

M.Sc. Program in Structural Engineering

THESIS NO.: SS00145

# BEHAVIOR ASSESSMENT OF LOCALLY MANUFRACTURED COUPLERS

Suraj Rajak

April 2010



M.Sc. Program in Structural Engineering

THESIS NO.: SS00145

# BEHAVIOR ASSESSMENT OF LOCALLY MANUFRACTURED COUPLERS

A thesis Submitted by

Suraj Rajak

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

> MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

> > April 2010

## **COPYRIGHT**

The author has agreed that the library, Department of Civil Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purpose may be granted by Professor(s) who supervised the thesis work recorded herein or, in their absence, by the Head of Department or concerning M.Sc. Program Coordinator or the Dean of the Institute wherein the thesis work was done. Copying or publication or the other use of thesis for financial gain without approval of the Department of Civil Engineering, Institute of Engineering, Pulchowk Campus and the author's written permission is prohibited.

Request for permission to copy or to make any other use of the material in this thesis in whole or in part should be addressed to:

Head of the Department of Civil Engineering Institute of Engineering Pulchowk Campus Lalitpur Nepal

# **CERTIFICATE**

This is to certify that the thesis entitled "BEHAVIOR ASSESSMENT OF LOCALLY MANUFRACTURED MECHANICAL COUPLERS" being submitted by Mr. Suraj Rajak (Roll No. 064/MSS/114) in the partial fulfillment for the award of degree of Master of Science in Structural Engineering at Institute of Engineering, Tribhuvan University, Nepal is a record of bonafide works carried by him under my supervision and guidance. The thesis fulfills the requirement relating to the nature and the standard of the work for the award of M.Sc. in Structural Engineering.

Dr. Prajwal Lal Pradhan Institute of Engineering Pulchowk Campus Lalitpur Nepal Date: 9<sup>th</sup> April 2010

### **ACKNOWLEDGEMENTS**

I would like to express my sincere thanks and deepest gratitude to my advisor Dr. Prajwal Lal Pradhan for his continuous encouragement, invaluable guidance, suggestions and help during my entire thesis work. The successful completion of the work was possible only with his moral and technical support. I was encouraged in many ways by Dr. Pradhan throughout my thesis work. I am most grateful not only for the extreme care in the laboratory work and analysis but also for his critical insights into the draft report.

I must express my sincere gratitude to Professor Dr. Prem Nath Maske and program coordinator Dr. Roshan Tuladhar for their valuable suggestions and supports during the thesis work.

I am thankful to all the Professors, staffs and students of IIT Kanpur for their valuable suggestions, cooperation and hospitality during our visit to Kanpur for the search of materials.

I am also very grateful to Mr. Anand and entire Jagadamba group for the valuable suggestions, possible financial support and being very co-operative and help during the thesis work.

I am also thankful to all Professors of M. Sc. Structural Engineering Committee, IOE, and Pulchowk Campus for their valuable classes during the M.Sc. course period and thankful to all my colleagues for exchanging views and giving necessary support in accomplishing the task.

Last of all, I am grateful to my family members and friends for their encouragement and support.

#### Suraj Rajak

064/MSS/F/114

# TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS DEPARTMENT OF CIVIL ENGINEERING M.Sc. PROGRAM IN STRUCTURAL ENGINEERING

### ABSTRACT

### Student: Suraj Rajak Pradhan

Supervisor: Dr. Prajwal Lal

Manufacturing, fabrication, and transportation limitations make it impossible to provide full length continuous bars in some reinforced concrete structures. In general, reinforcing bars are stocked by lengths of 12-18m. For that reason, and because it is often more convenient to work with shorter bar lengths, it is frequently necessary to splice bars in the field.

Proper splicing of reinforcing bars is crucial to the integrity of reinforced concrete. ACI Code states: "splices of reinforcement shall be made only as required or permitted on the design drawings, in the specifications, or as authorized by the engineer." Great responsibility for design, specification, and performance of splices rests with the engineer who is familiar with the structural analysis and design stresses, probable construction conditions and final conditions of service can properly evaluate the variables to select the most efficient and economical splice method.

Lap splicing, which requires the overlapping of two parallel bars, has long been accepted as an effective, economical splicing method. In projects with smaller bar sizes such as ø20mm or smaller, lap splices have performed well over the long run. Continuing research, more demanding designs in concrete, new materials and the development of hybrid concrete/steel design have forced designers to consider alternatives to lap splices such as welded splices or mechanical connectors. However the welded splices are found to be more expensive, time consuming and need more workmanship. So in this study, mechanical connector is explored as an alternative to the traditional splicing methods.

# **TABLE OF CONTENTS**

| COPYRIGHT       |                     | i                     |      |
|-----------------|---------------------|-----------------------|------|
| CERTIFICATE     |                     | ii                    |      |
| ACKN            | NOWLE               | EDGEMENTS             | iii  |
| ABST            | RACE                |                       | iv   |
| TABL            | E OF C              | CONTENTS              | v    |
| LIST            | OF CH               | ARTS                  | viii |
| LIST            | OF TAI              | BLES                  | xiii |
| LIST            | OF FIG              | URES                  | xix  |
| LIST            | LIST OF PHOTOGRAPHS |                       | xx   |
| LIST OF SYMBOLS |                     | xxi                   |      |
|                 |                     |                       |      |
| 1               | INTR                | ODUCTION              |      |
|                 | 1.1                 | General               | 01   |
|                 | 1.2                 | Problems and issues   | 02   |
|                 | 1.3                 | Lap splicing problems | 02   |
|                 | 1.4                 | Need of the study     | 06   |
|                 | 1.5                 | Objectives of study   | 06   |
|                 | 1.6                 | Methodology           | 06   |

1.7Organization of thesis07

### 2 LITRATURE REIVIEW

### **3** EXPERIMENTAL INVESTIGATION

| 3.1    | Material collection and preparation               | 18 |
|--------|---------------------------------------------------|----|
| 3.2    | Preparation of specimen                           |    |
| 3.2.1. | Tensile test                                      | 18 |
| 3.2.2. | Compression test                                  | 19 |
| 3.3    | Fabrication of coupler                            | 20 |
| 3.4    | Testing procedure                                 | 20 |
| 3.5    | Mobilization of equipment, machines and apparatus | 21 |

## 4 EXPERIMENTAL RESULTS AND DESCUSSION

| 4.1 | General                                                             | 22 |
|-----|---------------------------------------------------------------------|----|
| 4.2 | Tensile test of rebars                                              | 22 |
| 4.3 | Tensile test of couplers                                            | 22 |
| 4.4 | Comparison of rebars and couplers in tension in terms of strength   | 22 |
| 4.5 | Comparison of rebars and couplers in tension in terms of durability | 23 |
| 4.6 | Compression test on rebars                                          | 23 |
| 4.7 | Compression test on couplers                                        | 23 |
| 4.8 | Comparison of rebars and the couplers in compression                |    |
|     | in terms of strength                                                | 23 |

| 4.9  | Comparison of rebars and the couplers in compression in    |    |
|------|------------------------------------------------------------|----|
|      | terms of durability                                        | 23 |
| 4.10 | Tensile strength of rebars in different lap length         | 23 |
| 4.11 | Compressive strength of rebars in various lap length       | 24 |
| 4.12 | Comparison of tensile and compressive strength of rebars   | 24 |
| 4.13 | Comparison of tensile and compressive strength of couplers | 24 |

### 5 CONCLUSION AND FUTURE RECOMMENDATION

|                           | 5.1                                  | Conclusion                            | 25  |
|---------------------------|--------------------------------------|---------------------------------------|-----|
|                           | 5.2                                  | Future recommendation                 | 25  |
| Refere                    | ences                                |                                       | 26  |
| APPE                      | NDICE                                | S                                     |     |
| Аррег                     | ndix-I:                              | Observation and comparison of results | 29  |
| Арреі                     | Appendix-II: Lap splicing bar charts |                                       | 96  |
| Appendix-III: Lab results |                                      | 105                                   |     |
| Арреі                     | ndix-IV                              | : Graph obtained from UTM machine     | 114 |
| Арреі                     | Appendix-V: Photographs              |                                       | 127 |

## LIST OF TABLES

#### Table No.

Title

#### Page

| I.  | Development length for various grade concrete   | 15 |
|-----|-------------------------------------------------|----|
| A.  | Grade of couplers and reinforcement bars        | 18 |
| B.  | Indexing of samples for tensile test            | 19 |
| C.  | Indexing of samples for compression test        | 19 |
| D.  | Manufacture's specification for couplers        | 20 |
| 1.  | STRESS-STRAIN VALUES FOR 16MM ø BARS IN TENSION |    |
| 1.1 | STRESS-STRAIN VALUES FOR ST11                   | 31 |
| 1.2 | STRESS-STRAIN VALUES FOR ST12                   | 31 |
| 1.3 | STRESS-STRAIN VALUES FOR ST13                   | 31 |
| 2.  | STRESS-STRAIN VALURS FOR 25MM Ø BARS IN TENSION |    |
| 2.1 | STRESS-STAIN VALUES FOR ST21                    | 33 |
| 2.2 | STRESS-STRAIN VALUES FOR ST22                   | 33 |
| 2.3 | STRESS-STRAIN VALUES FOR ST23                   | 33 |
| 3.  | STRESS-STRAIN VALUES FOR 32MMø BARS IN TENSION  |    |
| 3.1 | STRESS-STRAIN VALUES FOR ST31                   | 35 |
| 3.2 | STRESS-STRAIN VALUES FOR ST32                   | 35 |
| 3.3 | STRESS-STRAIN VALUES FOR ST33                   | 35 |
| 4.  | STRESS-STRAIN VALUES FOR COUPLER USED IN 16MM ø |    |
|     | BARS IN TENSION                                 |    |
| 4.1 | STRESS-STRAIN VALUES FOR CT11                   | 37 |
| 4.2 | STRESS-STRAIN VALUES FOR CT14                   | 37 |
| 4.3 | STRESS-STRAIN VALUES FOR CT15                   | 37 |

| 5.   | STRESS-STRAIN VALUES FOR COUPLER USED IN 25MMø        |    |
|------|-------------------------------------------------------|----|
|      | BARS IN TENSION                                       |    |
| 5.1  | STRESS-STRAIN VALUES FOR CT21                         | 39 |
| 5.2  | STRESS-STRAIN VALUES FOR CT22                         | 39 |
| 5.3  | STRESS-STRAIN VALUES FOR CT23                         | 39 |
| 6.   | STRESS-STRAIN VALUES FOR COUPLER USED IN 32 MM $\phi$ |    |
| "z   | BARS IN TENSION                                       |    |
| 6.1  | STRESS-STRAIN VALUES FOR CT31                         | 41 |
| 7    | STRESS-STRAIN VALUES FOR 16MM Ø BARS IN COMPRESSION   |    |
| 7.1  | STRESS-STRAIN VALUES FOR SC11                         | 43 |
| 7.2  | STRESS-STRAIN VALUES FOR SC12                         | 43 |
| 7.3  | STRESS-STRAIN VALUES FOR SC13                         | 43 |
| 8.   | STRESS-STRAIN VALUES FOR 25MMø BARS IN COMPRESSION    |    |
| 8.1  | STRESS-STRAIN VALUES FOR SC21                         | 45 |
| 8.2  | STRESS-STRAIN VALUES FOR SC22                         | 45 |
| 8.3  | STRESS-STRAIN VALUES FOR SC23                         | 45 |
| 9.   | STRESS-STRAIN VALUES FOR 32MM ø BARS IN COMPRESSION   |    |
| 9.1  | STRESS-STRAIN VALUES FOR SC31                         | 47 |
| 9.2  | STRESS-STRAIN VALUES FOR SC32                         | 47 |
| 9.3  | STRESS-STRAIN VALUES FOR SC33                         | 47 |
| 10.  | STRESS-STRAIN VALUES FOR COUPLERS USED IN 16MM $\phi$ |    |
|      | BARS IN COMPRESSION                                   |    |
| 10.1 | STRESS-STRAIN VALUES FOR CC11                         | 49 |
| 10.2 | STRESS-STRAIN VALUES FOR CC12                         | 49 |
| 10.3 | STRESS-STRAIN VALUES FOR CC13                         | 49 |
| 11.  | STRESS-STRAIN VALUES FOR COUPLERS USED IN 25MM $\phi$ |    |
|      | BARS IN COMPRESSION                                   |    |

| 11.1 | STRESS-STRAIN VALUES FOR CC21                                | 51 |
|------|--------------------------------------------------------------|----|
| 11.2 | STRESS-STRAIN VALUES FOR CC22                                | 51 |
| 11.3 | STRESS-STRAIN VALUES FOR CC23                                | 51 |
| 11.4 | STRESS-STRAIN VALURS FOR CC24                                | 51 |
| 11.5 | STRESS-STRAIN VALUES FOR CC25                                | 52 |
| 12.  | STRESS-STRAIN VALUES FOR COUPLERS USED IN 32MM Ø             |    |
|      | BARS IN COMPRESSION                                          |    |
| 12.1 | STRESS-STRAIN VALUES FOR CC31                                | 54 |
| 12.2 | STRESS-STRAIN VALUES FOE CC32                                | 54 |
| 13.  | NORMALIZED STRESS-STRAIN VALUES FOR 16MMø BARS<br>IN TENSION | 58 |
|      |                                                              | 50 |
| 14.  | NORMALIZED STRESS-STRAIN VALUES FOR 25MMø BARS               | 50 |
|      | INTENSION                                                    | 28 |
| 15.  | NORMALIZED STRESS-STRAIN VALUES FOR 32MMø BARS               | 58 |
|      | IN TENSION                                                   | 58 |
| 16.  | NORMALIZED STRESS-STRAIN VALUES FOR COUPLERS USED            |    |
|      | IN 16MMø BARS IN TENSION                                     | 62 |
| 17.  | NORMALIZED STRESS-STRAIN VALUES FOR COUPLERS USED            |    |
|      | IN 25MMø BARS IN TENSION                                     | 62 |
| 18.  | NORMALIZED STRESS-STRAIN VALUES FOR COUPLERS USED            |    |
|      | IN 25MMø BARS IN TENSION                                     | 62 |
| 19.  | NORMALIZED STRESS-STRAIN VALUES FOR 16MMø BARS               |    |
|      | IN COMPRESSION                                               | 66 |
| 20.  | NORMALIZED STRESS-STRAIN VALUES FOR 25MMø BARS               |    |
|      | IN COMPRESSION                                               | 66 |
| 21.  | NORMALIZED STRESS-STRAIN VALUES FOR 32MMø BARS               |    |
|      | IN COMPRESSION                                               | 66 |

\

| 22. | NORMALIZED STRESS-STRAIN VALUES FOR COUPLERS USED     |    |
|-----|-------------------------------------------------------|----|
|     | IN 16MMø BARS IN COMPRESSION                          | 70 |
| 23. | NORMALIZED STRESS-STRAIN VALUES FOR COUPLERS USED     |    |
|     | IN 25MMø BARS IN COMPRESSION                          | 70 |
| 24. | NORMALIZED STRESS-STRAIN VALUES FOR COUPLERS USED     |    |
|     | IN 32MMø BARS IN COMPRESSION                          | 70 |
| 25. | COMPARISION OF STRESS-STRAIN VALUES FOR 16MM Ø BARS   |    |
|     | AND COUPLERS IN TENSION                               | 75 |
| 26. | COMPARISION OF STRESS-STRAIN VALUES FOR 25MM Ø BARS   |    |
|     | AND COUPLERS IN TENSION                               | 75 |
| 27. | COMPARISION OF STRESS-STRAIN VALUES FOR 32MM Ø BARS   |    |
|     | AND COUPLERS IN TENSION                               | 75 |
| 28. | COMPARISION OF STRESS-STRAIN VALUES FOR VARIOUS Ø     |    |
|     | BARIN TENSION                                         | 77 |
| 29. | COMPARISION OF STRESS-STRAIN VALUES FOR VARIOUS       |    |
|     | COUPLERS IN TENSION                                   | 77 |
| 30. | COMPARISION OF STRESS-STRAIN VALUES FOR 16MM Ø BARS   |    |
|     | AND COUPLERS IN COMPRESSION                           | 82 |
| 31. | COMPARISION OF STRESS-STRAIN VALUES FOR 25MM Ø BARS   |    |
|     | AND COUPLERS IN COMPRESSION                           | 82 |
| 32. | COMPARISION OF STRESS-STRAIN VALUES FOR 32MM Ø BARS   |    |
|     | AND COUPLERS IN COMPRESSION                           | 82 |
| 33. | COMPARSION OF STRESS-STRAIN VALUES FOR VARIOUS Ø BARS |    |
|     | IN COMPRESSION                                        | 85 |
| 34. | COMPARISION OF STRESS-STRAIN VALUES FOR VARIOUS Ø     |    |
|     | COUPLERS IN COMPRESSION                               | 85 |

| 35.  | COMPARISION OF STRESS-STRAIN VALUES FOR 16MMø BARS    |     |
|------|-------------------------------------------------------|-----|
|      | IN TENSION AND COMPRESSION                            | 89  |
| 36.  | COMPARISION OF STRESS-STRAIN VALUES FOR 25MM ø BARS   |     |
|      | IN TENSION AND COMPRESSION                            | 89  |
| 37.  | COMPARISION OF STRESS-STRAIN VALUES FOR 32MM Ø BARS   |     |
|      | IN TENSION AND COMPRESSION                            | 89  |
| 38.  | COMPARISION OF STRESS-STRAIN VALUES FOR COUPLERS USED |     |
|      | IN 16MMØ BARS IN TENSION AND COMPRESSION              | 93  |
| 39.  | COMPARISION OF STRESS-STRAIN VALUES FOR COUPLERS USED |     |
|      | IN 25MMø BARS IN TENSION AND COMPRESSION              | 93  |
| 40.  | COMPARISION OF STRESS-STRAIN VALUES FOR COUPLERS USED |     |
|      | IN 32MMø BARS IN TENSION AND COMPRESSION              | 93  |
| 41.  | CHARACTERISTIC VALUES FOR YIELD STRENGTH, TENSILE     |     |
|      | STRENGTH AND RATIO                                    | 94  |
| 42.  | THE STANDARD OF ISO AND THE LAB RESULT OF REBARS IN   |     |
|      | TENSION                                               | 94  |
| 43.  | COMPARISION BETWEEN THE STANDARD OF ISO AND THE LAB   |     |
|      | RESULT OF COUPLERS IN TENSION                         | 94  |
| 44.  | STRAIN ENERGY ABSORVED BY THE REBARS AND THE COUPLERS |     |
|      | IN TENSION                                            | 95  |
| 4.5  |                                                       |     |
| 45.  | IN COMPRESSION                                        | 95  |
|      |                                                       |     |
| 48   | TENSILE TEST                                          |     |
| 48.1 | REINFORCEMENT BARS                                    | 106 |
| 48.2 | COUPLERS                                              | 107 |
| 48.3 | LAPPING                                               | 108 |
| 57   | COMPRESSION TEST                                      |     |

| 57.1 | REINFORCEMENT BARS | 110 |
|------|--------------------|-----|
| 57.2 | COUPLERS           | 111 |
| 57.3 | LAPPING            | 112 |

### LIST OF CHARTS AND GRAPHS

| Chart No. | Title                                                       |    |
|-----------|-------------------------------------------------------------|----|
| Page      |                                                             |    |
|           |                                                             |    |
| 1.        | STRESS-STRAIN DIAGRAM FOR 16MM Ø BARS IN TENSION            | 30 |
| 2.        | STRESS-STRAIN DIAGRAM FOR 25MM ø BARS IN TENSION            | 32 |
| 3.        | STRESS-STRAIN DIAGRAM FOR 32MMø BARS IN TENSION             | 34 |
| 4.        | STRESS-STRAIN DIAGRAM FOR COUPLER USED IN 16MM Ø            |    |
|           | BARS IN TENSION                                             | 36 |
| 5.        | STRESS-STRAIN DIAGRAM FOR COUPLER USED IN 25MMø             |    |
|           | BARS IN TENSION                                             | 38 |
| 6.        | STRESS-STRAIN DIAGRAM FOR COUPLER USED IN 32 MM $\emptyset$ |    |
|           | BARS IN TENSION                                             | 40 |
| 7         | STRESS-STRAIN DIAGRAM FOR 16MM Ø BARS IN COMPRESSION        | 42 |
| 8.        | STRESS-STRAIN DIAGRAM FOR 25MMø BARS IN COMPRESSION         | 44 |
| 9.        | STRESS-STRAIN DIAGRAM FOR 32MM ø BARS IN COMPRESSION        | 46 |
| 10.       | STRESS-STRAIN DIAGRAM FOR COUPLERS USED IN 16MM Ø           |    |
|           | BARS IN COMPRESSION                                         | 48 |
| 11.       | STRESS-STRAIN DIAGRAM FOR COUPLERS USED IN 25MM Ø           |    |
|           | BARS IN COMPRESSION                                         | 50 |
| 12.       | STRESS-STRAIN DIAGRAM FOR COUPLERS USED IN 32MM $\phi$      |    |
|           | BARS IN COMPRESSION                                         | 53 |
| 13.       | NORMALIZED STRESS-STRAIN DIAGRAM FOR 16MMø BARS             |    |
|           | IN TENSION                                                  | 55 |
| 14.       | NORMALIZED STRESS-STRAIN DIAGRAM FOR 25MMø BARS             |    |
|           | IN TENSION                                                  | 56 |
| 15.       | NORMALIZED STRESS-STRAIN DIAGRAM FOR 32MMø BARS             |    |

#### IN TENSION

| / | 16. | NORMALIZED STRESS-STRAIN DIAGRAM FOR COUPLERS USED<br>IN 16MMø BARS IN TENSION     | 59 |
|---|-----|------------------------------------------------------------------------------------|----|
|   | 17. | NORMALIZED STRESS-STRAIN DIAGRAM FOR COUPLERS USED<br>IN 25MMø BARS IN TENSION     | 60 |
|   | 18. | NORMALIZED STRESS-STRAIN DIAGRAM FOR COUPLERS USED<br>IN 25MMø BARS IN TENSION     | 61 |
|   | 19. | NORMALIZED STRESS-STRAIN DIAGRAM FOR 16MMø BARS<br>IN COMPRESSION                  | 63 |
|   | 20. | NORMALIZED STRESS-STRAIN DIAGRAM FOR 25MMø BARS<br>IN COMPRESSION                  | 64 |
|   | 21. | NORMALIZED STRESS-STRAIN DIAGRAM FOR 32MMø BARS<br>IN COMPRESSION                  | 65 |
|   | 22. | NORMALIZED STRESS-STRAIN DIAGRAM FOR COUPLERS USED<br>IN 16MMø BARS IN COMPRESSION | 67 |
|   | 23. | NORMALIZED STRESS-STRAIN DIAGRAM FOR COUPLERS USED<br>IN 25MMø BARS IN COMPRESSION | 68 |
|   | 24. | NORMALIZED STRESS-STRAIN DIAGRAM FOR COUPLERS USED<br>IN 32MMø BARS IN COMPRESSION | 69 |
|   | 25. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 16MM Ø BARS<br>AND COUPLERS IN TENSION    | 72 |
|   | 26. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 25MM Ø BARS<br>AND COUPLERS IN TENSION    | 73 |
|   | 27. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 32MM Ø BARS<br>AND COUPLERS IN TENSION    | 74 |
|   | 28. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR VARIOUS Ø<br>BARIN TENSION                | 76 |

| 29. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR VARIOUS        |    |
|-----|---------------------------------------------------------|----|
|     | COUPLERS IN TENSION                                     | 77 |
| 30. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 16MM Ø BARS    |    |
|     | AND COUPLERS IN COMPRESSION                             | 79 |
| 31. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 25MM Ø BARS    |    |
|     | AND COUPLERS IN COMPRESSION                             | 80 |
| 32. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 32MM Ø BARS    |    |
|     | AND COUPLERS IN COMPRESSION                             | 81 |
| 33. | COMPARSION OF STRESS-STRAIN DIAGRAM FOR VARIOUS Ø BARS  |    |
|     | IN COMPRESSION                                          | 83 |
| 34. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR VARIOUS $\phi$ |    |
|     | COUPLERS IN COMPRESSION                                 | 84 |
| 35. | COMPARISION OF STRESS-STRAIN DIAGARM FOR 16MMø BARS     |    |
|     | IN TENSION AND COMPRESSION                              | 86 |
| 36. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 25MM Ø BARS    |    |
|     | IN TENSION AND COMPRESSION                              | 87 |
| 37. | COMPARISION OF STRESS-STRAIN DIAGRAM FOR 32MM Ø BARS    |    |
|     | IN TENSION AND COMPRESSION                              | 88 |
| 38  | COMPARISION OF STRESS-STRAIN DIAGARM FOR COUPIERS       |    |
| 50. | USED IN 16MMø BARS IN TENSION AND COMPRESSION           | 90 |
| 39  | COMPARISION OF STRESS-STRAIN DIAGARM FOR COUPLERS       |    |
|     | USED IN 25MMø BARS IN TENSION AND COMPRESSION           | 91 |
| 40. | COMPARISION OF STRESS-STRAIN DIAGARM FOR COUPLERS       |    |
|     | USED IN 32MMø BARS IN TENSION AND COMPRESSION           | 92 |
| 41. | TENSILE STRENGTH OF 16MM DIA BAR IN VARIOUS LAP LENGTH  | 97 |

| 42. | TENSILE STRENGTH OF 25MM DIA BAR IN VARIOUS LAP LENGTH                                      | 97  |
|-----|---------------------------------------------------------------------------------------------|-----|
| 43. | TENSILE STRENGTH OF 32MM DIA BAR IN VARIOUS LAP LENGTH                                      | 98  |
| 44. | TENSILE STRENGTH OF VARIOUS DIA BAR IN 100MM LAP LENGTH                                     | 98  |
| 45. | TENSILE STRENGTH OF VARIOUS DIA BAR IN 200MM LAP LENGTH                                     | 99  |
| 46. | TENSILE STRENGTH OF VARIOUS DIA BAR IN 200MM LAP LENGTH                                     | 99  |
| 47. | COMPRESSIVE STRENGTH OF 16MM DIA BAR IN VARIOUS LAP<br>LENGTH                               | 100 |
| 48. | COMPRESSIVE STRENGTH OF 25MM DIA BAR IN VARIOUS LAP<br>LENGTH                               | 100 |
| 49. | COMPRESSIVE STRENGTH OF 32MM DIA BAR IN VARIOUS LAP<br>LENGTH                               | 101 |
| 50. | COMPRESSIVE STRENGTH OF VARIOUS DIA BAR IN 100MM LAP<br>LENGTH                              | 101 |
| 51. | COMPRESSIVE STRENGTH OF VARIOUS DIA BAR IN 200MM LAP<br>LENGTH                              | 102 |
| 52. | COMPRESSIVE STRENGTH OF VARIOUS DIA BAR IN 300MM LAP<br>LENGTH                              | 102 |
| 53. | COMPARISION OF TENSILE AND COMPRESSIVE STRENGTH<br>OF VARIOUS DIA BARS IN 100MM LAP LENGTH. | 103 |
| 54. | COMPARISION OF TENSILE AND COMPRESSIVE STRENGTH<br>OF VARIOUS DIA BARS IN 200MM LAP LENGTH  | 103 |
| 55. | COMPARISION OF TENSILE AND COMPRESSIVE STRENGTH<br>OF VARIOUS DIA BARS IN 300MM LAP LENGTH  | 104 |

## LIST OF FIGURES

| Fig No. | Title                                                                         | Page |
|---------|-------------------------------------------------------------------------------|------|
| 1.      | Distribution of transverse forces in concrete                                 | 3    |
| 2.      | Comparison of conventional lap splicing and mechanical splicing in a lap zone | 5    |
| 3.      | Rebar congestion in lap splicing                                              | 8    |
| 4.      | Reduction of rebar congestion by using mechanical couplers                    | 9    |
| 5.      | Bar congestion in joint between beam and column                               | 10   |
| 6.      | Stress-Strain diagram for Lap splice Vs mechanical splice                     | 16   |
| 7.      | Cyclic reversal performance of mechanical splice                              | 17   |

#### LIST OF PHOTOGRAPHS

#### Photo No. **Title** Page 1. Specimens- different ø reinforcement bars 128 2. Specimens-couplers used in different ø bars 128 3. UTM machine 128 4. Measurement of diameter of bar 129 5. Specimen subjected to tensile test 129 6. Specimen after failure 129 7. Specimen subjected to compression test. 130 8. Specimens after tensile test 130 9. Specimens after compression test. 130 10. Specimens-various lap length 131 11. Specimen subject to tensile test in lapping 131 12. Specimen subject to compression test in lapping 13. Thread slip failure and failure due to breaking of coupler 132 14. Specimens after tension and compression test 132 15. Indexing of specimen. 132

## LIST OF SYMBOLS

### <u>SYMOBLS</u> <u>DESCRIPTION</u>

| ST11 | First specimen of 16mmø reinforced bar for tensile test       |
|------|---------------------------------------------------------------|
| ST12 | Second specimen of 16mmø reinforced bar for tensile test      |
| ST13 | Third specimen of 16mmø reinforced bar for tensile test       |
| ST21 | First specimen of 25mmø reinforced bar for tensile test       |
| ST22 | Second specimen of 25mmø reinforced bar for tensile test      |
| ST23 | Third specimen of 25mmø reinforced bar for tensile test       |
| ST31 | First specimen of 32mmø reinforced bar for tensile test       |
| ST32 | Second specimen of 32mmø reinforced bar for tensile test      |
| ST33 | Third specimen of 32mmø reinforced bar for tensile test       |
| CT11 | First specimen of Coupler used in 16mmø bar for tensile test  |
| CT12 | Second specimen of Coupler used in 16mmø bar for tensile test |
| CT13 | Third specimen of Coupler used in 16mmø bar for tensile test  |
| CT14 | Fourth specimen of Coupler used in 16mmø bar for tensile test |
| CT15 | Fifth specimen of Coupler used in 16mmø bar for tensile test  |
| CT16 | Sixth specimen of Coupler used in 16mmø bar for tensile test  |
| CT21 | First specimen of Coupler used in 25mmø bar for tensile test  |
| CT22 | Second specimen of Coupler used in 25mmø bar for tensile test |
| CT23 | Third specimen of Coupler used in 25mmø bar for tensile test  |

| CT24  | Fourth specimen of Coupler used in 25mmø bar for tensile test          |
|-------|------------------------------------------------------------------------|
| CT25  | Third specimen of Coupler used in 25mmø bar for tensile test           |
| CT31  | First specimen of Coupler used in 32mmø bar for tensile test           |
| CT32  | Second specimen of Coupler used in 32mmø bar for tensile test          |
| СТ33  | Third specimen of Coupler used in 32mmø bar for tensile test           |
| CT34  | Fourth specimen of Coupler used in 32mmø bar for tensile test          |
| CT35  | Third specimen of Coupler used in 32mmø bar for tensile test           |
| LT111 | First specimen of 16mmø bar with 100mm lap length for tensile test     |
| LT112 | Second specimen of 16mmø bar with 100mm lap length for tensile test    |
| LT121 | First specimen of 16mmø bar with 200mm lap length for tensile          |
| LT122 | Second specimen of 16mmø bar with 200mm lap length for<br>tensile test |
| LT131 | First specimen of 16mmø bar with 300mm lap length for tensile          |
| LT132 | Second specimen of 16mmø bar with 300mm lap length for<br>tensile test |
| LT211 | First specimen of 25mmø bar with 100mm lap length for tensile test     |
| LT212 | Second specimen of 25mmø bar with 100mm lap length for<br>tensile test |
| LT221 | First specimen of 25mmø bar with 200mm lap length for tensile          |
| LT222 | Second specimen of 25mmø bar with 200mm lap length for                 |
| LT231 | First specimen of 25mmø bar with 300mm lap length for tensile test     |

|      | LT311 | First specimen of 32mmø bar with 100mm lap length for tensile test |
|------|-------|--------------------------------------------------------------------|
|      | LT321 | First specimen of 32mmø bar with 200mm lap length for tensile test |
|      | LT331 | First specimen of 32mmø bar with 300mm lap length for tensile test |
|      | SC11  | First specimen of 16mmø reinforced bar for compression test        |
|      | SC12  | Second specimen of 16mmø reinforced bar for compression test       |
|      | SC13  | Third specimen of 16mmø reinforced bar for compression test        |
|      | SC21  | First specimen of 25mmø reinforced bar for compression test        |
|      | SC22  | Second specimen of 25mmø reinforced bar for compression test       |
|      | SC23  | Third specimen of 25mmø reinforced bar for compression test        |
|      | SC31  | First specimen of 32mmø reinforced bar for compression test        |
|      | SC32  | Second specimen of 32mmø reinforced bar for compression test       |
|      | SC33  | Third specimen of 32mmø reinforced bar for compression test        |
|      | CC11  | First specimen of Coupler used in 16mmø bar for compression        |
| test |       |                                                                    |
|      | CC12  | Second specimen of Coupler used in 16mmø bar for compression test  |
|      | CC13  | Third specimen of Coupler used in 16mmø bar for compression test   |
| test | CC21  | First specimen of Coupler used in 25mmø bar for compression        |
|      | CC22  | Second specimen of Coupler used in 25mmø bar for compression test  |

|      | CC23  | Third specimen of Coupler used in 25mmø bar for compression test        |
|------|-------|-------------------------------------------------------------------------|
|      | CC24  | Fourth specimen of Coupler used in 25mmø bar for                        |
|      |       | compression test                                                        |
|      | CC25  | Third specimen of Coupler used in 25mmø bar for compression test        |
| test | CC31  | First specimen of Coupler used in 32mmø bar for compression             |
|      | CC32  | Second specimen of Coupler used in 32mmø bar for compression test       |
|      | CC33  | Third specimen of Coupler used in 32mmø bar for compression test        |
|      | LC111 | First specimen of 16mmø bar with 100mm lap length for compression test  |
|      | LC112 | Second specimen of 16mmø bar with 100mm lap length for compression test |
|      | LC121 | First specimen of 16mmø bar with 200mm lap length for compression test  |
|      | LC122 | Second specimen of 16mmø bar with 200mm lap length for compression test |
|      | LC123 | Second specimen of 16mmø bar with 200mm lap length for compression test |
|      | LC131 | First specimen of 16mmø bar with 300mm lap length for compression test  |
|      | LC132 | Second specimen of 16mmø bar with 300mm lap length for compression test |
|      | LC211 | First specimen of 25mmø bar with 100mm lap length for compression test  |

| LC212 | Second specimen of 25mmø bar with 100mm lap length for |
|-------|--------------------------------------------------------|
|       | compression test                                       |
| LC221 | First specimen of 25mmø bar with 200mm lap length for  |
|       | compression test                                       |
| LC222 | Second specimen of 25mmø bar with 200mm lap length for |
|       | compression test                                       |
| LC231 | First specimen of 25mmø bar with 300mm lap length for  |
|       | compression test                                       |
| LC232 | Second specimen of 25mmø bar with 300mm lap length for |
|       | compression test                                       |
|       |                                                        |
| LT311 | First specimen of 32mmø bar with 100mm lap length for  |
|       | compression test                                       |
| LT321 | First specimen of 32mmø bar with 200mm lap length for  |
|       | compression test                                       |
| LT322 | Second specimen of 32mmø bar with 200mm lap length for |
|       | compression test                                       |
|       |                                                        |
| LT331 | First specimen of 32mmø bar with 300mm lap length for  |
|       | compression test                                       |
| LT332 | Second specimen of 32mmø bar with 300mm lap length for |
|       | compression test                                       |
|       |                                                        |