INTENSIFYING THE MICROBIAL ACTIVITY TO DEVELOP THE SUSTAINABLE TROUT (*Oncorhynchus Mykiss* Walbaum, 1792) CULTURE

Suresh Chandyo T.U. Registration No: 5-2-37-183-2010 T.U. Examination Roll No: 157 Batch: 2071

A thesis submitted in partial fulfilment of the requirements for the award of the degree of Master of Science in Zoology with special paper Fish and Fishery

Submitted to

Central Department of Zoology Institute of Science and Technology Tribhuvan University Kirtipur, Kathmandu Nepal February, 2018

DECLARATION

I hereby declare that the work presented in this thesis has been done by myself, and has not been submitted elsewhere for the award of any degree. All sources of information have been specifically acknowledged by reference to the author(s) or institution(s).

Date.....

.....

Suresh Chandyo

RECOMMENDATIONS

This is to recommend that the thesis entitled "INTENSIFYING THE MICROBIAL ACTIVITY TO DEVELOP THE SUSTAINABLE TROUT (*Oncorhynchus Mykiss* Walbaum, 1792) CULTURE" has been carried out by Suresh Chandyo for the partial fulfilment of Master's Degree of Science in Zoology with special paperFish and Fishery. This is his original work and has been carried out under my supervision. To the best of my knowledge, this thesis work has not been submitted for any other degree in any institutions.

Date: 2074/10/28

.....

Prof. Dr. Kumar Sapkota Supervisor Central Department of Zoology Tribhuvan University Kirtipur, Kathmandu, Nepal

LETTER OF APPROVAL

On the recommendation of supervisor "Prof. Dr. Kumar Sapkota" this thesis submitted by Suresh Chandyo entitled "INTENSIFYING THE MICROBIAL ACTIVITY TO DEVELOP THE SUSTAINABLE TROUT (*Oncorhynchus Mykiss* Walbaum, 1792) CULTURE" is approved for the examination and submitted to the Tribhuvan University in partial fulfilment of the requirements for Master's Degree of Science in Zoology with special paperFish and Fishery.

Date:2074/10/28

.....

Prof. Dr. Kumar Sapkota Acting Head of Department Central Department of Zoology Tribhuvan University Kirtipur, Kathmandu, Nepal

CERTIFICATE OF ACCEPTANCE

This thesis work submitted by Suresh Chandyo entitled "INTENSIFYING THE MICROBIAL ACTIVITY TO DEVELOP THE SUSTAINABLE TROUT (*Oncorhynchus Mykiss* Walbaum, 1792) CULTURE" has been accepted as a partial fulfilment for the requirements of Master's Degree of Science in Zoology with special paper Fish and Fishery

EVALUATION COMMITTEE

.....

Supervisor Prof. Dr. Kumar Sapkota Professor

.....

External examiner

.....

Head of Department Prof. Dr. Ranjana Gupta Professor

.....

Internal Examiner

Date of Examination:2074/11/22

Acknowledgement

I take this special moment to express my sincere thanks to Professor Dr. Ranjana Gupta, Head of Department, Central Department of Zoology, Tribhuvan University for her continuous support, kind guidance, valuable advice and constant encouragement during entire academic period.

I would like sincere thanks and deepest sense of gratitude to my thesis supervisor Professor Dr. Kumar Sapkota, Central Department of Zoology, Tribhuvan University for his unfailing guidance, invaluable suggestions, critical assessment and constant encouragement throughout my work.

Also very much thankful to the fish and fishery department team Professor Dr. Surya Ratna Gubhaju, Associate Professor Archana Prasad and Lecturer Santoshi Shrestha for continous guide to learn fishery studies.

I gratefully acknowledge the financial support by the University Grant Commission, Nepal under the Master thesis support program.

I always remember the support, infrastructure and facilities offered by Directors of Fishery Research Division, Godawari, Lalitpur, Nepal during my work period. Thanks to Mr. Suresh K. Wagle, S. Scientist (S-4), Chief of FRD for providing all necessary facilities to carry out this work successfully. Thanks are due to Mrs. Neeta Pradhan, S. Scientist (S-3), for her encouragement in proposal preparation and support me in many aspects during the experimental period. Mrs. Asha Rayamajhi, S. Scientist (S-2), FRD for valuable suggestion to prevention against disease. Mr. Udhdhawa Silwal, Tech. Officer (T-6), FRD for trout culture guidance. Mr. Churamani Bhusal, Tech. Officer (T-6), FRD for experimental setup preparation and water quality test. Mr. Netra Sharma for over all support, guidance and valuable advice during entire experiment period. Mrs. Manju for feed preparation, and taking care of trout in my absence.

Also, I'm very thankful to Mrs. Kanti Shrestha, Chief Scientist officer, Nepal Academy of Science and Technology for her kind guidance for research deign and water quality test (ammonia, Nitrite plus Nitrate and Phosphate). Again her kind support and guidance during trail test.

I also express my deep gratitude to teaching faculties of Central Department of Zoology for the preparation of thesis.

Furthermore, my sincere thanks to Mrs. Indra shova Maharjan, librarian of Central Department of zoology and also Central library of Kirtipur, Kathmandu for providing library facilities.

I am highly indebted to my family members for their help and continuous encouragement. So I would like to express my gratitude to them too.

Last but not least, I would like to thank all my colleagues and these who more or less help me in completing this work.

> Sincerely, Suresh Chandyo

LIST OF TABLES

Table	Title of tables	Pages	
Ι	The fishery production in Nepal	3	
II	The ingredient and amount of ingredient for feed formulation	20	
III	The proportion of stock solution and distill water for standard	25	
	ammonium solution preparation	25	
IV	The proportion of stock solution and distill water for standard	29	
	phosphate solution preparation		
V	The proportion of stock solution and distill water for standard Nitrate	31	
	solution preparation	51	
VI	The specific weight gain rate variation in sucrose treatment and	41	
	without sucrose treatment		
VII	The average daily weight gain in sucrose treatment and without	41	
	sucrose treatment		
VIII	Consumption of water contain by heterotrophic metabolism	42	

LIST OF FIGURES

Figure	Title of figures	Pages	
Ι	The variation of temperature in a day	35	
II	The pH variation in water due to sucrose treatment and without	26	
	sucrose treatment with source of water	36	
III	The variation of dissolved oxygen contain of water due to sucrose		
	treatment and without sucrose treatment with 43 ± 2.5 ml/sec of water	36	
	exchange		
IV	The correlation between Dissolved oxygen and temperature	37	
V	The variation of TAN contain of water due to sucrose treatment and	27	
	without sucrose treatment with 43±2.5ml/sec of water exchange	37	
VI	The variation of alkalinity in water with source due to sucrose		
	treatment and without sucrose treatment with 43±2.5ml/sec of water	38	
	exchange		
VII	The variation of hardness of water due to sucrose treatment and		
	without sucrose treatment with source	38	

VIII	The variation in phosphate contain of sucrose treatment and non-		
	treatment of water with source water	39	
IX	The variation in Nitrite and nitrate contain of water in sucrose	20	
	treatment and non-treatment with source water	39	
Х	The mean weight gain in sucrose treatment and without sucrose	40	
	treatment	40	
XI	The net yield of fish in sucrose treatment and without sucrose	41	
	treatment	41	

LIST OF PHOTOGRAPHS

Photograph	Title of photograph	Pages
Ι	Experimental setup maintained in the outdoor rearing facilities	19
	in FRD	
II	Sucrose solution supplied to each bucket through pipeline	20
III	Study Area	59
IV	Instruments used	60
V	Experimental setup	62
VI	Feed formulation	63
VII	Fish weighing	64
VIII	Analysis of water for DO concentration	65
IX	Analysis of TAN concentration of water	66
Х	Analysis of Nitrite and Nitrate concentration of water	68

LIST OF ABBREVIATIONS

Abbreviated form	Details of abbreviations
ADB	Asian Development Bank
ADG	Average daily weight gain
ATP	Adesino tri phosphate
С	Carbon
Cl	Chlorine
df	Degree of freedom
DHA	Docosahexaenoic acid

DO	Dissolved oxygen
EC	Electric conductivity
EPA	Eicosapentaneoic acid
F	F-value
FAO	United Nation Food and Agriculture Organization
FCR	Feed conversion ratio
FRD	Fisheries Research Division, Godawari, Lalitpur, Nepal
ha	Hector
HUFA	Highly unsaturated fatty acid
JICA	Japanese international cooperate agency
Κ	Potassium
mt	Metric tone
MS	Mean square
Ν	Nitrogen
Na	Sodium
NADH	Nicotina adenine dihydrogen
Р	Phosphorous
pH	Potentia hydrogenii
PHA	Polyhydroxyalkanoates
SAARC	South Asian Association for Regional Co-operation
SS	Sum of square
TAN	Total Ammonia Nitrogen
UNWFP	United Nation World Food Programme
UNDP	United Nations Development Programme
\$	U.S. Dollar

Abstract

The salmonid fish requires higher amount of protein in diet that comes from noncommercial fish. The protein metabolism cause higher ammonia excretion and higher amount of oxygen is consumed. This causes water pollution, biosecurity and many environmental impacts. The addition of soluble carbohydrate in culture medium enhance the heterotrophic microbial activities, that minimize the ammonia contain of culture medium. Also the low level of ammonia in trout culture causes the higher growth without increase in feed consumption.

The fish was stocked at rate of 25 in each bucket of 15 lit capacity supplied with 43±2.5ml/sec of water. The one group was treated with sucrose solution keeping C: N 15:1. The fish were feed pelletized standard shrimp formulated (45% protein) three times a day and buff liver once a day. Triplicates were maintained for each treatment.

In the study, we found that the average water temperature was 16.5° C, DO was 5.48 ± 0.1 mg/l and alkalinity was 161.17 ± 7.62 mg/l of CaCO₃ that lie with in suitable range. The hardness and pH was rises in culture water but also lies with in suitable range. The TAN, phosphate, nitrite and nitrate was rise in control however in treatment significantly (P<0.05) reduce. The TAN arise from 0.4091 ± 0.0772 mg/l to 0.4487 ± 0.0424 mg/l and the phosphate arises from $13.8\pm2.2\mu$ g/l to $17.2\pm1.2\mu$ g/l in control. However, TAN reduced to 0.2578 ± 0.0741 mg/l and phosphate reduced to $12.3\pm1.1\mu$ g/l. The nitrite and nitrate decrease from 0.108 ± 0.008 mg/l to 0.1022 ± 0.015 in control and to 0.0925 ± 0.006 mg/l of nitrite and nitrate. Also in growth performance, the fish growth was significantly (P<0.01) higher in treatment than control. The mean weight gain in control was 2.31 ± 0.05 g and in treatment was 2.69 ± 0.07 g in 45 days.

The variations in water quality due to heterotrophic bacterial consumption particularly DO and alkalinity was lies with in suitable range. The reduction in toxic ammonia and phosphate contribute in sustainable aquaculture. Such reduction cause better growth and less water exchange in trout culture with using aerator. The reduction of phosphate prevents eutrophic condition. The stable water quality causes less susceptible of disease. Moreover the outlet does not harm water shed region aquatic life.

The heterotrophic growth was rapid that are not washout from cultural medium. The pH is varies but lies with in required limits. Also the hardness of water was loss but not significantly to the standard limits.

Contents

Declaration	Pages i
Recommendation	ii
Letter of Approval	iii
Certificate of Acceptance	iv
Acknowledgements	V
List of tables	vii
List of Figures	vii
List of Photographs	viii
List of Abbreviations	viii
Abstract	Х
1. Introduction	1
1.1 Introduction	1
1.2 World aquaculture	2
1.3 Nepali Aquaculture: Its growth and development	2
1.4 Rainbow Trout culture in Nepal	4
1.5 Microbes in aquaculture	5
1.6 Aquaculture Effluents	5
1.7 Concept of microbes in aquaculture effluent management	7
1.8 Ammonia managing techniques	7
1.9 Status of removal of ammonia via bacteria in aquaculture	8
1.10 Objective	10
1.11 Rational of study	10
2. Literature Review	11
2.1 Sustainable aquaculture	11
2.2 Nutrient in aquaculture	12
2.3 Dissolved oxygen in aquaculture	12
2.4 Environmental problems of trout culture	13
2.5 Ammonia in aquaculture	13
2.6 Microbes and its application for sustainable aquaculture	14
2.7 Heterotrophic microbes in aquaculture	15

3. Materials and Methods	17
3.1 Materials	17
3.1.1 Experimental setup apparatus	17
3.1.2 Analytic apparatus	17
3.1.3 Instrumental apparatus	17
3.1.4 Chemical for water quality test	17
3.2 Experimental setup	18
3.3 Fingerling maintenance and assessment	19
3.4 Feed formulation	19
3.5 Calculation of quantity of carbohydrate required	20
3.6 Water quality test	21
3.6.1 Physical parameter	21
3.6.1.1 Temperature	21
3.6.1.2 Electric conductivity	21
3.6.1.3 Turbidity	21
3.6.2 Chemical parameter	21
3.6.2.1 pH	21
3.6.2.2 Dissolved Oxygen	21
3.6.2.3 Total Ammonium Nitrogen	23
3.6.2.4 Alkalinity	25
3.6.2.5 Hardness	27
3.6.2.6 Phosphate	28
3.6.2.7 Nitrite and nitrate	29
3.7 Growth analysis	31
3.8 Heterotrophic bacterial metabolism	32
3.9 Statistical analysis	34
4. Results	35
4.1 Physical Parameter	35
4.1.1 Temperature	35
4.1.2 Electric conductivity (EC) and Turbidity	35
4.2 Chemical parameter	35
4.2.1 pH	35
4.2.2 Dissolved Oxygen	36

4.2.3 Total Ammonia Nitrogen (TAN)	37
4.2.4 Alkalinity	38
4.2.5 Hardness	38
4.2.6 Phosphate	39
4.2.7 Nitrite and nitrate	39
4.3 Growth	40
4.3.1 Mean weight gain	40
4.3.2 Net yield	40
4.3.3 Specific growth rate	41
4.3.4 Average daily weight gain	41
4.4 Heterotrophic bacterial metabolism	41
5. Discussion	43
5.1 Water quality parameters	43
5.1.1 Temperature	43
5.1.2 Dissolved oxygen	43
5.1.3 Total Ammonia Nitrogen	44
5.1.4 Alkalinity, pH and Hardness	45
5.1.5 Phosphate	46
5.1.6 Nitrite and Nitrate	46
5.2 The effect on growth	47
5.3 Heterotrophic bacterial metabolism	49
6. Conclusion and Recommendation	50
7. Reference	51
8. Appendices	59
9. Photographs	62