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Abstract

Computational study of hydrogen bonded complex of ethanol and water using various

functionals on the basis of density functional theory has been carried out using 6-

311++G(d,p), 6-311++G(2d,2p), and aug-cc-pVTZ basis sets. We have calculated

binding energy, zero point vibrational energy, distance of the bond formed in the

complex, bond angle after complex formation, frequency shift, electron density, and

laplacian of electron density for the ethanol and water complex. The binding energy

of the complex was found to be in the range of -4.258 kcal/mole to -6.232 kcal/mole

. We have calculated the zero-point vibrational energy of the complex and found to

be in the range of 1.54 kcal/mole to 1.85 kcal/mole . We have found the distance of

bond formation in the complex in the range of 1.907 Å to 2.103 Å, the bond angle in

the range of 172.73◦ to 178.80◦, and frequency shift in the range of -151.76 cm−1 to

-85.99 cm−1. The electron density(ρ) and laplacian of electron density(∇2ρ) at bond

critical points for the C2H5OH...H2O complexes are analyzed in DFT, and different

levels of approximation by using AIM All software.
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Chapter 1

Introduction

1.1 General Review

Two forces are responsible for keeping and holding the atoms and molecules united to

form a stable system. They are intra-molecular and intermolecular forces. Covalent,

ionic, and metallic bonds are due to intramolecular forces between the atoms within

the molecule. Intermolecular forces play a significant role in the physical and chem-

ical properties of crystal structures and molecular molecules. van der Waals forces,

hydrogen bonds, and dipole-dipole interactions are three typical intermolecular force

[1].

1.2 Hydrogen bond

The electronegative attractive interaction between polar molecules in which hydro-

gen(H) is bonded to highly electronegative atoms [F, O, N] is termed a hydrogen

bond [2]. It is weaker than covalent or ionic bonds and stronger than van der Waals

interaction. In the present context, its importance has been recognized in many fields

like; material science, chemistry, and physics [3]. The definition of hydrogen bond

proposed by the International Union of Pure and Applied Chemistry is “The hydro-

gen bond is an attractive interaction between an atom or a group of atoms in the

same or a different molecule that shows the bond formation, and a hydrogen atom

from a molecule or a molecular fragment X-H in which X is more electronegative than

H”[4]. A hydrogen bond may be expressed as X-H ... Y-Z, where X-H represents the

1



hydrogen bond donor and the acceptor may be either an atom or an anion Y, or a

fragment or a molecule Y−Z. Some useful shreds of evidence and characteristics for

hydrogen bonding in this recommendation are given below;

• Electrostatic forces, which result from charge transfer between the donor and

acceptor and lead to the partial covalent bond formation between H and Y, are

among the factors involved in the creation of a hydrogen bond.

• The normal X-H...Y angle is linear (180◦), and the closer the angle is to this

value, the stronger the hydrogen bond and the shorter the H...Y distance.

• The frequency of the infrared X...H stretching typically shifts to the red when

a hydrogen bond forms, lengthening the X...H bond.

• The atoms X and H are covalently connected to one another, with the strength

of the H-Y bond increasing as X’s electronegativity rises [4].

1.3 Scope of Present Work

The ab initio calculations are getting more popular in studying the electronic struc-

ture and calculating the several physical features such as ground state energy, dipole

moment, vibrational frequency, geometry, topological analysis, polarizability, nuclear

quadrupole, electric field gradient parameters, etc. We have worked on hydrogen

bonding to study and analyze the different properties of ethanol and water complex

using the Gaussian 16 program [5].

Water is the quintessential example of hydrogen bonding. We all know how important

water is in our lives. Water is discern as a natural solvent. Without hydrogen bonds,

water would not be formed in the liquid phase. So hydrogen bonding is crucial

for sustaining life. Hydrogen bonding is used to determine the structure of various

substance like protein. Most of our food, including carbohydrates and sugar, contains

hydrogen bonds. So we have worked on hydrogen bonding to study and analyze

the different properties of ethanol and water complex. Many chemical reactions

depend on hydrogen bonding, which also gives water its special solvent properties.

Hydrogen bonds are responsible for establishing the three-dimensional structure of

2



folded proteins, including enzymes and antibodies, and they hold complementary

strands of DNA together [6].
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Chapter 2

Literature Review and Motivation

Numerous researchers have studied interactions on various compounds using both

experimental and computational methods. We have read the following literature’s

during our study because it gives a clear understanding of our research effort.

Rabuck and Scuseria (2000) were able to accurately finding the hydrogen bond bind-

ing energy and equilibrium structure for a benchmark set of molecules compared to

newly developed functional [7].

Dkhissi et al. (2000) studied the comparison between the calculated and experimental

rotational constants for monomeric pyridine increases in the order DFT(B3PW91),

DFT(B3LYP). This comparison allows them to conclude that DFT with the B3PW91

and B3LYP functionals are the best methods to study monomeric nucleic acid bases

[8].

Oliveira and Vasconcellos (2006) studied the structures of the alcohol and water hy-

drogen complexes, which were fully optimized using B3LYP/ccp-VDZ calculations.

The authors evaluated the theory using a set of criteria developed in terms of the

CHELPG atomic charges and topological parameters of the atoms in the molecules

theory [9].

Pal and Kundu (2012) studied the hydrogen bond formation in trimethylene gly-

col (TMG) water complexes. Authors applied the Hartree-Fock (HF) method, MP2

4



method, and density functional theory with dispersion functionals (DFT-D) using

the 6-31++G(d,p) basis set [10].

Parajuli and Arunan (2015) studied the first principles of X-H...C and C-H...X hy-

drogen bonds in n-alkane-HX complexes (X = F, OH, alkane = propane, butane,

pentane) and has been carried out using an ab-initio and density functional theory

[11].

Zhao et al. (2016) studied the spectroscopic characteristics of water-methanol com-

plexes containing aromatic rings as acceptors, such as benzene and 1,3,5-triaminobenzene.

Four DFT functionals B3LYP, M062X, WB97XD, and B3LYPD3 were used to derive

the complex’s optimal geometries [12].

G C and Parajuli (2016) studied the first principles of ethanol complexes with H2S,

H2O, and HF molecules and has been carried out using an MP2 level of theory [13].

2.1 Motivation

Much research has been done in the field of computational quantum chemistry using

the Gaussian software to study the properties of molecules. Many chemical reactions

depend on hydrogen bonding, which also gives water its special solvent properties.

Hydrogen bonds are responsible for establishing the three-dimensional structure of

folded proteins, including enzymes and antibodies, and they hold complementary

strands of DNA together. Due to these reasons, we were highly motivated to conduct

our research work.

2.2 Objective

Our goal is to present a thorough computational analysis utilizing density functional

theory to understand the electronic nature of the hydrogen bond formation in the

ethanol-water complex and its features. Understanding the fundamentals of hydrogen

bond formation will be made easier by this study. The following parameters of

5



complexes are studied in this research work:

• To find bond length and bond angle of complex.

• To find binding energy of the complex.

• To find zero point energy of the complex.

• To study vibrational frequency shift of complex.

• To study topological analysis of complex.

6



Chapter 3

Theoretical Background

3.1 The Hartree-Fock Approximation

3.1.1 General Review

Every system of either solids or clusters are made up of mutually interacting elec-

trons and nuclei, as well as the dynamics of these particles. It cannot be treated

independently in general. Due to interactions between electrons and nuclei, calculat-

ing the eigen function in many body situations is difficult. To address the limitations

of the Hartree Self Consistent Field Method, V. Fock adopted this revised technique

to multi-particle system solution. The wave functions’ anti-symmetric character is

appropriately taken into account. Each electron in the system flows under the com-

bined average field of the nucleus and other electrons, according to this method.

This method of determining the wave function and energy of a stationary quantum

multi-particle system is an approximation. For solving the Schrodinger equation, this

method works for atoms, molecules, nanostructures, and solids [14].

3.1.2 Born-Oppenheimer Approximation

In quantum physics, there are only a few exact solutions to problems of atoms. The

Born-Oppenheimer approximation is one of the main concepts that guides the de-

scription of the quantum states of molecules. The motion of the nuclei and the motion

of the electrons may be separated using this approach. The most used mathematical

approximation in molecular dynamics is the Born-Oppenheimer (BO) approxima-

7



tion. The Born-Oppenheimer approximation is a hypothesis in quantum physics and

molecular chemistry that the motion of the nuclei in a multi-electron system may

be completely separated from the motion of the electron. Max Born and J. Robert

Oppenheimer develop this approach in 1927. It is a significant idea in the quantum

exploration of atoms, molecules, and other objects i.e. a molecule’s wave function

may be totally separated into electronic and nuclear (vibrational, rotational) com-

ponents. The Born-Oppenheimer approximation is a hypothesis in quantum physics

and molecular chemistry that the motion of the nuclei in a multi-electron system

may be completely separated from the motion of the electron[14].

The total wavefunction can be expressed as

ψtotal = ψelectronic × ψnuclear (3.1)

If the nucleus and electron are assumed to be point masses without taking into

account their spin-orbit relativistic interactions, the molecular Hamiltonian operator

is written as

Ĥ = −ℏ2

2

∑
α

1

mα

∇2
α−

ℏ2

2me

∑
i

∇2
i+
∑
α

∑
β>α

ZαZβe
2

4πϵorαβ
−
∑
α

∑
i

Zαe
2

4πϵoriα
+
∑
j

∑
i>j

e2

4πϵorij

(3.2)

where i,j represent the number of electrons, ϵo= 8.85×10 −12 C2/Jm is the permit-

tivity of space and α,β refers to nuclei. In atomic units i.e, e = me = 1).

The Hamiltonian is formally defined as

Ĥ = T̂N(R) + T̂e(R) + V̂NN(R) + V̂eN(r, R) + V̂ee(r) (3.3)

where nuclear coordinates are denoted by R and electronic coordinates by r, respec-

tively.

In equation (3.2), the electron kinetic energy operator is represented by the first

term, and the nuclei kinetic energy operator is represented by the second term. The

potential energy of attraction between electrons and nuclei is represented by the third

term. The potential energy of repulsion between nuclei with the atomic numbers Zα

and Zβ is represented by the fourth term. The third factor on the right-hand side of

the equation prevents us from clearly separating the Hamiltonian into its electronic

and nuclear components. A nucleus has a mass that is significantly greater than

that of a proton. By applying this approximation, we can ignore the nuclear kinetic
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energy term in the equation (3.2) and it written as

(Ĥel + VNN)ψel = Uψel (3.4)

where Ĥel is the purely electronic Hamiltonian and VNN is the nuclear repulsion term

are expressed as

Ĥel = − ℏ2

2me

∑
i

∇2
i −

∑
α

∑
i

Zαe
2

4πϵoriα
+
∑
j

∑
i>j

e2

4πϵorij
(3.5)

VNN =
∑
α

∑
β>α

ZαZβe
2

4πϵorαβ
(3.6)

The electronic energy in equation (3.5) is referred to as total energy U as it includes

inter-nuclear repulsion. Since the electronic wave function ψel(ri,rα) is just a func-

tion of electronic coordinates, it still depends on nuclear coordinates parametrically.

Through the potential VeN , both the electronic energy and the electronic wave func-

tion are parametrically dependent on the nuclear coordinates rα (which implies we

have distinct electronic Schrodinger equations with different solutions for different

sets of fixed nuclear coordinates rα).

Generally,

ψel = ψel,n(qi, qα) (3.7)

U = Un(qα) (3.8)

The electronic quantum number is denoted by the letter n. For a definite nuclear

configuration, the term VNN in equation (3.5) is a constant (say C). As a result, it

has no effect on the wave function and simply reduces the energy eigenvalues by C.

As a result, if VNN is left out of equation (3.5), we obtain

Ĥelψel = Eelψel (3.9)

Where, the purely electronic energy Eel(qα ) is related to the electronic energy in-

cluding internuclear repulsion by the relation

U = Eel + VNN (3.10)

Because electrons travel at a considerably higher rate than nuclei, When the nuclei

alter their configuration slightly, say from q′α to q′′α, the electrons adjust by chang-

ing the electronic wave function from ψel(qi;q′α) to ψel(qi;q′′α) and the electronic

9



energy from U(q′α) to U(q′′α). As a result, as the nuclei move, the electronic en-

ergy fluctuates smoothly as a function of the nuclear configuration parameters, and

U(qα) becomes the potential energy for nuclear motion. This is the prime approxima-

tion in the Born-Oppenheimer approximation method, often known as the adiabatic

approximation. Hence, the schrodinger equation for nuclear motion is

ĤNψN = ENψN (3.11)

ĤN = −1

2

∑
α

1

mα

∇2
α + U(qα) (3.12)

The nuclear coordinates are denoted by qα. Because the Hamiltonian (3.13) includes

operators for both nuclear and electronic energy, the energy eigenvalue E in equation

(3.12) represents the overall energy of the molecule. As a result, Electronic and

nuclear movements are separated using the Born-Oppenheimer approximation, which

suggests that the actual molecule wave function is

ψ(qi, qα) = ψel(qi; q − α)ψN(qα) (3.13)

if(me/mα)
1/4 ≪ 1.

3.1.3 Hartree-Self Consistent Field Method

Schrodinger equation for hydrogen and hydrogen similar atoms can be solved using

precise wave function. The Hartree Method of Self-Consistent Field is the best way

for finding the appropriate wave function for high order atoms [15]. This technique

presupposes that each electron flows under the electrostatic field or effective potential

created by the remaining electrons in a system. As a result, the many-body issue

is reduced to a single-electron problem. The result is then generalized to the entire

system. This is a technique for locating a centralÂ field. In the quantum realm, this

approach is the foundation for using atomic and molecule orbitals in multi-electrode

systems [3].

The Hamiltonian of an atom with a Z-charge nucleus and n electrons can be written

as,

Ĥ = − h̄2

2me

n∑
i=1

∇2
i −

n∑
i=1

Ze2

4πϵori
+

n−1∑
i=1

n∑
j=i+1

e2

4πϵorij
(3.14)

In this case, the nucleus was considered to have an indefinitely heavy point mass.

The first sum in equation contains the kinetic energy operators for the n-electron

10



(3.14). The second sum is a representation of the potential energy for the interac-

tions between the electrons and the Ze charge nucleus. For a neutral atom, Z=n. The

potential energy of interelectronic repulsions is the final total. The constraint j > i

prevents phrases like e2/4πϵorij from being counted twice for each interelectronic

repulsion. The Schrodinger equation for an atom is inseparable due to the interelec-

tronic repulsion factors e2/4πϵorij. If the Schrodinger equation could be separated,

the n-hydrogen-like orbitals would give rise to the zeroth-order wave function.

ψo = f1(r1, θ1, ϕ1)f2(r2, θ2, ϕ2)......fn(rn, θn, ϕn) (3.15)

where, hydrogen like orbitals are

f = Rnl(r)Y
m
l (θ, ϕ) (3.16)

We would introduce two electrons with opposing spins into each of the atom’s lowest

orbitals in accordance with the Pauli exclusion principle, resulting in the ground-

state configuration. Though the approximation wave function (3.16) is subjectively

beneficial, it is woefully inaccurate numerically. For starters, all of the orbitals make

use of the whole nuclear charge Z. We may achieve a better approximation to account

for the screening of the electrons by utilizing different effective atomic numbers for

the different orbitals. The next step is to apply a variation function that is similar to

equation (3.16) but is not limited to hydrogen orbitals or any other type of orbitals.

Thus we take

ϕ = g1(r1, θ1, ϕ1)g2(r2, θ2, ϕ2)......gn(rn, θn, ϕn) (3.17)

and we look for the functions g 1, g2, ................., gn that minimize the variational

integral <ϕ|Ĥ|ϕ>/<ϕ|ϕ>. In equation (3.16) we must vary the functions gi. We

employ orbitals that are created by multiplying a radical factor by a spherical har-

monic to make the work easier.

gi = hi(ri)Y
mi
li (θi, ϕi) (3.18)

In most atomic computations, this approximation is used. The Hartree technique

of self-consistent field, which was developed by Hartree in 1928, is the method for

determining the gi’s .

ψo = S1(r1, θ1, ϕ1)S2(r2, θ2, ϕ2)......Sn(rn, θn, ϕn) (3.19)
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Where, Each Si is a multiplication of spherical harmonics and a normalized function of

r. A plausible hypothesis for ϕo would be a combination of orbitals similar to those of

hydrogen with effective atomic numbers for the function (3.20), and the probability

density of electron 1 would be |Si|2. We’ll start with electron 1 and imagine the

remaining electrons 2, 3,..., n smeared out to produce a fixed distribution of electric

charge across which electron 1 moves. The interaction between point charges Q1

and Q2 has a potential energy of V12 = Q1Q2/4πϵor12. Now we spread out Q2

into a continuous charge distribution, where the charge density, or charge per unit

volume represented by ρ2. The infinitesimal charge in the infinitesimal volume dυ2 is

ρ2dυ2, and when we add all the interactions between Q1 and the microscopic charge

components, we get

V12 =
Q1

4πϵo

∫
ρ2
r12

dυ2 (3.20)

The hypothetical charge cloud for electron 2 charge density is ρ2 = −e|s2|2 and for

electron 1, Q1 = -e.

Thus,

V12 =
Q1

4πϵo

∫
|s2|2

r12
dυ2 (3.21)

We obtain when we take into account interactions with other electrons.

V12 + V13 + ....+ V1n =
n∑

j=2

e2

4πϵo

∫
|sj|2

r1j
dυj (3.22)

The potential energy of interaction between the nucleus and electron 1 and with the

other electrons is then determined as

V1(r1, θ1, ϕ1) =
n∑

j=2

e2

4πϵo

∫
|sj|2

r1j
dυj −

Ze′2

r1
(3.23)

In addition to the presumption that the wave function is the sum of one electron

orbital, we now make another approximation. We suppose that a function of r alone

may effectively approximate the effective potential operating on an electron in an

atom. The accuracy of this central field approximation may be demonstrated. As a

result, we average V1(r1, θ1, ϕ1) over the angles to get a potential energy that primarily

depend on r1.

V1(r1) =

∫ 2π

0

∫ π

0
V1(r1, θ1, ϕ1) sin θ1dθ1dϕ1∫ 2π

0

∫ π

0
sin θdθdϕ

(3.24)
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In a one-electron Schrodinger equation, we now take V1(r1) as the potential energy,[
− ℏ2

2me

∇2
1 + V1(r1)

]
t1(1) = ϵ1t1(1) (3.25)

Then determine t1(1), an orbital that will be more advantageous for electron 1. 1 is

the energy of the orbital of the electron 1 in equation at this degree of approximation

(3.26). Due to the potential energy’s spherically symmetric nature in equation (3.25),

the angular factor in t1 is a spherical harmonic involving the quantum numbers l1

and m1. The radial component R1(r1) in t1 is obtained from the solution of a one-

dimensional Schrodinger equation of the form equation (3.26) . The number of nodes

k internal to the boundary points (r = 0 and ∞) starts at zero for the lowest energy

and increases by 1 for each higher energy, yielding a set of solutions R(r1). Now, the

definition of the quantum number n is given as n = l + 1 + k, where k = 0, 1, 2,...

We have the same number of inner radial nodes (n-l-1) and the same orbitals (1s, 2s,

2p, and so on) as hydrogen-like atoms. The orbital energy also rises with n. Since

V1(r1) is not a straightforward Coulomb potential, the radial component R1(r1) is

not a hydrogen-like function.

From the collection of R1(r1) solutions, we pick the one that matches the orbital

we’re optimizing. For instance, If electron 1 is a 1s electron in the beryllium 1s22s2

configuration, we compute V1(r1) from the assumed orbital of one 1s electron and

two 2s electrons, then we utilize the radial solution of (3.26) with k = 0 to get a

better 1s orbital.

We’ll now examine electron 2 and visualize it passing through a dense charge cloud

−e
[
|t1(1)|2 + |s3(3)|2 + |s4(4)|2 + ...+ |sn(n)|2

]
(3.26)

As a result of the other electrons. To obtain an improved orbital t2(2), We solve the

one-electron Schrodinger equation for electron 2 and calculate the effective potential

energy V2(r2). We repeat the operation until all n electrons have a set of enhanced

orbitals. Then we go back to electron 1 and do it all over again. E keeps calculating

better orbitals until there are no more changes from one iteration to the next. The

Hartree self-consistent-field wave function is given by the last set of orbitals. By

repeatedly resolving the one-electron Schrodinger equation (3.26), the orbital energy

1 was found. The energy of the repulsions between 1 and 2, 1 and 3,...,1 and n is

included in the potential energy in (3.25). We are resolving a Schrodinger equation
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for one electron with repulsions between electrons 2 and 1, 2 and 3,..., and 2 and n

when we solve for 2. . Each interelectronic repulsion will be counted twice if we take∑
i ϵi. To accurately calculate the atom’s total energy E, we must first calculate

E =
n∑

i=1

ϵi −
n−1∑
i=1

n∑
j=i+1

∫ ∫
e2|gi(i)|2|gj(j)|2

4πϵorij
dυidυj (3.27)

E =
∑
i

ϵi −
∑
i

∑
j>i

Jij

where the average repulsion of the electrons in the Hartree orbitals was calculated

by subtracting the sum of the orbital energies (sth), and the notation Jij was used

for Coulomb integrals
∫ ∫ e2|gi(i)|2|gj(j)|2

4πϵorij
dυidυj.

3.1.4 Hartree-Fock Approximation

Hartree’s self-consistent field approximation is one method for solving the Schrodinger

equation in multi-electron systems. Each electron is supposed to travel freely in the

effective field created by nuclei and remaining electrons in Hartree’s self-consistent

field technique, and each electron’s motion is guided by a single particle Schrodinger

equation [14]. For the N-electron problem, the Schrodinger wave equation is

Hψ(r1, r2, ..., rN) = Eψ(r1, r2, ..., rN) (3.28)

where E stands for overall energy and H for the hamiltonian of the system. According

to the Born approximation, the system’s total Hamiltonian is given by,

HTot = −1

2

N∑
i

∇2
i +

1

2

N∑
i ̸=j

1

|ri − rj|
−

N∑
i

M∑
I

ZI

|ri −RI|
(3.29)

The total wave function of an N-electrons system is calculated using the Hartree self

consistent field approach as a simple multiple of one electron wave functions.

ψ(r1, r2, ........., rN) = ψ(r1)ψ(r2)..........ψ(rN) (3.30)
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Consequently, the total energy is given by,

E = ⟨ψ|H|ψ⟩

= ⟨ψ| − 1
2

∑N
i ∇2

i +
1
2

∑N
i ̸=j

1
|ri−rj|

−
∑N

i

∑M
I

ZI

|ri−RI|
|ψ⟩

=
∫
d3r1

∫
d3r2.....

∫
d3rNψ

∗(r1)ψ
∗(r2)....ψ

∗(rN)Hψ(r1)ψ(r2)....ψ(rN)

=
∑N

i=1

∫
d3rψ∗

i (r)(−1
2
∇2

i −
∑

i

∑
I

ZI

|ri−RI |
(r))ψi(r)

+
∑

i ̸=j

∫
d3r
∫
d3r′ψ∗

i (r)ψi(r)
1

|r−r′|ψ
∗
j (r

′)ψj(r
′)

(3.31)

By reducing the Hartree energy (3.31) and applying the normalization condition, the

electron wave function ψ(r) can be derived,

I =

∫
ψ∗ψd3r = 1 (3.32)

using variational principle with respect to change in the orbital’s i.e; ψi(ri) = ψi(ri)+δψi(ri).

Using Langrange’s indeterminate multiplier approach, we can do this. From varia-

tional principle

δ(⟨ψ|H|ψ⟩ − ϵ⟨ψ|ψ⟩) = 0 (3.33)

i.e.δ(E − ϵI) = 0

=
∫
d3rδψ∗

i (r)
{(

−1
2
∇2

i −
∑

i

∑
I

ZI

|ri−RI |

)
ψi +

(∫
d3r′ 1

|r−r′|
∑

i ̸=j ψ
∗
i (r

′)ψi(r
′)
)
ψi − ϵψi

}
+
∫
d3rδψi(r)

{(
−1

2
∇2

i −
∑

i

∑
I

ZI

|ri−RI |

)
ψ∗
i +

(∫
d3r′ 1

|r−r′|
∑

i ̸=j ψ
∗
j (r

′)ψ∗
i (r

′)
)
ψ∗
i − ϵψ∗

i

}
(3.34)

where ϵ denotes Lagrange’s undetermined multiplier and δψ , δψ∗ are variations in ψ

and ψ∗ absolutely unrelated to each other. From the previous equation for arbitrary

δψ and δψ∗ ,we get,(
−1

2
∇2

i −
∑
i

∑
I

ZI

|ri −RI |
+

∫
d3r′

1

(|r− r′|)
∑
i ̸=j

ψ∗
j (r

′)ψj(r
′)

)
ψi(r) = ϵψi(r)

(3.35)(
−1

2
∇2

i + Vext + VSC

)
ψi(ri) = λiψi(ri) (i =, 2, ...N ; ϵ→ λi) (3.36)
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where

Vext =
∑
i

∑
I

ZI

|ri −RI |

and

V(sc) = VH

=
∫
d3r′ 1

(|r−r′|)
∑

i ̸=j ψ
∗
j (r

′)ψj(r
′)

=
∫
d3r′ 1

(|r−r′|)ni(r
′)ni(r

′)

=
∑

j ̸=i |ψ∗
j (r

′)|2

The Hartree equation is the set of N-coupled integro-differential equations given in

equation (3.36) that can be solved self-consistently.

The total wave function of an N-electron system is calculated using the Hartree self-

consistent field approach as a simple product of one electron wave function ψi. It has

at least one important flaw: The anti-symmetry principle states that a wave function

describing fermions must be anti-symmetric in the space and spin coordinates of two

electrons, and this action is in violation of that principle [14]. In order to fulfill the

Pauli exclusion principle Hartree-Fock approximation employs the anti-symmetric

wave function in the form of Slater determinant as given;

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, s1) ψ2(r1, s2) · · · ψN(r1, sN)

ψ2(r2, s1) ψ2(r2, s2) · · · ψN(r2, sN)
...

...
...

ψN(rN , s1) ψN(rN , s2) · · · ψN(rN , sN)

∣∣∣∣∣∣∣∣∣∣∣∣
(3.37)

where 1√
N !

is a normalization constant and ψ(ri, si) is a single electron wave function

with space and spin coordinates ri and si. In addition, two electrons occupying the

same spin-orbital create two identical rows, which results in the determinant equaling

zero and obeying the Pauli exclusion principle. These two events are consistent with

the wavefunction’s antisymmetric feature.

By applying the wave function as given in (3.37) we can solve the Schrodinger equa-

tion applying variation principle which generates Hartree-Fock equation as follows;(
−1

2
∇2

i + Vext +
∫
d3r

′ 1
(|r−r′ |)

∑
i ̸=j ψ

∗
j (r

′
)ψj(r

′
)
)
ψi

−
(∫

d3r′ 1
|r−r′|

∑
j ̸=i ψ

∗
j (r

′
)ψi(r

′
)δsisj

)
ψj(r) = ϵiψi(r)

(3.38)
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The exchange potential VExc, which is non-local and connected to the interaction

of every electrons in the system, is represented by the final term in the LHS of the

preceding equation. As a result, deriving VExc is tough.

Although the Hartree-Fock wave function meets the Pauli’s exclusion principle’s anti-

symmetry criteria and so contains the correlation effect originating from electrons

with the same spin, the motion of electrons with opposing spins remains uncor-

rected. Within the Born-Oppenheimer approximation, this results in an electronic

energy that does not equal the precise solution of the Schrodinger equation. To ac-

count for electron dynamic correlations, the Hartree-Fock (HF) approximation must

be enhanced. DFT, MP2, and other approaches are utilized to account for dynamic

electron correlation.

We present Roothaan’s variational approach, which converts integro-diffierential equa-

tions into linear algebraic equations, in this brief description of the HF method.

3.1.5 Roothaan’s Variational Method

The Roothaan variational method is used to express the spin orbitals as a linear com-

bination of a small number of basis functions, and the integrodifferential equations

for the functions Φi(x⃗) are translated into linear algebraic equations for the expansion

coefficient ciα. If we consider a finite basis set χα(x⃗) with N ′ linearly independent

functions χ1(x⃗),χ2(x⃗).....,χ
′
N(x⃗), As a linear combination of the basis functions, the

spin orbitals can be expressed as follows:

Φi(x⃗) =
N∑

α=1

ciαχα(x⃗) (3.39)

where the expansion coefficient is ciα. The set of N ′ linearly independent functions

may be used to generate the same number of atomic or molecular spin orbitals. If

N is the number of occupied spin orbitals, then N ′ ≥ N is required. We have what

is known as a minimum basis set when N ′ = N . Roothaan’s technique, which is

an extension of the LCAO (Linear Combination of Atomic Orbitals) approximation,

may be easily applied to molecular systems.

With the help of equation( 3.39) for Φi(x⃗), the values of Hi, Jij and Kij, equations
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are written in the forms ;

Hi =
∑
α,β

c∗iαciβ [α|β]

Jij =
∑
α,βγ,δ

c∗iαciβc
∗
jγciδ [αβ|γδ]

Kij =
∑
α,βγ,δ

c∗iαciβc
∗
jγciδ [αδ|γβ] (3.40)

where,one-electron integrals are defined as follows:

[α|β] =
∫
dx⃗χ∗

α(x⃗)

(
−1

2
∇2 −

∑
n

Zn

| r⃗n|

)
χβ(x⃗) (3.41)

Integrals with two electrons, such as;

[αβ|γδ] =
∫ ∫

dx⃗d x⃗′χ∗
α(x⃗)χβ(x⃗)

1

|r⃗ − r⃗′|
χ∗
γ( x⃗

′)χδ( x⃗′) (3.42)

According to the number of unique indices α, β, γ, δ, two-electron integrals are further

classed as two-, three-, or four-center integrals. Unless the basis functions χα and χβ

have the same spin, the integrals produced by equations (3.41) and (3.42) disappear.

We can deduce the following from equation (3.40);

E (ciα, c
∗
iα)) =

∑
i

∑
αβ

c∗iα

[
[α|β] + 1

2

∑
j

∑
γδ

C∗
jγCjδ [αβ|γδ]− [αδ|βγ]

]
(3.43)

For the energy expression’s minimal value with respect to the variation of the coeffi-

cient ciα under the orthonormalization condition;∑
αβ

c∗iαcjβSα,β = δij (3.44)

With

Sαβ =

∫
dx⃗χ∗

α(x⃗)χβ(x⃗)

We use Langrange’s approach of undetermined multipliers to convert this conditional

minimization to unconditional minimization. As a result, we define a functional as

follows:

F (ciα, c
∗
iα) = E (ciα, c

∗
iα)−

∑
ij

λij
∑
αβ

c∗iαcjβSαβ (3.45)
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where N2 quantities λij are known as Lagrange undetermined multipliers. For a

closed shell system, the set of coefficients ciα also diagonalizes the Λ−matrix [=(λji)]

i.e., λij = ϵiδij.

When the minimization condition δF
δc∗iα

= 0 is applied, we get:

∑
i

∑
αβ

[
[α|β] +

∑
i

∑
γ,δ

c∗jγcjδ{[αβ|γδ]− [αδ|βγ]} − ϵiSαβ

]
ciβ = 0

Equivalently, ∑
β

(Hαβ − ϵiSαβ) ciβ = 0 (3.46)

where i = 1, 2, ...., N and α = 1, 2, ..., N ′. If we assume δF
δc∗iα

= 0, the complex conju-

gates of equation (3.46) are obtained. The Rothaan’s equations are algebraic versions

of the Hartree-Fock equations and are known as the linear equation (3.46). The van-

ishing of the N ′ × N ′ secular determinant is required for non-trivial solutions of

equation (3.46);

det (Hαβ − ϵiSαβ) = 0 (3.47)

which has N ′ eigenvalues ϵi = λji and N ′ sets of spin-orbital coefficients ciα. This

diagonalization method differs from the general diagonalization process because the

matrix element Hαβ is dependent on the coefficient ciα. The Hαβ must be recomputed

and the secular equation must be solved until self consistency is achieved once the

set ciα is obtained at one stage of the calculation.

The occupied spin orbitals into the ground state correspond to the lowest N self

consistent eigenvalues of the secular equation equation (3.47). The virtual solutions

ϕi with i = 1, 2, ..., N + 1 to N ’ (for N ′ > N) correspond to the unoccupied spin

orbitals and can be used to generate excited configurations. For virtual spin orbitals,

ϵi is usually positive.
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3.2 Electron Correlation Methods

3.2.1 General Review

Due to an overestimation of electron-electron repulsion, the HF technique provides

“absolute”energies that are too high. Two different types of electron-electron re-

pulsion exist: classical Coulomb repulsion (the Coulomb hole), which results from

electric charge, and quantum mechanical repulsion (the Fermi hole), which exists

between electrons with the same spin. The use of a single determinant and the

“smeared electron cloud”integration used to obtain the J and K integrals result in

the HF approximation to the treatment of electron correlation. It is common prac-

tice to refer to the shortcomings of the Hartree-Fock (single determinant) model as

“electron correlation”.

The average electron density for the other electron is used to compute the repulsion

energy between two electrons in the Hartree-Fock model. This is unphysical because

it ignores the reality that the electron will push the other electrons aside as it goes

around. The repulsive energy is reduced as a result of the electrons’ propensity to

remain apart. First, explain why, given a sufficiently big and adaptable basis set, the

Hartree-Fock approach is unable to provide the proper solution to the SchrĂśdinger

equation. In passing, we point out that the “Hartree-Fock limit”refers to the best

Hartree-Fock wave function that can be produced with a basis set that is this big and

adaptable. The issue is that electron pairings do not take place as the Hartree-Fock

technique predicts. It implies that the likelihood of the two electrons existing in

the same region of space is the same as the likelihood of their existing in separate

symmetry equivalent regions of space. For instance, in H2, the probability of both

electrons being close to one atom is the same as the likelihood of one electron being

close to one atom and the other close to the second atom.

Clearly, this is incorrect. The repulsive energy is also only calculated using the

Hartree-Fock method as an average throughout the entire molecular orbital. In ac-

tuality, the two electrons in a molecular orbital move so that they maintain a greater

distance between one another than proximity. We refer to this outcome as “correla-

tion”. The “correlation energy”[3] is the energy difference between the exact result

and the Hartree-Fock limit energy. Dynamical correlation refers to the idea of elec-
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trons avoiding one another, but non-dynamical or static correlation energy refers to

a subtler impact. Due to almost degenerate states or the rearrangement of electrons

inside partially filled shells, nondynamical correlation energy demonstrates the inad-

equacy of a single reference in defining a particular molecular state. It is sometimes

even more practical to divide the correlation energy into two components with dis-

tinct physical origins.

The majority of the correlation energy may be achieved for most excited states and

chemical reactions where bonds are broken and formed by simply adding a few addi-

tional configurations in addition to the Hartree-Fock configuration. This portion of

the correlation energy results from near degeneracy between various configurations

and frequently originates in Hartree-Fock approximation artifacts. The dynamical

correlation of the motion of the electrons, also known as the “dynamical correlation

energy”, is the physical source of the second component of the correlation energy.

This portion of the correlation energy can be very accurately characterized by single

and double replacements from the leading, near degenerate reference configurations

since the Hamiltonian operator only contains one- and two-particle operators. It

is crucial to take into account the electron correction, which is mostly brought on

by the instantaneous interaction between electrons, in order to improve the HF ap-

proximation. The distinction between the precise ground state energy and the HF

ground state energy (within the Born-Oppenheimer approximation and ignoring the

relativistic effect) i.e. E0 − EHF is called the correlation energy [16].

Ecorr = Eo − EHF (3.48)

We briefly address the Moller-Plesset (MP2) perturbation, where the unperturbed

wave function is the Hartree-Fock wave function, in order to take electron correlation

effects into consideration.

3.2.2 Moller-Plesset(MP2) Perturbation Theory

In order to deal with systems with numerous interacting particles (nucleons in a

nucleus, atoms in solids, electrons in an atom or molecule), physicists and chemists

have devised a variety of perturbation-theory methods [3]. One approach to take
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into account the electron correlation beyond the Hartree-Fock approximation is the

Moller-Plesset perturbation theory. For a discussion of the Moller-Plesset pertur-

bation theory, we follow Szabo and Ostlund [15]. In this theory, we partition the

Hamiltonian as;

Ĥ = Ĥo + V̂ (3.49)

Where Ĥ = Ĥo + V̂ is the Hartree-Fock Hamiltonian for total electron system and

is the sum of one electron Fock operators f(i);

Ĥo =
∑
i

f(i) (3.50)

=
∑
i

[h(i) + VHF (i)] (3.51)

With h(i) as a core-Hamiltonian for the ith kinetic and potential energy of an electron

in the field of a nucleus (the core) and VHF (i) as the Hartree-Fock potential. Let,Ĥ

be the system’s Hamiltonian is provided by ;

Ĥ =
∑
i

h(i) +
∑
i<j

1

| r⃗ij|
(3.52)

The difference between the total electron-electron repulsion and the total of the

Hartree-Fock Coulomb and exchange potentials is known as the perturbation. Con-

sequently, perturbation potential is ;

V̂ = Ĥ − Ĥo =
∑
i<j

1

| r⃗ij|
−
∑
i

VHF (i) (3.53)

This is the difference between the Hartree-Fock potentials and the overall electron-

electron repulsion.

The Hartree-Fock wave-function |ψo⟩ is an eigenfunction of Ĥo , so that;

Ĥoψo⟩ = E(o)
o ψo⟩ (3.54)

With the eigenvalue;

E(o)
o =

∑
α

εa (3.55)
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Where ϵα is the energy of the ath orbital and hence E
(o)
o is the zeroth-order pertur-

bation energy. The Hartree-Fock energy is given by;

EHF = ⟨ψo|Ĥ|ψo⟩ (3.56)

Using the value of Ĥ from equation (3.49), we have;

EHF = ⟨ψo|V̂ |ψo⟩ (3.57)

= ⟨ψo| Ĥo + V̂ |ψo⟩+ ⟨ψo|V̂ |ψo⟩ (3.58)

Multiplying equation (3.54) by ⟨ψo| and using the orthonormality condition ⟨ψo|ψo⟩

= 1, we get

E(o)
o = ⟨ψo| Ĥo|ψo⟩ (3.59)

Hence, with the aid of equation (3.56), equation (3.58) can be written as;

EHF = E(o)
o + E(1)

o (3.60)

where E
(1)
o = ⟨ψo|V̂ |ψo⟩ is defined as the first order energy correction. The Hartree-

Fock energy is the result of adding the first and zeroth order energies together.

The higher order perturbation theory provides the correlation energy. Similarly, the

energy’s second order adjustment is;

E(2)
o =

∑
n

|⟨ψo|V̂ |n⟩|2

E
(o)
o − E

(o)
n

(3.61)

Where the system’s ground state is the only state over which the sum is applied

and |0⟩ = |ψo⟩ is the unperturbed wave-function, where, |n⟩ is the perturbed wave

function. Suppose that |n⟩ be single excited determinant |ψr
a⟩ constructed from |ψo⟩

by replacing one occupied orbital χa with an unoccupied spin orbital χr. Then, we

have;

⟨ψo|V̂ |n⟩ = ⟨ψo|V̂ |psiγa⟩

= ⟨ψo|Ĥ|psira⟩ − ⟨ψo| Ĥo|psira⟩ (3.62)

The R.H.S of equation (3.62) is zero since the first term vanishes according to Bril-

louin’s theorem which states that the singly excited determinant does not interact

directly with the Hartree-Fock (HF) determinant and the second because the spin
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orbitals are eigenvalues of the Fock operator. Hence, |n⟩ can not be singly excited

state which do not mix with |ψo⟩ because of the two particle nature of the pertur-

bation. Thus, we are left with double excitation of the form |ψrs
ab⟩ . In this case,

equation (3.61) can be written as;

E(2)
o =

∑
a<b,r<s

|⟨ψo|V̂ |ψrs
ab⟩|2

E
(o)
o − E

(o)
ab,rs

(3.63)

The doubly excited determinant |ψrs
ab⟩ is an eigenfunction of H0 and it can be con-

structed from |ψo⟩ by replacing two occupied spin orbitals χa and χb with unoccupied

spin orbitals χr and χs, so

Ĥo|ψrs
ab⟩ =

[
E

(o)
0 − (εa + εb − εr − εs)

]
|ψrs

ab⟩ (3.64)

with an eigenvalue;

E
(o)
ab,rs = E

(o)
0 − (εa + εb − εr − εs) (3.65)

Thus, equation (3.63) can be written as;

E(2)
o =

∑
a<b,r<s

|⟨ψo|V̂ |ψrs
ab⟩|2

εa + εb − εr − εs
(3.66)

Let us evalaute the matrix element ⟨ψo|V̂ |ψrs
ab⟩. Putting the value of V̂ from equation

(3.64), we have;

⟨ψo|V̂ |ψrs
ab⟩ = ⟨ψo|

∑
i<j

1

rij
|ψrs

ab⟩ − ⟨ψo|
∑
i

V i
HF |ψrs

ab⟩ (3.67)

The ground state N-electron Hartree-Fock determinant in terms of the anti-symmetrization

operator is ;

|ψo⟩ = |χa(1), χb(2), · · · , χN(N) =
1

N !

∑
i=1

(−1)piPi{χa(1), χb(2), · · · , χN(N)}

(3.68)

where is an operator which generates the ith permutation of electron labelled 1, 2,

....N and pi is the number of transposition (simple interchanges) required to obtain

this permutation. Also, the doubly excited determinant |ψrs
ab⟩ can be written as;

|ψrs
ab⟩ = |χr(1), χs(2), · · · , χc(N) =

1

N !

∑
j=1

(−1)piPj{χr(1), χs(2), · · · , χc(N)}

(3.69)
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And,

⟨ψo|
∑
i<j

1

rij
|ψrs

ab⟩ = ⟨|( 1

r12
+

1

r13
+ · · ·+ 1

rN−1N

)|ψrs
ab⟩ (3.70)

Each of the terms on right hand side of equation (3.70) gives the same result because

of the indistinguishability of electrons and obtain.

⟨ψo|
∑
i<j

1

rij
|ψrs

ab⟩ =
N(N − 1)

2
⟨ψo|

∑
i<j

1

τ12
|ψrs

ab⟩

=
N(N − 1)

2

1

N !

N !∑
i=1

N !∑
j=1

(−1)pi(−1)pj
∫
d x⃗1dx⃗2 · · · dx⃗N

[
Pi{χ∗

a(1)χ
∗
b(2) · · · }r⃗−1

12 Pj{χr(1)χs(2) · · · }
]

(3.71)

If the electrons labelled χr and χs be two spin orbitals occupied by two electrons la-

belled as 1 and 2 respectively in the permutation Pi, then there are two possibilities

for electrons labelled 1 and 2 in the permutation Pj.

If Piχr(1)χs(2)...= ,χr(1)χs(2)..., then;

Pj{χr(1)χs(2) · · · } = {χr(1)χs(2) · · · }or{χs(1)χr(2) · · · }

Consider P12 is an exchange operator which interchanges the co-ordinates of electrons

labelled 1 and 2, then we can write;

Pj{χr(1)χs(2) · · · } = (1− P12)Pi{χr(1)χs(2) · · · }

Then, equation( 3.71)can be written as;

⟨ψo|
∑
i<j

1

rij
|ψrs

ab⟩ =
1

2(N − 2)!

N !∑
i=1

∫
dx⃗1dx⃗2 · · · dx⃗N

Pi{χ∗
a(1)χ

∗
b(2) · · · }r−1

12 (1− P12)Pi{χr(1)χs(2) · · · }

where the two terms arise from placing electrons labelled 1 and 2 in χa and χb or χb

and χa. Interchanging two dummy variables in equation (3.70), we get;

⟨ψo|
∑
i<j

1

rij
|ψrs

ab⟩ =
∫
dx⃗1dx⃗1

[
χ∗
a(1)χ

∗
b(2)r

−1
12 χr(1)χs(2)

]
= ⟨ab|r−1

12 |rs⟩ − ⟨ab|r−1
12 |sr⟩

= ⟨ab|rs⟩ (3.72)
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On substitution of equation (3.72) in equation (3.70), we get;

E(2)
o =

∑
a<b,r<s

|⟨ab|rs⟩|2

εa + εb − εr − εs
(3.73)

Then, the ground state energy corrected up to the second -order is given in the form;

Eo = E(o)
o + E(1)

o + E(2)
o

= EHF + E(2)
o (3.74)

Equation ( 3.74) provides the energy value calculated at the MP2 level of approxi-

mation. The value of E
(2)
o in equation (3.66) is always negative and hence the ground

state energy is lower than the Hartree-Fock energy. As the MP method is not varia-

tional, the MP2 values of energy may be overcorrected [16].

3.3 Density Functional Theory (DFT)

3.3.1 General Review

The central difficulty in many-body systems is to calculate the total energy of a

real system made up of N interacting electrons in a given external field vext, which

is the nuclei’s coulomb potential. The total energy of a system is calculated us-

ing the density of electrons in the density functional approach. In other words, the

electron density is the primary variable under consideration. In other words the

basic variables treated is the electron density. As Hamiltonian of the many body

depends upon the total number of electrons and so is the electron density, this leads

to the idea of expressing the total energy in terms of the electron density. In ad-

dition to total number of electrons, calculating gradient of electron density (
∂n(r⃗)

∂r⃗
)

the position of the nuclei in the system can be found out by using the Kato’s cusp

condition (
∂n(r⃗)

∂r⃗
)|r⃗=0 = −2Zn(r⃗ = 0)) for a nuclear site in the ground state of any

atom, molecule or solid. Knowing the electron density one can found out total num-

ber of electrons in the system and the total number of the nuclei and hence define

the Hamiltonian. The density functional methods of Thomas and Fermi define an

unstable molecule relative to their dissociation into it’s constituents. The main es-

tablishment of the method came into effect after the Hohenberg-Kohn theorem and

26



Kohn-Sham approach [3,17]. They demonstrated how the electron density may be

used to calculate the energy of an interacting system. Therefore, the Hohenberg-

Kohn theorem forms the core of the density functional theory [3].

3.3.2 Density Functional Theory

Density Functional Theory(DFT) is a theory that allows to replace the complicated

N-electron wave function (ψ(r1, r2.......rN)) and the associated Schrodinger equation

by the much simpler variable, the electron density ρ(r) [18].

The electronic Hamiltonian of a many-electron system can be expressed as the fol-

lowing using the Born-Oppenheimer approximation:

Ĥ = T̂ + V̂ ne + V̂ ee (3.75)

Where the first term represents the kinetic energy of an electron, the second term

their nuclei’s attraction, and the third term their Coulomb repulsion. The second

portion of equation (3.75) for the N electrons and M nuclei system can be expressed

as

Vne =
N∑
i=1

M∑
n=1

Zn

|ri −Rn|
=

N∑
i=1

Vext(ri) (3.76)

where Vext(ri) =
M∑
n=1

Zn

|ri −Rn|
is known as external potential on the ith electron due

to M nuclei present in the system. With this Hamiltonian, The source of the ground

state energy is

E0 = ⟨ψ0|T̂ |ψ0⟩+ ⟨ψ0|V̂ ne|ψ0⟩+ ⟨ψ0|V̂ ee|ψ0⟩ = T + Vne + Vee (3.77)

where |ψ0⟩ is the N-electron system’s ground state wave function.

According to the first Hohenberg-Kohn theorem [19], the ground state electron den-

sity is the basic variable and it uniquely determines the Hamiltonian operator that

characterizes the system’s ground state. The external potential Vext(r) is (within a

constant) a unique functional of this ground state electron density. Equation (3.77)
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can be written as, since the ground state energy in an external potential Vext(r) is a

functional of the ground state electron density ρ0(r)

E0[ρ0] = T [ρ0] + Vne[ρ0] + Vee[ρ0] (3.78)

with the average external potential Vne is given as

Vne = ⟨ψ0|
N∑
i=1

Vext(ri)|ψ0⟩ =
∫
ρ0(r)Vext(r)dr.

Then, equation(3.78) takes the form

E0[ρ0] =

∫
ρ0(r)Vext(r)dr+ F [ρ0] (3.79)

Where the universal functional F [ρ0] is defined as

F [ρ0] = T [ρ0] + Vee[ρ0]. (3.80)

The functional F [ρ0] is independent of the system’s external potential and contains

the total of the functionals for kinetic energy and electron-electron interaction.

According to second Hohenberg-Kohn theorem [3, 19] states that F [ρ0], the func-

tional that transfer the ground state energy of the system, transfers the lowest energy

if and only if the input density is the true ground state density ρ0 i.e. for every trial

density function ρ(r) that satisfies
∫
ρ(r) = N and ρ(r) ≥ 0 for all r, the following

inequality holds:

E0 = E[ρ0] ≤ E[ρ(r)]. (3.81)

For any arbitrary electron density ρ(r), the Hohenberg-Kohn functional F [ρ(r)] in

relation to this variable density, is the sum of the kinetic energy and the electron-

electron repulsion operator with the ground state wave function ψ. i.e.

F [ρ] = T [ρ(r)] + Vee[ρ(r)] = ⟨ψ|T+Vee|ψ⟩ (3.82)

with |ψ|2 = ρ. The explicit form of the functional F [ρ(r)] is not known as the ex-

plicit forms of T [ρ(r)] and Vee[ρ(r)] are not known. However, the electron-electron
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interaction energy Vee can be split into two terms : the classical term J [ρ(r)] and

non-classical term Encl[ρ(r)] as

Vee =
1

2

∫ ∫
ρ(r)ρ(r

′
)

|r− r′ |
drdr

′
+ Encl[ρ(r)] = J [ρ(r)] + Encl[ρ(r)] (3.83)

Here, the non-classical contribution to the electron-electron interaction i.e. Encl[ρ(r)]

contains all the effects of self-interaction, exchange and Coulomb correlations. If the

explicit form of F [ρ] is known exactly, the ground state energy in a given potential

can be calculated by minimizing a three-dimensional density function functional. The

preceding discussion demonstrates that there is a distinct mapping between ground

state electron density and ground state energy. As the explicit forms of functional

are not known and the Hohenberg-Kohn theorem do not provide any procedure to

determine these functionals, we follow Kohn and Sham approach to determine the

unknown functionals. We now consider a non-interacting artificial reference system

for which the expression for the total Hamiltonian is given by

Hs = −1

2

N∑
i=1

∇2
i +

N∑
i=1

Vs(r) (3.84)

where N is the number of non-interacting electrons in the reference system and Vs(r)

is a ‘local effective potential’. Because the exact wave functions of non-interacting

electrons in non-degenerate states are Slater determinants, the Hamiltonian opera-

tor’s ground state wave function given by (3.84) can be represented as

ϕs =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ2(x1) .. .. ϕN(x1)

ϕ1(x2) ϕ2(x2) .. .. ϕN(x2)

.. .. .. .. ..

ϕ1(xN) ϕ2(xN) .. .. ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(3.85)

The spin orbitals ϕis are termed as Kohn-Sham orbitals and are given by

Fksϕi = ϵiϕi (3.86)

where,

Fks=−1

2
∇2 + Vs(r)

is the Kohn-Sham operator with one electron and ϵis are Kohn-Sham orbital energies

unlike the molecular orbital energies. The Kohn-Sham orbitals ϕi are electron orbitals
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for a hypothetical reference system with no interaction between the electrons. With

the right effective local potential Vs(r), the artificial non-interacting reference system

can be coupled to the actual interacting system so that the exact ground state electron

density of the reference system is equal to the ground state electron density of the

real system, i.e.

ρs(r) =
N∑
i=1

|ϕi(r)|2 = ρ0(r) (3.87)

The expression can be used to calculate the kinetic energy of the reference system

that is not interacting but has the same density as the actual interacting system

Ts = −1

2

N∑
i=1

⟨ϕi|∇2|ϕi⟩ (3.88)

The following separation for the functional F [ρ(r)] can be used to explain why the

kinetic energy (Ts) of non-interacting systems differs from the actual kinetic energy

(Ts) of real interacting systems

F [ρ(r)] = Ts[ρ(r)] + J [ρ(r)] + Exc[ρ(r)] (3.89)

where Exc[ρ(r)] is the exchange-correlation energy functional.From equations (3.82)

and (3.89), we have

Exc[ρ(r)] = (T [ρ(r)]− Ts[ρ(r)]) + (Vee[ρ(r)]− J [ρ(r)])

= Tc[ρ(r)] + Encl[ρ(r)] (3.90)

where Encl[ρ(r)] is the non-classical contribution to the electron-electron interaction

and Tc[ρ(r)] is the remaining portion of the real kinetic energy that is not covered by

(Ts). The non-classical effect of self interaction correction, exchange, and correlation

on the system’s potential energy as well as some kinetic energy are all contained in

the exchange-correlation energy functional Exc[ρ(r)]. The kinetic energy (Ts) and

the energy resulting from the interaction with the external potential Vext(r) are the

only two terms in the energy expression of a system that is not interacting ρ(r).

Hohenberg-Kohn theorems stipulate that the total energy must be a function of

electron density ρ(r). Therefore, Ts has to be a functional of electron density ρ(r).

Consequently, the reference system’s overall energy can expressed as
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E[ρ] = Ts[ρ] +

∫
ρ(r)Vext(r)dr (3.91)

In terms of Kohn-Sham orbitals ϕi, we have

E[ϕ∗
i , ϕi] = −1

2

N∑
i=1

⟨ϕi|∇2|ϕi⟩+
N∑
i=1

∫
|ϕi(r)|2Vext(r)dr (3.92)

As the minimization of E[ϕ∗
i , ϕi] in equation (3.92) is conditional, we make the con-

ditional minimization to unconditional with the aid of Langrange’s undetermined

multipliers method. For this, we define a functional G[ϕ∗
i , ϕi] as

G[ϕ∗
i , ϕi] = E[ϕ∗

i , ϕi]−
∑
i

ϵi

∫
ϕi(r)

∗ϕi(r)dr (3.93)

where ϕ∗
i and ϕi are treated as independent functional variables and ϵi denote the

Langrange’s multipliers.From equations (3.92) and (3.93), we have

G[ϕi∗, ϕi] = −1

2

N∑
i=1

∫
ϕ∗
i (r)∇2ϕi(r) +

N∑
i=1

∫
ϕ∗
i (r)Vext(r)ϕi(r)dr−

∑
i

ϵi

∫
ϕ∗
i (r)ϕi(r)dr

=
∑
i

∫
ϕ∗
i (r)

[
− 1

2
∇2 + Vext(r)− ϵi

]
ϕi(r) (3.94)

Taking the variation of G with respect of ϕ∗
i and ϕi, we get

δG[ϕ∗
i , ϕi] =

∑
i

∫
δϕ∗

i (r)

[
− 1

2
∇2 + Vext(r)− ϵi

]
ϕi(r)dr

+
∑
i

∫
ϕ∗
i (r)

[
− 1

2
∇2 + Vext(r)− ϵi

]
δϕi(r)dr (3.95)

For the minimum value of G, we have δG=0,[
− 1

2
∇2 + Vext(r)

]
ϕi(r) = ϵiϕi(r), i = 1, 2, ..., N (3.96)

and its complex conjugate. The single-particle Schrondinger equation for the non-

interacting reference system is represented by equation (3.96).

The energy expression for a real interacting system can now be written as

E[ρ(r)] = Ts[ρ(r)] + J [ρ(r)] + Exc[ρ(r)] + Vext[ρ(r)] (3.97)

Writing explicit forms for J [ρ(r)] and Vext[ρ(r)], equation (3.97) can be expressed as

E[ρ(r)] = Ts[ρ(r)] +
1

2

∫ ∫
ρ(r)ρ(r

′
)

|r− r′|
drdr

′
+ Exc[ρ(r)]

+

∫
ρ(r)Vext(r)dr (3.98)
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In terms of Kohn-Sham orbitals ϕi and ϕ
∗
i , equation (3.98) can be written as

E[ϕ∗
i , ϕi] = −1

2

N∑
i=1

⟨ϕi|∇2|ϕi⟩+
1

2

N∑
i=1

∑
j

∫ ∫
|ϕi(r)|2

1

|r− r′ |
|ϕj(r

′
)|2drdr′

+ Exc[ρ(r)]

+
N∑
i=1

∫
ϕ∗
i (r)Vext(r)ϕi(r)dr (3.99)

The conditional minimization of energy functional E as given in equation(3.99) can

be made equivalent to an unconditional one by the application of Langrange’s method

of undetermined multipliers as

G[ϕ∗
i , ϕi] = E[ϕ∗

i , ϕi]−
∑
i

ϵi

∫
ϕi(r)

∗ϕi(r)dr (3.100)

where, ϕ∗
i and ϕi are treated as independent functional variables and ϵi denote the

Langrange’s multipliers.

With the aid of equation (3.99), equation(3.100) can be expressed as

G[ϕ∗
i , ϕi] = −1

2

N∑
i=1

⟨ϕi|∇2|ϕi⟩+
1

2

N∑
i=1

∑
j

∫ ∫
|ϕi(r)|2

1

|r− r′|
|ϕj(r

′
)|2drdr′

+ Exc[ρ(r)]

+
N∑
i=1

∫
ϕ∗
i (r)Vext(r)ϕi(r)dr−

∑
i

ϵi

∫
ϕi(r)

∗ϕi(r)dr (3.101)

The variation of G[ϕ∗
i , ϕi] with respect to functional dependence on ϕi(r) and ϕ

∗
i (r)

is given by

δG[ϕ∗
i , ϕi] = δ

[
− 1

2

N∑
i=1

⟨ϕi|∇2|ϕi⟩
]
+ δ

[
1

2

N∑
i=1

∑
j

∫ ∫
|ϕi(r)|2

1

|r− r′ |
|ϕj(r

′
)|2drdr′

]

+δExc[ρ(r)] + δ

[ N∑
i=1

∫
ϕ∗
i (r)Vext(r)ϕi(r)dr

]
−δ
[∑

i

ϵi

∫
ϕi(r)

∗ϕi(r)dr

]
(3.102)

As ρ(r) =
N∑
i=1

∫
ϕ∗
i (r)ϕi(r)dr, the variation in ρ(r) is given by

δρ(r) =
N∑
i=1

∫ [
δϕ∗

i (r)ϕi(r) + ϕ∗
i (r)δϕi(r)

]
dr (3.103)

Also, the variation in the exchange energy can be expressed as

δExc[ρ(r)] =
δExc[ρ(r)]

δρ(r)
δρ(r)

=
δExc[ρ(r)]

δρ(r)

N∑
i=1

∫ [
δϕ∗

i (r)ϕi(r) + ϕ∗
i (r)δϕi(r)

]
dr

(3.104)
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With the aid of equations (3.102) and (3.104), equation (3.102) can be expressed as

δG[ϕ∗
i , ϕi] =

N∑
i=1

∫
δϕ∗

i (r)

[
− 1

2
∇2 + Vext +

δExc[ρ(r)]

δρ(r)
− ϵi

]
ϕi(r)dr

+
N∑
i=1

∫
ϕ∗
i (r)

[
− 1

2
∇2 + Vext +

δExc[ρ(r)]

δρ(r)
− ϵi

]
δϕi(r)dr

+
1

2

∑∑∫ ∫
drdr

′
[
δϕ∗

i (r)ϕ
∗
j(r

′
) + ϕ∗

i (r)δϕ
∗
j(r

′
)

]
1

|r− r′|
ϕi(r)ϕj(r

′
)

+
1

2

∑∑∫ ∫
drdr

′
ϕ∗
i (r)ϕ

∗
j(r

′
)

1

|r− r′ |

[
δϕi(r)ϕj(r

′
) + ϕi(r)δϕj(r

′
)

]
(3.105)

Using equation (3.87) and the property of dummy variables, equation (3.105) can be

written as

δG[ϕ∗
i , ϕi] =

N∑
i=1

∫
δϕ∗

i (r)

[
− 1

2
∇2 + Vext +

δExc[ρ(r)]

δρ(r)
+

∫
ρ(r

′
)

|r− r′|
dr

′ − ϵi

]
ϕi(r)dr

+
N∑
i=1

∫
ϕ∗
i (r)

[
− 1

2
∇2 + Vext +

δExc[ρ(r)]

δρ(r)
+

∫
ρ(r

′
)

|r− r′ |
dr

′ − ϵi

]
δϕi(r)dr

(3.106)

Setting δG[ϕ∗
i , ϕi] = 0, we get[
− 1

2
∇2 + Vext +

δExc[ρ(r)]

δρ(r)
+

∫
ρ(r

′
)

|r− r′ |
dr

′
]
ϕi = ϵiϕi

or,

[
− 1

2
∇2 + Veff (r)

]
ϕi = ϵiϕi, i = 1, 2....., N (3.107)

where Veff (r) = Vext(r) +
δExc[ρ(r)]

δρ(r)
+

∫
ρ(r

′
)

|r− r′|
dr

′
is the effective potential which

depends on the density (i.e. one-electron orbitals) through Coulomb term. The set

of N-coupled equations given by equation(3.107) and their complex conjugates are

known as Kohn-Sham one-electron equations.

Comparing equation(3.107) with (3.86), we find that the effective potential Veff (r)

is identical to the local potential Vs(r) i.e.

Vs(r) = Veff (r) = Vext(r) + Vxc(r) +

∫
ρ(r

′
)

|r− r′ |
dr

′
(3.108)

where Vxc(r) is the potential due to the exchange-correlation energy and is given by

Vxc(r) =
δExc

δρ
(3.109)
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The Kohn-Sham potential, which is typically a local potential, is another name

for the exchange-correlation potential Vxc(r). The exchange-correlation potential,

however, is nonlocally dependent on density for a genuine system. The exchange-

correlation energy functional Exc[ρ(r)] for slowly shifting electron density ρ(r) may

be thought of as solely depending on the local value of the density ρ(r) and not its

gradients [3]. The local density approximation is what is used in this (LDA). To

roughly express this, we can write

ELDA
xc [ρ(r)] =

∫
ρ(r)Exc[ρ(r)]dr (3.110)

where Exc[ρ(r)] is the hypothetical uniform electron gas’s exchange and correlation

energy per electron ρ(r). Separating the quantity Exc[ρ(r)] results in

Exc[ρ(r)] = Ex[ρ(r)] + Ec[ρ(r)] (3.111)

The exchange functional Ex[ρ(r)] which represents the exchange energy of an electron

in a uniform electron gas is defined as

Ex[ρ(r)] = −3

4

[
3

π

] 1
3

[ρ(r)]
1
3 (3.112)

Slater exchange is the usual name for the exchange functional equation (3.112). The

correlation part Ec[ρ(r)] has no explicit expressions. On the basis of findings from

numerical quantumMonte-Carlo simulations of the homogeneous electron gas, a num-

ber of analytical formulations for Ec[ρ(r)] have been developed. For implementation,

Vosko-Wilk-Nussair(VWN) correlation functional is the expression for Ec[ρ(r)] that

is most frequently utilized. Thus, in LDA, SVWN approximates Exc[ρ(r)] by iden-

tifying Exc[ρ(r)] and representing the combination of the Slater exchange and VWN

correlation functionals. Closed shell (restricted) systems with spin compensation cor-

respond to this approximation [3].

For open shell system with unequal number of spin up α and spin down β electrons,

the exchange energy functional depends not only upon the electron density ρ(r) but
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also depends upon the spin densities ρα(r) and ρβ(r) with ρα(r) + ρβ(r)=ρ(r). The

approximation in which the exchange-correlation energy functional is assumed to

depend upon the spin densities is called Local Spin Density Approximation(LSDA),

which is the extension of LDA to the unrestricted case. In this approximation,

Exc[ρ(r)] can be written as

ELDA
xc [ρα(r), ρβ(r)] =

∫
ρ(r)Exc[ρα(r), ρβ(r)]dr (3.113)

With this approach, various molecular properties like equilibrium structure, harmonic

frequencies or charge moments (dipole, quadrupole etc) can be explained. However,

the calculation of bond energy values are rather poor [3]. Thus, improvement on

LSDA calculation has to be incorporated. One of the approach is to take the gra-

dients of the density into account in the exchange-correlation energy and is known

as the gradient corrected exchange-correlation functionals. There are many gradi-

ent corrected exchange-correlation functionals. A widely used exchange-correlation

functional is B3LYP: Beck’s gradient corrected exchange functional:(B) and gradient

corrected correlation functional of Lee, Yang and Parr:(LYP) [3, 18].
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Chapter 4

Research Methodology

4.1 General Review

The geometry of an atom’s orbitals is described by a set of functions known as a

basis set. The molecule’s orbitals and the full wave function are produced by the

linear combination of the basis function and the angular function [3, 20] .

The finite element method and simplex method are popular linear programming al-

gorithms used in mathematical optimization. This method divides N-dimensional

space into small subsystems that can be explained through N-linear equations with

matrices’ properties. If we can solve one matrix using this approach, we can solve all

of them. The new solution yields the same outcome as the previous iteration once

all possible solutions have been found. This process is called convergence. Numerous

iterations are typically needed because the original guess may be quite off from the

true value. While the theoretical model affects the kind of computations that will

be done on the matrices, the chosen basis set effects the accuracy of the estimations.

The calculation is terminated when it converges, but conversion does not imply that

the system has reached its minimum. The system’s stability should be checked. We

can obtain our required minimum by using the perturbation method on the stable

system and recalculating [21]. The Gaussian software consists of a number of the

pseudo potentials and basis sets. The smallest basis sets are STO-nG basis sets

which consist of the single contraction of n GTO(Gaussian Type Orbitals) orbitals.

There are also Pople basis set. This type of basis set uses only one basis function for

36



each core atomic orbital and a larger basis for the valence atomic orbitals [14] and

hence also called split-valence basis set. A split valence basis set is the 3-21G basis

set, for instance. Each core orbital in the 3-21G basis set is represented by a con-

traction of just one of the three GTO primitives, and each valence shell is described

by a contraction of two GTO primitives and another with one GTO primitive [16].

4.2 Gaussian 16

Gaussian 16 [5], a computational application for modeling electronic structures. It

can predict many properties of molecules and reactions, including:

• Molecular orbitals, energies, and structures.

• Optical rotations (ORD) and Multipole moments.

• Energies and structures of transition states.

• Bond and reaction energies.

• Vibrational frequencies, IR, and Raman (Pre-resonance & Resonance) spectra.

• Thermochemical analysis and NMR properties.

• Reaction pathways etc.

This program can calculate the model in the ground state or in an excited state as

well as in a gas phase or solution. The most recent version of the Gaussian series

of electrical structure algorithms is Gaussian 16. Chemists, chemical engineers, bio-

chemists, physicists, and others have already started using this program for study in

both well-established and recently-emerging areas of chemical interest. It was first

published as Gaussian 70 in 1970 by John Pople and his research team at Carnegie

Mellon University. The following revisions have been made: 76, 80, 82, 86, 88, 90, 92,

94, 98, 03, 09, and 16. It can be used to investigate molecules and events in a range

of situations, including stable species and substances that are challenging or impos-

sible to see experimentally, like transition structures and short-lived intermediates.

Because of its many characteristics and the fact that it may be used to examine even
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larger molecular systems and more fields of chemistry, we employ this version in our

current research. All observable molecular properties in solution can be predicted

by Gaussian 16, and calculations on both ground state and excited state systems,

as well as on our proprietary n-layered Integrated Molecular Orbital and Molecular

Mechanics models, may take solvation into account. Gaussian 16 self-consistent re-

action field (SCRF) facility, a more advanced use of this solvation approach, is used

to represent compounds in solution. Even the most difficult calculations are simple

to set up and specify using Gaussian 16. We’ve listed a few of the characteristics

that help to realize these objectives. Examples of optimization aids and limitations

include fragments, wavefunction stability analysis, intuitive molecular orbitals, and

others. The following extension is possible for the inputs for Gaussian 16, which we

utilize in this work: Text file and.gjf file for the Gaussian input. An ASCII text file

containing a succession of lines serves as the Gaussian 16 input. The basic structure

of a Gaussian input file consists of the following sections:

• Link 0 Commands: Locate and name scratch files.

• Route section (# lines): Specify desired calculation type, model chemistry, and

other options.

• Title section: Brief description of the calculation.

• Molecule specification: Specify molecular system to be studied.

• Optional additional sections: Additional input needed for specific job types.

Multiple Gaussian job may be combined within a single input file and we can perform

both at the same time.

4.3 GaussView 6

A critical component of our research is the graphical representation of complexes.

GaussView 6 is the most advanced and powerful graphical user interface available

for Gaussian 16. This application allows us to build or import molecular structures,

set up, launch, monitor, and control Gaussian calculations, and view the predicted

results graphicallyâall without ever leaving the application. It can analyze various

38



features like energy, optimization, frequency, etc. via different methods and schemes

as our requirement. One can use this method from simple to large and complex

molecular systems. In this application, all the coordinates, theory, basis set, etc.

can be selected instead of typing according to the job type. Users of Gaussian 16

benefit from three main features of Gaussview 6. Gaussview, for starters, features

a sophisticated visualization feature that enables users to quickly draw in even very

huge and complex molecules. Users may then rotate, translate, and zoom in on

these molecules using standard mouse actions. Second, GaussView offers a simple

method for configuring various Gaussian calculation types. For both common job

types and advanced approaches like ONIOM, STQN transition structure optimiza-

tions (e.g., Opt=QST2/QST3), CASSCF calculations, periodic boundary conditions

(PBC) calculations, and many more, it makes preparing complex input simple. Last

but not least, GaussView enables us to visualize the output of Gaussian calculations.

It can ingest common molecular file formats like PDB (Protein Data Bank) files in

addition to these advantage. For this task, we employ the GaussView 6 version of the

software [22]. Graphical representations of the gaussian results are available below.

• Optimized molecular structures, orbital structures.

• Electron density surfaces from any computed density.

• Electrostatic potential surfaces.

• Diatomic charges and dipole moments.

• Animation of the normal modes corresponding to vibrational frequencies.

• IR, Raman, NMR, VCD, and other spectra etc.

4.4 Basis Sets

The set of (nonorthogonal) one-particle functions used to construct molecular or-

bitals is referred to as the basis set. The fundamental mathematical formula used to

describe the contours of an atom’s orbitals is known as a basis set [3].

The electronic wave function is represented by the basis set of the Density Functional

Theory. It converts the model’s partial equations into algebraic equations that can be
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efficiently implemented on a computer. It can be conceptualized as a linear mixture

of STOs (Slater-type orbitals) [23]. STO-nG basis sets, which are composed of a

single contraction of n GTO (Gaussian Type Orbitals) orbitals, are the smallest

basis sets. These also go by the name of “pople basis sets”. It is the most basic kind

of basis set that can accommodate smaller molecules like H2 or He. The basic set

having more than one STO for the valence shell but only one STO for the core shell.

Meaning that different valence shells of atomic orbitals correlate to different basic

functions. As a result, it is also known as split-valence basis set. A split valence

basis set is the 3-21G basis set, for instance. Each core orbital in the 3-21G basis

set is defined by a single contraction of the three GTO primitives, while each valence

shell is described by a contraction of two GTO primitives and one GTO primitive,

respectively [24]. Particularly in the case of anion molecules with wider electron

distributions, diffuse functions are employed to define the wave function far from the

nucleus. The addition of polarization functions, marked by an asterisk (*), makes

the wave functions more adaptable. The words “polarization basis function”, “single

plus”, and “double plus”have the same definitions. A polarized basis set is shown

by 3-21G*, and a diffuse function is shown by 6-31+G*. The addition of a set of

“d”primitives to non-hydrogen atoms is indicated by a single asterisk (*), whereas

the addition of “p”primitives to the hydrogen atom is indicated by a double asterisk

(**) [25]. The following is a list of the basic sets utilized in this work:

• 6-311++G(d,p)

• 6-311++G(2d,2p)

• aug-cc-pVTZ

4.5 Quantum Theory of Atom in Molecules(AIM)

The Atom in Molecules (AIM) theory is a link between quantum mechanics and chem-

istry. The only theory that provides a powerful definition of the two cornerstones

of chemistry, the atom and the bond, is Atoms in Molecules. Using the molecular

wave function as a starting point, AIM All is a software program for doing quanti-

tative and visual QTAIM (Quantum Theory of Atoms in Molecules) investigations

40



of molecular systems. Members of the research team led by Richard F.W. Baders

created the theoretical calculations program known as Atoms in Molecules (AIM)

[26]. The results of the AIM theoretical study qualitatively concur with the results

of the ab-initio analysis. We search for bond critical sites between hydrogen and

nitrogen using theoretical computations on the complexes using atoms in molecules

(AIM). Additionally, AIM theory might offer a separate theoretical foundation for

the hydrogen bond radius [27]. Using AIM All, we have calculated, ,

• Topology

• Laplacian of the charge density at the bond critical point.

• Charge density at the bond critical point.
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Chapter 5

Results and Discussion

5.1 General Review

This section deals with the results and discussion of our works. We have obtained

the optimized geometries of C2H5OH...H2O complexes and have done the following

calculations.

• Some Geometrical Parameters (bond length, bond angle)

• Frequency Shift

• Binding Energy (B.E.)

• Zero Point Vibrational Energy (ZPVE).

• Topology Analysis

All the calculations have been performed in the density functional theory(DFT) [16]

calculations designated by various functionals such as; B3LYP, WB97XD, M062X,

N12SX, M11L, and MN12L levels of approximation using Gaussian 16 program [5].

We use 6-311++G(d,p), 6-311++G(2d,2p), and aug-cc-pVTZ basis sets in this cal-

culation.

5.2 Geometry of Complex

The presence of hydrogen bonds in the complex is analyzed by the mean of geome-

try parameter. The separation between the hydrogen atom H and the basic donor
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atom , length of the hydrogen bond, and bond angle in the DFT(B3LYP, WB97XD,

M062X, N12SX, M11L, and MN12L) levels of approximation with the basis sets 6-

311++G(d,p), 6-311++G(2d,2p), and aug-cc-pVTZ considered in the present work.

In complex X-H...Y, based on Y...H bond length, A hydrogen bond is classified by

[28, 29]:

• Very strong 1.2 Å to 1.5 Å

• Strong 1.5 Å to 2.2 Å

• Weak 2.0 Å to 3.0 Å.

On the basis of change in X−H length RX ...H Å, hydrogen bond is classified by [28,

29]:

• Very strong 0.05 Å to 0.2 Å

• Strong 0.01 Å to 0.05 Å

• Weak < 0.01 Å.

In the IUPAC report of hydrogen bonding criteria, the X−H...Y hydrogen bond angle

tends to lie between 110◦ and 180◦. On the formation of hydrogen bonds, the length

of the X-H bond typically increases[4].

The optimized geometeries of C2H5OH...H2O complex in different levels of approx-

imation using basis sets 6-311++G(d,p), 6-311++G(2d,2p), and aug-cc-pVTZ are

shown in the Figure 5.1 to Figure 5.18 below;

Figure 5.1: Structure of C2H5OH...H2O complex at B3LYP level of approximaton

using 6-311++G(d,p) basis set.
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Figure 5.2: Structure of C2H5OH...H2O complex at WB97XD level of approximation

using 6-311++G(d,p) basis set.

Figure 5.3: Structure of C2H5OH...H2O complex at M062X level of approximation

using 6-311++G(d,p) basis set.
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Figure 5.4: Structure of C2H5OH...H2O complex at N12SX level of approximation

using 6-311++G(d,p) basis set.

Figure 5.5: Structure of C2H5OH...H2O complex at M11L level of approximation

using 6-311++G(d,p) basis set.
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Figure 5.6: Structure of C2H5OH...H2O complex at MN12L level of approximation

using 6-311++G(d,p) basis set.

Figure 5.7: Structure of C2H5OH...H2O complex at B3LYP level of approximation

using 6-311++G(2d,2p) basis set.
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Figure 5.8: Structure of C2H5OH...H2O complex at WB97XD level of approximation

using 6-311++G(2d,2p) basis set.

Figure 5.9: Structure of C2H5OH...H2O complex at M062X level of approximation

using 6-311++G(2d,2p) basis set.
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Figure 5.10: Structure of C2H5OH...H2O complex at N12SX level of approximation

using 6-311++G(2d,2p) basis set.

Figure 5.11: Structure of C2H5OH...H2O complex at M11L level of approximation

using 6-311++G(2d,2p) basis set.
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Figure 5.12: Structure of C2H5OH...H2O complex at MN12L level of approximation

using 6-311++G(2d,2p) basis set.

Figure 5.13: Structure of C2H5OH...H2O complex at B3LYP level of approximation

using aug-cc-pVTZ basis set.
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Figure 5.14: Structure of C2H5OH...H2O complex at WB97XD level of approximation

using aug-cc-pVTZ basis set.

Figure 5.15: Structure of C2H5OH...H2O complex at M062X level of approximation

using aug-cc-pVTZ basis set.
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Figure 5.16: Structure of C2H5OH...H2O complex at N12SX level of approximation

using aug-cc-pVTZ basis set.

Figure 5.17: Structure of C2H5OH...H2O complex at M11L level of approximation

using aug-cc-pVTZ basis set.
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Figure 5.18: Structure of C2H5OH...H2O complex at MN12L level of approximation

using aug-cc-pVTZ basis set.

We have studied the C2H5OH...H2O complex bond length (H9-O10) in DFT lev-

els of approximation using 6-311++G(d,p) basis set which is shown in Table(5.1).

From our calculations, we obtain that the hydrogen bond distance is minimum in

C2H5OH...H2O (1.907Å) in M11L level of approximation and maximum in C2H5OH...H2O

(1.976Å) in MN12L level of approximation. It shows that there is strong hydrogen

bonding between ethanol and water, satisfying the bond formation length criteria

given by the IUPAC report [4]. In addition, we have also compared our results with

the observations of Oliveira and Vasconcellos, they carried out their observation in

the basis set aug-cc-pVDZ at the DFT(B3LYP) level of approximation; their results

are comparable to ours [9].

Table 5.1: Geometric features (bond length) of complex under different level of ap-

proximation by using 6-311++G(d,p) basis set.

S.N Atom level Bond length (Å)

1 H9-O10 B3LYP 1.947

2 H9-O10 WB97XD 1.918

3 H9-O10 M062X 1.923

4 H9-O10 N12SX 1.909

5 H9-O10 M11L 1.907

6 H9-O10 MN12L 1.976
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We have studied the C2H5OH...H2O complex bond length (H9-O10) in DFT levels

of approximation using 6-311++G(2d,2p) basis set which is shown in Table(5.2).

From our calculations, we obtain that the hydrogen bond distance is minimum in

C2H5OH...H2O (1.928Å) in N12SX level of approximation and maximum in C2H5OH...H2O

(2.010Å) in MN12L level of approximation. This shows that there is strong hydro-

gen bonding between ethanol and water, satisfying the bond formation length criteria

given by the IUPAC report [4]. Moreover, we have also compared our results with

the observations of Oliveira and Vasconcellos, they carried out their observation in

the basis set aug-cc-pVDZ at the DFT(B3LYP) level of approximation; their results

are comparable to ours [9].

Table 5.2: Geometric features (bond length) of complex under different level of ap-

proximation using 6-311++G(2d,2p) basis set.

S.N Atom level Bond length (Å)

1 H9-O10 B3LYP 1.972

2 H9-O10 WB97XD 1.938

3 H9-O10 M062X 1.948

4 H9-O10 N12SX 1.928

5 H9-O10 M11L 1.934

6 H9-O10 MN12L 2.010

We have studied the C2H5OH...H2O complex bond length (H9-O10) in DFT level

of approximation using basis set aug-cc-pVTZ which is shown in the Table(5.3).

From our calculations, we obtain that the hydrogen bond distance is minimum in

C2H5OH...H2O (1.930Å) in N12SX level of approximation and maximum in C2H5OH...H2O

(2.103Å) in MN12L level of approximation. This shows that there is strong hydro-

gen bonding between ethanol and water, satisfying the bond formation length criteria

given by the IUPAC report [4]. Furthermore, we have also compared our results with

the observations of Oliveira and Vasconcellos, they carried out their observation in

the basis set aug-cc-pVDZ at the DFT(B3LYP) level of approximation; their results

are comparable to ours [9].
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Table 5.3: Geometric features (bond length) of complex under different level of ap-

proximation using basis set aug-cc-pVTZ.

S.N Atom level Bond length (Å)

1 H9-O10 B3LYP 1.968

2 H9-O10 WB97XD 1.937

3 H9-O10 M062X 1.944

4 H9-O10 N12SX 1.930

5 H9-O10 M11L 1.940

6 H9-O10 MN12L 2.103

We have also analyzed the angle ∠OH...X(X = H2O) of the complex in DFT levels

of approximation with the choice of the basis set 6-311++G(d,p), the data is shown

in Table (5.4), and the angle ∠OH...X(X = H2O) has maximum value of 178.80◦ at

the M11L level of approximation for C2H5OH...H2O and minimum value of 173.59◦

at the M062X level of approximation for C2H5OH...H2O complex. We conclude that

the complex shows hydrogen bonding with ethanol and water. Likewise, our results

satisfy the angle criteria given by IUPAC report[4].

Table 5.4: Geometric features (bond angle) of complex under different level of ap-

proximation by using basis set 6-311++G(d,p).

S.N Atom level Bond Angle (◦)

1 O8-H9-O10 B3LYP 175.63

2 O8-H9-O10 WB97XD 177.90

3 O8-H9-O10 M062X 173.59

4 O8-H9-O10 N12SX 176.15

5 O8-H9-O10 M11L 178.89

6 O8-H9-O10 MN12L 177.06

We have also analyzed the angle ∠OH...X(X = H2O) of the complex in DFT levels

of approximation with the choice of the basis set 6-311++G(2d,2p), the data is shown

in the Table (5.5), and the angle ∠OH...X(X = H2O) has maximum value of 175.97◦

at the M11L level of approximation for C2H5OH...H2O and minimum value of 172.73◦

54



at the B3LYP level of approximation for C2H5OH...H2O complex. We conclude that

ethanol and water form hydrogen bonds with the complex. Additionally, our results

satisfy the angle criteria given by IUPAC report [4].

Table 5.5: Geometric features (bond angle) of complex under different level of ap-

proximation by using basis set 6-311++G(2d,2p).

S.N Atom level Bond Angle (◦)

1 O8-H9-O10 B3LYP 172.73

2 O8-H9-O10 WB97XD 174.05

3 O8-H9-O10 M062X 174.37

4 O8-H9-O10 N12SX 173.06

5 O8-H9-O10 M11L 175.97

6 O8-H9-O10 MN12L 173.38

We have also analyzed the angle ∠OH...X(X = H2O) of the complex in DFT levels

of approximation with the choice of the basis set aug-cc-pVTZ, the data is shown in

the Table (5.6), and the angle ∠OH...X(X = H2O) has maximum value of 178.69◦ at

the M11L level of approximation for C2H5OH...H2O and minimum value of 173.33◦

at the B3LYP level of approximation for C2H5OH...H2O complex . We infer that

the complex, ethanol, and water form hydrogen bonds. Our results also satisfy the

angle specifications given by IUPAC report [4].

Table 5.6: Geometric features (bond angle) of complex under different level of ap-

proximation by using basis set aug-cc-pVTZ.

S.N Atom level Bond Angle (◦)

1 O8-H9-O10 B3LYP 173.33

2 O8-H9-O10 WB97XD 174.74

3 O8-H9-O10 M062X 178.45

4 O8-H9-O10 N12SX 173.82

5 O8-H9-O10 M11L 178.69

6 O8-H9-O10 MN12L 173.77
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5.3 Binding Energy

Binding energy is the minimum energy required to disrupt a stable nucleus, molecule,

or atom into its constituent particles at infinite separation. The magnitude of the

binding energy of a nucleus determines its stability against disintegration. If the

binding energy is positive, the system is in the bound state that the nucleus is stable

and energy must be supplied from outside to disrupt it into its constituents. If the

binding energy is negative, the system is in an unbound state and it will disintegrate

by itself.

According to Pauling, the range of typical hydrogen bond energy is 2-10 kcal/mol

[2]. The IUPAC hydrogen bonding report does not specify a lower limit for hydrogen

bonds but does suggest an upper limit of 5-6 kcal/mol [4].

According to Jiangang [28], Strengths of about 3-5 kcal/mol and typically less than

12 kcal/mol are regarded as normal hydrogen bonds. The proton is noticeably more

tightly connected to one heavy element than the other members of such hydrogen

bonds. This is the category that most neutral hydrogen bonds belong to. Energy

levels for strong hydrogen bonding may be more than 12 kcal/mol. A short bond dis-

tance, a single minimum potential, or a double minimum with a very low barrier are

characteristics of such strong hydrogen bonding. Significant covalent characteristics

also exist in these bonds. A hydrogen bond is categorized according to its energy in

kcal/mol as follows [28, 29]:

• Very strong -15 kcal/mol to -40 kcal/mol

• Strong -4 kcal/mol to -15 kcal/mol

• Weak < -4 kcal/mol

Binding Energies of complex can be calculated by using following relation:

Binding Energy = Energy of complex - Energy of monomers

In terms of eV, 1 hatree= 27.211 eV

In terms of kJ/mole, 1 hatree=2625.5 kJ/mole

In terms of kcal/mole, 1 hatree=627.5 kcal/mole [3].

We have studied the complex by using various functional with the choice of the basis

set 6-311++G(d,p). We have calculated the binding energy. The binding energy are
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in the range of -5.336 kcal/mol to -6.189 kcal/mol for the ethanol and water complex.

We infer that the complex, ethanol, and water form hydrogen bonds. Our results

also satisfy the angle specifications given by IUPAC report[4]. In the Table(5.9), it

is clear that the value of binding energy for ethanol and water complex in various

functional shows strong hydrogen bonds [29].

Table 5.7: Binding energies of complex in different levels of approximation using

basis set 6-311++G(d,p)

Complex Level B.E.a( Hartree) B.E.b (kcal/mol)

C2H5OH@H2O B3LYP -0.008654 -5.430

C2H5OH@H2O WB97XD -0.009791 -6.143

C2H5OH@H2O M062X -0.009933 -6.232

C2H5OH@H2O N12SX -0.009863 -6.189

C2H5OH@H2O M11L -0.008634 -5.417

C2H5OH@H2O MN12L -0.008505 -5.336

We have studied the complex by using various functional with the choice of the basis

set 6-311++G(2d,2p). We have calculated the binding energy (B.E). The binding

energy are in the range of -4.590 kcal/mol to -5.340kcal/mol for the ethanol and

water complex. We infer that the complex, ethanol, and water form hydrogen bonds.

Our results also satisfy the angle specifications given by IUPAC report[4]. In the

Table(5.8), it is clear that the value of binding energy for ethanol and water complex

in various functional shows strong hydrogen bonds [29].
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Table 5.8: Binding energies of complex in different levels of approximation using

basis set 6-311++G(2d,2p)

Complex Level B.E.a (Hartree) B.E.b (kcal/mol)

C2H5OH@H2O B3LYP -0.007352 -4.613

C2H5OH@H2O WB97XD -0.0081357 -5.105

C2H5OH@H2O M062X -0.008454 -5.304

C2H5OH@H2O N12SX -0.008511 -5.340

C2H5OH@H2O M11L -0.007542 -4.732

C2H5OH@H2O MN12L -0.007315 -4.590

We have studied the complex by using various functions with the choice of the basis

set aug-cc-pVTZ. We have calculated the binding energy (B.E). The binding energy

are in the range of -4.258 kcal/mol to -4.978 Kcal/mol for the ethanol and water

complex. We infer that the complex, ethanol, and water form hydrogen bonds.

Our results also satisfy the angle specifications given by IUPAC report [4]. In the

Table(5.9), it is clear that the value of binding energy for ethanol and water complex

in various functional shows strong hydrogen bonds [29].

Table 5.9: Binding energies of complex in different levels of approximation using

basis set aug-cc-pVTZ

Complex Level B.E.a (Hartree) B.E.b (kcal/mol)

C2H5OH@H2O B3LYP -0.006795 -4.263

C2H5OH@H2O WB97XD -0.007915 -4.966

C2H5OH@H2O M062X -0.007934 -4.974

C2H5OH@H2O N12SX -0.007940 -4.978

C2H5OH@H2O M11L -0.007231 -4.533

C2H5OH@H2O MN12L -0.006792 -4.258

5.4 Frequency Shift

An X-H bond lengthening and related red shift and increase in intensity in the IR

spectrum are implied by a hydrogen bond between X-H and Y, where X is a more
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electronegative atom or group than H and Y has a lone pair of electrons. These

hydrogen bonds are known as “proper hydrogen bonds”. However, a contraction of

X-H bonds was observed, displaying so-called “improper hydrogen bonding”(blue-

shifts with lower strength in the IR spectrum) [24]. The following factors influence

the X-H bonds in all X-H atoms:

• In the presence of Y, the electron affinity of X results in a net increase in

electron density at the X-H bond area and promotes an X-H bond contraction.

• An X-H bond elongation is caused by the well-known attractive interaction

between the positive H and electron-rich Y [24].

Hobza and colleagues hypothesized that the incomplete electron transfer from the

proton-accepting group (Y) to the chemical bonds in the proton-donating moiety

other than X-H, strengthening and shortening the X-H bond, may be the cause of

the incorrect blue-shifting hydrogen bond [25]. The following relationship can be

used to determine the frequency shifts of X-H stretching modes:

△V = V1 - V = Negative, Red shift

△V = V1 - V = Positive, Blue shift

Where V1 = Frequency of complex X-H stretching modes.

V= Frequency of free X-H stretching modes.

△V = Change in frequency in X-H stretching modes.

Table (5.10) displays the frequency shift of the X-H stretching modes in the C2H5OH...H2O

complex at various DFT approximation levels using the basis set selection of 6-

311++G(d,p). We see that the change in frequency is minimum (-138.53 cm−1 )

in the N12SX level of approximation for the C2H5OH...H2O complex and maximum

(-85.99 cm−1 ) in M062X level of approximation for the C2H5OH...H2O complex in

Table (5.10). From our calculations, we obtain all frequencies are negative in dif-

ferent levels of approximation for the complex, which indicates the proper hydrogen

bonding with X-H bond lengthening that is red-shift [30].
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Table 5.10: Frequency shifts of X-H stretching modes in (cm−1 ) using basis set 6-

311++G(d,p), in different level of approximation .

Complex Level Complex X-H Free X-H Change Shift

C2H5OH@H2O B3LYP 3721.40 3842.47 -121.07 Red

C2H5OH@H2O WB97XD 3798.07 3935.97 -137.9 Red

C2H5OH@H2O M062X 3830.22 3916.21 -85.99 Red

C2H5OH@H2O N12SX 3815.53 3954.06 -138.53 Red

C2H5OH@H2O M11L 3858.21 3949.71 -91.5 Red

C2H5OH@H2O MN12L 3860.09 3943.73 -83.64 Red

The frequency shift of X-H stretching modes in C2H5OH...H2O complex in DFT

levels of approximation with the choice of basis set 6-311++G(2d,2p) is shown in

Table(5.11). We see that the change in frequency is minimum (-144.17 cm−1 ) in

the N12SX level of approximation for the C2H5OH...H2O complex and maximum

(-87.56 cm−1) in MN12L level of approximation for the C2H5OH...H2O complex in

Table (5.11). From our calculations, we obtain all frequencies are negative in different

levels of approximation for the complex, which indicates the proper hydrogen bonding

with X-H bond lengthening that is red-shift [30].

Table 5.11: Frequency shifts of X-H stretching modes in (cm−1 ) using basis set 6-

311++G(2d,2p), in different level of approximation .

Complex Level Complex X-H Free X-H Change Shift

C2H5OH@H2O B3LYP 3721.55 3845.90 -124.35 Red

C2H5OH@H2O WB97XD 3796.23 3936.78 -140.55 Red

C2H5OH@H2O M062X 3811.95 3915.01 -103.06 Red

C2H5OH@H2O N12SX 3816.53 3960.70 -144.17 Red

C2H5OH@H2O M11L 3850.96 3947.57 -96.61 Red

C2H5OH@H2O MN12L 3875.33 3962.89 -87.56 Red

The frequency shift of X-H stretching modes in C2H5OH...H2O complex in DFT

levels of approximation with the choice of basis set aug-cc-pVTZ is shown in Ta-

ble(5.12). We see that the change in frequency is minimum (-151.75 cm−1 ) in the
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N12SX level of approximation for the C2H5OH...H2O complex and maximum (-91.76

cm−1) in MN12L level of approximation for the C2H5OH...H2O complex in Table

(5.12). From our calculations, we obtain all frequencies are negative in different lev-

els of approximation for the complex, which indicates the proper hydrogen bonding

with X-H bond lengthening that is red-shift [30].

Table 5.12: Frequency shifts of X-H stretching modes in (cm−1 ) using basis sets

aug-cc-pVTZ, in different level of approximation

Complex Level Complex X-H Free X-H Change Shift

C2H5OH@H2O B3LYP 3693.13 3823.68 -130.55 Red

C2H5OH@H2O WB97XD 3768.83 3915.43 -146.60 Red

C2H5OH@H2O M062X 3790.47 3901.25 -110.78 Red

C2H5OH@H2O N12SX 3789.55 3941.3 -151.75 Red

C2H5OH@H2O M11L 3792.54 3888.1 -95.56 Red

C2H5OH@H2O MN12L 3791.56 3883.32 -91.76 Red

5.5 Zero Point Vibrational Energy

The Born-Oppenheimer approximation (BOA), which describes quantum chemistry,

is typically accepted. As a result, the lowest point on the Born-Oppenheimer poten-

tial energy surface and zero point vibrational energy (ZPVE) are described as having

different energies [31].

The zero-point vibrational energy of the complex has been obtained in the DFT levels

of approximation with the choice of the basis sets 6-311++G(d,p), 6-311++G(2d,2p),

and aug-cc-pVTZ in the present work. Zero point vibrational energy for the complex

can be calculated by using the following relation.

ZPVE = ZPVE of the complex - ZPVE of the monomers

We have studied the zero point vibrational energy (ZPVE) of the complex in the DFT

levels of approximations using basis sets 6-311+G(d,p) in a Table( 5.13). The ZPVE

is in the range of 1.54 kcal/mol to 1.85 kcal/mol for the ethanol and water complex.

According to the IUPAC report [4], ZPVE does not have any significant effect on

the stability of hydrogen bonds. It is seen in the Table( 5.13), that the values of the
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zero point vibrational energy (ZPVE) are almost peer in various functional for the

ethanol and water complex.

Table 5.13: Zero Point Vibrational Energy (ZPVE), in kcal/mol using basis set 6-

311++G(d,p), in different level of approximation .

Complex Level Zero point vibrational energy

Complex Monomer1 Monomer2 ZPVE in kcal/mol

C2H5OH@H2O B3LYP 64.94 13.35 49.90 1.54

C2H5OH@H2O WB97XD 65.76 13.61 50.46 1.69

C2H5OH@H2O M062X 65.76 13.56 50.54 1.66

C2H5OH@H2O N12SX 66.03 13.66 50.65 1.72

C2H5OH@H2O M11L 65.43 13.78 49.80 1.85

C2H5OH@H2O MN12L 66.09 13.84 50.58 1.67

We have studied the zero point vibrational energy (ZPVE) of complex in the DFT

levels of approximations using basis sets 6-311++G(2d,2p) in a Table( 5.14). The

ZPVE is in the range of 1.53 kcal/mol to 1.67 kcal/mol for the ethanol and water

complex. According to the IUPAC report [4], ZPVE does not have any significant

effect on the stability of hydrogen bonds. It is seen in the Table( 5.14), that the values

of the zero point vibrational energy (ZPVE) are almost equal in various functional

for the ethanol and water complex.

Table 5.14: Zero Point Vibrational Energy (ZPVE), in kcal/mol using basis set 6-

311++G(2d,2p), in different level of approximation .

Complex Level Zero point vibrational energy

Complex Monomer1 Monomer2 ZPVE in kcal/mol

C2H5OH@H2O B3LYP 65.02 13.42 50.04 1.56

C2H5OH@H2O WB97XD 65.89 13.67 50.57 1.65

C2H5OH@H2O M062X 65.78 13.62 50.63 1.53

C2H5OH@H2O N12SX 66.11 13.72 50.75 1.64

C2H5OH@H2O M11L 65.23 13.81 49.75 1.67

C2H5OH@H2O MN12L 66.16 13.86 50.71 1.59
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We have studied the zero point vibrational energy (ZPVE) of the complex in the DFT

levels of approximation using basis sets aug-cc-pVTZ in the Table( 5.15). The ZPVE

is in the range of 1.4 kcal/mol to 2.15 kcal/mol for the ethanol and water complex.

According to the IUPAC report [4], ZPVE does not have any significant effect on

the stability of hydrogen bonds. It is seen in the Table( 5.15), that the values of the

zero point vibrational energy (ZPVE) are almost equal in various functional for the

ethanol and water complex.

Table 5.15: Zero Point Vibrational Energy (ZPVE), in kcal/mol using basis set aug-

cc-pVTZ, in different levels of approximation .

Complex Level Zero point vibrational energy

Complex Monomer1 Monomer2 ZPVE in kcal/mol

C2H5OH@H2O B3LYP 64.71 13.33 49.91 1.47

C2H5OH@H2O WB97XD 65.64 13.58 50.47 1.54

C2H5OH@H2O M062X 65.44 13.52 50.52 1.40

C2H5OH@H2O N12SX 65.75 13.64 50.60 1.51

C2H5OH@H2O M11L 65.40 13.72 49.53 2.15

C2H5OH@H2O MN12L 65.78 13.78 50.54 1.46

5.6 Topological Analysis

We have studied bond critical points and their Laplacian of the electron density

with the help of AIM (Atom in Molecules) with the basis sets; 6-311++G(d,p),

6-311++G(2d,2p), and aug-cc-pVTZ in the DFT levels of approximation. By the

analysis of the topology of an electron, we have analyzed the presence of hydrogen

bonding. According to the IUPAC report, analysis of the hydrogen-bonded system’s

electron density topology typically reveals a bond channel between H and Y as well

as a (3,-1) bond critical point between H and Y [4]. The indication of a hydrogen

bond has been proposed by Koch and Popelier as [32].

• ρ = 0.002 au to 0.034 au

• ∇2ρ = 0.024 au to 0.139 au. [where, au = atomic unit]
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We have analyzed the type of bond by the analysis of the laplacian of the electron

density at the bond critical point. If ∇2ρ >0, then the bond is either hydrogen or

vander waal or ionic bond whereas if ∇2ρ < 0, then the bond is covalent [33].

The optimized structure of the complex in the DFT levels of approximation using 6-

31++G(d,p), 6-311++G(2d,2p), and aug-cc-pVTZ basis sets are shown in following

figures, where HBCP represent the hydrogen bond critical point.

Figure 5.19: Structure of C2H5OH...H2O with bond critical points at the B3LYP

level of approximation using 6-311++G(d,p) basis set. The bond critical points have

been shown in between all the atoms that are bonded.

Figure 5.20: Structure of C2H5OH...H2O with bond critical points at the WB97XD

level of approximation using 6-311++G(d,p) basis set. The bond critical points have

been shown in between all the atoms that are bonded.
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Figure 5.21: Structure of C2H5OH...H2O with bond critical points at the M062X

level of approximation using 6-311++G(d,p) basis set. The bond critical points have

been shown in between all the atoms that are bonded.

Figure 5.22: Structure of C2H5OH...H2O with bond critical points at the N12SX level

of approximation using 6-311++G(d,p) basis set. The bond critical points have been

shown in between all the atoms that are bonded.
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Figure 5.23: Structure of C2H5OH...H2O with bond critical points at the M11L level

of approximation using 6-311++G(d,p) basis set. The bond critical points have been

shown in between all the atoms that are bonded.

Figure 5.24: Structure of C2H5OH...H2O with bond critical points at the MN12L

level of approximation using 6-311++G(d,p) basis set. The bond critical points have

been shown in between all the atoms that are bonded.
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Figure 5.25: Structure of C2H5OH...H2O with bond critical points at the B3LYP

level of approximation using 6-311++G(2d,2p) basis set. The bond critical points

have been shown in between all the atoms that are bonded.

Figure 5.26: Structure of C2H5OH...H2O with bond critical points at the WB97XD

level of approximation using 6-311++G(2d,2p) basis set. The bond critical points

have been shown in between all the atoms that are bonded.
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Figure 5.27: Structure of C2H5OH...H2O with bond critical points at the M062X

level of approximation using 6-311++G(2d,2p) basis set. The bond critical points

have been shown in between all the atoms that are bonded.

Figure 5.28: Structure of C2H5OH...H2O with bond critical points at the N12SX level

of approximation using 6-311++G(2d,2p) basis set. The bond critical points have

been shown in between all the atoms that are bonded.
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Figure 5.29: Structure of C2H5OH...H2O with bond critical points at the M11L level

of approximation using 6-311++G(2d,2p) basis set. The bond critical points have

been shown in between all the atoms that are bonded.

Figure 5.30: Structure of C2H5OH...H2O with bond critical points at the MN12L

level of approximation using 6-311++G(2d,2p) basis set. The bond critical points

have been shown in between all the atoms that are bonded.
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Figure 5.31: Structure of C2H5OH...H2O with bond critical points at the B3LYP

level of approximation using aug-cc-pVTZ basis set. The bond critical points have

been shown in between all the atoms that are bonded.

Figure 5.32: Structure of C2H5OH...H2O with bond critical points at the WB97XD

level of approximation using aug-cc-pVTZ basis set. The bond critical points have

been shown in between all the atoms that are bonded.
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Figure 5.33: Structure of C2H5OH...H2O with bond critical points at the M062X

level of approximation using aug-cc-pVTZ basis set. The bond critical points have

been shown in between all the atoms that are bonded.

Figure 5.34: Structure of C2H5OH...H2O with bond critical points at the N12SX level

of approximation using aug-cc-pVTZ basis set. The bond critical points have been

shown in between all the atoms that are bonded.
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Figure 5.35: Structure of C2H5OH...H2O with bond critical points at the M11L level

of approximation using aug-cc-pVTZ basis set. The bond critical points have been

shown in between all the atoms that are bonded.

Figure 5.36: Structure of C2H5OH...H2O with bond critical points at the MN12L

level of approximation using aug-cc-pVTZ basis set. The bond critical points have

been shown in between all the atoms that are bonded.

The electron density (ρ) and laplacian of electron density (∇2ρ) of the complex

have been obtained in the different levels of approximation with the basis sets 6-

311++G(d,p). In Table (5.16), the value of the ρ is in the range of 0.0199 au to

0.0261 au, which is slightly greater than the range given by Koch and Popelier [29]

and the value of ∇2ρ is in the range 0.0454 au to 0.0626 au, which also satisfies

the condition for hydrogen bond formation. Admittedly, we have also compared

our results with the observations of Oliveira and Vasconcellos, they carried out their
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observation in the basis set aug-cc-pVDZ at the DFT(B3LYP) level of approximation;

their results are comparable to ours [9].

Table 5.16: Topological analysis electron density and laplacian of electron density of

complex in the different functional with the basis set 6-311++G(d,p).

Complex Level Geometry

ρ (au) ∇2ρ (au)

C2H5OH@H2O B3LYP 0.0240 0.0502

C2H5OH@H2O WB97XD 0.0261 0.0505

C2H5OH@H2O M062X 0.0242 0.0551

C2H5OH@H2O N12SX 0.0253 0.0626

C2H5OH@H2O M11L 0.0239 0.0566

C2H5OH@H2O MN12L 0.0199 0.0454

The electron density (ρ) and laplacian of electron density (∇2ρ) of the complex

have been obtained in the different levels of approximation with the basis sets 6-

311++G(2d,2p). In Table (5.17), the value of the ρ is in the range of 0.0179 au

to 0.0250 au, which is slightly greater than the range given by Koch and Popelier

[29] and the value of ∇2ρ is in the range 0.0450 au to 0.0620 au, which also satisfies

the condition for hydrogen bond formation. Admittedly, we have also compared

our results with the observations of Oliveira and Vasconcellos, they carried out their

observation in the basis set aug-cc-pVDZ at the DFT(B3LYP) level of approximation;

their results are comparable to ours [9].
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Table 5.17: Topological analysis electron density and laplacian of electron density of

complex in the different functional with the basis set 6-311++G(2d,2p).

Complex Level Geometry

ρ(au) ∇2ρ(au)

C2H5OH@H2O B3LYP 0.0250 0.0602

C2H5OH@H2O WB97XD 0.0251 0.0505

C2H5OH@H2O M062X 0.0232 0.0551

C2H5OH@H2O N12SX 0.0213 0.0620

C2H5OH@H2O M11L 0.0229 0.0466

C2H5OH@H2O MN12L 0.0179 0.0450

The electron density (ρ) and laplacian of electron density (∇2ρ) of the complex have

been obtained in the different levels of approximation with the basis sets aug-cc-

pVTZ. In Table (5.18), the value of the ρ is in the range of 0.0189 au to 0.0243 au,

which is slightly greater than the range given by Koch and Popelier [29] and the

value of ∇2ρ is in the range 0.0354 au to 0.0605 au, which also satisfies the condition

for hydrogen bond formation. Admittedly, we have also compared our results with

the observations of Oliveira and Vasconcellos, they carried out their observation in

the basis set aug-cc-PVDZ at the DFT(B3LYP) level of approximation; their results

are comparable to ours [9].

Table 5.18: Topological analysis electron density and laplacian of electron density of

complex in the different functional with the basis set aug-cc-pVTZ.

Complex Level Geometry

ρ(au) ∇2ρ(au)

C2H5OH@H2O B3LYP 0.0230 0.0402

C2H5OH@H2O WB97XD 0.0231 0.0605

C2H5OH@H2O M062X 0.0232 0.0451

C2H5OH@H2O N12SX 0.0243 0.0626

C2H5OH@H2O M11L 0.0229 0.0466

C2H5OH@H2O MN12L 0.0189 0.0354
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Chapter 6

Conclusion and Future Prospect

6.1 Conclusion

We have done the computational study of hydrogen bonded complex of ethanol and

water using various functionals on the basis of density functional theory has been

carried out using 6-311++G(d,p), 6-311++G(2d,2p), and aug-cc-pVTZ basis sets

with the help of Gaussian-16 program. The computational calculations have been

performed to study the binding energy, zero point vibrational energy, geometry pa-

rameters, frequency shift, and topological analysis. Our calculations are based on ab

initio molecular orbital techniques.

We have studied bond distance and found to be in the range of 1.907Å to 2.103Å for

DFT levels of approximation. From our calculation, the complex shows strong hy-

drogen bonding. The bond angle OH...X (X=H2O) has a maximum value of 178.69◦

and minimum value of 172.73◦ for DFT levels of approximation by using different

basis sets for complex ethanol and water.

We have calculated the binding energy of ethanol and water complex and found it to

be in the range of -4.258 kcal/mol to -6.232 kcal/mol for DFT levels of approximation.

We found that ethanol and water complex show the criteria of strong hydrogen bond

and we have also studied zero-point vibrational energy. We have calculated the

frequency shift of X-H stretching mode per cm and found it to be in the range of -85

cm−1 to -123 cm−1 for DFT levels of approximation. All the changes in frequency are

negative that is red shift in ethanol and water complex in the case of O-H stretching

mode. We have also calculated electron density and the laplacian of electron density
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of the complex. We have obtained in the DFT levels of approximation with the basis

sets 6-311++G(d,p), 6-311++G(2d,2p), and aug-cc-pVTZ, the value of ∇2ρ is in the

range of 0.0354 au to 0.0626 au and the value of the ρ is in the range of 0.0179 au

to 0.0261 au. The ethanol and water complex satisfies the criteria for the values of

ρ and ∇2ρ for hydrogen bonds. In a nutshell, from the analysis of binding energy,

zero-point vibrational energy, geometry parameters, frequency shift, and topological

features of the electron density, we have seen the hydrogen bond in ethanol and water

complex along with O-H interaction.

6.2 Future Prospect

We have studied different interactions in C2H5OH...H2O complexes. We can do the

following study in the coming days:

• Similar study could be performed in higher basis sets.

• The other physical properties like dipole moment, polarizability, nuclear quadrupole,

electric field gradients could also be calculated.

• Interaction in many other different complexes like organic compounds could be

studied.
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