12) can be written in terms of S and w.

For the 2D SQG active scalar, the velocity field is given by
1
v=Viy = —/ —V*0(x + y)dy. (4.15)
2 Y|
The velocity in terms of w is given by

v= [ Ka(y)w(@+y)dy (4.16)
Rd

where K,4(y) is homogeneous of degree 1 — d in R¢ for d = 2, 3.

Thus, with these V16 and vorticity, the evolution equation for V-6 from ( 4.14) has
completely parallel analytic structure in 2D as the equation of evolution of vorticity, w,

in ( 4.12) for the 3D incompressible flow.
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Next, we present the geometric analogy between the level sets of 6 for 2D active scalar
and the vortex lines of 3D Euler equation. The infinitesimal length for vortex line,

whose magnitude is w, is given by
— = alw| (4.17)

with a(z,t) = S(z,t)€.€, where S is the symmetric matrix. Again the infinitesimal
length of level set for 6 is given by |V*6| and evolution equation for the infinitesimal

arc length is given by

D|V+4)| n
—_— = 0 4.18
S = alvte @.18)

with a(z,t) = S(z,t)€.€ and € = %. Since the two level sets equations for the two
situations in equations ( 4.17) and ( 4.18) have the similar structure, the level sets of the
solutions of the quasi geostrophic active scalar seem to correspond to vortex lines in the

3D Euler equation.

The authors in (P. Constantin et al., 1994) developed the mathematical criterion to char-
acterize how the smooth solution of the equation ( 4.13) can be singular. This is the
simplest type which is analog to characterize the singular solution of 3D Euler equation

in (Beale et al., 1984) which is stated as:

“The time interval [0, Tx| with Tx < oo is a maximal interval of a smooth solution for
the 2D quasi geostrophic active scalar if and only if fOT V0|~ (s)ds — coas T — T
with norm | f|pe = max,cre| f(x)|” (P. Constantin et al., 1994).

Majda and Tabak, in 1996, found that the 2D Euler equation and SQG model have fronts
with different behavior: the first one end up growing linearly due to the velocity field
created nonlocally whereas the second gives a sustained nonlinear steepening of fronts.
Also, their numerical studies showed that 2D Euler equation gives rise to fast-growing
fronts switching nearly a linear regime whereas SQG fronts exhibit at a slower rate ini-

tially and then sustain a long nonlinear self-stretching process ending up with finite time
collapse (A. J. Majda & Tabak, 1996).

In 1997, Wu considered inviscid limits for both the smooth and weak solutions for the
2D dissipative QGS equation and established that the classical solutions of dissipative
equation with smooth initial data tend to the solutions of the corresponding non dissi-
pative equations when the dissipative coefficient tends to zero. The convergence is in
strong L? sense. The methods used by (Doering & Titi, 1995) and (Foias & Temam,
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1989) for the NS equation was used to establish exponential decay of the spatial Fourier
spectrum for the solutions of the dissipative quasi geostrophic equation with the consid-
eration of the general norm and the different methods of treating nonlinear term (Wu,
1997).

In 2001, Wu established global regularity results for the regularized models with critical
or subcritical indices. Also, the proof of Onsager’s conjecture (Onsager, 1949) con-
cerning weak solutions of 3D Euler equation and the notion of dissipative solution of
(Duchon & Robert, 2000) were extended to the weak solution of the quasi geostrophic
equation (Wu, 2002).

Constantin, Cordoba and Wu, in 2001, proved the existence and uniqueness of global
classical solutions of the critical dissipative quasi geostrophic equation for the initial
data that have small L*°- norm. Here the importance of an > smallness condition is
due to fact that L*° is a conserved norm for the non dissipative quasi geostrophic equa-
tion. The norm is non decreasing on all solutions of the dissipative quasi geostrophic

equation, irrespective of size (P. Constantin et al., 2001).

Cordoba and Feffermen, in 2002, established that the distance between the two level
curves cannot decrease faster than a double exponential time. This collapse assump-
tion weakens the assumptions made in (P. Constantin et al., 1994) for the classical
frontogenesis and the simple hyperbolic saddle in (Cordoba, 1998). They discussed
two equations, Quasi-Geostrophic equation and two dimensional Euler equation, hav-
ing common property that a scalar function is convected by flow. This implies that the

level curves are transported by the flow (Cordoba & Fefferman, 2002a).

A. Cordoba and D. Cordoba, in 2004, studied the initial value problem for dissipative
2D Quasi Geostrophic equation. They proved the local existence and global results for
small initial data in the supercritical case. Also, they studied decay of L”-norms and
asymptotic behavior of viscosity solution in the critical case. Their studies were based

on the maximum principle (Cérdoba & Cérdoba, 2004).

Wau, in 2005, established existence and uniqueness results for the 2D dissipative quasi

geostrophic(QG) equation with the initial data in the Besov space or the space created
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by him which is the generalization of the Besov space, and focused on the critical or
supercritical fractional power of the Laplacian for which the dissipation is insufficient
to balance the nonlinearity (Wu, 2005).

Dong and Du, in 2008, studied the critical dissipative quasi-geostrophic equation in R?
with arbitrary H! initial data and proved the global wellposedness result by adapting
the method in (Kiselev et al., 2007) with a suitable modification and certain decay es-
timates. They also discussed the decay in time estimate for higher order homogenous

Sobolev norms of the solutions (Dong & Du, 2007).

With the use of Little Paley Decomposition and Besov space techniques, the functions

were represented in the Holder space. They showed that if 0 € C?, then it also belongs
1-2

to the Besov space By oo ») for p > 2 where Besov space B*?¢(RY) is the set of all

functions u € L  (RY) with ||u|

pero®yy = ||[ul|pp@y) + |u|pspo@yy < 00 with
1 <p,fd <ooand0 < s < 1. For the sufficiently large value of p, they showed that
the same solution belongs to the space C°* N Bz}(; for 9y > 1 — 2a and extended the
solution to the space C' N Bl‘fis with d, > 4;. Using iteration, they showed that the
solution belongs to C” with v > 1 and confirmed that the solution is a classical one

(P. Constantin & Wu, 2008).

Dong and Pavlovic, in 2009, established a regularity criterion for weak solutions of the
dissipative quasi geostrophic equation (with dissipation (—A)2z,0 < ~v < 1). More

precisely, they proved the following result:

Theorem 4.11. 1f § € L;*((0,7); By o (R?)) with @ = 2 +1—~+ I is a weak solution

of the 2D quasi geostrophic equation, then 6 is a classical solution in (0, 7] x R2.

They extended the regularity result of (P. Constantin & Wu, 2008) to scaling invariant
spaces (Dong & Pavlovic¢, 2009).

Caffarelli and Vasseur, in 2010, showed that solution of quasi geostrophic equation with
L? initial data and critical diffusion (—A)? are locally smooth for any space dimension
and they proved the global regularity for the general data for whole space. The proof
is divided into 3 parts, i.e. from L? to L, from L> to Holder and from Holder to
C®. 1In particular, they established the regularity of Leray- Hopf solution by proving

the following claims:
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1. Every Leray-Hopf weak solution corresponding to initial data 6y € L? is in

Lroc

problem for the SQG equation on [0, T") if

(R? x (0,00)). Note that 6 is a Leray Hopf weak solution to initial value

(@) 6 € L>([0,T), L*(R?)) N L2([0, T), H*(R?)), then
o (@, t2)d + [ [Lo (A0, 7))2dx dr < [, 0%(x,t1)dx
for0 <t; <ty <T.

(b) 6 and u = R(0) satisfy the SQG equation in distribution sense.

2. The L solutions are Holder regular, i.e. they are in C” for some v > 0, where

the Holder space with exponent + is the function space

CF(Q) = {u € C*Q): ||U||Cm(ﬁ) < OO}'

3. Every Hélder regular solution is a classical solution in C'*+# (Caffarelli & Vasseur,
2010).

4.3 Numerical Results

Constantin, Majda,and Tabak, in 1994, performed the numerical experiments on a 27-
periodic box and predicted strong front formation and potential singular behavior of the
solutions of the 2D inviscid SQG equation with smooth initial data. They used spectral
collocation method with an exponential filter which was basically method developed by
(E & Shu, 1993, 1994) for the incompressible flow with minor modifications. Their
numerical method monitored two physical quantities, kinetic energy and the pseudo
energy. They calculated u(f) in the Fourier space and «.V6 in the physical space and
the time stepping through fourth order RK method. They used finer partitions ranging
from 256 to 5122 to 10242, The following three types of initial data were considered.

1. 6(z,0) = sinx; sinxy + cos
2. 0(z,0) = —(cos 2z cos xo + sin xq sin z5)

3. 0(x,0) = cos2xy cosxzy + sinxy sinzy + cos 2xy sin 3z,.

The first initial condition was considered as the simplest type of smooth initial data with

nonlinear behavior and also the combination of two lowest eigenmodes.
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The first data set involves a hyperbolic saddle in the initial level sets of temperature in
the regime of strong nonlinear behavior. The numerical solutions indicate strong nonlin-
ear front formation and potentially singular behavior. The second data set involves the
elliptic level sets in # and the numerical solutions asserts that the solution behaves non-
linearly as in the first set initially but self consistently saturates to exponential growths
of gradients without singular behavior. In the third set, the more general initial condi-
tion is considered which also indicates the robust feature of strong front formation. The
following conclusion is drawn:

“if the geometry of level sets of the active scalar is simple and does not contain a hy-
perbolic saddle in the region of strongly nonlinear behavior, then no singular behavior
is possible" (P. Constantin et al., 1994). Figure 28 shows the evolution of level sets and
3D surface plot of the type (3) data.

t=3, elongated fronts

Figure 28: Contour plot and nature of front

Based on the simple initial condition used in (P. Constantin et al., 1994), the tempera-
ture gradient can be fitted equally well by a double-exponential function of time rather
than an algebraic blow up which was proposed by Ohkitani and Yamada, in 1997. Also
for the viscous case, a comparison was made between a series of computations with
different Reynolds number. The critical time is found at which the temperature gra-
dient attains the first local maximum depends double logarithmically on the Reynolds
number, which suggests the global regularity of the inviscid flow (Ohkitani & Yamada,
1997).

The singular behavior of the solution of inviscid SQG equation when the level sets con-
tain hyperbolic saddle is confirmed by D. Cordoba in 1998. He showed that simple

hyperbolic saddle breakdown cannot occur in finite time. His other conclusions are that

45



the angle of the saddle cannot come close in finite time and cannot be faster than a dou-
ble exponential in time. The analogous results true for incompressible 2D and 3D Euler

equations (Cordoba, 1998) can be implied.

Ohkitani and Sakajo, in 2012, studied numerically the long-time evolution of the surface
quasi-geostrophic equation with generalized viscosity of the form (—A)®, where global
regularity has been proved mathematically for the subcritical parameter range o« > % In
the supercritical range, they found numerically that smooth evolution persists, but with
a slow damping in the long run and also found that the index o = % is not the critical
case for the numerical study (Ohkitani & Sakajo, 2010).

Authors in (P. Constantin, Lai, Sharma, Tseng, & Wu, 2012) used pseudospectral method
with an improved exponential filter. They extended the work of (P. Constantin et al.,
1994) and revealed the nature of solution for the longer time interval. The derivatives
were calculated in the Fourier space and the products were calculated in the physical
space. The time integration was carried out by the 4th order Runge Kutta method. The
pseudospectral algorithm was parallelized by the slab decomposition for the purpose
of parallel computation. To reduce the aliasing error, they used the exponential filter
f(x) = exp(—ax™)where a = 36, m = 19 where @ = — log ¢, € being the order of ma-
chine precision. This helps to suppress the 1/3 higher frequency modes and 2/3 modes

remains unchanged. The exponential filter they used is shown in Figure 29.
exp(—a5ix}" )

1 = =
-,
b

= O Ty =

Figure 29: Exponential filter

The formation of strong hyperbolic saddle front is predicted about ¢ = 7.5 as in previous
calculation (P. Constantin et al., 1994) followed by a steep antiparallel double front
while maximum gradient continues to grow up about { = 13.5 and then a decay in
gradient afterwards with no regeneration of strong fronts. One of the graphs for the

gradient growth is presented in Figure 30.
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max of |grad theta| against t, N=10249

“g 5 10 15 z0

Figure 30: Gradient growth

Their study confirmed that there was no evidence of critical behavior at o = % which
agreed with the study of (Ohkitani & Sakajo, 2010). Their numerical computation mon-
itored the growth of L2- norm and helicity. Larger value of N for more finer partition

(P. Constantin et al., 2012) were used.

4.3.1 Current Status and Contributions

The numerical studies of SQG equation is discussed. In this regard, two issues in nu-
merical computations are addressed. The first issue is whether there is a finite time blow
up in the solution of inviscid SQG equation and the second issue is whether o = % is

critical for the dissipative 2D SQG equation or not.

(P. Constantin et al., 1994) performed series of numerical computations for the SQG
equation. Their experiments are carried in the periodic box [0, 27| x [0, 27| using the
pseudospectral method with the maximum grid size of 1024. Lost of the resolution at
t = 7.5 1s observed during their computation. A possible finite time blow up is proposed
and the blow up time was predicted to be ¢ = 8.25. A series of computations with same
initial data used in (P. Constantin et al., 1994) are performed by (Ohkitani & Yamada,
1997) and the following result is concluded "it is impossible to distinguish between

whether there is blow up or not on the computation for the insviscid SQG equation".

With the work done by the pioneers, we are motivated to perform the numerical com-
putation in the finer grids size with the same initial conditions using the pseudospectral
method. In order to overcome the problems faced in the time of previous computations,
dealiasing rule and also the exponential filter are used. Time integration is carried out

by using fourth order Runge- Kutta method.
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The conservation laws and others diagnostic test are included. Any singularity in the
solutions of inviscid or dissipative SQG equations are not observed opposing the earlier
predictions. In our computations |V 6| is observed to be bounded. The index « = 3 is
observed not to be the critical index for the numerical computations even though it was

supposed to be the critical index for the analytical approach.

4.3.2 Numerical Simulation of SQG Equation

The numerical method is described which we going to use in our work. Due to the peri-
odic boundary condition, the pseudospectral method appears to be the most appropriate

method for this problem. The solution ¢ is approximated by 8 of the form

b(x,t) = O(ky, k)™

where 6§ denotes the Fourier transform of 6 and is given by

. 1 A
O(k1, ko) = W /T2 0(xq, zo)e 1T +kaz2) o, Ao,

Here N is a fixed number. Also, taking the Fourier transform of SQG equation, the

following relation is obtained

— — —_— -~

8,00k = —ik1 (w0)(k) — ika(ua0) (k) — 27| k|20 (k)

where k = (ki, ko) is the wave number and k1, ky = —%, S % — 1. The velocity field

u computed in Fourier space is given by

k)
a(k) o),

The product w160 and u260 are computed in the physical space. There is formation of

N x N matrix for the modes 0, i.e. é(jl,j27 t) for ji, jo = —%7 e 7% — 1 and is given
by 9,6 = AO. This system of ordinary differential equation is solved by fourth order

Runge Kutta method. In this calculation, the 2/3 dealiasing rule is used.

With the above discussed numerical method, numerical solutions for the inviscid SQG
equation and dissipative SQG equation especially in the neighborhood of o« = % are

computed.
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The contour plots and power spectrum for different values of time are presented.
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Figure 32: Plots at t = 10,11 inviscid
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Figure 33: Power spectrum at t = 8,9
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power spectrum of SQG, t= 10.0 power spectrum of SQG, t= 110
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Figure 34: Power spectrum at t = 10,11

For value of o = 0.48, few plots are presented.
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Figure 36: Contour plot of viscid at t = 13,14
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power spectrum of SQG, alpha = 0.48, t= 11.0 power spectrum of SQG, alpha = 048, t= 120
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Figure 37: Spectrum at alpha=0.48 att = 11,12
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Figure 38: Spectrum at alpha=0.48 att = 13,14

Some contour plots are presented for v = 0.51 with different times.
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Figure 39: Contour plot of viscid at t = 7,8
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alpha = 0.051, t=10.0
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Figure 40: Contour plot of viscid at t = 9,10
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Figure 41: Power spectrum at t = 7,8
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Figure 42: Power spectrum at t = 9,10

The numerical results obtained from the second initial condition with varying time and

the parameters are presented in Figures. Some of these are presented here.
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Figure 43: Contour plot of t = 12 and 13
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Figure 44: Contour plot t = 14 and 15
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Figure 45: Power spectrum of t = 12 and 13
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power spectrum of SQG, alpha = 0.48, t= 140 power spectrum of SQG. alpha = 048, t= 150
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Figure 46: Power spectrum of t = 14 and 15

The following are the plots for o = 0.49.
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Figure 47: Contour plot of t = 12 and 13
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Figure 48: Contour plot of t=14 and 15
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power spectrum of SQG, alpha = 049, t=12.0 power spectrum of SQG, alpha = 049, t= 130
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Figure 49: Power spectrum of t = 12 and 13
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Figure 50: Power spectrum of t = 14 and 15

The following are the plots for o = 0.5.
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Figure 51: Contour plot of t = 11 and 12
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Figure 52: Contour plot of t = 13 and 14
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Figure 53: Power spectrum of t = 11 and 12
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Figure 54: Power spectrum of t = 13 and 14

Table 1 and Table 2 show the values of L?-norm in the inviscid and dissipative cases.
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t 1 2 3 4 5
L2-norm | 110.851252 | 110.851252 | 110.850575 | 110.839593 | 110.797750
t 6 7 8 9 10
L2-norm | 110.730007 | 110.651406 | 110.594932 | 110.510071 | 110.466472
Table 1: Value of L2-norm of Inviscid case

t 1 2 3 4 5
L2-norm | 109.377354 | 107.916750 | 106.464917 | 105.009819 | 103.534279
t 6 7 8 9 10
L.2-norm | 102.039835 | 100.544520 | 99.060618 97.581038 96.097118

Table 2: Value of L?-norm of Dissipative case for kappa=0.01

From the above tables, we see that the L2 norm is conserved in the inviscid case as
there is no viscosity. On the other hand, in the dissipative case the value of L?- norm

decreases constantly and energy dissipates continuously which is due to the viscosity.
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Chapter S

Water Wave Equation

5.1 Water Waves

The incompressible Euler equations with a free boundary are well recognized as the
governing equations for water waves, and as such, they have been the focus of a variety
of studies. The majority of theoretical studies on surface water waves make the assump-
tion that the flow is zero vorticity (irrotational). Stokes investigated irrotational periodic
traveling water waves and some of their nonlinear approximations in 1847, (Stokes,
1847). The boundary conditions of waves in uniformly deep water were satisfied by an
approximation solution for waves of limited height. In the 1750s, Euler put forward the
first thorough mathematical model of a fluid. Mathematicians and engineers continue to
use Euler’s equations and their variations as fundamental models. The most significant

modification was made by Navier and Stokes to accommodate a viscous fluid.

The choice of the Cartesian coordinate system (i, y) places the origin at the mean water
level, the horizontal x-axis pointing in the direction of wave propagation, the vertical
y-axis pointing upward. In waves that are not disturbed, the flat surface has the equation
y = 0, while the flat bottom has the equation y = —d for some d > 0. When waves are

present, the free surface is y = eta(t, ) and the velocity field is (u(t, x,y), v(t, z,y).
The equation of mass conservation for constant density fluid is given by
Uy + Uy = 0 5.1

With the assumption that water is inviscid, the equation of motion is the Euler equation
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and is given by

Uy + Uty +vu, = — P, (5.2)
v+ uvy +vvy = —P,—g (5.3)

where P(t,x,y) denotes the pressure and g is the gravitational constant of acceleration.
The boundary conditions for the water wave problem are
P = Paym ony = (t, ) (5.4)
Pjytm being the constant atmospheric pressure. The kinematic boundary conditions are
v =1, +un, ony =n(t ) (5.5)
and

v=0ony = —d (5.6)

The mathematical study of wave theory within the context of linear theory was initiated
in the nineteenth century by (Airy, 1845) and (Stokes, 1847). On a fluid layer that is
inviscid and has a constant mean depth, Stokes water waves are nonlinear and periodic
surface waves. The progressive periodic waves of permanent form are these waves.
These two-dimensional, periodic waves of water travel along the ocean or river’s sur-

face.

Stokes observed the actual properties of water waves and then thoroughly researched
the nonlinear governing equations for water waves (Stokes, 1847). According to au-
thors in (Benjamin & Olver, 1982; Craig, 1991; Craig & Groves, 1994), the governing
equations for the two-dimensional irrotational gravity water waves have a Hamiltonian
structure. The incompressible Euler equation with free boundary conditions is regarded
as the governing equation for water waves in the majority of investigations. In (Amick,
Fraenkel, & Toland, 1982; Buffoni & Toland, 2016; A. Constantin, 2006, 2016), the
knowledge of dynamics of waves of enormous amplitude is provided with the aid of
a qualitative understanding of periodic traveling waves in an irrotational flow over the
flatbed. In (Compelli, Ivanov, & Todorov, 2018), a variety of features of the transmis-
sion of irrotational waves of the changeable bottom are covered. The authors of (Basu,
2018; Clamond, 2018; Kogelbauer, 2018) addressed the complete nonlinearity of the

governing equations for the water waves and provided insightful quantitative data.
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In linear periodic gravity water waves, there are no closed orbits for the water particles
in the fluid and the paths are approximately elliptical which was confirmed by Con-
stantin and Villari. They considered the flow up to the finite depth for the kinematic
boundary condition (A. Constantin & Villari, 2008). Ehrnstrom and Villari showed that
for the positive vorticity, the situation resembles that of Stokes waves. The particle
trajectories are affected in particular for large enough vorticity. Also, for the negative
vorticity, there is the appearance of internal waves and vortices and the trajectories are
not closed ellipse (Ehrnstrom & Villari, 2008). A mathematical formulation of the water
wave problem is presented by the author in (Wahlén, 2009). He gave the existence of
result for small amplitude solution based on bifurcation theory. The particle motion in
the physical frame is described and obtained the fluid in a moving frame, and confirmed

the prediction from the linear theory (Ehrnstrém & Villari, 2008).

The authors in (A. Constantin & Escher, 2004) showed that the steady periodic deep-
water waves are symmetric and propagate against a current with vorticity if their profile
is monotone between crests and troughs. They discussed the traveling solution of water
wave equation with zero and nonzero vorticity and showed that the symmetry is valid,
particularly for the irrotational waves. They also showed that vorticity distribution van-
ishes at infinite depth. (A. Constantin & Strauss, 2004) constructed the two dimensional
inviscid periodic traveling waves with vorticity with the consideration of a free surface
under the effect of gravity over a flat bottom. These waves are symmetric and monotone
between each crest and trough. They used the bifurcation theory and degree theory for

the construction.

The authors in (A. Constantin & Strauss, 2002) constructed the periodic traveling waves
with vorticity which are symmetric waves whose profiles are monotone between each
crest and trough. For this, they used bifurcation theory and considered the water wave
problem described by the Euler equation with a free surface over a flat bottom. Also,
the authors in (A. Constantin & Escher, 2011) proved that the profile of a periodic
traveling wave propagating on the surface of the water above a flatbed in a flow with
real analytic vorticity must be real analytic with the assumption that wave speed exceeds

the horizontal fluid velocity throughout the flow.

Recently with a degenerate diffusivity, Eyring-Powell viscosity term, and a Darcy-
Forchheimer law in the porous medium, the authors in (Diaz Palencia, Rahman, Re-
dondo, & Roa Gonzilez, 2022) obtained the traveling wave profile and showed the

existence of the asymptotic solution using the geometric perturbation theory. They also
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showed the existence of an exponential profile of the solution under an asymptotic ap-
proximation. Similarly, the authors in (J. Palencia & Rahman, 2022) explored the solu-
tions in the traveling wave domain with the use of geometric perturbation theory. Fur-
thermore, the authors in (J. L. D. Palencia, ur Rahman, & Naranjo, 2022) transformed
the problem into the study of traveling wave kind solutions. With the use of geometric
perturbation theory, they confirmed the existence of an exponentially decaying rate in
the traveling wave profile. Both the authors in (J. Palencia & Rahman, 2022; J. L. D. Pa-

lencia et al., 2022) performed numerical simulations to validate their results.

The authors in (Diaz et al., 2022) explored the regularity, existence, and uniqueness of
the solutions with the use of variational weak formulations. Then they transformed the
Eyring-Powell equation into a traveling wave domain where they obtained the analytical
solution with the use of geometric perturbation theory. Their main work was to show
the existence of an exponential traveling wave tail together with a certain minimizing

error critical speed.

All of these existing results apply only to the finite boundary, but this problem remains
open for the infinite boundary. With the ideas in (A. Constantin & Escher, 2011; A. Con-
stantin & Strauss, 2002), and (A. Constantin & Strauss, 2004), and using Crandall Rabi-
nowitz theorem, we created the water wave profile by considering the kinematic bound-
ary condition up to infinity. We studied this as an extension of the flatbed at a finite
depth to an infinite depth. Our findings will be useful for the study of the extension of
the solutions from finite boundary conditions to infinite boundary conditions. Similar
concepts can be used in other situations while dealing with problems in fluid dynamics

with infinite boundaries.

5.2 Equation of Motion

The equation of motion of the wave is given by
O+ (UuV)i+ VP = —ge,, divi=0 (5.7)
where u is the velocity, P is the pressure, and g is the acceleration due to gravity.

The related boundary conditions are :
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1. Kinematic: The free surface with moving fluid is given by n, = /1 + (V)2 47

where 7 is the unit normal to surface.

2. Dynamic: The dynamic boundary condition is the balance of forces at the free

surface and is given by P = F,;,,, the atmospheric pressure.

3. Bottom: At the bottom the second component of the fluid is zero. It just moves
horizontally i.e.

lim €. = 0.
y——o0

With these, the equation of motion is given by: A¢ = 01in D,, ¢ = 7 at
y= n(t,z), and
lim Jy¢ = 0.

Y—r—00
Here ¢ is the velocity potential function, D, is the domain of the fluid motion,
n(t, z) is the free surface which describes a wave on the bottom of the fluid de-

pendent on time ¢ and 1/(¢, x) is the value of potential at the free surface.

5.3 Traveling Waves for Water Waves

In this section, the water waves for the two cases with zero vorticity and constant vor-

ticity are discussed.

5.3.1 Traveling Waves for Water Waves with Zero Vorticity

The water waves formulation (A. Constantin, Ivanov, & Prodanov, n.d.; Wahlén, 2007)

is given by:

1'2 G W 2
e = G(n)[Y] and ¢y = —gn — % + %( ("inr";]”z )

where, G(n)[¢] is a Dirichlet Neumann operator (Nicholls & Reitich, 2003; Wilkening
& Vasan, 2015) and is given by

G(UW) =V 1+ 7]:t2 a’r’i¢|y=77(az)-

Here, we are looking for the small size traveling wave periodic in z. That means the

solution is expected in the form : n(t, z) = 7(x + ct) and (¢, x) = ¥ (z + ct), where ¢
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is the phase velocity. These solutions must satisfy the equations

e, = Gy (5.8

’@ZJ:EZ 1 (G(TIW + 7]x"7[):r)2
e T R wa e

(5.9)

For this, we look for the zeros of the equation which indicate the situation with zero

vorticity is

| —cne + G(n)[Y]
F(Cv 77) 1/1) = M 1 (G(”})’ll)‘i‘?}:c’llfz)z . (510)
Che+gn+ 5 — 51

When n = 0,79 = 0, equation (5.10) takes the form F'(¢,0,0) = 0 Ve, which is a
bifurcation problem. To solve this type of bifurcation problem, the Crandall Rabinowitz

Theorem (Crandall & Rabinowitz, 1971) is applied. For this, we must have:

L. dgpF(c*,0,0) has 1 dimensional kernel.
2. Im d, 4 F(c*,0,0) is closed and has codimension 1.

3. It must satisfy the transversability condition i.e. O () F (c*,0,0)[(n*.¥*)] ¢ R
where (n*, ") € Kerd, ) F'(c*,0,0) where Kerd is the kernel of d and R is the

image set.

By linearizing equation (5.10) at p = 0, = 0, we have

5.11)

R —chy + G(0)0)
iy F(,0,0)[(7), )] = < CZ;Z g(f;w ) .

The series representation for #) and ¢ are assumed as
n(x) = g T, COS NT
n>0

and

Y(x) = Z Yy, sin ng

n>0

which are even and odd respectively together with the norms

Inl2 = Z n? [, [*

and

112 =Dl
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which are the norms defined on the homogeneous Sobolev space H*.

With these series representations, we have

Aoy F(.0,0)[(1,0)] =3 ( (crth + 1) sinna ) + ( 0 ) RNERE)

n>1 (an/}n + gnn) cosnx 9o

Define
f=> facosnz, g=>_gnsinnz.

n>0 n>0

For these ¢ and f; we solve d(mw)F(C70,O)[(ﬁ7’lZ))] = ( g ) _

f
Now for n > 1, we have
cnon M \ [ 9n
g c<on wn f n '

We note that detM, (c) = 0 iff ¢ = +/Z, where M, = ( e
g cn

). For fix ng and

choosing ¢, = 4 /;%, the no-matrix has kernel. Now for ¢,,,, we have
Cno N0 o Mo _ 0 PN Thno _ Cnyg
g Cno No wno O 1/}110 - %

. . . Cp n
Here we note that if ny = 0 then the inverse of that matrix 070 0 does not
g CnoT0
exist. So the matrix becomes singular and hence the solution is not possible.

Cny COS NGT

Therefore, Kerd, ;) F(cp,,0,0) = ( ), which is of dimension 1.

—L sinngx
no

(o)) = (5 2 (0)- () o

This implies two possibilities, n = ng or n # ng. In both cases, it can be shown that

Again

n,v € H*. Again for n = ng, choosing g,, = 1, we have

R = Imd(n’,,r/,)F(Can, 0) _ Z ( gn S NT > i ( S Nox > ‘

o fncosnz Cng COS QT
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Cny SIN N

But, this is perpendicular to R+ = > . This shows that the range is closed

— COS Nox
and has codimension 1. Also, the transversability condition is satisfied as

v e —Cpy Mo SIN N
63’(77#))F(Cn07070)[(77 0 )] = ( ’ ) % R.
— (g Ccosnyx
As all the conditions for the Crandall Rabinowitz theorem (Crandall & Rabinowitz,
1971) are satisfied, we have the following theorem:

Theorem 5.1. Let s > g and g € N : Jeo > 0 and C* functions C. : (—¢g, ) — R;

e \ , ' n(x — ct)
: (—€0,€0) = H® x H® suchthat | . solves the water wave equa-

ZZG LZJ(LE - Ct)
tion. Moreover, C. = C,,, + 0(e), TZG(x) T O(€%).
() —Lsinngx

Thus, we have constructed traveling waves of the form

n(t, z) = ecp, cosng(x — cct) + O(c?).

5.3.2 Traveling Waves for Water Waves with Constant Vorticity

The water waves formulation (A. Constantin et al., n.d.; Wahlén, 2007) is given by:

x2 x ¥ G 2 —1
ne = G(n)[p] +ymm, and ¢y = —gn— %+ U Z i (ngw +ymibe +70, G(n)Y
(1+7,)

where G(n)[¢] is a Dirichlet Neumann operator (Nicholls & Reitich, 2003; Wilkening
& Vasan, 2015).

Here, we are aimed to find small size traveling waves periodic in x. That means we
expect the solution of the form 7(¢, z) = 7j(x 4 ct) and (¢, z) = ¢ (x + ct), where ¢ is
the phase velocity.

These solutions must satisfy the equations
e = G+, (5.13)

) 2

L T B

For this, we look for the zeros of the equation which indicate the situation with constant

vorticity
Fleny)=|{ o aGwnet s | G19)
Wo+gn+5 — s — Ve — 0, G
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When 7 = 0, ¢ = 0, equation (5.15) takes the form F'(¢,0,0) = 0; V ¢, which is a
bifurcation problem. Here also, Crandall Rabinowitz Theorem (Crandall & Rabinowitz,

1971) is applied to solve this type of bifurcation problem. For this, we must have:

1. dy 4 F(c*,0,0) has 1 dimensional kernel.
2. Im d, 4 F(c*,0,0) is closed and has codimension 1.

3. It must satisfy the transversability condition i.e. O, ) F(c*,0,0)[(n*,¢*)] ¢ R
where (n*,1*) € Kerd, ) F(c*,0,0) where Kerd is the kernel of d and R is

image set.

By linearizing equation ( 5.15) at n = 0,9 = 0, we have

(5.16)

d(n.¢>F(C»0,0)[(ﬁ7@Z’)]=< —ei: + G0)Y )

o, + g — 707 | DI

We assume the series representation for 7) and ¥ as

n(z) = Z i cosna and o(x) = Z Yy, sinna,

n>0 n>0

which are even and odd respectively together with the norms

Inll? =Y 00

and

1112 =D ™l

These are the norms defined on homogeneous Sobolev space I1°.

With these series representation, we have

diy.yF(e,0,0)[(7,0)] = > ( (€nthn + i) sin i >+< o+ VU )

=\ ((en+v)n + gny) cosna Yo + gm0
(5.17)

Assuming

9= Zgnsinnl’ and f = ancosnx :

n>0 n>0
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we solve d(n)w)F(c,0,0)[(ﬁ,T/;)] = ( g ) .

Then we have o " T — in > 1.
g cn+y U fa

cn n
We note that detM,,(c) = 0 iff c = —5- &4/ ;fz + 4, where M,, = < ) ,

g cn+y

. 2 .
For fixed ng and choosing ¢, = —2—3;3 + /i + ;}O, the ny-matrix has kernel.
! 0

Now
CnoTo o Mg _ 0 N Tlng _ Cnyg + nlo '
g C’no o + ’Y wno 0 ’l/}'n,o _nlg

(Cno + ;%) cosmoz

Therefore, Kerd(,, 4 F'(¢p,, 0,0) = ( > which is of dimension 1.

—-L gin ngx
no

Again,

() ()0 2 ) () ()
—3gmo fo g -+ Yn fn

This implies two possibilities n = ng or n # ng. In both the cases, it can be shown that

n,% € H°. Again for n = ng and choosing g,,, = 1, we have

n SIN NI sin ngx
R = Imd(y ) F (¢n,0,0) = 3 < g ) + ( ’ ) ,

iy \ fncOSR (Cng + ) cos oz

—(& Lysinngz
which is perpendicular to R+ = < (Cny + "0)5’1 0 > .

COS NyT

This shows that the range is closed and has codimension 1. Also, the transversability

condition is satisfied as

—(€ny + 35)mosinnox

80«,(77»1/’)F(C7lo’070)[(77*7w*)] = [ ] ¢ R

—gCcosnyx

With the help of the Crandall Rabinowitz theorem (Crandall & Rabinowitz, 1971), we

have obtained the following theorem:
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Theorem 5.2. Let s > gand ng € N : Je > 0 and C! functions C, : (—¢g,60) — R

i, n(x — ct
; < g >: (—€o,€0) — H?* x H® such that < TZ( ) ) solves the water wave

be Uz — ct)
equation.
v a :
Moreover, C. = C,, + 0(¢), ?E(I) =€ (en + 55) cOSTI02 + O(e?).
Ye(z) —;L% sinngx

Thus, we have constructed traveling waves of the form

n(t,z) = e(cn, + nl) cosng(z — ct) + O(é?).
0
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Chapter 6

Summary and Conclusions

6.1 Summary

Our thesis is organized in the following ways. Introduction of our research work to-
gether with objective and rationale included in Chapter 1. Basic terminologies, def-
inition of different function spaces, weak solution of PDEs are given in the first part
of Chapter 2. Following this, short descriptions of Navier Stokes Equation, 3D Quasi
Geostrophic Equation, Surface Quasi Geostrophic(SQG) equation, Euler Equation, KdV
equation and Water Wave equation, respectively are given. The many numerical tech-
niques are finally explored, including the Discrete Fourier Transform, Fast Fourier
Transform, Spectral Method, Pseudospectral Method, and numerical solution of par-

tial differential equations (PDEs) utilizing spectral techniques.

The KdV equation is discussed in chapter 3 in detail up to a current status. An ana-
lytical solution of the KdV equation is discussed. Following it, the spectral method to
solve generalized KdV type equation is discussed. After this, numerical computations
by varying the coefficients are given in which there is a comparison of two different
cases, one when the coefficients are exactly zero and the other coefficients are zero in
the sense of limit. With our study, it is found that there is no significant difference be-

tween these two different situations.

The Surface Quasi-Geostrophic (SQG) equation is discussed in detail in chapter 4. The

inviscid and dissipative cases of SQG equations are discussed. After that, subcritical,
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critical, and supercritical cases are discussed. Some theorems regarding the regularity
of solution of the equation are also presented for those particular cases. The numerical
method which is used to solve the SQG equation is explained after this. The numerical

computations are performed on the basis of (P. Constantin et al., 2012, 1994) and the

1
2

even though it was supposed to be critical index in the analytical study. Some plots of

index o = 3 is observed not to be the critical index from the numerical point of view,
level sets and power spectrum at various times and for different values of parameters

are presented at the last part of this chapter.

The water flow with the help of the Euler equation with different boundary conditions
is described in Chapter 5. The finite boundary condition is extended to infinite, and the
traveling wave solutions are created for the case of zero and constant vorticity for the
Newtonian fluid through the application of Crandall Rabinowitz theorem. Chapter 6

concludes the dissertation.

6.2 Conclusions

The general type KdV equation is studied thoroughly. The analytical solution of KdV
equation is also discussed. The particular values of constants are chosen so that the
generalized KdV equation is converted into transport, burger and KdV equations. The
pseudospectral method is used to observe the nature of the solution numerically when
the value of the constant is exactly zero and when the constant is zero in the sense of

limit. Similar results and structures of the solution are observed in both the cases.

The current status of the SQG equation is reviewed to know about the possibility of
further extension of the existing result to the 3D Euler equation and hence the Navier
Stokes equation. The analytical and numerical results for the viscid and inviscid cases
of SQG equation are discussed. The pseudospectral method is used for numerical com-
putations. The velocity field is calculated in the Fourier space, whereas the product of
velocity and potential temperature are computed in the physical space. The time inte-
gration is carried out through the fourth order Runge-Kutta method. Our computation
is performed to the time { = 15, which was earlier done for { = 13.5. The value of

L2-norm and helicity are monitored continuously for the validity of our result. The 2/3
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dealiasing rule and exponential filter are used to avoid the aliasing error. The same ini-
tial conditions as in (P. Constantin et al., 1994, 2012) are used. The index o = % is
confirmed not to be the critical index for the numerical study even though it was sup-

posed to be the critical index in the analytical study.

The various development of the water waves and related facts such as the wave pro-
file, and path of the wave in the finite bottom conditions are studied. The finite depth
is extended to the infinite depth condition in which there is construction of the water
wave profile for the zero and constant vorticity conditions for the Newtonian fluid in an

analytical way with the use of the Crandall Rabinowitz theorem.

6.3 Recommendations for further work

The numerical study of inviscid SQG and dissipative SQG equations are done up to the
time ¢t = 15 in two dimensional case monitoring two special values L? - norm and helic-
ity and the time where the level curves come closer is observed. The further work can
be done for the same equation to longer interval of time as well as in three dimensional

case.

Likewise, we have created traveling water waves for the kinematic boundary condition
up to infinite depth using Crandall Rabinowitz theorem for the Newtonian fluid. The

same work may be extended to Non-Newtonian fluid.
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The issue of whether there is a closed orbit in the water waves in an infinite boundary condition is an outstanding open problem. In
this work, we first discuss the various developments on the structure of water waves in the context of finite bottom conditions. We
then focus on the behavior of water for the kinematic boundary for the infinite depth. We present some findings to address this
issue by creating a water wave profile for the zero and constant vorticity conditions through the application of the Cran-

dall-Rabinowitz theorem.

1. Introduction

In the nineteenth century, Airy and Stokes started the
mathematical study of wave theory within the framework of
linear theory. Stokes water waves are nonlinear and periodic
surface waves on an inviscid fluid layer of constant mean
depth, which were introduced in the mid-nineteenth cen-
tury. These waves are the progressive periodic waves of
permanent form. These water waves, which propagate on the
water surface of a sea or river, are periodic two-dimensional
waves.

Stokes noticed the actual water wave characteristics and
then studied the nonlinear governing equations extensively
for water waves [1]. The governing equations for the two-
dimensional irrotational gravity water waves have the
Hamiltonian structure [2-4]. The irrotational flow (zero
vorticity) was considered in most of the theoretical works of
surface water waves. In most of the studies, incompressible
Euler equations with free boundary conditions are consid-
ered governing equations for water waves. The insight into
the dynamics of waves of large amplitude is given in [5-8]
with the help of a qualitative understanding of periodic
traveling waves in an irrotational flow over the flatbed and
also the aspects of propagation of irrotational waves of the

variable bottom are discussed [9]. The authors in [10-12]
dealt with the full nonlinearity of the governing equations
for the water waves providing valuable quantitative
information.

Constantin and Villari proved that in linear periodic
gravity water waves, there are no closed orbits for the water
particles in the fluid and the paths are approximately el-
liptical, and they considered the flow up to the finite depth
for the kinematic boundary condition [13].

Ehrnstrom and Villari showed that for the positive
vorticity, the situation resembles that of Stokes waves. For
large enough vorticity, the particle trajectories are affected.
Also, for the negative vorticity, there is the appearance of
internal waves, and vortices and the trajectories are not
closed ellipses [14]. The author in [15] presented a
mathematical formulation of the water wave problem. He
gave the existence result for a small amplitude solution
based on the bifurcation theory. Also, he described the
particle motion in the physical frame and obtained the fluid
in a moving frame, and confirmed the prediction from the
linear theory [14].

The authors in [16] showed that the steady periodic
deep-water waves are symmetric and propagate against a
current with vorticity if their profile is monotone between
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crests and troughs. They discussed the traveling waves for
water waves with zero and nonzero vorticity and showed
that symmetry is valid, particularly for the irrotational
waves. They also showed that vorticity distribution vanishes
at the infinite depth. Constantin and Strauss [17] con-
structed the two-dimensional inviscid periodic traveling
waves with vorticity with the consideration of a free surface
under the effect of gravity over a flat bottom. These waves are
symmetric and monotone between each crest and trough.
They used the bifurcation theory and degree theory for the
construction.

The authors in [18] constructed the periodic traveling
waves with vorticity, which are symmetric waves whose
profiles are monotone between each crest and trough. For
this, they used bifurcation theory and considered the water
wave problem described by the Euler equation with a free
surface over a flat bottom. Also, the authors in [19] proved
that the profile of a periodic traveling wave propagating on
the surface of the water above a flatbed in a flow with real
analytic vorticity must be real analytic with the assumption
that wave speed exceeds the horizontal fluid velocity
throughout the flow.

Recently with a degenerate diffusivity, Eyring-Powell
viscosity term, and a Darcy— Forchheimer law in the porous
medium, the authors in [20] obtained the traveling wave
profile and showed the existence of the asymptotic solution
using the geometric perturbation theory. They also showed
the existence of an exponential profile of the solution under
an asymptotic approximation. Similarly, the authors in [21]
explored the solutions in the traveling wave domain with the
use of geometric perturbation theory. Furthermore, the
authors in [22] transformed the problem into the study of
traveling wave-kind solutions. With the use of geometric
perturbation theory, they confirmed the existence of an
exponentially decaying rate in the traveling wave profile.
Both the authors [21, 22] performed numerical simulations
to validate their results.

The authors in [23] explored the regularity, existence,
and uniqueness of the solutions with the use of variational
weak formulations. Then they transformed the Eyring
—Powell equation into a traveling wave domain where they
obtained the analytical solution with the use of geometric
perturbation theory. Their main work was to show the
existence of an exponential traveling wave tail together with
a certain minimizing error critical speed.

All of these existing results apply only to the finite
boundary, but this problem remains open for the infinite
boundary. With the ideas in [18, 19], and [17], and using the
Crandall-Rabinowitz theorem, we created the water waves
profile by considering the kinematic boundary condition up
to infinity. We studied this as an extension of the flat bed at a
finite depth to an infinite depth. Our findings will be useful
for the study of the extension of the solutions from finite
boundary conditions to infinite boundary conditions.
Similar concepts can be used in other situations while
dealing with problems in fluid dynamics with infinite
boundaries.

In Section 2, we present the equation of motion with
boundary conditions. In Section 3, the use of the

Crandall-Rabinowitz theorem is proposed to guarantee the
existence of traveling waves for water waves with zero and
nonzero vorticity for the kinematic boundary condition up
to the infinite depth. Section 4 concludes the paper.

2. Equation of Motion

The equation of motion of the wave is given by the following:

o,u+(UNV)U+VP= —g?y,divﬁ =0, (1)

where u is the velocity, P is the pressure, and g is the ac-
celeration due to gravity.
The related boundary conditions are as follows:

(1) Kinematic: The free surface with moving fluid is

given by 7, = 1+ (V%)*W - @ where 7 is the unit

normal to the surface

(2) Dynamic: The dynamic boundary condition is the
balance of forces at the free surface and is given by

P = P,,,, the atmospheric pressure

(3) Bottom: At the bottom, the second component of the
fluid is zero. It just moves horizontally i.e.,

Jim % =0, 2)

With these, the equation of motion is given by A¢ = 0 in
D,, ¢ =y at y =7(t x), and
lim d,¢ =0. (3)

y—-00

Here, ¢ is the velocity potential function, D, is the
domain of the fluid motion, 7 (¢, x) is the free surface which
describes a wave on the bottom of the fluid dependent on
time t and y (¢, x) is the value of the potential at the free

surface.

3. Traveling Waves for Water Waves

In this section, the water waves for the two cases with zero
vorticity and constant vorticity are discussed.

3.1. Traveling Waves for Water Waves with Zero Vorticity.
The water waves formulation [24, 25] is given by the
following:

rlt = G(W)[V/])
ve 1 GOy +my,” “@

Wt:_grl_z 2 1+’”]i

>

where G(#)[v] is a Dirichlet-Neumann operator [26, 27]
and is given by

Gpy= 1+ ni%‘bly:v(x)- (%)

Here, we are looking for the small size traveling wave
periodic in x. That means we expect the solution of the
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form#(t,x) = 71 (x +ct) and v (t,x) = y(x +ct), where c is
the phase velocity. These solutions must satisfy the equations
as follows:

e = G(nlyl,
(6)

Ve 1 Gy ey’

Cl//x=—gfl—2 5 1+’7x2

For this, we look for the zeros of the equation, which
indicate the situation with zero vorticity

—ch +G ()]

Flony) = (7)

vi 1 Gy + .y,

C‘/’x+9’1+7 2 L+

When 1 =0,y =0, (7) takes the form F(c, 0,0) = 0, Vc,
which is a bifurcation problem. To solve this type of bi-
furcation problem, the Crandall-Rabinowiz theorem [28] is
applied. For this, we must have the following:

) d(W)F(c*,O, 0) has the 1-dimensional kernel
(2) Imd, , F(c",0,0) is closed and has codimension 1

(3) It must satisfy the traversability condition i.e.,
O iy F (¢%,0,0)[(n*, y*)] ¢ R where
(7, y*) € Kerd(”)w)F(c*,O, 0) where Ker d is the
kernel of d and R is the image set.

By linearizing (7) at = 0,y = 0, we have

—cn, + G(0)y
dyF (6. 0,0)[(1,9)] = ®
Y.+ g
We assume the series representation for 7 and y as
n(x)=  n,cos nx,
n=0
)
v(x)=  y,sin nx.
n=0

Which are even and odd, respectively, together with the
norms

2 2 2
Inlls = n*gy,",

lwll? = 1o

2s 2
iy,

which are the norms defined in the homogeneous Sobolev
space H*.
With these series representations, we have

cnn, + ny,, sin nx 0
d 4 F (6 0,0) (7, p)] = +

n21 Y, + gh, COS nx 9o
(11)
We define
f= f,cos nx,
=0 (12)
g=  g,sin nx.
n=0

g

For these g and f; we solve, d o F (6 0,0)[(n, w)] = ¥

For n > 1, we have

m n
r’n — gn . (13)

gy, Jn
We note that det M, (c)=0 iff c= +( g/n), where
m n

g cn
the n,-matrix has kernel. Now for ¢, , we have

M, = . For fixed 1, and choosing ¢, = (' g/ ),

C"O

CnonO "y ’7n0 0 rlno ( 14)
= =4 = .

g Cnonl) Wno 0 ‘//no —i
My
Here, we note that if n, = 0, then the inverse of that
oo Mo
g o
comes singular, and hence the solution is not possible.

matrix does not exist. So, the matrix be-

Therefore, Kerd(,W)F (cnn, 0,0) = _(an; ;:))Ssgoflox
which is of dimension 1.
Again
0 0
—9Mo fo (15)
m n ’7” gﬂ

yn>1.
g ey, fn

This implies two possibilities, n = n, or n#n,. In both
cases, it can be shown that 7,y € H®. Again for n = n,
choosing g,, =1, we have

sin nx sin rmyx
R=1Imd,,F c,,0,0 = In
’ nen,  fn COS HX Cy, COS MpX
(16)
. . c, sin nyx .
But, this is perpendicular to R+ = ™™ O™ . This
—COS Hyx

shows that the range is closed and has codimension 1. Also,
the traversability condition is satisfied as
—Cy, Mo SIN g X

nLytoo= ¢R(17)

—g cos myx

3, (o F € 0,0

o (ny

As all the conditions for the Crandall-Rabinowitz the-
orem [28] are satisfied, we have the following theorem:

Theorem 1. Let s> (5/2) and ny € N: 3¢, >0 and C!

functions C,: (—€y,€)) — R; e (—€p,€9) — H* x H*
€

such that gix_;t; solves the water wave equation.
x—
Moreover, C.=C, +0(e), e (x) _
’ ¥, (x)
Cn, COS Mg 0(e).

—g/ny sin myx

Thus, we have constructed traveling waves of the form
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n(t,x) = ec, cos ny x—-ct +0O e (18)

3.2. Traveling Waves for Water Waves with Constant Vorticity.
The water waves formulation [24, 25] is given by

1 = Gyl + ynn,
Yo, Myt Gy

l//t:_g”_z 21+’1x2

+ Yy, + 3, G (),
(19)

where G (n)[v] is a Dirichlet-Neumann operator [26, 27].
Here, we are looking for the small size traveling waves
periodic in x. That means we expect the solution of the form
7(t,x) = 7 (x +ct) and v (t,x) = ¥(x + ct), where ¢ is the
phase velocity.
These solutions must satisfy the equations:

et = G() [yl + yniss
Ve LGy + .yl

-1
2 2 1+ }7)2( + yﬂWX + Yax G(I’])l//

Yy =—gn—
(20)

For this, we look for the zeros of the equation, which
indicate the situation with constant vorticity

—cn, + Gyl + ynn,

Flony) = 2

LGy +n, - '
C‘I/x+gﬂ+%*5%*)’ﬂ%*)’axlc(’7)‘/’
+rIX
(21)
When #=0,y=0, (21) takes the form

F (¢ 0,0) = 0; V¢, which is a bifurcation problem. Here also,
the CrandallRabinowitz theorem [28] is applied to solve this
type of bifurcation problem. For this, we must have the
following:

1) d ' F (c*,0,0) has 1 dimensional kernel

2) Imd o F (c*,0,0) is closed and has codimension 1

(3) It must satisfy the traversability condition i.e.
Oy E(c",0,0)[(n %,y %) ¢ R where (47, y")
€ Kerd(W)F (c*,0,0) where Ker d is the kernel of d
and R is image set.

By linearizing equation (21) at # =0, ¥ = 0, we have

-1, + G(0)y

o (22)
cy, +gn—yo, [Dly

d iy F (6 0,0, y)] =

We assume the series representation for # and y as
n(x)=  n,cos nx,
n>0

y(x)= Y, sin nx,

n=0

(23)

which are even and odd, respectively, together with the
norms

2 2s 2
o= n"mn,",

2 2s 2 (24)
lvlis = »n" v,
These are the norms defined on homogeneous Sobolev
space H°.
With these series representation, we have

my, +ny, sin nx
d(mu/)F(C: 0: 0) [( 7[» 1//)] =
w1 (cn+ )y, + gn, cos nx

0

+
o +Y Yo+ 9o
(25)
Assuming
g=  g,sin nx,
n=0 (26)
f= fpcosnx
120
For these g and f; we solve d(w)F(c, 0,0)[(n,¥)]= JJ;
'Then, we have an T~ Gn
g am+y vy, fa
We note that detM,(c)=0 if c=-(y/2n) =+
(y2/412) + (gin), where M, = 7' ™  Forfixed n,

g cn+y

and choosing ¢, = —(y/2n)) + (y*/4n5) + (g/ny), the ng
-matrix has kernel.
Now,
Y
c, +—
CnD"u My rlnn 0 Wno " o
= 1= =
g oty Yy 0 Vi, _9
My
(27)

(c,,u + (y/ng))cos nyx

Therefore, Kerd(w)F (cnO,O, 0) = " (glno)sin ngx

which is of dimension 1.

Again
0 0
A fo (28)
m n Nn 9n

;n=>1.
gty Y, fa

This implies two possibilities n=n, or n#n,. In both the
cases, it can be shown that 1, ¥ € H®. Again for n=n, and
choosing g, =1, we have,
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sin nyx
gy Sin nx
R=Imd,Fc,,0,0 = + v ,
nm - f, cos nx Cpy + o €OS Hyx
n
o

(29)
which is perpendicular to
re = (Gt (y/mg))sin mox
€os Myx

This shows that the range is closed and has codimension
1. Also the traversability condition is satisfied as

s —c, + ylny nysin nyx
Ok €400 7y" = i ¢R
—g cos nyx

(30)
With the help of the Crandall-Rabinowitz theorem [28],

we have obtained the following theorem:
Theorem 2. Let s> (5/2) and ny € N: 3g,>0 and C'

Sfunctions C,: (—€y,€,) — R;; e (—€g,€0) — H* x H*

€

such that ﬂ(x —ct) solves the water wave equation.
y(x —ct) ’
Moreover, C.=C,, +0(e), e(x)  _
Ve (x)

(€, + (y/ng))cos nyx

2
—g/n, sin nyx +0(€).

Thus, we have constructed traveling waves of the form

+l cos 1y x —c,t +0 €. (31)

t, =
nit,x)=€¢ c e

My

Here, we have created the water profile for the zero and
constant vorticity cases. We use Newtonian fluid. A similar
result may be useful for the non-Newtonian fluid. Also, a
similar result may be extended to the positive or negative, or
variable viscosity cases.

4. Conclusion

In this work, we studied the various development of the
water waves and related facts such as the wave profile and
path of the wave in the finite bottom conditions. We have
then extended the finite depth condition to the infinite depth
condition. In infinite depth conditions, we have constructed
the water wave profile for the zero and constant vorticity
conditions with the use of the Crandall-Rabinowitz theorem
by using an analytical approach. While we focused on the
zero and constant vorticity cases, similar work may be
established on the positive and negative vorticity cases for
the construction of wave profiles. Here we did our work for
the Newtonian fluid. This work may be extended for the
non-Newtonian fluid.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We acknowledge Dr. Alberto Maspero, professor of SISSA,
The World Academy of Science (TWAS), Nepal Academy of
Science and Technology (NAST), and Central Department of
Mathematics, Tribhuvan University, Nepal.

References

[1] G. Stokes, “On the theory of oscillatory waves,” Trans. Camb.
Philos. Soc.vol. 8, pp. 441-455, 1847.

[2] T. B. Benjamin and P. ]J. Olver, “Hamiltonian structure,
symmetries and conservation laws for water waves,” Journal of
Fluid Mechanics, vol. 125, no. -1, pp. 137-185, 1982.

[3] W. Craig, “Water waves, Hamiltonian systems and Cauchy
integrals,” in Microlocal Analysis and Nonlinear Waves,
vol. 30, pp. 37-45, Springer, New York, NY, USA, 1991.

[4] W. Craig and M. D. Groves, “Hamiltonian long-wave ap-
proximations to the water-wave problem,” Wave Motion,
vol. 19, no. 4, pp. 367-389, 1994.

[5] C.J. Amick, L. E. Fraenkel, and J. F. Toland, “On the Stokes
conjecture for the wave of extreme form,” Acta Mathematica,
vol. 148, no. 0, pp. 193-214, 1982.

[6] B. Buffoni and J. F. Toland, Analytic Theory of Global Bi-
furcation, Princeton University Press, Princeton, NJ, USA,
2003.

[7] A. Constantin, “The trajectories of particles in Stokes waves,”
Inventiones Mathematicae, vol. 166, no. 3, pp. 523-535, 2006.

[8] A. Constantin, “Exact traveling periodic water waves in two-
dimensional irrotational flows,” Lecture Notes in Mathe-
matics, vol. 2158, pp. 1-82, Springer, Berlin, Germany, 2016.

[9] A. Compelli, R. Ivanov, and M. Todorov, “Hamiltonian
models for the propagation of irrotational surface gravity
waves over a variable bottom,” Phil. Trans. R. Soc. A, vol. 376,
no. 2111, Article ID 20170091, 2017.

[10] B. Basu, “Wave height estimates from pressure and velocity
data at an intermediate depth in the presence of uniform
currents,” Phil. Trans. R. Soc. A, vol. 376, no. 2111, Article ID
20170087, 2017.

[11] D. Clamond, “New exact relations for steady irrotational two-
dimensional gravity and capillary surface waves,” Phil. Trans.
R. Soc. A, vol. 376, no. 2111, Article ID 20170220, 2017.

[12] F. Kogelbauer, “Existence and amplitude bounds for irrota-
tional water waves in finite depth,” Phil. Trans. R. Soc. A,
vol. 376, no. 2111, Article ID 20170094, 2017.

[13] A. Constantin and G. Villari, “Particle trajectories in linear
water waves,” Communications to SIMAI Congress, vol. 1,
2006.

[14] M. Ehrnstrom and G. Villari, “Linear water waves with
vorticity rotational features and particle paths,” Journal of
Differential Equations, vol. 244, no. 8, pp. 1888-1909, 2008.

[15] E. Wahlén, “Steady water waves with a critical layer,” Journal
of Differential Equations, vol. 246, no. 6, pp. 2468-2483, 2009.



6 International Journal of Mathematics and Mathematical Sciences

[16] A. Constantin and J. Escher, “Symmetry of steady deep-water
waves with vorticity,” European Journal of Applied Mathe-
matics, vol. 15, no. 6, pp. 755-768, 2004.

[17] A. Constantin and W. Strauss, “Exact steady periodic water
waves with vorticity,” Communications on Pure and Applied
Mathematics, vol. 57, no. 4, pp. 481-527, 2004.

[18] A. Constantin and W. Strauss, “Exact periodic traveling water
waves with vorticity,” Comptes Rendus Mathematique,
vol. 335, no. 10, pp. 797-800, 2002.

[19] A. Constantin and J. Escher, “Analyticity of periodic traveling
free surface water waves with vorticity,” Annals of Mathe-
matics, vol. 173, no. 1, pp. 559-568, 2011.

[20] J. D. Palencia, S. Rahman, A. N. Redondo, and J. R. Gonzalez,
“Regularity and traveling wave profiles for a porous eyring-
powell fluid with Darcy-forchhimer law,” Symmetry, vol. 1451,
2022.

[21] J. D. Palencia and S. Rahman, “Geometric perturbation theory
and traveling waves profiles analysis in a Darcy- forchheimer
fluid model,” Journal of Nonlinear Mathematical Physics,
vol. 29, pp. 556-572, 2022.

[22] J. D. Palencia, S. Rahman, and A. N. Rodendo, “Analysis of
traveling wave solutions for Eyring-Powell fluid formulated
with a degenerate diffusivity and a Darcy-Forchheimer law,”
AIMs,Mathematics, vol. 7, no. 8, Article ID 15212, 2022.

[23] J. L. Diaz, S. U. Rahman, J. C. Sdnchez Rodriguez, M. A. Simén

Rodriguez, G. Filippone Capllonch, and A. Herrero

Herndndez, “Analysis of solutions, asymptotic and exact

profiles to an eyring-powell fluid modell,” Mathematics,

vol. 10, no. 4, p. 660, 2022.

E. Wahlén, “A Hamiltonian formulation of water waves with

constant vorticity,” Letters in Mathematical Physics, vol. 79,

no. 3, pp. 303-315, 2007.

[25] A. Constantin, R. I. Ivanov, and E. M. Prodanov, “Nearly-
Hamiltonian structure for water waves with constant vor-
ticity,” Journal of Mathematical Fluid Mechanics, vol. 10, no. 2,
pp. 224-237, 2008.

[26] D. P. Nicholls and F. Reitich, “Analytic continuation of
dirichlet Neumann operators,” Numerische Mathematik,
vol. 94, pp. 107146, 2003.

[27] J. Wilkening and V. Vasan, “Comparison of five method of
computing the dirichlet neumann operator for the water wave
problem,” 2014, https://arxiv.org/abs/1406.5226.

[28] M. G. Crandall and P. H. Rabinowitz, “Bifurcation from
simple eigenvalues,” Journal of Functional Analysis Water
waves, Hamiltonian systems and Cauchy integrals, vol. 8, no. 2,
pp. 321-340, 1971.

[24



Phone No. :00977- 14331977

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF MATHEMATICS

KIRTIPUR, KATHMANDU
NEPAL

@, £ Date: Feb 05. 2023

Subject: Letter of Acceptance
Dear Pawan Shrestha,

Thank you for a submission of Manuscript entitled "2D Surface Quasi Geostrophic
(SQG) Equations and its Regularity, a Numerical Study" for a possible publication in
"The Nepali Mathematical Sciences Report". Based in the reviewer's comments and
your careful responses, I am pleased to inform you that the submitted paper has been
accepted for publication. The paper will be published on the coming issue in 2023.

% K@)l\m\.-azz

——

Dr.Tanka Nath Dhamala™ ~
Professot, -

Editor- in- Chief

The Nepali Mathematical Sciences Report




A.4 List of Presentations

1. participated in three days workshop on "Numerical Linear Algebra, Modeling,
and Simulations of Evolution Equations", October 17-19, 2022 held at Central
Department of Mathematics, TU, Kathmandu

2. presented a paper entitled "KdV Type Equations and Various Limits" in the na-
tional conference organized by the Nepal Academy of Science and Technology
held at Khumaltar, Lalitpur, Ashar 12-14, 2079

3. presented a paper entitled "KdV Type Equations and Vanishing Viscosity" at the
National Conference on Mathematics and Its Applications (NCMA-2022) orga-
nized by Nepal Mathematical Society held at Ilam, Jestha 28-30, 2079

4. visited SISSA, Italy for three months supported by TWAS from March 19 to June
16,2021

5. participated in a short-term course on "Computational Methods in Engineering
Sciences", October 24-28, 2020 organized by Women Engineering College, Ajmer,
India

6. presented a paper entitled "Regularity of SQG including bounds for the solution”
in the International Conference on Applied Mathematics and Computational Sci-
ences held in Dehradun India organized by Dehradun Institute of Technology
(DIT) university, October 17-19, 2019

7. presented a paper on "Regularity of 2 D Surface Quasi Geostrophic Equations
including Geometric Criteria" in the Second International Conference on Appli-
cations of Mathematics to Nonlinear Sciences (AMNS-2019) held at Pokhara or-
ganized by AANMA, CDM, and NMS, June 27-30, 2019

8. presented a paper entitled "Regularity of 2D Surface Quasi Geostrophic Equa-
tions" in the 7th national conference on Mathematics and Its Applications (NCMA-
2019) held at Butwal organized by Nepal Mathematical Society, January 12-15,
2019

9. participated in the CIMPA school on dynamical system held in Kathmandu on
October 25 to November 5, 2018

A.5 Certificates of Participations



o
s X

kbbb

International Centre of Pure and Applied Mathematics (CIMPA), France
and

)
1

Central Department of Mathematics, Tribhuvan University, Nepal
in coopexation with

The International Centre of Theoretical Physics (ICTP),

International Mathematical Union (IMU)
and
University Grants Commission (UGC), Nepal

s

o5
o
<5
e
o
o

present this ’E‘;“

Pawan Shrestha

Central Department of Mathematics, Tribhuvan University, Nepal

b
b

fo ety pastcipetng %)
at the CIMPA Restarel Scbaal o Dynamical Systema, Katlmasndsn, Nepal 'E‘J.
Octolen 25 - Novemnber S, 2018 o
(%)
o2 53
) \y » <
g i KR
<2 D€ 3
<3 <
il CIMPA o
¢) 3
- i)
¢

g

\}%/1/\ ;’2 - OCC ¢
Prof. Dr. Sergei B Kuksin . Shree Ram Khadka

International Coordinator National Coordinator

Date: November 5, 2018, Kathmandu, Nepal

{“"M %; (crp Internattional Centre
b

e bbbt

R SR R
SPobpdpdpddd




“Developing the Society Through Scientific Research & Mathematical Activities”
ping ) 3 )
7t National Conference on

Mathematics and Its Applications
(NCMA-2019)

4 ) Certificate

This certificate is awarded to

Pawan Shrestha
Central Department of Mathematics, Tribhuvan University
for participating and presenting the paper entitled
Regularity of 2D Surface Quasi Geostrophic Equation
in the National Conference on Mathematics and Its Applications
organized by
Nepal Mathematical Society.

\\\
Prof. Dr. Chet Raj Bhatta Sudarshan Baral
President Chief Guest
.._mzcmE 12-15, 2019 Nepal Mathematical Society Minister for Social Development

Butwal, Nepal Province-5, Nepal




N
R xfm“ Second International Conference on
-3 * Applications of Mathematics to Nonlinear Sciences
(AMNS-2019)
June 27-30, 2019, Pokhara, Nepal

http://anmaweb.org/AMNS-2019

This certificate is awarded to

Pawan Shrestha

for presenting a talk

Regularity of 2D Surface Quasi Geostrophic
Equations

in an invited session of

Second International Conference on Applications
of Mathematics to Nonlinear Sciences

(AMNS-2019)

on June 27-30, 2019, Pokhara, Nepal.

Y o8

Dr. Naveen Vaidya
AMNS-2019 Conference Convener

Conveners

*Naveen K. Vaidya, President of ANMA *Kedar Math Uprety, [TOD, Central Department of Mathematics
San Diego State University, USA "I'ribhuvan University, Nepal
nvaidyaGisdsu.edu, hip:/ /www.anmaweb.org kedard2l@hotmail.com, hitp:/ /tribhuvan-university.cduw.np/




A.\(f..(__.(__(:c.(}.34)—__....3-_....v___().ur.?__.f.._c)q.!,..fnf._(__...w.(10___(___(..()c_.(..{(f?f?f:c);’f?}aﬁ?}ﬂ(a(}ﬁ({ff?.v
Ref: GWECA/TEQIP-IIL/2020-21/330

- il o
T} gy ..h_u._....:

Women Engineering College, Ajmer
(An Auntonomous Institute of Govt. of Rajasthan)
SHORT TERM COURSE
ON
"Computational Methods in Engineering Science"

(October 24-28, 2020)
Certificate of Participation

This 1s to certify that Pawan Shrestha from Tribhwwan University, Nepal has participated in One Week
Online Short Term Course (under TEQIP-III) on “Computational Methods in Engineering
Science”, jomtly orgamized by Department of Humanities and Sciences (Mathematics), Women
Engineering College, Ajmer and Department of Chemical Engineering, Dr. B. R. Ambedkar
National Institute of Technology, Jalandhar during October 24-28 2020 at Women Engineering
College, Ajmer.

% _.H | Jw:..v... .__..._”.. ml
%.iuﬁa. _Jﬁ.....x__x. g L | y : Lo e

ILLI.|.|.|-|.II —_— SE—
{Dr. A K Tiwari) (Ms. Shalini Agarwal) {Dr. Mahesh Bohra) (Dr. J.LK. Deegwal)
CONVENER COORDINATOR COORDINATOR CONVENER

{f#o*!ﬁfff&ff«*fffﬁffﬂff&lf#ﬁf#fffﬁff#ﬂf#ﬁff«*f
B e N Y S E R e

P gl g N el N N g S e



INTERNATIONAL CONFERENCE

ON DIT
UNIVERSITY
APPLIED MATHEMATICS & COMPUTATIONAL o s s

SCIENCES
Certificate No.04& %«Nﬁg Q\ “§§§
This is to Certify that Prof./Dr./Mr./[Ms. TDS.Q w Shvealh g

From “Twbhuvan Ciﬁ)b....\w\ _um%im.ﬂn& presented an
oral paper [ poster paper entitled Pfﬂffﬁ.f\.\ 1% 2p Su u\m acs mdUe.D\r. Lesa o

M_L_. Lo DA, in ICAMCS - 2019, Organized by Department

of Mathematics , DIT University, Dehradun & Sponsored by UCOST, Govt. of Uttarakhand from October 17-19, 2019.

ICAMCS
N 2019 & D__/._ﬁ._.\;

(Dr. Jogendra N_H-mm.& (Prof. K.K. Raina)

ﬁ Convener Vice Chancellor




ns..and. vanis

o

e o

2022 3t ILAM held on June 11-13,2
p ;| g .

.'?.”.. 3 . i
" e M”..pr..




..\.
.._
45er §
" Ye .,u%.....

[

Nepal Academy of Science and Technology (NAST)

CERTIFICATE OF PARTICIPATION
Awarded to
.................... Pawan. Shesha.

for Presentation in Oral / 1o&1 13:@“9:0: in the

9th National Conference on Science and Technology
June 26-28,2022 (Asar 12-14, 2079)
Khumaltar, Lalitpur, Nepal

Ms. Luna Vajra Prof. Dr. Mahesh K. Adhikari Dr. Sunil Babu Shrestha
Chief, Promotion Division Secretary Vice Chancellor




AR e/

.\ e/

W o Euhancing Mathemalical Research & Education 7~ o) \m/
= A Three Day Workshop on Numerical Linear — A
Algebra, Modeling and Simulation =

of Evolution E:&Qoﬁm

Mr. Pawan Shreshtha

of Central Department of Mathematics, TU, Nepal has actively participated in
A Three Day Workshop on Numerical Linear Algebra, Modeling and Simulation of
Evolution Equations
jointly organized by Central Department of Mathematics, TU, Nepal and
TU Kaiserslautern, Germany.
October 17-19, 2022 (Ashwin 31 - Kartik 2, 2079)

@-.h § T ﬂohuvf)ﬁ.ipﬂn

Prof. Dr. Axel Klar Prof. Dr. Tanka Nath Dhamala
Facilitator HOD
TU Kaiserslautern, Germany Central Department of Mathematics, TU, Nepal

E]
\ m  TecHviscHE UNIVERSITAT
m KAISERSLAUTERN






