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ABSTRACT 

The increasing prevalence of Multidrug-Resistant (MDR) pathogens has resulted in 
the failure of current antibiotics to effectively treat these infections. Computer-
Aided Drug Discovery (CADD) has become a crucial tool in the drug discovery process 
recently. It has been demonstrated to be a successful method for screening lead 
compounds against target proteins within a short amount of time and with optimal 
resources. In the present study, a computational approach, CADD tools were 
employed to identify novel drug candidates against Salmonella enterica serovar 
Typhimurium LT2, targeting its essential gene, Dam. Virtual screening of various 
ligand libraries was conducted. From the initial library consisting of 21,000 
compounds from natural products, 10,342 compounds from indole derivatives, 1,685 
compounds from Kinase Inbibitors and 3,118 compounds from Nucleoside mimetics 
after ADME/Tox and druglikeness filters were narrowed down the number of 
compounds to 205 Natural Products, 462 Indole Derivatives, 6449 Kinase Inhibitors, 
and 654 Nucleoside Mimetics. The final screening from molecular docking and 
binding energy resulted in the identification of four lead compounds, Antineoplaston 
A10 and Cardamonin from natural products, 5-cyclopentaneamido-1-ethyl-N-(2-
methoxyethyl)-1H-indole-2-carboxamide from Indole Derivatives, 2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid from Kinase Inhibitors and 
3-[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-
methylpyrimidin-4-yl)pyrrolidin-3-ol from Nucleoside Mimetics were  identified as 
potential leads. These compounds showed higher binding affinity with the target 
protein and lower binding efficiency for human hMAT1A protein compared to the 
reference compound S-Adenosyl methionine (SAM) and S-adenosyl homocysteine 
(SAH). The stability and strength of protein-ligand binding were observed through 
protein-ligand interactions, Density Functional Theory (DFT), analysis of frontier 
molecular orbitals and vibrational spectra. The results suggest that these compounds 
may be potential candidates for further exploration against other MDR pathogens 
prioritized by the World Health Organization (WHO). 

 

Keywords: CADD, Multidrug-Resistant, Dam, essential gene, lead compounds
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1. INTRODUCTION 

1.1 Background  

The discovery and development of new drugs is a crucial process in the field of 
medicine, as it allows for the treatment and management of a wide range of diseases 
and medical conditions. Despite significant advancements in the field, the search for 
new and effective therapies remains ongoing, especially for diseases that are 
increasingly resistant to current treatments. This is largely due to the rapid 
development of antibiotic-resistant pathogens, which pose a significant challenge to 
public health. More than 50 years ago, it was already known that bacteria can 
develop resistance to antibiotics. By the late 1950s, most strains of Staphylococcus 
aureus had become resistant to penicillin, which was previously an effective 
treatment for these bacteria (Stapleton and Taylor, 2002). The World Health 
Organization (WHO) published a list of 12 families of bacteria that pose the greatest 
threat to human health in 2017. These bacteria were identified as the leading causes 
of severe and often deadly infections, including bacterial pneumonia, bloodstream 
infections, and infections in surgical wounds (Mulani et al., 2019). WHO has 
categorized into three priority levels (critical, high, and medium) based on the 
urgency of need to develop new antibiotics to combat these pathogens.  

Critical priority: These are bacteria that pose a high risk to human health and for 
which new antibiotics are urgently needed, includes- Acinetobacter, Pseudomonas, 
some Enterobacteriaceae such as: Klebsiella pneumoniae, Escherichia coli and 
Enterobacter spp.  

High priority: This category comprises bacteria that cause a significant public health 
impact and have high levels of resistance to multiple antibiotics, includes- 
Enterococcus faecium and Staphylococcus aureus that are resistant to various 
antibiotics, such as vancomycin and fluoroquinolones.  

Medium priority: This category includes bacteria that have a lower public health 
impact, but still pose a significant risk and require ongoing monitoring and research, 
includes- Streptococcus pneumoniae and Shigella spp. (Breijyeh et al., 2020; 
Abdelaziz et al., 2021).  

Antibiotic resistance is a naturally occurring phenomenon where bacteria develop 
resistance to antibiotics through genetic changes. However, the process is being 
accelerated by the overuse and misuse of antibiotics. Overuse allows susceptible 
bacteria to be killed, which then enables drug-resistant bacteria to spread. Further 
contributing factors to the spread of antimicrobial resistance include poor sanitation, 
poor infection control, and the use of antibiotics in farm animals (Reygaert, 2018). 
Additionally, new mechanisms of resistance, such as heteroresistance and mutant 
prevention concentration, further contribute to drug resistance. Heteroresistance is 
resistance to certain antibiotics by a subpopulation of resistant cells within a larger 
population of susceptible microorganisms. This can result in treatment failure and 
the spread of resistant bacteria (Andersson et al., 2019). 

Traditionally, the discovery and development of new drugs has relied on 
experimental approaches, such as laboratory testing and animal studies while these 
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methods have proven to be effective in many cases, they are also time-consuming, 
costly, and can be associated with ethical concerns. In recent years, computational 
methods have emerged as an alternative and complementary approach to 
traditional experimental methods, and have been used to discover and optimize 
potential drug candidates in a more efficient and cost-effective manner (Pina et al., 
2010). Computer aided drug discovery (CADD), also known as in silico drug discovery, 
involves the use of computational methods to analyze and predict the biological 
activity of potential drug candidates. This process typically involves the identification 
and evaluation of chemical compounds that show promise as treatments for specific 
diseases or medical conditions. It is an efficient tool for prioritizing active compounds 
in High-throughput Screening (HTS) in a short period of time, and can help identify 
potential drug candidates that might not be discovered through experimental means 
alone (Mallipeddi et al., 2014). The cost of drug development could be reduced by up 
to 50% (Tan et al., 2010). Additionally, it can aid in the identification of potential off-
target effects and toxicity by screening compounds through parameters such as 
Absorption, Distribution, Metabolism, and Toxicity (ADME/Tox). These methods can 
help to improve the safety assessment of new compounds as well as more efficient 
selection of compounds that have a lower risk of adverse effects on human health, 
reducing both time and effort in the drug discovery process (Jorgensen, 2009).  

Furthermore, CADD has been extensively used for drug repurposing as well. 
Examples of successfully repurposed drugs include Minoxidil, developed for 
hypertension and now indicated for hair loss. Viagra, which was originally prescribed 
for erectile dysfunction due to angina, has been successfully repurposed to treat 
erectile dysfunction, while Thalidomide, which was first prescribed to treat morning 
sickness, is now used to treat leprosy (Dudley et al., 2011; Ashburn and Thor, 2004). 

There are several approaches and algorithms that have been developed for the 
discovery of putative drugs using computational methods. One such approach is 
structure-based drug design, which involves the prediction of the biological activity 
of a compound based on its three-dimensional structure. De novo drug design and 
molecular docking are two SBDD techniques that use on crystal structures, Nuclear 
Magnetic Resonance (NMR) data, and homology models to determine the structure 
of the target macromolecule. Molecular docking is a computational method used in 
drug discovery to predict the interaction between a target protein and potential 
ligands. This method is used to screen large libraries of both ligands and targets and 
helps to identify the best-fit ligand for the target protein based on binding energy 
and other scoring functions. The protein structure can be obtained from Research 
Collaboratory for Structural Bioinformatics (RCSB) or predicted using tools like 
phyre2, swiss-model, modeller. Different softwares like Datawarrior, AutoDock and 
PyRx are used for molecular docking, scoring and determination of binding energy, 
to finalize the most suitable ligand for further analysis in drug discovery and drug 
repurposing (Chen et al., 2012). Another approach is ligand-based drug design, such 
as quantitative structure-activity relationship (QSAR), pharmacophore modeling, 
molecular field analysis, and 2D or 3D similarity assessment, can offer crucial insights 
into the nature of the interactions between drug targets and ligands, allowing 
predictive models that are suitable for lead discovery and optimization to be 
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constructed in the absence of three-dimensional (3D) structures of potential targets 
(Acharya et al., 2011). 

Since essential genes are the crucial for the survival of the bacteria, targeting this 
would inhibit the metabolism, leading to death of the bacteria. Among the essential 
genes, Dam is one of them. Targeting Dam would be significant and valuable in the 
context of the development of the new antimicrobial agents. 

1.2 Current Studies 

Antimicrobial resistance (AMR) is a major concern for global health and well-being, 
as infections become more difficult to treat, leading to prolonged illness and 
potential death.  The United Nations Secretary-General emphasized this in May 2019 
by highlighting the negative impact that AMR has on public health, livelihoods, and 
the achievement of the Sustainable Development Goals (SDGs) (WHO, 2021).  The 
World Health Organization (WHO) has been actively addressing the issue of 
Antimicrobial Resistance (AMR) for nearly two decades. In response to the growing 
concern about AMR, WHO initiated a range of activities aimed at promoting 
awareness and action on this issue. These activities included developing guidelines 
and tools for preventing and controlling AMR, as well as conducting research and 
advocacy initiatives. In May 2015, WHO's efforts to combat AMR culminated in the 
approval of the Global Action Plan on Antimicrobial Resistance (GAP-AMR) by the 
Sixty-Eighth World Health Assembly. The GAP-AMR outlines a comprehensive, 
coordinated global response to the threat of AMR and sets out a series of targets 
and actions for all countries to improve the use of antimicrobial medicines and 
reduce the spread of AMR (WHO Geneva, 2017). Furthermore, to address the AMR 
issue, WHO has established the Global Antimicrobial Resistance Surveillance System 
(GLASS) in October 2015 to establish a standardized approach for analyzing and 
sharing data on antimicrobial resistance (WHO Association Media Centre, 2015) 

In 2011-12 hospital point-prevalence survey showed high levels of AMR in various 
types of bacteria. For example, 41% of Staphylococcus aureus isolates were resistant 
to meticillin, 10% of enterococci isolates were resistant to vancomycin, 33% of all 
Enterobacteriaceae isolates were resistant to third generation cephalosporins, 8% of 
Enterobacteriaceae, 32% of Pseudomonas aeruginosa and 81% of Acinetobacter 
baumannii isolates were resistant to carbapenems (Zarb et al., 2012). In the USA and 
Europe, the problem of antimicrobial resistance is particularly acute and is estimated 
to cause 50,000 deaths each year (Teillant et al., 2015). Additionally, AMR is 
increasingly being detected in community-acquired infections, although there is 
variation in the prevalence of AMR between countries. Moreover, antimicrobial 
resistance has also been detected in bacteria from food-producing animals. In 
particular, resistance to ampicillin, quinolones, tetracyclines, and sulfonamides has 
frequently been found in Salmonella and Escherichia coli isolates from broilers, 
artificially fattened turkeys, and meat. This highlights the need for better 
management practices in animal agriculture to reduce the spread of resistant 
bacteria and protect public health (Lazarus et al., 2015; Le et al., 2015). The report by 
the European Centre for Disease Prevention and Control (ECDC), European Food 
Safety Authority (EFSA), and European Medicines Agency (EMA) found that there is a 
link between the use of antibiotics in food-producing animals and the development 



INTRODUCTION 

4 
 

of antibiotic resistance in bacteria that can cause infections in humans. This 
connection was found through the analysis of data on antibiotic use in animals and 
the prevalence of antibiotic-resistant bacteria in both animals and humans. The 
findings showed that high levels of antibiotic use in food-producing animals can 
increase the risk of antibiotic resistance in bacteria that can cause infections in 
humans, and that these resistant bacteria can be transmitted from animals to 
humans through the food chain (European Centre for Disease Prevention and 
Control (ECDC) andEuropean Food Safety Authority (EFSA); European Medicines 
Agency (EMA), 2017). 

The development of new antibiotics is crucial in addressing the growing threat of 
AMR, as many existing antibiotics are becoming less effective due to the increasing 
prevalence of multidrug-resistant organisms. Clinical studies and research efforts are 
focused on developing new, effective antibiotics to treat bacterial infections, 
especially those caused by critical and high-priority pathogens identified by WHO's 
Global Antimicrobial Resistance and Use Surveillance System (GLASS). However, the 
increasing need for alternative and often more expensive treatments also creates an 
economic burden for healthcare systems and individual patients. In 2003, despite a 
research expense of approximately 33 billion dollars, only 35 new compounds were 
registered with the Food and Drug Administration (FDA). This highlights the high cost 
and low return of traditional drug discovery methods. The Tufts Center for the Study 
of Drug Development estimated the cost of developing a prescription drug to be a 
staggering 2.558 billion dollars as published in the Journal of Health Economics in 
March 2016 (TUFTS CSDD R&D Cost Study, 2016). To overcome this challenge, 
efficient and cost-effective drug discovery processes are required. Computational 
strategies, such as virtual screening and in vitro techniques, have emerged as 
promising methods for assisting drug discovery and development (Lin et al., 2020). 
Additionally, repurposing of drugs has been explored as a method for finding new 
drug candidates (Pushpakom et al., 2019). 

In this research, we mainly focused on the computational method- structure based 
CADD that have been developed for the discovery of putative drugs. We performed 
molecular docking on ligands that passed the criteria for druggability and ADME/Tox, 
to identify them as potential target inhibitors. Through our analysis, we hope to 
contribute to the ongoing efforts to identify and develop new drugs that can 
improve the lives of patients around the world. 

1.3 Hypothesis 

1.3.1 Null Hypothesis 

The putative drug candidates to inhibit the Dam protein of Salmonella enterica 
serovar Typhimurium will not be identified through molecular docking techniques. 

1.3.2 Alternative Hypothesis 

The putative drug candidates to inhibit the Dam protein of Salmonella enterica 
serovar Typhimurium will be identified through molecular docking techniques. 
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1.4 Objectives 

1.4.1 General Objective 

 To identify novel lead compounds against SAM utilizing proteins of 
resistant pathogens prioritized by WHO to develop new drug. 

1.4.2 Specific Objective 

 To identify potential inhibitors (drug candidates) against the Dam gene 
of Salmonella enteria serovar Typhimurium from various ligand 
databases. 

 To create ligand libraries by screening with the druggability parameters 

 To perform Molecular docking against target protein and analyze protein 
ligand interactions. 

 To evaluate the effectiveness of the identified inhibitors using in silico 

 To advance the use of computer-aided methods in drug discovery and 
support the development of new treatments for Salmonella infection. 

1.5 Rationale 

The increasing emergence of antibiotic resistance among pathogens prioritized by 
the World Health Organization (WHO) highlights the urgent need for the 
development of novel antibiotics. To address this challenge, the current study aims 
to develop a more affordable and efficient technique for identifying therapeutic 
targets and potential drug candidates through virtual screening. This involves the 
determination of the binding affinity of lead molecules against the target and the 
stability of the ligand-protein complex analyzing using different softwares. 

1.6 Scope of the study 

The present study is focused on finding promising lead molecules for targeting Dam 
protein of Salmonella enteria serovar Typhimurium. The study involves conducting 
comprehensive screening and testing for antimicrobial activity.
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2. LITERATURE REVIEW 

2.1 Literature review related to antibiotics, antimicrobial 
resistance and underlying mechanisms 

Antibiotics are those substances which are produced by a microorganism or similar 
product produced wholly (synthetic) or partially (semisynthetic) by chemical 
synthesis that have the ability, in low concentrations, of inhibiting the growth of or 
killing other microorganisms. They work by either inhibiting the growth of bacteria 
(bacteriostatic) or killing bacteria (bactericidal). Bacteriostatic antibiotics work by 
preventing bacteria from reproducing and dividing, which slows down the spread of 
the infection. Bactericidal antibiotics, on the other hand, actively kill bacteria and are 
more effective in treating serious infections. Antibiotics work by targeting specific 
structures or processes within bacteria. For example, some antibiotics target the 
bacterial cell wall, preventing it from forming or maintaining its structure, while 
others target bacterial protein synthesis, inhibiting the growth and division of the 
bacteria (Zimdahl et al., 2015). 

With the development of Penicillin in 1928 by Alexander Flemming, has brought the 
milestone change in the history to develop the antibiotics, the one that inhibits the 
growth of or destroys the microorganisms. But soon later, Penicillin resistance 
became the major problem as there was development of the resistance among the 
pathogens due to intrinsic and extrinsic mutations and other different parameters 
like- modification of the antibiotic molecule (Wilson et al., 2014), decreased 
antibiotic uptake and efflux (Pages et. al., 2008 and Machuca et. al., 2014), changes 
in target sites (Donhofer et. al., 2012; Li et. al., 2013), quorum sensing (Waters and 
Bassler, 2005) and biofilm formation (Hall and Mah et. al., 2017).  

WHO defines Antimicrobial resistance (AMR) as the state of the microorganism 
(bacteria, viruses and parasites) that causes infection, resistant to the present 
available medicines (antibiotics), making the medicines ineffective, causes the severe 
illness and death (https://www.who.int/news-room/fact-
sheets/detail/antimicrobial-resistance). The resistance is becoming one of the 
world’s most urgent public health problems. Numerous important organizations, like 
the Centers for Disease Control and Prevention (CDC), Infectious Diseases Society of 
America, World Economic Forum, and the World Health Organization (WHO) have 
declared antibiotic resistance to be a “global public health concern” (Spellberg et al., 
2019). This can be correlated by the data given by CDC, in United States alone each 
year at least 2.8 million people are infected with antibiotic-resistant pathogen and 
35,000 people die (CDC, 2020). Moreover, it is estimated that antibiotic resistance 
could result in the premature deaths of approximately 300 million people by 2050, 
with a potential loss of up to $100 trillion dollars to the global economy (Price, 
2016). In 2019, CDC has categorized bacteria based on their threat level of 
antimicrobial resistance. Bacteria that pose an urgent or serious threat require a 
higher level of monitoring and preventive activities, while those considered 
concerning require less. The summary of information regarding the antimicrobial 
resistance bacteria is mentioned below and can be found at 

https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
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https://www.cdc.gov/drugresistance/biggest-threats.html. The CDC categorizes 
bacteria into the following three threat levels: 

Urgent Threats 

These are the bacteria that pose a significant threat to public health and require 
immediate and aggressive action which include- 

 Carbapenem- resistant Acinetobacter (CRE) 

 Candida auris 

 Clostridioides difficile 

 Carbapenem- resistant Enterobacterales 

 Drug- resistant Neisseria gonorrhoeae 

Serious Threats 

These are bacteria that pose a serious threat to public health and require increased 
attention and action which include- 

 Drug-resistant Campylobacter 

 Drug-resistant Candida 

 Extended spectrum beta-lactamase producing Enterobacteriaceae (ESBLs) 

 Vancomycin-resistant Enterococci (VRE) 

 Multidrug-resistant Pseudomonas aeruginosa 

 Drug-resistant nontyphoidal Salmonella 

 Drug-resistant Salmonella typhimurium 

 Drug-resistant Shigella 

 Methicillin-resistant Staphylococcus aureus (MRSA) 

 Drug-resistant Streptococcus pneumoniae 

 Drug-resistant Tuberculosis 

Concerning Threats 

These are bacteria that pose a lower threat level, but still require monitoring and 
intervention, include- 

 Vancomycin-resistant Staphylococcus aureus (VRSA) 

 Erythromycin-resistant Group A Streptococcus 

 Clindamycin-resistant Group B Streptococcus 

The excessive use of antibiotics, both by humans and animals, is the leading factor 
behind the evolution of antibiotic resistance. Antibiotics, when overused, kill off the 
susceptible bacteria but allow the resistant pathogens to persist, multiply, and 
evolve through natural selection.  Sir Alexander Fleming, the discoverer of penicillin, 
had warned of the dangers of overusing antibiotics, stating that “public will demand 
[the drug and] … then will begin an era … of abuses” (Spellberg and Gilbert, 2014). 
Other factors that contribute to the development of antibiotic resistance include 
inappropriate prescription practices (Lushniak, 2014), widespread agricultural use 
(Bartlett et al., 2013) and many others.  

https://www.cdc.gov/drugresistance/biggest-threats.html


LITERATURE REVIEW 

8 
 

2.1.1 Types of resistance to antibiotic  

There are mainly four types of resistance to antibiotics which are- (i) Natural 
(intrinsic) resistance, (ii) Acquired resistance, (iii) Cross- resistance and (iv) Multi-
drug resistance (Hasan and Al-Harmoosh, 2020). 

2.1.1.1 Natural (intrinsic) resistance 

This type of resistance is not caused by the usage of the antibiotics but is associated 
by the bacteria’s structural properties (Kadhum et al., 2019). Here, the 
microorganism does not follow the target antibiotic structure or antibiotics as the 
characteristics of target and antibiotic does not match each other. For example- as 
there is mismatch of the characteristics of the outer membrane of gram negative 
bacteria, vancomycin antibiotic fail to move through the outer membrane of the 
gram negative bacteria, resulting bacteria naturally insusceptible to vancomycin 
(Antonoplis et al. 2019). 

 

Figure 1: Examples of bacteria with intrinsic resistance (Reygaert, 2018) 

2.1.1.2 Acquired resistance 

This type of resistance is due to the alteration of the genetic features of bacteria 
which is acquired (not affected by the antibiotics), emerge from the main 
chromosome or extra chromosome structures like plasmids, transposons etc. 
(Aljanaby et. al., 2018). A chromosomal resistance occurs as a result of mutations in 
developing in spontaneous bacterial chromosome which may be due to some 
physical (UV-rays etc.) and chemical factors (Majeed et al., 2019). The antibiotics 
like- Streptomycin, aminoglycosides, erythromycin and lincomycin are susceptible to 
this type of resistance (Krause et al., 2016) 

2.1.1.3 Cross-resistance 

Cross-resistance refers to the resistance of microorganisms to a particular type of 
antibiotics due to the similarities in their structures or mechanisms of action (Etebu 
and Arikekpar, 2016). For instance, bacteria that are resistant to cephalosporins may 
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also exhibit resistance to penicillins, and bacteria resistant to neomycin may also 
show resistance to kanamycin (Jahne et al., 2015).  

2.1.1.4 Multi- drug resistance 

Some microorganisms typically pathogens are not susceptible to more than one 
antibiotics i.e particular one or more than one drug is unable to kill or control the 
bacteria (pathogen), occurs as a result of inappropriate utilization of antibiotics 
(Dheda et al., 2017). This type of resistance is induced by two mechanisms-bacteria 
acquiring several genes and increased expression of genes that code for multidrug 
efflux pumps, enzymatic inactivation, changes in the structure of the target (Salloum 
et al., 2020). 

2.1.2 Mechanisms of antibiotic resistance 

2.1.2.1 Genetic Basis of Resistance 

The evolution of resistance in bacteria is facilitated by the acquisition of mobile 
genetic elements, such as plasmids, through processes such as transformation, 
transposition, and conjugation (known collectively as horizontal gene transfer or 
HGT), plus mutation in its own chromosomal DNA. Plasmids, transposons and 
integrons are the mobile genetic elements (MGEs) play crucial role in the 
development and the dissemination of antimicrobial resistance among clinically 
relevant organisms (Piddock, 1995). 

Horizontal Gene Transfer (HGT) 

 

Figure 2: Mechanism of transfer of resistance gene through horizontal gene transfer (Aslam 
et al., 2018) 

Horizontal gene transfer (HGT) is the exchange of genetic information between 
organisms. This process includes the spread of antibiotic resistance genes among 
bacteria (except for those from parent to offspring), resulting in Multi- Drug 
Resistant (MDR) development (Le Roux and Blokesch, 2018) which in turn creates 
the new “superbugs”. When the transferred genes and pathogens continue to 
evolve, often results the development of bacteria with greater resistance (McCarthy 
et al., 2014). 
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HGT occurs by three mechanisms- 

1. Transformation: The process where bacteria acquire DNA from their environment 

2. Conjugation: The process where bacteria directly transfer genes to another cell by 
using mainly MGEs as vehicles to share genetic information and chromosome to 
chromosome direct transfer has also been seen (Manson et al., 2010). 

3. Transduction: The process where bacteriophages transfer genes from one cell to 
another 

Currently, there are two prevailing approaches to detect the HGT among the 
organisms- i) composition based approach- based on comparing base and codon 
usage composition across genes within a genome and ii) phylogeny based approach- 
based on taking higher sequence similarity and constructing their corresponding 
phylogeny to homologs which is encoded by more distantly related taxa compared 
with close relatives (Adato et al., 2015). 

Mutational Resistance 

Mutation is one of the mechanisms of resistance to many antibiotics. Mutations can 
be occurred in different ways and shows various effects such as- point mutations in 
the gene encoding DNA gyrase can alter the binding efficiency of quinolones, which 
reduces their efficacy. Similarly, multiple point mutations lead to higher levels of 
resistance (Michael et al., 2006). In addition, chromosomal mutations are the cause 
of H. pylori's clarithromycin resistance (in 23S rRNA), amoxycillin (changes in 
penicillin binding protein 1) (Okamoto et al., 2002) and so on. The bacterial 
populations with especially high mutation rates which are called as hypermutable 
strain often have higher antibiotic resistance rates than the normal mutated strains. 
As for instance, in a study of cystic fibrosis (CF) patients infected with P. aeruginosa 
(a major cause of sickness and death among CF patients, it was found that more than 
a third of all CF patients had hypermutable P. aeruginosa infections and were 
resistant to the antibiotics like aminoglycosides, quinolones B-lactams and 
fosfomycin (Oliver et al., 2000). 

2.1.2.2 Mechanistic Basis of Resistance 

The ways to transfer the drug molecule inside the bacterial cell is diffusion through 
porins, bilayer or by self- uptake. Thus, the bacteria prevent the accumulation of the 
antimicrobials by taking various actions such as- decreased permeability, efflux 
pump, enzymatic modifications of antibiotics, enzymatic breakdown of antibiotics 
and modification in target site (Kapoor,2017). 
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Figure 3: Various Mechanistic basis of resistance (Aslam et al., 2018) 

Decreased Permeability 

The small hydrophilic molecules such as- B-lactams and quinolones are transferred 
inside the cell by crossing the outer barrier- outer membrane via porins. Thus 
decrease in the number of porin channels leads to the decrease in the entry of these 
antibiotics which makes the cell resistance to these antibiotics (Pages et al., 2008).  

Efflux pump 

Despite the presence of an outer barrier in the form of an outer membrane, some 
microorganisms possess the ability to eliminate antibiotics that have entered the cell 
through a mechanism known as efflux pumps. Efflux pumps are membrane proteins 
located on the cytoplasmic membrane, which help to expel antibiotics from the cell, 
keeping the concentration of these drugs at low levels inside the cell (Džidic et al., 
2008). 

2.1.2.3 Modifications of the antibiotic molecule 

To reduce the effect of antibiotics, bacteria have the ability to produce enzymes that 
deactivate the drugs. There are two primary methods that the bacteria use to 
inactivate the antibiotics: modification of the drug through transfer of chemical 
groups or chemical changes, and breakdown of the drug (Munita and Arias, 2016). 

I. Chemical alterations of the antibiotics 

Drug inactivation through the transfer or the alteration of the chemical group to the 
drug occurs through mainly three processes- (a) acetylation (chloramphenicol, 
aminoglycosides, streptogramins), (b) Phosphorylation (chloramphenicol, 
aminoglycosides) and (c) adenylation (lincosamides, aminoglycosides) (Blair et al., 
2015). 
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One of the examples of resistance via chemical alterations of the drug is the 
presence of aminoglycoside modifying enzymes (AMEs) which covalently modify the 
hydroxyl or amino groups of the aminoglycoside molecule, resulting in the alteration 
of chemical structure of the drug. Similarly, another example of enzymatic alteration 
of an antibiotic involves the modification of chloramphenicol, an antibiotic which 
interacts with the peptidyl-transfer center of the 50S ribosomal subunit and inhibits 
protein synthesis. Here the chemical modification of chloramphenicol is done by the 
expression of acetyltransferases known as CATs (chloramphenicol 
acetyltransferases). It has been reported that there is presence of multiple cat genes 
in both gram- both gram-positives and gram-negatives that have been classified in 
two main types. Type A and Type B. Type A result in high level of resistance whereas 
Type B result in low level of chloramphenicol resistance (Schwarz et al., 2004). 

II. Destruction of the antibiotic molecule 

The production of certain enzymes such as- β-lactamases is the most common 
resistance mechanism used by gram negative bacteria against β-lactam drug. These 
enzymes inactivate or destroy the β-lactam antibiotics like- penicillin and 
cephalosporin by hydrolyzing a specific site in the β-lactam ring structure, causing 
the ring to open. Thus, the open-ring drugs are unable to bind to their target 
Penicillin Binding Proteins (PBP) proteins (Alekshun and Levy, 2007).  

The pharmaceutical industry has successfully employed two strategies as the 
solution to the resistance caused by β-lactamase β-lactams: (a) the optimization of β-
lactamase stable antibiotics (such as the expanded-spectrum cephalosporins and 
carbapenems that are resistant to hydrolysis by narrow spectrum β-lactamases or 
extended-spectrum β-lactamases) and (b) the development of selective β-lactamase 
inhibitors (BLIs) which are to be co-administered with a β-lactam antibiotic. In clinical 
practice it was found that the combinations of β-lactams with clavulanic acid, 
sulbactam, and tazobactam are intensively used to inhibit class A enzymes (Docquier 
and Mangani, 2018). Moreover, in March 2015, non-β-lactam β-lactamase inhibitor, 
avibactam in combination with ceftazidime (4:1 ratio) for the treatment of 
complicated urinary tract infections was successful. Avibactam efficiently inhibits 
most class A β-lactamases and both the chromosome and plasmid-encoded class C 
enzymes and several class D β-lactamases (Ehmann et al., 2012). There are many 
other structurally-related β-lactamase inhibitors which has reached the stage of 
clinical development like- merck compound relebactam in combination with 
imipenem (Blizzard et al., 2014), zidebactam (currenlty developed in combination 
with cefepime) and ETX2514 (Shapiro et al., 2017).  

2.1.2.4 Modification and protection of target site 

One of the strategy the bacteria develop to avoid the action of the antibiotic is by 
interfering with their target site. This is achieved by modification and protection of 
the target site. The modification of the target site is done by- (i) mutations of the 
target site (ii) enzymatic alterations of the target site and (iii) complete replacement 
or bypass of the target site (Munita and Arias, 2016). 

Resistance to the glycopeptide antibiotics such as- vancomycin in enterococci and in 
Staphylococcus aureus (MRSA) is one of the example of antibiotic resistance carried 
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out via modification of the target site. Here, resistance is mediated through the 
acquisition of van genes clusters: Van A and Van B. These gene clusters encode 
enzymes which produce a modified peptidoglycan precursor terminating in d-Alanyl-
d-Lactate (d-Ala-dLac) instead of d-Ala-d-Ala. Thus, changes in the structure of 
peptidoglycan precursors cause altered pattern of intermolecular hydrogen bonding 
resulting low binding affinity of vancomycin (Cox and Wright, 2013). 

Similarly, the drugs that target nucleic acid synthesis such as- fluoroquinolones, 
resistance is carried out through chromosomal mutations in both the DNA gyrase 
and topoisomerase IV target enzymes. In gram negative bacteria mutations occurs in 
DNA gyrase than in Topoisomerase IV such as- GyrA or GyrB subunits of DNA gyrase 
whereras in gram positive bacteria mutations occur more frequently in 
topoisomerase IV than DNA gyrase such as- ParC (GrlA in Staphylococcus aureus). 
These mutations cause changes in the structure of gyrase and topoisomerase that 
ultimately decrease or eliminate the ability of the drug to bind to these components 
(Redgrave et al., 2014). 

Furthermore, bacteria also develop resistance against antimicrobials through the 
protection of the target sites by target protection proteins (TPPs). This mechanism is 
seen in drugs like tetracycline-Tet[M] and Tet[O]), fluoroquinolones (Qnr) and fusidic 
acid (FusB and FusC) (Munita and Arias, 2016).  TPPs mediate the antibiotic 
resistance three mechanisms: (a) Type I- by sterically removing drug from the target, 
(b) Type-II- by inducing conformational changes within the target by which the drug 
is dissociated from the target and (c) Type-III- by restoration of the target function 
despite the presence of the bound antibiotic (Wilson et al., 2020). 

 

Figure 4: Mechanism of target protection types (Wilson et al., 2020) 

One of the example of target protection mechanism carried out by bacteria is 
tetracycline resistance determinants Tet(M) and Tet(O). It was found that there are 
20 different groups of tetracycline- resistance proteins (Roberts, 2005), among them 
Tet(M) and Tet(O) are best known and are paralogs of translation Elongation Factor 
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G (EF-G) that actively remove tetracycline from the ribosome in a GTP-hydrolysis-
dependent manner (Li et al., 2013).  

2.1.2.5 Quorum sensing and Biofilm formation 

Quorum sensing (QS) is a bacterial cell–cell communication at molecular level that 
involves the production, detection, and response to extracellular signaling molecules 
called autoinducers (AIs). As the bacterial population density increases, AIs 
accumulate in the environment, as a result bacteria changes in their cell numbers 
and collectively alter gene expression (Dincer et al., 2020). The process of Quorum 
Sensing (QS) is responsible for coordinating various biological functions in bacteria, 
including bioluminescence, spore formation, competence, antibiotic production, 
tolerance to disinfectants, toxin production, drug resistance, biofilm formation, and 
secretion of virulence factors (reviewed in Novick and Geisinger 2008; Ng and Bassler 
2009; Williams and Camara 2009).  

Bofilm formation in the microorganisms is one of the reasons of the antibiotic 
resistance which contribute to chronic infections (Cepas et al., 2019). According to 
the CDC over 65% of chronic hospital infections are due to biofilm formation in 
bacteria (Davey and O'toole, 2000) as microbial cells within biofilms are reported to 
have 10-1000 times more antibiotics resistance than the planktonic cells (Mah, 
2012). Biofilms not only provide the protection to the microorganism from altered 
pH, osmolarity, nutrients scarcity, mechanical and shear forces but also block the 
access of bacterial biofilm communities from antibiotics and host’s immune cells 
(Fux et al., 2005). This is the reason for the additional resistance power to bacteria 
that makes them to not only tolerate harsh conditions but also resistant to 
antibiotics. Consequently, this lead to the emergence of bad bugs infections like 
multi drug resistant, extensively drug resistant and totally drug resistant bacteria. 

 

Figure 5: Process of microbial biofilm formation (Vasudevan, 2014) 

Biofilm formation is regulated in three steps- (i) adsorption of molecules (macro and 
micro molecules) to surfaces; (ii) bacterial adhesion to the surface and release of 
extracellular polymeric substances (EPS) and (iii) colony formation and biofilm 
maturation (Sharma et al, 2019). Many pathogens often start a disease by creating 
organized biofilms, which increase their ability to adhere, replicate, and express their 
virulence. Microorganisms that form biofilms are often resistant to antibiotics 
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because of various factors such as: a) the formation of a polymeric matrix which 
restricts the diffusion of antibiotics, (b the interaction of antibiotics with the 
polymeric matrix which reduces their activity, (c) enzyme-mediated resistance such 
as β-lactamase, (d) changes in metabolic activity within the biofilm (Høiby et al., 
2010). Those microorganisms that form biofilm are able to collect high amounts of β-
lactamases in the biofilm matrix as a defense mechanism which ultimately cause 
resistance to antibiotics. For example- when Pseudomonas aeruginosa biofilm matrix 
accumulates β-lactamases, it increases hydrolysis of antibiotics, such as imipenem 
and ceftazidime (Bagge et al., 2004). Similarly, ampicillin is unable to reach the 
deeper layers of Klebsiella pneumoniae biofilms that are associated with β-lactamase 
activity and upon deletion of β-lactamase is found to increase the amount of 
ampicillin that reaches the deep layer (Anderl et al., 2000). 

 

Figure 6: Resistance shown by bacteria due to biofilm formation (Stewart et al., 2001, 
modified by (Gedif Meseret Abebe, 2020) 

There are many examples of biofilm infections threatening the human health, 
including ventilator-associated pneumonia, bronchiectasis, bronchitis, cystic fibrosis, 
upper respiratory airway infections (Anderson et al., 2013) chronic infections of 
bone, cardiac tissues, middle ear, gastrointestinal tract, eye, urogenital tract, 
prosthetic infections and so on (Amaning et al.,2020). Moreover, microbial biofilms 
also affect indwelling medical devices such as contact lenses, central venous 
catheters, mechanical heart valves, peritoneal dialysis catheters, orthopedic implants 
and prosthetic joints, pacemakers, vascular grafts, dental diseases, urinary catheters 
and voice prostheses (Percival and Kite, 2007). This can lead to device failure, chronic 
infections and high mortality and morbidity rates (Sohns et al., 2017).  Furthermore, 
it has been estimated that the treatment of implant-associated infections removal/ 
replacement and antibiotic therapy cost high more than $50,000 along with high-risk 
surgeries.  
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To address the issue of microbial resistance, various approaches are being used. 
Some of these include: (i) Quorum quenching (QQ) which aims to interfere with the 
Quorum Sensing (QS) system of specific microorganisms, thereby reducing the 
expression of harmful factors (Wu et al., 2020), (ii) electrical and electromagnetic 
methods such as the application of DC voltage, low AC currents, pulsed electric 
fields, capacitive coupling treatment, and extremely low-frequency electromagnetic 
waves (ELF-EMF) (Freebairn et al. 2013), (iii) antibacterial coatings (Veerachamy et 
al., 2014), (iv) surface modification of biomaterials, used in implantable devices to 
prevent the growth of bacteria (Puiu et al., 2017), (v) antimicrobial photodynamic 
therapies, which involve the use of light absorbing compounds (photosensitizers) to 
produce reactive oxygen species and eradicate bacterial cells (Donelli, 2015), (vi) 
early diagnosis of biofilm formation using biosensors (Khatoon et al., 2018). 

2.2 Literature review related to bacterial essential gene 

Essential genes are indispensable genes which are required for the survival of the 
organism or a cell. Studies on the bacterial essential genes are beneficial not only to 
understand the essence of life and reconstruct a minimal gene set artificially (Juhas 
et al., 2014) but also to identify the effective drug targets to pathogenic bacteria and 
fungi (Dickerson et al. 2011). The experimental approaches for the identification of 
essential genes include single-gene knockout (Kobayashi et al., 2003), transposon 
mutagenesis, high-throughput sequencing and antisense RNA inhibition (Ji et al., 
2001). However, these techniques are resource intensive and not feasible for all the 
organisms. Similarly, the pathogenic organisms are hazardous to cultivate thus 
require high laboratorial cost and more time consuming (Hopkins and Groom, 2002). 
Therefore, alternative methods have to be applied such as computational methods 
to overcome these problems. The computational methods like- homology modeling, 
protein- protein interactions are reliable. 

There are various online platforms for the identification of the essential genes such 
as-DEG (a database of essential genes) contains number of essential and non-
essential genes in archaeal, bacterial and eukaryotic organisms determined under 
different environments, OGEE (Online GEne Essentiality database) 
http://ogeedb.embl.de collects experimentally evaluated gene essentiality data and 
associated gene features such as expression profiles, duplication status, conservation 
across species, evolutionary origins and involvement in embryonic development, 
EGGS (Essential Genes on Genome Scale) contains microbial gene essentiality data 
which are acquired from genome-wide essential gene selections, CEG a database( 
http://cefg.cn/ceg/) contains clusters of orthologous essential genes where users 
can easily determine whether an essential gene is conserved in multiple bacterial 
species or is species- specific based on the size of the cluster (Ye et al., 2013) and so 
on. 

The study of essential genes in bacteria has been greatly aided by the use of 
bioinformatics resources. With the increasing number of completely sequenced 
bacterial genomes, researchers have been able to establish essential gene 
databases, allowing for the in silico identification of essential genes. This has been a 
significant advancement in the field and has greatly facilitated the investigation of 
essential genes in bacteria (Zhang et al., 2015). Since Computational methods not 

http://ogeedb.embl.de/
http://cefg.cn/ceg/)
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only save efforts, resources but also time, they are becoming more important in 
essential gene study. 

2.3 Literature review related to Riboswitch 

Riboswitches are structured elements typically found in the 5’ untranslated region 
(UTR) regions of mRNAs, which play a crucial role in gene regulation by controlling 
gene expression. They consist of two structural domains: an aptamer domain and an 
expression platform. The aptamer domain is a folded RNA structure that specifically 
binds to a target metabolite, while the expression platform converts the binding 
events into changes in gene expression by altering the RNA folding (Breaker et. al., 
2005).  

Riboswitches have been experimentally validated for various functions in controlling 
gene expression. Examples of riboswitches include cobalamin riboswitch, S-Adenosyl 
methionine (SAM) riboswitch, tetrahydrofolate riboswitch, glutamine riboswitch, 
cyclic-AMO-GMP, FMN riboswitch, and others. Each of these riboswitches regulates 
gene expression by binding to a different metabolite and altering RNA folding, 
thereby controlling gene expression (Ren et. al., 2015)  

2.3.1 SAM Riboswitch 

The bacterial de novo thiol metabolite SAM also known as AdoMet, is considered as 
vital biological methyl donor agent (Yan et. al., 2010). SAM is one of the second most 
important after ATP. It acts as co- substrate in various biochemical pathways. It plays 
role in methylation, aminopropylation as well as in trans sulfuration (Beri et. al., 
2017). DNA methylation is critical for gene expression regulation and phospholipids 
methylation retains the membrane receptors and fluids where SAM is the methyl 
group donor.  

SAM riboswitches or S-box leader sequences are found upstream of genes coding for 
biologically active proteins involved in methionine or cysteine biosynthesis. These 
riboswitches play a role in regulating metabolic processes through mechanisms like 
transcription termination, translation initiation, and antisense production. There are 
four types of SAM riboswitches known to date: 

SAM-I riboswitch- Upon SAM binding, this riboswitch allows for the formation of an 
intrinsic terminator stem loop, leading to termination of transcription. In the 
absence of SAM-I riboswitch, an antiterminator loop structure is formed that 
activates transcription (Sudarsan et. al.,2008). 

SAM-II riboswitches are typically short sequences of oligonucleotides. These type of 
riboswitches are mainly found in α-proteobacteria (Corbino et. al., 2005). These  
sequences form an H-type pseudoknot after binding with SAM which is entirely 
distinct sequence and structural features from those of SAM-I and SAM-IV. Though, 
the pseudoknot ends 2nt upstream of the Shine-Dalgarno (SD) sequence, it is 
sufficient to occlude the ribosome binding in “off” nonfunctional state (Gilbert et. al., 
2009).  

SAM-III riboswitch- This type of riboswitch regulates gene expression by 
sequestrating the ribosome binding site (RBS) or SD sequence. The aptamer formed 
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by SAM binding with the SD sequence prevents ribosome binding to the RBS. But, it 
is narrowly distributed mainly in the order Lactobacillales (Fuchs et. al., 2006). When 
SAM binds with SD sequence, aptamer is formed by base pairing of SD base 
sequence with an anti-SD sequence. As a result, this prevents the binding of 
ribosome in the ribosome binding site. The tertiary structure and binding pocket of 
SAM-III aptamers are distinct as compared to other SAM riboswitches (Lu et. al., 
2008).  

SAM IV- This type of riboswitch is similar to SAM-I, but the scaffolding beneath the 
binding nucleotides is different. Each of these SAM riboswitches has distinct 
structural and binding pocket features, contributing to their specific functions in 
regulating gene expression and metabolic processes. 

2.4 Literature review related to DNA adenine methylase (Dam) 

2.4.1 The dam gene 

The dam gene is a part of transcriptional unit having 834-bp which contains at least 
four genes or six or seven (Lyngstadass et al., 1995). Dam is a single polypeptide 
chain of 278 amino acids having an apparent molecular size of 32kDa (Herman and 
Modrich, 1982).  It has two SAM binding sites i.e. first a catalytic site and next one 
that increases specific binding to DNA which may be due to an allosteric change in 
the protein (Bergerat et al., 1991).  The optimal sequence for DNA binding and/or 
methyl transfer is 5’-GGGGATCAAG-3’ (Peterson and Reich, 2006). 

 

Figure 7: Transfer of a methyl group from S-adenosylmethionine (SAM) to N6 position of 
adenine (Heusipp et al., 2007) 

2.4.2 DNA adenine methylase (Dam) as potential drug target 

DNA adenine methylase (Dam) is an enzyme which adds methyl  group to N-6 in 
adenine base of newly synthesized DNA in 5’- GATC-3’, helps in several processes 
like- DNA replication, chromosome segregation, gene transcription, transposition 
and repair  (Stein and Chirila, 2014).  

Dam gene is not only necessary for viability of E.coli in a wild type but also required 
in recombination- deficient mutants such as rec A, ruvABC etc. (Marinus, 2000).  

DNA adenine methylase is highly conserved in many pathogens such as Vibrio 
cholera (http://www.tigr.org), Salmonella enterica serovar Typhi 

http://www.tigr.org/
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(http://www.sanger.ac.uk) , pathogenic Escherichia coli (Blattner, 1997), Yersinia 
petis (http://www.tigr.org) and Haemophilus influenza (Fleischmann et al., 1995).  In 
some studies, it was found that Dam methylation in Salmonella enterica serovar 
Typhimurium regulates the invasion genes of pathogenicity island I (SPI-1) (Balbontin 
et al., 2006).  

When Dam- mutants of Salmonella enterica serovar Typhimurium are attenuated in 
mouse model, resulted in virulence- related defects like- reduced secretion of 
invasion proteins, reduced cytotoxicity after infection of M cells (Garcia-del-Portillo 
et al., 1999), sensitivity to bile and other DNA- damaging agents produced inside 
animal (Heithoff et al., 2001 and Prieto et al., 2004) and envelope instability which is 
enhanced by leakage of proteins, leading to activate the host immune system 
(Pucciarelli et al., 2002) 

Mutations in Dam results in the attenuation of the virulence of various pathogens 
hence it can be said that the DNA methylation plays a major role in the emerging the 
virulence (Julio et al., 2001). Similarly, animals that are infected with attenuated dam 
strain show resistant to superinfection by wild type, indicates the possibility of a 
vaccine (Dueger et al., 2003 and Mohler et al., 2008). 

Since Dam methylase is essential for the viability and bacterial virulence in multiple 
gram-negative pathogens (Low et al., 2001 and Heusipp et al., 2007) and humans 
donot produce this enzyme (Mashhoon et al., 2006), Dam inhibitors are the 
promising target for the antimicrobial drug development (Julio et al., 2001). It was 
found that several S-adenosylmethionine analogs have the potential to inhibit Dam 
methyltransferase activity in approximately 10uM range (Hobley et al., 2012) 

2.5 Literature review related to computational approach in 
identifying new drug targets 

2.5.1 Computer Aided Drug Discovery (CADD) 

The discovery and development of new antibiotics has become crucial in light of the 
increasing drug resistance among pathogens. However, this process is notoriously 
expensive and time-consuming, with an estimated cost of $800 million and a 
timeline of 10 to 15 years (Dickson and Gagnon, 2004). Fortunately, advancements in 
computer technology have enabled researchers to employ computer-aided drug 
design (CADD) or computer-assisted molecular design (CAMD) to minimize cost, 
reduce risk, and speed up the drug discovery process. By combining biological 
science and chemical synthesis with computer technology, CADD has become a 
widely used approach for identifying promising lead compounds for the treatment of 
various diseases (Rio and Varchi, 2016). Computer-aided drug design (CADD) is an 
approach to drug discovery that uses computational techniques to design and 
optimize new drugs. The goal of CADD is to reduce the time and cost involved in the 
traditional drug discovery process, while also increasing the success rate of 
identifying new and effective drugs. CADD combines various techniques, such as 
molecular modeling, simulation, and data analysis, to predict the biological activity 
and potential toxicity of new drugs. CADD method has been widely used for 

http://www.sanger.ac.uk/
http://www.tigr.org/
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identifying potential lead compounds for developing the possible drug of many kinds 
of diseases (Baig et al., 2016). 

There are two methods of CADD: Structure based drug design (SBDD) and ligand 
based drug design (LBDD). 

2.5.1.1Structure based drug design 

 

Figure 8: General process of structure based drug design (Ferreira et al., 2015) 

Structure Based Drug Design (SBDD) is the approach which utilizes protein three-
dimensional (3D) structural information of a target molecule (Lounnas et al., 2013), 
obtained using cryo-electron microscopy (EM), NMR, X-ray crystallography and 
computational methods like homology modeling and molecular dynamic (MD) 
simulation  to design new biologically active molecules (Goh et al., 2016). Based on 
the affinity of the ligand- receptor complex the potential compounds are determined 
which has the necessary features for desired pharmacological and therapeutic 
effects. Thus, SBDD has been a promising tool to find out the lead compounds and 
the drugs (Wang et al., 2018). The most common computational techniques used in 
SBDD are- structure-based virtual screening (SBVS), molecular docking, and 
molecular dynamics (MD) simulations. These techniques make use of the 3D 
structure of the target protein and knowledge about the disease at the molecular 
level, making the drug discovery process more specific, efficient and rapid. SBDD has 
been a promising approach in the field of drug discovery and optimization (Lionta et 
al., 2014). 

2.5.1.1.1 Steps for structure based drug design 

(i) Identification of the target site 

The identification of an appropriate drug target is a crucial first step in the drug 
discovery process. The target should be closely related to human diseases and able 
to bind to small molecules. Target identification is the first and most important step 
in the drug discovery process. In drug discovery, proteins are preferred as drug 
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targets due to their high specificity, potency and low toxicity. The most common 
types of proteins selected as drug targets are kinases, proteases, and peptides. To 
utilize a structure-based approach for drug design, a 3-dimensional (3D) structure of 
the target protein is required. This 3D structure can be obtained through 
experimental methods such as X-ray crystallography, NMR spectroscopy or cryo-
electron microscopy, and is deposited in the Protein Data Bank (PDB) database. If the 
3D structure of the target protein is not available through experimental methods, 
there are several computational methods for predicting the 3D structure of the 
protein. These methods include homology modeling, protein threading or fold 
recognition, ab initio methods, and integrated approaches (Xiang, 2006). To assist 
with the prediction of the 3D structure of a protein, various online tools are 
available, including MODELLER, Phyre-2, Swiss-port, CPH model, PS2V2, Raptor X, 
etc.  

Homology modeling 

Homology modeling is the easiest and widely used method for predicting the three-
dimensional structure of proteins. This approach, also known as comparative 
modeling, is based on the principle that proteins with similar sequences adopt 
similar structures. To apply this method, proteins that have more than 50% sequence 
similarity to the target protein are used as templates for modeling (Akhoon et al., 
2011). This method has been widely used to model the unknown or non resolved 
protein structures (Grouleff and Schiott, 2015). The process involves the following 
steps: (i) identification of the appropriate template through a Basic Local Alignment 
Search Tool (BLAST) search, (ii) sequence alignment, (iii) correction of the alignment 
to ensure that conserved or functionally important residues are properly aligned, (iv) 
optimization of the model through energy minimization, and (v) validation of the 
model using residues in the allowed regions of the Ramachandran plot and favorable 
energies (Gromiha et al., 2019). 

 

Figure 9: Steps in homology modeling (Sliwoski et al., 2013) 
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The most widely used computational method for predicting the 3D structure of 
protein is MODELLER (Webb and Sali, 2016). 

MODELLER 

 MODELLER 10.0 is a computer program used for comparative protein modeling 
between the provided target and template sequences (Webb and Sali, 2016). This 
platform is used when the 3D crystal structure of the protein is unavailable. The 
program allows the user to model the target protein by aligning it with available 
template structures and atomic coordinates. The input target sequence is compared 
with the templates using a simple script file, and the program automatically 
generates a model of the target protein that includes all non-hydrogen atoms. 
Moreover, MODELLER has a variety of features that make it a useful tool in protein 
modeling and analysis. These features include the ability to assign protein folds, align 
sequences and/or structures (Marti-Renom et al., 2004), perform multiple sequence 
alignment (Madhusudhan et al., 2006 ; Madhusudhan et al., 2009), calculate 
phylogenetic trees, and build models for loops in protein structures (Fiser et al., 
2000).  

PROCHECK 

PROCHECK is a software tool for the validation of protein structures, regardless of 
how the structures were obtained. This means that the program can be used to 
assess both experimental structures derived from techniques such as X-ray 
crystallography and NMR spectroscopy, as well as theoretical structures built by 
homology modeling. The program operates by analyzing the three-dimensional 
atomic coordinates of the protein structure and checking them against established 
criteria for evaluating protein structure quality. These criteria include the 
distribution of residues in specific regions of a Ramachandran plot, the presence of 
problematic secondary structure elements, and other factors. By comparing the 
input structure to these established standards, the PROCHECK program can provide 
an overall assessment of the quality of the structure, helping researchers to identify 
any potential issues or areas for improvement. The output of the program is a series 
of graphical and numerical analyses that indicate the quality of the protein structure, 
such as the Ramachandran Plot. The different regions of the Ramachandran plot are 
defined on the basis of the density of data points obtained from a database of well-
refined protein structures. These regions include: core, allowed, generously allowed, 
and disallowed. The 'core' regions are particularly important because they are the 
regions where the data points tend to converge and cluster more tightly as the 
resolution of the protein structure improves (Laskowski et al., 1993). 

In the PROCHECK version, the regions of the Ramachandran plot are defined in such 
a way that points in the 'core' regions are considered to be of high quality and those 
in the 'disallowed' regions are considered to be of low quality. Points in the 'allowed' 
and 'generously allowed' regions are considered to be of intermediate quality. The 
software allows users to identify potential problems with a protein structure and to 
assess the quality of the structure as a whole (Morris et al., 1992). 
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ProSA Program 

The ProSA (Protein Structure Analysis) program is a widely used tool in the field of 
protein structure analysis. It utilizes web-based applications to provide an interactive 
platform for the refinement and validation of experimental protein structures, as 
well as structure prediction and modeling. The ProSA program evaluates the quality 
and accuracy of protein structures by calculating various energy scores and plotting 
them in a graphical representation, highlighting potential issues or problems in the 
protein structures. This tool enables scientists and researchers to assess the quality 
and accuracy of their experimental protein structures and make necessary 
adjustments, helping to improve the accuracy of predictions and models in the field 
of protein structure analysis (Wiederstein and Sippl, 2007). It calculates the energy 
of the structure by evaluating the distance-based pair potential and the solvent 
exposure of protein residues. The two key metrics generated by the program are the 
z-score and the plot of residue energies. The z-score measures the deviation of the 
total energy of the structure compared to a distribution derived from random 
conformations. If the z-score falls outside the range typical for native proteins, it 
indicates an erroneous structure (Sippl, 1993; Sippl, 1995). Unusual z-scores for 
soluble globular proteins are often associated with errors in the protein structure. In 
general, protein models with Z-scores that are close to 0 are considered to be of 
higher quality because they are more similar to the known high-quality structures in 
the dataset. However, it is important to note that Z-scores should not be used in 
isolation to validate protein structures, but rather in conjunction with other methods 
and considerations. ProSA-web is accessible at https://prosa.services.came.sbg.ac.at.  

(ii) Identification of active site 

Once the target protein is identified, it's crucial to locate the binding pocket, also 
known as the active site. This is where a ligand can bind to the target protein and is 
capable of inhibiting the target protein is considered as a lead compound or lead 
candidate. To identify the binding pocket, computational methods are used that rely 
on various geometric criteria and algorithmic approaches. There are several software 
tools available, including PyMOL (Seeliger and Groot, 2010), POCKET (Levitt and 
Banaszak, 1992), SURFNET (Laskowski, 1995), LIGSITE (Hendlich et al., 1997), CAST 
(Liang et al., 1998), PASS (Brady and Stouten, 2000) and others, that help in 
identifying the binding pockets of target proteins. 

(iii) Compound library selection 

Compound databases play a crucial role in the SBDD process. The construction of 
these databases involves gathering and organizing a collection of chemical 
compounds that can potentially serve as drug candidates. A well-structured database 
allows for an efficient screening process and the identification of lead compounds 
for further development. Ligand libraries, which are a subset of the compound 
database, are created by selecting compounds that possess desirable chemical and 
physical properties. These properties, known as drug likeness or physiochemical 
properties, are chosen based on the target disease or biological target of interest. 

https://prosa.services.came.sbg.ac.at/
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The goal of enriching these libraries is to increase the likelihood of finding 
compounds that can effectively interact with the target and have a positive effect on 
the disease. The process of virtual screening involves the use of various databases 
containing compounds to identify potential hits for drug discovery. These databases 
come in a wide range, with commercial options such as ZINC 
(http://zinc15.docking.org/) and PubChem (http://pubchem.ncbi.nlm.nih.gov)  being 
widely used. ZINC is a database of compounds that have been processed to become 
biologically relevant and boasts an extensive library of 230 million compounds that 
can be purchased in 3D format. It includes a variety of forms of molecules, such as 
protonated, deprotonated, and tautomeric, which are classified into three different 
pH ranges (Irwin, 2008). Additionally, there is PubChem, which provides access to 
112 million compounds.  These vast collections of compounds offer a valuable 
resource for drug discovery efforts. 

(iv) Drug lead evaluation ( In silico ADME/Tox filtering for drug-likeness) 

It is a well-known fact in the pharmaceutical industry that only a small fraction of the 
compounds that enter the drug development process end up becoming marketed 
drugs. According to reports, only 10% of the compounds make it through to become 
commercially available drugs, while the rest fail, often due to their pharmacokinetic 
profile. This means that the remaining 40% of compounds are not suitable for use as 
drugs due to their properties related to adsorption, distribution, metabolism, 
excretion, and toxicity (ADME/Tox) (Prentis et al., 1988). The pharmacokinetic profile 
is an important factor in determining the success of a drug candidate and plays a 
crucial role in the drug development process. Similarly, computing with millions of 
bioactive compounds in the libraries and finding the right compound is time 
consuming and waste of energy cum resources. Thus, it is necessary to know the 
pharmacokinetics of the bioactive compounds and their efficiency are evaluated 
upon adsorption, distribution, metabolism, excretion and toxicity (ADME/Tox). As 
oral administration is often preferred over intravenous administration, evaluating 
drug-like properties in the early stages of drug development is crucial. To evaluate 
the drug-like properties of the molecules in the early stages of drug development 
process Chris Lipinski and colleagues at Pfizer developed the Rule of Five (ROF or 
RO5), also known as the Lipinski Rules, as a simple and effective way of evaluating 
drug-like properties (Petit, et al., 2012). The Lipinsinki rule of 5 states that the drug 
like compounds should have the following properties: 

  

http://zinc15.docking.org/
http://pubchem.ncbi.nlm.nih.gov/
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Table 1: Typical Range Parameters for Characteristics Associated with Drug-like 
Properties 

Parameters Minimum                                                Maximum 

Molecular weight (MW) in 
Daltons 

200 500 

clogP -3 6 
ClogS -4 -2 
Hydrogen Bond Acceptors  0 10 
Hydrogen Bond Donors 0 5 
Topological Polar Surface Area 
(TPSA) 

0 120 

Rotatable Bonds 0 10 
 

Moreover, in order to increase the property of the drug likeness of a chemical 
compound two more conditions such as: a polar surface area and rotatable bonds 
(Veber et al., 2002 and Chagas et al., 2018) has been added. 

Molecular weight 

The molecular weight of a drug molecule is an important factor that determines its 
permeability across biological membranes, including the intestinal wall and the 
blood-brain barrier. The ideal range for molecular weight is considered to be 
between 200 and 500 Daltons for improved permeability. Compounds with higher 
molecular weight than this range tend to have reduced permeability and 
bioavailability due to their size and difficulty in crossing biological membranes. On 
the other hand, compounds with lower molecular weight are more likely to be 
rapidly excreted from the body, which can lead to poor pharmacokinetics. Therefore, 
compounds with molecular weight in the range of 200-500 Daltons are considered to 
be optimal for oral absorption and drug efficacy. 

Lipophilicity (clogP) 

The clogP (logarithm of partition coefficient between n-octanol and water log, 
coctanol/cwater) is a measure of the hydrophobicity (lipophilicity) of a chemical 
compound, which is related to its distribution between water and oil phases. It is 
calculated using a theoretical model that takes into account the molecular structure, 
size, and polarity of a compound. The value is used as a predictor of the solubility of 
a compound in various solvents and biological membranes. A high ClogP value 
indicates a higher lipophilicity and thus a lower solubility in water and a higher 
permeability across biological membranes. On the other hand, a low ClogP value 
indicates a higher hydrophilicity and higher solubility in water but lower permeability 
across biological membranes. This property is important in drug design as it affects 
the bioavailability and efficacy of a drug, as well as its toxicity and pharmacokinetics. 
The range for clogP values typically falls between negative 3 to positive 6 (Egan et al., 
2000). 
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Solubility (clogS) 

Aqueous solubility, the amount of a compound that can dissolve in water, is another 
critical factor in determining its potential for intestinal absorption. The solubility of a 
compound is influenced by factors such as lipophilicity and crystal lattice binding 
energy. Poorly soluble compounds often result in low absorption due to limited 
dissolution rate, leading to incomplete absorption. The solubility of a compound is 
influenced by factors such as lipophilicity and crystal lattice binding energy. Drugs 
that are both lipophilic and soluble in water are more likely to be absorbed when 
taken orally (Waring, 2010). Optimal oral absorption is generally achieved when a 
compound exhibits a balance between its lipophilicity and its aqueous solubility. The 
value range for solubility of the compound is between -4 to -2. 

Hydrogen bond Acceptor 

Hydrogen bonds are important in determining the specificity of ligand binding, 
membrane transport, and the distribution of drugs in biological systems. These 
bonds form between electronegative atoms such as nitrogen (N), oxygen (O), or 
fluorine (F) and a hydrogen atom that is covalently bonded to one of these 
electronegative atoms. The hydrogen atom acts as a partial positive charge and the 
electronegative atom acts as a partial negative charge, resulting in the formation of a 
polar covalent bond. In biological systems, hydrogen bonds play a crucial role in 
determining the specificity of ligand binding by allowing for selective interactions 
between the ligand and the target protein. In addition, they play a role in membrane 
transport by facilitating the transport of ions and other small molecules across the 
lipid bilayer. Additionally, hydrogen bonds also influence the distribution of drugs in 
the biological system by affecting their solubility, partitioning, and permeation 
across biological membranes (Kubinyi, 2007).  

Hydrogen bond Donor 

Hydrogen bonds play a significant role in determining the specificity of ligand binding 
and the distribution of drugs in a biological system. The presence of a large number 
of hydrogen-bond donor groups can hinder the ability of a molecule to permeate the 
lipophilic environment within a cellular membrane, thereby affecting its 
effectiveness as a drug candidate. To evaluate the hydrogen bonding ability of a 
molecule, it is important to measure the sum of N-H and O-H bonds in the 
compound. For optimal permeability and drug-like properties, it is generally 
recommended that the hydrogen bond donor count be less than 5 (Lipinski et al., 
1997).  

RO5 plays the key role in earliest stage of drug development which includes 
compound library construction and hit-to-lead optimization programs. 

(v) Docking and scoring 

Molecular docking is a computational method that uses structural information to 
evaluate how well a collection of molecules, including synthesized and theoretical 
ones, fit into a macromolecular binding site in terms of shape and electrical 
interactions. It is a way to screen and rank a large number of molecules for their 
potential binding ability to a target protein. (Bartuzi et al., 2017). It is considered one 
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of the most accurate methods in SBDD and is applied to examine various molecular 
interactions and the stability of complexes (Meng et al., 2011). The docking 
algorithms predict binding energies and rank the ligands based on various scoring 
functions. The determination of the most appropriate ligand-binding conformation is 
dependent on two factors, the vast conformational space that defines possible 
binding positions, and the explicit prediction of the binding energy associated with 
each conformation (Kapetanovic, 2008). There are various docking algorithms and 
programs available, each using different scoring functions to predict the binding 
energy. The process is carried out through multiple iterations until the lowest energy 
state is achieved, which is then evaluated using different scoring functions. It is 
important to note that these scoring functions may be suitable for specific ligand 
chemotypes and target macromolecules (Kitchen et al., 2004; Ferreira et al., 2015).  

A scoring function is a tool used in molecular docking to assess the binding affinity 
between a ligand and a target protein. It helps to evaluate the interaction between 
the two molecules, and determine the most energetically favorable binding pose. 
There are several types of scoring functions that are used in molecular docking, 
including force field, empirical, knowledge-based, and machine learning (ML) scoring 
functions (Huang et al., 2010). Force field scoring functions estimate the 
intermolecular interactions between the binding partners, such as electrostatic and 
vdW forces. Empirical scoring functions are based on the number of atoms in the 
ligand and target protein and are used to predict affinity and pose. These functions 
take into account factors such as hydrophobic forces, hydrophilic forces, hydrogen 
bonding, and entropy (Guedes et al., 2018). Knowledge-based scoring functions are 
based on statistical potentials of intermolecular interactions and assume that certain 
functional groups or types of atoms contribute to binding affinity (Muegge, 2006). 
ML scoring functions are more advanced than other types of scoring functions. These 
methods do not rely on predefined functional forms between structural features and 
binding affinity values. Instead, ML methods dynamically construct and optimize 
models to predict the binding pose and affinity. Different ML methods such as 
random forest (RF), support vector machine (SVM), and neural networks (NN) work 
with nonlinear dependencies among binding interactions and perform better than 
other methods in calculating binding energy (Li et al., 2018). Similarly, consensus 
scoring is another scoring function that combines scores from different methods to 
minimize the error rate in individual scores and increase the likelihood of finding a 
true positive result (Sousa et al., 2006). 

There is a wide variety of molecular docking software programs that are utilized for 
drug discovery and molecular modeling, each with its own unique features and 
limitations. Some of the most commonly used programs include DOCK 
(Venkatachalam et al., 2003) AutoDock (Morris et al., 1998), FlexX (Rarey et al., 
1996), Surflex (Jain, 2003), GOLD (Jones et al. 1997), Glide (Friesner et al., 2004), 
Cdocker, LigandFit (Venkatachalam et al., 2003 MOE-Dock (Corbeil et al., 2012), 
AutoDock Vina (Trott and Olson 2010), rDock (Ruiz-Carmona et al., 2014), UCSF Dock 
(Allen et al., 2015), and many others. These tools are used to predict the interaction 
between a protein (receptor) and a small molecule (ligand), which is a critical aspect 
of drug discovery. By using different algorithms and techniques, researchers can 
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compare the results from various programs and choose the best one to address a 
specific problem. 

(vi) Post processing (Improving selection after docking) 

 Structure- based drug design is a powerful method for discovering new drug leads 
against important targets which can create a very promising factor for the 
continuation to phase I clinical trials. For this, the expert chemist is responsible for 
visually inspecting and analyzing the thousands of docking poses generated by 
molecular docking. Since, simplified scoring functions used in molecular docking can 
sometimes produce unrealistic results, leading to an over-estimation of binding 
affinity. Additionally, molecular docking may not sample the entire conformational 
space of a ligand, which can result in missed binding opportunities. In order to 
address the limitations of molecular docking and virtual screening in drug discovery, 
it is important to have a comprehensive understanding of the molecular interactions 
between ligands and targets, as well as the chemical properties and biological 
activity of potential compounds. This information will help make informed decisions 
on which compounds to prioritize for further testing, taking into account factors such 
as pharmacokinetics and toxicity. 

2.5.1.2 Ligand Based Drug Design (LBDD) 

Ligand-based drug design (LBDD) is a computational method used to identify new 
potential drug candidates. This method is based on the structural information and 
physical-chemical properties of already known active and inactive molecules. It 
utilizes the molecular similarity principle which compares the relationships between 
compounds in a given library and one or more known active compounds. It 
commonly employs two key techniques for virtual screening: QSAR and 
pharmacophore modeling. These methods examine the relationships between 
chemical structures and biological activity based on molecular similarity, utilizing a 
variety of molecular descriptors to describe the chemical and topological features of 
compounds (Acharya et al., 2011). These techniques have become widely used in 
LBDD for their ability to efficiently screen large chemical libraries and prioritize 
compounds for further testing.  

There are two main types of molecular descriptors used in LBDD, 1D and 2D 
descriptors, which encode information about the chemical nature and topological 
features of the compounds (Jørgensen and Pedersen, 2001; Duan et al., 2010). 
Additionally, 3D descriptors can also be used, which describe molecular fields, shape, 
volume and pharmacophores. These molecular descriptors are used to perform 
similarity measurements, which determine the degree of similarity between the 
compounds in the library and the known active compounds (Abrahamian et al., 
2003). The goal of LBDD is to reduce the number of compounds that need to be 
tested experimentally, thus saving time and resources. It is a useful tool in the early 
stages of drug discovery, as it can quickly identify new potential drug candidates and 
prioritize them for further testing. 
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2.5.2 Softwares applied in this study 

i) Auto Dock 

AutoDock is a software tool that uses a combination of empirical free energy 
calculations and Lamarckian genetic algorithms to predict the binding of a molecule 
to its target with a predicted measure of its free energy of association. This helps in 
quickly determining the shape and energy of the complex between the molecule and 
its target (Morris et al., 1998). AutoDock is a suite of software tools for molecular 
docking, which aims to predict the binding of small molecules to a receptor protein. 
It has been developed and improved over time, and currently includes two 
generations of software: AutoDock 4 and AutoDock Vina. The suite also includes an 
accelerated version called AutoDock-GPU, which is faster than the original single-
CPU version (https://autodock.scripps.edu/). During a docking simulation, the energy 
of the ligand-protein interaction is evaluated using a grid-based method. In this 
method, the interaction energies between the ligand and the target protein 
structure are pre-calculated and stored as a reference in a look-up table. This allows 
for a rapid evaluation of the ligand-protein interaction during the simulation. 
However, the use of this grid-based method requires that the target protein is 
treated as a rigid molecule, unless specific side chains are treated outside the grid, 
separately. This means that the method does not take into account any changes in 
the structure of the target protein, except for certain side chains that are treated 
differently. This limitation is due to the nature of the grid-based method, which is 
designed for rapid evaluation of the ligand-protein interaction, rather than an 
accurate representation of the protein's flexibility (Cosconati et al., 2010). 

Autodock Vina  

AutoDock Vina is a free and open-source software program that is used to perform 
molecular docking. It was created by Dr. Oleg Trott while he was working in the 
Molecular Graphics Lab (currently known as the CCSB) at The Scripps Research 
Institute. The software enables researchers to predict how small molecules interact 
with proteins by modeling the way they bind together (Trott and Olson 2010). The 
program uses a combination of algorithms to evaluate the potential binding energy 
between the protein and the ligand, and to search for the most energetically 
favorable binding pose. This information can be used to study the mechanism of 
drug-protein interactions and to design new drugs (https://vina.scripps.edu/).  

AutoDockTools (ADT) 

AutoDockTools (ADT) is a graphical user interface (GUI) for setting up, launching, and 
analyzing AutoDock runs. It is a user-friendly tool for molecular docking, which is a 
computational method for predicting the binding of a small molecule ligand to a 
target protein. The ADT provides a visual interface for preparing the input files, 
launching AutoDock simulations, and analyzing the results. It allows users to view 
molecules in 3D, rotate and scale them in real-time. It also provides the ability to add 
hydrogens, including non-polar hydrogens, to the molecular structures. In addition, it 
also allows users to assign partial atomic charges to the ligand and the 
macromolecule using either Gasteiger or Kollman United Atom charges. This is an 
important step in the molecular docking process, as it helps to accurately predict the 

https://autodock.scripps.edu/
https://vina.scripps.edu/


LITERATURE REVIEW 

30 
 

binding affinity between the ligand and target protein. Moreover, it provides a 
graphical representation of the grid box to set up the AutoGrid Parameter File (GPF), 
using slider-based widgets. In addition, the AutoDock Parameter File (DPF) can be set 
up using forms, and the AutoDock simulation can be launched directly from the ADT 
interface. The results of an AutoDock simulation can be read and displayed 
graphically, providing users with an easy-to-use and visually appealing way to 
analyze the results of their molecular docking experiments. ADT also provides the 
ability to view isocontoured AutoGrid affinity maps, which can be used to determine 
the binding affinity of the ligand for the target protein 
(https://autodocksuite.scripps.edu/adt/). AutoDockTools is provided as a part of 
MGLTools, for use on Linux, Mac OS X, SGL and Windows. 

ii) PyMOL 

PyMOL is widely recognized as the leading software for generating high-quality 
molecular structures for publication. One of the key strengths of PyMOL is its 
advanced rendering options, which enable users to create visually stunning 
molecular graphics. Additionally, PyMOL provides exceptional 3D viewing 
capabilities, making it an indispensable tool for structure-based drug design. These 
features make PyMOL a highly versatile and user-friendly software for visualizing and 
analyzing molecular structures. PyMOL's compatibility with several commonly used 
file formats for electron density maps makes it an ideal tool for crystallographers. 
The availability of an easy-to-use Autodock/Vina plugin for PyMOL further expands 
its capabilities, especially for scientists who may not be experts in docking protocols. 
With this plugin, users can perform molecular docking within the PyMOL 
environment, making it possible to combine the results of docking simulations with 
other PyMOL applications, such as molecular mechanics, molecular dynamics 
simulations, and molecular graphics (Yuan et al., 2017). It can be downloaded from 
https://pymol.org/2/.  

iii) Orisis DataWarrior 

DataWarrior is a powerful software platform that combines dynamic graphical views 
with chemical intelligence to provide advanced molecular analysis and visualization 
capabilities. The software offers various types of visual representations of data, 
including scatter plots, box plots, bar charts, and pie charts, which can be used to 
visualize numerical or categorical data. Additionally, these graphical views can show 
trends of multiple scaffolds or compound substitution patterns, enabling users to 
gain a deeper understanding of their data (López-López et al., 2019). It supports a 
wide range of chemical descriptors that encode various aspects of chemical 
structures, including chemical graph, chemical functionality from a synthetic 
chemist's perspective, and 3-dimensional pharmacophore features. These 
descriptors allow for different types of molecular similarity measures, which can be 
applied for row filtering and customizing graphical views. The software also provides 
capabilities for the enumeration of combinatorial libraries, as well as the creation of 
evolutionary libraries, making it an indispensable tool for library design and 
optimization https://openmolecules.org/datawarrior/). The huge ligand library 
database can be optimized using ADME/Tox filters for drug like properties. 
Furthermore, users can cluster compounds and pick diverse subsets, and calculated 

https://autodocksuite.scripps.edu/adt/
https://pymol.org/2/
https://openmolecules.org/datawarrior/
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compound similarities can be used for multidimensional scaling methods, such as 
Kohonen nets.  

DataWarrior also includes tools for calculating physicochemical properties and 
creating structure-activity relationship tables, as well as for visualizing activity cliffs. 
These features make DataWarrior a valuable tool for drug discovery and medicinal 
chemistry research, enabling users to gain insights into their data and make 
informed decisions (Sander et al., 2015). It can be freely downloaded from 
(https://openmolecules.org/datawarrior/), compatible for all Windows, LINUX and 
MacOS-X. 

iv) BIOVIA Discovery Studio Visualizer 

BIOVIA Discovery Studio Visualizer is a powerful and feature-rich molecular modeling 
software application that enables users to visualize, share, and analyze protein and 
small molecule data. This software provides an interactive and user-friendly 
interface for exploring molecular structures and enables users to manipulate and 
analyze their data in real-time. The Visualizer includes a variety of molecular 
visualization tools, such as interactive ribbon and surface models, which provide 
users with a detailed understanding of molecular structures and interactions. 
Additionally, the software supports multiple file formats, allowing users to import 
and view data from a wide range of sources, including X-ray crystallography, NMR 
spectroscopy, and molecular dynamics simulations. It also provides advanced data 
analysis tools, including ligand-protein interaction analysis and molecular dynamics 
simulations, enabling users to investigate and understand complex biological 
processes and drug interactions. Furthermore, the software provides an intuitive and 
interactive interface for annotating and annotating molecular structures, including 
the ability to add labels, annotations, and notes to individual atoms, residues, and 
regions of the molecule. This feature enables users to effectively communicate their 
results and findings with others (https://www.3ds.com/products-
services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/). 
It can be downloaded from the source https://discover.3ds.com/discovery-studio-
visualizer-download.  

v) PyRx 

PyRx is a virtual screening software that is extensively used for computational drug 
discovery. It is used to screen libraries of compounds against potential drug targets. 
This program enables medicinal chemists to perform virtual screening from any 
platform and provides support for each step of the process. From data preparation 
to job submission and results analysis, it helps users in every aspect of their drug 
discovery journey. Despite the fact that there is no one-size-fits-all solution in the 
drug discovery process, PyRx includes a docking wizard (Autodock 4 and Autodock 
Vina) with an easy-to-use user interface that makes it a useful tool for computer-
aided drug design. Additionally, it consists of the softwares such as- python as a 
scripting language, AutoDock Tools, to generate input files, open Babel for importing 
SDF files, removing salts and energy minimization, matplotib for 2D plotting, 
Visualization ToolKit (VTK) by Kitware, Inc., Enthought Tool suite including Traits, for 
application building blocks, wxPython for cross-platform GUI. Moreover, this 

https://openmolecules.org/datawarrior/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
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software features chemical spreadsheet-like functionality and a powerful 
visualization engine that are crucial for structure-based drug design 
(http://pyrx.sourceforge.net.). Furthermore, it provides an efficient and effective 
way to screen compounds and to identify potential lead candidates in the drug 
discovery process. PyRx version 0.8 is available free from 
http://pyrx.sourceforge.net.  

vii) Open Babel 

Open Babel is a free, open-source chemical toolbox designed to interconvert 110 
chemical file formats such as Mol, PDB, SMILES, CML, etc. It can perform various 
chemical tasks such as molecule conversions, structure optimization, molecular 
descriptor calculation, structure-activity relationship (SAR) analysis, and many more. 
It supports various operating systems including Windows, Linux, and macOS. Open 
Babel has a robust C++ library which makes it suitable for integration into other 
software and programs. The library provides developers with a high-level interface to 
perform chemical operations, making it a useful tool in computational chemistry and 
drug discovery (O'Boyle et al., 2011). It can be obtained under an open-source 
license from the website http://openbabel.org.  

vii) Ligplot+ 

LigPlot+ is a graphical interface software tool for visualizing protein-ligand 
interactions. It is a newer version of the original LIGPLOT program which can 
automatically generate schematic diagrams of protein-ligand interactions from the 3-
dimensional (3D) coordinates of the protein and its bound ligand. The program uses 
the 3D information to identify and highlight the key interactions between the protein 
and ligand, including hydrogen bonds, hydrophobic interactions, and electrostatic 
interactions. The diagrams generated by LigPlot are designed to be intuitive and easy 
to interpret, providing a clear visual representation of the molecular interactions 
between a protein and its ligand. This information is useful for understanding the 
molecular basis of drug action and for predicting the binding affinity of drugs for 
their targets (Wallace et al., 1995). The program also allows us to customize the 
appearance of the diagrams, including the size and color of the atoms and bonds, 
and to save the 2D diagrams as image files for use. Moreover, this program also 
generates protein- protein interaction through DIMPLOT option (Laskowski and 
Swindells, 2011). 

viii) Gauss View and Gaussian 03W 

Gaussian is a computational chemistry software program used for a wide range of 
molecular modeling and simulation tasks, including molecular dynamics, quantum 
chemistry calculations, and reaction modeling. Gaussian uses advanced 
mathematical algorithms to perform these simulations and provides a high level of 
accuracy and predictive ability. GaussView is a graphical user interface (GUI) for 
Gaussian that makes it easier to use the software and view the results of simulations. 
With GaussView, users can create and edit molecular structures, visualize molecular 
properties, and perform various types of simulations without having to enter 
complex command-line commands. GaussView also provides interactive graphical 

http://pyrx.sourceforge.net/
http://pyrx.sourceforge.net/
http://openbabel.org/


LITERATURE REVIEW 

33 
 

tools for analyzing and interpreting simulation results, making it a useful tool for 
both research and teaching purposes (https://gaussian.com/gaussview6/).  

Gauss View and Gaussian 03 W are utilized for predicting molecular properties such 
as energies and structures, vibrational frequencies, thermochemical properties, 
reaction pathways, orbital information, spectra, atomic charges, magnetic and 
optical properties, and electron densities. These programs are capable of simulating 
various molecular characteristics including transition states, IR and Raman spectra, 
bond and reaction energies, molecular orbitals, NMR shielding, vibrational circular 
dichroism, electron affinities, polarizabilities, and hyperpolarizabilities. Gaussian 
03W was used in this study.

https://gaussian.com/gaussview6/
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3. MATERIALS AND METHODOLOGY 

3.1 Obtaining the 3D crystal structures of the target proteins 

The target protein, Dam of Salmonella enterica subsp. Serover Typhimurium was  
selected for molecular docking and searched in the PDB (http://www.rcsb.org/) for 
the 3D structure but its 3D structure was not available. Thus, the crystal structure of 
Dam protein (uniprot ID: P0DMP3) was prepared using Modeller 9.2, a protein 
homology tools. The best match model was calculated through Z-score and then 
Ramachandran plot was made to make sure the 3D structure made was close to 
what experimental would give.  

3.1.1 Homology modeling using MODELLER 

The 3D crystal structure which are not available in protein data bank (PDB) are 
prepared by homology modeling. There are various softwares and online tools 
available for homology modeling such as- Phyre-2, Swiss Prot, CPH model, PS2V2, 
MODELLER, Raptor X etc. Here, we used MODELLER for constructing 3D structure of 
the target protein. 

(a) Template recognition  

The first step was obtaining the target sequence from NCBI or uniprot (getting the 
FASTA format of the protein). Once the desired sequence of the target protein was 
obtained then the sequence was run for a BLAST search. In order to find the 
structure of these sequences, it was searched in PDB. After that, the target sequence 
was converted into PIR format, a readable format by modeller. 

(b) Sequence alignment using BLAST 

Using BLAST, PsiBlast, or fold recognition techniques, the sequence of similarities 
were explored and aligned with known structures in PDB. The best sequence that 
has a high degree of similarity was found by comparing a query sequence to a 
database using BLAST. Each line's degree of similarity was summed up by its E-value 
(Expected value), which is near to zero, indicating a high degree of similarity. The 
first five proteins which have the maximum identity were downloaded in PDB format 
from RCSB. The five E.coli strains (4RTJ_A, 2G1P_A, 4GBE_D, 4GOL_D, 2ORE_D) 
showed the highest percentage identity (92.45%) thus it was chosen to carry out 
BLAST.  

For the two sequences which have low percentage identity, one can use Multiple 
Sequence Alignment programs such as CLUSTALW. In homology modeling, alignment 
correction is a crucial step; omitting it would create a defective model. 
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(c) Preparation of input files 

The target sequence (FASTA format) was converted to PIR format (*.ali) which is a 
readable format by MODELLER. All the input and output files are available in 
https://salilab.org/modeller/tutorial/ site which is either in zip format (for windows) 
or .tar.gz format (for Unix/ Linux) were downloaded and files were extracted. The 
pdb_95 file, converted query sequence in PIR format and reference sequence were 
copied in a new folder for MODELLER run. Similarly, MODELLER commands that tell 
MODELLER program what to perform are contained in script files were prepared. 

Script files 
(i) Build_profile.py 

The text was copied from the tutorial (https://salilab.org/modeller/tutorial/) in 
notepad and TvLDH was replaced with the query protein name (Dam) then saved as 
script1.py and run in MODELLER by changing to the directory containing the script 
and the alignment files that was created earlier using ‘cd’ command. This generated 
the *.bin file. 

(ii) Compare.py 

The text was copied from the tutorial (https://salilab.org/modeller/tutorial/) in 
notepad and replaced the protein name with the referenced protein name (4RTJ_A, 
2G1P_A, 4GBE_D, 4GOL_D, 2ORE_D) and saved as script2.py then the MODELLER 
was executed.. After successfully running in MODELLER, it is discovered that the 
model with low angstrom provides the optimum structure. 

(iii) Align 2d.py 

The content from the tutorial (https://salilab.org/modeller/tutorial/) was copied in 
notepad and replaced the protein name with the reference protein (2g1pA) and 
TvLDH with the query protein name (Dam). After that, the file was saved as 
script3.py and MODELLER was executed. This generated *.pap file. The PAP is used 
for visualization by MODELLER. 

(iv) Model_build.py 

Using the Automodel class, the MODELLER automatically calculates a 3D model of 
the target after creating the alignment of the target and the template. For this, first 
TvLDH was replaced with Dam and 2g1pA and saved as script4.py then MODELLER 
was executed. On running script4.py file generated five similar models of Dam based 
on structure of the template and alignment in “queryseq-2g1p.ali”. The script4.log 
file is one of the most significant output file which includes the details of modeling 
input constraints, errors, warnings, summary of all built models, file name along with 
the scores for each model's coordinates in PDB format. 

  

https://salilab.org/modeller/tutorial/
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(v) Evaluate_model.py 

There are various methods for choosing a good model among the recently developed 
models for the same target. The best model was chosen based on its lowest DOPE 
score and maximum GA341 score. 

(d) Model validation using Ramachandran plot 

Protein validation can be done using a various techniques and tools, including 
Ramachandran Analysis, Z-score, Energy Plot and DOPE score. Ramachandran 
analysis was carried out using SAVES v6.0 (https://saves.mbi.ucla.edu/) with the 
PROCHECK option. This feature checks the protein structure for any deviations from 
the expected conformations. Similarly, Z-score ( 
https://prosa.services.came.sbg.ac.at/prosa.php) was performed to calculate the 
energy separation between the native fold and the average of an ensemble of 
misfolds in the units of the standard deviation of the ensemble. 

Moreover, DOPE score was also used to evaluate the quality of protein models by 
comparing them to each other. It is a statistical potential that compares pairs of 
atoms in order to determine how closely a model conforms to the expected 
structure for a given amino acid sequence. A lower DOPE score indicates a better-
quality model. This score is useful for comparing different models of the same 
protein and can help identify the most accurate or reliable one. 

Additionally, the human hMAT1A S-adenosyl methionine synthetases (PDB ID: 6SW5) 
was obtained from the RCSB protein data bank. After that, the pdb files of proteins 
were processed in PyMoL, a program for protein visualization, where cofactors, 
water molecules, and native ligands were removed in order to prevent hindrance 
during molecular docking (Kagami et al., 2020) and opened in AutoDock tools. For 
the preparation of proteins, Hydrogen bonds were added, non-polar surface areas 
were combined and Gasteiger charges were calculated using AutoDock tool. S-
adenosyl homocysteine (SAH) and S-adenosyl-lmethionine (SAM) were used as 
reference molecules, and their 3D structures, along with the screened ligands, were 
downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/). These structures 
were then processed using the Openbabel GUI (O'Boyle et al., 2011) and saved as 
pdbqt file format, a required file format for molecular docking. 

3.2 Ligand database preparation 

The ZINC15 database (www.zinc15docking.org), consists of more than 230 million 
commercially accessible chemicals ready-to-dock, 3D formats for virtual screening, 
was used to develop the ligand library which consists of different categories such as 
natural product FDA, natural product biogenic-FDA, natural product in man, natural 
product in the world, natural product in trial, and natural product in vivo. Similarly, 
UROSY (https://uorsy.com/), for kinase inhibitor and ASINEX 
(https://www.asinex.com/nucleoside-mimetics), for nucleoside mimetics were used 

https://saves.mbi.ucla.edu/
https://prosa.services.came.sbg.ac.at/prosa.php
http://www.zinc15docking.org/
https://uorsy.com/
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to develop additional ligand library. All the selected ligands were then processed for 
ADME/Tox screening for docking. 

3.3 ADME/Tox Screening 

Drug research and development are duo time and money-consuming processes. 
Numerous promising lead compounds fail to reach the clinical stage of therapeutic 
research due to poor pharmacokinetic properties and toxicity issues. Hence, in order 
to improve absorption, distribution, metabolism, and excretion, the ligand library in 
*.sdf format, was screened for druggability based on Lipinski’s rule of five and LogS. 
Using the OSIRIS data warrior program the druglikeness properties of ligands such 
as- molecular weight, cLogP and cLogS, druglikeness, and toxicities like mutagenicity, 
tumorigenicity, reproductive effects, and irritating effects based on their binding 
energies were calculated (Veber et al., 2002 and Chagas et al., 2018). The following 
parameters were set. 

ADME/Tox  

Total Molecular weight: 200-500 Daltons 

cLogP : -3 to +6 

cLogS : -4 to -2 

Hydrogen bond acceptor : 0 to 10 

Hydrogen bond donors : 0 to 5 

Topological Polar surface area : 0 to 120 

Drug likeliness : positive value (as default) 

LE/TOx/S criteria 

Mutagenesis : None 

Reproductiveness : None 

Tumorogenicity : None 

Irritant : None 

Rotable bonds: 0 to 10 

3.4 Identification of active site of target protein 

To perform molecular docking between a target protein and a ligand, it is essential to 
identify the ligand binding site on the protein, also referred to as the active site. This 
can be achieved by using PyMol, a software program for protein structure analysis 
and visualization. The process started by loading the protein structure, along with its 
native ligand, into the PyMol window. The active site was then identified by 
examining the amino acid residues within a 5 Å distance from the ligand and protein 
to determine their specific interactions. Additionally, polar interactions were also 
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evaluated. The information was then saved as a PDB file and visualized using Ligplot+ 
and Biovia Discovery Studio. 

3.5 Molecular docking and virtual screening 

Molecular docking experiments were performed using the AutoDock Vina Wizard in 
the PyRx 0.9.8 platform to study the binding energy of Dam with a library of natural 
product ligands, kinase inhibitor and nucleoside mimetics. The docking experiments 
were performed using specific center grid box values x= -18.775 y= -25.182  z= 
33.889 and dimension values x=35.214 y= 23.529 and z= 22.425 as well as certain 
parameters such as numbers of exhaustiveness of 8 and number of modes of 16. The 
ligands were then sorted according to their binding energy, and those with higher 
binding energies than the native ligand, SAM, and SAH were selected for further 
analysis. 

3.6 Screening with hMATs Proteins and Preference index 

After a selection process, the selected ligands were tested for their potential to 
interact with human hMAT1A protein, which is involved in the production of SAM. 
This additional screening was done to ensure that the chosen drug candidate would 
not inhibit SAM production by these proteins, both of which are found in the liver 
and play important roles in human health. The ligands were docked with the 
hMAT1A protein to assess their potential to interfere with their function. 

Molecular docking was conducted with hMAT1A protein and a set of primarily 
screened ligands. The center grid box and dimension values for the hMAT1A protein 
were x: 31.096, y: -0.571, z: 24.983 and x: 27.625, y: 57.151, z: 32.622, respectively. 
The final selection of the lead molecule was based on its high binding energy against 
the target protein, high preference index, but low binding energy against human 
hMAT1A protein, which is involved in the synthesis of SAM. To further refine the 
selection of the lead molecule among the screened ligands one parameter was 
added called preference index was calculated using the hydrogen bond acceptor and 
donor capabilities and the number of rotatable bonds of the pharmacophore. 

The formula for calculating the preference index was as follows:  

{(H-acceptor + H-donor + Rotatable bonds count) * 5}/ 25. 

3.7 Visualization of interaction of Protein-ligand  

The protein-ligand interactions were visualized using PyMOL and Ligplot. These tools 
allowed for the analysis and visualization of the binding between proteins and 
ligands, providing insights into the nature of the interactions and the spatial 
arrangement of the molecules. Additionally, the binding energy between each 
docked ligand and the target protein was calculated in KJ/mol. This value reflects the 
strength of the interaction between the ligand and the protein and can be used to 
evaluate the potential of the ligand as a drug candidate. 
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(a) Using Ligplot 

The protein and ligand pdb file (made while visualizing active sites) was opened in 
ligplot+ for visualization of 2D interactions. By using this tool, the hydrogen bonds 
and hydrophobic bonds were determined which are responsible for the higher 
binding energy. These interactions gave a more detailed understanding of the 
specific interactions taking place between the protein and the ligand which 
contribute to their binding. 

(b) Using Biovia Discovery Studio 

The protein and ligand pdb file was opened in BioVia Discovery Studio, a 
computational tool that allows for the identification of various types of bonds 
between atoms of a protein and a ligand. This tool was used to identify other types 
of interactions such as alkyl bonds, pi-alkyl bonds, pi-pi t-shaped bonds, pi-sigma 
bonds, carbon-hydrogen bonds, etc. and the residues of the protein and the ligand 
that are involved in those interactions. Additionally, the bond distances, which 
provide information about the strength of the interactions, were also calculated. This 
information further helped to understand the affinity and specificity of the binding of 
ligand to the protein. 

3.8 Predicting properties of the molecule using Gauss view 
and Gaussian 03 

The properties and the reactions of the molecules were visualized by using Gauss 
view and Gaussian 03. The Density Functional Theory (DFT) method, named Becke, 
3-parameter, Lee-Yang-Parr (B3LYP) and 6-31G basis set was selected as method to 
gain a deeper understanding of the electronic properties of the ligand and its 
interactions with the protein, the electronic structure, equilibrium geometry and 
quantum chemical calculations as well as to interpret Highest Occupied Molecular 
Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) analysis in their 
optimized structures(i.e. at the minimum potential energy. These calculations were 
performed using Gaussian 03.  Furthermore, the electronic properties of the 
compound, frontier molecular orbital studies and molecular electrostatic potential 
maps (MEP) were prepared and visualized using Gauss view.  

Gaussian input file was prepared for DFT calculations in PyMol by adding hydrogen 
atoms in PDB file of the docked ligand structure. Parameters were set for the 
Gaussian calculator, such as job type options for optimization and frequency 
calculations as well as Raman computations. After creating the Gaussian input file, it 
was opened in Gaussian 03 and were used for visualizing and preparing the 
molecular electrostatic potential map (MEP) and observing vibrations, as well as for 
performing the Frontier orbital studies to obtain the highest occupied molecular 
orbital (HOMO) and the lowest occupied molecular orbital (LUMO) and the HOMO-
LUMO energy gap. The Gaussian output file was also studied to observe the charge 
distribution, which provides information about the regions of positive and negative 
electrostatic potential.
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4.  RESULTS AND DISCUSSION 

4.1 Target protein selection 

Protein target identification is the most important factor for the development of the 
new drug. Targeting the essential genes or proteins which are involved in 
biosynthesis of essential metabolites, required for the survival of the cell, and by 
inhibiting their function, the drug can effectively kill or inhibit the growth of the 
targeted pathogen. It was found that DNA adenine methylase, also known as Dam, is 
a conserved enzyme in many pathogenic bacteria, including Vibrio cholera, 
Salmonella enterica serovar Typhi, pathogenic E. coli, Yersinia pestis and 
Haemophilus influenza (Fleischmann et al., 1995). This enzyme plays a key role in 
DNA methylation serves several important functions in the bacteria including, 
regulating gene expression, protecting the genome from foreign DNA, maintenance 
of the chromosomal structure and integrity of the bacterial cell (Sánchez-Romero et 
al., 2020). In some studies, researchers have found that Dam methylation in 
Salmonella enterica serovar Typhimurium plays a role in regulating the invasion 
genes of pathogenicity island I (SPI-1) (Balbontin et al., 2006), which is a genetic 
element that contributes to the bacteria's ability to cause infections in host cells. 
This suggests that Dam methylation could be a target for developing new drugs to 
combat infections caused by Salmonella enterica serovar Typhimurium and other 
pathogens that rely on Dam methylation to regulate the expression of genes 
involved in pathogenesis. Additionally, dam gene is found to be the essential gene 
for bacterial survival. Thus, here dam protein was taken as the target. Since, the 3D 
crystal structure was unavailable in RCSB, its 3D structure was made through 
Homology Modeling by using MODELLER. 

DNA methyltransferases (Dam) transfer the methyl group from SAM to specific 
residues in double-stranded DNA i.e it uses SAM. Similarly, hMAT1A (PDB ID: 6SW5) 
are the enzymes that produce S-adenosylmethionine (SAM), which is a critical 
metabolite for liver health. In order to develop new drugs targeting the bacterial 
DNA adenine methylase (Dam), it is important to identify compounds that do not 
inhibit hMAT1A. Therefore, the protein structure of hMAT1A was retrieved from the 
RCSB database and used as a target for molecular docking studies to screen for 
molecules that do not inhibit the activity of hMAT1A. This way it is possible to 
identify drug candidates that target Dam in bacteria without affecting the activity of 
hMAT1A and therefore minimizing potential side effects on human liver health. 

4.2 Homology modelling using MODELLER 

Homology modeling, also known as comparative modeling, is a method for 
predicting the structure of a protein based on the structure of a related protein with 
known structure. It is a useful technique when experimental methods for 
determining a protein structure, such as X-ray crystallography or NMR spectroscopy, 
are not feasible. Here, the 3D crystal structure of Dam protein was unavailable in 
PDB. Thus, its structure was made by homology modeling using MODELLER.  The 
process typically involved three main steps: 
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Identification of a suitable template structure: The first step was to find a protein 
structure with a similar sequence to the target protein. This was done by performing 
a sequence alignment between the target protein and known structures in databases 
such as the Protein Data Bank (PDB) by using BLAST. The template structure which 
had a high degree of sequence similarity (92.45%)) to the target protein was with 
E.coli strain. Thus, E.coli strain was chosen as a template structure. 

Building the model: Once a suitable template structure had been identified, the next 
step was to use the coordinates of the template structure to generate a model of the 
target protein which was done by superimposing the target protein sequence onto 
the template structure and adjusting the coordinates of the template structure to 
match the sequence of the target protein. 

Model evaluation: The final step was to evaluate the quality of the model. This was 
done by comparing the modeled structure with the known structure of the template, 
and by evaluating the stereochemistry of the model and the energy of the model. 
Several assessment softwares was used to evaluate the model like ProSA, 
Ramachandran plot, ERRAT, etc. 

Table 2: Evaluation of different model using different softwares 

Model no. Ramachandran Aanalysis Z-
score 

DOPE score ERRAT 

Overall 
quality 
factor 

Most favored Disallowed 

dam.B99990001 88.8 1.2 -7.95 -32446.86328 73.034 

dam.B99990002 87.6 0.8 -8.52 -31949.17773 63.019 

dam.B99990003 84.4 1.6 -7.98 -31974.81055 68.773 

dam.B99990004 87.6 0.4 -7.93 -31972.24414 71.161 

dam.B99990005 90.8 0.4 -8.29 -32854.00000 85.338 

 

When evaluating protein structure models, among several methods and criteria one 
of the methods is Ramachandran plot (Ramachandran and Sasisekharan, 1968). It is a 
graphical representation that shows the distribution of the dihedral angles phi and 
psi in a protein structure. The plot visualizes the regions that are energetically 
favorable and unfavorable for the peptide backbone conformations which is based 
on the chemical properties of the peptide bond and experimental data. When 
evaluating protein structure models, particularly those generated by homology 
modeling, a Ramachandran plot can be used to identify potential problems with the 
structure. If a high number of dihedral angles fall in the forbidden regions of the 
Ramachandran plot, it indicates that the model is of poor quality and that there may 
be errors in the structure. This is because such deviations are unusual in 
experimental structures and indicate that something is wrong with the structure. 
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These deviations can be caused by errors in the alignment, errors in the model 
building, or other factors (Sobolev et al., 2020). In this case, it was noted that the 
model dam.B99990005 had a high percentage of residues (90.8%) in the favored 
region and low percentage of residues (0.4%) in the disallowed region of the plot, 
which is an indication of a good quality model. On the other hand, the model 
dam.B99990004 also had a similar low percentage of residues (0.4%) in the 
disallowed region of the plot, but it was rejected because it had a lower percentage 
of residues (87.6%) in the favored region of the plot than model dam.B99990005. 
This suggests that even though both models had a similar level of errors or 
deviations in the dihedral angles, but the model dam.B99990005 still had a higher 
number of residues within the expected or allowed region, making it a better model. 

 

Figure 10: Ramachandran plot of selected dam.B99990005 model 

Another method for evaluating the protein structure is through ProSA (Protein 
Structure Analysis) (https://prosa.services.came.sbg.ac.at/prosa.php) program 
where Z-score is calculated. ProSA is a web-based tool that can be used to evaluate 
the quality of protein structures and to identify errors in the structure, it's based on 
a scoring function that calculates a total energy score for a given protein structure 
and compares it to a set of experimental data and physical principles (Wiederstein 
and Sippl, 2007). Z-score is based on the concept of energy separation, the 
difference in energy between the native fold of a protein and the average energy of 
an ensemble of misfolded structures. The energy separation is then normalized by 
the standard deviation of the ensemble, to get the Z-score. The standard deviation 
serves as a measure of the spread of the ensemble and gives an indication of the 
confidence that can be placed in the Z-score value (Sippl, 1993 ).  

https://prosa.services.came.sbg.ac.at/prosa.php
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Figure 11: Z-score result of dam.B99990005 model A) black spot represents the value of Z-
score of the selected model B) energy plot diagram C) 3D diagram of selected model showing 

highest and lowest energy in blue and red respectively. 

ERRAT is another method, used to check the accuracy of protein structures that have 
been determined through crystallography (Colovos and Yeates,1993). Higher the 
overall quality factor in ERRAT the more accurate is the structure. Here, model 
dam.B99990005 showed higher overall quality factor (85.338). 

Similarly, another used method is the DOPE (Discrete Optimized Protein Energy) 
score. It is a statistical potential that is calculated for each residue in a protein 
structure and is used to assess the quality of the model. A lower DOPE score 
generally indicates a better quality model, as it means that the model has a more 
favorable energy state. In this case, model dam.B99990005 had the lowest DOPE 
score among the four other models so it could be considered as the best among the 
models. Additionally, the Ramachandran analysis of this model also suggests that it is 
of high quality, with a high percentage of favored conformations (90.8%) and the 
ERRAT analysis also showed an overall high quality for this model. Based on these 
observations, it was concluded that the model dam.B99990005 is likely to be the 
best model among the four models considered. 

 

Figure 12: Final model of Dam protein observed in PyMol 
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4.3 Preparation and selection of Ligand Library 

Ligands were prepared from various ligand library such as ZINC15 
(www.zinc15docking.org) for natural products which consists of different categories 
such as- FDA, Biogenic-FDA, in Man, in World, in Trial and in vivo, UORSY database 
(https://uorsy.com/) for kinase inhibitors, indole derivatives and ASINEX 
(https://www.asinex.com/nucleoside-mimetics), for nucleoside mimetics. 

Natural products have a long history of use in traditional medicine and have played a 
key role in the development of modern pharmaceuticals. Many natural products, 
such as plants and microorganisms, contain compounds that have medicinal 
properties. These compounds can be isolated and studied to determine their 
potential therapeutic uses. It is estimated that about 40% of all medicines are either 
natural products or their semisynthetic derivatives. This is due in large part to the 
diversity of chemical compounds found in natural products, which can provide a rich 
source of potential drug candidates. As for instance, Vincristine, irinotecan, 
etoposide, and paclitaxel are plant-derived compounds that are used in cancer 
treatment. Dactinomycin, bleomycin, and doxorubicin are anticancer agents that 
come from microbial sources. Citarabine is an anticancer agent that is derived from a 
marine source (da Rocha et al., 2001). Similarly, Natural products also have 
structural diversity making them to avoid potential drug-drug interactions that can 
arise when drugs have similar structures. Furthermore, natural products have been 
found to have a high degree of specificity and selectivity in their biological activity, 
hence can target specific receptors or enzymes without affecting other biological 
systems, reducing the risk of unwanted side effects. Thus, the diverse range of 
compounds found in natural products, as well as their specificity and selectivity in 
biological activity, make them an attractive option for drug development.  

ZINC database was used to develop the natural product library which consists of 
21,000 molecules. 205 natural compounds were narrowed down after ADME/Tox 
filteration and carried out for docking. 

In addition, kinase inhibitors from UORSY database were selected as the potential 
therapeutic targets as they can compete with S-adenosyl methionine (SAM) due to 
the adenosine moiety they possess. Similarly, they can also act as inhibitors because 
they mimic the hydrogen bond interactions that are normally formed by the 
adenosine ring of ATP. It was found that several S-adenosylmethionine analogs have 
the potential to inhibit Dam methyltransferase activity in approximately 10uM range 
(Hobley et al., 2012). Here, out of 6,449 kinase inhibitors processed for ADME/Tox 
filters for docking through OSIRIS, 1,685 molecules were narrowed down and carried 
out for molecular docking. 

Nucleoside analogues are a class of compounds that have a similar structure to 
nucleosides, which are the building blocks of nucleic acids such as DNA and RNA. 
These compounds have a nucleoside-like core, which often includes an adenosine 
moiety, and have been shown to have antibacterial activity. These compounds target 
cell-wall biosynthesis, which is an essential process for bacterial growth and survival. 

http://www.zinc15docking.org/
https://uorsy.com/
https://www.asinex.com/nucleoside-mimetics
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By inhibiting cell-wall biosynthesis, these compounds can disrupt the integrity of the 
bacterial cell wall and ultimately lead to the death of the bacteria. The adenosine 
moiety in these compounds makes them similar in structure to SAM. A ligand library 
of nucleoside mimics containing 3118 molecules was obtained from ASINEX and a 
final library of 654 molecules was prepared after filtering through the OSIRIS filter. 

Indole derivatives have long been used as drug targets in many pharmaceutical 
research studies. These compounds have a structural similarity with the adenosine 
moiety of SAM, which makes them a potential target for SAM-utilizing bacterial 
genes, such as –Dam. A ligand library of 462 molecules including indole derivatives 
was prepared after filtering a library of 10342 molecules through the OSIRIS 
ADME/Tox filter.  

4.4 In-silico ADME/Tox tests 

In drug discovery, it is important to select ligands (compounds) that have the 
potential to be developed into drugs. To do this, it is necessary to evaluate the 
ligands for certain essential parameters that are relevant to drug molecules. One 
way to do this is to use a program such as OSIRIS, which can analyze the druglikeness 
and pharmacokinetics properties of the ligands using a list of parameters. One such 
parameter that is commonly used is Lipinski's rule of five (also known as the "Rule of 
5"), which states that a drug candidate should have no more than five hydrogen 
bond donors, no more than 10 hydrogen bond acceptors, a molecular weight of less 
than 500 kdaltons, and a partition coefficient (logP) between -5 and 5.  

For a drug to be effective, it needs to be properly absorbed into the body.  Molecular 
size is also an important factor that affects the absorption of drugs. Smaller 
molecules are able to cross the cell membrane more easily than larger molecules. 
This is because small molecules are able to fit through the protein channels in the 
cell membrane, while larger molecules are too big to pass through. The molecular 
size should be between 200-500 kdaltons since small drug molecules are able to 
cross the membrane more easily than larger molecules. 

The number of hydrogen bonds in a drug molecule can affect its ability to cross 
biological membranes. A compound that has more hydrogen bonds will have a 
higher affinity for water and will have to break more bonds to cross the membrane. 
This can make it more difficult for the drug molecule to cross the membrane, which 
can affect its absorption and distribution in the body. Therefore, it is generally 
considered unfavorable for a compound to have a high number of hydrogen bonds, 
as it can make it more difficult for the drug molecule to cross the biological 
membrane and enter the body. On the other hand, compounds with fewer hydrogen 
bonds will have less interaction with water, which allows the molecule to cross the 
membrane more easily. This can increase the absorption and distribution of the drug 
in the body, which is important for its effectiveness. Thus, the optimal number of 
hydrogen bond acceptor is less than 10 and hydrogen bond donor is less than 5. 



RESULTS AND DISCUSSION 

46 
 

Similarly, cLogS is a measure of the aqueous solubility of a molecule. The solubility of 
a drug in water is an important factor that affects its absorption and distribution 
characteristics in the body.The aqueous solubility of a drug significantly affects its 
ability to be absorbed by the body and to reach the site of action. Drugs that are 
highly soluble in water are more likely to be absorbed and distributed throughout 
the body, while drugs that are poorly soluble in water are less likely to be absorbed 
and may be eliminated before entering circulation consequently do not exhibit 
pharmacological activity.    

Moreover, the cLogP value is a measure of a compound's hydrophilicity which is used 
to predict the behavior of a compound in an aqueous environment and its ability to 
cross biological membranes. In general, compounds with a lower cLogP value are 
more hydrophilic and are more likely to dissolve in water, while compounds with a 
higher cLogP value are more hydrophobic and are more likely to dissolve in fats and 
oils. This is important because the ability of a drug molecule to cross biological 
membranes is dependent on its solubility. Lipid-soluble drugs are more likely to cross 
the cell membrane than water-soluble drugs. It has been shown that compounds 
with a cLogP value greater than 5.0 have a lower probability of being well absorbed. 
This is because compounds with a high cLogP value are more likely to be 
hydrophobic and less likely to dissolve in water. This makes it more difficult for the 
drug molecule to cross the hydrophobic cell membrane, which can affect its 
absorption and distribution in the body.         

Further screening of the ligands was done using Veber's rule which is based on the 
two main criteria- the rotatable bond count and the topological polar surface area 
(TPSA).The rotatable bond count is the number of bonds in a molecule that can 
rotate freely. It is believed that molecules with a low rotatable bond count no more 
than 10 are more likely to have good oral bioavailability because they are less 
flexible and less likely to become trapped in a particular conformation that makes it 
difficult to cross biological membranes. The second criterion, TPSA, is a measure of 
the polar surface area of a molecule. It is believed that molecules with a low TPSA, 
less than 120 A are more likely to have good oral bioavailability because they are less 
polar and less likely to be attracted to the polar environment of biological 
membranes. These criteria were applied as an additional filter to the ligands to 
ensure that the selected compounds have a higher probability of crossing biological 
membranes and having good oral bioavailability. 

Furthermore, the ligands were also screened for their druglikeness and toxicity such 
as- mutagenicity, tumorigenicity, reproductive effects and irritant effects through 
ORISIS. The ORISIS tool provides a comprehensive assessment of the ligand's safety 
profile. By filtering the ligands through this process, it ensures that the compounds 
selected for further development have a lower risk of causing harmful effects on 
human health. This is an important step in the drug development process as it helps 
to identify compounds that may have a high probability of success and help to 
reduce the risk of negative effects on human health (Beaumont et al., 2014). 
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Hence, the ligands that pass these initial screens are more likely to be safe and 
effective drugs. Finally, after ADME/Tox screening, the ligand library was converted 
into pdbqt format. 

4.5 Active sites prediction and molecular docking 

To find out the putative drug against Salmonella typhimurium, the target specific 
proteins that are essential for the survival of the pathogen needs to be identified. 
The Dam protein is one such protein that is crucial for the survival of Salmonella. By 
blocking the formation of the Dam protein, the survival of the pathogen can be 
inhibited. For identification of the active sites of the Dam protein, molecular docking 
and molecular dynamics simulations can be used. Here, we used molecular docking 
for this task. This method predicted the binding pose of potential inhibitors, and the 
interactions between the inhibitors and the protein, ultimately helped to design new 
molecules that can bind to the active site of the Dam protein and inhibit its activity. 

To carry out molecular docking, the verified 3D structure, made through MODELLER 
in PDB format was converted to pdbqt format in PyRx. Total Gasteiger charge 6.0016 
was added. These charges are important for accurately modeling the electrostatic 
interactions between atoms, which is crucial for understanding the behavior of 
molecules in a wide range of chemical processes. Gasteiger charges are calculated 
using the SetPartialCharge algorithm, calculates charges based on the concept of 
electronegativity equilibration. In the SetPartialCharge method, all hydrogen atoms 
are explicitly included in the calculation of the partial charges, rather than being 
treated as a single entity. The explicit representation of hydrogens is important for 
accurately modeling the electrostatic interactions between atoms, particularly for 
hydrogen bonding interactions which are important in biological systems. Similarly, 
the algorithm takes into account the electronegativity of each atom in the molecule 
and distributes the electrons in a way that results in electronegativity equilibrium. 
This means that the electrons are distributed in a way that balances the 
electronegativity of each atom and results in a stable electron distribution (Rafael 
and Vinícius, 2018). 

 For maintaining the consistency in the experimental conditions for each ligand 
library being studied, a grid box was set up to cover the active sites of the target 
protein during the docking process. This grid box was kept constant for each docking 
process with all ligand libraries, allowing for unbiased comparison of the outcomes. 
This ensured that any differences in the results were due to the properties of the 
ligand libraries and not variations in the experimental setup. The center grid box 
values x= -18.775 y= -25.182  z= 33.889 and dimension values x=35.214 y= 23.529 
and z= 22.425 as well as certain parameters such as numbers of exhaustiveness of 8 
and number of modes of 16 were set up.  
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Figure 13: Binding sites prediction within 5Å with native ligand (SAH) with Dam protein 

The active sites of Dam protein which were used for docking are mentioned in the 
table 3 below  

Table 3: Active binding sites of Dam protein obtained by PyMol 

Residues Amino Acid Residues Amino Acid 

10                                                              TRP 54 ASP 

11 ALA 55 ILE 

12                                                                                  GLY 56 ASN 

13 GLY 59 LEU 

14 LYS 163 GLU 

15 TYR 164 SER 

33 GLU 165 TYR 

34 PRO 179 TYR 

35 PHE 181 ASP 

36 VAL 182 PRO 

37 GLY 183 PRO 

39 GLY 184 TYR 

40 SER 201 PHE 

41 VAL 205 GLN 
 

4.6 Screening with hMATs Proteins and Preference Index and 
its significance 

S-adenosylmethionine (SAM) is a critical molecule for human health that is primarily 
produced in the liver through the catabolism of methionine, a process catalyzed by 
the enzyme methionine adenosyltransferase (MAT). There are two different genes 
that encode for MAT, MAT1A and MAT2A, which are responsible for producing the 
enzymes hMAT1A and hMAT2A, respectively. These enzymes are responsible for 
biosynthesis of SAM in liver and extra-hepatic tissues. In order to find potential drug 
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candidates that could specifically target the target protein, while avoiding inhibition 
of human hMAT1A and hMAT2A. First, the ligands that had high binding affinity for 
the target protein, Dam, were selected as the best candidates for further analysis. 
After that these ligands were docked with and those which had lower binding affinity 
with human enzymes were selected. Thus, the ligands that had higher binding 
affinity for Dam than for the human enzymes were considered as potential drug 
candidates, as they have a higher binding affinity towards the bacterial Dam and 
lower binding affinity towards human SAM biosynthesizing enzymes. This is crucial 
because the drug targets discovered should not degrade human health and must be 
safe for human consumption. The ligands that passed this screening were then 
studied further for their potential as drug candidates. The active sites of hMAT1A 
(PDB: 6SW5) binding with SAM are mentioned in the table 4. 

Table 4: Active sites of hMAT1A (PDB: 6SW5) binding with SAM obtained from PyMol 

Residues Amino acid 

55  ALA 

70  GLU 

112  GLN 

114  SER 

117  ILE 

133  GLY 

134  ASP 

289  LYS 

291  ASP 
 

The center grid box values in A x= 31.096 y= -0.571 z= 24.983 and dimension values 
x= 27.625 y= 57.151 and z= 32.622 for hMAT1A (PDB: 6SW5) was set up. 

Furthermore, to select the most promising ligands for drug development, an 
empirical formula was used to calculate a preference index. The formula was based 
on the number of H-bond acceptors, H-bond donors, and rotatable bond counts in 
the ligands. 

{(H-acceptor + H-donor + Rotatable bonds count) * 5}/ 25. 

The reason for using this formula is that, for a drug to be effective, it needs to be 
able to cross biological membranes and reach its target protein. Hydrogen bonds 
play a crucial role in the partitioning of biologically active compounds and their 
interactions with target proteins. H-bond acceptors are atoms or groups of atoms 
that can accept a hydrogen bond, while H-bond donors are atoms or groups of atoms 
that can donate a hydrogen bond. In the aqueous environment of the body, drug 
molecules must be able to break hydrogen bonds in order to cross biological 
membranes and reach their target proteins. The number of H-bond acceptors and 
donors in a ligand can affect its ability to partition across membranes and interact 
with its target protein. 
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Rotatable bonds are chemical bonds that allow a molecule to rotate around a 
specific axis, which can affect its flexibility and ability to bind to a target protein. A 
molecule with more rotatable bonds may be more flexible and able to bind to a 
target protein in different orientations, which can increase its binding affinity. 

4.7 Protein- Ligand Interaction 

The molecular docking of natural products, indole derivatives, kinase inhibitors and 
nucleoside mimetics were carried out along with native ligand SAM and SAH against 
Dam protein in PyRx.                                                              

4.7.1 Analyzing virtual screening of natural products 

A virtual screening of natural products against the Dam protein of Salmonella 
typhimurium was performed using the PyRx software. Among the 205 natural 
products that were screened, 5 compounds were selected based on their binding 
energy and preference index with Dam and hMAT1A. The screening process involved 
evaluating the binding affinity of the ligands to the Dam protein, as well as 
comparing their binding affinity with hMAT1A, a human protein. The ligands that 
showed higher binding affinity with Dam and lower affinity with hMAT1A were 
chosen for further analysis. 

The binding energy and preference index of the selected 5 compounds were 
analyzed, and it was found that two compounds, ZINC000001590366 and 
ZINC000004716487, had the highest binding energy with Dam at -8.5 kJ/mol and -8.1 
kJ/mol respectively, and the highest preference index of 2. Additionally, these 
compounds showed better binding affinity towards Dam as compared to binding 
energy against Dam to -7.8 kJ/mol of SAM and -8kJ/mol of SAH. The compound 
ZINC00005729706 had a higher binding energy of -8.5 kJ/mol, but it was not selected 
as it had a lower preference index. 

These results suggest that the two compounds ZINC000001590366 and 
ZINC000004716487 have the potential to be developed as drugs that specifically 
target the Dam protein of Salmonella typhimurium, as they showed higher binding 
affinity with Dam and lower affinity with hMAT1A.  
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Table 5: Summary of top hits Natural Product compounds after molecular docking 
against Dam  

Natural Products  Molecular Characters   Binding energy 
(kJ/mol) 

Database 
ID 

cLogP cLogS H-
Ac
ce
pto
rs 

H-
Don
ors 

Polar 
Surfa
ce 
Area 

Druglike
ness 

Da
m 

hMA
T1A 

Prefer
ence 
Index 

ZINC00000
1590366 0.2123 -2.099 5 2 75.27 3.5451 -8.5 -7.2 2 

ZINC00000
4716487 2.5424 -3.266 4 2 66.76 0.21902 -8.1 -6.9 2 

ZINC00000
1319234 2.6104 -3.097 4 1 45.59 0.87864 -8.1 -6.6 1.8 

ZINC00000
3831404 2.6104 -3.097 4 1 45.59 0.87864 -8.1 -7.2 1.8 

ZINC00005
7297068 2.9248 -3.576 4 1 45.33 2.3478 -8.5 -7.1 1.6 

 

Figure 14: Molecular structures of the selected Natural Product molecules that could be the 
putative drug against Salmonella typhimurium (A) ZINC000001590366 (B) 

ZINC000004716487 

Compound ZINC000001590366 was identified as Antineoplaston A10 in Pubchem 
(https://pubchem.ncbi.nlm.nih.gov/). This compound is a mixture of peptides, amino 
acid derivatives, and organic acids that are believed to be part of a natural defense 
system against human cancers and other diseases (Buckner et al., 1999). The active 
compound was found to be 3-phenylacetylamino-2,6-piperinedione, thus named as 
Antineoplaston A10 (Revelle et al., 1996). It was first isolated from human urine. This 
compound has been proposed as a cancer treatment by Dr. Stanislaw Burzynski. 
According to Dr. Burzynski, antineoplastons bind to specific receptors on cancer cells 
and cause them to differentiate or undergo programmed cell death, leading to the 
regression of the cancer (Burzynski et al., 2006). It is being used in the trails studying 

https://pubche/
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the treatment of Sarcoma, Lymphoma, Lung Cancer, Liver Cancer, and Kidney Cancer 
(https://www.drugbank.ca/drugs/DB11702). 

Compound ZINC000004716487 was identified as Cardamonin 

(https://zinc15.docking.org/substances/ZINC000004716487/). Cardamonin, also 

known as Dihydroxymethoxychalcone, is a naturally occurring flavonoid compound 

that belongs to a class of compounds called chalcones 

(https://pubchem.ncbi.nlm.nih.gov/compound/641785). It is found in various plant 

species, including the plant family Zingiberaceae, which includes ginger and 

cardamom. The compound has been found to have a wide range of biological 

activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer 

properties (Chavan et al., 2016). Zhang et al discovered that methoxy chalcones 

have the potential to be developed as a treatment for acute inflammatory diseases 

(Zhang et al., 2016). A study found that a specific subgroup of chalcones compounds, 

called methoxy-4’-amino chalcones, demonstrated strong antimicrobial properties in 

vitro against Escherichia coli, Staphylococcus aureus and Candida albicans (Gomes et 

al., 2017). Some chalcones have been successfully developed as drugs for the 

treatment of digestive system diseases, cancer, cardiovascular diseases, and viral 

infections (Ni et al., 2004; Katsori et al., 2011). Chalcones have been found to inhibit 

the growth of cancer cells and induce cell death in various types of cancer cells. They 

are also reported to inhibit the formation of new blood vessels in tumors, which is 

important for the treatment of cancer (Orlikova et al., 2011; Zhong et al., 2015). 

Thus, these studies show cardamonin as the potential drug against pathogens. 

4.7.2 Analyzing virtual screening of indole derivatives 

A large library of indole derivatives containing a total of 10,345 ligands were 
screened for their ADME/Tox properties, and narrowed down to 462 ligands. These 
462 ligands were then analyzed using molecular docking in the PyRx platform with 
the Dam protein. Based on the binding affinities with Dam and hMAT1A, as well as 
preference index, three compounds were selected for further analysis. The native 
ligand SAM and SAH had binding energies of -7.8 kJ/mol and -8 kJ/mol with the Dam 
protein, respectively. Similarly, the binding energy of SAM with hMAT1A was -7.4 
kJ/mol. The compound with the highest binding energy with Dam compared to SAM 
and SAH, and low binding affinity with hMAT1A was selected for further analysis. The 
compound v029-3617 had a binding energy of -8.7 kJ/mol with Dam and -6.8 kJ/mol 
with hMAT1A, which met the criteria. Additionally, this compound had the highest 
preference index of 3 among the other compounds. The compound p935-1675, 
despite having high binding energy with Dam and low binding affinity with hMAT1A, 
was not selected as it had a low preference index. 

  

https://zinc15.docking.org/substances/ZINC000004716487/
https://pubchem.ncbi.nlm.nih.gov/compound/641785


RESULTS AND DISCUSSION 

53 

Table 6: Summary of top hits indole derivative compounds after molecular docking 
against Dam  

Indole derivatives  Molecular Characters   Binding energy 
(kJ/mol) 

Data
base 
ID 

cLogP cLogS H-
Accept
ors 

H-
Don
ors 

Polar 
Surface 
Area 

Druglike
ness 

Dam hMA
T1A 

Prefer
ence 
Index 

v029
-
3617 2.1939 -3.157 6 2 72.36 1.5223 -8.7 -6.8 3 

p091
-
0204 2.8102 -3.47 5 1 46.5 2.2271 -8.8 -6.8 2.4 

p935
-
1675 2.3374 -2.123 5 1 49.74 3.4187 -9 -6.8 2.2 

Figure 15: Molecular structures of the selected indole derivative molecule (v029-3617) that 
could be the putative drug against Salmonella typhimurium 

The compound v029-3617 was found to be 5-cyclopentaneamido-1-ethyl-N-(2-
methoxyethyl)-1H-indole-2-carboxamide (https://pubchem.ncbi.nlm.nih.gov/). This 
compound consists of important functional groups such as- indole and carboxamide. 
The indole moiety is a six-membered heterocyclic ring that is found in a variety of 
natural products and synthetic compounds. It has attracted significant interest in the 
field of drug development due to its structural similarity to several biologically active 
compounds, and its ability to interact with a wide range of target proteins. Indole 
derivatives exhibit antimicrobial, anti-cancer, anti-diabetic, anti-tubercular, anti-
malarial, anti-HIV and anti-inflammatory  properties (Caruso et al., 2014; Guerra et 
al., 2011; Saini et al., 2015; Alsayed et al., 2021). Some studies have shown that 5-(4-
methylpiperazin-1-yl)-3-propyl-2-(1H-pyrrolo[2,3-b]pyridin-3-yl)-3H-imidazo[4,5-b]-
83 pyridine (X12) demonstrated anti-inflammatory properties both in vitro and in 
vivo to 84 inflammatory diseases. The compound was able to inhibit the production 

https://pubchem.ncbi.nlm.nih.gov/
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of inflammatory cytokines, such as TNF-alpha, IL-1beta, and IL-6, in response to LPS 
stimulation, a component of the cell walls of gram-negative bacteria that can trigger 
the production of pro-inflammatory cytokines (Chen et al., 2013). Moreover, the 
study found that this compound was able to reduce the severity of inflammation in a 
mouse model of sepsis, a severe systemic inflammatory response caused by bacterial 
infection in vivo (Liu et al., 2016). Similarly, Dai et al., created two analogs of  
compound X12 and those compounds demonstrated effective in attenuating LPS-
induced pulmonary edema, reducing lung pathological changes, reducing the 
infiltration of inflammatory cells into the lungs and the expression of pro-
inflammatory cytokines in vivo (Dai et al., 2018). Additionally, the researchers have 
discovered a series of small molecule inhibitors which includes a 1H-indole-2-
carboxamide hinge scaffold, showed therapeutic effects on DSS (Dextran sulfate 
sodium)-induced UC (a mouse model of Ulcerative Colitis), by acting as an ASK1 
(Apoptosis Signal-regulating Kinase 1) small molecule inhibitor with anti-
inflammatory properties (Hou et al., 2021). Hence, based on these studies It can be 
concluded that compound v029-3617 (5-cyclopentaneamido-1-ethyl-N-(2-
methoxyethyl)-1H-indole-2-carboxamide) having both indole and carboxamide 
together as the potential drug target. 

4.7.3 Analyzing virtual screening of kinase inhibitors 

A ligand library from UORSY kinase inhibitor from 6449 ligands 1685 ligands were 
narrowed down using ADME/Tox filter from OSIRIS datawarrior. Six compounds were 
finalized based on their binding affinity with target protein, Dam and hMAT1A as 
well as preference index. Out of six compounds the compound, pb56907280 was 
chosen for further analysis. The compounds showed a better binding affinity towards 
Dam than the reference compounds SAM binding energy of -7.8 kJ/mol and SAH of -
8kJ/mol, with binding energies of -9kJ/mol. Furthermore, the compound had a lower 
binding affinity towards hMAT1A than the other compounds in the library, with 
binding energiy of -6.9kJ/mol. Similiarly, the preference index (3) was high with this 
compound than rest of the compounds. Based on these results, the compound  
pb56907280 was chosen as the putative drug for further analysis that would 
effectively target Dam protein of Salmonella typhimurium. 
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Table 7: Summary of top hits uorsy kinase inhibitor compounds after molecular 
docking against Dam 

Kinase inhibitors  Molecular Characters   Binding energy 
(kJ/mol) 

Database ID cLogP cLogS H-
Accep
tors 

H-
Don
ors 

Polar 
Surface 
Area 

Druglike
ness 

Dam hMA
T1A 

Prefer
ence 
Index 

pb28367209 3.0013 -3.991 3 2 44.89 0.96835 -9.8 -7.4 1.4 

pb30240174 3.9129 -3.144 5 0 94.31 6.3259 -9.6 -7.3 1.8 

pb26780487 0.3008 -2.313 7 2 89.02 4.4893 -9.4 -7.3 3 

pb12205060
44 1.3884 -2.27 6 2 70.25 7.6812 -9 -6.7 2.8 

pb56907280 2.1461 -3.693 7 3 96.89 0.20255 -9 -6.9 3 

pb11906999
00 1.3737 -3.095 7 1 80.49 0.37992 -8.8 -6.9 2.6 

 

 

Figure 16: Molecular structure of the selected kinase inhibitor molecule (pb56907280) that 
could be the putative drug against Salmonella typhimurium 

The compound pb56907280 was found to be 2-[[anilino(oxo)methyl]amino]-4,5-
dimethoxybenzoic acid (https://pubchem.ncbi.nlm.nih.gov/).. This compound 
consists of some important functional group such as- aniline and benzoic acid. 
Aniline is used as a starting material for the synthesis of a variety of pharmaceuticals, 
including analgesics (paracetamols), anti-inflammatory drugs and anti-tumor drugs 
(Bicalutamide, Nilutamide etc). It was found that aniline derivative was identified as 
inhibitors of influenza A virus subtype H1N1 (Leiva et al., 2018). Benzoic acid and its 
derivatives are commonly used as a preservative in a wide range of products, such as 
food, cosmetics, hygiene products, and medicines (oral, parenteral, and topical) as 
they have the ability to inhibit the growth of bacteria and fungi (SCCNFP, 2011). It 
was found that 3,5-Dihydroxybenaldehyde showed bactericidal activity against 
Salmonella enterica (BA50=0.65) and Campylobacter jejuni (BA50=0.088) (Friedman et 
al., 2003). Studies have shown that benzoic acid can exhibit antiviral activity against 
picornaviruses, a family of viruses that includes bovine enterovirus type 1 (BEV-1) 
(EU Regulation 528/2012, 2013). Benzoates have been proposed as a potential 
therapeutic approach in the treatment of schizophrenia by inhibiting the activity of 

https://pubchem.ncbi.nlm.nih.gov/
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D-amino acid oxidase (DAAO), an enzyme that is involved in the metabolism of D-
amino acids. The inhibition of DAAO by benzoates may lead to an increase in the 
levels of D-serine in the brain, which in turn may lead to an improvement in the 
symptoms of schizophrenia, including cognitive deficits (Lane et al., 2013). Thus, the 
screened kinase inhibitor compound could be suggested as the potential drug target 
to develop as antibiotics. 

4.7.4 Analyzing virtual screening of Nucleoside mimetics 

After conducting a virtual screening of 653 nucleoside mimetics compounds, six were 
selected based on their binding affinity with target proteins Dam and hMAT1A, as 
well as their preference index. Among these compounds, las_52127683 was found to 
have the highest binding affinity towards Dam, with a binding energy of -9.7 kJ/mol. 
This is significantly higher than the binding energies of -7.8 kJ/mol and -8 kJ/mol for 
the reference compounds SAM and SAH, respectively. Additionally, this compound 
had low binding affinity towards hMAT1A, with a binding energy of -7.5 kJ/mol 
compared to -7.9 kJ/mol for SAM. Furthermore, the preference index for 
las_52127683 was -3.8. In contrast ligand las_52139647 had highest preference 
index of 4.2 but it was not selected as drug target since it had low binding affinity 
with target protein Dam i.e. -8.7kJ/mol as well as high binding affinity with hMAT1A 
(-7.6kJ/mol) as compared to selected ligand las_52127683. These results suggest 
that las_52127683 is a promising compound for further consideration as a drug 
target. 

Table 8: Summary of top hits Nucleoside mimetic compounds after molecular 
docking against Dam 

Nucleoside Mimetics  Molecular Characters       Binding energy 
(kJ/mol) 

Database ID cLogP cLogS H-
Accep
tors 

H-
Don
ors 

Polar 
Surface 
Area 

Druglike
ness 

Dam hMA
T1A 

Preferenc
e Index 

las_521276
83 

1.3605 
 

-3.203 
 

8 
 

2 
 

88.33 
 

6.7454 
 

-9.7 
 

-7.5 
 

3.8 
 

las_521416
62 1.9905 -3.142 7 2 73.75 3.8818 -9.1 -7.5 3.6 

bdh_34041
315 2.2819 -3.396 9 2 94.06 5.9519 -9 -7.6 4 

bdh_34041
301 2.3394 -2.909 8 1 82.03 5.7108 -9 -7.6 3.4 

las_521410
17 0.8265 -2.253 8 2 82.98 4.2055 -8.9 -7.6 3.8 

las_521396
47 1.0184 -2.716 9 2 86.22 4.0605 -8.7 -7.6 4.2 
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Figure 17: Molecular structure of the selected Nucleoside mimetic molecule (las_52127683) 
that could be the putative drug against Salmonella typhimurium 

The compound las_52127683 was found to be 3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol 
(https://pubchem.ncbi.nlm.nih.gov/). This compound consists of several functional 
groups such as- pyrrolidinone,  pyrimidine and  pyrazole. Pyrrolidinone is a natural 
product found in Ascochyta medicaginicola and Microtropis japonica. It was found 
that Pyrrolidine carboxamide as a InhA inhibitors, gene inhA is a key catalyst in 
mycolic acid biosynthesis in   Mycobacterium tuberculosis, showing an IC50 of 10.05 
µM (He et al., 2006). Similarly, Pyrimidine is one of the two main classes of nitrogen-
containing bases that make up nucleic acids (DNA and RNA), the other being purines. 
Examples of pyrimidine bases found in DNA and RNA are cytosine, thymine, and 
uracil. Pyrimidine compounds are used as drugs to treat cancer and viral infections. 
As for instance cytarabine (Ara-C), a pyrimidine nucleoside analog, has been proven 
to be one of the most effective antineoplastic agents for treating leukemia, 
lymphoma as well as neoplastic meningitis. The drug works by interfering with the 
replication of cancer cells and preventing them from dividing and growing. It is 
converted into an active form within the cancer cells and incorporated into the DNA, 
which causes the cancer cells to die. (Burnett et al., 2011; Friedberg, 2011). 
Additionally, 5-fluorouracil (5-FU) also one of the pyrimidine analog used to treat 
colorectal cancer (Blondy et al., 2020). 

Pyrazole has a wide range of biological activities, including antimicrobial, anticancer, 
cytotoxic, analgesic, anti-inflammatory, antihypertensive, and central nervous 
system (CNS) activities such as antiepileptic and antidepressant effects. Derivatives 
of pyrazole have also been found to have important pharmacological activities. They 
have been used as useful materials in drug research because of their potential to 
target specific biological pathways and molecules. One of the key areas where 
pyrazole derivatives have been found to be particularly useful is in the treatment of 
cancer. These compounds have been shown to have good inhibitory activities against 
a number of cancer-related targets, including BRAFV600E, EGFR, telomerase, ROS 
Receptor Tyrosine Kinase, and Aurora-A kinase. These are all proteins that are 
involved in the growth and spread of cancer cells, and by inhibiting their activity, 
pyrazole derivatives may be able to slow or stop the growth of cancerous tumors 
(Küçükgüzel et al., 2015). 

https://pubchem.ncbi.nlm.nih.gov/
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4.8 Analysis of protein ligand interactions 

The lead compounds that have been identified as potential drug candidates based on 
their binding affinity to a target protein were screened for their protein-ligand 
interactions using PyMol, Discovery studio and ligplot. The interactions between the 
lead compounds and the protein were then analyzed in detail. Different amino acid 
residues in the protein can be involved in these interactions and they can interact via 
different types of bonding, such as hydrogen bonding, hydrophobic interactions, and 
electrostatic interactions. The specific amino acid residues involved and the type of 
interactions they form can provide important information about how the lead 
compound binds to the protein, which can be useful for understanding the 
mechanism of action of the compound and for optimizing its binding affinity. 

4.8.1 Using Pymol 

PyMol is a molecular visualization software that can be used to create detailed 3D 
models of protein-ligand complexes. Here we can visualize the interactions between 
the lead compound and the protein, including hydrogen bonding interactions, 
hydrophobic interactions and electrostatic interactions which is useful for identifying 
the specific residues and groups involved in the interaction and for understanding 
the structural basis of the binding. 

In this case, five lead compounds were selected as the best candidates that had the 
highest predicted binding affinity to the protein as determined by the docking 
simulation. The interactions of these five lead compounds with the protein were 
then analyzed in more detail by studying the binding mode of the lead compounds to 
the protein, and identifying the specific amino acid residues involved in the 
interaction. Additionally, the interactions of native ligand (SAM and SAH) to the 
protein were also observed. This provided a baseline of how the native ligand 
interacts with the protein, which was useful for understanding the mechanism of 
action of the protein and for comparing the binding mode of the lead compounds to 
the native ligand. The specific interactions of these lead compounds with the protein 
were also visualized, such as hydrogen bonding interactions, hydrophobic 
interactions and electrostatic interactions. The interactions of native ligand with the 
protein provided us as a reference point to identify the regions of the protein that 
are important for binding, and to compare the binding mode of the lead compounds 
to the native ligand. The following Figure 35 and Figure 36 show the interactions of 
protein Dam with native ligand SAM and SAH respectively. 
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Figure 18: Visualization of Protein ligand interaction A) Dam and SAM complex (protein 
ligand complex) Dam protein in pink color, ligand in red color, active binding sites of ligand in 

white color B) Polar and Non- polar amino acids of ligand interacting with Dam within 5Å, 
polar amino acids in red color, yellow lines showing H-bond, non- polar amino acids in blue 

color 

SAM showed nine polar contacts with six amino acid residues, TRP-10, ASP-54, ASP-
181, TYR-184, SER-188 and ASN-199. It formed two polar contacts with ASP-54 and 
three polar contacts with ASP-181. The polar residues form hydrogen bonds with the 
lead compound. Hydrogen bonds are a specific type of polar interaction that can 
occur between the hydrogen atom of a polar group in the lead compound and the 
oxygen or nitrogen atom of a polar group in the protein. These interactions can be 
particularly important in the binding of the lead compound to the protein, as they 
can provide additional stability to the binding (Pang and Zhou, 2017). In addition, 
charge-charge interactions can be strong even at a distance of 5-10 Å. These "long-
range" interactions can also play a crucial factor in determining the rate constants of 
proteins binding with small and macromolecular partners. These interactions can 
occur through electrostatic interactions, which are mediated by the Coulombic 
forces between the charges. The strength of these interactions can depend on the 
distance between the charges, as well as on the dielectric constant of the solvent. 
Long-range interactions can also provide specificity to the binding of the lead 
compound to the protein, as they can help to orient the lead compound in the 
correct position for binding (Schreiber et al., 2009). Similarly, there are fifteen non-
polar residues of SAM with Dam such as- ALA-11, GLY-12, LYS-14, PHE-35, GLY-37, 
ILE-55, ASN-56, CYS-123, PRO-182, PRO-183, ALA-189, THR-198, SER-200, PHE-201 
and SER-226. These non-polar residues interact with the lead compound through 
hydrophobic interactions which are also important for the folding stability of 
proteins, as they help to bring nonpolar regions of the protein together in a way that 
minimizes the exposure of these groups to the aqueous environment. In proteins, 
the hydrophobic interactions occur between the nonpolar side chains of amino acids 
such as alanine, valine, leucine, and other hydrophobic residues. These residues tend 
to be buried inside the protein, away from the aqueous environment, where they 
interact with each other to form a stable hydrophobic core. This core helps to 
maintain the correct conformation of the protein, and to prevent the protein from 
unfolding (Nick et al., 2014). The hydrophobic interactions are driven by the fact that 
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water is a polar solvent and nonpolar groups are not attracted to it. In order to 
minimize the contact with water, nonpolar groups tend to come together and form a 
hydrophobic core that is buried inside the protein. This way, the nonpolar residues 
can avoid the polar solvent and interact with each other in a more favorable 
environment. Additionally, the hydrophobic interactions are enthalpically favorable, 
meaning that they release energy when they occur. This energy release helps to 
stabilize the protein structure and to prevent the protein from unfolding (Baldwin, 
2007). 

 

Figure 19: Visualization of Protein ligand interaction A) Dam and SAH complex (protein ligand 
complex) Dam protein in blue color, ligand in red color, active binding sites of ligand in white 

color B) Polar and Non- polar amino acids of ligand interacting with Dam within 5Å , polar 
amino acids in red color, yellow lines showing H-bond, non- polar amino acids in blue color 

SAH showed eleven polar contacts with five amino acid residues, TRP-10, PHE-35, 
ASP-54, ASP-181 and ASN-199. It formed three polar contacts with ASP-181, five 
polar contacts with ASN-199. Similarly, there are eighteen non-polar residues of SAH 
with Dam such as- ALA-11, GLY-13, LYS-14, VAL-36, GLY-37, GLY-39, ALA-38, ASN-56, 
CYS123, PRO-182, PRO-183, TYR-184, PRO-186, ALA-189, THR-198, ASN-199, SER-200 
and PHE-201.  

 

Figure 20: Visualization of Protein ligand interaction A) Dam and Antineoplaston A10 
complex (protein ligand complex) Dam protein in blue color, ligand in red color, active 

binding sites of ligand in white color B) Polar and Non- polar amino acids of ligand 
interacting with Dam within 5Å , polar amino acids in red color, yellow lines showing H-bond, 

non- polar amino acids in blue color 
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Antineoplaston A10 showed eleven polar contacts with five amino acid residues, 
TRP-10, PHE-35, VAL-36, SER-40 and ASP-181. It formed three polar contacts with 
ASP-181. Similarly, there are seventeen non-polar residues of Antineoplaston A10 
with Dam such as- TRP-10, ALA-11, GLY-12, GLY-13, LYS-14, TYR-15, GLU-33, ALA-38, 
GLY-39, SER-40, VAL-41, PHE-42, TYR-179, PRO-182, PRO-183, TYR-184 and ASN-199.  

 

Figure 21: Visualization of Protein ligand interaction a) Dam and Cardamonin complex 
(protein ligand complex) Dam protein in green color, ligand in red color, active binding sites 
of ligand in white color b) Polar and Non- polar amino acids of ligand interacting with Dam 
within 5Å , polar amino acids in red color, yellow lines showing H-bond, non- polar amino 

acids in blue color 

Cardamonin showed two polar contacts with two amino acid residues, TRP-10 and 
ASP-181 Similarly, there are nineteen non-polar residues of cardamonin with Dam 
such as- ALA-11, GLY-12, GLY-13, LYS-14, TYR-15, GLU-33, PHE-35, VAL-36, ALA-38, 
GLY-39, SER-40, VAL-41, ASP-54, ASN-56, TYR-179, PRO-182, PRO-183, TYR-184 and 
ASN-199.   

 

Figure 22: Visualization of Protein ligand interaction A) Dam and indole derivative (5-
cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide) complex (protein 
ligand complex) Dam protein in blue color, ligand in red color, active binding sites of ligand in 

white color B) Polar and Non- polar amino acids of ligand interacting with Dam within 5Å , 
polar amino acids in red color, yellow lines showing H-bond, non- polar amino acids in blue 

color 
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 Indole derivative (5-cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-
carboxamide) showed four polar contacts with four amino acid residues, PHE-35, 
ALA-38,   ASP-181 and ASN-199. Similarly, there are eighteen non-polar residues such 
as- ALA-11, GLY-12, LYS-14, GLU-33, VAL-36, GLY-39, SER-40, VAL-41, PHE-42, ILE-55, 
CYS-123,TYR-179, PRO-182, PRO-183, TYR-184, SER-188, THR-198 and PHE-201. 

 

Figure 23: Visualization of Protein ligand interaction A) Dam and Kinase inhibitor (2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) complex (protein ligand 

complex),Dam protein in pink color, ligand in red color, active binding sites of ligand in white 
color B) Polar and Non- polar amino acids of ligand interacting with Dam within 5Å , polar 
amino acids in red color, yellow lines showing H-bond, non- polar amino acids in blue color 

Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) showed 
three polar contacts with three amino acid residues, PHE-35, ASP-181 and ASN-191. 
Similarly, there are nineteen non-polar residues such as- TRP-10, ALA-11, GLY-12, 
GLY-13, LYS-14, GLY-30, GLU-33, VAL-36, GLY-37, ALA-38, SER-40, ASP-54, ILR-55, 
ASN-56, CYS-123, TYR-179, PRO-182, PRO-183 and TYR-184. 

 

 

Figure 24: Visualization of Protein ligand interaction A) Dam and , Nucleoside Mimetics (3-
[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-
4-yl)pyrrolidin-3-ol)  complex (protein ligand complex), Dam protein in orange color, ligand in 
red color, active binding sites of ligand in white color B) Polar and Non- polar amino acids of 
ligand interacting with Dam within 5Å , polar amino acids in red color, yellow lines showing 

H-bond, non- polar amino acids in blue color 
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Nucleoside Mimetics (3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) 
showed two polar contacts with two amino acid residues, PHE-35 and ASN-56. 
Similarly, there are twenty-six non-polar residues of such as- TRP-10, ALA-11, GLY-12, 
GLY-13, LYS-14, TYR-15, GLU-33, SER-40, VAL-41, PHE-42, ASP-54, ILE-55, ASN-56, 
SER-57, ASP-58, LEU-59, ARG-107, CYS-123, TYR-125, ASN-126, LEU-127, ASP-181, 
PRO-183, TYR-184 and ASN-199. 

4.8.2 Using Discovery studio 

Discovery Studio is a software package that can be used to generate 2D and 3D 
interaction maps of protein-ligand interactions. These maps provide detailed 
information on the specific protein residues and groups involved in the interaction, 
as well as the types of bonds that are formed and the distance between the 
interacting groups. It also allows to identify the residues that interact more often in a 
protein-ligand interaction. The orientation and stereochemistry of the individual 
amino acids and groups can also be visualized, which can provide insight into the 
specific mechanisms of the interaction. This can be useful for understanding the 
structural basis of protein-ligand interactions and for drug design. The different 
types of bonds are formed during protein-ligand interactions. The bonds can be both 
covalent and non-covalent bonds. Non-covalent interactions include pi-alkyl, pi-pi T 
shaped, and pi-sulphur interactions. In a pi-alkyl interaction, the pi electron cloud of 
an aromatic group interacts with the electron group of an alkyl group. In a pi-pi T 
shaped interaction, the pi electron cloud of two aromatic groups interact in a T-
shaped manner. In a pi-sulphur interaction, the pi electron cloud of an aromatic ring 
interacts with the lone pair of electrons of a sulphur atom. These interactions play an 
important role in the binding of the ligand to the protein and affect the overall 
binding energy.  

 

Figure 25: 2D Visualization of Protein ligand interaction between SAM and Dam (A) and SAH 
and Dam (B) in Discovery Studio 

When visualizing the interactions between the native ligand SAM and Dam, it was 
found that seven amino acid residues- TRP-10, ASP-54, TYR-184, SER-188 ASN-199 
and ASP-181 formed Conventional Hydrogen bond with the ligand, each forming 
single conventional H-bond whereas ASP-181 formed two Conventional Hydrogen 
bond. In this case, the hydrogen atoms of the SAM molecule are forming bonds with 
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the oxygen atoms of the specified amino acid residues of Dam. Each of these amino 
acids residues is forming a single conventional hydrogen bond with the ligand, 
suggesting ASP-181 playing a more significant role in the binding of the ligand to 
Dam. Likewise, TYR-184 formed Pi-Donor Hydrogen bond with the ligand. This type 
of interaction is less common than conventional hydrogen bonds and is generally 
weaker. Hydrogen bonding is a type of chemical interaction in which a hydrogen 
atom, which is covalently bonded to one atom, forms a weak bond with a second 
atom that has a lone pair of electrons. Similarly, one Unfavorable Donor-Donor bond 
was also observed with amino acid ASN-56. This type of interaction is less favorable 
because it involves the sharing of two electrons between atoms. The amino acid TYR-
184 also formed Vander waals with the ligand. 

Additionally, it was found that five specific amino acid residues, PHE-35, ASP-54, SER-
188, ASP-181, and ASN-199 formed conventional hydrogen bonds with the native 
ligand SAH in the interaction between the protein Dam and SAH. Specifically, the 
amino acid ASN-199 formed four conventional hydrogen bonds and ASP-181 formed 
two conventional hydrogen bonds with the ligand. Similarly, the amino acids SER-188 
and THR-198 formed Carbon Hydrogen Bond whereas ALA-11 formed Alkyl bond 
with the ligand. 

 

Figure 26: 2D Visualization of Protein ligand interaction between Antineoplaston A10 and 
Dam in Discovery Studio 

Table 9: Summary of Protein-ligand interaction between Antineoplaston A10 and 
Dam 

Amino 
acid 

Bond type Bonded with Bond 
length 

TRP-10 Conventional H-bond Amide 2.36 

GLY-37 Carbon H-bond Amide 3.32 

PHE-35 Unfavorable Acceptor- Acceptor Oxygen group of Piperidine 2.87 

SER-40 Conventional H-bond Oxygen group of Piperidine 1.91 

ASP-181 Conventional H-bond Amino 2.44 

PRO-183 Pi-Alkyl Benzene 4.40 
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The protein ligand interaction between Dam and Antineoplaston A10 showed 
presence of three types of bond. TRP-10, SER-40 and ASP-181 showed conventional 
Hydrogen bond with the ligand while GLY-37 formed Carbon Hydrogen (C-H) bond. 
The C-H and C-H···O hydrogen bonds are typically weaker than heteroatom-hydrogen 
bonds, such as N-H···O or O-H···O, because of the weaker electronegativity of carbon 
atoms as compared to nitrogen or oxygen atoms. However, when a C-H group is 
activated by an electron-withdrawing group, the strength of the C-H···O hydrogen 
bond can become similar to that of heteroatom-hydrogen bonds. This is because the 
electron-withdrawing group causes the C-H bond to become more polarized, making 
the hydrogen atom more positive and the carbon atom more negative. This 
increased polarity makes the hydrogen atom more attractive to the electron-rich 
oxygen atom of the O-H bond, resulting in a stronger interaction between the two 
atoms (Adhikari and Scheiner, 2013). Similarly, PHE-35 showed Unfavorable 
Acceptor- acceptor bond and PRO-183 formed Pi-Alkyl bond with the ligand.  

 

Figure 27: 2D Visualization of Protein ligand interaction between Cardamonin and Dam in 
Discovery Studio 

Table 10: Summary of Protein-ligand interaction between Cardamonin and Dam 

Amino 
acid 

Bond type Bonded with Bond 
length 

TRP-10 Conventional H-bond Oxygen atom of methoxy group 1.82 

TRP-10 Pi-Alkyl Hydrogen of methoxy phenyl 5.24 

TRP-10 Pi-Alkyl Hydrogen of methoxy phenyl 4.86 

LYS-14 Pi-Alkyl Benzene 4.38 

ALA-38 Pi-Alkyl Benzene 4.92 

GLY-39 Pi- Donor H-bond Benzene 3.12 

PRO-183 Pi-sigma Phenyl group 3.80 

TYR-184 Unfavorable Donor- Donor Hydrogen of phenyl group 2.39 

Considering all analyses, ligand Cardamonin mostly interacted with TRP-10, LYS-14, 
ALA-38 residues by forming Pi- Alkyl bond and with GLY-39 residue by Pi-Donor H-
bond. TRP-10 formed Conventional H-bond as well. Similarly, PRO-183 and TYR-184 
formed Pi-sigma and unfavorable Donor-Donor bond by accepting proton, 
respectively with the ligand.  
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Figure 28: 2D Visualization of Protein ligand interaction between indole derivative (5-
cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide) and Dam in 

Discovery Studio 

Table 11: Summary of Protein-ligand interaction between indole derivative (5-
cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide) and Dam 

Amino acid Bond type Bonded with Bond length 

TRP-10 Pi- Donor H-bond Indole 2.80 

TRP-10 Carbon H-bond Amide 3.27 

TRP-10 Pi- Donor H-bond Indole 3.00 

LYS-14 Pi-Alkyl Cyclopentane 4.16 

PHE-35 Conventional H-bond Hydrogen of amide group 2.68 

GLY-37 Carbon H-bond Amide 3.16 

ALA-38 Conventional H-bond Amide 2.40 

VAL-41 Pi-Alkyl Cyclopentane 5.28 

ASP-181 Pi-Anion Cyclopentane 3.85 

ASP-181 Conventional H-bond Hydrogen of amide group 2.77 

ASP-181 Conventional H-bond Hydrogen of amide group 3.02 

PRO-183 Pi-Alkyl Indole 5.03 

PRO-183 Alkyl Amino of indole 4.93 

SER-188 Carbon H-bond Hydrogen 3.72 

ASN-199 Conventional H-bond Methoxy ethyl 2.67 

ASN-199 Conventional H-bond Methoxy ethyl 2.85 

During the interaction of the ligand, an indole derivative, with the protein Dam, a 
variety of bonds were observed between the amino acid residues of Dam and the 
various functional groups of the ligand. These include conventional hydrogen bonds, 
which were formed by residues PHE-35, ALA-38, ASP-181 and ASN-199 with the 
amide group of the ligand. Additionally, residue TRP-10 formed a carbon H-bond and 
two pi-donor H-bonds with the amide and indole moiety of the ligand respectively. 
Other residues, such as GLY-37 and SER-188, formed carbon H-bonds, while LYS-14, 
VAL-41 and PRO-183 formed pi-alkyl bonds. PRO-183 also formed an alkyl bond. 
Lastly, an additional Pi-anion bond was formed by ASP-181 residue. Pi-anion 
interactions are a type of electrostatic interactions that occur between an anion and 
an aromatic ring. These interactions involve an anion positioned over the centroid of 
an aromatic ring, where the anion's negative charge is attracted to the ring's pi 
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electrons. The strength of a Pi-anion interaction is determined by the electron 
density of the aromatic ring, the size and shape of the anion, and the distance 
between the anion and the ring. Pi-anion interactions have been found to be 
important in various biological systems, such as in the binding of anions to proteins 
and in the regulation of enzyme activity. These interactions can also be exploited in 
the design of new drugs, as they allow for the selective binding of anions to specific 
sites on a protein, which can help to modulate its activity. Furthermore, they also 
play an important role in the transport of anions across biological membranes (Watt 
et al., 2013). In this context, Pi-anion interactions are thought to facilitate the 
binding of anions to transmembrane proteins, which can then transport the anions 
across the membrane. 

 

Figure 29: 2D Visualization of Protein ligand interaction between Kinase inhibitor (2-[[aniline 
(oxo) methyl]amino]-4,5-dimethoxybenzoic acid) and Dam in Discovery studio 

Table 12: Summary of Protein-ligand interaction between Kinase inhibitor (2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) and Dam 

Amino acid Bond type Bonded with Bond length 

TRP-10 Conventional H-bond Oxygen of Amide 2.97 

TRP-10 Pi-Donor H-bond Benzoic acid 3.06 

TRP-10 Pi-Alkyl Methoxy group 5.13 

GLY-12 Carbon H-bond Dimethoxybenzoic acid 3.57 

LYS-14 Pi-Alkyl Aniline 4.40 

PHE-35 Conventional H-bond Amide  2.20 

GLY-37 Carbon H-bond Oxygen of Amide 3.49 

ALA-38 Pi-Alkyl Aniline 5.06 

GLY-39 Pi-Donor H-bond Aniline 3.16 

ASP-181 Conventional H-bond Amide 2.32 

ASP-181 Conventional H-bond Amide 3.04 

PRO-183 Pi- Alkyl Benzoic acid 4.90 

In the interaction between the protein Dam and the ligand Kinase inhibitor (2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid), four types of bonds were 
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observed. These include conventional hydrogen bonds, pi-donor hydrogen bonds, pi-
alkyl bonds, and pi-donor H-bond. The residues TRP-10, PHE-35 and ASP-181 formed 
conventional hydrogen bonds with the amide group of the ligand. TRP-10 also 
formed pi-donor hydrogen bonds and pi-alkyl bonds. Additionally, GLY-39 formed pi-
donor hydrogen bonds and LYS-14, ALA-38 and PRO-183 formed pi-alkyl bonds. 

 

Figure 30: 2D Visualization of Protein ligand interaction between Nucleoside Mimetics (3-
[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-

4-yl)pyrrolidin-3-ol) and Dam in Discovery studio 

Table 13: Summary of Protein-ligand interaction between Nucleoside Mimetics (3-
[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-
methylpyrimidin-4-yl)pyrrolidin-3-ol) and Dam 

Amino acid Bond type Bonded with Bond length 

TRP-10 Pi-Pi T-shaped Phenol  5.20 

TRP-10 Pi-Alkyl Pyrrolidin 5.05 

ALA-11 Carbon H-bond Pyrrolidin 3.61 

GLY-12 Carbon H-bond Pyrrolidin 3.65 

PHE-35 Conventional H-bond Hydrogen of Pyrimidine 2.14 

PHE-35 Carbon H-bond Pyrrolidin 3.49 

ALA-38 Alkyl Methyl of Pyrimidine 3.37 

ASN-56 Conventional H-bond Hydrogen of Pyrazol 2.67 

ASN-56 Conventional H-bond Oxygen of phenol 2.20 

CYS-123 Pi-Alkyl Phenol 5.08 

TYR-125 Pi-Alkyl Methyl of Pyrazol 4.21 

TYR-125 Pi-Pi Stacked Pyrazol 3.76 

TYR-125 Pi-Alkyl Methyl of Pyrazol 4.78 

It was observed that six types of bonds were formed in protein ligand interaction of 
between Nucleoside Mimetics (3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) 
and Dam. Here, the amino acid residues ALA-11, GLY-12 and PHE-35 formed a 
Carbon H-bond with the pyrrolidin moiety. PHE-35, in addition to forming this bond, 
also formed a Conventional H-bond with the hydrogen atom of the pyrimidine 
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moiety.  Furthermore, PHE-35 and ASN-56 formed conventional hydrogen bonds. 
TYR-125, TRP-10, CYS-123, TYR-125 and ALA-38 formed Pi-Alkyl and Alkyl bond 
respectively. TYR-125 and TRP-10 formed Pi-Pi Stacked and Pi-Pi T-shaped bonds. 
These are non-covalent interactions between the pi electron clouds of two aromatic 
groups. The Pi-Pi Stacked bond is formed when the pi electrons of two aromatic rings 
are aligned in parallel and in close proximity, resulting in a strong interaction. The Pi-
Pi T-shaped bond is formed when the pi electrons of two aromatic groups interact in 
a T-shaped manner. Pi-pi interactions are particularly important in protein-ligand 
binding because they can lead to the formation of strong, non-covalent bonds 
between the aromatic ring of the ligand and the aromatic residues in the protein. 
These interactions are relatively specific, giving a high degree of specificity to the 
binding (Zhou et al., 2012). In addition, Pi-Pi interactions are also able to contribute 
to the overall stability of the protein-ligand complex, by providing a favorable 
enthalpy change, which results in a positive binding energy. 

From the above summaries of all protein ligand interactions of Dam with all selected 
screened ligands, it was found that benzene and benzene-containing frameworks are 
commonly found to be involved in pi-alkyl interactions in protein-ligand binding. This 
is because the pi electron cloud of the aromatic ring in benzene is able to interact 
with the electron group of an alkyl group, which can lead to a strong binding 
interaction. In the case of lead compounds, these interactions have been found to 
occur with various amino acids, which further strengthens the binding between the 
ligand and the protein. 

4.8.3 Using Ligplot 

Ligplot is one of the software tools that is used to analyze hydrogen bond 
interactions and hydrophobic interactions between the ligand and the protein. 
Hydrogen bond interactions are relatively strong and highly directional, which makes 
them useful for conferring specificity to the binding of the ligand to the protein. On 
the other hand, hydrophobic interactions that occur between nonpolar groups in a 
protein are short-range attractive, meaning that they occur between atoms or 
groups that are in close proximity to each other and that they tend to bring these 
groups together. These interactions play an important role in the binding of ligands 
to receptors, as they contribute to the overall binding affinity between the ligand 
and the receptor. The interactions between native ligand SAM, SAH and lead 
compounds with the target protein, Dam were observed using Ligplot. 
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Figure 31: Ligplot visualization of ligand binding interaction between SAM and Dam 

The protein and ligand interaction between SAM and Dam exhibited both hydrogen 
bonds and hydrophobic interactions. The amino acids PHE-35, ILE-55, ASN-56, CYS-
123, PRO-182, PRO-183, and TYR-184 were found to be involved in hydrophobic 
interactions. Similarly, SER-188 and TRP-10 formed Hydrogen bond with bond 
lengths of 3.13 and 3.12 A respectively. Moreover, ASN-199, ASP-181 and ASP-54 
formed two Hydrogen bonds with ligand. The bond lengths formed by ASN-199 were 
3.05 and 3.03 whereas by ASP-181 were 3.22 and 2.82. Furthermore the bond 
lengths formed by ASP-54 were 3.03 and 2.87. 

 

Figure 32: Ligplot visualization of ligand binding interaction between SAH and Dam 

The interaction between the native ligand SAH and the protein Dam involved both 
hydrogen bond interactions and hydrophobic interactions. Specifically, the amino 
acids ALA-11, GLY-12, GLY-37, TYR-184, SER-188 and THR-198, were found to be 
involved in hydrophobic interactions with the ligand. Additionally, TRP-10, PHE-35 
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and ASP-54 formed hydrogen bonds with the ligand, with bond lengths of 3.21, 2.80 
and 3.34 Angstroms respectively. Furthermore, ASP-181 formed two hydrogen 
bonds with bond lengths of 3.22 and 3.24 whereas ASN-199 formed four hydrogen 
bonds with the ligand, with bond lengths of 2.81, 2.82, 2.82 and 3.32 Angstroms. This 
information provides insights into the specific interactions that the ligand has with 
the protein, which can be useful for understanding the mechanism of action of the 
ligand and for optimizing its binding affinity to the protein. 

 

Figure 33: Ligplot visualization of ligand binding interaction between Dam and 
Antineoplaston A10 

Both the hydrophobic and Hydrogen interactions were seen between the target 
protein Dam and natural product ligand Antineoplaston A10. Particularly, the amino 
acids that involved in hydrophobic interactions were-GLY-12, GLY-13, PHE-35, VAL-
36, GLY-37, ALA-38, GLY-39, ASP-54, ILE-55 and PRO-183. TRP-10, SER-40 and ASP-
181 formed Hydrogen bonds with the bond length of 3.03, 2.90 and 3.30 
respectively. Thus, this information provides us knowledge of how the ligand 
interacts with the protein which is helpful for comprehending the ligand’s mode of 
action for optimizing its affinity for binding to the protein. 
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Figure 34: Ligplot visualization of ligand binding interaction between Dam and Cardamonin 

By visualizing ligplot map, it was found that the protein, Dam and ligand, cardamonin 
interaction involved both Hydrogen and Hydrophobic interactions. The amino acid 
residues- TRP-10 and ASP-181 formed Hydrogen bonds with the ligand of bond 
length of 2.82 and 2.86 Angstrom respectively. Similarly, amino acid residues- GLY-
12, GLY-13, LYS-14, GLU-33, PHE-35, VAL-36, ALA-38, GLY-39, SER-40, VAL-41, PRO-
182, PRO-183 and TYR-184 formed Hydrophobic interactions. 

 

Figure 35: Ligplot visualization of ligand binding interaction between Dam and indole 
derivative (5-cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide) 

The interaction between the protein Dam and the indole derivative ligand (5-
cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide) when 
observed in ligplot software was found to involve both hydrogen and hydrophobic 
interactions. The two amino acid residues- PHE-35 and ALA-38 formed Hydrogen 
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bonds with the ligand of bond length 3.20 and 3.32 Angstrom respectively. 
Furthermore, it was found that sixteen amino acid residues- TRP-10, ALA-11, LYS-14, 
GLU-33, VAL-36, GLY-37, GLY-39, SER-40, VAL-41, ASP-54, TYR-179, ASP-181, PRO-
183, SER-188, THR-198 and ASN-199 formed hydrophobic interaction with the ligand. 

 

Figure 36: Ligplot visualization of ligand binding interaction between Dam and Kinase 
inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) 

The protein- ligand interaction of Dam and and screened Kinase inhibitor ligand (2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) revealed hydrophobic 
interactions between TRP-10, GLY-12, GLY-13, LYS-14, VAL-36, GLY-37, ASP-54, ALA-
38, GLY-39, SER-40, VAL-41, ASP-54, ILE-55, ASN-56, PRO-183, TYR-184 and ASN-199. 
Hydrogen bond interactions were also observed in three amino acid residues- PHE-
35, PRO-182 and ASP-181. ASP-181 formed two hydrogen bonds of bond lengths of 
3.06 and 3.07 with the ligand whereas PHE-35 and PRO-182 formed Hydrogen bonds 
of bond lengths of 2.80 and 2.90 respectively. 
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Figure 37: Ligplot visualization of ligand binding interaction between Dam and Nucleoside 
Mimetics(3-[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-

methylpyrimidin-4-yl)pyrrolidin-3-ol) 

The ligplot map of protein ligand interaction between Dam and selected final 
compound Nucleoside Mimetics (3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) 
showed both hydrogen interaction and hydrophobic interactions involvement. The 
amino acid residues that were involved in hydrophobic interactions with the ligand 
were-TRP-10, ALA-11, GLY-12, GLY-13, LYS-14, GLU-33, VAL-36, GLY-37, ALA-38, GLY-
39, SER-40, ASP-58, CYS-123, GLY-129, TYR-125, ASP-181, PRO-183 and ASN-199. 
Similarly, PHE-35 and ASN-56 formed hydrogen bonds of bond length of 2.86 and 
2.75 respectively. 

4.9 Density Function Theory Analysis (DFT) 

Density Functional Theory (DFT) is a powerful computational tool used to understand 
the electronic structure of a variety of physical systems, including atoms, molecules, 
and solids. In this study, we used DFT to analyze the top-performing compounds 
identified and the interactions between the compounds and their receptors. The 
calculations were performed using the B3LYP (Becke3-Lee-Yang-Parr)  method, 
which is a widely-used approximation for the exchange-correlation energy of the 
electrons in the system, and the 631G basis set, which provides a comprehensive 
description of the electron orbitals. Additionally, DFT was also used to study the 
vibrational spectra and frontier molecular orbitals of the compounds. The optimized 
structure of the compounds was found to have a singlet spin and zero charge, and 
the parameters were calculated using the B3LYP method with the Optimization+ 
Frequency job type. The calculated parameters for the top screened compounds- 
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Antineoplaston A10 (a), Cardamonin (b), indole derivative(5-cyclopentaneamido-1-
ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide) (c), Kinase inhibitor (2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid)(d) and Nucleoside 
Mimetics(3-[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-
(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) (e) are given below: 

Table 14: Calculated parameters of the selected compounds 

Compound  Total Energy (in 
(kJ/mol)) 

Dipole moment (in 
Debye) 

RMS Gradient norm (in 
a.u) 

a) -2197055.47858125 4.3043 0.00000189 

b) -2414871.21899625 5.0551 0.00000132 

c) -3057970.56119625 2.0744 0.00000153 

d) -2899693.8116475 3.3905 0.00000447 

e) -3711716.43948 3.8032 0.00000284 

 

Understanding the charge distribution within the molecule and the potency of the 
interactions between molecules can both be accomplished through the analysis of 
the dipole moment of the compounds. Dipole moment is a vector quantity that 
describes the separation of positive and negative charges within a molecule and is 
typically measured in Debye units (D). Values of the dipole moment can be used to 
describe how charge moves through molecules. The stability of the compounds can 
be affected by the strength of the dipole-dipole interactions between the molecules, 
which increase with increasing dipole moment. It was found that compound (b) i.e. 
Cardamonin had the highest dipole moment of 5.0551 Debye. A molecule is often 
thought to be more stable if it has more attracting forces and fewer repulsive forces. 
The potential energy of the molecule is decreased by attractive forces while its 
potential energy is increased by repulsive forces. In other words, more stable 
molecules are those with lower potential energy. All of the molecules selected 
displayed negative energy values, demonstrating the stability of the complexes. 

The RMS gradient norm is calculated as the square root of the mean of the squares 
of the gradients of the energy with respect to the coordinates of the atoms in the 
system. It is a measure of how much the energy of the system changes as the 
coordinates of the atoms are changed. Here, in computational chemistry, the RMS 
gradient norm is used to determine the convergence of a geometry optimization, 
during which the coordinates of the atoms are adjusted to minimize the energy of 
the system. A lower RMS gradient norm indicates that the optimization has 
converged, meaning that the energy of the system is at a local minimum. The RMS 
gradient norm is usually given in atomic units (a.u.) and the typical convergence 
criteria are values less than or equal to 0.0001 a.u. In all the above compounds all 
had the value less than 0.0001 a.u., signifying the energy of the system is at a local 
minimum. 
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4.9.1 Frontier Molecular Orbital Analysis 

Frontier molecular orbitals refer to the highest occupied molecular orbital (HOMO) 
and the lowest unoccupied molecular orbital (LUMO) in a compound, as these are 
the orbitals where chemical reactions occur. The HOMO represents the highest 
energy orbital occupied by an electron in a compound, and its energy level can be 
used as an indicator of a compound's electron-donor ability. In general, the higher 
the energy of the HOMO, the greater the electron-donating ability of a compound. 
The LUMO, on the other hand, represents the lowest energy orbital that is 
unoccupied by an electron in a compound, and its energy level can be used as an 
indicator of a compound's electron-acceptor ability. In general, the lower the energy 
of the LUMO, the greater the electron-accepting ability of a compound. 

The energies of the HOMO and LUMO are commonly used as chemical reactivity 
indices, and they are often correlated with other indices such as electron affinity and 
ionization potential. Electron affinity is a measure of how strongly an atom or a 
molecule will accept an electron, while ionization potential is a measure of how 
easily an electron can be removed from an atom or a molecule. The relationship 
between the HOMO and LUMO energies and these other indices can provide 
valuable insights into the chemical reactivity and stability of a compound. 
Furthermore, the HOMO-LUMO gap, energy gap is also used to determine the 
chemical reactivity, optical polarizability, and chemical hardness-softness of a 
molecule. The greater the HOMO-LUMO gap, the more stable the molecule is and 
the less reactive it is. The greater the gap, the more stable the molecule is and the 
less reactive it is. On the other hand, the smaller the gap, the less stable the 
molecule is and the more reactive it is. This is because a larger gap means that it 
takes more energy to excite an electron from the HOMO to the LUMO, making it less 
likely for a chemical reaction to occur (Kosar and Albayrak, 2011).  

The (HOMO-LUMO gap) energy gap of the screened compounds- Antineoplaston A10 
(a), Cardamonin (b), indole derivative(5-cyclopentaneamido-1-ethyl-N-(2-
methoxyethyl)-1H-indole-2-carboxamide) (c), Kinase inhibitor (2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid)(d) and Nucleoside 
Mimetics(3-[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-
(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) (e) are calculated in the given table 15. 

Table 15: Calculated energy differences (LUMO-HUMO) of the selected screened 
compounds 

Compound HOMO (in kJ/mol) LUMO (in kJ/mol) Energy Gap (in kJ/mol) 

a) -0.21707 -0.04587 0.1712 

b) -0.22334 -0.02639 0.19695 

c) -0.19899 -0.04192 0.15707 

d) -0.20985 -0.04789 0.16196 

e) -0.08308 -0.00822 0.07486 
 

Here, the energy gap value was found to be in decreasing order as: cardamonin (b)> 
antineoplaston A10 (a)> Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-
dimethoxybenzoic acid)(d)> indole derivative(5-cyclopentaneamido-1-ethyl-N-(2-
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methoxyethyl)-1H-indole-2-carboxamide)(c)> Nucleoside Mimetics(3-[[[4-[2-(3,5-
Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-
yl)pyrrolidin-3-ol)(e). This order indicates that Nucleoside Mimetics(3-[[[4-[2-(3,5-
Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-
yl)pyrrolidin-3-ol) is the most reactive among the compounds, followed by indole 
derivative(5-cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-
carboxamide)(c), Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-
dimethoxybenzoic acid)(d), Antineoplaston A10 (a) and then cardamonin (b). 

Furthermore, the molecular properties of a molecule can be determined by 
evaluating its ionization potential (IP), electron affinity (EA), chemical potential (μ), 
hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω), using 
the energy values of its highest occupied molecular orbital (HOMO) and lowest 
unoccupied molecular orbital (LUMO) frontier molecular orbitals (FMOs). These 
properties are used to understand the chemical reactivity of a molecule and its 
chemical behavior. Global reactivity descriptors can be obtained by applying 
Koopman's theorem (Govindarajan et al., 2012). The equation is given below: 

Chemical Potential (μ)= -(IP+EA)/2 

Hardness (η)= (IP-EA)/2 

Softness (S)= 1/2η 

Electronegativity (χ)= (IP+EA)/2 

Global electrophilicity index (ω)= μ^2/2η 

Where IP= -EHOMO  and EA=-ELUMO 

Table 16: Calculated chemical reactivity of the selected compounds 

Compounds Electronegativity 
        (χ) (eV) 

Hardness  
   (η) (eV) 

Softness(S) 
(eV-1) 

Chemical 
Potential(μ) 
(eV) 

Electrophilicity 
index (ω) (eV) 

a) 0.13147 0.0856 5.8411 -0.1315 0.1009 

b) 0.1249 0.0985 5.0761 -0.1249 0.0792 

c) 0.1204 0.0785 6.3694 -0.1204 0.0923 

d) 0.1289 0.0809 6.1805 -0.1289 0.1027 

e) 0.0456 0.0374 13.3689 -0.0456 0.0278 
 

The hardness of a molecule is a measure of its resistance to deformation of its 
electron cloud under small perturbations encountered during chemical processes. A 
molecule with a large HOMO-LUMO gap is considered a hard molecule, and one with 
a small HOMO-LUMO gap is considered a soft molecule, which is more reactive. Soft 
systems are large and highly polarizable, while hard systems are relatively small and 
less polarizable. The local hardness provides information about intermolecular 
reactivity, and the intrinsic global hardness provides information about the stability 
of the molecule (Kosar and Albayrak, 2011). In this context, the magnitude of 
chemical hardness (0.0856, 0.0985, 0.0785, 0.0809 and 0.0374 eV) supported by 
HOMO-LUMO gap suggests that the molecules being discussed are relatively stable 
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and less reactive, meaning that they are resistant to changes in their electron cloud 
under small perturbations. Furthermore, the electrophilicity of a molecule is related 
to its ability to acquire additional electronic charge and its resistance to exchange 
electronic charge with the environment. The electrophilicity index (ω) is a quantum 
chemical descriptor that provides information about both electron transfer 
(chemical potential) and stability (hardness) of a molecule. A high electrophilicity 
index value indicates that a molecule has a strong tendency to acquire additional 
electronic charge and is therefore more nucleophilic (nucleophiles are electron-rich 
species that are attracted to electron-deficient species or electrophiles). This index is 
important in determining the toxicity of molecules and the site selectivity of drug-
receptor interactions, and thus, it can be used to quantify the biological activity of 
drug-receptor interactions. In this context, the electrophilicity index values ω 
(0.1009, 0.0792, 0.0923, 0.1027 and 0.0278 eV) for the five compounds mentioned 
suggest that they have high nucleophility power, meaning that they have a high 
tendency to donate electrons to electrophilic species. 

Moreover, the chemical potential, also known as the electron affinity which is a 
measure of the energy required to add an electron to a neutral atom or molecule. A 
negative chemical potential means that the molecule or atom is able to release 
electrons, suggesting that it is stable and does not undergo decomposition into its 
individual elements. In the case of all the five compounds mentioned, with negative 
chemical potential values of -0.1315, -0.1249, -0.1204, -0.1289 and -0.0456, it 
indicates that these compounds are stable and do not decompose easily. This 
suggests that these compounds have a low tendency to lose electrons and are less 
reactive, which is an indicator of stability. 

 

Figure 38:Structure of Antineoplaston A10 and its frontier molecular orbitals; HOMO and 
LUMO A) Optimized geometry of Antineoplaston A10 B) HOMO structure of Antineoplaston 

A10 C) LUMO structure of Antineoplaston A10 
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Figure 39: Structure of Cardamonin and its frontier molecular orbitals; HOMO and LUMO A) 
Optimized geometry of Cardamonin B) HOMO structure of Cardamonin C) LUMO structure of 

Cardamonin 

 

Figure 40: Structure of indole derivative (5-cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-
1H-indole-2-carboxamide) and its frontier molecular orbitals; HOMO and LUMO A) Optimized 

geometry of indole derivative B) HOMO structure of indole derivative C) LUMO structure of 
indole derivative 
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Figure 41: Structure of Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic 
acid)and its frontier molecular orbitals; HOMO and LUMO A) Optimized geometry of Kinase 

inhibitor B) HOMO structure of Kinase inhibitor C) LUMO structure of Kinase inhibitor 

 

Figure 42: Structure of Nucleoside Mimetics (3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) and its 

frontier molecular orbitals; HOMO and LUMO A) Optimized geometry of Nucleoside Mimetics 
B) HOMO structure of Nucleoside Mimetics C) LUMO structure of Nucleoside Mimetics 

In the above figures, the positive and negative phase of the molecular orbitals is 
represented by different colors. The color red is used to represent the positive phase 
and color green is used to represent the negative phase. The atoms that are 
occupied by more density of HOMO electrons have a stronger ability to detach an 
electron, while the atoms that are occupied by more density of LUMO electrons have 
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the ability to gain an electronIn the case of Antineoplaston A10, the HOMO plot 
shows that atoms around the benzene ring are the most likely to detach an electron. 
This indicates that the atoms of the benzene ring are the primary electron-donors in 
the compound. On the other hand, the LUMO, or Lowest Unoccupied Molecular 
Orbital, plot shows the atoms that have the ability to gain an electron. In the case of 
Antineoplaston A10, the LUMO plot shows that atoms are more occupied at the 
lower part of the compound, indicating that these atoms are the primary electron 
acceptors in the compound. This suggests that the lower part of the compound is 
more likely to form a chemical bond with another molecule or react in some other 
way.  

The HOMO-LUMO of cardamonin showed that electrons were aggregated at the 
lower part of the compound i.e. dihydro yphenyl group which illustrated that those 
atoms are responsible to both accepting and donating electrons. Likewise, it was 
found that the HOMO plot of indole derivative (5-cyclopentaneamido-1-ethyl-N-(2-
methoxyethyl)-1H-indole-2-carboxamide), the electrons were aggregated at the 
carboxamide and indole moiety group whereas in LUMO plot, the electrons were 
localized at indole and pentaneamido group. Additionally, in HOMO figure in Kinase 
inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) and Nucleoside 
Mimetics (3-[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-
1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol), the electrons were clouded on the entire 
structure and pyrrolidin group respectively. Similarly, LUMO plot of Kinase inhibitor 
(2-[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) showed electrons were 
localized at dimethoxybenzoic acid moiety whereas in Nucleoside Mimetics (3-[[[4-
[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-
methylpyrimidin-4-yl)pyrrolidin-3-ol), localized in phenyl moiety. 

4.10 Molecular electrostatic potential (MEP) 

Molecular Electrostatic Potential (MEP) is a useful tool in understanding the 
relationship between a molecule's structure and its physical and chemical properties. 
It displays information about the distribution of electrons in a molecule, as well as 
the positive, negative, and neutral electrostatic potential regions. This information 
can be represented in the form of a color-coded map, where different regions of the 
molecule are colored based on their electrostatic potential (Gupta and Sharma, 
2006). Different values of the electrostatic potential at the surface are represented 
by different colors, the regions of the molecule where the electron density is highest 
are colored blue, and these regions are considered as potential sites for nucleophilic 
attack. Conversely, regions where the electron density is lowest are colored red, and 
these regions are considered as potential sites for electrophilic attack. The potential 
increases in the order red < orange < yellow < green < blue. The color code of the 
map is usually set in a range of values, where the deepest red color indicates the 
strongest repulsion and the deepest blue color indicates the strongest attraction 
(Karabacak et al., 2015). The computer software Gauss view was used to plot the 
electrostatic potential surface of the title molecule using the DFT/B3LYP/6-31G basis 
set. Projections of these surfaces along the molecular plane are shown in the figure 
59-63. This provides us a visual representation of the chemically active sites and 
comparative reactivity of atoms which allows us to identify the regions of the 
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molecule that are most likely to participate in chemical reactions, and can be useful 
in understanding the mechanism of action of a drug or in designing new molecules 
with specific properties. 

 

Figure 43: Electrostatic potential 3D map of Antineoplaston A10 

In this context, the color code of the map was in the range of -5.802 a.u. (deepest 
red) and 5.802 a.u (deepest blue) for the compound Antineoplaston A10, blue 
indicating the strongest attraction and red indicating the strongest repulsion. It can 
be observed in the above figure: 60 that the regions having the negative potential 
(deepest red colored area) are the C=O groups indicated the strongest repulsion and 
almost all the other rest atoms indicated the strongest attraction. 

 

 

Figure 44: Electrostatic potential 3D map of cardamonin 

The color code of the map used in the study of Cardamonin had a range of -7.961 
a.u. (deepest red) to 7.961 a.u (deepest blue), with blue indicating the strongest 
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attraction and red indicating the strongest repulsion. It was seen that all C=O groups 
lied in the deepest red and yellow area means they have the negative potential 
hence the strongest repulsion. Similarly, other atoms were in green and blue color, 
the strongest attraction. 

 

Figure 45: Electrostatic potential 3D map of indole derivative (5-cyclopentaneamido-1-ethyl-
N-(2-methoxyethyl)-1H-indole-2-carboxamide) 

The electrostatic potential map used in the indole derivative (5-cyclopentaneamido-
1-ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide) study had a color that ranged 
from -6.174 a.u (deepest red) to 6.174 a.u (deepest blue). Here all the C=O and 
Oxygen groups were on red area, resulting in negative electrostatic. Similarly, the 
blue region around the nitrogen indicated positive electrostatic. 

 

 

Figure 46: Electrostatic potential 3D map of Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-
4,5-dimethoxybenzoic acid) 
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In electrostatic potential map of Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-
dimethoxybenzoic acid) had the color ranged from -6.899 a.u (deepest red) and 
6.899 a.u (deepest blue). Here the Oxygen groups of methoxy moiety as well as 
other C=O groups were on red region and yellow on other Oxygen groups, indicating 
the strong repulsion. Likewise, NH group of aniline were on dark blue area, meaning 
they had strong attraction. 

 

 

Figure 47: Electrostatic potential 3D map of Nucleoside Mimetics (3-[[[4-[2-(3,5-
Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-

yl)pyrrolidin-3-ol) 

The Electrostatic potential map of Nucleoside Mimetics (3-[[[4-[2-(3,5-
Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-
yl)pyrrolidin-3-ol) had range from -5.872 a.u (deepest red) and 5.872 a.u (deepest 
blue). It was seen that the Methyl pyrimidine group were on deep red region while 
other oxygen atoms and all NH groups were on orange region, signifying the 
strongest electronegative. Likewise, deep blue color was observed around the 
Hydrogen groups of Pyrazole and methyl groups, signifying the strongest 
electropositive.  

4.11 Infrared spectrum analysis 

IR spectroscopy is a technique used to study the vibrations of chemical bonds in a 
molecule. The IR spectrum of a compound can provide information about the types 
of functional groups present in the molecule. In this study, the IR spectrum of 
various compounds was analyzed using the Gauss 03 program and B3LYP/631G basis 
set. This combination of software and basis set allows for the identification of 
specific vibrations, such as C-H, C-C, C-O O-H, N-H and C-N within the compound. 
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4.11.1 Vibrational Spectrum Analysis of Antineoplaston A10 

 

Figure 48: FTIR spectrum of Antineoplaston A10 

C-H, C-C , C-O , N-H, C-N Vibration 

C-H vibration of Antineoplaston A10 was observed at 3050, 3124, 3186, 3190, 3204, 
3215, 3229 and 3258 cm-1. Similarly, C-C vibration of Antineoplaston A10 was 
observed at 1370, 1507 and 1546, cm-1 whereas C-O vibration occurred at 1637, 
1659, 1663 and 1697 cm-1. Likewise, N-H vibration was observed at 1375 and 1402 
cm-1. Moreover, C-N vibration was seen at 1256, 1264, 1283 and 1375 cm-1 

4.11.2 Vibrational Spectrum Analysis of Cardamonin 

 

Figure 49: FTIR spectrum of Cardamonin 

C-H, C-C, C-O Vibration 

We observed three types of vibration in Cardamonin. The C-H vibration of 
Cardamonin was found to be at 3041- 3269 cm-1. Similarly, C-C vibration was seen at 
1663, 1642, 1372 and 1647cm-1 whereas C-O vibration was observed at 1702 cm-1 
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4.11.3 Vibrational Spectrum Analysis of indole derivative (5-
cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-
carboxamide) 

 

Figure 50: FTIR spectrum of indole derivative (5-cyclopentaneamido-1-ethyl-N-(2-
methoxyethyl)-1H-indole-2-carboxamide) 

C-H , C-C , C-O, N-H, C-N Vibration 

The C-H vibration of indole derivative (5-cyclopentaneamido-1-ethyl-N-(2-
methoxyethyl)-1H-indole-2-carboxamide) was observed in large range from 2990-
3296 cm-1. Furthermore, C-C vibration was seen at 1132, 1365, 1394, 1410, 1509 and 
1505 cm-1as well as C-O vibration was visualized at 1664 and 1655 cm-1. Additionally, 
N-H vibration was seen at 3628, and 3638 cm-1 whereas C-N vibration was observed 
at 1444, 1574 and 1590 cm-1. 

4.11.4 Vibrational Spectrum Analysis of Kinase inhibitor (2-
[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid) 

 

Figure 51: FTIR spectrum of Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-
dimethoxybenzoic acid) 
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C-H, C-C, C-O, N-H Vibration 

The C-H vibration of Kinase inhibitor (2-[[anilino(oxo)methyl]amino]-4,5-
dimethoxybenzoic acid) was observed at 3042, 3066, 3622, 3184, 3278, 3199, 3224, 
3229 and 3256, cm-1. Moreover, C-C vibration was seen at 1411, 1325, 1627, 1666 
and 1664 cm-1. Similarly, C-O vibration was observed at 1014, 1094 and 1710 cm-1 
whereas N-H vibration was visualized at 3613 and 3623 cm-1. 

4.11.5 Vibrational Spectrum Analysis of Nucleoside Mimetics (3-
[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-
yl)pyrrolidin-3-ol) 

 

Figure 52: FTIR spectrum of Nucleoside Mimetics (3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) 

C-H, C-C, N-H, C-N Vibration 

The C-H and C-C vibration of Nucleoside Mimetics (3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol) 
was observed at 2946, 3188, 3189, 3228, 3233, 3253 3265, 3628, cm-1 and 1354, 
1474, 1670, 1638 cm-1 respectively.  In addition, N-H vibration was seen at 3404, 
3603, 3333 and 3534cm-1 whereas C-N vibration was seen at 1385cm-1.
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5. SUMMARY 

The current situation requires the development of alternative to antibiotics as a 
means of treating infections to curb the worldwide incidence of serious illnesses and 
death from both acute and chronic infections due to the rise of antibiotic-resistant. 
Drug researchers and medical professionals are concerned about the growing failure 
of traditional chemotherapy methods, making it imperative to find new antibiotics to 
combat current health issues. As a result, many researchers are exploring new 
techniques for discovering promising therapeutics. One approach gaining popularity 
in drug discovery is virtual screening, a computational technique that uses molecular 
docking to predict potential inhibitors of target proteins and was used in this 
particular study. Molecular docking was used to screen various libraries of ligands, 
natural products, indole derivatives, kinase inhibitors, and nucleoside mimetics to 
find out potential inhibitors for the target protein Dam. The lead compounds were 
then selected based on their Lipinski rule of five, which evaluates drugability and 
toxicity, mutagenicity, carcinogenicity, teratogenic potential and binding affinity with 
target protein and hMAT1A. 

The results of the study showed that Antineoplaston A10 and Cardamonin from 
natural products, 5-cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-
carboxamide from Indole Derivatives, 2-[[anilino(oxo)methyl]amino]-4,5-
dimethoxybenzoic acid from Kinase Inhibitors and 3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol 
from Nucleoside Mimetics , were found to inhibit Dam and showed the highest 
binding energy compared to other ligands from the same library and low binding 
affinity with hMAT1A. Those compounds that showed higher binding affinity to 
hMAT1A were eliminated as they may affect liver health as many drugs are cleared 
through liver metabolism. Further studies using PyMOL, Discovery Studio, LIGPLOT+, 
and Gauss 03 revealed strong interactions between the selected compounds and 
their target proteins, suggesting stability in their complexes. Hence, our findings 
suggest that using computational methods for drug discovery, known as in silico 
approaches, is a useful way to sort through large libraries of potential drugs with 
fewer resources and in short period of time in comparison to traditional screening 
methods. This makes them particularly useful in addressing the current situation of 
increasing rates of antibiotic resistance to identify effective inhibitors or antibiotics 
in a timely manner, which is crucial for controlling the spread of diseases caused by 
multi-drug resistant strains.
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6. CONCLUSION 

The lead compounds, Antineoplaston A10 and Cardamonin from natural products, 5-
cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-1H-indole-2-carboxamide from 
Indole Derivatives, 2-[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid from 
Kinase Inhibitors and 3-[[[4-[2-(3,5-Dimethylpyrazol-1-
yl)ethoxy]phenyl]methylamino]methyl]-1-(6-methylpyrimidin-4-yl)pyrrolidin-3-ol 
from Nucleoside Mimetics, that were identified in this study underwent a thorough 
evaluation based on ADME/Tox screening and other drug-like properties. It is 
assumed that the compounds that passed this screening are considered safe for use. 
The results of the molecular docking analysis revealed that these compounds 
exhibited a high binding affinity with the Dam protein, and a low affinity with the 
hMATA1 protein suggesting that these compounds have the potential to inhibit the 
Dam protein, which would hinder the pathogenic activity of the pathogens and 
prevent them from causing infections, while also avoiding any adverse effects on 
human health. 

7. RECOMMENDATION 

It is suggested that further research be conducted on the lead compounds identified, 
Antineoplaston A10, Cardamonin, 5-cyclopentaneamido-1-ethyl-N-(2-methoxyethyl)-
1H-indole-2-carboxamide, 2-[[anilino(oxo)methyl]amino]-4,5-dimethoxybenzoic acid 
and 3-[[[4-[2-(3,5-Dimethylpyrazol-1-yl)ethoxy]phenyl]methylamino]methyl]-1-(6-
methylpyrimidin-4-yl)pyrrolidin-3-ol,  based on their physiochemical and enzyme 
kinetics. Further, invitro testing, toxicity testing could be done in order to further 
verify these potential leads as antibiotics
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