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Abstract

Scheduling problems are most primitive problems in Computer Science and Industries.

Obtaining an optimal sequence in mixed-model production system under the just-in-

time philosophy is one of such a challenging problem. The problem in a multilevel

facility are strongly NP-hard, however, the single-level problems are pseudo-

polynomial solvable. In this dissertation, developments of mixed-model just-in-time

production problems are studied thoroughly. Different purposed algorithms are tested

for their solvability and implementation purpose. Lastly, more practical mixed-model

just-in-time sequencing problem is considered with the given set of sequences as

precedence constraints. An efficient algorithm, which obtains an optimal solution for

the maximum deviation objective in single level is studied and is extended as a solution

for overlapping sequences.



VI

Table of Contents

1 Introduction.................................................................................................1

1.1 Background ........................................................................................... 1

1.2 Literature review................................................................................... 2

1.3 Organization of the thesis ..................................................................... 4

1.4 Methodology......................................................................................... 5

2 Computational complexity ......................................................................... 7

2.1 Asymptotic notation.............................................................................. 8

2.2 Complexity classes................................................................................ 9

3 Scheduling algorithms .............................................................................. 11

3.1 Classification of scheduling problems ................................................ 11

3.1.1 Scheduling problems....................................................................... 11

3.1.2 The three-field notation  ....................................................... 12

3.1.3 Examples......................................................................................... 15

3.2 Combinatorial optimization ................................................................ 17

3.2.1 Linear and integer programming .................................................... 17

3.2.2 The assignment problem .................................................................18

3.3 Single machine scheduling problems.................................................. 19

3.4 Maximum lateness and related criteria ............................................... 19

3.5 Some simple scheduling algorithm..................................................... 21

3.5.1 Minimizing maximum lateness....................................................... 21

3.5.2 Minimizing total delay....................................................................22

3.6 Realistic scheduling problem.............................................................. 22

3.6.1 Online scheduling ........................................................................... 23

3.6.2 Real-time scheduling ...................................................................... 23

3.7 Scheduling in operating system .......................................................... 24

4 Just-in-time production system ............................................................... 26



VII

4.1 Some key elements of JIT...................................................................26

4.2 JIT system examples ........................................................................... 27

4.2.1 JIT-style learning and training ........................................................ 27

4.2.2 Kanban – a communication tool in JIT production system ............ 28

4.2.3 Toyota production system............................................................... 29

4.3 Mixed-model production ....................................................................29

4.4 Push versus pull production system.................................................... 30

5 Mixed-model just-in-time production system ........................................ 31

5.1 The PRV problem formulation ........................................................... 31

5.2 The ORV problem formulation........................................................... 33

5.3 The total PRV problem ....................................................................... 36

5.3.1 Assignment costs ............................................................................ 36

5.3.2 Assignment method ........................................................................ 37

5.4 The pegged ORV problem..................................................................38

5.5 Cyclic sequence .................................................................................. 39

6 Mixed-model JIT problems...................................................................... 40

6.1 Nearest integer point problem............................................................. 40

6.2 Dynamic programming algorithm....................................................... 43

6.2.1 Problem statement........................................................................... 43

6.2.2 Dynamic programming (DP) procedure ......................................... 44

6.3 Min-max-absolute-chain algorithm .................................................... 45

6.3.1 Min-max-absolute-chain-algorithm ................................................ 46

6.3.2 Min-max-absolute-chain-algorithm for overlapping sequence....... 46

7 Implementation ......................................................................................... 48

7.1 Architecture view of project ............................................................... 48

7.1.1 UTIL package ................................................................................. 50

7.1.2 GUI package ................................................................................... 51

7.2 Nearest integer point implementation issue ........................................ 52



VIII

7.2.1 Comparative study of Algorithm 1 and Heuristic 1........................ 55

7.3 Earliest due date implementation issue............................................... 57

7.4 Dynamic programming implementation issue ....................................59

7.5 Cost assignment problem....................................................................62

7.5.1 Comparative study of min-sum PRV problem................................ 64

7.6 Min-max-absolute-chain sequencing problem....................................66

7.6.1 Non-overlapping sequences ............................................................ 66

7.6.2 Overlapping-sequences ...................................................................68

8 Conclusion and Recommendation........................................................... 70

9 References ..................................................................................................71



IX

List of Tables

Table 1  Schedule generated by Algorithm 1................................................................. 53

Table 2  Schedule generated by Heuristic 1................................................................... 54

Table 3 Analytical view of Algorithm 1 vs. Heuristic 1................................................ 56

Table 4  Schedule generated by earliest due date .......................................................... 58

Table 5   Schedule generated by dynamic programming............................................... 61

Table 6 Excess inventory or shortage costs calculated ................................................. 63

Table 7  Schedule generated by cost assignment problem ............................................ 63

Table 8 Comparative studies of min-sum PRV problems ............................................. 65

Table 9 Calculation of window value for non-overlapped sequence............................ 67

Table 10  Output: min-max-absolute-chain  (non-overlapping sequence) .................... 68

Table 11 Calculation of window value for overlapped sequence ................................. 69

Table 12  Output: min-max-absolute-chain algorithm (overlapping sequences)........... 69



X

List of Figures

Figure 1 Gantt Charts. 12

Figure 2  P | prec;pi = 1| Cmax 16

Figure 3  1| batch |  wiCi 17

Figure 4 Architectural view of whole project 49

Figure 5  Interface of main GUI 52

Figure 6 Architectural view of nearest-integer-point package 52

Figure 7 Date input frame for nearest-integer-point package. 53

Figure 8 Architectural view of earliest due date  package 57

Figure 9 Date input frame for earliest due date package 58

Figure 10 Architectural view of dynamic programming 59

Figure 11 Date input frame for dynamic programming testing 60

Figure 12 Architectural view of cost assignment problem 62

Figure 13 Date input frame for cost assignment problem 63

Figure 14 Architectural view of min-max-absolute-chain sequencing problem 66

Figure 15 Input frame: min-max-absolute-chain (non-overlapping sequence) 67

Figure 16 Input frame: min-max-absolute-chain (overlapping sequence) 69



1

1 Introduction

1.1 Background

Just-in-time manufacturing means producing the necessary items in necessary

quantities at the necessary time. It is a philosophy of continuous improvement in which

non-value-adding activities (or wastes) are identified and removed.

JIT applies primarily to repetitive manufacturing processes in which the same

products and components are produced over and over again. The general idea is to

establish flow processes (even when the facility uses a jobbing or batch process layout)

by linking work centers so that there is an even, balanced flow of materials throughout

the entire production process, similar to that found in an assembly line. To accomplish

this, an attempt is made to reach the goals of driving all inventory buffers toward zero

and achieving the ideal lot size of one unit.

The basic elements of JIT were developed by Toyota in the 1950's, and became

known as the Toyota Production System (TPS). JIT was well established in many

Japanese factories by the early 1970's. JIT began to be adopted in the U.S. in the 1980's

(General Electric was an early adopter), and the JIT/lean concepts are now widely

accepted and used.
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1.2 Literature review

The JIT production systems have been used in mixed-model assembly lines in

order to respond to the customer demands for a variety of products without holding large

inventories or incurring large shortages. Such mixed-model must have negligible

changeover costs between the products and the production must be small lot fashion.

Under the assumption that the products required approximately the same number

and mix of parts, Miltenburg [24], purposed an optimal formulation that aims to

minimize the total deviation or sum of all deviations of the real production from the ideal

production, and defined the problem as a nonlinear integer programming. This

assumption reduced the formulation into a single-level and focused study on the final

assembly line only. The final assembly line controls the JIT system by keeping a constant

rate of usage of every part used by the line. Miltenburg and Sinnamon [26] and

Miltenburg and Goldstein [25] extended the formulation to multi-level system. Here the

assembly line is used as a pull line that defines the requirements down the level. Such

assembly line is called the final assembly line and the system as a pull system.

Kubiak [17] gave a more specific distinction between these problems and referred

single-level problem as the Product Rate Variation (PRV) problem and the multi-level

problem as the Output Rate Variation (ORV) problem. Kubiak distinguished PRV

problem as total deviation PRV problem and maximum deviation PRV problem. The

total deviation PRV problem aims to minimize the sum of total deviations and hence

looks on minimizing the total variation between the actual product and the ideal

production at any stage. Such problem represents the problem considered by Miltenburg

[24]. The maximum deviation PRV problem minimizes the maximum deviation of the

actual product of a product from its ideal level of production. Such problem represents

the problem considered by Steiner and Yeomnas [35]. The pull system where the final
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assembly line defines the scheduling and requests for demand down the level is

represented by ORV problem. The problems consider by Miltenburg and  Sinnamon [26]

and Miltenburg and Goldstein [25]  are categorized as ORV problem.

Kubiak [17] and Kubiak et al. [21] proved that even special cases of the ORV

problem are NP-hard. Miltenburg et al. [27] and Kubiak et al. [21] present the dynamic

programming approach as a solution procedure for the ORV problem. Steiner and

Yeomans [34] showed that the ORV problem could be reduced to weighted PRV problem

using concept of pegging (i.e. the parts dedicated to be assembled into the different

products are distinguished). In [19,20] Kubiak and Sethi showed that the nonlinear

integer programming problem used for sequencing flexible transfer lines could be

reduced the problem as an assignment problem (cost assignment problem). The earliest

due date (EDD) algorithm developed by Inman and Bulfin [14] provided a robust

solution to the min-sum PRV problem. By using the graph-theoretic approach, Steiner

and Yeomans [35], proved that the maximum deviation PRV problem (the Bottleneck

PRV problem) could be solved with a pseudo-polynomial algorithm by reducing it to

release date / due date decision problem.

Brauner and Crama [2] showed that the problem is Co-NP and polynomially

solvable when the number of products are fixed. Miltenburg and Simmamon [26] studied

that theoretical base for ORV problem. They presented a mathematical model and two

heuristics for finding a good scheduler of ORV problem. Steiner and Yeomans [34]

investigated that if outputs at production levels, which feed the final assembly level, are

dedicated or pegged to the final product into which they will be assembled, and then there

could exist an efficient scheduling algorithm to determine the optimal level schedule.

They showed that the ORV problem under pegging assumption is equivalent to a

weighted single-level PRV problem and by modifying PRV version of the problem,

pegged ORV problem could be solved to optimal which is polynomial in the total product
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demand and the weight factors. Miltenburg [24] (for PRV) and Miltenburg and Sinnamon

[26] (for ORV) observed the existence of the cyclic sequences for scheduling larger

products. Kubiak [18] proved that for any PRV problem if  is an optimal sequence

with input demands d1, ……., di, ….., dn, then concatenation m of m copies of  is

an optimal sequence with input demands md1, ……., mdi, ….., mdn. Dhamala and

Kubiak [10] conjectured that cyclic sequences in the ORV case were optimal, too.

Dhamala [8] had developed a min-max-absolute chain algorithm for combining

chain sequences with objective of minimizing the maximum deviation. In [16],

Kovalyov, Kubiak, and Yeomans, had done comparative study of  balanced mixed-model

JIT optimization algorithm. Similar, comparative study had been done by Lebacque, Jost

and Brauner [22].  Dhamala and Khadka [9] had review different mixed-model JIT

sequences problems.

1.3 Organization of the thesis

This dissertation has been divided in 8 chapters. The brief descriptions of

these following chapters are :

Chapter 1 gives a brief introduction and background of the problem raised

in this dissertation. Chapter 2 deals with computational complexity theory. In this

chapter nature of good and bad algorithms are studied thoroughly. A synopsis of

asymptotic notation and different complexity class are given. In Chapter 3, the

formal description of scheduling theory is summarized. Section 3.1 deals with

classification of scheduling problem. Combination optimization is studied in

Section 3.2. Single machine scheduling problem is studied in Section 3.3.

Similarly some simple scheduling algorithms have been mentioned in Section 3.5.
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Section 3.6 deals with some realistic scheduling problems and likely a survey on

scheduling problems in Operation System are done in Section 3.7.

In Chapter 4, JIT production system is studied in brief. Section 4.1 deals

with different JIT key elements. Some of JIT production systems have been

mentioned in Section 4.2. Section 4.3 includes definition of mixed-model

production system and Section 4.4 differentiates between push and pull System.

In Chapter 5, different mathematical models for mixed-model JIT problem are

studied thoroughly. Section 5.1 details with the PRV problem formulation. In

Section 5.2, ORV problem is studied. Section 5.3 analyzes the total PRV problem.

Section 5.4 describes the pegged ORV problem. And, possibility of existence of

cyclic sequence is studied in Section 5.5.

In Chapter 6, we review some of the solution for the mixed-model JIT

problems. Section 6.1 details the nearest integer point problem and its different

algorithms and heuristics. Section 6.2 describes the dynamic programming

algorithm. And lastly min-max-absolute-chain algorithm is studied in Section 6.3.

Moreover, this Section also contains the possible extension of min-max-absolute-

chain algorithm for overlapping sequence. In Chapter 7, implementations issues

are covered. This chapter also contains the conclusion, further suggestions and

recommendations.

1.4 Methodology

The initial phase of the research is devoted on the detail study on the relevant

documents on different sequencing algorithms. The major portion of the thesis is devoted

on the analysis of mixed-model just-in-time production problems. After the study of
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those problems, different mixed-model JIT problems are tried to implement for testing

their solvability and efficiency.

An application is developed to eliminate the constraints of non-overlapping

sequence in min-max-absolute-chain-algorithm proposed by  Dhamala [8].

The implementation of this thesis is made in JAVA. Each mixed-model just-in-

time production problem has its own package.  The secondary data are taken from related

papers for testing the correctness of the algorithms.
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2 Computational complexity

Computational complexity deals with analysis of algorithms related with

computer science and applied mathematics. It analyzes the nature of problem solvable by

algorithms and classifies them into several classes regarding their difficulty and resources

required for execution of the algorithm (eg. computation time). A typical question of this

research is, “As the size of the input to an algorithm increases, how do the running time

and memory requirements of the algorithm change and what are the implications and

ramifications of that change?” The major factors considered during computational

complexity are the time complexity and space complexity. The time complexity of a

problem is the number of steps that it takes to solve an instance of the problem as a

function of the size of input. The space complexity of a problem is a related concept that

measures the amount of space, or memory required by the algorithm [4].

Decision problems

The primitive step during the computational complexity is to identify either the

problem is solvable or not and either any algorithm can solve a problem or not. Such a

problem where the answer is always yes or not is called decision problem [6].

Example 2.1

A well-known decision problem IS-PRIME returns a yes answer when a given

input is a prime and no otherwise, while a problem IS-COMPOSITE determines whether

a given integer is not a prime number. Decision problems are often considered because an

arbitrary problem can always be reduced to some decision problem [6].
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Turing machine

Turing machines are extremely basic abstract symbol-manipulating devices,

which, despite their simplicity, can be adapted to simulate the logic of any computer that

could possibly be constructed. Alan Turing described them in 1936. It is purely a

theoretical state machine, with infinite memory and computation time as its construction

base on assumption that “Every solvable problem must be solved by Turing

machines”[12].

2.1 Asymptotic notation

Space and time complexity of any problem is highly influenced by the real

machine used for computation. If a bad machine is used, even a better algorithm may

appear inefficient compared to a bad algorithm in a better machine. Hence, machine

difference must be minimized, and the goal can be achieved by considering with

instances whose input size is very large. To describe the behavior of algorithm for large

input, the concept of asymptotic order is used. Three asymptotic orders are frequently

used, big O (upper-bound), big-Omega (lower-bound) and big-theta (tight-bound)  [6, 30,

31].

Definition 2.1.

The function f(n) = O(g(n)) (read as “f of n is big oh of g of n”) if and only if

there exist positive constants c and n0 such that f(n)  c  g(n) for all n, n  n0.
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2.2 Complexity classes

Class P

Class P is one of the most fundamental complexity classes. It contains all decision

problems, which can be solved by deterministic Turing machine using a polynomial

amount of computational time [30, 12].

Example 2.2

The problem of sorting n numbers can be done in O(n2) time using insertion

sorting in even worse case, thus all sorting problems fall under  P class.

Class NP

The class NP consists of those decision problems whose positive solution can be

verified in polynomial time given the right information, i.e. those problems whose

solution can be found in polynomial time on a non-deterministic machine [6,12,39].

Polynomial Time Reduction

A function f:{0,1}*  {0, 1}* is said to be polynomial-time computable if there

exist a polynomial-time algorithm A such that, for all input x {0, 1}, products the

output f(x) in polynomial time.  Again, let X and Y be two problems. We say that X is

polynomially reducible to Y i.e. X P Y, if there exist a polynomial- time computable

function f:{0, 1}*  {0, 1}* such that for all x {0, 1}* , x  X if and only if  f(x) 

Y. The notation X P Y is often states as “Y is as harder as X” [6,30].

Lemma 2.1 Let X and Y be two decision problems such that X P Y, then Y  P 

X  P.
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NP-Complete class

A decision problem X is NP-Complete if

1.  X  NP

2.  Every problem in NP is reducible to X.

i.e, NP-complete are the hardest problems among the NP-class.

Example 2.3

One example of an NP-complete problem is the subset sum problem which is:

given a finite set of integers, determine whether any non-empty subset of them sum to

zero. A supposed answer is very easy to verify for correctness, but there is no known

efficient algorithm to find an answer; that is, all known algorithm are impractically slow

for larger sets of integers.

NP-hard

It is a class of all problems X such that for all Y  NP, Y P X i.e. there may be

a problem X which is as hard as any problem in NP, but one may not be able to prove its

NP-completeness. NP-hard can contain problems other than decision problems  [6, 30].

Theorem 2.1. P  NP

Theorem 2.2. If any NP-complete problem is polynomial time solvable, then P = NP.

Theorem 2.3. If P NP, then no NP-hard problem can be solved in polynomial time.
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3 Scheduling algorithms

In a scheduling problem one has to find time slots in which activities (or jobs)

should be processed under given constraints. The main constraints are resource

constraints and precedence constraints between activities. In this chapter, the basic

formulation of the scheduling theory is studied. The definition and classification of

scheduling problems and examples mentioned in this chapter follow the notation used in

[13]. As in this work single machine case is considered, only single machine scheduling

problem are only briefed below the chapter.

3.1 Classification of scheduling problems

The theory of scheduling is characterized by a virtually unlimited number of

problem types. Here basic classifications of the scheduling problems are covered.

3.1.1 Scheduling problems

Suppose that m machines Mj (j = 1, 2, 3, ….., m ) have to process n jobs Ji ( i = 1,

2, …, n). A schedule is for each job an allocation of one or more time intervals on one or

more machines. Schedules may be represented by Gantt charts as shown in Figure 1

Gantt chats may be machine oriented (Figure 1(a)) or job oriented (Figure 1(b)).
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(a)

Figure 1 Gantt Charts.

3.1.2 The three-field notation 

Every scheduling problem can be denoted by the three-field notation  ,

where,  denotes machine environment,  denotes the jobs and  denotes objective

function used in scheduling [4].
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Machine environment

The  notation denoting the machine environment consists of concatenation of

 1 and  2 where  1 denotes the machine characteristic and  2 denotes number of

machines used. Further more  1  { , P, Q, R, O, F, J} where

 : single machine

P : identical parallel machine

Q : uniform parallel machine

R : unrelated parallel machine

O : open shop

F : flow shop

J : job shop

Similarly,  2  { , k} where,

 : number of machines is assumed to be variable

k : k number of machines.

Job characteristics

The  - field denotes the jobs and their interrelations is detailed by concatenation

of six variables as  =  1 .  2.  3 .  4.  5 .  6 where,

 1=




allowedispreemptionifpmtm,

allowed,notispreemptionif,

Preemption allow a job being processed to be paused arbitrarily, and start some

another available job.
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 2 =




given.aresconstraintresourceifresc,

s,constraintresourcenoif,

 3=














given.outtreeofformin theprecedenceifouttree,

givenintreeofformin theprecedenceifintree,

given treeofformin theprecedenceiftree,

givenDAGarbitraryanofformin theprecedenceifprec,

s,constraintprecedencenoif,

 4 =




job.eachforgivenisdatereleaseif,r

job,allforzeroisdatereleaseif,

j



 5 =




p. toequla timeprocessinghavejobsallifp,

 time,processingarbitraryhavejobsif,

 6 =




deadlines.havejobsifd,

given,deadlinesnoif,

Objective function

Let us denote each job by  Ji, their finish times or the completion times by Cj,

similarly release times by rj, priority or weight assigned to each job by wj. Then

following parameter can be calculated.

Flow time Fj=Cj-rj

Lateness Lj=Cj-dj

Tardiness Tj=max{Cj-dj,0}

Earliness Ej=max{dj-Cj,0}, and on the basis of above parameter we can have

following  objective functions :

Schedule length (makespan) Cmax = max {Cj}

Weighted completion time  wjCj

Total completion time  Cj
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Mean flow time Fmean = (1/n)  Fj

Flow time variance Fvar = (1/n)  (Fj - Fmean)
2,

In scheduling problems, one of these objective function has to be minimized.

3.1.3 Examples

To illustrate the three field notation  |  | we present some examples. In each

case we will give the description of the problem. Furthermore, we will specify an

instance and present a feasible schedule for the instance in form of Gantt chars.

Example 3.1

P | prec;pi = 1 | Cmax is the problem of scheduling jobs with unit processing

times and arbitrary precedence constraints on m identical machines such that makespan is

minimized. An instance is given by a directed graph with n vertices and the number of

machines. Figure 2 show an instance of the problem and a corresponding feasible

schedule.
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Figure 2 P | prec;pi = 1| Cmax

Example 3.2

1 | batch |  wiCi is the problem of splitting a set of jobs into batches and

scheduling these batches on one machine such that weighted flow time is minimized

these batches on one machine such that weighted flow time is minimized.

Figure 3 shows an instance of this problem and a corresponding schedule with

three batches.

i 1 2 3 4 5 6

pi 3 2 2 3 1 1

wi 1 2 1 1 4 4 s = 1

The objective value for the schedule is

 wiCi = 2  3 + (1 + 1 + 4)  10 + (1 + 4) 15.

= 141
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Figure 3 1| batch |  wiCi

3.2 Combinatorial optimization

Scheduling problem can be solved by converting them into some feasible

programming like linear programs, maximum flow problems or transportation problems.

Such problems are stated as combinatorial optimization problems. Beyond these there are

some other standard techniques like dynamic programming and branch and bound

methods to solve the scheduling problems.

3.2.1 Linear and integer programming

A linear program is an optimization problem of the form

minimizes z(x) = c1x1+ ………… + cnxn (2.1)

subjected to:















mnmn1m1

1n1n111

bxa+..…………+xa

.

.

bxa+..…………+xa

(2.2)
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xi  0 for i=1, ……., n.

A vector x = (x1, ……., xn) satisfying (2.2)  is called feasible solution. The

problem is to find a feasible solution, which minimizes (2.1). A linear program that has a

feasible solution is called feasible.

An integer linear program is a linear program in which all variables xi are

restricted to be integer. If the variables xi can take only the values 0 or 1 then the

corresponding integer linear program is called a binary linear program. If in a linear

program only some variables are restricted to be integer then we have a mixed integer

linear program.

3.2.2 The assignment problem

Consider the complete bipartite graph, G = (V1  V2, V1  V2). Assume w.l.o.g

that n = |V1|  |V2| = m. Associated with each arc (i, j) there is a real number cij. An

assignment is given by a one-to-one mapping  : V1  V2. The assignment problem is

to find an assignment  such that


 1Vi

 )(iic  is minimized.

Assume that V1 = {i, …, n} and V2 = {i, …., m}. Then the assignment problem

has the following linear programming formulation with 0-1- variable xij:

minimize 


m

j

n

i 11

cijxij s.t.




m

j 1

xij = 1     i= 1, …., n
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


n

i 1

xij  1 j=1, ……, m

xij  {0, 1} i = 1, …., n; j = 1, ……., m

3.3 Single machine scheduling problems

There are many algorithms published for single machine scheduling problems,

which are polynomial or pseudo-polynomial (e.g. 1 | rj | Lmax is polynomially solvalable

under certain constraints). It is useful to note the following general result which holds for

single machine problems: if all rj = 0 and if the objective function is a monotone function

of the finish times of the jobs, then only schedules without preemption and without idle

times need to be considered. This follows from the fact that the optimal objective value

does not improve if preemption is allowed.

3.4 Maximum lateness and related criteria

Let us consider the problem 1 | rj | Lmax. This is NP-hard problem. However, under the

following cases the problem can be polynomially solvable [4].

a) take rj =  r  j =1, …, n

We have an optimal schedule by applying earliest due date  rule i.e.

schedule jobs in order of non decreasing due dates.
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b) take dj = d  j =1, …, n.

We have an optimal schedule by scheduling jobs in order of non-

decreasing release dates.

c) pj = 1  j =1, …, n

At any time schedule an available job with smallest due date.

All of these rules take O(n log n) steps. Cases a, b and c may be extended to the

corresponding problems with precedence relations between jobs. Case b required

modification of the release dates while in case a and c similar modification is to be

done in due date using the following rule.

If i  j and d '
i = dj – pj < di, then replace di by the modified due date d '

i .

Algorithm Modify dj

1. for i = 1 to n do ni = 0

2. for i = 1 to n do

3. for all j  I P(i) do nj= nj + 1

4. F = 

5. for i = 1 to n do

6. if ni = 0 then F = F  {i}

7. while F   do

8. begin

9. choose j  F

10. for all i  I P(j) do

begin

11 di = min {di, dj - pj}
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12 ni = ni -1

13 if ni = 0 then F = F  {i}

end

14. F = F \{j}

end

3.5 Some simple scheduling algorithm

W.A. Horn [13] presented some simple scheduling algorithm where jobs require

only one operation on a single machine. Some of the algorithms are stated as below.

1. Minimizing maximum lateness

2 Minimizing total delay.

3.5.1 Minimizing maximum lateness

Assuming all jobs are available at time 0 and for each job i due date di have been

given, we can get minimize the maximum lateness scheduling the jobs in the order of

increasing di. For such case W.A. Horn presents the following algorithm.

Algorithm 3.1 Let E be the subset of all jobs with earliest time of availability, which we

designate A1. Let A2 be the next earliest time of availability. Let job i be a job in E which

has earliest due date di of all jobs in E. Let L1=min{di, A2-A1}. Assign job i to the

interval [A1, A1+L1]. If job i is not completed, reduce di by L1, otherwise drop job i from
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the list. Repeat this operation for all remaining jobs, stipulating a minimum availability

time of A1 + L1, for all remaining jobs. Continue until all jobs are completely assigned.

3.5.2 Minimizing total delay

When we have no due dates are given and our objective is to minimize the total

delay i.e. 
i

(fi - ai), where fi is the finished time and ai is the available time for each

job i, W.A. Horn states the following algorithms.

Case 1 If all jobs are available at the same time then schedule jobs in the order of

increasing di, where di=fi-ai.

Case 2. If jobs are available at different time then apply the following algorithm.

3.6 Realistic scheduling problem

All the scheduling problems so far we have discussed are the theoretical model of

scheduling problems. The model of scheduling problem that have practical signification

and could be carried and tested in real life falls under realistic scheduling problem. We

have different models of realistic scheduling problems like online scheduling problems,

real-time scheduling problems and just-in-time scheduling problems. The nature of

realistic scheduling problems varies on how they address the real time difficulties like

unavailability of job information until it arrives, resource constraints and so on [33,37].
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3.6.1 Online scheduling

In online version of scheduling, the scheduler receives jobs that arrive over time,

and generally much schedule the jobs without any knowledge of the future. 1 | rj |  Cj

is a online scheduling problem. In such a problem goal of scheduling problem remains to

reduce the average response time and efficient utilization of resources [15].

3.6.2 Real-time scheduling

Real-time scheduling problems are the typical computer related online version of

scheduling problem [33, 37]. Generally, real-time system is an operating system

embedded in some electronic devices and the correct functioning of the system depends

on the time when jobs are completed. Some of the real-time systems are:

3.6.2.1 Just-in-time debugging

The Windows operating system has the built-in capability to perform "just-in-

time" debugging. Just-in-time, or JIT, debugging is where an application crashes while

not running under a debugger, and the operating system arranges to start up an available

debugger and attach it to the crashed process in order to obtain a back trace. The system

registry contains an entry for the debugger that should be invoked when this happens.

The Functional Developer Professional and Enterprise Editions are capable of acting as a

JIT debugger; during the installation process you have the opportunity to install

Functional Developer as your machine's default debugger. For more detail see [11].
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3.6.2.2 JIT compiler

In computing, just-in-time compilation (JIT), also known as dynamic translation,

is a technique for improving the runtime performance of a computer program. JIT builds

upon two earlier ideas in run-time environments: bytecode compilation and dynamic

compilation. It converts code at runtime prior to executing it natively, for example byte

code into native machine code. The performance improvement over interpreters

originates from caching the results of translating blocks of code, and not simply

reevaluating each line or operand each time it is met interpreted language. It also has

advantages over statically compiling the code at development time, as it can recompile

the code if this is found to be advantageous, and may be able to enforce security

guarantees. Thus JIT can combine some of the advantages of interpretation and static

compilation.

Several modern runtime environments, such as Microsoft's .NET Framework and

most implementations of Java and most recently Action script 3, rely on JIT compilation

for high-speed code execution. For more detail see [36].

3.7 Scheduling in operating system

Scheduling issues have a great impact in computer science. Almost all operation

system (OS) needs their job scheduled in a efficient way. In an OS, a machine is a

processor and jobs are processes i.e. job is a program ready for execution [28, 33, 37].

Machine environment varies on no of processor used, either preemption of program

allowed or not and on the resource constraints. Objective function may be one of the

following:

Process utilization: Average fraction of time during which processor is busy
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Throughput: Number of processes executed per unit time.

Average waiting time: Time that a process spends waiting resources.

Average response time: Time taken by a process to response after it is released.
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4 Just-in-time production system

4.1 Some key elements of JIT

This section contains a brief description of key elements used in mixed-model just-in-

time system.

1. Reduce or eliminate setup times:

Aim for single digit setup times (less than 10 minutes) or "one-touch"

setup -- this can be done through better planning, process redesign, and product

redesign. A good example of the potential for improved setup times can be found

in auto racing, where a NASCAR pit crew can change all four tires and put gas in

the tank in under 20 seconds [5].

2. Reduce lot sizes:

Reducing setup times allows economical production of smaller lots; close

cooperation with suppliers is necessary to achieve reductions in order lot sizes for

purchased items, since this will require more frequent deliveries.

3. Reduce lead times:

Production lead times can be reduced by moving work stations closer

together, applying group technology and cellular manufacturing concepts,

reducing queue length and improving the coordination and cooperation between

successive processes; delivery lead times can be reduced through close
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cooperation with suppliers, possibly by inducing suppliers to locate closer to the

factory.

4. Flexible work force:

Workers should be trained to operate several machines, to perform

maintenance tasks, and to perform quality inspections. In general, JIT requires

teams of competent, empowered employees who have more responsibility for

their own work. The Toyota Production System concept of “respect for people”

contributes to a good relationship between workers and management.

5. Small-lot conveyance:

Use a control system such as a kanban (card) system (or other signaling

system) to convey parts between workstations in small quantities (ideally, one

unit at a time). In its largest sense, JIT is not the same thing as a kanban system,

and a kanban system is not required to implement JIT (some companies have

instituted a JIT program along with a MRP system), although JIT is required to

implement a kanban system and the two concepts are frequently equated with one

another.

4.2 JIT system examples

4.2.1 JIT-style learning and training

The best kind of quality-oriented learning (and training) is just-in-time-style

learning, i.e., learning that happens on the job and knowledge is applied immediately as
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needed. The sooner you can apply the material you learned, the better you will

understand it and the longer it will be retained. Instead of training masses of employees

for long periods, in JIT-style training, education is implemented as an ongoing series of

short sessions (just a few hours a week) during which employees are taught only what

they can apply soon, without suffering information overload.

Innovative e-learning services create new opportunities for such on the job JIT-

style learning and training. In particular, this first-ever Ten3 online Business e-Coach

provides very effective JIT-style e-learning opportunity which is available free anytime

to anybody [32].

4.2.2 Kanban – a communication tool in JIT production system

Being a very important tool for just-in-time production, kanban has become

synonymous with the JIT production system.

Kanban, meaning label or signboard, is used as a communication tool in JIT

system. A kanban is attached to each box of parts as they go to the assembly line. A

worker from the following process goes to collect parts from the previous process

leaving a kanban signifying the delivery of a given quantity of specific parts. Having all

the parts funneled to the line and used as required, the same kanban is returned back to

serve as both a record of work done and an order for new parts. Thus kanban

coordinates the inflow of parts and components to the assembly line, minimizing the

processes [5].
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4.2.3 Toyota production system

Toyota Motor Corporation's vehicle production system is a way of "making

things" that is sometimes referred to as a "lean manufacturing system" or a "just-in-time

(JIT) system," and has come to be well known and studied worldwide. This production

control system has been established based on many years of continuous improvements,

with the objective of "making the vehicles ordered by customers in the quickest and most

efficient way, in order to deliver the vehicles as quickly as possible"  [38].

The Toyota Production System (TPS) was established based on two concepts: The

first is called "jidoka"(which can be loosely translated as "automation with a human

touch") which means that when a problem occurs, the equipment stops immediately,

preventing defective products from being produced; The second is the concept of "just-

in-time," in which each process produces only what is needed by the next process in a

continuous flow.

Based on the basic philosophies of jidoka and just-in-time, the TPS can efficiently

and quickly produce vehicles of sound quality, one at a time, that fully satisfy customer

requirements.

4.3 Mixed-model production

Mixed-model production is the practice of assembling several distinct models of a

product on the same assembly line without changeovers and then sequencing those

models in a way that smoothes the demands for upstream components [5].

The objective is to smooth demand on upstream work centers, manufacturing cells

or suppliers and thereby reduce inventory, eliminate changeovers, improve kanban
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operation. It also eliminates difficult assembly line changeovers.

Toyota developed the concept in the 1960’s in response to the problems created

by line changeovers. It was originally applied to long assembly lines such as those used

in automotive.

4.4 Push versus pull production system

Push system: Total demand is forecast, and the producer allocates ("pushes") items

to users based on the expected needs of all users. Finished goods accumulate in

inventory. - Produce for Forecast [28].

Pull system: Each user requests ("pulls") items from the producer only as they are

required. Units are only produced if there is demand for them. - Produce For Demand

 production is pulled through the supply chain in response to actual

demand

 first seen in just-in-time systems in Japan
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5 Mixed-model just-in-time production system

Just-in-time systems are formulated under the assumption that the system have

negligible switching over cost from one product to another and that each products are

produced in a unit time [9, 22]. The system has a constant rate of usage of all parts and

the sequencing problem aims to minimize the variation so that earliness and tardiness

penalties are minimized.

5.1 The PRV problem formulation

Under the assumption that the product requires approximately the same number

and mix of parts, Miltenburg [24, 17] reduces the sequencing problem into the product

rate variation (PRV) problem, a single-level case [24, 17].

Suppose D units of n products are to be produced with respective demands di, i =

1, . . . , n with D = 

n

i 1
di during a specified time horizon. Then the objective is to

maintain the cumulative production xik, a non-negative integer, i = 1, . . . , n; k=1, . . . , D

of product i during the time periods 1 through k as close to the ideal production kri, a

non-negative rational number, i=1, . . . , n; k = 1, . . . ,D with ri =
D

d i and  

n

i 1
ri = 1 as

possible. The total production time horizon is partitioned into D equal time units of which

1 time unit is required for a unit of a product to be produced. In [24] Miltenburg

formulates a non-linear integer programming with nonnegative, convex and symmetric

function having minimum 0 at 0 as the sum of the square and the absolute deviations

between the actual and the ideal production. Kubiak and Sethi [19] generalize this
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problem as the unimodal convex function fi(x) satisfying fi(0) = 0, fi(y) > 0 for y  0, i =

1, . . . , n. The mathematical model of the PRV problem P1 [19, 24, 35] is as follows:

minimize 



  )kr-(xfmaxF iiki

ki,
(1)

and

minimize  )kr-(xfG iiki11  


n

i

D

k
(2)

subject to

 

n

i 1
xik = k, k = 1, ........, D (3)

xi(k-1)  xik , i= 1, ………, n; k = 2, ………, D (4)

xiD =  di xi0 = 0, i = 1, ...… , n (5)

xik ≥ 0, integer (6)

The constraint (3) shows that exactly k units of products are produced in the

periods 1 through k. (4) states that the total production is a non-decreasing function of k.

(5) guarantees the demands are met exactly. (3), (4), and (6) ensure that exactly one unit

of a product is sequenced during a time unit. In Particular we can extend the above

formulation as:

Fa =
ki,

max iik krx 

Fs =
ki,

max  iik krx  2
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Ga =  

n

i

D

k 11 iik krx 

Gs =  

n

i

D

k 11
 iik krx  2

in P1 as the particular objectives. Here we denote, for example, problem Fa for the

problem P1 with the objective function Fa and the constraints (3) − (6). The sequence (let

say s = s1s2……..sD ) generated by P1  always keeps the actual production level xik as

close to the ideal production level kri as possible all the times.

An alternative objective, i.e. the minimization of the deviations between the times

at which a unit of a product be actually produced and the time at which the unit of the

product is needed to be produced, has been introduce by Inman and Bulfin [14]. This

objective appropriates with the objective established by Miltenburg [24].

5.2 The ORV problem formulation

In the more practical approach, we have a production system that consists of a

hierarchy of several distinct production levels such as products, sub-assemblies,

component parts, raw materials, etc. In such system, the part demand rate at upper level

defines the part demand rate down the level. Such system is known as Output rate

variation (ORV) problem, a mixed-model multi-level JIT sequencing problem [17, 25,

26]. Hence, the mathematical model of the ORV problem must incorporate the method so

that parts fit together to form products.

Let the systems consist of L different production levels l, l = 1, . . . , L with

product level 1. dil be the demand for part type i of level l, i = 1, . . . , nl, nl the number of

different part types of level l. tilp represents the number of total units of part type i at level

l required to produce one unit of product p, p = 1, . . . , nl and dil =  

ln

p 1
tilpdp1, the
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dependent demand for part i of level l determined by dp1, p = 1, . . . , n1. Note that tilp = 1

for i = p, and 0 otherwise. D1 =  

ln

i 1
dil stands for total part demands of level l with

demand rate ril =

i

il

D

d
and  

ln

i 1
ril = 1 for l = 1, . . . , L.

This is a non-preemptive model. The total time horizon in the product level is

partitioned into D1equal time units such that there will be k complete units of various

products p at level 1 during the first k time units. As the demands of part type

requirement at the lower level are pulled forward according to the need of the product

level, the system is also referred as pull system.

Let xilk denotes the quantity of part i produced at level l in the time units 1 through

k and ylk =  

ln

i 1
xilk be the total quantity produced at level l during the time units 1

through k. Clearly, at level 1, ylk =  

ln

i 1
xilk = k. The required cumulative production

for part i of level l, l ≥ 2 through k time units will be xilk =  

ln

p 1
tilpxplk. Consider fi

unimodal convex function with minimum 0 at 0, i = 1, . . . , nl. The mathematical model

for the ORV problem P2 [19, 26] is as follows:

minimize [   F=
kl,i,

max ƒi(xilk -ylkril)] (7)

and

minimize [G =


1

1

D

k



L

l 1



1

1

ln

i

ƒi(xilk - ylkril)] (8)

subject to

xilk = 


1

1

n

p

tilpxp1k, i = 1, . . . , nl; l = 1, . . . , L; k = 1, . . . ,D1 (9)

ylk = 


1

1

n

i

xilk, l = 2, . . . , L; k = 1, . . . ,D1 (10)
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y1k = 


1

1

n

p

xplk = k, k = 1, . . . ,D1 (11)

xplk ≥ xpl(k-1), p = 1, . . . , n1; k = 1, . . . ,D1 (12)

xplD = d1, xp10= 0, p = 1, . . . , n1 (13)

xilk ≥ 0, integer, i = 1, . . . , n1; l = 1, . . . , L; k = 1, . . . ,D1 (14)

Constraint (9) ensures that the necessary cumulative production of part i of

level l by the end of time unit k is determined explicitly by the quantity of

products produced at level 1. Constraints (10) and (11) show the total cumulative

production of level l and level 1, respectively, during the time units 1 through k.

Constraint (12) ensures that the total production of every product over k time

units is a non-decreasing function of k. Constraint (13) guarantees that the

demands for each product are met exactly. Constraints (11), (12), (14) ensure that

exactly one unit of a product is scheduled during one time unit in the product

level. In particular, denote

Fa =
Kl,i,

max | xilk − ylkril |

Fs =
Kl,i,

max ( xilk − ylkril )2

Ga = 


1

1

D

k



L

l 1



1

1

ln

i

| xilk − ylkril |

Gs= 


1

1

D

k



L

l 1



1

1

ln

i

( xilk − ylkril )2

in P2 as the particular objectives. We denote, for example, problem Fa for

the problem P2 with objective function Fa and the constraints (9)-(14).
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5.3 The total PRV problem

5.3.1 Assignment costs

Kubiak and Sethi [19] reduces the total PRV problem G with unimodal, convex,

symmetric and non negative function fi(0) = 0, fi(y) > 0 for y  0  to an assignment

problem that can efficiently be solved pseudo-polynomially with time complexity O(D3) .

The ideal position for the production of (i, j), the jth copy of product i is, Zij

= 






 

ir

j

2

12
, the point of intersection between fi for (i, j) and fi for (i, j −1), i = 1, . . . , n; j

= 1, . . . , di i.e. the unique crossing point satisfying fi(j −kijri)  =  fi(j − 1 − kijri ). If all

copies of product i are scheduled at their ideal positions, the product i will contribute the

cost inf fi(j − kri) to the total cost of the solution. The ideal position 






 

ir

j

2

12
minimizes

both the problems F and G, however, leads to infeasibility whenever more than one copy

competes for the same ideal position in the sequence. Higher priority is given to j over j′

whenever j < j′ .

Let X = {(i, j, k)|i = 1, . . . , n; j = 1, . . . , di; k = 1, . . . ,D}. The cost Cijk ≥ 0 for (i,

j, k)  X with respect to the ideal position Zij of assigning (i, j) to the time unit k is

defined as follows.

Cijk=





























1

ij

ij

ij

, Zkif

, Zkif0

, Zkif,
*

k

Zi

i
jl

Z

ki

i
jl

ij

i
ji




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where,

i
jl =











ij

ij

 Zlif)()1(

, Zlif)1()(

iiii

iiii

lrjflrjf

lrjflrjf

5.3.2 Assignment method

The total PRV problem in the form of assignment problem P4 [19] is

min 







 



id

j
ijkijk

n

i

D

k

xCH
111

(18)

subject to




n

i 1



id

j 1

xijk = 1, k =1, . . . ,D (19)




D

k 1

xijk = 1, i=1, . . . , n; j = 1, . . . , di. (20)

where,

xijk =




otherwise0,

kunit time toassignedisj)(i,if1,

Kubiak and Sethi [20] show that if a sequence {xijk}, i = 1, . . . , n; j = 1, . . . , di

and k = 1, . . . ,D is optimal to problem H then the sequence  jl

d

j

k

l
x  11

, i = 1, . . . ,

n; k = 1, . . . ,D is optimal to problem G. Hence, any optimal solution to problem G can

be constructed from any optimal solution of problem H in O(D) time It is, by induction,

shown that there is at least a sequence that preserves order i.e. (j +1)st copy of product i

will not appear before the jth copy in the sequence. The assignment problem with 2D

nodes can be solved in O(D3) time [17].
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A set X  X is X feasible if the following constraints hold:

c1 : For each k, k = 1, . . . ,D, there is exactly one (i, j), i = 1, . . . , n; j = 1, . . . , di such

that (i, j, k)  X, i.e., exactly one copy is produced at one time unit.

c2 : For each (i, j), i = 1, . . . , n; j = 1, . . . , di, there is exactly one k, k = 1, . . . ,D such

that (i, j, k)  X, i.e., each copy is produced exactly once.

c3: If (i, j, k), (i, j′, k′)  X and k < k′ then j < j′ , i.e., lower indices copies are produced

earlier.

c1 and c2 are the assignment problem constraints whereas c3 is different that

imposes an order on copies of a product. The sequence s = s1s2 . . . sD with sk = , k = 1, . .

. ,D, if (i, j, k)  X, for some j, is feasible for any instance (d1, . . . , dn). Kubiak and

Sethi [15] obtain the result.

5.4 The pegged ORV problem

Goldstain and Yeoman [34] show that the ORV problem under the pegging

assumption can be reduced to the weighted PRV problem [34]. Pegged parts of output i at

level l, l =2,...,L, are dedicated to be assembled into the particular product at level  such

that the parts are dedicated to be assembled into the different products are distinct. They

give the first mathematical formulation for pegging in a JIT environment. They also

formulated several heuristic solution techniques for the pegged, multi-level min-sum

model (ORV problem). The pegged ORV problem Fe with absolute deviation function

can be written as
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Min
kjih

Max
,,,
 hijhijhkhijhkhh rkttxWkrxW  1111 , ,

h =1,..., n1; i =1,..., nl; k =1,..., D1;l =2,...,L with constraints (9) - (14).

Letting l =1, ..., L and transforming the weighting actors [25] the pegged ORV

problem has been reduced in [34] to the following weighted PRV problem min max xi,k

wi* |xik -kri|, i =1,...,n; k =1,...,D, where wi* = maxi,l { wil(tiln) }with constraints(3) - (6).

5.5 Cyclic sequence

Miltenburg [24] and Miltenburg and Sinnamon [26] study the existence of the

cyclic sequence in problem Gs. They introduce the concept of cyclic sequencing and

show that the time complexity of the existing algorithms (pseudo-polynomially solvable)

can be substantially reduced Still the big question whether a concatenation sum of m

copies of an optimal sequence s for the Instance (d1,..., dn)is optimal for ( md1,..., mdn ),m

 1 to build a sequence for a longer time horizon  remains open.

Kubiak in [18] reviews the PRV problem and shows that the cyclic JIT sequences

are optimal. He takes a PRV problem with a given n products 1, .., i, …., n and n positive

integer demands d1, ….., di, …., dn. He supposes a sequence  =  1,…..,  T , T =

 

n

i 1
di , of  the products, where product i occurs exactly di times that always keeps the

actual product level, equal the number of product i occurrences in the prefix  1,…..,  t

, t =  1, ……, T, and the desired product level, equal rit, where ri = di/T, of each product i

as close to each other as possible. And proves if  is an optimal sequence for d1, ….., di,

…., dn , then concatenation  m of m copies of  is an optimal sequence for md1, …..,

mdi, …., mdn..
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6 Mixed-model JIT problems

6.1 Nearest integer point problem

Aiming to minimize the total deviation or sum of all deviation of the real

production from the ideal but rational production, Miltenburg in [26] has purposed some

algorithms and heuristics.

Problem statement

Define the point Xk = (x1, x2, ……… xn,) € Rn where xi,k = kri, 


n

i 1
ki,x = k, and R

is the set of real number. Problem is to find the “nearest” integer point Mk = ( km ,1 , km ,2 ,,

…………., knm , ,) € Zn to the point Mk where 


n

i 1
ki,m = k, Z is the set of nonnegative

integers and “nearest” means minimize 


n

i 1

2
ki,ki, )x-(m

Algorithm 1 The following algorithm finds the nearest integer point M = ( km ,1 , km ,2 ,,

…………., knm , ,) € Zn to a point X = (x1, x2, ……… xn,) € Rn. where 


n

i 1
im =



n

i 1
ix = k.

1. Calculate k = 


n

i 1
ix

2. Find the nearest nonnegative integer m, to each coordinate xi. That is, find m, so

that |mi - xi |  0.5, i = 1, 2, ………….., n.
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3. Calculate km=


n

i 1
im

a. if k - km = 0 stop. The nearest integer point is M = (m1, m2, ………, mn)

b. if k - km > 0 go to step 5.

c. if k – km < 0 go to step 6.

4. Find the coordinate xi, with the smallest mi-xi. Increment the value of this mi;

mi  mi+1. Go to step 3.

5. Find the coordinate xi, with the largest mi – xi. Decrease the value of this mi;

mi  mi-1

Problem with algorithm 1

For X = (30/13, 30/13, 5/13) the integer point is (2, 2, 1). Then for X = (36/13,

36/13, 6/13) the integer point is (3, 3, 0). Production schedule is 1, 2, -3 which in

impossible as production cannot be destroyed. Hence the schedule is not feasible.

Conclusion

Algorithm-1 may lead to infeasible solution.

Algorithm 2

1 Solve the problem P1 (using Algorithm 1), and determine

whether the schedule is feasible.( It is feasible if mi, k – mi, k-1  0 for all i,

k.) If the schedule is feasible, stop. Otherwise, to go step 2.

2 For the infeasible schedule determined in step l, find the first (or next)

stage l where mi,l – mi,l-1 < 0. Set ∂ = number of product i, for which mi,j –

mi,l-1 < 0. Reschedule stages l - ∂, l - ∂ + 1, ….., l+1 by considering all
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possible sequences that begin with the schedule for stage l -∂ - 1 and end

with the schedule for stage l + 1.

3 Repeat step 2 for other stages where mi, k – mi, k-1 < 0. Then stop.

Problem with algorithm 2

In general there are n! / (n - ∂ -2)!  possible sequences, each of length ∂ + 2, to

consider for each infeasibility. While total enumeration works for small problems of this

type (products where similar part requirements) it does not work well for larger problems,

nor for problems where products have differing part requirements.

Algorithm  3

1. Solve problem P1 (using Algorithm-1), and determine whether the schedule is

feasible. (It is feasible if mi,k – mi,k-1  0  for all i, k.) If the schedule is feasible,

stop.

2. For the infeasible schedule determine in step 1, find the first (or next) stage l

where mi, l – mi, l-1 < 0. set ∂ = number of products i, for which mi, l – mi, l-1 < 0, and

beginning at stage l - ∂ use Heuristic 1 or Heuristic 2 to schedule stages l - ∂, l -

∂+1, ….., l + W, where W  0. l + W is the first stage where the schedule

determined by heuristic matches the schedule determined in step 1.

3. Repeat step 2 for other schedule determined in step 1.

Heuristic 1.

For a stage k, schedule the product i with the lowest Xi,k – kri .

Heuristic 2.

For each stage k:

1. set h=1



43

2. Tentatively schedule product h to be produced in stage k. Calculate the

variation for stage k and call it V1h

3. Schedule the product I with the lowest xi,k – (k+1)ri,

4. Increment h; h  h + 1. If h > n go to step 5, otherwise go to step2

5. Schedule the product h with the lowest Vh.

6.2 Dynamic programming algorithm

6.2.1 Problem statement

In [27] Miltenburg, Steiner and Yeomans consider both the usage goal and

loading goal as a prime factor in min sum PRV problem and  aims to

minimize 


D

k 1

 kLku LU   (D1)

s.t.




n

l 1

xik = k, k = 1, 2, ………, D

xiD= di, i = 1, 2, ……….., n

xi0 = 0 i = 1, 2, ……….., n

xi(k-1)  xik,  i,k.

where,

 u is relative weight for usage goal

 L is relative weight for loading goal.
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Uk = 


n

l 1

( xik - kri )2

Lk = 


n

l 1

t 2
i ( xik - kri )2

Redefining T 2
i =  u +  L t 2

i , the objective function in D1 can re re-written as

minimize 


D

k 1



n

l 1

T 2
i (xik – k ri)

2

6.2.2 Dynamic programming (DP) procedure

The objective function in problem (D1) requires the minimization of a quadratic

integer function. The large number of integer variables, along with the first and last

groups of constraints, makes it impossible to solve by general integer programming

techniques. Here is a special purposed DP procedure instead, which enables us to find the

optimal JIT schedule for practical-sized problems.

Let d = (d1, d2, ……… dn) be the product requirements vector. Define subsets in a

schedule as X = (x1, x2, ……… xn), where xi is a non-negative integer representing the

production of exactly xi units of product i,, xi  di, for all i. Let ei be the usual ith unit

vector; with n entries, all of which are zero except a single 1 in the ith place. A subset X

can be schedule in the first k stages if K = | X | = 


n

i 1

xi .Let f(X) be the minimal total

variation of any schedule where the products in X are produced during the first k stages.

Let g (X ) = 


n

i 1

Tj
2 (xjk - krj)

2

The following DP recursion holds for f(X):

f (X) =  f (x1, x2, … xn)



45

= min{f(X - ei )+g( X )|  i = 1, 2, …, n; xi – 1  0},

f(Ф) =   f ( X |  xn =   0)

=   f(0, 0,  ……., 0)

=   0

it is clear that f ( X )  0, and it follows easily from the definition of the ri’s that

g(X |  xi =  di) = 0.

Theorem

The DP recursion solves the JIT scheduling problem in

O 











n

i
idn

1

)1( time

and

O 











n

i
id

1

)1( space.

6.3 Min-max-absolute-chain algorithm

In [8] Dhamala, extended the formulation of single-level JIT sequencing

problem under a number of chain constraints. He purposed the following min-

max-absolute-chain-algorithm.
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6.3.1 Min-max-absolute-chain-algorithm

Given: d t
i for i = 1, 2, ……, nt and t=1, 2, …….., m;

an upper bound B for min-max-absolute-chain-problem;

chain1, chain2, ………., chaint, …………, chainm;

Update: number of demands n =   nt;

demand rates di for i = 1, 2, ……, n;

total demand D =  di.

Step 1: Calculate windows [E( i , j), L( i, j)] for j = 1, 2, ……, di and

i = 1, 2, ……, n by STEINER / YEOMANS [35]

Step 2: Modify the due date L ( i, j).

if ( i, j)  (i’, j’) then L(i, j) := min {L(i, j), L(i’, j’)}.

Step 3: Schedule the jobs by EDD -Algorithm of HORN [13].

Output : B feasible for (n, D) if Lmax  0.

6.3.2 Min-max-absolute-chain-algorithm for overlapping sequence

- Let assign the chain Id with each job
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- Hence let say if job a falls in chain1 and chain2, the job a will be converted

into job a0 and job a1 where 0 is the id of chain1 and 1 is the id of chain2.

- Now the input become pseudo-Non-Overlapping sequence and hence can

be solved by the algorithm purposed at 4.3.3.
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7 Implementation

After the study of different types of problems and algorithms, the application

software to illustrate these problems and algorithm is implemented in Java. For each

problem a package is defined. The Java Swing is used to develop GUI.

Machine Specification

Pantium 4 CPU 3.06 GHz.

496 MB RAM.

7.1 Architecture view of project

The architecture view of whole implementation is shown by the following tree

view.



49

Figure 4 Architectural view of whole project

The implementation project consists of implementation of five problems:

1) Nearest integer point problem
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2) Earliest due date problem
3) Cost assignment problem
4) Dynamic programming problem
5) Min-max-absolute-chain problem with constraints

For each package we have the same architecture. Each consists of 4 sub-packages:

a) GUI
b) Com
c) POJO
d) Model

GUI package consists of the class files that define the graphic interface to input data.

The com package consists of the class files that hold the main algorithm. The POJO

consists of class files that define the structure of the entities required for the algorithm.

Finally the model sub-package consists of the class files that contain definition of data

and tabular view.

Beside these we have two sub-packages

a) UTIL
b) GUI

These two packages consist of class files that are used by all of the five projects.

7.1.1 UTIL package

The UTIL package consists of four class files:

DoubleUtil.java

ListViewMode.java
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MyMatrix.java

ShowSchedule.java

DoubleUtil.java consists the logic required to operate with double values like :

Double getRoundDouble(double value,

int no_of_decimal_point_to_round);

int upperFloor(double d);

Class ListViewModel consists the structure of the table that holds the list of data

to view the results.

Class MyMatrix consists the definition for the matrix that is used to hold records

Finally, class ShowSchedule is used to view the result list defined by class

listViewModel.

7.1.2 GUI package

The GUI package consists of

i) mainframe.java

Mainframe.java is the main controller for the implementation. It consists of menu

for switching between the projects. The interface of mainframe looks like:
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Figure 5 Interface of main GUI

7.2 Nearest integer point implementation issue

Nearest integer point falls under the min-sum PRV problem. The main objective

of the program is to minimize the total variation. Architecture view of Nearest Integer

Point Problem implementation is shown by the following tree view.

Figure 6 Architectural view of nearest-integer-point package
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This Package implements the nearest Integer Point algorithm developed by

Meltenburg and one of his heuristic.

Figure 7 Date input frame for nearest-integer-point package.

The figure 7 show a sample date used for testing the algorithm. There are n = 3

products with demands D = (6, 6, 1) to be assembled on a mixed-model assembly

line. Hence the vector of demand ratios, is r = (6/13, 6/13, 1/13).The schedule

generated by algorithm 1 is demonstrated by the figure below.

Table 1 Schedule generated by Algorithm 1
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The optimal production over 5 stages is (2, 2, 1) while the optimal production

over 6 stages is (3, 3, 0). During the sixth stage one unit of product 1 and one unit of

product 2 must be produced while one unit of product 3 must be destroyed. Of course

this is impossible. Only one product can be assembled during a stage and products

assembled earlier cannot be destroyed. However, based on these results, we can

develop a number of “feasible” schedules.

The figure below demonstrates the schedule generated by the heuristic 1 as

purposed by Meltenbure to as a “feasible” schedule solution.

Table 2 Schedule generated by Heuristic 1

The variable k counts the stage of the production. That is, k runs from 1 to total

demand and at each stage one of the items is produced. Array X [] consist the rational

value of demand of the product to the total demand. Array M [] consists the nearest

integer to the array X [] of respective product. At any stage k, M [] consists of the integer

value denoting the number of items to be produced at the stage and product schedule is

identified according to M[k] – M[k-1] .
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Under this topic we have implemented Algorithm 1 and Heuristic 1 purposed by

Miltenburg [24] and mentions on 6.1. Algorithm 1 found to be easier then Heuristic 1

while coding and understanding, however, Heuristic 1 removes the infeasibility issue

found in Algorithm 1. The analytical study of Algorithm 1 and Heuristic 1 under different

cases (considering the number of infeasible case encounter and total variation) is

tabulated as below:

7.2.1 Comparative study of Algorithm 1 and Heuristic 1

CASE
VS ALGORITHM

TOTAL VARIATION INFEASIBILITY

CASE : (6,6,1)

ALGORITHM 1 5.38462 4

HEURISTIC 1 5.07692 0

CASE : (5,2,4,7)

ALGORITHM 1 7.09259 1

HEURISTIC 1 6.64815 0

CASE : (2,3,4)
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ALGORITHM 1 2.37037 0

HEURISTIC 1 2.37037 0

CASE : (1,5)

ALGORITHM 1 1.05556 0

HEURISTIC 1 1.05556 0

CASE: (1,5,7,3)

ALGORITHM 1 6.625 2

HEURISTIC 1 6.125 0

CASE: (1,5,7,3,9)

ALGORITHM 1 13.12 3

HEURISTIC 1 12.32 0

Table 3 Analytical view of Algorithm 1 vs. Heuristic 1

From study we can say that heuristic 1 removes the case of infeasibility seen in

Algorithm 1 and also minimize the total variation in the case when infeasibility occurs.
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7.3 Earliest due date implementation issue

Earliest Due Date is a min-sum PRV problem and is an easier solution of Nearest

Integer Point Algorithm [24]. It is simple and doesn’t lead any infeasible case as given by

Algorithm 1 of Meltenburg, Hence, doesn’t need any heuristics and is more faster then

Algorithm 2 or Algorithm 3 of Meltenburg. However the total variation seems to be little

deviating then those given by Algorithm 3. Still, being simple to understand and fast

execution time it has advantage over Meltenburg’s algorithms. The architecture view of

Earliest Due Date Problem implementation is shown by the following tree view.

Figure 8 Architectural view of earliest due date  package

To demonstrate the EDD approach consider Example 2 of Miltenburg ( 1989)

with n = 3 D1 = 6, D2 = 6, D3 = 1 and T = 13 . There are a total of 13 jobs to be assigned

to 13 positions.
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Figure 9 Date input frame for earliest due date package

The following table list the calculated due date value according to the algorithm

considered.

Table 4 Schedule generated by earliest due date

The variable unit run from 1 to the number of items to be product for each product

i. and due date for product of each unit of each product is calculated by the formula tik =
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  
iDTk 2/1 , i=1,….., n; k = 1,…..Di as mention by Inman and Bulfin[14]. At each

stage, we choose a unit of the product whose due date is minimum, as production unit.

7.4 Dynamic programming implementation issue

Dynamic Programming is of the solution for ORV problems. The architecture

view of Dynamic Programming Problem implementation is shown by the following tree

view.

Figure 10 Architectural view of dynamic programming

The variable stage runs from 1 to the total number of demand. The array X[] at

any stage consists of possible combination of the production items. The value of f(X-e),

g(x) is calculated as mention in session 6.2.2. The value of f(x) at any stage is the sum of

f(X-e) and current g(x). There may be many possible combination production at any stage

and are denoted by the Expand field whose values is E. One of the combination at a stage

whose Expand field is E is chosen according to the minimum f(x).

Consider a three-product example with the date shown in fig 5.7. Three products

with demands 3, 2 and 1 are to be produced. The DP procedure is used to determine the
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optimal production schedule and this is done in table below

Figure 11 Date input frame for dynamic programming testing

At each stage k, all subsets X which are feasible ( |X| = k and xi  di  i) are

generated. For each subset, all possible X – ei are then generated. The value of f( X

– ei ) is available from the computations done at stage k -1; the value of g(X) is

computed; and the two are added together. The minimum of these values is f(X).

Consider, for example, the subset X = (1,2,0) at k =3 ei is either (1, 0, 0) or (0, 1,

0) but not (0, 0, 1) since x3 = 0 ; so X – ei takes the values (0, 2, 0) and (1, 1, 0). From the

computation done at k = 2, f ( 0, 2, 0) = 57.35 and f(1, 1, 0) = 6.36.

g(X) = g(1, 2, 0) = 12(1-3(.5))2 + 52(2-3(.333))2 + 22(0 – 3(0.167))2

= .0250 + 25(1) + 4( 0.250)

=26.25

Therefore, f (1, 2, 0) = min (57.35 + 26.25, 6.36 + 26.25) = 32.61. The total

minimum variability for the problem is 13.97 and by working backwards through table 5

we obtain the optimal sequence, 1-2-3-1-2-1.
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Table 5 Schedule generated by dynamic programming
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7.5 Cost assignment problem

Cost assignment problem is min-sum PRV problem. Differ to Meltenburg’s

Algorithms or the EDD rule, the cost assignment problem calculate the cost of scheduling

each product and chose the one with minimum cost. As Meltenburg’s Algorithm 1, Cost

assignment problem does not product any infeasible hence doesn’t need any heuristic

solution. So, is reliable then Meltenburg’s Algorithms. Calculating the cost through

excess inventory or shortage calculation add extra work hence it is slower then EDD rules

or Meltenburg’s algorithm but is more perfect and have minimum total variation then

both Meltenburg’s Algorithm or EDD. The architecture view of Cost Assignment

Problem implementation is shown by the following tree view.

Figure 12 Architectural view of cost assignment problem

Consider three part types A1, A2 and A3 with demands d1 = 2, d2 = 3 and d3 = 5,

respectively, as shown in Figure below.
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Figure 13 Date input frame for cost assignment problem

Thus, T = 10, r1 = 0.2, r2 = 0.3 and r3 = 0.5. The ideal position computed by using

the formula is shown in the table below.

Table 6 Excess inventory or shortage costs calculated

Table 7 Schedule generated by cost assignment problem
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7.5.1 Comparative study of min-sum PRV problem

The following table lists the nature of Algorithm1, Heuristic 1, EDD and Cost

Assignment problem over different input cases (run time calculated in millisecond):

CASE/Algorithm Total Run Time

Case:(6,6,1)

Algorithm 1 16 1, 2, 1, 2, 3, (1, 2, -3),
3, (1, 2, -3), 3, (1, 2, -
3), 3, (1, 2, -3), 3

Not Feasible

Heuristic 1 31 1, 2, 1, 2, 3, 1, 2, 1, 2,
1, 2, 1, 2

Feasible

EDD 15 1, 2, 1, 2, 1, 2, 3, 1, 2,
1, 2, 1, 2

Feasible

Cost Assignment 141 1, 2, 1, 2, 3, 1, 1, 2, 2,
1, 2, 1, 2

Feasible

Case: (3, 5, 7, 2)

Algorithm 1 31 3, 2, 1, 3, 4, 2, 3, 1, 3,
2, 3, 2, 4, 3, 1, 2, 3

Feasible

Heuristic 1 31 3, 2, 1, 3, 4, 2, 3, 1, 3,
2, 3, 2, 4, 3, 1, 2, 3

Feasible

EDD 18 3, 2, 1, 3, 4, 2, 3, 1, 2,
3, 3, 2, 4, 3, 1, 2, 3

Feasible

Cost Assignment 156 3, 2, 1, 3, 4, 2, 3, 1, 3,
2, 3, 2, 4, 3, 1, 2, 3

Feasible
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Case: (7, 3, 1)

Algorithm 1 15 1, 2, 1, 1, 3, (1, 2, -3),
1, 1, 2, 1

Not Feasible

Heuristic 1 31 1, 2, 1, 1, 3, 1, 2, 1, 1,
2, 1

Feasible

EDD 14 1, 2, 1, 1, 3, 1, 1, 1, 1,
2, 2

Feasible

Cost Assignment 140 1, 2, 1, 1, 1, 2, 3, 1, 1,

2, 1

Feasible

Case : (5, 3, 7)

Algorithm 1 25 3, 1, 2, 3, 1, 3, 2, 3, 1,

3, 1, 3, 2, 1, 3

Feasible

Heuristic 1 25 3, 1, 2, 3, 1, 3, 2, 3, 1,

3, 1, 3, 2, 1, 3

Feasible

EDD 12 3, 1, 2, 3, 1, 3, 1, 2, 3,

3, 1, 3, 2, 1, 3

Feasible

Cost Assignment 125 3, 1, 2, 3, 1, 3, 2, 1, 3,

3, 1, 3, 2, 1, 3

Feasible

Table 8 Comparative studies of min-sum PRV problems
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7.6 Min-max-absolute-chain sequencing problem

The min-max-absolute-chain sequencing problem is min-max PRV problem.  The

architecture view of the implementation of modified Min-Max-Absolute-Chain algorithm

for both overlapping and non-overlapping sequences as chain constraints is presented

below in tree view.

Figure 14 Architectural view of min-max-absolute-chain sequencing problem

7.6.1 Non-overlapping sequences

Testing for the modified algorithm for non overlapping sequence is done in the

implementation as follows.
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Figure 15 Input frame: min-max-absolute-chain (non-overlapping sequence)

Table 9 Calculation of window value for non-overlapped sequence
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Table 10 Output: min-max-absolute-chain  (non-overlapping sequence)

7.6.2 Overlapping-sequences

Testing for the modified algorithm for overlapping sequence is done in the

implementation as follows.
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Figure 16 Input frame: min-max-absolute-chain (overlapping sequence)

Table 11 Calculation of window value for overlapped sequence

Table 12 Output: min-max-absolute-chain algorithm (overlapping sequences)
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8 Conclusion and Recommendation

In this dissertation, different algorithms and heuristics of mixed-model-JIT

sequencing problems have been studied. Most of these algorithms and some heuristics are

implemented. Finally, a new algorithm is purposed which modifies the min-max-

absolute-chain algorithm to adopt overlapping sequence.

It is let to identify either the algorithm can be implemented for cyclic sequence or

it can be extended for priority chain system and for multi-processor system. Likewise,

much more work is left to convert the pseudo solution raised in this dissertation to the

real version. It is also remains to study these problems for sum deviation objectives.

These works are left open for the further study.
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