A STUDY OF TOPOLOGICAL STRUCTURES OF
LINEAR SPACES OF GENERALIZED SEQUENCES

A THESIS SUBMITTED TO THE

CENTRAL DEPARTMENT OF MATHEMATICS
INSTITUTE OF SCIENCE AND TECHNOLOGY
TRIBHUVAN UNIVERSITY, NEPAL

FOR THE AWARD OF
DOCTOR OF PHILOSOPHY
IN MATHEMATICS

BY

JHAVI LAL GHIMIRE

FEBRUARY 2023






A STUDY OF TOPOLOGICAL STRUCTURES OF
LINEAR SPACES OF GENERALIZED SEQUENCES

A THESIS SUBMITTED TO THE

CENTRAL DEPARTMENT OF MATHEMATICS
INSTITUTE OF SCIENCE AND TECHNOLOGY
TRIBHUVAN UNIVERSITY, NEPAL

FOR THE AWARD OF
DOCTOR OF PHILOSOPHY
IN MATHEMATICS

BY

JHAVI LAL GHIMIRE

FEBRUARY 2023



TRIBHUVAN UNIVERSITY
Institute of Science and Technology

Reference No.:

JCie

ean’; Offise

EXTERNAT #XAMINERS

The Title of Ph.D. Thesis: "A Study of Topological Structures of Linear
Spaces of Generalized Sequences "

Name of Candidate: Jhavi Lal Ghimire
Extérnal Examiners:

(1)  Prof. Dr. Shailendra Kumar Mishra
Institute of Engineering, Pulchok Campus
Tribhuvan University, NEPAL

(2) Prof. Dr. Binod Chandra Tripathy
Department of Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Khanapara, Guwahati, INDIA

(3) Dr. Ishwari Jang Kunwar
Department of Mathematics and Computer Science
Fort Valley State University
Georgia, USA

QL1

I s
Tune 96,2623

(Dr. Surendra Kumar Gautam)
Asst. Dean

Tglephone: 977-1-4330844, 4331755 (Administration), 4330120 (Exam)
Website: www.tuiost.edu.np, E-mail: info@iost.tu.edu.np, exam@iost.tu.edu.np



DECLARATION

Thesis entitled “A Study of Topological Structures of Linear Spaces of Generalized
Sequences” which is being submitted to the Central Department of Mathematics, Institute
of Science and Technology (IOST), Tribhuvan University, Nepal for the award of the
degree of Doctor of Philosophy (Ph.D.), is a research work carried out by me under the
supervision of Prof. Dr. Narayan Prasad Pahari of Central Department of Mathematics,

Tribhuvan University.

This research is original and has not been submitted earlier in part or full in this or any

other form to any university or institute, here or elsewhere, for the award of any degree.

Jhavi Lal Ghimire




RECOMMENDATION

This is to recommend that Mr. Jhavi Lal Ghimire has carried out research entitled ““ A
Study of Topological Structures of Linear Spaces of Generalized Sequences’ for the
award of Doctor of Philosophy (Ph.D.) in Mathematics under my supervision. To my

knowledge, this work has not been submitted for any other degree.

He has fulfilled all the requirements laid down by the Institute of Science and Technology
(I0ST), Tribhuvan University, Kirtipur for the submission of the thesis for the award of
Ph.D. degree.

Dr. Narayan Prasad Pahari

Supervisor

(Professor of Mathematics)
Central Department of Mathematics
Tribhuvan University

Kirtipur, Kathmandu

Nepal

Date: February 2023

ii



< “."_)S“I
)

Phone No. :00977- 14331977

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF MATHEMATICS

OFFICE OF THE HEAD OF DEPARTMENT
S tience ¥ | S KIRTIPUR, KATHMANDU

Date: Feb. 10, 2023

Ref

Letter of Approval

On the recommendation of Prof. Dr. Narayan Prasad Pahari, this Ph.D. thesis
submitted by Jhavi Lal Ghimire, entitled A Study of Topological Structures of
Linear Spaces of Generalized Sequences" is forwarded by Central Department
Research Committee (CDRC) to the Dean, IOST, T.U.

T S B\\_Aﬁ

Dr. Tanka Nath Dhamala
Professor,

Head,

Central Department of Mathematics
Tribhuvan University

Kirtipur, Kathmandu

Nepal




ACKNOWLEDGMENTS

I would like to express my sincere gratitude to many people and institutions that made my
Ph.D. research work possible. First of all, I would like to express my deepest gratitude
to my respected research supervisor Prof. Dr. Narayan Prasad Pahari for his invaluable
scholarly supervision, constructive comments and suggestions that helped me to bring this
dissertation in this form. I would also like to express my sincere thanks to respected Prof.
Dr. Tanka Nath Dhamala, the Head of Central Department of Mathematics and president
of CDRC, and all research committee members of CDRC for their valuable suggestions,

support and needful help during the various stages of my research work.

My sincere thanks goes to all the respected professors, colleagues and staffs of Central
Department of Mathematics, Tribhuvan University for their kind cooperation and support
in this research work. Likewise, my special thanks goes to Nepal Academy of Science
and Technology (NAST) for Ph.D. fellowship and Nepal Mathematical Society for pro-
viding me with the Nick Simons Fellowship during my study. Also, my sincere thanks
goes to Dean, Assistant Dean and other staffs of Dean office of Science and Technology,
Tribhuvan University. I am also thankful to Tribhuvan University, Office of Rector, Co-

ordination Division for granting me study leave during my Ph.D. research study.

Words are inadequate in paying regards to my parents, father Mr. Tika Ram Ghimire and
Late mother Dhana Devi Ghimire for their blessings. Their endless efforts have made
a great contribution to all my successful endeavours in my life. I would like to express
my gratitude to my wife Asmita, daughter Aaravi and other family members for their
unwavering support, continuous encouragements and patience. Finally, I would like to
acknowledge all the relatives, friends and well-wishers who directly or indirectly help me

in this research work.

Jhavi Lal Ghimire
February 2023

v



ABSTRACT

This dissertation deals with the sequence spaces and applications. The various topologi-
cal and algebraic properties of different sequence spaces defined by Orlicz function have
been studied. We introduce and study the sequence spaces that are the generalization of
classical sequence spaces of null, convergent, and bounded type. We introduce and study
a class co(M, (X, ]|.]]), @, @) of vector valued difference sequences of null type with the
help of Orlicz function. It is the generalization of classical null sequence space. We
prove some linear structures and prove some inclusion and equality relations in terms
of different parameters @ and &. In the similar fashion, we study the sequence space of
bounded type I, (M, (X, ||.||), @, &) of normed space valued difference sequences using
Orlicz function M. The containment relations on different parameters are established.
The class Io.(M, X, (Y, ||.]|)) of Banach space Y'-valued functions is introduced as the
generalization of bounded complex sequences. The different topological structures have
been studied when topologized it with the suitable natural norm. The difference sequence
spaces Wy(A, f), W(A, f), and W (A, f) defined by non-negative ®-function on R
are introduced and studied their different topological properties endowed by paranormed
structure on these spaces. Infinite series and sequences played important role in the de-
velopment of Calculus and other branches of mathematics. But the mathematicians were
facing the problems of calculating the limits of infinite sequences and series , in particular
with those having divergent in behaviour. Then the mathematicians developed the various
types of convergence to assign a limit in some sense to divergent sequences and series. We
also introduce and investigate sequence spaces defined by ideal convergence and Orlicz
function in 2-normed space. The theory of sequence space and frame theory are intercon-
nected as frame theory makes the use of sequence space. The sequence spaces are used
as the vector spaces in frame theory. Some of the application of frame theory that make
the use of sequence spaces are image processing, signal processing, error correction, data
compression etc. The atomic decomposition in a non-locally convex Banach space is de-
fined and discussed its existence. It is also proved that if a p-Banach space has an atomic

decomposition then the space is isomorphic to its associated p-Banach sequence space.



The necessary and sufficient condition for an atomic decomposition in p-Banach space
is given. Certain properties associated with Schauder frames in Banach space have been
defined and studied.
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X**
Span (X)

LIST OF SYMBOLS

set of positive integers

set of real numbers

set of complex numbers

the field of R or C

space of all sequences over the complex field
space of null sequences over the complex field
space of convergent sequences over the complex field
space of bounded sequences over the complex field
space of absolutely p-summable sequence spaces over the complex field
zero vector in the linear space X

alpha dual of the sequence space X

beta dual of the sequence space X

gamma dual of the sequence space X

set of all bounded linear operators from X to Y
norm of normed linear space

norm of 2-normed linear space

forward difference operator

natural density of set A

set of all statistically convergent sequences

power set of X

first conjugate space of X

second conjugate space of X

set of all finite linear combinations of elements of X
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Chapter 1

INTRODUCTION

1.1 Introduction

The sequence spaces and function spaces have various applications in different branches
of mathematics. They have prominent position mainly in mathematical analysis, for in-
stances, in structure theory of topological linear spaces, summability theory, operator the-
ory, frame theory, Schauder basis theory, approximate theory, etc [4, 34, 57, [74, [76), |88,
94,195]. This introduces several new concepts in functional analysis and thereby enriching
the theory of mathematics. A sequence space is defined to be a linear space of sequences
as its elements are closed with respect to the coordinate wise addition and scalar multi-
plication. In other words, the set w of all functions from the set of natural numbers N to
the field K of real or complex numbers, which is the set of all possible infinite sequences
with elements in K, can be turned into a vector space. Any linear subspace of w is then
called a sequence space. Sequence space is called a scalar sequence space or a vector
sequence space according as the sequences consist of scalars (real or complex) or vectors
taken from a vector space. A sequence of the form (z,,) is called a single sequence and a

sequence of the form (z,,,) is called a double sequence or a matrix.

Several workers like Maddox [55]] , Malkowski and Rakocevic [57], Parashar and Choud-
hary [72], Ruckle [76]] etc. have made their significant contributions and enriched the the-
ory of sequence spaces and function spaces in different directions. Literatures concerning
the theory of sequence spaces can be found in any standard text books and monographs
of Functional Analysis, for instance we refer a few; Basar[4], Kamthan and Gupta [38]],

Lindenstrauss and Tzafriri [51]] and Rao and Ren [[74] etc.



A generalized sequence space or vector valued sequence space is a linear space consist-
ing of sequences with their terms from a vector space. A lot of attempts have also been
made to generalize the theory of scalar valued sequence spaces to vector valued sequence
spaces. An outstanding contribution and plenty of work have been done in the field of
sequence and function space. In this directions, Bala [3]], Bhardwaj and Bala [7], Khan
[45]], Kolk [47], Srivastava and Pahari [88]], Tripathy and Sen [92], and many others have
introduced and examined some properties of vector valued sequence spaces using Orlicz
function M, which generalize many sequence spaces. Recently Savas [81] and others
have introduced certain new sequence spaces using Orlicz function in 2—normed space
and examined some of their properties, some of which were subsequently generalized to

n—normed spaces, for instance by Reddy and Dutta [75] and many others.

Infinite sequence and series played prominent position in the development of mathematics
and mathematical sciences. But on the same time, mathematicians were facing problems
to calculate the limit of infinite series, mainly with those having divergent in behaviour.
The concept of convergence provides a general framework to find the solutions of many
problems. Then mathematicians developed different methods of convergence to assign a
limit in some sense to a series of divergent in nature. This limit is called generalized limit
or summability technique. Many mathematicians developed different summability meth-
ods for divergent series and sequences. The theory of summabilty began with the paper by
Cesaro in 1890 while dealing with the multiplication of series. Afterwards, many general-
izations of ordinary convergence have appeared that can be found in the related literature
for instance statistical convergence by Fast [23] in 1951 and the notion of ideal conver-
gence was introduced as a generalization of statistical convergence, first by Kostyrko et
al.[48] .

Sequence spaces and frame theory are interrelated. They have wide range of applications
in different field of science and technology. Nowadays, frames are main tools for use in
signal processing, image processing, compression, sampling theory, optics, filter banks,
signal detection etc [[13} 116} 27, 34].

In 1946, Gabor [27] introduced a fundamental approach to signal decomposition in terms
of elementary signals. Duffin and Schaeffer [16] abstracted Gabor’s theory to define
frames for Hilbert spaces in 1952 while solving some difficult problems from the theory of
non-harmonic Fourier series. Frames for Hilbert spaces were reintroduced by Daubechies
et al.[14] in 1986. The notion of atomic decompositions for function spaces was intro-
duced by Coifman and Weiss [13] . Later, Feichtinger and Gréchenig [24] extended the



notion of atomic decomposition to Banach spaces. Grochenig [33] introduced a more
general concept of frame for Banach spaces called Banach frame. The atomic decompo-
sition satisfying certain properties is studied in [40]. The Schauder frames in conjugate
Banach spaces is studied in [44]. The various definitions of frames for Banach spaces
were introduced by Casazza, et al.[11] including that of Schauder frame. Han and Larson
[34] defined Schauder frame for a Banach space. In 2008, Casazza, et al.[10] studied
the coefficient quantization of Schauder frames in Banach spaces. Liu [S3]] studied the
concepts of minimal and maximal associated bases with respect to Schauder frames and
closely connected them with the duality theory. In [54]], Liu and Zheng studied a char-
acterization of Schauder frames which are near-Schauder bases. In fact, they generalized
some results due to Holub [37]. Beanland et al.[6] proved that the upper and lower esti-
mates theorems for finite dimensional decompositions of Banach spaces can be extended
and modified to Schauder frames, and gave a complete characterization of duality for
Schauder frames. Liu [52] associated an operator with a Schauder frame and called it
Hilbert-Schauder frame operator. Ghimire and Pahari [29] studied certain properties as-
sociated with Schauder frames in Banach spaces. Furthermore, Pahari et al.[65] studied
frames in non-locally convex Banach space and proved that if a p— Banach space has an

atomic decomposition then it is isomorphic to its associated p— Banach sequence space.

1.2 Rationale

If we go through the literature motivated from the works of earlier workers as explained
above, we observed that in extending the theory of complex sequence and function spaces,
a lot of work has been done, but at the same time we note that a lot of problems are yet to
be investigated for vector valued sequence and function spaces. Our research work is also
an attempt in this direction which not only generalizes and unifies the study of various
existing sequence spaces conducted by earlier workers but also investigate a number of
interesting properties of many other such spaces. On the other hand, very special center
of attention is paid for the application of sequence - function spaces in different fields for

the development of sciences and technologies. In particular, we focus on frame theory.

In sequence spaces, a frame can be used to represent the elements of the sequence that
can provide a framework to understand and analyze the signals and data. They have wide

range of applications in signal processing, data compression, audio and image processing



etc. Motivated by these things, our research is focused to study sequence spaces as a
generalization of classical sequence spaces using Orlicz function in different directions
to make them more general having more rich properties than the earlier one and use of

sequences in frame theory with their interrelation and applications.

1.3 Objectives

The research objectives of this study are:

1. to extend the theory of sequence spaces using difference operator and Orlicz func-

tion.

2. to study the sequence spaces using ®-function which is closely related to Orlicz

function.
3. to study the sequence spaces using ideal convergence in 2-normed space.
4. to study the uses of sequences in frame theory.

5. to study frames in non-locally convex Banach spaces and certain properties associ-

ated with Banach frames.

1.4 Outline of the Thesis

The present thesis is focused to the study of the theory of sequence spaces and frame
theories. It is devoted to study the sequence and function spaces as a generalization of
existing spaces to make it more general with rich topological and algebraic properties.
As the application part, the attempt has been made to study uses of sequences in frames
along with their interconnection with applications. Sequence spaces and frames provide a
framework to represent and analyze large set of data and signals in more stable and robust
way, which are used in signal processing, data processing etc. The present thesis consists
of five chapters. For the sake of convenience, some of the definitions and notations will
be repeated occasionally in different chapters. The work begins from chapter 1 providing
introduction of sequence space and frame theory as well as its successive development by

different mathematicians at different time, rationale, objectives, and outlines of the thesis.



Chapter 2 is devoted to study generalized sequence spaces of null and bounded type
using difference operator with the help of Orlicz function. We introduce and study
co(M, (X,]|.]), a, @) of normed space (X, ||.||) valued difference sequences with the help
of Orlicz function M. This is a generalization of the classical sequence space ¢, . Some
topological linear structures and the conditions relating to the containment relations of
the class co(M, (X, ]|.||), a, @) in terms of different a and & have been investigated. In
the same way, the generalized sequence space of bounded type is studied. Moreover, the
Class (M, X, (Y, ||.]|)) of Banach Space Y — valued functions is studied as a successive

natural generalization of space of bounded sequences.

In chapter 3, the difference sequence spaces Wo(A, f), W(A, f) and Wy (A, f) defined
by non-negative real-valued ®- function on R have been introduced. The study of some of
their topological properties defined by the paranormed structure on these spaces has been
investigated. As concept of convergence includes the study of analysis, the attention has
been given to study some sequence spaces in 2-normed space using ideal convergence.
Moreover, the necessity of different convergence in the study of sequence spaces have

been stated including statistical convergence.

In chapter 4, as an application of sequences, frames in non-locally convex Banach spaces
have been studied. The certain properties associated with Schauder frames have been es-
tablished. The atomic decomposition in a non- locally convex Banach space [P(0 < p <
1) have been studied with its existence through examples. Also, a sufficient condition for
its existence is given and it is observed that if a p-Banach space has an atomic decompo-
sition, then the space is isomorphic to its associated p-Banach sequence space. Further,
necessary and sufficient conditions for an atomic decomposition in a p-Banach space is
studied. The shrinking and strongly shrinking atomic decomposition are studied for the

frames in non-locally Banach spaces.

The chapter 5 is the last chapter of the thesis that includes the summary, conclusions and
recommendation for further works. Besides these, the publications and certificates of

conferences, school, seminar and workshops have been included in appendix.



Chapter 2

GENERALIZED SEQUENCE SPACES
OF NULL AND BOUNDED TYPE

2.1 Introduction

A sequence space is defined as a linear space of sequences. If w denotes the set of all
functions from the set of positive integers N to the field K, then it becomes a vector space.
Sequence space is defined as a linear subspace of w. A sequence of the form (x,,)°, is
called a single sequence and a sequence of the form (2., )py,,—; is called a double se-

quence or a matrix.

In this chapter, we introduce and study the sequence spaces of null and bounded type as
a generalization of classical sequence spaces. In the last subsection of this chapter, we
introduce and study the Banach space Y — valued functions using Orlicz function as the
extended work of bounded type sequence space. Before proceeding to main results, we

state some definitions and notations.

2.1.1 Some Well Known Sequence Spaces

Let w denote the space of all sequences x = (z),k > 0, over the field C of complex
numbers. Let p = (p) be any sequence of strictly positive real numbers (not necessarily

bounded in general) and A = (\;) be any sequence of non zero complex numbers. Then

e ¢ ={z = (z1) : |xx| = 0 ask — oo}, the space of null complex sequences.

6



e ¢ ={z=(xx):3 1 €C suchthat |z —I| — 0 as k — oo}, the space of conver-

gent complex sequences.

* lo = {x = (xx) : sup,|zk| < 0o}, the space of bounded complex sequences.

o 1, ={x = (zp): D7 |zklP < 00,0 < p < oo}, the space of absolutely p-summable

complex sequences (/; is sometimes denoted by [ only).

o I'={x = () : |zx|'¥ = 0 as k — oo}, the space of null entire sequences.

o x = {z = (1) : (k!|2x])"/* — 0 as k — oo}, the space of integral functions.
If X denotes the normed space and x;’s are the elements of X, then following
vector valued sequence spaces were introduced by Maddox, in his work infinite

matrices of operators[S3].

s oo(X)={z=(vg) 2z € X,k >1,||xx|| = 0 as k — oco}.

e o(X)={zr=(vg):x € X,k >1,31 € Xsuchthat ||z — || — 0 as k — oo}.

¢ loo(X) ={x = (zg) : 2 € X, k > 1, sup||zx]| < o0}

s L(X)={r=(zg) 2 € X, k> 1,277 ||zg]|P < 00,0 < p < c0}.

2.1.2 Generalized Sequence Space

A generalized sequence space or vector valued sequence space is a linear space consisting
of sequences with their terms taken from a vector space. A lot of attempts have been
made to generalize the theory of scalar valued sequence spaces to vector valued sequence
spaces. In this directions, Bhardwaj and Bala [7], Khan [45], Kolk [47], Srivastava and
Pahari [88]], Tripathy and Sen [92] and many others have introduced and examined some

properties of vector valued sequence spaces using Orlicz function M, which generalize



many sequence and function spaces. Moreover, Savas [81] and others have introduced
certain new sequence spaces using Orlicz function in 2—normed space and examined
some of their properties, some of which were subsequently generalized to n—normed

spaces, for instance by Reddy and Dutta [75] and many others.

2.1.3 Kothe—Toeplitz Duals

In classical theory of matrix transformations, one of the basic problems is the representa-
tion of linear functionals by matrices which map between one sequence space to another.
Kothe and Toeplitz [49] were the first who identified the problem and introduced duals of
a sequence spaces. These duals are known as Kothe and Toeplitz duals or a- and (- duals

as defined follows:

Definition 1. Ler w denote the space of all sequences of complex numbers. Then the -
and - duals , known as Kothe - Toeplitz duals of X are defined by

X = {d: (ag) € w: Z\akxk\ < 00, forall x = (z) € X}

1

1

XP = {EL = (ag) € w: Zakxk converges for all x = (x},) € X}

These a- and S—duals of commonly occurring sequence spaces ¢y, ¢, o, [, are well
known[49]]. In this direction, these duals and continuous duals of ¢o(p), ¢(p), lo(p), L(p)

have also been characterized, for instance:

1. cg‘:cgzc“:cﬁ:lg‘o:lfo:ll;
2. If 1 < p < oo, then l;‘:lgzlq, where 1/p+1/q =1,

3. f0<p<1, thenll‘f:lgzloo;

In 2010, Dutta [[17] has characterized Kothe-Toeplitz duals of generalized difference

sequence spaces defined by Orlicz function.



In 2015, Dutta [[19] has studied and investigated Kothe-Toeplitz duals of some n—normed
real linear valued difference sequence spaces.
Many mathematicians have introduced Kothe-Toeplitz duals of sequence spaces and their
inclusion relations using matrix transformations, for instances: Ahmad and Mursaleen[1],

Uma and Srinivasan[93]].

2.1.4 Orlicz Function
Definition 2. A function M : [0,00) — [0,00) is called an Orlicz function if it is
continuous, non decreasing and convex with

M(0) =0, M(x) > 0forxz >0, and M(x) — 00 as x — o0.

An Orlicz function M can be represented in the following integral form

where q, known as the kernel of Orlicz function M, is right- differentiable for t > 0,
q(0) = 0,q(t) > 0 fort > 0, q is non decreasing, and q(t) — oo as t — 00.[50]

If the convexity of the Orlicz function is replaced by M (z + y) < M (z) + M (y), for all
x,y € [0,00) then the function M is called modulus function.[76]

The Orlicz function is bijective and continuous on [0, o).

Example 1. The function
M(x)=2a? (1<p<o0), forall x>0

is an Orlicz function.

The function
M(x) =z, forall >0

is a modulus function.

Definition 3. An Orlicz function M is said to satisfy As- condition for all values of x,
if there exists a constant K > 0 such that M (2x) < KM/(x), for all x > 0. The A,-
condition is equivalent to the satisfaction of the inequality M(Qx) < KQM (z) for all
values of x for which Q > 1[50].



2.1.5 Orlicz Sequence Space

The study of Orlicz sequence spaces was initiated to study Banach space theory. The text
by Rao and Ren [74], the monograph by Krasnosel’skil and Rutickii [50], the book by
Musielak [63] are devoted entirely to study the fundamental results about Orlicz spaces.
Lindenstrauss and Tzafriri [S1] studied important and interesting structural problems in
Banach spaces. Orlicz spaces have a number of useful applications in the theory of non-
linear integral equations, summability, vector valued function, locally convex spaces,
measure theory and integration. Orlicz sequence spaces are the special case of Orlicz

spaces.

Orlicz sequence spaces are one of the natural generalizations of classical sequence spaces
l,. They were first considered by Orlicz in 1936. Afterwards, Lindenstrauss and Tzafriri

[51] had used Orlicz function in order to construct Orlicz sequence space [; given by

lM:{x:(xk)Ew:ZM(@) <oof0rsomep>0}

k=1 P

of scalars (). The space is named due to Wtadystaw Orlicz, first defined in 1932 and the
first detailed study on Orlicz spaces was given by Krasnosel’skii and Rutickii[S0]. The

Orlicz sequence space [); becomes a Banach space with the norm given by

||x\|M:inf{p>0:§:M (@> < 1}

k=1 P

Moreover, [, is closely related to the space [, with M (z) = a?;1 < p < oo. They have
very rich topological and geometrical properties that do not occur in ordinary [, spaces.
In 1994, Parashar and Choudhary[72] introduced and studied the sequence spaces defined

by Orlicz functions as follow:

Ivu(p) = {:c = (x) Ew: i {M (@)rk < oo for some p > O}

p

They studied some of the linear topological and paranormed structures of [,;(p) . Their
ideas are applied later by many workers for topologization of various generalized Orlicz

sequence spaces.

In 2007, Bhardwaj and Bala [[/] introduced and studied Banach space valued sequence

10



space [7(X, p) defined by Orlicz functions as follows:

(X, p) = {x = (z1) € w(X) : i [M (M)

1 P

Pk

< oo for some p > 0}

They examined and investigated various algebraic and topological properties of this space.

In 2012, Srivastava and Pahari[89]] has introduced and studied vector valued sequence

space defined by Orlicz function as follow:

A Pk
co(X, M, \,p) = {a: = (zg),xr € X M (M

) — 0, as k—)oo,forsomep>0},
P

which is a generalization of the familiar sequence space cy. They studied the linear topo-

logical structures on co(X, M, X, p) when topologized it with paranorm

A pr/L
g(x) = inf{p >0 : sup, M <M) < 1}
p

for z € co(X, M, \,p).

Demiriz[15], Khan [45]], Mastylo[38], Mishra et al.[59], Srivastva and Pahari [88]]
and many others have been introduced and studied various sequence spaces using Orlicz
function as a generalization of well known sequence spaces. Savas[81]] and many others

have further extended the Orlicz space equipped with 2—normed structure .

2.1.6 2— Normed Sequence Space

The concept of 2-normed space was initially studied by Géhler [28] in the mid of 1960’s

as a generalization of 2—metric space.

Definition 4. Let X be a vector space with dim(X) > 1. Amap ||.,.||: X x X — R
satisfying
L. ||z,y|| >0, ||z, y|| = 0 if and only if x and y are linearly dependent.

2. ||z, yll = |y, ||

3. Nlex, yll = |all|z, yl| for any real o

4 |z +y, 2l = [l 2l + |y, 2l for all w,y, » € X

is called a 2—norm on X. The pair (X, ||.,.||) is called a 2— normed space.

11



Moreover, Gihler [28]] introduced the concept of 2— normed space as a generalization
concept of normed space.
Geometrically, a 2— norm measures the area of the parallelogram spanned by the two

vectors.

Example 2. Let us consider X = R? being equipped with 2— norm , ||.,.||= area of the
parallelogram spanned by the vectors x and y. This can be calculated explicitly by the

formula ||93,?/|| = |5171yz - 33291’, where v = (3?1,932) and y = (y1>y2)'

In 2007, Sahiner et al. [78] has introduced and studied the ideal convergence in 2—

normed space

(X, ., -II,p) = {x = () € w(X): Z(ka,z”)pk < 00, foreach z € X}

In 2010, Dutta [20] studied the paranorm structure using the concept of statistical con-
vergence from difference sequence space point of view which are defined over real linear
2—normed space.

In 2010, Dutta and Reddy [75] have introduced and studied the concept of n—normed
space as a further generalization of usual notion of 2—normed space.

Since then several workers have made their contribution and developed the theory of 2—
normed space valued sequence spaces and function spaces in different directions .They
studied the statistically convergent of difference sequence spaces and ideal convergence
on 2-normed linear spaces defined by Orlicz function. In 2013, Srivastava and Pahari[87]
have introduced and studied 2—Banach space valued sequence space defined by Orlicz

function as follows:

CO(Xa M; ||a ||7/_\7p)
[ Ak, 2|

= {a: = (xx),zr € X : 3 p > 0, satisfying M (
p

)—>O,ask—>oo,z€X}

This is a generalization of sequence space co(X, M, \,p) , which is the generaliza-
tion of the familiar sequence space cy. They studied the linear topological structures on

co(X, M, ].,.]|, A, p) when topologized it with paranorm

[ Ak, 2| [Pr/ -

g(x) = inf{p > 0:sup, M (
p

) < 1,f0reachz€X}.
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In 2016, Savas and Gurdal [80] introduced the concepts of ideal uniform convergence
and ideal pointwise convergence of sequences of functions in the topology induced by
random 2—normed space.

In 2016, Dutta, Kilicman and Altun [18]] studied analytic study of Orlicz sequence space
defined over 2-normed space. They studied various linear space structure , topological
and other convergence and completeness related properties of the spaces on 2-normed
spaces.

Recently, many mathematicians have studied sequence spaces in different directions in

2— normed to n— normed space, for instances; Dutta[19], Reddy and Dutta[75].

2.2 The Class c¢y(M, (X,]|.||),a, @) of Vector Valued Dif-

ference Sequences

In this section, we introduce and study the sequence spaces of null type using difference
operator. It is the generalization of the classical sequence space cy. We discuss some of
the topological structures in this space. Before proceeding to the main results, we recall

the following definitions and notations.

Definition 5. Kizmaz [46l] defined the difference sequence spaces by

co(A) =A{x = (zg) : Az € o}

c(A)={x = (zy): Az € ¢}

lo(A) = {z = (x}) : Ax € I} where, Ax = (Axy) = (z)—xk41) and showed that

these spaces are Banach spaces with the norm given by ||z|| = |z1] + || AZ||so-

A sequence x = () is called A-convergent if the lim Axy, is finite and exists. Every
convergent sequence is A-convergent but not conversely. If we consider the sequence
(xx) = (3 + k) for all natural numbers k, then (Axy) = (xp—2x11) = (—1) for each

natural numbers k. Thus, z = (z},) is divergent but it is A-convergent.

Definition 6. Let C be the field of complex numbers and X be a normed space over C .
Let w(X) denote the linear space of all sequences v = (xy),x € X, k > 1 with usual
coordinate wise addition and scalar multiplication i.e., for all v,y € w(X) and o € C,
x+y = (zp +yr) and ax = (axy,). We shall write w(C) by w. Further,for A = (\,) € w
and x € w(X) we have \x = (\x). Moreover, a scalar( vector) valued sequence space

means a linear subspace of w(X).
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The various topological and algebraic properties of sequence spaces with the help of
Orlicz function have been introduced, studied and investigated as a generalization of var-
1ous sequence spaces. For instances, we refer a few: Basarir and Altundag[JSl], Bhardwaj
and Bala[/], Erdem and Demiriz[21]], Et et al.[22], Ghosh and Srivastava|32]], Kamthan
and Gupta[38]], Karakaya[39], Khan[45], Kolk[47], Maddox [56], Pahari[69], Parashar
and Choudhary[/72]], Rao and Subremanina[73]], Savas and Patterson[82]], Srivastava and
Pahari[88]], Tripathy and Mahanta [91]], and Wilansky[94].

Let @ = (ax) and 7 = () be the sequences of complex numbers with non-zero terms
and @ = (a;) and b = (by,) be sequences of positive real numbers. Let X be a normed
space over C, and M be an Orlicz function. Now we introduce a new class of sequences
(301

co(M, (X, ||.1]), @, &)
_ {:13 = (z3) : limg_yoe M (

[ Azy||*

) = 0,where z, € X,k > 1;forsomep>0}.
p

It is a class of normed space X -valued sequences.

Furthermore,

=

e ifap = 1 Vk € N, then ¢o(M, (X, ||.|]), @, @) is denoted by co(M, (X, ||.||), @).
(XD, @)

e if aqp = a4 = 1 Yk € N, then the class ¢y(M, (X,]|.||),a, &) is denoted by
CO(Ma (X7||||))

=

o if ap = 1Vk €N, then ¢o(M, (X, ]].|]), @, @) is denoted by cq(

Now we characterize some topological linear structures of ¢y(M, (X, ||.||), @, @) and
then investigate some of the inclusion relations between the classes c¢o(M, (X, ||.||), a, @)
that arise in terms of different sequences a and &. We shall denote sup a; = S, Vk € N.
But when the sequences (ax) and (b ) both occur, then we use the notations sup a; = S(a)
and sup b, = S(b).

2.3 Topological Linear Structures on co(M, (X, ||.]]), a, @)

In this section, we study the linear structure of ¢o(M, (X, ||.]|), @, &) of vector valued dif-
ference sequences defined by using Orlicz function M. It is a generalization of sequence

space cy. Also, we investigate the conditions pertaining to the containment relations of
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co(M, (X,]|.]]),a, @) in terms of different sequences a and @&. Throughout this section,
the following inequality will be used:

|z + y|*™* < H {|z|*™ + |y|*}, where; z,y € C,0 < a < sup,a; = S,

and H = max(1,2%71).

Moreover, we shall denote ¢;, = Z—’; and 0, = ]%Pk

Theorem 2.3.1. [30] The class co(M, (X, ||.||), a, @) of difference sequences is a linear

space over C if and only if supra, = S < oo.

Proof. Let ¢o(M, (X, ]|.]|),a, @) be a linear space over C but supga, = oo. Then there
exists a sequence of positive integers (k(n)) satisfying the condition

1 <k(n) <k(n+1);n>1,and aymy > n;n > 1.

Let z € X with ||z|| = 1. We now define a sequence x = (xy) as

2z
Az = Wyt ez, if k=k(n); n>1

0, otherwise

2.1)

Let p > 0 be given. Then from (2.1), using convexity of Orlicz function M, we can write

2

A ap T Ok(n) »||k(n) 1 1 1
p p n2p p) n

and M (M) = 0, otherwise.

This shows that limy,_, o M (HO"“A+”%> = 0 and therefore x € ¢o(M, (X, ||.||), a, @). But

on the other hand, for any p > 0 and taking v = 4 for vz, we find that for k = k(n);n > 1

__2
ag Ak (n) A (n) n

p p n?p p

This shows that limy, ., M (M) 20,

Therefore vz does not belong to ¢ (M, (X, ||.|]), @, @), which contradicts our assumption.

For sufficiency part, assume that supgary = S < oo. Letx = (x3),y = (yx) €
co(M, (X, ||.|]),a,&) and B,v € C. Then there exists positive real numbers p; and py
such that
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Az ||
. (M) _0
k—o0 )01
and A
ag
lim M (M) —0.
k—o00 p2

We now choose p3 > 0 such that

and

Now applying the convex and non decreasing properties of Orlicz function, we have

lim M <||Oék(5Axk + vAyk)H‘““)
k—o00 P3
ag ag

< limM(HHﬁoék:Aka + Hl|lvagpAyy)|| )

k—o0 P3

H ag A a H vl A ag

e (FO ot | Aoy

k—o0 P3 P3
BT AT SN LTI ATRY

k—o0 3 P3

1 1
< 1 M o A ag - A ag
- kl—>rgo (2,01 o Al + 202l|ak ol )

1 A ak 1 A ag
< lim M (M) + = lim M (M)
2 k—oo P1 k—o00 02

=0.

This implies that Sz + vy € co(M, (X, ]||.|]),a,a@) and hence it is a linear space over
C. O

Lemma 2.3.1. [30] For any a = (ay,), co(M, (X, ||.||),a, &) C co(M, (X, ||.]]),a,7)

Proof. Assume that lim infy, §;, > 0i.e. lim infk|%|“k’ > (. Then there exists ¢ > 0 such
that ¢|v|* < |ag|* VE sufficiently large.
Let z = (z) € co(M, (X, ]].||), @, @). Then for some p > 0, we have
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ag
T (M) _0

k—o0 P

Now we choose p; > 0 such that p < gp;. Using the non decreasing property of Orlicz

M(mmmw>§M(MAmW).
P1 p

This implies that = € co(M, (X, ||.]]), a, 7).
Hence co(M, (X, |].]]),a, &) C co(M, (X, ||.I),a,7). O

function, we have

Lemma 2.3.2. [30] Let a = (ay,). If co(M, (X, ||.]]),a, @) C co(M, (X,|].||),a,7) then

Proof. Assume that co(M, (X, |[.|[), @, &) C co(M, (X, [|.|[), @, 7) holds but lim inf ;| S5 [* =
0. Then there exists a sequence of positive integers (k(n)) satisfying the condition
1 <k(n)<k(n+1),n>1and

12|ty [T < Yy |, W > 1. (2.2)

Let z € X, with ||z|| = 1. We now define a sequence x = () as

2
Wyt Rz, if k=k(n); n>1

Az = (2.3)

0, otherwise

Let p > 0 be given. Then for k = k(n),n > 1, using convexity of M, we have

2
ag A (n) Ak (n)
M(m¢mu):M|m dl :M(1>§MG)%
p p nsp p) n

and M (M) = 0, otherwise.

This shows that limy_, ., M lloxBzel®™ ) — () and therefore z € co(M, (X, ||.|]),a, 7).
P

But on the other hand, for any p > 0 and & = k(n),n > 1 and from (2.2) and (2.3),

we obtain

__2
I Tk(n) 7 %k(n) 2|| %k (n)

M (H’YkAIkH“’“) - M Ye(n) - M (‘ka(n)%) > M (l)

P p Qo(n) n?p p

p

This shows that limy_,. M (M) £ 0 and hence = ¢ co(M, (X, ||.|]),a@ 7). a
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contradiction. This completes the proof. [

Next, combining Lemma (2.3.1) and Lemma(2.3.2), we obtain the following theorem.

Theorem 2.3.2. [30] For any a = (ax), co(M, (X, ||.]]),a, &) C co(M, (X, |].||),a,7) if
and only if lim inf, 0 > 0.

Theorem 2.3.3. [30] Forany a = (CLk),CO(M, (X7 ||||)7C_L75/) C CO(Ma <X7 HH)Jaa _) lf
and only if lim supy, o5, > 0.

Proof. Let lim sup ;|5 |* < co. Then there exists ¢ > 0 such that

QK| > |ag|* Vk sufficiently large. Then analogous to the proof of Lemma (2.3.1),
the sufficient part follows.

For the necessity part of the theorem, suppose ¢o(M, (X, ||.|]), a,7) C co(M, (X, |].|]),a, @)
holds. Suppose lim supy, d; = co. Then there exists a sequence of positive integers (k(n))

satisfying 1 < k(n) < k(n + 1);n > 1, for which
k)| > 1y |50, ¥ > 1 (2.4)

Now as proved in Lemma (2.3.2), corresponding to z € X with ||z|| = 1, we can con-

struct a sequence = = (xy) by

__2
Vi)t Rz, if k= k(n); n>1

0, otherwise

Az = (2.5)

Now in view of (2.4) and (2.5), we can show that = € c¢y(M, (X, ]|.||),a,7) but x ¢

co(M, (X,]|.]|), @, @) which contradicts our assumption. This completes the proof. O

On combining Theorem (2.3.2) and Theorem (2.3.3), one can obtain the following

theorem.

Theorem 2.3.4. [30] For any a = (ay,), co(M, (X, ||.|]),a, &) = co(M, (X, |].||),a,7) if
and only if 0 < lim inf,, 0, < lim sup,, 0 < oc.

Corollary 2.3.1. [30] Let a = (ay,). Then we have
1. co(M, (X, |]|]),a, @) C co(M, (X, ||.||),a) if and only if lim inf | |** > 0.
2. co(M, (X, ||.]),a) C co(M, (X, ||.]]), a, @) if and only if lim supy|a|* < oc.
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3. co(M, (X, [|]]), @, @) = co(M, (X, [[.|[), @) if and only if

0 < lim inf, |oy|™ < lim sup;, |ou,|™ < oo.

Proof. The statements (1), (2), (3) follow by taking v, = 1,Vk € N in Theorem (2.3.2),
(2.3.3), (2.3.4). 0

Lemma 2.3.3. [30] For any a = (ay),if co(M, (X, ||.|]),a,a) C co(M, (X,]].|]),b, &)
then lim infy.ci, > 0.

Proof. Suppose that c¢o(M, (X, ||.||), @, &) C co(M, (X, ||.]]), b, @) holds but lim infy.c;, =

0 i.e lim inf, % = 0. Then there exists a sequence of positive integers (k(n)) satisfying

ag

1 < k(n) < k(n + 1), for which
nbk(n) < Gk(n), Vn >1 (2.6)
Now, let z € X with ||z|| = 1. We can construct a sequence x = (z}) by

1
a;&)n wm z, ik =k(n); n>1

Az = 2.7)

0, otherwise

Let p > 0. Then for k = k(n),n > 1 and using properties of Orlicz function, we have

1
M (||akAfEk||ak> IV O S Y <|IZII“’“<">) <Ly (1)
p p np no\p

and M <M> = 0fork # k(n),n > 1.

p

p
k = k(n),n > 1 and from (2.6) and (2.7), we have

1
b T ak(n) »||bk(n)
M(HakA‘”k” ):M In 0 2| 2M< 11>2M<—1 )
P P pnn pve

This shows that limy_,.. M (M) # 0 and hence z ¢ co(M, (X, ]|.]]),b, @), a

contradiction. O

Thus limg_, o M <M> = 0 and hence = € ¢y(M, (X, ||.||), @, @). But, for each

Lemma 2.3.4. [30] For any & = (), co(M, (X, ||.]]), @, &) C co(M, (X, ]|].]]), b, &)
if lim infic, > 0
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Proof. Assume that lim infic; > 0i.e. lim insz—z > 0. Then there exists ¢ > 0 such that

Z—Z > ¢, Vk sufficiently large. Let v = (xy) € co(M, (X, ||.]]), @, &).

Ay||™
lim M (M) _o.

k—o0 P

Hence for a given € > 0, if we choose a positive number 7 such that n < 1 satisfying

Then for some p > 0,

M (7 ) < e. Then we have

M (M) <M (%) , Vk sufficiently large.
Since M is non decreasing, therefore Vk sufficiently large, we have ||a Az || < n <1
and hence ||apAzg|| < 1.

Since Orlicz function is convex, we can write,

b ak14 q
M(HO%A%H ) < M(M) <M (77_> <niM <1) < €,VEk,
p P P P

sufficiently large.
This implies limy, .o M (M) = 0 and hence = € co(M, (X, ||.]|), b, @).

Thus co(M, (X, ||.|]), @ a) C co(M, (X, ||.|]), b, @). O

Next combining lemma (2.3.3) and lemma (2.3.4), one can obtain the following the-

orem.

Theorem 2.3.5. [30] For any a = (ay,), co(M, (X, ||.|]), @, @) = co(M, (X, ]|].]]), b, @) if
and only if lim infy.c;, > 0

Lemma 2.3.5. [30] For any a = («ay,), if co(M, (X,]|].]]),b, @) C co(M, (X, |].]]),a, &)

then lim supj.cy, < o0.

Proof. Let the inclusion holds but lim supic; = oo. That is, lim supka—i = oo. Then there
exists a sequence of positive integers (k(n)) satisfying 1 < k(n) < k(n+1),n > 1, for
which

bk(n) > NGg(n); Vn > 1. (2.8)

Let z € X with ||z|| = 1. Now, we can define a sequence = = (zj) by

1

) if k= c >
N AL ko) 2z ifk=k(n); n>1 2.9)

0, otherwise
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Suppose p > 0. Then using properties of Orlicz function, for each k = k(n),n > 1; we

obtain

1
o (sl i s} ey 101
p p np n \p

and M (M) = 0 foreach k # k(n),n > 1.

This shows that limy,_,. M (w) = 0andsox € co(M, (X, ||.]]), b, @).
But, on the other hand, for each k = k(n),n > 1 and from (2.8) and (2.9), we obtain

1
ar T bk(n) »||ak(n)
M(HozkAka ):M || " 2] 2M< 11)2M< 1 )
p p pnn pVe

This implies that limy_.c M (w) £ 0 and hence = ¢ co(M, (X, ||.])a,a),

which is a contradiction. O]

Lemma 2.3.6. [30] For any & = (ay,), co(M, (X, ||.|]),b, &) C co(M, (X, ]|].I]),a, &) if

lim supj.cy, < oo.

Proof. Assume that lim supgcii.e. lim suka—’; < 00. Then 4Q) > 0 such that Z—Z < Q,Vk

sufficiently large. Then analogous to Lemma (2.3.5), we can easily show that
co(M, (X ][-11), b, @) C eo(M, (X, [I.1]), a, ). 0

Next, combining the Lemma (2.3.5) and Lemma (2.3.6), one can obtain the following
theorem.
Theorem 2.3.6. [30] For any a = (ay,), co(M, (X, ||.|]), b, @) = co(M, (X,]|].|]), a, &) if

and only if lim supjcy, < oo.

On combining the Theorem (2.3.5) and Theorem (2.3.6), one can obtain the following

theorem.

Theorem 2.3.7. [30] For any & = (), co(M, (X, ||.|]), @, @) = co(M, (X, ]|].|]), b, @) if
and only if 0 < lim inf,.c,, < lim sup,c, < o0.

Corollary 2.3.2. [30] For the sequence & = (), following statements holds:
1. oM. (X, |1}, &) = co(M, (X, |L./[).a, &) if and only if lim infia > 0.
2. co(M, (X, |1, a, &) = co(M, (X, ||.]]), @) if and only if lim supras, < oc.
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3. co(M, (X, [[]]), @, &) = co(M, (X, [[.|]), @) if and only if

0 < lim inf,a, < lim sup,a;, < oo.

Proof. The statements (1), (2), (3) follow by taking a, = 1;Vk and replacing b by
a in the Theorems (2.3.5), (2.3.6), (2.3.7) respectively. O

The results proved here can be used to establish the results of sequence spaces of
bounded and convergent type. The results can be used for further generalization of se-

quence space of these types or similar.

2.4 The Class [ (M, (X, ||.|]), a, @) of Vector Valued Dif-
ference Sequences
Let @ = (ax) and 7 = (%) be the sequences of complex numbers with non-zero terms

and @ = (a;) and b = (by,) be sequences of positive real numbers. Let X be a normed

space over C, and M be an Orlicz function. Now we introduce a new class as follows

loo(M, (X, [[I]), @, @)
Az ||o*
= {J; = (xy) : sup, M <M> < oo ,where x, € X, k > 1;for some p > 0} :
P

It is a class of normed space X -valued sequences.

Furthermore,

o ifap, =1Vk €N, Io(M,(X,]||.|]),a,a) is denoted by I (M, (X, ||.|]), @)
e ifap, =1Vk €N, (M, (X,]|.]]),a,a) is denoted by I (M, (X, ||.|]), a).

e ifay = ay = 1Yk € N, lo(M, (X, ]].]]),a @) is denoted by I (M, (X, ||.])))-

Now, we state and prove some of the properties of the linear structure of [ (M, (X, ||.||), @, &)
of vector valued difference sequences defined by using Orlicz function M. It is a gener-
alization of basic sequence space [,,. We characterize some topological linear structures

of lo(M, (X, ].]|), @, @) and then investigate some of the inclusion relations between the
classes I, (M, (X, ||.]]), @, @) that arise in terms of different @ and &.

We shall denote sup a;, = S, Vk € N.
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When ay, and b, both occur, then we use sup ax = S(a) and sup b, = S(b).

The following inequality is used to establish the some of the statements of this section:
|z + y|* < H{|z|* + |y|**}, where; z,y € C,0 < a, < sup,ap = S, and H =
max(1,2571).

Also ,we shall denote ¢, = Z—’; and 0, = |SE[*.

Theorem 2.4.1. The class l.(M, (X, ||.||), a, &) of difference sequences is a linear space

over C if and only if suprar = S < oc.

Proof. The proof of this theorem can done in the similar way that we have proved the

theorem (2.3.1) in the previous section. O

Theorem 2.4.2. For any sequence a = (ay,), loo (M, (X, ||.|]), @, @) C loo(M, (X, ]|.]]),a,7)
if and only if lim inf . 6 > 0.

Proof. Let lim inf), §;, > Oi.e. lim infk|%|“k > (. Then there exists ¢ > 0 such that

qye|™ < |ag|® Vk sufficiently large. Let z = (zx) € loo(M, (X, ||.]]), a, @), then for

some p > 0, we have

Ay ||
k p

Now we choose p; > 0 such that p < gp;. Using the property of Orlicz function, we have

u (H%Axkuak) <M (llamxkuak) .
P1 p

2 € loo(M, (X, [[]]), @, 7).

This implies that

Hence,
loo (M, (X, |[.]]), @, @) C leo(M, (X, [[.1]), @, 7).

Conversely, assume that .. (M, (X, ||.|]), @, &) C l(M, (X,]].|]), a, ) holds but lim
inf [ZE|* = 0. Then there exists a sequence of positive integers (k(n)) satisfying the

conditions

1 <k(n)<k(n+1),n>1and

1% Q) | < Vi ™, VR > 1 (2.10)
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Let z € X, with ||z|| = 1. We now define a sequence = = () such that

2

gyt Kz ifk=k(n); n>1

Az, = 2.11)

0, otherwise

Let p > 0 be given. Then for k = k(n),n > 1, using convexity of Orlicz function, we

have

2

Az, 1ok k(n) 5| |%k(n) 1 1) 1
M(Hak ol >:M [In” 0 2] :M(T>§M<_)_2
p p n*p p) n

and M (M) = 0, otherwise.

This shows that sup, M <M> < oo and therefore = € (M, (X, ||.||),a, &)

On the other hand, for any p > 0 and k = k(n),n > 1 and from (2.10) and (2.11),

we obtain ,

I Yk(n) 7 %k(n) 2|| %k (n)

M (H%A%H“’“) - M “k(n) - M (‘Vk(m |ak(n>L> > M (l)

o P Qe(n) n?p ) = )"
This shows that sup,, M(M) is not bounded and hence = ¢ [ (M, (X, ||.|]),a,7),
a contradiction. This completes the proof. 0

Theorem 2.4.3. For any a = (ag),lo(M, (X, ||.]]);@,7) C loo(M, (X, |].]|), @, @) if and
only if lim supy 6 > 0.

Proof. Let lim supy| =% |* < oo. Then there exists () > 0 such that

Q|| > |ax|* Yk sufficiently large. Then analogous to the proof of Theorem (2.4.2),
the sufficient part follows.

For the necessity part of the theorem, suppose o (M, (X, ||.||), a,7) C lo(M, (X, ||.|]), a, &)
holds. Suppose lim supy d; = co. Then there exists a sequence of positive integers k(n)
satisfying 1 < k(n) < k(n + 1);n > 1, for which

|y |5 > 1% |y | 50, Vi > 1 (2.12)

Now as proved in Theorem (2.4.2), corresponding to z € X with ||z|]| = 1, we can

construct a sequence x = () by
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2
Vi)t ke 2z, if k=k(n); n>1

Axy = (2.13)

0, otherwise

Now in view of (2.12) and (2.13), we can show that x € I.(M, (X, ||.||),a,7) but x ¢

loo(M, (X, ||.]]), @, &) which contradicts our assumption. This completes the proof.  []

On combining Theorem (2.4.2) and Theorem (2.4.3), one can obtain the following

theorem.

Theorem 2.4.4. For any a = (a),loo(M, (X, ||.|]), @, &) = l(M, (X, ||.|),a,7) if and
only if 0 < lim inf,, 65, < lim sup,, 6, < oo.

Corollary 2.4.1. For any a = (ay), we have

L loo(M, (X ]|, a, @) Cloo(M, (X, ]||.]]), @) if and only if lim inf j|ax|* > 0.
2. I (M, (X, ]]])s @) C loo(M, (X, |]-1]), @, @) if and only if lim supy|oy|™ < oc.

3o oo (M, (X, []]), @, &) = loo (M, (X, [].]]), @) if and only if

0 < lim inf,, |oy|* < lim sup,, |ag|™ < oc.

Proof. The statements (1), (2), (3) follow by taking 7, = 1,Vk € N in Theorem (2.4.2),
(2.4.3),(2.4.4). O

Theorem 2.4.5. For any a = (ou),if loo(M, (X, |.]]), @, @) C loo(M, (X, ||.]]),b,a) if
and only if lim infyc, > 0.

Proof. Suppose that [, (M, (X, ||.]]), @, @) C lo(M, (X, |].]]), b, @) holds but lim infy.c;, =

be
ag

1 < k(n) < k(n+ 1), for which

0 i.e lim inf}, 0. Then there exists a sequence of positive integers (k(n)) satisfying

nbk(n) < ak(n),Vn >1 (2.14)
Now, let z € X with ||z|| = 1. We can construct a sequence x = (zj) by
1
a;&l)n wm z itk =k(n); n>1

(2.15)
0, otherwise
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Let p > 0. Then for k = k(n),n > 1 and using properties of Orlicz function, we have

1

(Ll _ g 50 e Car () < L (1)
p P np no\p

and M <M> = 0fork # k(n),n > 1.

p

Thus sup,, M (M) < oo and hence = € [ (M, (X, ]|.]|),a, @). But, for each

k =k(n),n > 1 and from (2.14) and (2.15), we have

1
by, T ak(n) »||bk(n)
M(M):M [In_* 2| 2M<11>2M<L).
P P pnn pve

; |l Ay ||k
This shows that sup,, M (*=*="-=) is not bounded.

Hence x does not belong to I (M, (X, |].||), b, @), a contradiction.

Conversely, assume that lim inf,c;, > 0i.e. lim inka—IZ > (. Then there exists ¢ > 0

such that 2—i > q, Yk sufficiently large. Let x = (xy) € l(M, (X, ]|.]|),a, @). Then for

(HakA;kHak)

number 7 such that n < 1 satisfying n?M (%) < ¢, then we have M (M) <

some p > 0, sup, M < 00. Hence for a given € > 0, if we choose a positive

M (%) , Vk sufficiently large. Since M is non decreasing, therefore V£ sufficiently large,
we have ||agAxg||* < n < 1 and hence ||a,Azg|| < 1. Since Orlicz function is convex,

we can write,

A by, A a4 q 1
M<||Oék || ) §M<M> <M ("_) < niM (-) < ¢, Vk,
p P p P

sufficiently large.
This implies that sup,, M(M) < oo and 50 z € lo(M, (X,]|].||), b, @) and hence

loo(M, (X, [1]]),, @) € loo(M, (X, ||.1]), b, @) =

Theorem 2.4.6. For any sequence & = (ay), loo (M, (X, |].|]), b, @) C loo(M, (X,]].]]), @, @)
if and only if lim supy.ci, < oo.

Proof. Let the inclusion holds but lim supc;, = oo. That is, lim supy Y% — 0. Then there

ag
exists a sequence of positive integers (k(n)) satisfying 1 < k(n) < k(n+ 1),n > 1, for
which

bk(n) > nak(n);Vn > 1. (216)
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Let z € X with ||z|| = 1. Now, we can define a sequence = = () by

__1
Mgy = Gwn "0z ifk=k(n)in>1

0, otherwise

(2.17)

Suppose p > 0.Then using properties of Orlicz function, for each k = k(n),n > 1; we

obtain

1
o (a2 oz P 101
p p np noo\p

and M (M) = 0 for each k # k(n),n > 1.

This shows that sup,, M(M) < ocand so x € loo(M, (X, ||.|]),b, @). But, for

each k = k(n),n > 1 and from (2.16) and (2.17), we obtain

1
ar " Pk(n) | |ak(n)
pr (leso) _ g (I 0 (1Y (1),
p p pne pye

This implies that sup, M(M) is not bounded and hence x ¢ (M, (X, ||.|]), a, @),

which is a contradiction.

Conversely, assume that lim supcgi.e. lim SquZ_]Z < oo. Then 3@ > 0 such that
Z—’Z < @, Vk sufficiently large. Then analogous to Theorem (2.4.5), we can easily show
that

Loo (M, (X, [1]]),0, @) C loo(M, (X, |1]]), @ ). =

Next, combining the Theorem (2.4.5) and Theorem (2.4.6), one can obtain the fol-

lowing theorem.

loo(M, (X, [1]]), b, @)

Theorem 2.4.7. For any sequence & = (cv,), loo (M, (X, ||.]]), @, @)
if and only if 0 < lim inf,.c;; < lim sup,.c;, < oo.

In next section, we define and study the class I (M, X, (Y, ||.||)) of Banach space Y —
valued functions defined by Orlicz function. We study some of the topological structures

of this class.
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2.5 TheClass! (M, X,(Y,|.||) of Banach Space Y -Valued

Functions

In functional analysis, the function [? is a natural generalization of the p-norm on finite-
dimensional linear space. It has a very rich topological structure. The idea of the Orlicz
sequence spaces were firstly introduced by W. Orlicz in 1931 as a natural generalization

of the classical space [”.

Recently, a large number of research studies have been carried out on various types
of topological structures of Orlicz sequence and function spaces. Orlicz spaces have been
studied by numerous researchers in a various aspects. They have been introduced and
studied the algebraic and topological properties of various sequence and function spaces
using Orlicz function as the generalizations of various well known sequence spaces and
function spaces. Before proceeding with the main work, we begin with recalling some

notations and basic definitions that are used in this section.

Definition 7. A non-decreasing, continuous, and convex function M : [0,00) — [0, 00)

is said to be an Orlicz function if M satisfies the following conditions:

1. M(0) =0
2. M(x) > 0forz>0

3. M(z) = o0 as x — oc. (see [50])

It is said to satisfy As- condition, if M (2z) < QM (x), for all x > 0 and a constant
Q) > 0. It is equivalent to the condition M (Kxz) < QKM (z), Yz and K > 1.(see [50])

Definition 8. Let w be the space of all real or complex valued sequences r = (xy).
Lindenstrauss and Tzafriri [51|] used the idea of Orlicz function to construct the following

sequence space

ZM:inf{x: () € w: ZM (%) < oo,forsomep>0}

k=1
of scalars © = (), known as an Orlicz sequence space. The space ly; forms a Banach

space with the norm defined by
ol = inf {p> 0250, 0 () <1}
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called Luxemburg norm.

The space ly; is closely related to the space 1, with M (x) = 2P, (p > 1).

It is proved that Orlicz sequence space contain a subspace isomorphic to /, and have
very rich topological and geometrical properties that do not occur in ordinary [, space.
The more extensive studies including the applications of Orlicz spaces, are given Rao and
Ren [74]. In fact, Maddox [56] , Srivastava and Pahari[88] and many others have been
introduced and studied the algebraic and topological properties of various function spaces
in normed space. All these function spaces generalize and unify various existing basic

sequence spaces studied in Functional Analysis.

Let X be an arbitrary non empty set(not necessarily countable) and F(X) be the
collection of all finite subsets of X directed by inclusion relation. Let (Y, ||.||) be a Banach
space over the field of complex number C. We now introduce a new class of Banach space

Y - valued functions using Orlicz function M as follows:

Lo (M, X, (Y, |.])) = {¢ X —Y isup M (”(ﬁ(px)”) < oo, for some p > 0}(2.18)
rzeX

Moreover, we define the subclass Io. (M, X, (Y, ||.||) of I« (M, X, (Y, ||.I])) as

Lo(M, X, (Y, ].])) = {¢ X — Y :supM (M> < o0, forall p > 0} (2.19)

reX P

2.5.1 Linear Topological Structures of [ (M, X, (Y,|.]|))

In this subsection, we investigate some results that characterize the linear topological

structure of the class I, (M, X, (Y,]|.]|)) by endowing it with suitable norm.

As far as the linear space structures of the class I, (M, X, (Y, ||.||)) over the field C are
concerned, we take point-wise vector operations, i.e, for any ¢, v € lo(M, X, (Y, |.|),

we have
(p+1) =¢(x) + ¢(z),z € X
and (a¢)(z) = ag(x), 2 € X, o € C.

Moreover, we denote zero element of the space by # by which we mean the function
0 : X — Y such that f(x) = 0 forall z € X.

Theorem 2.5.1. The class l..(M, X, (Y, |.||)) forms a linear space over the field C with

respect to the point-wise vector operations.
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Proof. Let us suppose that ¢, ¢ € Io(M, X, (Y,].]|)), p1 > 0and p, > 0 associated with
¢ and 9 respectively and scalars «v, § € C. Then there exists .J;, Jo € F(X) such that

sup M (M) < o00,Vz € (X\ J1),

rzeX P1

and

sup M (M> < oo,V € (X\ Jp).

zeX P2

Let us choose

ps = Max {2|a|py, 2(B|p2} -

Since M is non-decreasing and convex, we have

sup M (HO«M:C) + ﬁwxm) s M (auqs(:c)n . ﬁnwxm)
zeX P3 zeX pP3 03
<L upar (I0)  J gy g (W)
2 vex P1 2 zex 02

forall x € X\ (J1 U Jo).

Thus for 6,1 € Lu(M, X, (Y, |.|)), we have a6 + 80 € Lo (M, X, (¥, |.])).
Therefore, [ (M, X, (Y, ]|.]|)) forms a linear space over field C. O

Theorem 2.5.2. The class (M, X, (Y, ||.|])) forms a normed space with respect to the
norm defined by

161 =inf{p>o:supM("W)”) < 1}.

zeX

Proof. By definition,

9]|c = inf {p >0:sup M (M> < 1} (2.20)

rzeX P
We see that M (0) = 0.

Therefore for ¢ = 0, we easily get ||¢||« = 0. Thus, we have ||¢|| > 0, for all
¢ € loo(M, X, (Y, |[.]1))-

Conversely suppose that ||¢|| = 0.
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That is,

inf{p >0:sup M (||gb(m)||> < 1} — 0.

zeX P

This implies that for given € > 0 there exists some p.(0 < p. < ¢€), such that

supar (1490) < 1

zeX Pe
Thus
a3 (YY) < o (1002) <
zeX P zeX Pe
Suppose ¢(x) # 0 for some = € X. Clearly e — 0 implies that
lo@il

€

apar (1900) <,

zeX Pe
Thus ¢(z) = 0 for each € X and hence ¢ = 0.
For second property of normed space, let p; > 0 and p, > 0 be such that

sup M (M) <L,Vze X

rzeX P1

This contradicts that

and

sup M (M) <1,Vx e X.

reX P2

Then for p3 = p; + p2, we have

Y, (H¢(fv) +1/1(x)||> <M <H<b(r)|\ + Hw@)ll)

P3 p1+ P2
<P M<||¢(96)||>Jr P2 M(W(fﬁ)!l)
p1+ po P1 p1 + P2 P2

This implies that

apar (VN oy (I, oo (Y,
zeX P3 P1+ P2 zeXx 1 P1+ P2 zeX P2
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Thus

mf{p>0:supM<H¢(x)p ()||> }<p3_p1+p2

zeX

Hence

mf{p =0 sup M (H¢(S€) +1/1(9€)||) < 1}
zeX p
Sinf{pl >O:supM(”¢( )H) < 1}+inf{p2 >O:supM(||¢(x)||) < 1}
zeX P1 zeX P2

and hence by (2.20), we get

16+ Plloo < lPlloo + N[ lloc-

Finally, if o = 0, then obviously
ladlloo = [l #lloo

So, suppose o # 0, we have

Had)uw:mf{pm:supM<||a¢ ) }
zeX
:inf{w>0:sup]\/[<“¢( ) 1}
of 77T U/l

=l [[#]]oo

This shows that [ (M, X, (Y, ||.||)) forms a normed space with respect to the norm ||.||o.
This completes the proof. ]

Theorem 2.5.3. The normed space l.(M, X, (Y, ||.||)) is complete with respect to the
norm ||.||s defined by

folle = int { >0 supr (120 <11,

rzeX 1Y

Proof. Let {¢,} be a Cauchy sequence in [, (M, X, (Y, |.]|)). Let p and ¢, be fixed. Then

for ]ﬁo > 0, there exists a positive integer N such that

[P — Gmlloc < Vn m > N (2.21)
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By definition of norm for [ (M, X, (Y, |.]|)), we get

<||¢n(x) — Om (@)l

sup M

zeX

) <1,Vn,m >N

and for each © € X, we have

lbu(z) — ¢m<w>u)
M \vé N
( 16n—bmlloe ) =172

Hence, one can find p > 1, with

(5)e(4)

where, ¢ is Kernel associated with M such that for each z € X,

v (i) = (3)s(5) oz

Using the integral representation of Orlicz function M, we get

[[¢n(2) = Pm(@)]] _
H¢n - ¢mHoo -

plo,
foreachz € X and Vn,m > N.

Therefore for each x € X and in view of (2.21), we get

l|on(z) — dm(2)|| < € Yn,m > N.

(2.22)

The sequence {¢, (z)} is Cauchy sequence in (Y, ||.||). Since, (Y ||.||) is complete there-

fore for each x € X there exist, ¢(z) € Y such that

[|on(x) — P (2)|] — 0 as n — o0.

Further for € > 0, there exists a positive integer /Ny > 1 such that

P = Omlloc < €0, m = No.

We now choose p > 0 such that
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|fn = dmlloc < p <e

Then p satisfies

60 (z) - ¢m<x>|l>
EEE?M( o —onlle ) =1

and so forxz € X

M (||¢”(x) ;%(x)”) <1 Vn,m> Ny (2.23)

Taking m — oo in (2.23) and then taking supremum over z € X, we get

(qun(w) -

p

sup M
zeX

“b(x)”) <1 V¥n> N, (2.24)

Taking infimum of such p’s, we get

|¢n — @[|oo = inf {,0 >0:supM

zeX

(Hfbn(l‘) — o)

)§1}§p<e,Vn2No
P

That is,
[¢n — | <e.

But in view of (2.24), we have

(bn - 925 S loo(M7X7 (Y7 HH))

Since ¢, € (M, X, (Y, ]|.]])) , it follows that

¢ = b+ & — Pn € loo(M, X, (Y, |.])))-

Thus, ¢ € lo(M, X, (Y, ||.||)), showing that I, (M, X, (Y, ||.]|))is complete. O

Theorem 2.5.4. If M satisfies the As- condition then we have

loo (M, X, (Y, ||L[])) = loo (M, X, (Y, [[]))-
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Proof. In view of definition (2.18) and (2.19), it is obvious that

loo (M, X, (Y, [ D) € loe (M, X, (Y, ]1)) (2.25)

Hence to prove assertion, it is sufficient to show that

Suppose that ¢ € I.(M, X, (Y, ||.||)) then for some p; > 0,

apsr (1421
reX P1

Let po > 0. If p; < p, then clearly

sup 01 <|I¢/()2)I|) sup (||¢/()1)||>

Let ps < p1. Then % > 1.

Since, M satisfies the Ay—condition, there exists a constant /X such that

pr (LAY _ g (1L Y ¢ oo (1060 o,

for each z € X, which implies that

sup (|\¢( )II) 50, Vg > 0,
J:EX P2

This shows that
(M, X, (Y, [11)) € oo (M, X, (Y, |[1])) (2.26)

Hence in view of (2.25)and (2.26), we have
loo(M, X, (Y, [|) = Lo (M, X, (Y, |[-1]))-

This completes the proof. ]

Theorem 2.5.5. The normed space lo(M, X, (Y, ||.||)) is normal.

Proof. Let ¢ € lo(M, X, (Y,||.]])) and p > 0 be associated with ¢.
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Then we have

sup M (M) < 0.

reX P

Now, if we take scalars «(z), x € X such that |o(z)| < 1, then have

sup at (1A < s o (1) < gy (12001 o

zeX P zeX P zeX Y

This shows that a¢ € (M, X, (Y,].||)) and hence (M, X, (Y,].]|)) is normal.
O

This work establishes some of the results that characterize the linear topological struc-
tures of the new class I, (M, X, (Y, ||.||)) of Banach space valued function space using Or-
licz function. In fact, these results can be used for further generalization and unification
of the well known complex sequence spaces and function spaces studied in Functional
Analysis. Moreover it can be used to explore the linear and topological properties of new

sequence and function spaces.
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Chapter 3

SEQUENCE SPACES DEFINED BY
¢— FUNCTION AND IDEAL
CONVERGENCE

3.1 Sequence Spaces Defined by ®— Function

In this chapter, we introduce and study the sequence spaces defined by ®— function and
ideal convergence in 2— normed space defined by Orlicz function. Before proceeding
to the main work, we state some of the necessary definitions and notations used in this

chapter.

The classical sequence space is a special case of function space if the domain is restricted
to the set of natural numbers. The vector space of all sequences of complex numbers is
denoted by w. Any linear subspace of w is called a sequence space. Let [, c and ¢( be the

linear spaces of bounded, convergent and null sequences with complex terms respectively,

and they are defined by
e = {o= () €w: sup,|me] < o0}
¢ = {r=(vy) €w:3Il € Csuchthat |z — | - 0as k — oo}
co = {r=(v) €Ew:|zg] > 0ask— oo}
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The norm in these spaces is given by

HxH = Supkla:k!, ke N.

Definition 9. A linear space X is said to be a paranormed space[9)5)] if there is a function

g : X — R satisfying

1. g(0) = 0 where 8 = (0,0, ---) be a zero vector in X,

3. g(x+y) < g(x)+ g(y) (subadditivity), and

4. the scalar multiplication is continuous.

A paranorm g is called total if g(z) = 0 if and only if = 0[95]. The pair (X, g)
is called total paranormed space. Nakano[64] and Simmons[84]] introduced the notion of
paranormed sequence space. Later on, it was further investigated by some other authors
like Maddox[56]], Pahari[[66} 67, 168, 70, [71], Tripathy and Sen[92].

Definition 10. An Orlicz function is a function M : [0,00) — [0, 00) which is continuous,
non decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(z) — oo as
xz — 00.[50]

An Orlicz function M is said to satisfy As-condition[50] if there exists a constant
L > 0 such that M (2x) < LM (x) for all z > 0.
W. Orlicz used the idea of Orlicz function to construct the Orlicz sequence space. Linden-
strauss and Tzafriri[S1] used the idea of Orlicz function to construct the Orlicz sequence

space
Iy = {x:(xk)EuJ: E {M(@)] < o0, forsomep>0}.
p
k=1

The space [); becomes a Banach space [51]] with the norm
_- Ny (1
|z[a =infQp>0: ) M (=2) <1},

k=1 P
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The space [, is closely related to the sequence space [, with
M(z)=2a, (1<p<o0).

Definition 11. A sequence space X is said to be solid(normal) [63] if for any sequence
(x) in a sequence space X and for all sequences (\) of scalars with |\¢| < 1 for all

natural number k implies that (\yxy) € X.

Definition 12. For any sequence x = (xy,), the difference sequence Az is defined by

Az = (Azp)ply = (T — Tp-1)321-

Kizmaz [46] defined the sequence spaces

L lo(A)={rcw: Az €l.}.

2. ¢(A)={r cw: Az e c}.

3. c(A)={r cw: Az € ¢}.

A sequence © = (zy) is called A-convergent if the lim xy, is finite and hence exists.
Every convergent sequence is A-convergent but not conversely. For, consider a sequence
whose general term is x;, = k+ 1 for all natural numbers k. Then, (Azy) = (z—Tg11) =

(—1) for each natural numbers k. Here, x = (z}) is divergent but it is A-convergent. This

example illustrates the importance of studying the difference sequences.

Definition 13. A continuous function f : R — [0,00) is called a ® -function [36]] if
f(t) = 0 if and only if t = 0, even and non- decreasing on [0,00). The ®-function is

closely related to the Orlicz function.

Herawati and Gultom [36] in 2019 introduced certain type of sequence spaces defined

by ®-function and studied their paranormed structures on these spaces.

We now introduce the following class of difference sequences [31] by extending the

sequence spaces studied by Herawati and Gultom[36].

. WO(A,f):{x:(xk)6w:(§|p>0);%zzzlf<%> —>Oasn—>oo}.
. W(A,f):{a::(xk) ew;(3p>0)(31>0);%zg:1f(‘m+”) —>0asn—>oo}.
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F WA ) = {r= () €w: (3p> 0):supnd, T, £ (1552) < oo

where f is a -function.

3.2 Some Topological Properties of the Class W,(A, f)

In this section, we study some topological properties of the class Wy (A, f).

Theorem 3.2.1. [31]If -function f satisfies Ay-condition then Wy(A, f) forms a linear

space over C.

Proof. Let x = (xy) and y = (yx) be sequences in Wy(A, f). Then there exist p; > 0
and p, > 0 such that

1 & A
— f(—' xk‘) —~0asn — 0o (3.1
n —1 P1

and
1 — A
—Zf(ﬂ)—)()asn—)oo (3.2)
n —1 P2

Let us choose p = max {pi, p2}. Using the non-decreasing property of f on [0, c0)

and in view of (3.1) and (3.2), we can write

1 — |Azy, + Ay 1 & |Azy| 1 — | Ayy|
Ly (fBetindy o Ly (1B sy (I
k=1 k=1 k=1
] — A ] — A
< —Zf(‘ xk|>+— f(‘ yk|)—>0asn—>oo.
”kzl P1 nk:l P2

This shows that
{E—f—y S WO(A7f)

Again, let x € Wy(A, f) and o € C. Then

lZL}E(M) — 0 as n — oo.
n P

k=1
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We need to show that az € Wy (A, f).

The proof is obvious if &« = 0. So, let a # 0. Then || > 0.

By Archimedian property of real numbers, there exists n; € N such that |a| < 2™, Since
f is non-decreasing function on [0, co) and f satisfies Ay-condition, there exists M > 0,
such that

flalzy) < f(2™ay) < M™ f(xy) forall k € N

Hence,
\ank\) (\aHAwkl) M < (]Axk\)
< — | =+ 0asn — oo.
2o 2 < (S
This shows that ax € Wy (A, f) and hence Wy (A, f) is a linear space. O

Theorem 3.2.2. [31||The space Wy(A, f) is a paranormed space with a paranorm
g : Wo(A, f) — R defined by

g(x):inf{p>0:%zn:f(%)gl;nEN}.

k=1

Proof. The proof of g(z) > 0 and g(—x) = g¢(z) can be easily shown for all z €
Wo(A, f).

For the third property of paranorm, let x = (z) and y = (y;) be sequences in Wy(A, f).
Then there exist p;, p2 > 0 such that

A
—Z (‘ $k|> —0asn — oo
k=1
and

A
—Z (’ yk‘) —0asn — oo.
k=1

Using non-decreasing property of f on [0, c0), we can obtain
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a A
glx+y) = inf{p>0:%2f(w> Sl}
k=1

P
f D — 1
>§1}+1n{p2>0 nglf< ” < }

< inf >0:—
< win=0 3o ()

P
= g(x)+g(y).

Therefore,
g(x+y) < g(x)+ g(y) forall z,y € Wy(A, f).

Finally, we prove the continuity of scalar multiplication.
Let z € Wy(A, f) be such that

g(z\™ —z,) = 0asn — oo

and («v,) a sequence of scalars such that a,, — v as n — oc.

Now,

n : 1 ¢
g(anx,(g)—ozxk) = 1nf{p>0:52f

IN
5
=
—N
S
\Y
=}

1 -, [ Az — A
+|c| inf p2:<£)>0;_2f |Azy” — Azl <1
|af ni3 P2

= Jan—al g (o) +lalg (2" — 1)

—0as a, — a.

Therefore,

g(an:c;") — axg) — 0,88 a, — .

Hence, Wy (A, f) is a paranormed space. O
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Theorem 3.2.3. [31]If f as ®-function satisfies the convex and As-condition then the

space Wy (A, f) is a complete paranormed space.

Proof. Let (™) be a Cauchy sequence in Wy (A, f), where (2! ) = (2™, z{ ... ).
k y s€q k 1 T2

Then there exists n; € N such that for every m > n > ny;

€

s (m) _ A ()
g (2t — 2m) 26.12f<|A$k Az \) <1
S
k=1

Using the convexity of f, we have

s

18 . " 1 Az™ = AW
EZf(|Am,(€)—Ax,(€)|>§e;Zf<’ k - | <€
k=1

k=1
Since ¢ > 0 was arbitrary and s — oo, we have
f <|Axl(€m) — Axl(cn)|> =0 forallm > n > n,.
This follows that

(m)
k

|z —a:,(fn)| <eforallm >n>n,.

This shows that (:c,(cn)> is a Cauchy sequence in R. Since R is complete, there exists

z;. € R such that
(n)

. n
lim,, oo ;" = Ty

Thus for every n > nq,

o =l = — T 2| = T o) - o) < e

Since (x,i")) € Wo(A, f), we can write

1S A(”)
—Zf 1Az | — 0 as s — oo.
% =1 P
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Using continuity of f, we have

1< Az 1< lim,,_, o Az™
_Zf(M) :_Zf<| o ATy, \)
] p ]

k=1 k=1

p

1 S A (n)
=lim,,_,0o— E f (M) =0ass—
5 p
k=1

Thus,

1O A
—Zf(ﬂ>—>0ass—>oo.
5

k=1 P

Hence, (z1) € Wo(A, f).
Finally, we show that g(z™ — z) — 0 asn — oc.

Using the continuity of f, we have

1< Az™ — Az 1< Az™ — limy, oo Az'™
+ Zf | k k| <= Zf ’ k k |
= =1

p p

1 |AZE](:) - Ax,(cm)\
= - E <1.
77‘1LI—>H<1>0 S pt / < s1

p

Thus

p

s (n)
g(xm)_x):mf{pw:lzf <|Awk—mkl> . 1},
S
k=1

This implies that g(z(™ — x) < p for every p > 0 as s — oo.

It follows that there exists a real sequence ( 2%) ,q > 1 for a real number p, together with

n p
g(z! )—x)<§,q21.

Thus we obtain g(z(™ — 2) — 0asn — oo.

Hence, Wy (A, f) is complete paranormed space.

Theorem 3.2.4. [31][The space Wy(A, f) is normal.

Proof. Let x = (x) € Wo(A, f). Then there exists p > 0 such that
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1 < A
—Zf(’ $k|)—>0asn—>oo.
= P

Let (o) be a sequence of scalars satisfying |ax| < 1 forall & > 1.

Using non-decreasing property of f, we have

f(law]Azy) < f(Azy)

Then,
lzf (|Oék:AfEk|) _ lzf <|Oék||Al”k|> < lzf (|A$k|> 0 as n — oo,
"o p "= p [t p

This shows that oy, € Wo(A, f) and hence Wy (A, f) is normal.

]

In this section, we have established some of the results that characterize the linear
topological properties of the difference sequence space Wy (A, f) defined by non-negative
real valued ®-function on R. Moreover the result can be used to prove the results related

to the linear and topological properties of the classes W (A, f) and W (A, f).

3.3 OnlIdeal Convergence Sequence Spaces and their Topo-

logical Properties

Infinite sequence and series played key role in studying various branches of mathematics
and mathematical sciences. But on the same time, mathematicians were facing problems
to calculate the limit of infinite series, mainly with those having divergent in behaviour.
The concept of convergence provides a general framework to find the solutions of many
problems. Since then mathematicians developed different methods of convergence to as-
sign a limit in some sense to a series of divergent in nature. This limit is called generalized
limit or summability technique. Many mathematicians developed different summability
methods for divergent series and sequences. The following method given by an example

is due to Cesaro.
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Consider z = (xz,,). Let us define y = (yx) by

_ T1+T2+... 4Tk
Yk = k

k
= % D i1 Ti

The sequence x = (x,,) is said to be Cesaro summable to a number z if limy_, o (yx)=2.
It is written as x,, — 2(C, 1) or lim,,_,(x,)=2(C, 1). The following example is (C, 1)-

summable although it is divergent in usual sense.

Example 3. If z,, = (—1)", n € N, then

0 if k=2n
Yk =

% if k=2n+1
We see that limy,_, yr, = 0. This gives that x = (x,,) is (C,1)- summable to 0. That
is lim,, o ©,=0(C, 1). In this example, we see that a divergent series can be treated as

convergence sequence.

The (C, 1)-summability always preserves the usual convergence.

The (C, 1)- summability can be extended to (C, 2)-summability and can be extended
further upto (C, k)-summability. These summability methods can be expressed by infinite

matrix transformations, for instances: Basar[4], Sahani et al.[[77], Wilansky[95].

Let x = (x,) be given sequence. The A— transformation can be defined by y = (y,,)
as follows o
Yp = Ax = (Z anrxy),n =1,2,3...
k=1
The sequence x = (z,,) is called A— summable or A— convergent to a number [, if the
transformed sequence y = (y,,) exists and is convergent to /. This can be written as

A— lim =z, =1
n—soo

Next, we discuss about statistical convergence. The idea of statistical convergence was
introduced by Fast[23]] in 1951. It was reintroduced by Schoenberg in 1959. The statistical

convergence is based on the notation of natural density of subsets of natural number N.

46



The natural density of a set X' C N denoted by §(K') and is defined by

d(K) = lim %\{kgn:kEK}\

n——~oo

provided that the limit on right hand side exists. Since J( /') does not exist for all subsets

of N, it is convenient to use upper and lower density defined by

1
O(K) =limsup, eo—|{k <n:keK}|
n

and .
O(K) = liminf, o |{k <n:ke K}
n

For arbitrary subsets A and B of natural number N, we have

1. If 6(A) exists then

2. If A C Bthend(A) < §(B)

3. If A is finite set then §(A) =0

4. §(A°)=1—0(A), where A“=N-—- A
5.0{2n:neN})=6({2n—1:neN}) =3

6. ({n*:n e N}) =0.
Now, we give the definition of statistical convergence introduced by Henry Fast in
1951 [23]].

Definition 14. A sequence © = (x}) is said to be statistical convergent to a number l, if

for each € > 0, we have

1
lim —|{k<n:|zx—1|>€e}|=0

n—oo N
Then l is called statistical limit of v = () and is written as

k—o0

Thus, a sequence () of normed space X is called statistically convergent to x € X
if for all € > 0, the set A(e) = {k € N: ||z, — z|| > €} has natural density zero.
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Let S denote the set of all statistically convergent sequence of real numbers. Then S is a
linear subspace of w and statistical convergence acts as a linear functional on this space.
The ordinary convergence implies statistical convergence but converse may not be true as
shown by following example. Let us define x = (z) by 2, = 1 for k = n? and 7, = 0

otherwise.

For all € > 0, we have
{k<n:|zg,—0>e ={k<n:z,=1}C {1%,2°,3% ..}.
This last set has natural density zero. Thus

S— lim z, =0
k— 00

But (zy) is not convergent in ordinary sense. Also, we state the following facts

1. A subsequence of a convergent sequence is convergent but this may not be true for

statistical convergence.

2. In ususal sense, every convergence sequence is bounded but it may not hold in case

of statistical convergence.

3.3.1 Ideal Convergence in 2-Normed Space

Mathematical analysis includes theory of real and complex variables, measure theory,
calculus, frame theory, differential equations, infinite series etc. In the development of
calculus and some other branches of mathematics, infinite series played important role.
But the mathematicians were facing the problems of calculating the limits of infinite series
and sequences, in particular with those having divergent behaviour. Then mathematicians
developed the various types of convergence to assign a limit in some sense to divergent
sequences. In this section, we will introduce and study the sequence spaces defined by
ideal convergence and Orlicz function. We state some definitions and notations that are

used in this section.

A sequence space S is said to be sequence algebra if (z).(yx) = (zxyx) € S when-

ever (xy), (yx) € S.
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A sequence (z,,) in a 2— normed space (X, ||., .||) is called Cauchy if

lim ||z, — 2, 2|| = 0,forall z € X.

m,n—o0

A sequence (z,,) in 2— normed spaced (X, ||.,.||) is called convergent sequence if there
exists x € X such that lim,, . ||z, — z,z|| =0 for all z € X. A complete 2— normed

space is called 2— Banach space.

The notion of ideal convergence was introduced as a generalization of statistical con-
vergence, first by Kostyrko et al.[48] . For more details about the ideal convergence
sequence space, one may refer to Dutta[18]], Hazarika et al.[35], Mursaleen and Alotaibi
[60], Mursaleen and Mohiduddine [61]], Mursaleen and Sharma [62]], Sahiner et al.[78]],
Salat, et al.[[79], Savas[83, 81]], Tripathy and Hazarika [90] and many others.

A family of sets I C 2% is said to be an ideal[48] on X if

1. A€ Iand B C Aimplies that B € I (Hereditary Property)
2. A, B € I implies AU B € I (Additive Property).

Example 4. The class of all finite subsets of set of natural number is an ideal.[48]

A non-empty family of sets ' C 2% is said to be a filter[48] on X if and only if

l. o ¢ F
2. A€ Fand A C Bimplies B € F
3. A,B € Fimplies ANB € F.

Example 5. The class of all subsets of N given by {N — A : A is proper subsets of N} is
a filter of N.[48]]

Let S be a proper ideal in X. Then the family of sets
F(S)={M C X : thereexists A €S suchthat M = X — A} is afilter in X.[48]

Definition 15. Let I C 2" be non trivial ideal in N. The sequence (x,,) in a normed space

(X, ||.]]) is said to be ideal convergent (I— convergent) to x € X if the set
Ale) ={n e N: |z, —z| > €} € I, foreach e > 0.

In this case, we write I — lim,,__ ..o, = T
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A sequence (z,,) in X is said to be /— Cauchy if for every ¢ > 0 there exists a number

m = m(e) such that {n € N : ||z, — x,,,|| > €} € I.

A sequence (z,,) in X is said to be /— bounded if there exists M/ > 0 such that
{neN:|z,| >M} el

Let I C 2N be a non trivial ideal in N. The sequence (x,) of 2— normed space
(X, |I-, -Il) is called I— convergent to x if, the set {n € N : ||z,, — x, z|| > €} € I for each
z € X and for each € > (.

This can be written as  — lim,,_,, ||z, — z, z|| = 0. Now, we give an example in 2—

normed space.

Example 6. Let [ = I, the subsets of N having natural density zero. Let us define (x,)
in 2— normed space (X, ||., .||) by z,, = (0,n) forn = k3, k € Nand z,,= (0,0) otherwise.

Let | = (0,0) and z = (21, z9). Then foralle > 0 and z € X,
{neN:|z,—1z|| >e} C {1,827, ..}

We have §({n € N : ||z, — I, z|| > €}) = 0 for every ¢ > 0 and z € X. This implies that
S —lim, e ||z, — I, 2|| = 0. But the sequence (x,,) is not convergent to | in ordinary

sense.

3.3.2 Some Results on the Sequence Spaces Defined by Ideal Con-

vergence

In this section, we introduce and study the classes of sequence given below.

Let(X,|.,.]|) be any 2— normed space. Let w denote the space of all vector valued

sequences defined over (X, ||.,.||).

CHM, |-,-11)
= {x:(xk)EM:]— lim M(

lzx — 1 2|
p

k—so00

>:0, forsomep>0,l€X,z€X}

[k, 2]l
p

CHM,|.,.I|) = {x: (rp) Ew: 1 — lim M(

k—o0

)zO,forsomep>0,zEX}
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loo(M,]|.,.]|) = {x = (x) € w:sup, M (@) < oo, for some p > 0, z € X}

Also, we write
m! (M, ||.,.|) = C*(M, ]I, .|) N loo(M, ||, .II)

mo(M, ., 11) = Co (M, ||, 1) N 1o (M, ]|, - ])

The classes of sequence denoted by CL (M, ||., .||), CL(M, ||., 1), mE (M, ||., .||) and m{ (M, ||., .||)
are of types I— convergent, /— null, bounded /— convergent and bounded /— null re-

spectively.

Theorem 3.3.1. The sequence spaces C'(M,|.,.||) , CL(M,||.,.||), m'(M,|.,.||) and

m{(M, ||.,.||) are linear spaces.

Proof. We prove that the space C! (M, ||, .||) is a linear spaces. Letz = (z;) andy = (y)
be sequences in CT (M, ||, .||). Then there exists p1, p» > 0 such that

I —lim,_, o M (W) =0forsomel; € X and z € X

and [ — limy_ oo M (Hy’“;+zu> =(0forsomel, € X and z € X.

That is, for given positive € , we have

_1
Dlz{keN:M(”xkp—l’ZH)>§}el (3.3)

1

_1
Dzz{kzeN:M(kap—z’zH)>§}€I (3.4)

2

Let o and (3 be the scalars. Choose
p = max {2|a|p1, 2(B|p2} .

Using non-decreasing and convexity properties of Orlicz function M, we have

Y, (H(aﬂfk + By) — (o + 5l2)72|!) <M (\a!-ka — b2l 1By — lw!l)
P P P

<M <w) n M(M)
P P2

From (3.3) and (3.4), we have
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{kEN:M (”(O‘x”ﬁyk)_(O‘ll+5l2)’z|’) > e} C D, UD,.

p
Hence , C*(M, ||, .||) is a linear space.
The proof of the other spaces will follow similarly. [

Theorem 3.3.2. The spaces mi (M, ||.,.||) and m* (M, ||.,.]|) are Banach spaces with the

norm given by
||z|| = inf {p > 0:sup, M <Hz’“ZH) <l ze X}

p

Proof. The proof of this theorem is just a routine verification and therefore it is omitted.
O

Theorem 3.3.3. If the Orlicz functions M, M, My satisfy the Ay-condition, then

1. SOy, ) € S(MaoMy .,

2. S(My, ||, .1 N S(Ms, ||, .|]) € S(My + Ms, ||, .||) for S = C*, CL,m?,m}

Proof. Letx = (z) € CI(My,||.,.||). Then there exists a positive number p such that

[— lim M, (M) —0,forz € X.
p

k—o0

Let e > 0. Since M, is an Orlicz function, there exists 0 < 1 < 1 such that M(t) < e,

whenever 7 > t > 0. Now we define the following sets

Al:{kEN:MI (M) Sn}
p

Ay = {keN:M1 (Hx’“”z”) >n}
p

If £ € A, then

1 1
(Ll Ly, (Lol oy Ly, (lascl))
P n p n p
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Using convexity and non- decreasing properties of Orlicz function M, we can write

i (22 ()

| | 1 |28, 2|
Lan2) + S 4oty (1Ek A
<)+ 5 2{ 1 1< p

Since M, satisfies A,-condition, we have

o (51)) o () s o (50

For k € A;, we have

wn () < = an fan (P <
p p

Hence, we can conclude that

Co(My, |[-,-]I) € Co(MaoMy, ||, .|[)

Letz = (x3,) € CT(My, ||.,.|) N CL(Ms, |, ])).

Then, for positive constants p; and py, we have

[— lim M, (M) — 0, forz € X.

k—o0 pl

and

[— lim M, (M) — 0, forz € X.

k—o0 pz

Let us choose p = max{p1, p2}.

Then,
Tk, 2 Tk, 2 Tk, 2
P P P
can (Ll g, (L)
P1 P2
Then the proof immediately follows from the above inequality. O
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Theorem 3.3.4. The spaces CL(M,||.,.||) and m}(M,||.,.||) are solid.

Proof. Letx = (x3) € C{(M,]|.,.]|). Then there exists positive constant p such that

I— lim ]\/[(ka’ZH) — 0 forz € X.

k—>o0 P

Let (o) be a sequence of scalars such that |ay| < 1 for all natural numbers k. Then

o (Lol <oy (el < o (Umes)
p p P

This follows that
]_1mlM(Mﬁﬁﬁﬂ):g

k—o0 p
Thus a2, € CL(M,]].,.||) and hence CL(M, ||, .||) is solid.
The result for the space m{ (M, ||.,.||) can be proved similarly. O

Theorem 3.3.5. The spaces C1(M, ||.,.||) and CL(M,||.,.||) are sequence algebra.

Proof. Let (z), (yr) € CE(M,||.,.]|). Then there exists positive constants p; and py and
for z € X such that

I— lim M (”xk’z”) )

k— 00 ,01
and
I— lim M (”x’“'z”) —0
k— 00 p2

Choose p = p1 + pa.

Then we can easily show that

I_hmﬂ4cﬁﬁaﬂ>:0

k—o0 P

It follows that zys, € CE(M, ||.,.]|). This shows that C{ (M, ||.,.||) is a sequence algebra.
The result for the space C(M, ||.,.||) can be proved similarly. O

Theorem 3.3.6. Let M be an Orlicz function. Then we have
Co(M,[].,.|I) € CH(M, ||, 1) C L (M, ], )

Moreover the inclusion are strict.

54



Proof. The inclusion C{ (M, |].,.||) € C1(M,]||.,.|]) is obvious.
Letx = (x;,) € C1(M,]].,.]|). Then there exists p > 0 such that [ —limM (@) =0
forr € Xand! € X.

Now l l
1 — 1
prly < Ly (el Ly (10
2p 2 p 2 p

Taking supremum over k on each side, one can easily get, z € [! (M, ||.,.||). Thus,
CAM,[.,.I1) € CT(M, |1, II) € LM, |1, -

We consider the following examples in order to show that the inclusions are strict.

Let I = I, the subsets of N having natural density zero and the Orlicz function

M(z) = 2* forall z € [0, 00).

1. Let a sequence (x,,) be defined by z,, = 5,n € N. Then (z,,) € C'(M,]||.,.]|) but

2. Let us define the sequence (y,) by y, = 5 if niseven and 0 otherwise. Then
(n) € loo(M, ]|, []) but () & C*(M, ]., [])-
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Chapter 4

FRAMES IN BANACH SPACES

4.1 Introduction

Gabor [27]] introduced an approach to signal decomposition in terms of elementary signals
in 1946. Duffin and Schaeffer [[16] abstracted Gabor’s theory to define frames for Hilbert
spaces in 1952 while solving some difficult problems from the theory of non-harmonic
Fourier series. Frames were reintroduced by Daubechies, Grossmann and Meyer [14] in
1986.

Frames are the generalizations of orthonormal basis. They provide basis like , stable, and
usually non-unique representation of vectors in a Hilbert space. Frames for Banach space
is theoretically quite different from that of Hilbert space. The frames for Banach spaces
is simply defined as a sequence of linear functionals. The theory of frames for Banach
spaces was originated from the work of Grochenig [33]]. Grochenig generalized frames to
Banach spaces, called atomic decompositions and Banach frames are defined with respect
to certain sequence spaces.

The atomic decomposition for certain function spaces was introduced by Coifman and
Weiss [13]. Later, the notion of atomic decomposition to certain Banach spaces was ex-
tended by Feichtinger and Grochenig [25]. Atomic decompositions were further studied
by Kaushik and Sharma [40, 41} 142, 43]]. Bases in Banach spaces was studied by Singer
[85]. Frames and Riesz bases was studied by Christensen [12]. Basic sequences and re-
flexivity of Banach spaces was studied in [86]]. Sequence spaces and frame theory have
wide range of applications in different field of science and technology. Nowadays, frames
are main tools to study signal processing, image processing, compression, sampling the-
ory, optics, filter banks, signal detection etc[/13} 16} 34]].

In this chapter, we discuss about the frames in non-locally convex Banach spaces and
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certain properties associated with Schauder frames in Banach spaces. Before proceeding
to main results, we recall the some of the definitions and notations that are used in this

chapter.

4.2 Frames in Non-Locally Convex Banach Spaces

Let X be a vector space over a field K. A map from X — R is called a p-norm ||.|,, for

0 < p < 1on X if it satisfies the following properties:

L. [[z]|, >0, forallz € X.
2. ||z[|, = 0ifand only if z = 0, forallz € X.
3. ez, = [af” ||zl , forallz € X and a € K.

4. |lz +yll, < ll=ll, + [lyll, , forallz,y € X.

The pair (X, [|.|[,) is called a p-normed linear space.

Example 7. The space X = l,, 0 < p < 1 with p-norm given by
2]l = |anl”, forallx € X,
n=1
is a p— normed space.
If p = 1, then the p-norm is equal to norm on X.
A complete p-normed linear space X over a field K is said to be a p-Banach space.

A linear operator 7' : (X, ||.||,) — (Y,].[|,) is called bounded if there exists a real
number M > 0 such that

|T(z)||¢ < M |z||3, forallz € X.

The collection of all bounded linear operators from the p-Banach space X to the g-Banach

space Y is denoted by B(X,Y). It is a Banach space with norm given by

1

17— sup 1T

_ i
2l
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Let X be a p-Banach space. A linear functional f : X — K is said to be bounded on X

if there exists a real number M > 0 such that
If(2)| < M ||z||7, forallz € X.

The collection of all bounded linear functionals on the p-Banach space X is denoted by

X*. It is also a Banach space with norm given by ||f|| = sup |f(z)| and is called the
o, <1

conjugate space of X.

In this section, we define atomic decompositions in a non- locally convex Banach
space [?(0 < p < 1). The existence of atomic decomposition is shown through examples.
Further, we give a sufficient condition for its existence. We also prove that if a p-Banach
space has an atomic decomposition, then the space is isomorphic to its associated p-
Banach sequence space. Furthermore, necessary and sufficient condition for an atomic
decomposition in a p-Banach space is given. Finally, shrinking atomic decomposition

and strongly shrinking atomic decomposition are defined and discussed.

4.2.1 Atomic Decompositions in p-Banach Spaces

In this section, we define atomic decomposition in a p-Banach space and give examples
for its existence. Then, we give a necessary and sufficient condition for its existence. We

begin with the following definition:

Definition 16. [65]Let X be a p-Banach space. A sequence {f,} C X* is said to be
fundamental over X if {x € X : f,(z) =0, foralln € N} = {0}.

Example 8. [65|] Consider the p-Banach space X = l,,, 0 < p < 1 with p-norm given by

o0

|zl = |zl forallz € X.

n=1

Let us define f,, - X — K by
fo(x) = fu{zi}) = xp, forall x €1, and n € N.

Clearly, each f, is linear. Also,

0 L 1
[fa(@)| = |zl < O laal")> = Nz}, forall z € X.

n=1

58



This shows that f,, is bounded for all n € N.
Moreover, forall x € X, f,(x) =0, foralln e N = x =0.

Thus, { f.} is a fundamental sequence over X = I,,.

Next, we give a necessary condition for a fundamental sequence in X*.

Theorem 4.2.1. [65] If X is a p-Banach space and { f,,} C X* is fundamental over X.
Then there exists an associated p-Banach sequence space Xy = {{f.(z)} : x € X} with
penorm £, ()1, = Il Jorallz € X.

Proof. Letx € X.If x = 0, then f,,(0) = 0, foralln € N.
Let = # 0. Then there exist at least one f; € X* such that f;(x) # 0.

Let us define the set of sequences associated with the p-Banach space X defined by

Xg={{fu(x)} 2 € X}.

Then, one can easily verify that X is a p-normed linear space with the p-norm given by
H{fn(x)}de = HIL’HP, forall x € X.

Now, we prove that X, is a p-Banach space.

Let {{f.(z:)},}; be a p-Cauchy sequence in X,. By using the definition of p-Cauchy
sequence and p-norm on X, implies that {z;} is a p-Cauchy in X which is p-Banach
space and so it is p-convergent in X.

Then it is easy to verify that {{f,(x;)},}, will converge to {f,(z)} in (X, ||.||x,) and
hence (Xg, [|.|[x,) is a p-Banach space. O

Corollary 4.2.1. [65] If X is a p-Banach space and { f,,} C X* is fundamental over X.
Then, X is isomorphic to the p-Banach sequence space X, = {{fn(2)} : v € X} with

p-norm H{fn(x)}HXd = Hpr , forallx € X.

Proof. From Theorem (4.2.1.), the existence of the associated p-Banach sequence space
Xy is proved.
Now, let us define 7' : X — X, by

T(x)={fu(x)}, forallx € X.
Clearly, T is linear, bijective, and an isometry. 0

Next, we define atomic decomposition for p-Banach spaces.
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Definition 17. [65] Let (X, ||.||,) be a p-Banach space and let X ; be a p-Banach sequence
space associated with X. Let {z,} C X and {f,} C X*. Then the pair ({x,},{f.}) is

an atomic decomposition of X with respect to X if

1. {fu(x)}, € Xy, forallxz € X.

2. There exists constants A, B > 0 such that

Allell, < I{fa(@)}llx, < Bllzll,, forallz € X.

3. x=>" fulz)z,, forallz € X.

We discuss the existence of an atomic decomposition in a p-Banach space with the

help of following example.

Example 9. [65]] Consider the p-Banach space (l,,|].||,). Let {e,} be the sequence of
unit vectors. Then {e,} is a Schauder basis of l,,.

Hence for every x € X, there exists a sequence {x,} of scalars such that

T= " Tpep

Let { f,} C X* be a sequence of bounded linear functionals such that

Then, for eachn € N, we have

Fue) = wfule) = € X

Thus x = > | fu(x)e,, where {f,(x)} = {x.} € |, = X4 Hence property (2) holds

trivially in view of the definition of p-norm of .

Remark: Let X be a p-Banach space, X; be a p-Banach sequence space such that
({x,},{fn}) is an atomic decomposition for X with respect to X;. Then X is isomorphic
to a subspace of X, [65].

Indeed, if ({z,},{f.}) is an atomic decomposition for X with respect to X, then there

exists an isomorphism 7" : X — T'(X) C X, defined by

T(x) ={fu(x)}, forallxz € X.
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Next, we define X ;- frame of p—Banach space X with respect to p—Banach sequence

space X.

Definition 18. [65] Let (X, ||.||,,) be a p-Banach space and let X ; be a p-Banach sequence
space associated with X. Then { f,} C X* is said to be an X 4- frame of X with respect
to Xy lf

1. {fu(2)}, € Xy, forallz € X.

2. There exists constants A, B > 0 such that

Allzll, < {fa@)}llx, < Bllall,, forallz € X.

We give a sufficient condition for the existence of an X -frame for X in the following

theorem.

Theorem 4.2.2. [65] Let X be a p-Banach space and X ; be a p-Banach sequence space
such that X is isomorphic to a subspace of X, then there exists a sequence { f,} C X*
such that { f,,} is an X4-frame for X.

Proof. Let X = Z; under the isomorphism 7', where Z; is a subspace of X;. Then for

every {x,} € Z, there exists x € X such that if f,, is the coordinate functionals, then
1. {fu(2)}, € Xq4, forallz € X.

2. There exists constants A,B > 0 such that

Allell, < 1 ful@)} Ly, < Bllall, . forallz € X.

]

Next, we give some characterizations of atomic decompositions of X with respect to
Xq.

Theorem 4.2.3. [65)] Let X be a p-Banach space, {x,} C X and {f,} C X*. If X = A

where A = {>"""_| fi(z)x;}. Then the following conditions are equivalent:

1. ({zn},{fn}) is an atomic decomposition for X with respect to the associated p-

Banach sequence space X4 = {{a;} : .2, a;x; < oo} with p-norm

n
E a;T;
i=1

[{ai}l x, = sup
neN »
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2. The sequence { P, } of projections defined by

P.(z) = Z fi(x)z;, forallx € X
i=1

is uniformly bounded.

3. lim P,(x) ==z, forallx € X.

n—oo

In this case sup || P, ||" is called the norm of the {x,}.

Proof. (1) = (3) Suppose that ({z,},{f.}) is an atomic decomposition for X. Then

for every x € X canbe written as © = »_° | f,(z)z,. Hence x = lim P,(z).
n—oQ
(3) = (2) Suppose that lim P,(z) =z, forall x € X.
n—oo

Then the sequence { | P || p}n of real numbers is convergent and hence bounded for each
x € X. Therefore, using Banach-Steinhaus Theorem we conclude that { P, } is uniformly
bounded on X.

(2) = (1) Suppose that there exists a & > 0 such that

| P.]| < K, foralln € N.
If x € A, then P,,(z) = z, for all m > n. Therefore

lim P,(z) =z, forallz € A.

n—oo
If x € X, then for every ¢ > 0 there exists y € A such that

€

o= yll, < 5

Since y € A, P,(y) — y and so for € > 0, there exists M € N such that

1Poy —yll, < =, forall n> M 4.1)

37

This yields lim P,(z) =z, forallz € X andsox =Y .-, fi(x)x;. Then { fi(x)} € X,.
n—oo
Also for every z € X,
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,
ifi(l’)%

< K],

Izl = || tim Py

< sup

p

Hence (1) holds. L]

Lemma 4.2.1. [65] Let (X, |.||,) be a p-Banach space, {x,} C X and {f,} C X~
such that ({z,},{f.}) is an atomic decomposition for X with respect to X . Then
[@nll, ([ fall” < 2K, where K is the norm of {x,},, .

Proof. Since || fu(2)znl, = [[Pu(z) — Pooa(2)|l, < 2K ||zf|,, forallz € X. This im-
plies that | f,,(2)[" [|,]|,, < 2K [|z||, and so we obtain

zall, ([ ol < 2K.

]

We discuss construction of an associated p-Banach space and its basis in the following

lemma.

Lemma 4.2.2. [65]] Let (X, ||.||,,) be a p-Banach space and {x,} C X\{0}. Then the
sequence space X, = {{a,} : > 7 | a,x, convergesin X} is a p-Banach space with the

p-norm given by

{ai}l x, = sup
neN

n
E Q;;
i=1

for which the canonical unit vectors form a basis.

p

Proof. It is easy to prove that Xg is a p-normed linear space using the fact that [|.[| , is a
p-norm on X.

For (Xg,||.[[x,) to be a p-Banach space, let {c" }be a p-Cauchy sequence in X, which
implies for every ¢ > 0 there exists & = K (¢) € N such that for all n,m > K, we have

k

> (e =M

=1

€
le" =™ llx, = {ei = ¢"Hlx, = sup <3
keEN

p

which implies for all n,m > K and k € N that
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Hence for each £ € N and n, m > K, we obtain

k k—1

e = P llall, = N = eaell, = || D (6 = eMa = Y (¢ — M| <e
=1 =1 D

This implies that {c} is a Cauchy sequence of real numbers and hence convergent to {c; }
(say) for each 4. It follows easily now that {¢"} converges to ¢ in X;. Now for {e;} to
form a basis for X, it is enough to prove that {¢;} is complete and there exists a constant

C' > 1 such that for every m > n and every sequence aq, as, - - - , a,, of scalars,

n m
E a;€; <C E ;€4
i=1 i=1

Xq Xq

For every sequence ay, as, - - - , a,, of scalars and m > n, we have

n N N m

E a;e; = sup E a;T; S sup E a;x; = E a;€;
T N<n (|5 N<m || — —
=1 Xq =1 D =1 ) =1 Xg

If {a;} is an arbitrary sequence in Xy, then for every € > 0 there exists M such that for

allm > n > M, we have

m
€
Z a;x; < 5
p

i=n-+1
This gives
il €
sup Z a;z;|| < =<e¢ foralln > M.
N>n (.~ 1 2
1=n-+ p
Hence for all n > M, we obtain
n N
{a;} — Zaiei = sup Z a;x;|| < e.
i=1 x, P li=ns »

]

Next we give the following lemma about atomic decompositions for p-Banach spaces.

Lemma 4.2.3. [65]] Let (X, ||.||,) be a p-Banach space and { f,,} C X*. Then the follow-

ing conditions are equivalent:

1. There exists a sequence {x,} C X suchthatx =%, fu(x)zx, forallz € X.

2. There is a p-Banach sequence space X, with the canonical unit vectors {e,}, as a
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basis such that ({x,} ,{f.}) is an atomic decomposition for X with respect to X

and a bounded linear operator S : Xy — X such that S(e,) = x,,.

Proof. The proof of this lemma can be done by using the techniques given in [9]. 0

4.2.2 Shrinking Atomic Decomposition in p-Banach Space

Shrinking Schauder frames were introduced and studied by Liu [S3]. The shrinking
atomic decompositions were studied by Carando and Lassalle [8]]in locally convex Ba-
nach spaces. The shrinking bases in p-Banach spaces was studied by Arino [2]. Banach
spaces related to integrable group representations and their atomic decompositions was
studied by Feichtinger and Grochenig [26]. In this section, we define and discuss shrink-
ing atomic decompositions in p- Banach spaces. We begin with the following definition

of shrinking atomic decomposition in p—Banach space.

Definition 19. [65] Let (X, ||.||,) be a p-Banach space and let X ; be a p-Banach sequence
space associated with X. Let {x,} C X and {f,} C X*. Then the atomic decomposition
({xn},{fn}) is said to be shrinking if

lim ||foTN|| =0, forall fe X",
n—oo

where T : X — X is defined as

Ty(z) = Z fol@)xy, forallx € X.

n=N

Remark: Since Ty = [ — Py_1, it is uniformly bounded on X.

Theorem 4.2.4. [65] Let ({x,},{f.}) be an atomic decomposition for the p-Bancah
space X with respect to the p-Banach sequence space X, and let m : X — X** be the

natural embedding. Then the following statements are equivalent:

(i) ({zn},{fn}) is shrinking.

(i) ({fn}, {7, }) is an atomic decomposition for X* with respect to the p-Banach

sequence space Zy which has canonical unit vectors as basis.

Proof. (i) = (ii) Since ({z,,},{f.}) is an atomic decomposition for X with respect to

X4, we have

65



I. {fu(2)}) € Xy, forallz € X.

2. There exist constants A,B > 0 such that

Allell, < {fn(@)}llx, < Bllzll,, forallz € X.

3. 0=> " fo(z)x,, forallz € X.

We claim that ({f,},{m(x,)}) is an atomic decomposition for X* with respect to the
p-Banach sequence space Z; which has the canonical unit vectors as basis.

From condition (3), it is clear that

Fl@) =) man (@) = Y flan)falx), forall f € X7,

Hence it is enough to show that series on the right is convergent in X*.
For M > N,

M-1
D flea)fal| = Sup (f o (Tn = Tar)) ()| < If o Tvl[ + [[.f © Taa |
n=N x psl

which vanishes as M, N — oo as the atomic decomposition ({z,}, {f,}) is shrinking.
Therefore there exists a p-Banach sequence space Z,; with the canonical unit vectors {e,, }
as a basis such that ({f,,} , {m.,}) satisfy conditions (1) and (2) of the atomic decompo-
sition for X* with respect to Z,.

(ii)) = (i) For each f € X™*, we have

If o Tnll = sup |(foTn)(z)]

[J]l, <1

o0

S fule)f(an)

n=N

= sup |f(z) — Sn(z)]

]|, <1

= |If = Swll,

= sup
[zl <1

where Sy(z) = fo;f Jo(@) f(2y).

Hence using the fact that ({f,,}, {7, }) is an atomic decomposition for X*, we conclude
that || f o T || — O. O

Next we define the bounded approximation property of p—Banach space.
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Definition 20. A p-Banach space X is said to have the bounded approximation prop-
erty if and only if there exists a sequence {A,} of finite rank operators on X such that
lim [|A,z — =z, =0, forall v € X.

n—oo

Corollary 4.2.2. Let X be a p-Banach space, X4 be a p-Banach sequence space such
that ({x,} ,{fn}) is shrinking atomic decomposition for X with respect to X4 then X* is

separable and has bounded approximation property.

Proof. Since ({x,},{f.}) is shrinking atomic decomposition therefore using Theorem

3.1of [65], ({f.},{ms,}) is an atomic decomposition for X* and hence

=Y _mu,()fa = flan)fn, forall f € X*.
n=1 n=1
This clearly implies that X* is separable and has bounded approximation property. O

Now, we define the notion of strongly shrinking atomic decomposition for p-Banach

spaces. We give the following definition.

Definition 21. Let (X, ||.||,) be a p-Banach sequence space and let X4 be a p-Banach
space associated with X. Let {x,} C X and {f,} C X* such that ({x,},{f.}) is an
atomic decomposition of X with respect to X4. Then ({x,},{fn}) is strongly shrinking

if
lim ||foSn|| =0, forall fe X",
n—oo

where Sy : Xq — X is defined as

o0

Sy({an}) = Z ATy, forall {a,} € Xy .

n=N

Lemma 4.2.4. Every strongly shrinking atomic decomposition is shrinking.

Proof. Let ({x,},{f.}) be strongly shrinking atomic decomposition of X with respect
to X4. Hence

() {fu(2)}, € Xy, forallz € X.

(ii) There exists constants A,B > 0 such that

Allzll, < [{fa(@)Hx, < Bllzl,, forallz € X.

67



(i) = =7, fu(z)z,, forallz € X.

(iv) lim ||fo Sy|| =0, forall fe X*.
n—oo
Using (iv) for every € > 0 there exists K s.t.
I o Sxll < 5. forall N > K.

which implies for all {a,,} € Xy with [[{a,}|lx, <1

ganf(xn) < %, forall N > K.
Hence for a,, = / ”éx ) where z € X such that [|z]|, <1 we have
|foTy| <€ forall N> K.
Hence ({x,},{f.}) is shrinking. ]

Next example shows that converse of the above lemma is not true in general.

Example 10. Let X = 1,,0 < p < 1 with p-norm ||z, = 377, |2, and X4 =1, © 1,
be a p-Banach sequence space with p-norm ||z +y| x, = ||z[l, + llyll,- Define {f.} of

functions on X as
f2n71<€i) = 0 and f2n<€i> = (51'7”, Vz,n - N.

Consider g, = fon_1 + fon, Y € N. Then one can easily prove that ({e,},{gn}) is
an atomic decomposition for X with respect to X . Also using property (iii) of atomic

decomposition one can prove that ({e,} ,{g.}) is shrinking.
But we claim that ({e, } ,{gn}) is not strongly shrinking.

Take g € X* as g(e;) = 0; v Vi € N. Then for all N € N

lgoSnll=sup [(goSn)(x+y)l= sup |onv+uyn| <1
x4yl x, <1 lz+yllx, <1

Also, if v = {en} and y = {0}, then ||g o Sn/|| > 1 and hence our claim.

Definition 22. Let (X, ||.||) be a p-Banach space and let X4 be a p-Banach sequence
space associated with X. Let {x,} C X and {f,} C X* such that ({x,},{f.}) is an
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atomic decomposition of X with respect to X 4. Then ({x,,} ,{fn}) is said to be boundedly
complete if the series Y >~ T(f,)xn is convergent in X for each T € X**.

Lemma 4.2.5. In a reflexive p-Banach space X, every atomic decomposition is boundedly

complete.

Proof. Let ({z,},{f.}) be an atomic decomposition of a reflexive p-Banach space X

w.r.t. X,. Hence

D) {fu(x)}, € Xy, forallz € X.

(ii) There exists constants A,B > 0 such that

Allzll, < [{fa(@)}x, < Bllzll,, forallz € X.

(i) z = >, fu(z)zy, forallz € X.

Since X is reflexive for each T' € X**,
S T(fa)rn = fult)z, =t, forallt € X,
n=1 n=1

which is clearly convergent from (ii1). 0

Next theorem shows that the converse of above lemma holds if atomic decomposition

is shrinking also alongwith boundedly complete.

Theorem 4.2.5. Let X be a p-Banach space and X 4 be a p-Banach sequence space with
atomic decomposition ({x,} ,{fn}).- If {xn},{fn}) is shrinking and boundedly com-
plete, then X is reflexive.

Proof. Since ({z,,},{f.}) is an atomic decomposition of X, therefore
r = an(x):vn, forall z € X.
n=1

Clearly X = 7(X) C X** where 7 : X — X** is the canonical map. In order to prove

that X is reflexive it is enough to prove that 7 is onto.

LetT € X**, thensince ({z,},{f,}) is boundedly complete therefore > | T'(f,,)x,,

is convergent in X to say z i.e.> .~ T(f,)z, = .
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Hence for all f € X*, m,(f) = f(z) = >, T(fa) f(zn).

Also since ({z,},{f.}) is shrinking, we obtain

f=_ f(xn)fa forall f € X*,
n=1

This implies
T(f) =) flen)T(fa), forall f € X",
n=1
This proves that 7' = 7, and hence X is reflexive. [

However, converse of the above theorem is not true as can be seen from the following

example:

1
Y, where ||z||, = (Zzozl |:vn|2)2 isa

norm on ly. Then one can easily check that (la, |.||,)) is a reflexive p-Banach space. Con-

Example 11. Let X = Iy with p-norm ||z, = ||z

sider the atomic decomposition ({e,} ,{f.}) where f,(emn) = Onm- Then it is boundedly
complete. But is not shrinking because for f : l — R defined by f(e,) = dn,

IfoTnll = sup [(foTw)(x)| = sup |en| <1,

]|, <1 llzll, <1

and for x = {ey},

foTn| > 1andso | foTx| doesnot approach to 0 as N — .

Next result gives necessary and sufficient condition for a p-Banach space to be reflex-

ive.

Theorem 4.2.6. Let X be a p-Banach space and X 4 be a p-Banach sequence space with
unconditional atomic decomposition ({x,},{fn}), then ({x,},{fn}) is shrinking and
boundedly complete if and only if X is reflexive.

Proof. If atomic decomposition ({z,},{f.}) is shrinking and boundedly complete, then
X is reflexive using the above theorem.
For sufficient condition, as X is reflexive so in view of Lemma (4.2.5) it is enough to

prove that the atomic decomposition is shrinking.
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Consider for f € X*,

[f o Tnl[ = sup |(f oTx)(x)]

[l <1

= sup |f( D fal)zn)

[l <1

— sup |3 ful@) (o)

[l <1

(4.2)

= sup | > ma(fu)f ()

[zl <1

which tends to 0 using Orlicz-Pettis Theorem for non-locally convex spaces, since the se-
ries in (4.2) is weakly convergent due to boundedly completeness of unconditional atomic
decomposition ({z,},{fn}) O

4.3 Certain Properties Associated with Schauder Frames

in Banach Spaces

In this section, we study Schauder frames in Banach spaces and discuss property (I) and
property (II) associated with them. We prove that the two properties are equivalent. Also,
we define Schauder frames satisfying property (M). We prove that, in a uniformly
convex Banach space, if a Schauder frame satisfies property (M), then it also satisfies
property (II) and hence property (I). Further, we define Schauder frames satisfying prop-
erty (B). We prove that if a Schauder frame satisfies property (I) or property (I), then it
also satisfies property (B). Finally, we define Schauder frame satisfying property (SB)

and give a necessary condition for a Schauder frame to satisfy property (SB).

Throughout this section, E will denote an infinite dimensional Banach space over the
scalar field K(R or C), E* and E**, respectively, the first and second conjugate spaces of
E, indexed by N, [f,] the closed linear span of {f,} and [f,] the closed linear span of
{fn} in the o (E*, E)-topology. A sequence {f,,} in E* is said to be complete if [f,,] = E*
and total if {x € E : f,,(x) = 0,n € N} = {0}. We begin with the following definition

of Schauder frame.

Definition 23 ([34]). Let E be a Banach space, {x,} be a sequence in E and {f,,} be a

71



sequence in E*. Then, the pair ({ f.},{x.}) is called a Schauder frame for E if

The positive constants A, B are called Schauder frame for the Schauder frame ({f,.}, {x,}).

4.4 Some Results on Schauder Frames in Banach Spaces

Definition 24. [29] Let E be a Banach space, ({f.}, {x.})({fn} C E*,{z,} CE) bea
Schauder frame for E. Then ,

1. ({fn},{xn}) is said to satisfy property (D), if for each ¢ > 0 there exists a number
Ye > 0 such that

=1, >c = > 14,

> Aifilw)w

i=n+1

Zn: i fi(x)x; i Aifi(@)w;
i=1 i=1

where {\;}32, is any family of weights, i.e., \; > 0 for all i € N and x € E.

2. ({fu},{zn}) is said to satisfy property (IN), if for each € > 0 there exists a 6 > 0

such that
Z)\zfz<'r)xz >1-9, Z Nifi(@)zi|| =1 = Z Aifi(x)x;|| < e,

where {\;}32, is any family of weights and x € E.

Regarding existence of property (I), one may observe that if {e,} is the unit vector
sequence of E = ¢! and {f,} is the unit vector sequence in E*, then ({f,}, {e,}) is a
Schauder frame for E satisfying property (I). Also, the Schauder frame defined in the

following example does not satisfy property (I).

Example 12. [29] Let E = ['. Let {e, } be a sequence of unit vectors in E and {h,,} be a
sequence of unit vectors in E*. Define {x,} C E and {f,} C E* by

1 1
xr1 = 5(61 + €2>, Ty = 5(_61 + 62); Tp =€y, N2> 3 and

fi=hi+hy, fo=—-hi+hy, fo="hy, n>3.
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However, it does not satisfy property (I). Indeed, for x = (0,1,0,0,0...) € E and for any
sequence of weights {\;}5°, with Ay = Ay = 1, we have

[Arfi(@)m]| =1, =1 but

’L

Z)\ifi(l’)x

In the following result we prove that the two properties are equivalent:

Theorem 4.4.1. [29] For a Schauder frame ({f,},{z.}) {fn} CE*{z,} CE)ina
Banach space F the property (1) and property (II) are equivalent.

Proof. Suppose that ({f,}, {x.}) is a Schauder frame satisfying property (I) but not prop-
erty (I). Then, there exists an ¢ > 0, x € E, family of weights {\;}?°, and n € N such
that for each 6 > 0

Z Aifi(x)x

i=n-+1

-1

>1-09, =1 but

X

Let 7. > 0 be any number. Choose

6 =7(1+7)"" and p; = )\i(

Z Aifi(z)

Then, fi(z)x;|| = 1. So
o0 -1
Z pifi(x)z;|| > 5( )i )
1=n+1 =1
n —1
> 5<sup Z)‘zfz(x>xz )
L]
= ¢>0
But, || > ufi(x)z;|| < 1+ .. This is a contradiction.
i=1

Conversely, let ({f.},{z,}) satisfies property (IT) but not property (I). Then, there
exists a ¢ > 0 such that for every 7. > 0, there is a sequence of weights {\;}°, C K,
x € Eand n € N such that

> Aifilw)x
i=1

> ¢ but

Z Aifi(x)x

1=n-+1

< 1+

Z Aifi(z)z
i=1
So, there is an € > 0 such that for no 6 > 0, the relation in property (II) is satisfied.
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Indeed, let 0 < n < 1 be arbitrary but fixed and 6 > 0 be arbitrary such that 6 < 7.

Choose
] -1
7= (1 - 8)" and g, = Ai( S Afio)e, ) |
i=1
Then, || > pifi(z)x;|| > 1 =9 and || > pifi(x)x;|| = 1. But
i=1 i=1
[e'e) o] —1
> wifi@)w|| > C< > Nifi(x)z; )
i=n+1 1=1
> ¢(1—-9)
> ol =)
By taking ¢ = ¢(1 — n) our assertion is established. O

Next, we give another type of property, called property M, for a Schauder frame.

Definition 25. [29] Let E be a Banach space, ({f.},{z.}){f.} C E*,{x,} C E) bea
Schauder frame for E. Then, ({f.},{z.}) {fn} C E*,{z,} C E) for E is said to satisfy
property (M) if for any finite family of weights {\;}"" and x € E

n+m

< . (4.3)

If the inequality is strict then the Schauder frame ({f.},{x,}) is said to satisfy
property (M) strictly.

In order to prove the existence of a Schauder frame satisfying property (M), we give

the following examples.

Example 13. [29] Let E = [P (p > 1). Let {e,} be a sequence of unit vectors in E
and {f,} be a sequence of unit vectors in E*. Then (f,,e,) is a Schauder frame for E
satisfying property (M).

Example 14. [29] Let E = ¢y. Let {e,} be a sequence of unit vectors in E and { f,}
be a sequence of unit vectors in E*. Then ({f.},{en}) is a Schauder frame for E which
satisfies property (M) but not strictly.

In the following result, we prove that property (II) (or property (I)) is a necessary

condition for a Schauder frame satisfying property (M) in a uniformly convex Banach
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space.

Theorem 4.4.2. [29] Let E be a uniformly convex Banach space. If ({f.},{zn}) is a
Schauder frame for E satisfying property (M), then ({f,},{x,}) satisfies property (II)
(hence property (1)).

Proof. Suppose on the contrary that Schauder frame ({ f,,}, {z,}) does not satisfy prop-

erty (I). Then, there exists an € > 0 such that for every 6 > 0 one can find family of

weights {\?}°,, x € E and n € N with series > \? fi(x)z; converging in E such that
i=1

=1 but > €.

i /\ffi(x)xi

1=n-+1

>1-9,

Xn: AL fil@)z; i X fi(@)a;
1=1 i=1

Then, in view of property (M) for the Schauder frame ({f,}, {x,}), we have

1-4< < =1.

SN < [ SN @)
=1 i=1

Since, the Banach space E is uniformly convex, there is a §g with 0 < dy < 1, such

Y < 1 —¢y. Take

that whenever ||z|| < 1,|ly|| < 1 and ||z — y|| > &, we have

n

wo =y A fix)z; and yo = Y- A} fi(x); then,
i=1

=1

ol <1, [lyoll < 1T and [[zo — yol| > &

Hence,
1-6, < o+ Yo
2
n 1 oo
= z:ﬁﬂ@Wr¥§§:AwK@%
=1 i=n+1
> Z X filw)x;
i=1
> 1—4dg
which is absurd. O]

Next, we define two more properties for a Schauder frame related to earlier properties.

Definition 26. [29] Let E be a Banach space, ({f,}, {z.}){fn} C E*,{2,} CE) bea
Schauder frame for E. Then, ({f.},{z.}) {fn} C E*,{z,.} C E) for E is said to satisfy
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1. property (B), if

i=1 i=1

sup
n

where {\; }32, is any family of weights and x € E.

2. property (SB), if

o0
<o = Zaifi(x)xi < o0,
i=1

Z i fi(z)w;
i=1

sup
where {«;}5°, is any family of scalars and x € E.

Regarding the existence of a Schauder frame satisfying property (13) and property (SB5)
one may observe that for E = [P(p > 1), if {e, } be a sequence of unit vectors in E and
{fn} be a sequence of unit vectors in E*. Then, ({f,},{e.}) is a Schauder frame for E
which satisfies property (SB) and hence property (B).

In the following result, we prove that property (53) is a necessary condition for a
Schauder frame satisfying property (I) (or property (II)).
Theorem 4.4.3. [29] If ({ [}, {zn}) {fu} C E"{z,} C E) is a Schauder frame for E
satisfying property (1) then ({ f,.},{x,}) satisfies property (B).

Proof. Let sup

n

< oo. Let {y,} C E be any bounded sequence such that

an)\z’fi(x>xi

Yn = Z)\ifi<x)l'i, n € N.
i=1

To complete the proof, it is enough to establish that lim ,, exists in E. Choose a sequence

n—oo
{ni} of positive integers such that
Jim {lyn [l = lim [ly.[| = B.

If B =0, then lim y, = 0 exists. If B # 0 then, we shall show that {y,, } is a Cauchy
n—00

sequence in E. Suppose on the contrary that {y,, } is not a Cauchy sequence in E, then

there exist 6 > 0 and subsequences {ynkj} and {yn, } of {yn,} with n, >n,,j €N

such that

||ynk]. - ynpj || Z 5, ] € N.
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ynkj - ynpj

19y
property (I), that

J
Since > 1=¢> 0, where A = sup||y,|| < oo, it follows, in view of

iy, | 2 Tim [l [I(1+ ).

This gives B > B(1 +1.), which is impossible. Hence, {y,, } is a Cauchy sequence in E.

Let klim Yn, = a, where a € E. Then
— 00

=1

k—o0 4
= Jim > i) =l e .

Corollary 4.4.1. [29] If ({f.},{xn}) is a Schauder frame satisfying property (M) in a
uniformly convex Banach space E, then ({f,}, {x.}) also satisfies property (B).

Proof. The result follows in view of Theorem (4.4.2) and Theorem (4.4.3). O

Remark: The converse of Theorem (4.4.3) is not be true. In fact, in view of Example

6, one may verify that ({f,}, {z,}) satisfies property (B) but does not satisfies property
D.

Finally, we obtain a necessary condition for a Schauder frame satisfying property (SB).

Theorem 4.4.4. [29] Let ({f.},{z.})({fn} C E*,{z,} C E) be a Schauder frame for a
Banach space E satisfying property (SB). Then, for every ¢ € E** the series  ¢(f;)x;
=1

1=

converges in E.

Proof. Let ¢ € E** be arbitrary. If ¢ € [f,]* such that ¢ # 0, then the series Y ¢(f;)z;
i=1

is convergent. Let ¢ ¢ [f,]* and for each n € N, S, be the partial sum operator to

> fi(z)x; with adjoint S?, then
i=1

5000 = 9 3 ]
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This gives

n

i) = glz)fi, g€B, n=123....

i=1

Further, we have

Therefore
S ()] = 7 [Z ol

where, 7 is the canonical mapping of E into E**. Since 7 is an isometry, it follows that

Z¢(fz‘)$i = 157 (0)]
i=1
< [ISulllloll-
Thus,
sup E:Qb(fz)xZ < 00.
molli=

Without loss of generality we may assume that f,, # 0 for all n € N. Then, there
exists 0 # = € E such that f,(z) # 0 for all n € N. Choose {«;} C K such that

o(fi)(x) = aifi(z), © € N. Then SUpHiO@fi(!E)% < o0. Hence, iaifi(x)xi

n =1 =1

converges.
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Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Summary

The thesis consists of five chapters. In chapter 1, the introduction and application of se-
quence spaces have been given. The rationale and objectives of the research work have
been stated. The main part of thesis starts from chapter 2 and ends with chapter 4. The last

chapter is about summary and conclusions including some recommended future works.

In chapter 2, some well known sequence spaces are given. The different sequence spaces
using Orlicz function have been mentioned. The class co(M, (X, ||.]|), @, &) of vector val-
ued difference sequences have been introduced as the generalization of classical sequence
space of null type. The linear property and inclusion relations in terms of different param-
eters have been established. In the similar way, the different properties associated with
the sequence space of bounded type is studied. In addition to this, in this chapter, the class
lo(M, X, (Y,||.|])) of Banach space Y — valued functions is introduced. The properties

such as linearity, completeness, solidness etc. of this space have been established.

In chapter 3, the sequence spaces defined by ®— function have been introduced and stud-
ied as a generalization of the Orlicz space. The properties like linearity, paranormed struc-
tures, completeness and solidness of the sequence space of null type have been proved.
Furthermore, motivated by convergence property of sequence and series, the attempts
have been made to study sequence spaces using ideal convergence and Orlicz function
in 2— normed space. Besides these, various types of convergence are summarized and
a study on sequence spaces using ideal convergence have done. The linearity, inclusion

relations, sequence algebra property and solidness are proved.
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In chapter 4, as the application of sequences, certain types of frames in Banach spaces
are introduced. The atomic decomposition in a non-locally convex Banach space is de-
fined. The examples are given to exhibit the existence of atomic decomposition. It is
proved that if a p— Banach space has an atomic decomposition then it is isomorphic to its
p— Banach sequence space. Finally, some reults on shrinking atomic decomposition and
strongly shrinking atomic decomposition are established. The study of Schauder frames
in Banach spaces is given and discussed property (I) and property (II) associated with
them and proved that the two properties are equivalent. Also, Schauder frames satisfying
property (M) has been defined and it has been proved that, in a uniformly convex Banach
space, if a Schauder frame satisfies property (M), then it also satisfies property (II) (and
hence property (I)). Further, Schauder frames satisfying property (1) has been defined and
it has been proved that if a Schauder frame satisfies property (I) (or property (II)), then it
also satisfies property (B). Finally, we define Schauder frame satisfying property (SB5)

and gave a necessary condition for a Schauder frame to satisfy property (SB).

5.2 Conclusions

It is concluded that the generalized sequence spaces have more rich topological and alge-
braic properties than the classical one. The study of sequence spaces in various directions
enriches the theory of sequence spaces. In this research work, the generalized sequence
spaces co(M, (X, ||.]]), @, @) and I (M, (X, ||.|]), @, &) of null type and bounded type re-
spectively, have been introduced and studied using difference operator. These spaces stud-
ied in this research work are the extension of the work done by Srivastava and Pahari[[89]
in 2012. The results can be extended further to the sequence spaces of convergent type.
One can study these spaces by endowing with suitable paranorm. The topological struc-
tures studied in the space I.(M, X, (Y, ||.||)) can be used for the generalization and unifi-
cation of sequence and function spaces. The spaces Wy(A, f), W(A, f) and W (A, f)
using ®— function studied in this research work are constructed by extending the re-
sults done by Herawati and Gultom[36] in 2019. The results studied in sequence space
Wo(A, f) of null type can be extended to the sequence spaces of convergent and bounded
types. The sequence spaces using ideal convergence can be extended to study the summa-
bility theory. Moreover, the results obtained in this research work can be used to explore
the linear and topological properties of sequence and function spaces. Beside these, se-
quence space and frame theory are interrelated. They provide a mathematical framework
to understand and analyze the sequence of data and signals. The certain properties stud-

ied for Schauder frames can be used to study other frames. It is also proved that if a p—

80



Banach space has an atomic decomposition then it is isomorphic to its associated p— Ba-
nach sequence spaces. Finally, it is concluded that this research work enriched the theory
of sequence and function spaces in different directions and the concepts and techniques
developed in this work have numerous applications in mathematics and mathematical sci-

€nces.

5.3 Recommendations for the Future Work

The sequence and function spaces can be generalized in different ways. The spaces stud-
ied in this research work can also be studied using modulus function. Moreover, some
of the sequence spaces can be extended to n—normed spaces. Sequence spaces can be
studied using different type of convergence. The infinite systems of differential equa-
tions occurring in the theory of neural nets, theory of dissociation of polymers, theory of
branching problems can be studied in sequence spaces with the help of measure of non-
compactness. The study of interconnection between frame theory and sequence space can
be done as they have wide range of applications in signal processing , data processing,

etc. Some of the recommendations for future works are as follows:

* to generalize the sequence spaces studied in this research work or similar type of
sequence spaces to accommodate more general types of sequence spaces having

rich topological and algebraic properties;

* to study more structural properties of sequence spaces such as completeness and

convergence etc;

* to study and extend the sequence space defined in this research work or similar type

in 2-normed spaces to n—normed spaces;
* to explore more applications of frames in sequence spaces;

* to study the application of sequence spaces in various field such as machine learn-

ing, signal processing, numerical analysis etc.
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Abstract. Schauder frames satisfying property (I) and property (II) has been
defined and studied. It has been proved that an atomic decomposition satisfies
property (I) if and only if it satisfies property (II). Also, Schauder frames satisfying
property (M) has been defined and it has been proved that, in a uniformly convex
Banach space, if a Schauder frame satisfies property (M), then it also satisfies
property (II) (and hence property (I)). Further, we define atomic decompositions
satisfying property (B) and prove that property (B) is a necessary condition for an
atomic decomposition satisfying property (I). Finally, we define property (SB) for
a Schauder frame and gave a necessary condition for it.

1. Introduction

Frames for Hilbert spaces were formally introduced by Duffin and Schaeffer [7] and
reintroduced by Daubechies et al. [6]. Today, frames are main tools for use in signal and
image processing, compression, sampling theory, optics, filter banks, signal detection etc.

Coifman and Weiss [5], introduced the notion of atomic decompositions for
function spaces. Later, Feichtinger and Grochenig [8] extended the notion of atomic
decomposition to Banach spaces. Grochenig [9] introduced a more general concept
for Banach spaces called Banach frame. Retro Banach frames for dual Banach spaces
were introduced and studied in [12] and the notion of Weak*-Schauder frames for dual
Banach spaces were introduced and studied in [14]. In [3], Casazza, et al. gave various
definitions of frames for Banach spaces including that of Schauder frame. Later, Han
and Larson [10] defined Schauder frame for a Banach space. In 2008, Casazza, et al.
[2] studied the coefficient quantization of Schauder frames in Banach spaces. Liu [15]
gave the concepts of minimal and maximal associated bases with respect to Schauder
frames and closely connected them with the duality theory. In [17], Liu and Zheng
gave a characterization of Schauder frames which are near-Schauder bases. Infact, they

2000 Mathematics Subject Classification. 42C15, 42A38.
Key words and phrases. Schauder frames, Reconstruction property, and Banach frames.

Communicated by. Sumit Kumar Sharma
 Corresponding author

369

105



370 Jhavi Lal Ghimire and Narayan Prasad Pahari

generalized some results due to Holub [11]. Beanland et al.[1], proved that the upper
and lower estimates theorems for finite dimensional decompositions of Banach spaces
can be extended and modified to Schauder frames, and gave a complete characterization
of duality for Schauder frames. ®-Schauder frames were introduced and studied by
Vashisht [18]. Liu [16] associated an operator with a Schauder frame and called it
Hilbert-Schauder frame operator.

In the present paper, we study Schauder frames in Banach spaces and discussed
property (I) and property (II) associated with them and proved that the two properties
are equivalent. Also, Schauder frames satisfying property (M) has been defined and
it has been proved that, in a uniformly convex Banach space, if a Schauder frame
satisfies property (M), then it also satisfies property (II) (and hence property (I)).
Further, Schauder frames satisfying property (B) has been defined and it has been
proved that if a Schauder frame satisfies property (I) (or property (II)), then it also
satisfies property (B). Finally, we define Schauder frame satisfying property (SB) and
gave a necessary condition for a Schauder frame to satisfy property (SB).

Throughout the paper, E will denote an infinite dimensional Banach space over the
scalar field K(R or C), E* and E**, respectively, the first and second conjugate spaces
of E, indexed by N, [f,] the closed linear span of {f,,} and [f,] the closed linear span of
{fn} in the o(E*, E)-topology. A sequence {f,} in E* is said to be complete if [f,] = E*
and total if {x € E: f,,(z) = 0,n € N} = {0}.

Definition 1.1 ([10]). Let E be a Banach space, {z,} be a sequence in E and {f,} be
a sequence in E*. Then, the pair ({f,}, {zn}) is called a Schauder frame for E if

T = Z fo(®)xy, © € E.
n=1

The positive constants A, B are called Schauder frame bounds for the Schauder frame

{fn}{zn})-

2. Main Results

Definition 2.1. Let E be a Banach space, ({fn},{zn}){fn} C E*,{z,} C E) be a
Schauder frame for E. Then,

(@) ({fn}{zn}) is said to satisfy property (I), if for each ¢ > 0 there exists a number
v, > 0 such that

ZAifi(x)xi =1, Z Aifi(x)zi|| > ¢ = Z)\ifi(x)xi > 14,
i=1 i=n+1 =1

where {);}52, is any family of weights, i.e., A\; > 0 for all i € N and = € E.
(b) ({fn}, {xn}) is said to satisfy property (II), if for each € > 0 there exists a 6 > 0
such that

D Aifi(w)a
=1

where {\;}22, is any family of weights and = € E.

Z Aifi(z)w;

1=n—+1

>1-9, =1 = <e,

D Aifilw)w;
i=1
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Regarding the existence of property (I), one may observe that if {e,} is the unit
vector sequence of E = ¢! and {f,,} is the unit vector sequence in E*, then ({f,.}, {en})
is a Schauder frame for E satisfying property (I). Also, the Schauder frame defined in
the Example 2.2 does not satisfy property (I).

Example 2.2. Let E =['. Let {e,} be a sequence of unit vectors in E and {h,} be a
sequence of unit vectors in E*. Define {x,,} C E and {f,} C E* by

581:5(61-#62)7 $2:§(—€1+62)» Tp=en, n>3 and

fi=hi+he, fo=—-hi+hy, fo=hn n>3.

However, it does not satisfy property (I). Indeed, for z = (0,1,0,0,0...) € E and for
any sequence of weights {;}52, with A\ = Ay = 1, we have

i Aifi(x)z; i Ai fi(x)w;
i=2 =1

In the following result we prove that the two properties are equivalent:

A fi(z)z]] =1, =1 but - 1.

Theorem 2.3. For a Schauder frame ({fn},{zn}) {fn} CE*.{z,} C E) in a Banach
space E the property (I) and property (II) are equivalent.

Proof. Suppose that ({f.},{zn}) is a Schauder frame satisfying property (I) but not
property (II). Then, there exists an € > 0, x € E, family of weights {\;}5°, and n € N
such that for each § > 0

Z )\ZfZ(SU)LUZ >1— 5, > c.
i=1

=1 but i )\lfz(x)mz

i=n+1

D Aifi(w)a;
i=1

Let 4. > 0 be any number. Choose

6= ’Yc(l + ’Yc)_l and Mi = )\z(

iz:;)\ifi(:v)xi >_1.

Then, iuzfz(x)xl =1. So
i=1
[e'e] n —1
Z pifi(w)zs|| > €< Z)\zfz(x)xz )
i=n-+1 =1
n —1
> 5<SUP Z)\zfz(‘r)xz)
nolli=

Z/\ifi(x)xi

¢ >0, where ¢= 5(sup
i=1

n

< 1+ 7. This is a contradiction.

>—1
But, H f pifi(@)z;

i=1
Conversely, let ({fn},{zn}) satisfies property (II) but not property (I). Then, there
exists a ¢ > 0 such that for every 7. > 0, there is a sequence of weights {\;}22; C K,
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z € E and n € N such that
PR ACHES
i=1

So, there is an e > 0 such that for no § > 0, the relation in property (II) is satisfied.
Indeed, let 0 < i < 1 be arbitrary but fixed and § > 0 be arbitrary such that 6 < 7.
Choose

) —1

> Aifix)w

1=n+1

=1, >c¢ but < 147

PR ACOES
i=1

Ye =6(1 — §)"'and p; = /\i(

D Aifilw)ws
i=1

Then,|| > pifi(z)x;|| >1—46 and || > pifi(z)z;|| = 1. But
i=1 i=1
o} [es] —1
Y wifila)z|| = C< D Aifi(@)z; )
i=n—+1 =1
> ¢(1-9)
=z c(l—mn).
By taking € = ¢(1 — 1) our assertion is established. O

Next, we give another type of property, called property (M), for a Schauder frame.

Definition 2.4. Let E be a Banach space, ({f»},{zn}){fn} C E*,{z,} C E) be a
Schauder frame for E. Then, ({fn}, {zn}) ({fn} C E*, {z,} C E) for E is said to satisfy
property (M) if for any finite family of weights {)\;}//;" and z € E

n+m

D Aifilw)as > Aifil@)a;
i=1 i=1

If the inequality (2.1) is strict then the Schauder frame ({f,}, {z,}) is said to satisfy
property (M) strictly.

<

, m,neN. (2.1)

In order to show the existence of a Schauder frame satisfying property (M), we give
the following examples.

Example 2.5. Let E = [? (p > 1). Let {e,} be a sequence of unit vectors in E and
{fn} be a sequence of unit vectors in E*. Then ({f.}, {en}) is a Schauder frame for E
satisfying property (M).

Example 2.6. Let E = ¢y. Let {e,,} be a sequence of unit vectors in E and {f,} be
a sequence of unit vectors in E*. Then ({f,.},{en}) is a Schauder frame for E which
satisfies property (M) but not strictly.

In the following result, we prove that property (IT) (or property (I)) is a necessary
condition for a Schauder frame satisfying property (M) in a uniformly convex Banach
space.

Theorem 2.7. Let E be a uniformly convex Banach space. If ({fn}, {xn}) is a Schauder
frame for E satisfying property (M), then ({fn},{zn}) satisfies property (II) (hence
property (1)).
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Proof. Suppose on the contrary that Schauder frame ({f,},{z,}) does not satisfy

property (II). Then, there exists an ¢ > 0 such that for every 6 > 0 one can find

family of weights {\?}2°,, # € E and n € N with series > \?fi(z)z; converging in E
i=1

such that

i A fil@)zi

1=n-+1

>1-9, =1 but > €.

> N filw)as > X filw)a
i=1 i=1
Then, in view of property (M) for the Schauder frame ({f,},{zn}), we have
SN fi@)ai|| < || DN fi(x)as
i=1 i=1

Since, the Banach space E is uniformly convex, there is a dg with 0 < g < 1, such

m2+yH < 1-— 6. Take

1-46< < =1

that whenever ||z|| < 1,]ly|| < 1 and ||z — y|| > &, we have

To =, /\ff,;(x)xi and yo = > )\?fi(x)xi then, ||zo|l < 1, lyo]l <1 and ||z — yol| > &.
i=1 i=1

Hence,
1-6, < |*0 + Yo
2
n 1 o0
_ dr L4 s )
= | AN fi@mi g Y N i)
1=1 1=n—+1
> DN filz)
i=1
> 1-4g
which is absurd. U

Next, we define two more properties for a Schauder frame related to earlier properties.

Definition 2.8. Let E be a Banach space, ({fn}, {zn}){fn} C E*,{z,} C E) be a
Schauder frame for E. Then, ({f.},{zn}) ({fn} C E*,{z,} C E) is said to satisfy

(a) property (B), if

i=1

D Aifi(w)z;
=1

where {\;}2, is any family of weights and = € E.
(b) property (SB), if

sup
n

oo
<o = Zaifi(z)mi < 0,
i=1

> aifi@)a;
i=1

where {a;}$2, is any family of scalars and = € E.

sup
n

Regarding the existence of a Schauder frame satisfying property (B) and
property (SB) one may observe that for E = [P(p > 1), if {e,} be a sequence of unit
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vectors in E and {f,} be a sequence of unit vectors in E*. Then, ({f,},{e.}) is a
Schauder frame for E which satisfies property (SB) and hence property (5).

In the following result, we prove that property (B) is a necessary condition for a
Schauder frame satisfying property (I) (or property (II)).

Theorem 2.9. If ({f.},{zn}) ({fn} € E'{z,} C E) is a Schauder frame for E
satisfying property (I) then ({fn}, {zn}) satisfies property (B).
é&f@(@%

Proof. Let sup < 0. Let {y,} C E be any bounded sequence such that

yn = _Nifi(z)zi, neN.
i=1

To complete the proof, it is enough to establish that lim y, exists in E. Choose a

n— oo
sequence {ny} of positive integers such that
Jm {fyp, [l = lim [ly, || = B.

If B=0, then lim y, =0 exists. If B # 0 then, we shall show that {y,, } is a Cauchy
sequence in E. Téz;;)ose on the contrary that {y,,} is not a Cauchy sequence in E, then
there exist 4 > 0 and subsequences {ynkj} and {ynpj} of {yn, } with ng, >n,., j €N
such that

Hynkj ~ Yny, >4, jeN.
Ynw, = Yny,

Ty |
property (I), that

>

5
Since 2 g =c > 0, where A = sup||y,| < oo, it follows, in view of
n

lim |[yn, || > lm [lyn, [[(147e).
J—00 J j—00 j

This gives B > B(1+1.), which is impossible. Hence, {y,, } is a Cauchy sequence in E.
Let klim Yn, = @, Where a € E. Then
hde el

ng
a = lggo;)\ifl(x)xl
— nl;rlgo Z; Aifi(x)x; = nhﬁn;(} Yn.- O

Corollary 2.10. If ({f,},{xn}) is a Schauder frame satisfying property (M) in a
uniformly convex Banach space E, then ({f,}, {zn}) also satisfies property (5).

Proof. The result follows in view of Theorem 2.7 and Theorem 2.9. O

Remark 2.11. The converse of Theorem 2.9 is not be true. In fact, in view of Example
2.2, one may verify that ({f.}, {z,}) satisfies property (B) but does not satisfies property

(D).

Finally, we obtain a necessary condition for a Schauder frame satisfying
property (SB).
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Theorem 2.12. Let ({fn},{zn}){fn} C E*,{zn} C E) be a Schauder frame for a
Banach space E satisfying property (SB). Then, for every ¢ € E** the series Y ¢(fi)x;
i=1

converges in E.

Proof. Let ¢ € E** be arbitrary. If ¢ € [f,]* such that ¢ # 0, then the series > ¢(f;)z;
i=1
is convergent. Let ¢ ¢ [f,]* and for each n € N, S, be the partial sum operator to

; fi(x)z; with adjoint S}, then

500 = oY hn]

This gives
[Sn(9)] = Zg(zi)fi7 geE", n=1,23....
i=1
Further, we have

5310 =0 s = f[gdﬁ(fi)xi}.

i=1

Therefore

S** —7T|:Z¢fz z:|7

where 7 is the canonical mapping of E into E**. Since 7 is an isometry, it follows that

1577 ()

IN

1Snllloll-
Thus,

n

> o(fi)as

=1

sup
n

Without loss of generality we may assume that f,, # 0 for all n € N. Then, there
exists 0 # x € E such that f,(z) # 0 for all n € N. Choose {a;} C K such that

o(fi)(x) = a;fi(x), i € N. Then sup Zalfl( )a;|| < oo. Hence, Zazfl( )

i=1 1=1
converges.
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FRAME SYSTEMS IN NON-LOCALLY CONVEX BANACH
SPACES

N. P. PAHARI ), TEENA KOHLI ® AND J. L. GHIMIRE ®

ABSTRACT. In this paper, we define atomic decompositions in a non- locally convex
Banach space [P(0 < p < 1) and discuss its existence through examples. Also, a
sufficient condition for its existence is given and it is observed that if a p-Banach
space has an atomic decomposition, then the space is isomorphic to its associated
p-Banach sequence space. Further, necessary and sufficient conditions for an atomic
decomposition in a p-Banach space is given. Finally, we define shrinking atomic

decomposition and gave a necessary and sufficient condition for it.

1. INTRODUCTION

Let X be a vector space over a field F. A p-norm |[|.|[, for 0 < p < 1on X is a

mapping from X — R satisfying the following properties:

(1) llzll, > 0, for allz € X.

(2) l|lz[,=0 <= z=0.

(3) llaz|, = [al” [|z]|,, for allz € X and a € F.
4) llz +yll, < llzll, + llyll, , for allz,y € X.

The pair (X, ||.||,,) is called a p-normed linear space.
If p =1, then the p-norm is equal to norm on X.
A p-normed linear space X over a field [F is called a p-Banach space if it is complete.

A linear operator T': (X, [.[,) — (Y,[.[|,) is said to be bounded if there exists a
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real number M > 0 such that
1 1
T (x)||§ <M ||z|p, forallz € X.

The collection of all bounded linear operators from the p-Banach space X to the

g-Banach space Y is denoted by B(X,Y’) which is a Banach space with norm given

by
1
IT| = sup |T(z)|q
— =
o lzls

Let X be a p-Banach space. A linear functional f : X — T is said to be bounded

on X if there exists a real number M > 0 such that
|f(z)] < M ||z||7, for all z € X.

The collection of all bounded linear functionals on the p-Banach space X is denoted

by X* which is also a Banach space with norm given by ||f|| = sup |f(x)| and is

ll=ll,<1

called the conjugate space of X.

The concept of frame was first defined by Duffin and Schaeffer [7] in 1952. Frames
were reintroduced in 1986 by Daubechies, Grossmann and Y. Meyer [6]. Coifman and
Weiss [5], introduced the notion of atomic decomposition for certain Function spaces.
Later, the notion of atomic decomposition to certain Banach spaces was extended
by Feichtinger and Grochenig [8]. Atomic decompositions were further studied by
Kaushik and Sharma [10, 11, 12, 13]

In this paper, we define atomic decompositions in a non- locally convex Banach
space [P(0 < p < 1). Also, the existence of atomic decomposition is exhibited through
examples. Further, a sufficient condition for its existence is given and it is proved that
if a p-Banach space has an atomic decomposition, then the space is isomorphic to its
associated p-Banach sequence space. Furthermore, necessary and sufficient conditions
for an atomic decomposition in a p-Banach space is given. Finally, shrinking atomic

decomposition is defined and a necessary and sufficient condition for it is given.

2. ATOMIC DECOMPOSITIONS IN p-BANACH SPACES

In this section, we define atomic decomposition in a p-Banach space and give examples

for its existence. Then, we give a sufficient condition, a necessary condition, and a
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necessary and sufficient condition for its existence. We begin with the following

definition:

Definition 1. Let X be a p-Banach space. A sequence {f,} C X* is said to be
fundamental over X if {x € X : f,(x) =0, for alln € N} = {0}.

Example 2.1. Consider the p-Banach space X = 1,, 0 < p < 1 with p-norm given
by

=], = Z |z, P, for allz € X.

n=1

Define f, : X — F by
fo(z) = fu{z:}) =z, forall x €1, and n e N.

Then, each f, is linear. Also, f, is bounded for each n because

o0

1 1
@) = ol < Q_lwal’)? = ll2liy . for all z € X.

n=1

Also, forx € X, f,(x) =0, foralln e N —= z =0.

Hence, {fn} is a fundamental sequence over X =1,,.
Next, we give a necessary condition for a fundamental sequence in X*.

Theorem 2.1. If X is a p-Banach space and {f,} C X* is fundamental over X.
Then there exists an associated p-Banach sequence space Xq = {{fn(x)}: 2z € X}
with p-norm [{ fu(x)} x, = |zl , for allz € X.

Proof. Let v € X. If = 0, then f,(0) =0, for alln € N.
Let x # 0. Then there exist at least one f; € X* such that f;(z) # 0.
Define the set of sequences associated with the p-Banach space X by

Xg={{fu(x)} 2 € X}.

Then, it is easy to verify that X, is a p-normed linear space with the p-norm defined
by
I{fu(@)}x, = llzll,, forallzeX.

115



234 N. P. PAHARI, TEENA KOHLI AND J. L. GHIMIRE

Now, we prove that X is a p-Banach space.

Let {{fn(z:)},}; be a p-Cauchy sequence in Xy, which using the definition of p-
Cauchy sequence and p-norm on X, implies that {z;} is a p-Cauchy in X which is
p-Banach space and so it is p-convergent in X.

One can easily verify that {{f.(z;)},}, will converge to {f,(z)} in (Xa, |.|x,) and
hence (Xg,||.|[x,) is a p-Banach space. O

Corollary 2.1. If X is a p-Banach space and {f,} C X* is fundamental over X.
Then, X is isomorphic to the p-Banach sequence space Xq4 = {{fn(2)} : © € X} with
pnorm 1L ful@) iy, = llell,, for allz € X.

Proof. Existence of the associated p-Banach sequence space X, is proved in Theorem
2.1.
Now, define T': X — X, by

T(x) ={fu(x)}, forallz € X.
Clearly, T is linear, bijective, and an isometry. O

Next, we define the notion of atomic decomposition for p-Banach spaces. We give

the following definition.

Definition 2. Let (X, [|.||,) be a p-Banach space and let X4 be a p-Banach sequence
space associated with X. Let {x,} C X and {f,} C X*. Then the pair ({z,},{fn})

18 an atomic decomposition of X with respect to X4 if

(i) {fu(2)}, € Xa, for allz € X.
(ii) There exists constants A,B > 0 such that
Allzll, < {fa(@)inllx, < Blll,, for allz € X.

(iii) x = > | fulx)z), for allz € X.

In the following example, we discuss the existence of an atomic decomposition in a

p-Banach space.

Example 2.2. Consider the p-Banach space (I, ].]|,). Let {e,} be the sequence of

unit vectors. Then {e,} is a Schauder basis of ,.
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Hence for every x € X, there exists a sequence {x,} of scalars such that

T= 0 Tpey.

Let {f,} C X* be a sequence of bounded linear functionals such that
fn(€m) = Opm, for all m,n € N.

Then, for each n € N, we have

fulx) = Z%‘fn(@z‘) =x, X
i=1

Thus © =Y " fu(x)en, where {f,(x)} = {x,} € l, = X4. Hence property (ii) holds

trivially in view of the definition of p-norm of x.

Remark 1. Let X be a p-Banach space, X4 be a p-Banach sequence space such
that ({z,},{fn}) is an atomic decomposition for X with respect to X4. Then X is
1somorphic to a subspace of Xg.

Indeed, if ({xn},{fn}) is an atomic decomposition for X with respect to Xy, then
there exists an isomorphism T : X — T(X) C Xy defined by

T(x) ={fu(x)}, for allz € X.

Definition 3. Let (X, |.||,) be a p-Banach space and let Xy be a p-Banach sequence
space associated with X. Then {f,} C X* is said to be an Xg4- frame of X with
respect to Xg if

(i) {fu(2)}, € Xa, for allz € X.
(ii) There exists constants A,B > 0 such that

Allzl, < {fa(@)}nllx, < Bllzl,, for allz € X.

In the following result, we give a sufficient condition for the existence of an X -frame

for X.

Theorem 2.2. Let X be a p-Banach space, X4 be a p-Banach sequence space such
that X is isomorphic to a subspace of X4, then there exists a sequence {f,} C X*
such that {f,} is an Xg4-frame for X.
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Proof. Let X = Z; under the isomorphism 7', where Z; is a subspace of X;. Then
for every {a,} € Z; there exists x € X such that if f, is the coordinate functionals,

then

(i) {fu(2)}, € Xq, for allz € X.
(ii) There exists constants A,B > 0 such that

Allzll, < [{fal@)}nllx, < Bllzll,, forallz € X.

g

Next, we give some characterizations of atomic decompositions of X with respect to

Xq.

Theorem 2.3. Let X be a p-Banach space, {x,} C X and {f,} C X*. If X = A
where A = {3, fi(x)x;}. Then the following conditions are equivalent:

(1) ({z,},{fn}) is an atomic decomposition for X with respect to the associated
p-Banach sequence space Xq = {{a;} : > 2, a;x; < oo} with p-norm

n

E Q;T;

i=1

{ai}tllx, = sup
neN

p

(ii) The sequence {P,} of projections defined by
P.(z) = Z filz)z;, for allx € X
i=1

1s uniformly bounded.
(11i) li_)m P,(x) =z, foralz e X.

In this case sup || P,||” is called the norm of the {x,}.

Proof. (i) = (iii) Suppose that ({z,},{f.}) is an atomic decomposition for X.
Then every € X can be written as x = )~ fu(z)z,. Hence z = lim P,(x).
n—oo
(iii) = (ii) Suppose that lim P,(z) =z, for allz € X.
n—o0
Then the sequence {||an|| p} of real numbers is convergent and hence bounded for
each z € X. Therefore, using Banach-Steinhaus Theorem we conclude that {P,} is

uniformly bounded on X.

(ii) = (i) Suppose that there exists a K > 0 such that
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I|P.|| < K, for alln € N.
If z € A, then P, (z) = z, for all m > n. Therefore

lim P,(x) =z, for allz € A.

n—oo
If z € X, then for every € > 0 there exists y € A such that

€

o= yll, < 5

Since y € A, P,(y) — vy and so for € > 0, there exists M € N such that
(2.1) 1Py —yll, < g, for all n > M

This yields lim P,(x) =z, for allz € X and so = .2, fi(z)z;. Then {f;(z)} €
n—oo
Xq.

Also for every x € X, we compute

,

< K], -

lall, = | im Pa

< sup

p

Hence (i) holds. O

Lemma 2.1. Let (X, |.[[,) be a p-Banach space, {x,} C X and {f.} C X* such that
({zn}, {fa}) is an atomic decomposition for X with respect to Xq. Then ||z, ||, [| full” <
2K, where K is the norm of {x,}, .

Proof. Since || fo(z)x,ll, = [[Pu(z) — Pooi(2)
plies | f,(2)|” ||lznll, < 2K ||z]|, and so we obtain

|, < 2K |[|z|,, for allz € X. This im-

znl, [[fal” < 2K.

n

In the following result, we discuss construction of an associated p-Banach space and

its basis.
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Lemma 2.2. Let (X, ||.|l,) be a p-Banach space and {z,} C X\{0}. Then the
sequence space Xq = {{an} : > oo anx, converges in X} is a p-Banach space with

the p-norm

n

E Q;T;

i=1

{ai}tllx, = sup
neN

p

for which the canonical unit vectors form a basis.

Proof. It can be easily proved that X, is a p-normed linear space using the fact that
]|, is & p-norm on X.
For (Xg, [|.lx,) to be a p-Banach space let {c"}be a p-Cauchy sequence in X, which

implies for every € > 0 there exist K (€) € N such that for all n,m > K, we have

k

> (e =

=1

€
<§,

p

le" = ™llx, = [Hei" = " Hix, = sup

which implies for all n,m > K and k € N that

k
Z(cl1 — M| < <
, 2
=1 p
Hence for each k£ € N and n,m > K, we obtain
k k—1
e = P laell, = e = eanll, = || D (= eMai = D (e = Mw|| <e
i=1 i=1 »

This implies that {c¢}'} is a Cauchy sequence of real numbers and hence convergent
to say {c;} for each i. It follows easily now that {¢"} converges to ¢ in X;. Now for

{e;} to form a basis for X, it is enough to prove that {e;} is complete and there

exists a constant C' > 1 such that for every m > n and every sequence ay, as,--- ,
of scalars,

n m

E a;€; <C E a;€;

=1 Xq =1 Xq4

For every sequence aq, as, - - - , a,, of scalars and m > n, we have

n N
E a;€; E a;T;
i=1 =1

N

E Q;T;

=1

m

E a;€;

=1

= sup
N<n

< sup
N<m

Xa p p Xa
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If {a;} is an arbitrary sequence in Xy, then for every € > 0 there exists M such that

for all m > n > M, we have

m
€
Z a;T; < 5
i=n+1 p
This gives
al €
sup a;z;|| < 5 <€, foralln > M.
N>n i=n+1 p
Hence for all n > M, we obtain
n N
{a;} — Zaiei = sup Z a;x;|| < e.
i=1 x, P li=ns1 »

U

We conclude this section with the following result concerning atomic decompositions

for p-Banach spaces.

Lemma 2.3. Let (X, |[|.[|,) be a p-Banach space and {f,} C X*. Then the following
conditions are equivalent:
(i) There ezists a sequence {x,} C X such that x =" | fu(z)z, for allz € X.
(it) There is a p-Banach sequence space Xq with the canonical unit vectors {e,}, as
a basis such that ({x,},{f.}) is an atomic decomposition for X with respect to

X4 and a bounded linear operator S : Xg4 — X such that S(e,) = x,.
Proof. 1t follows by using the techniques given in [3]. O

3. SHRINKING ATOMIC DECOMPOSITION IN p-BANACH SPACE

Shrinking Schauder frames were introduced and studied by Liu [15] while shrinking
atomic decompositions in locally convex Banach spaces were studied by Carando and
Lassalle [2]. In this section, we define shrinking atomic decompositions in p- Banach

spaces. We begin with the following definition:

Definition 4. Let (X, |.||,) be a p-Banach space and let Xy be a p-Banach sequence
space associated with X . Let {x,} C X and {f,} C X*. Then the atomic decompo-
sition ({z,},{fn}) is said to be shrinking if

lim ||foTn| =0, forall fe X",
n—oo
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where Ty : X — X is defined as
Ty(z) = Z fn(2)xy, for alx € X,
n=N

Remark 2. Since Ty = I — Py_1, it is uniformly bounded on X.

Theorem 3.1. Let ({z,},{fn}) be an atomic decomposition for the p-Bancah space
X with respect to the p-Banach sequence space X4 and let m : X — X** be the

natural embedding. Then the following statements are equivalent:

(i) ({z,},{fn}) is shrinking.
(1) ({fn}, {7, }) is an atomic decomposition for X* with respect to the p-Banach

sequence space Zg which has canonical unit vectors as basis.

Proof. (i) = (ii) Since ({z,},{f.}) is an atomic decomposition for X with respect

to Xy, we have

(1) ({ful2)}) € Xy, for allz € X.
(ii) There exist constants A,B > 0 such that

Allal, < 1A hallx, < Bz, for all 2 € X.

(i) . =307, fu(x)zy, for allz € X.

We claim that ({f,.},{m(x,)}) is an atomic decomposition for X* with respect to the
p-Banach sequence space Z; which has the canonical unit vectors as basis.

From condition (iii) it is clear that

F@) = me () falx) =Y f(an) fulx), for all f € X~.

Hence it is enough to show that series on the right is convergent in X*.

For M > N,

> fan)fa
n=N

which vanishes as M, N — oo as the atomic decomposition ({z,},{/f.}) is shrinking.

= sup |(fo(Ty —Tu))(@)| <[ o Tiv|l + [ o Tl

llll, <1

Therefore there exists a p-Banach sequence space Z; with the canonical unit vectors

{en} as a basis such that ({f,}, {7, }) satisfy conditions (i) and (ii) of the atomic
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decomposition for X* with respect to Z;.

(ii) = (i) Clearly for each f € X*, we have

If o Tl = sup [(f o Tx)(z)]

llzll, <1

= sup | > ful@)f(an)

lell, <1 | =%

= sup |f(z) = Sn(z)]

[[=]l, <1

= lf = Snll,

where Sy (x) = ZnN;ll w(x) f(xy).
Hence using the fact that ({f,}, {7, }) is an atomic decomposition for X*, we con-

clude that ||f o T|| — 0. O
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1 Introduction

The classical sequence space is a special case of function space if the domain is restricted to the set of
natural numbers. The vector space of all sequences of complex numbers is denoted by w. Any linear
subspace of w is called a sequence space. Let [, ¢ and ¢y be the linear spaces of bounded, convergent and
null sequences with complex terms respectively are defined by

loo = {x=(x) € w:supleg| < oo}
¢ = {x=(xx) €Ew:31e€Csuchthat|zy —I| - 0ask — oo}
co = {z=(xp)€w:|rg] > 0ask — oo}

and norm is given by
[|x|| = supg|zk|, k€ N.

Definition 1.1. A linear space X is said to be a paranormed space if there is a function g : X — R
satisfying [22]

1. g(#) =0 where 0 = (0,0, ---) be a zero vector in X,
2. g(x) = g(—=x),

3. g(z+vy) < g(x)+ g(y) (subadditivity), and

4. the scalar multiplication is continuous.

A paranorm g is called total if g(z) = 0 if and only if = 0 [22]. The pair (X, g) is called total paranorm
space. Nakano [12] and Simmons [20] introduced the notion of paranormed sequence space. Later on,
it was further investigated by some other authors like Maddox [9], Tripathy and Sen [2I] and Pahari
[13], (14}, (15}, (16, (7).

Definition 1.2. An Orlicz function is a function M : [0,00) — [0, 00) which is continuous, non decreasing
and convex with M(0) =0, M(x) > 0 for > 0 and M(z) — oo as z — oo [1].
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An Orlicz function M is said to satisfy As-condition [7] if there exists a constant L > 0 such that
M(2z) < LM (z) for all z > 0.

W. Orlicz used the idea of Orlicz function to construct the Orlicz sequence space. Lindenstrauss and
Tzafriri [§] used the idea of Orlicz function to construct the Orlicz sequence space

lM:{x:(xk)szf:{M<if|)} < 00, forsomep>0}.

k=1
The space I3 becomes a Banach space [§] with the norm

||| :inf{p>0:iM(|az€> < 1}

k=1

The space [ is called an Orlicz sequence space and is closely related to the sequence space I, with
M(z) =2, (1<p< o).

The various algebraic and topological properties of sequence spaces with the help of Orlicz function have
been introduced and studied as a generalization of various sequence spaces. For instance, we refer a few:
Bala [1], Erdem and Demiriz [2], Khan [4], Kolk [6], Mishra et. al [I0], Parashar and Chaudhary [I8] and
Rao and Ren [19].

Definition 1.3. A sequence space S is said to be solid (normal) [T] if for any sequence (z) in a sequence
space X and for all sequences () of scalars with |A;| < 1 for all natural number & implies that (Ayzi) € X.

Definition 1.4. For any sequence z = (xy), the difference sequence Az is defined by
Az = (Azp)ily = (Tk — Th-1)521-

Kizmaz [0] defined the following three sequence spaces
lo(A)={zcw: Az €ly},

c(A)={r €w:Azx €}, and

co(A)={z €w: Az € ¢cp}.

A sequence x = (zy) is called A-convergent if the lim zj, is finite and hence exists. Every convergent
sequence is A-convergent but not conversely. For, consider the sequence xj = k+ 1 for all natural numbers
k. Then, (Axy) = (zr — 2x+1) = —1 for each natural numbers k. Thus, x = (zy) is divergent but it is
A-convergent. This example illustrates the importance of studying the difference sequences.

Definition 1.5. A continuous function f : R — [0,00) is called a ® -function [3] if f(¢) = 0 if and only if
t = 0, even and non- decreasing on [0, 00). The ®-function is closely related to the Orlicz function.

Herawati and Gultom [3] in 2019 introduced certain type of sequence spaces defined by ®-function and
studied their paranormed structures on these spaces.

We now introduce the following class of difference sequences by extending the concept of sequence space
studied in Herawati and Gultom [3].

) WO(A,f):{x:(xk)6w:(3p>0);%zzzlf(%) —>Oasn—>oo}.

e W(A,f) = {332 (k) Gw:(3p>0)(ﬂl>0);%zzzlf(mm7;j_”) —>Oasn—>oo}.

e W(A f) = {x = (z) €Ew: (3p > 0);suppt Y0, f (%) < oo}.

where f is a ®-function.
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2 Main Results

In this section, we shall study some topological properties of the class Wy(A, f).

Theorem 2.1. If ®-function f satisfies Ag-condition, then Wy (A, f) forms a linear space over C.

Proof. Let x = (z1) and y = (yx) be sequences in Wy (A, f). Then there exist p; and pa > 0 such that

fz ('Awk>—>0asn—>oo (1)
k=1

and
Z ('Ayk|>—>Oasn—>oo. (2)
"=

Let us choose p = max {p1, p2}. Using the non-decreasing property of f on [0,00) and in view of and
, we can write

IN

1 & |Axy, + Ay 1< |Axy| 1
s (B = s (59)

IN
SRS
(]
~
T
B>
8
=
~——
+
S
(]
~
T
>
<
=
~———
4
o
2
S
N
g

This shows that
x4y e Wo(A, f).

Again, let x € Wy (A, f) and o € C. Then

EE f<|Axk|>—>Oasn—>oo.
n
k=1

p

We need to show that ax € Wy (A, f).

The proof is obvious if @ = 0. So, let a # 0. Then |a] > 0.

By Archimedian property of real numbers, there exists ny; € N such that |a] < 2™*. Since f is non-decreasing
function on [0,00) and f satisfies Ag-condition, there exists M > 0, such that

f(alzg) < f(2Mag) < M™ f(x) for all k € N.

Hence,

72 (aA:Ek> Zf (|OZ|A$k|> ]\{:1 k:1f <|Amk|) —0asn — oo.

p

This shows that ax € Wy(A, f) and hence Wy (A, f) is a linear space. O

Theorem 2.2. The space Wy (A, f) is a paranormed space with a paranorm
g: Wo(A, f) = R defined by

_ 1N, (A .
g(x)—mf{p>0.n2f( >§1,n6N}.

k=1 P
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Proof. The proof of g(z) > 0 and g(—z) = g(x) can be easily shown for all x € Wy(A, f).
For the third property of paranorm, let z,y € Wy(A, f). Then there exist p1, p2 > 0 such that

1 — A
75 ( xk')—)()asn%oo
n

=1

and
n
A
f(' yk') — 0asn — oo.
Lt

Using non-decreasing property of f on [0, 00), we can obtain

1 <& A A
gz +y) = inf ,0>0:Zf(mk+yk|)<1
"= P
< inf p1>0:12f(|Axk|>§1 +inf p2>o;lzf<mk|)§1
nk:l P1 nk:1 P2
= g(@) +9(y)
Therefore,

g(r +y) < g(x) +g(y) for all z,y € Wo(A, f).

Finally, we prove the continuity of scalar multiplication.
Let x € Wy(4, f) be such that

(n)

g(z;, x) > 0asn — oo

and (o) a sequence of scalars such that a,, = a as n — co.
Now,

n (n)
(n) : 1 |l Azy ™ — anAzy|
" - = f D= <1
g(anx), axy) in {p >0 - kglf< p <
n (n)
inf{p>0:1 g f('anAxk ank |> Sl}
n
k=1

P

IN

: IS¢ |04Ax,(€n) — alAxy|
+1nf{p>0.n;f<

p

. 1
= OénOé|lnf{p1<Oép_oé|>>OZ

|Ax

n (n)‘
fl—<1
n: P1

)}

+|amf{p2:(| ) Zf<|mk 2A$k|>§1}

— Jan—al g («f") + lalg (o} — o)

—0asa, - aandg (:z:,(cn) — :z:k) — 0.

Hence, Wy(A, f) is a paranormed space.

O

Theorem 2.3. If f as ®-function satisfies the conver and As-condition, then the space Wo(A, f) is a

complete paranormed space.
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Proof. Let (x,(cn)) be a Cauchy sequence in Wy(A, f), where (gc,(cn)) = (ajgn), xé"), e ) Then there exists

n1 € N such that for every m > n > ny;

g (x(m) _ x(")) Zf <|Af¢ — Az |> <1

Using the convexity of f, we have

1 s . . 1 s A ("L)*A (n)

LS (1aaf) - aaf) < ek f<' R )

s ’ s €

k=1 k=1
Since € > 0 was arbitrary,
f (|Ax,(cm) - Axén)o =0for allm >n > n;.
This follows that
|x,(€m) — x,(gn)| <eforallm>n>n;.

This shows that (x,(en)) is a Cauchy sequence in R. Since R is complete, there exists x; € R such that

lim x(") =z
n—oo L  — Lk
Thus for every n > nq,

‘zl(cm) — x| = |x§cm) - nhﬁﬂgo z,(cn)‘ = nl;rgo |x§€m) - x,(gn)| <é
Since (x,(gn)> € Wo(A, f), we can write

fo I | — 0 as s — oo.
k=1 P

Using continuity of f, we have

|Azy| [ Timy, 0 Azl 1 1AM
————*% | = lim - —r | = .
Zf( Zf p ngI;OSZf ) Dass — o0
Thus,
Hence, (zr) € Wo(A, f).

Finally, we show that g(z(™) —z) — 0 as n — ooc.
Using the continuity of f, we have

*Zf |Aa:k — Az Slif |Aac](C hmmﬁooAx(m” 1 - f \Axén)—Aacl(cm)\ <1
k=1 P 5 k=1 p

Thus

gz —z) = 1nf{p>0 Zf(mxkp_Am) Sl}-

k=1

This implies that g(z(™) — ) < p for every p > 0.
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It follows that there exists a real sequence (2%) ,q > 1 for a real number p, together with

n p
g(a )—z)<ﬁ,q>1.

Thus we obtain g(z(™ —z) — 0 as n — oco.
Hence, Wy(A, f) is a complete paranormed space.

Theorem 2.4. The space Wy (A, f) is normal.

Proof. Let x = (z1) € Wo(A, f). Then there exists p > 0 such that
1< Az,
Zf<m> —0asn — o0
"= P

Let (o) be a sequence of scalars satisfying |ay| < 1 for all & > 1.
Using |ag| < 1 for all £ > 1 and non-decreasing property of f, we have

f(lax|Azy) < f(Axy)

Then,

LS (el 1 (llanly (1 (18nY
nk:l P nk:l n

This shows that agxy, € Wo(A, f) and hence Wy (A, f) is normal.

3 Conclusions

Here we established some of the results that characterize the linear topological properties of the difference
sequence space Wy (A, f) defined by non-negative real valued ®-function on R. Moreover, the results can
be used to prove the results related to the linear and topological properties of the classes W (A, f) and
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Abstract: In this article, we introduce and study a new class co(M, (X, ||.|]), @, &) of normed space (X, ||.|])
valued difference sequences with the help of Orlicz function M. This is a generalization of the classical
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1. INTRODUCTION

The sequence spaces and function spaces have very important position in different
branches of mathematics. They occupy prominent position mainly in analysis, for instance,
in structure theory of topological linear spaces, summability theory, operator theory, frame
theory, Schauder basis theory, approximate theory, etc. This introduces several new con-
cepts in functional analysis and thereby enriching the theory of mathematics.

A sequence space is defined as a linear space of sequences. If w denotes the set of all func-
tions from the set of positive integers N to the field K, then it becomes a vector space.
Sequence space is defined as a linear subspace of w. A sequence of the form (x)32, is called

a single sequence and a sequence of the form () is called a double sequence or a

myn=1
matrix.

Let ¢, cp,ls, and [, be the linear spaces of convergent, null, bounded, and absolutely p-
summable sequences z = (x;) with complex terms respectively; and norm be given by

||2||oo = sup|az;|,i € N.

Definition 1.1. A non-decreasing, continuous, and convex function M : [0,00) — [0, 00)

is said to be an Orlicz function if M satisfies the following conditions:
(1) M(0) =0
(2) M(t)>0fort>0
(3) M(t) — oo as t — oo. (see [11])

Received: January 3, 2022 Accepted/Published Online: December, 2022
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It is said to satisfy Ag- condition, if M (2t) < QM (t), for all ¢ > 0 and a constant @ > 0.
It is equivalent to the condition M (Kt) < QKM (t), Vt and K > 1.(see [11])

Definition 1.2. Lindenstrauss and Tzafriri [8] had used Orlicz function in order to con-

struct Orlicz sequence space s given by

lM:{:c:(fk)Ew:ZM<|ik|><ooforsomes>0}

k=1
of scalars (£;). The space is named due to Wiadystaw Orlicz, first defined in 1932 and
the first detailed study on Orlicz spaces was given by Krasnosel’skii and Rutickii[I1]. The

Orlicz sequence space lj; becomes a Banach space when we define the norm as

|1Z([as =inf{s >0:> M (’5:‘) < 1}

k=1

Moreover, [,/ is closely related to the space [, with M (t) =tP;1 < p < oo.

Definition 1.3. Kizmaz [0] defined the difference sequence spaces by

co(A) ={z = (&) : AL € co}

c(A) ={z = (&) AL ec}

loo(A) = {Z = (&) : A§ € lo} where, AL = (Ak) = (§g—€k+1) and showed that these
spaces are Banach spaces with the norm given by ||Z|| = |£1|+||A]|~. A sequence T = (&)
is called A-convergent if the lim A& is finite and exists. Every convergent sequence is
A-convergent but not conversely. If we consider the sequence & = 1 + k for all natural
numbers k, then (A&) = (§—&k+1) = —1 for each natural numbers k. Thus, z = () is

divergent but it is A-convergent.

Definition 1.4. Let C be the field of complex numbers and X be a normed space over
C . Let w(X) denote the linear space of all sequences = (&), & € X,k > 1 with usual
coordinate wise addition and scalar multiplication i.e., for all z,§ € w(X) and a € C,
T+ 7= (& +m) and aZ = (a&;,). We shall write w(C) by w. Further, A = (\;) € w and
T € w(X) we have AT = (\£;). Moreover, a scalar( vector) valued sequence space means a

linear subspace of w(X).

The various topological and algebraic properties of sequence spaces with the help of
Orlicz function have been introduced,studied and investigated as a generalization of various
sequence spaces. For instances, we refer a few: Bhardwaj and Bala[19], Maddox [7], Ghosh
and Srivastava[3], Kamthan and Gupta[l5], Karakaya[l8], Khan[I7], Kolk[4], Parashar and
Choudhary[16], Pahari[14], Rao and Subremanina[l0], Savas and Patterson[5], Wilansky/[I],
Tripathy and Mahanta [2],Srivastava and Pahari[9],Basarir and Altundag[l3],and Et et
al.[12].

2. THE CLASS ¢o(M, (X, ||.]]),a,@&) OF VECTOR VALUED DIFFERENCE SEQUENCES

Let & = (o) and 4 = () be the sequences of complex numbers with non-zero terms

and @ = (a;) and b = (b;,) be sequences of positive real numbers. Let X be a normed space
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over C, and M be an Orlicz function. Now we introduce a new class
co(M, (X, [|.]]), a,a)
A& ||
= {a‘c = (&) : limg oo M <Hak£k|> = 0, where & € X,k > 1;for some s > O} )
S
It is a class of Normed space X-valued sequences. Furthermore, if ap = 1 Vk € N,
then co(M, (X, ||.]|),a, @) is denoted by co(M, (X, ||.||),a) and if a, = 1 Vk € N, then
co(M, (X, ||.]]), a, @) is denoted by co(M, (X, ||.|]),a). If ar = ap = 1 Vk € N, then the class

co(M, (X, ||I), @) is denoted by co(M, (X, |.|1)).

In this section, we characterize some topological linear structures of co(M, (X, ||.]|), a, &)

a
that arise in terms of @ and @. Throughout this paper, we shall denote sup ap = S, Vk € N.
When the sequences a; and by both occur, then we use sup ay = S(a) and sup by, = S(b).

3. SOME TOPOLOGICAL LINEAR STRUCTURES ON co(M, (X, ||.|]),a, @)

In this section, we will study the linear structure of co(M, (X, ]||.|]),a,a) of vector
valued difference sequences defined by using Orlicz function M. It is a generalization of
sequence space cg. Also, we will investigate the conditions pertaining to the containment
relations of ¢o(M, (X, ||.|]), @, @) in terms of @ and &. In this article, the following inequality
will be used: |z + y|"* < H {|x|“* + |y|[*“*}, Where; z,y € C,0 < a < supiar = S, and
H = max(1,2°71). Throughout the article we shall denote c; = Z—’; and oy, = [ZE[%.

Theorem 3.1. The class co(M, (X, ||.|]),a, @) of difference sequences is a linear space over

C if and only if supyar, = S < 00.

Proof. Necessary part: Let co(M, (X,]].||),a, @) be a linear space over C' but supgay = oco.
Then there exists a sequence of positive integers (k(n)) satisfying the condition
L <k(n) <k(n+1);n>1, and aym) > n;n > 1. Let 2 € X with [[2[| = 1. We now define

a sequence T = (&) as

2
(31) Aék — O‘k(n)_ln “k(n) z  ifk = k(n)’ n>1

otherwise

Let s > 0 be given. Then from (3.1), using convexity of Orlicz function M, we can write

2

AEL| |2k k(n) || F(n) 1 1\ 1
o (ewasdis\ (5o oy oy 1
s S n?s s) n?

and M (M) = 0, otherwise. This shows that limg_,,o M <M) =0 and
therefore = € ¢o(X,|l.||,a,@). But on the other hand, for any s > 0 and taking v = 4, we
find that for k = k(n);n >1

2
Ac, || An TR 5[k qn 1
o (Lows APy _yp (o SO0} () (1)
s s n-s S
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This shows that limy_,oo M (M) # 0 and vz does not belong ¢o(M, (X, ||.|]), a, @),

which contradicts our assumption.

For sufficiency part, assume that supgar = S < oo. Let 2 = (&), = (k) €
co(X,||.||,a, @) and B,v € C. Then there exists positive real numbers s; and sy such
that limy_,oo M (M> = 0 and limy_,oo M (M> = 0. We now choose s3 > 0

S1 52

such that max(1, |3|*) < 57 and max(1, [v|*) < 577-. Now applying the convex and non

decreasing properties of Orlicz function, we have
|k (BAE,+vAn )|k
3
. Ak
< limp_yoo M (HHﬂakAfk” ;;HHvakA"]k)
. H|B|% ||an A&k || | H|v|® [jas Any )| |k
= 1lmk~>ooM< 1B ||?3k Skl + [v] ||c;;; )|l
. S ap s ay,
< limy,_y oo M <HmaX(1’|5|SS)HakA§kH +HmaX(1,|v|S;HakAnk)H )

iy, o M (

|k

< limg oo M (4 ar &% + 5L llog A [
< ity o0 (LB 4 i,y (llostnele )

This implies that co(M, (X, |].|]), @, &) forms a linear space over C. O

Lemma 3.2. For any sequence a = (ag), co(M, (X, ||.]]),a, &) C co(M, (X, ||.|]),a,7)
if lim inf p, 8 > 0.

Proof. Assume that lim inf; §; > 0 i.e. lim infk\%wk > 0. Then there exists ¢ > 0 such
that

qlve|™ < |ag|™  Vk sufficiently large. Let T = (&) € co(M, (X, ]|.]]),a, @), then for some
s > 0, we have

limg_yoo M (M) = 0. Now we choose s; > 0 such that s < ¢s;. Using the non

decreasing property of Orlicz function, we have M (W) <M <w> This
implies that Z € ¢o(M, (X, ||.|]), @, %) and hence ¢o(M, (X, ||.|]), @, @) C co(M, (X, ]||.|]),a, 7).
[l

Lemma 3.3. Let a = (ax). If co(M, (X,]||.||),a, @) C co(M, (X, ||.|]),a,7) then
lim infy, o, > 0.

Proof. Assume that co(M, (X, [.]), @, &) C co(M, (X, [[.|[),a,7) holds but lim inf |Z | =
0. Then there exists a sequence of positive integers (k(n)) satisfying the condition
1<k(n)<k(n+1),n>1and

(3.2) 2] ()| ) < )| 0, V0 > 1

. Let z € X, with ||z|| = 1. We now define a sequence T = (&) as

2
n Mz ifk=Fk(n); n>1

otherwise

—1
(3.3) A& = { Yk
0
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Let s > 0 be given. Then for k = k(n),n > 1, using convexity of Orlicz function, we have

__2
NIEE @k(n) z||Hk(n) 1 1\ 1
ar (s oy (I A ) (1Y (1) 1
S S n-s S n

and M (M) = 0, otherwise. This shows that limg_ oo M <M) =0 and
therefore z € (X, |].||, a, @).

But on the other hand, for any s > 0 and k = k(n),n > 1 and from (3.2) and (3.3), we

obtain

2
I Dk(n) ) k() 2|| k()

M (\MMMI“’“) - M h(n) - M (|W”> | k() 7) > M (1). This shows

s s Q(n) n?s ) —

that limg_,co M (W) # 0 and hence T ¢ ¢o(M, (X, ||.||),a,7), a contradiction. This
completes the proof. ]

Next, combining Lemma (3.2) and Lemma(3.3), we obtain the theorem given below.

Theorem 3.4. For any a = (ax), co(M, (X, ||.]]),a, &) C co(M, (X,|].]),a,7) if and only if
lim infi o > 0.

Theorem 3.5. For any a = (ax), co(M, (X, ||.]),a,7) C co(M,(X,||]]),a,a) if and only if
lim supy, 6 > 0.

Proof. Let lim sup k\%wk < 0o. Then there exists 2 > 0 such that

Qlvk|* > |ag|® VEk sufficiently large. Then analogous to the proof of Lemma (3.2),the
sufficient part follows.

For the necessity part of the theorem, suppose co(M, (X, ||.|]),a,7) C co(M, (X, ||.|]),a, @)
holds. Suppose lim supg dx = o0o. Then there exists a sequence of positive integers k(n)
satisfying 1 < k(n) < k(n+1);n > 1, for which

(3.4) |y |0 > nz\’yk )| ¥R > 1

Now as proved in Lemma (3.3), corresponding to z € X with ||z|| = 1 we can construct a

sequence T = (&) by

2

'yk(n)_ln_%z ifk=k(n); n>1

(3.5) Ag, = .
otherwise
Now in view of (3.4) and (3.5), we can show that z € co(M,(X,]||.|]),a,7) but = ¢
co(M, (X, ||.]|), @, @) which contradicts our assumption. This completes the proof. O

On combining Theorem (3.4) and Theorem (3.5), one can obtain the following theorem.

Theorem 3.6. For any a = (ax), co(M, (X,||.|]),a, @) = co(M, (X,|].|]),a,7) if and only if
0 < lim inf, 6, < lim sup,, O < co.

Corollary 3.7. Let a = (ag). Then we have
(1) co(M, (X, ]].]]),a,a) C co(M, (X, ||.|]),a) if and only if lim inf g|ax|*™ > 0.
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(2) co(M, (X, ||.I]),a) C co(M, (X, ||.I]),a, &) if and only if lim supy|ax|™ < co.
(3) co(M, (X, [[.[]);a, &) = co(M, (X, |[.|]),a) if and only if
0 < lim infy, |og | < lim supy, |og| < co.

Proof. The statements (1), (2), (3) follow by taking v, = 1,Vk € N in Theorem (3.4), (3.5), (3.6).
([l

Lemma 3.8. For any a = (ag),if co(M, (X, ||.|]),a, &) C co(M, (X, ||.||),b, &) then
lim infic, > 0.

Proof. Suppose that co(M, (X, ||.]|),a, &) C co(M, (X, ||.||), b, @) holds but lim infyc;, = 0 i.e
lim inka—’Z = 0. Then there exists a sequence of positive integers (k(n)) satisfying
1 <k(n) < k(n+ 1), for which

(3.6) Nbk(n) < Ap(n), V1 > 1

Now, let z € X with ||z|| = 1. We can construct a sequence Z = (&) by

1
(3.7) Agp = Ckmn Pz ik =km)in =1

otherwise

Let s > 0.Then for k = k(n),n > 1 and using properties of Orlicz function, we have

1

ag 70‘k(n) Ak (n) Ak(n)
ar (L) _yp (I ) () 1y (1)
S S ns n S

and M (M) =0 for k # k(n),n > 1.

Thus limg_,oo M (M> = 0 and hence = € ¢o(M, (X, ]||.|]),a,@). But, for each

k =k(n),n > 1 and from (3.6) and (3.7), we have

1

NI T ag(n) | [bk(n) 1 1
M(Hakfm):M In "o 2] 2M< 1)2M<).
s s snn sve

This shows that limy_, M (M) # 0 and so Z does not belong to co(M, (X, ||.|]), b, @),

a contradiction. OJ

Lemma 3.9. For any @ = (o), co(M, (X, ||.[[),a, @) < co(M, (X, [|.[}),b, )
if lim infic, > 0

Proof. Assume that lim infycg > 0 ie. lim inka—i > 0. Then there exists ¢ > 0 such that
b > g,Vk sufficiently large. Let & = (&) € co(M, (X,]|.|]),a,@).Then for some s > 0,

ag

limp oo M (W) = 0. Hence for a given € > 0, if we choose a positive number 7 such
that n < 1 satisfying n9M (%) < €, then we have M (M) <M (2) , Vk sufficiently
large. Since M is non decreasing, therefore Vk sufficiently large, we have ||ax&||™* <n <1
and hence ||ak€k|| < 1. Since Orlicz function is convex, we can write,

M(W> <M <makA§kHak]q> <M <Zq> <niM (i) < €,Vk,

S o S
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sufficiently large. This implies limy_ o, M (M) =0 and so Z € co(M, (X, ||.|]), b, @)
and hence co(M, (X, ||.|]), @, &) C co(M, (X, ||.]]), b, @). O

Next combining lemma (3.8) and lemma (3.9), one can obtain the following theorem.
Theorem 3.10. For any & = (ag), co(M, (X,]||.|]),a,a) C co(M, (X, ||.|]),b, @) if and only
if lim infic, > 0
Lemma 3.11. For any sequence & = (ay,), if co(M, (X, ||.]]),b, &) C co(M, (X,]].]]),a, @)

then lim supgcy < 0.

Proof. Let the inclusion holds but lim supgci = oo. That is, lim Squzf = 00. Then there
exists a sequence of positive integers (k(n)) satisfying 1 < k(n) < k(n+1),n > 1, for which
(38) bk(n) > nak(n);Vn > 1.

Let z € X with ||z|| = 1. Now, We can define a sequence = = (§) by

S S
(3.9) Agp = { Ckwnt Wz ik =km)in 1

otherwise

Suppose s > 0.Then using properties of Orlicz function, for each k = k(n),n > 1; we obtain

1

by - bk(n) bk(n) bk(")
o (lesdelt) MAZMCM‘)glMC)
S S ns n S

and M (M) = 0 for each k # k(n),n > 1.

This shows that limy_,co M <M) =0 and so Z € co(M, (X, ]|.|]),b,@). But, for

S

each k = k(n),n > 1 and from (3.8) and (3.9), we obtain

1
a b (n) a (’I’L)
ar (I8 (I AR (LYo (L)
snn 8\/6

S S

. This implies that limy_, .o M (M) # 0 and so Z does not belong to ¢y (M, (X, ||.]]), a, @),

a,
which is a contradiction. OJ

Lemma 3.12. For any sequence & = (ay), co(M, (X, ||.|]),b, @) C co(M, (X, ||.]]),a, @) if

lim supgci < 0o.

Proof. Assume that lim supgcgi.e. lim suka—’Z < 00. Then 3@ > 0 such that 2—’; < Q,Vk
sufficiently large. Then analogous to Lemma (3.8), we can easily show that
co(M, (X, |11),5,@) C eo(M, (X, |[.[}), @, @). O

Next, combining the Lemma (3.11) and Lemma (3.12), one can obtain the following

theorem.

Theorem 3.13. For any sequence & = (ay), co(M, (X, ]].]]),b, @) C co(M, (X, ||.|]),a, @) if
and only if lim suppcp < oo.
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On combining the Theorem (3.10) and Theorem (3.13), one can obtain the following

theorem.

Theorem 3.14. For any sequence & = (ay), co(M, (X, ||.|]),a,a) = co(M, (X, ||.|]), b, @) if
and only if 0 < lim infic, < lim suppc < 00.

Corollary 3.15. For the sequence & = (ay;), following statements holds:

(1) co(M, (X, ]].]]), @) = co(M, (X, ||.|]),a, @) if and only if lim infrar > 0.

(2) CO(Mv (Xv H'H)vaao_‘) - CO(Ma (X7 H‘ )

(3) co(M, (X, |[.1), @, @) = co(M, (X, ||I])
0 < lim infiar < lim suppay < 0.

, @) if and only if lim suprai < oo.
@) if and only if

Proof. The statements (1), (2), (3) follow by taking a, = 1;Vk and replacing b by a
in the theorems (3.12), (3.13), (3.14) respectively. O
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