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Abstract

Scheduling problems are most primitive problems in Computer Science and Industries.
Obtaining an optimal sequence in mixed-model production system under the just-in-
time philosophy is one of such a challenging problem. The problem in a multilevel
facility are strongly NP-hard, however, the single-level problems are pseudo-
polynomia solvable. In this dissertation, developments of mixed-model just-in-time
production problems are studied thoroughly. Different purposed agorithms are tested
for their solvability and implementation purpose. Lastly, more practical mixed-model
just-in-time sequencing problem is considered with the given set of sequences as
precedence constraints. An efficient algorithm, which obtains an optimal solution for
the maximum deviation objective in single level is studied and is extended as a solution

for overlapping sequences.
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1 I ntroduction

1.1 Background

Just-in-time manufacturing means producing the necessary items in necessary
guantities at the necessary time. It is a philosophy of continuous improvement in which
non-value-adding activities (or wastes) are identified and removed.

JT applies primarily to repetitive manufacturing processes in which the same
products and components are produced over and over again. The genera idea is to
establish flow processes (even when the facility uses a jobbing or batch process layout)
by linking work centers so that there is an even, balanced flow of materials throughout
the entire production process, similar to that found in an assembly line. To accomplish
this, an attempt is made to reach the goals of driving al inventory buffers toward zero
and achieving the ideal lot size of one unit.

The basic elements of JI'T were developed by Toyota in the 1950's, and became
known as the Toyota Production System (TPS). JIT was well established in many
Japanese factories by the early 1970's. JIT began to be adopted in the U.S. in the 1980's
(General Electric was an early adopter), and the JIT/lean concepts are now widely

accepted and used.



1.2 Literaturereview

The JIT production systems have been used in mixed-model assembly lines in
order to respond to the customer demands for a variety of products without holding large
inventories or incurring large shortages. Such mixed-model must have negligible
changeover costs between the products and the production must be small lot fashion.

Under the assumption that the products required approximately the same number
and mix of parts, Miltenburg [24], purposed an optimal formulation that aims to
minimize the total deviation or sum of all deviations of the rea production from the ideal
production, and defined the problem as a nonlinear integer programming. This
assumption reduced the formulation into a single-level and focused study on the final
assembly line only. The final assembly line controls the JIT system by keeping a constant
rate of usage of every part used by the line. Miltenburg and Sinnamon [26] and
Miltenburg and Goldstein [25] extended the formulation to multi-level system. Here the
assembly line is used as a pull line that defines the requirements down the level. Such
assembly lineis caled the final assembly line and the system as a pull system.

Kubiak [17] gave a more specific distinction between these problems and referred
single-level problem as the Product Rate Variation (PRV) problem and the multi-level
problem as the Output Rate Variation (ORV) problem. Kubiak distinguished PRV
problem as total deviation PRV problem and maximum deviation PRV problem. The
total deviation PRV problem aims to minimize the sum of total deviations and hence
looks on minimizing the total variation between the actual product and the ideal
production at any stage. Such problem represents the problem considered by Miltenburg
[24]. The maximum deviation PRV problem minimizes the maximum deviation of the
actual product of a product from its ideal level of production. Such problem represents

the problem considered by Steiner and Yeomnas [35]. The pull system where the fina



assembly line defines the scheduling and requests for demand down the level is
represented by ORV problem. The problems consider by Miltenburg and Sinnamon [26]
and Miltenburg and Goldstein [25] are categorized as ORV problem.

Kubiak [17] and Kubiak et a. [21] proved that even special cases of the ORV
problem are NP-hard. Miltenburg et al. [27] and Kubiak et a. [21] present the dynamic
programming approach as a solution procedure for the ORV problem. Steiner and
Y eomans [ 34] showed that the ORV problem could be reduced to weighted PRV problem
using concept of pegging (i.e. the parts dedicated to be assembled into the different
products are distinguished). In [19,20] Kubiak and Sethi showed that the nonlinear
integer programming problem used for sequencing flexible transfer lines could be
reduced the problem as an assignment problem (cost assignment problem). The earliest
due date (EDD) agorithm developed by Inman and Bulfin [14] provided a robust
solution to the min-sum PRV problem. By using the graph-theoretic approach, Steiner
and Yeomans [35], proved that the maximum deviation PRV problem (the Bottleneck
PRV problem) could be solved with a pseudo-polynomia agorithm by reducing it to
release date / due date decision problem.

Brauner and Crama [2] showed that the problem is Co-NP and polynomially
solvable when the number of products are fixed. Miltenburg and Simmamon [26] studied
that theoretical base for ORV problem. They presented a mathematical model and two
heuristics for finding a good scheduler of ORV problem. Steiner and Yeomans [34]
investigated that if outputs at production levels, which feed the final assembly level, are
dedicated or pegged to the final product into which they will be assembled, and then there
could exist an efficient scheduling algorithm to determine the optimal level schedule.
They showed that the ORV problem under pegging assumption is equivalent to a
weighted single-level PRV problem and by modifying PRV version of the problem,
pegged ORV problem could be solved to optimal which is polynomial in the total product



demand and the weight factors. Miltenburg [24] (for PRV) and Miltenburg and Sinnamon
[26] (for ORV) observed the existence of the cyclic sequences for scheduling larger

products. Kubiak [18] proved that for any PRV problem if b is an optima sequence

with input demands d, ....... diy e , dn, then concatenation b ™ of m copiesof b is

an optimal sequence with input demands mdy, ....... , mdi, ..... , md, Dhamala and
Kubiak [10] conjectured that cyclic sequencesin the ORV case were optimal, too.
Dhamala [8] had developed a min-max-absolute chain algorithm for combining
chain sequences with objective of minimizing the maximum deviation. In [16],
Kovalyov, Kubiak, and Y eomans, had done comparative study of balanced mixed-model
JIT optimization algorithm. Similar, comparative study had been done by Lebacque, Jost
and Brauner [22]. Dhamaa and Khadka [9] had review different mixed-model JIT

sequences problems.

1.3 Organization of thethesis

This dissertation has been divided in 8 chapters. The brief descriptions of
these following chapters are :

Chapter 1 gives a brief introduction and background of the problem raised
in this dissertation. Chapter 2 deals with computational complexity theory. In this
chapter nature of good and bad algorithms are studied thoroughly. A synopsis of
asymptotic notation and different complexity class are given. In Chapter 3, the
formal description of scheduling theory is summarized. Section 3.1 deals with
classification of scheduling problem. Combination optimization is studied in
Section 3.2. Single machine scheduling problem is studied in Section 3.3.

Similarly some simple scheduling algorithms have been mentioned in Section 3.5.



Section 3.6 deals with some realistic scheduling problems and likely a survey on
scheduling problems in Operation System are done in Section 3.7.

In Chapter 4, JIT production system is studied in brief. Section 4.1 deals
with different JT key elements. Some of JIT production systems have been
mentioned in Section 4.2. Section 4.3 includes definition of mixed-model
production system and Section 4.4 differentiates between push and pull System.
In Chapter 5, different mathematical models for mixed-model JIT problem are
studied thoroughly. Section 5.1 details with the PRV problem formulation. In
Section 5.2, ORV problem is studied. Section 5.3 analyzes the total PRV problem.
Section 5.4 describes the pegged ORV problem. And, possibility of existence of
cyclic sequenceis studied in Section 5.5.

In Chapter 6, we review some of the solution for the mixed-model JIT
problems. Section 6.1 details the nearest integer point problem and its different
algorithms and heuristics. Section 6.2 describes the dynamic programming
algorithm. And lastly min-max-absolute-chain algorithm is studied in Section 6.3.
Moreover, this Section also contains the possible extension of min-max-absolute-
chain agorithm for overlapping sequence. In Chapter 7, implementations issues
are covered. This chapter also contains the conclusion, further suggestions and

recommendations.

14 Methodology

The initial phase of the research is devoted on the detail study on the relevant
documents on different sequencing algorithms. The major portion of the thesisis devoted

on the analysis of mixed-model just-in-time production problems. After the study of



those problems, different mixed-model JIT problems are tried to implement for testing
their solvability and efficiency.

An application is developed to eliminate the constraints of non-overlapping
seguence in min-max-absol ute-chain-algorithm proposed by Dhamala[8].

The implementation of this thesis is made in JAVA. Each mixed-model just-in-
time production problem has its own package. The secondary data are taken from related

papers for testing the correctness of the algorithms.



2  Computational complexity

Computational complexity deals with analysis of agorithms related with
computer science and applied mathematics. It analyzes the nature of problem solvable by
algorithms and classifies them into several classes regarding their difficulty and resources
required for execution of the algorithm (eg. computation time). A typical question of this
research is, “As the size of the input to an algorithm increases, how do the running time
and memory requirements of the algorithm change and what are the implications and
ramifications of that change?” The major factors considered during computational
complexity are the time complexity and space complexity. The time complexity of a
problem is the number of steps that it takes to solve an instance of the problem as a
function of the size of input. The space complexity of a problem is arelated concept that

measures the amount of space, or memory required by the algorithm [4].

Decision problems
The primitive step during the computational complexity is to identify either the
problem is solvable or not and either any algorithm can solve a problem or not. Such a

problem where the answer is always yes or not is called decision problem [6].

Example 2.1

A well-known decision problem IS-PRIME returns a yes answer when a given
input is a prime and no otherwise, while a problem IS-COMPOSITE determines whether
agiven integer is not a prime number. Decision problems are often considered because an

arbitrary problem can always be reduced to some decision problem [6].



Turing machine

Turing machines are extremely basic abstract symbol-manipulating devices,
which, despite their simplicity, can be adapted to simulate the logic of any computer that
could possibly be constructed. Alan Turing described them in 1936. It is purely a
theoretical state machine, with infinite memory and computation time as its construction
base on assumption that “Every solvable problem must be solved by Turing

machines”[12].

2.1 Asymptotic notation

Space and time complexity of any problem is highly influenced by the real
machine used for computation. If a bad machine is used, even a better agorithm may
appear inefficient compared to a bad agorithm in a better machine. Hence, machine
difference must be minimized, and the goal can be achieved by considering with
instances whose input size is very large. To describe the behavior of agorithm for large
input, the concept of asymptotic order is used. Three asymptotic orders are frequently
used, big O (upper-bound), big-Omega (lower-bound) and big-theta (tight-bound) [6, 30,
31].

Definition 2.1.
The function f(n) = O(g(n)) (read as “f of n is big oh of g of n”) if and only if

there exist positive constants ¢ and ng such that f(n) < ¢ x g(n) for al n, n > n.



2.2 Complexity classes

ClassP
Class P isone of the most fundamental complexity classes. It contains all decision
problems, which can be solved by deterministic Turing machine using a polynomial

amount of computational time[30, 12].

Example 2.2
The problem of sorting n numbers can be done in O(n® time using insertion

sorting in even worse case, thus all sorting problemsfall under P class.

ClassNP
The class NP consists of those decision problems whose positive solution can be
verified in polynomial time given the right information, i.e. those problems whose

solution can be found in polynomial time on a non-deterministic machine [6,12,39].

Polynomial Time Reduction

A function f:{0,1}* — {0, 1}* is said to be polynomial-time computable if there
exist a polynomial-time algorithm A such that, for all input x {0, 1}, products the
output f(x) in polynomial time. Again, let X and Y be two problems. We say that X is
polynomially reducible to Y i.e. X <, Y, if there exist a polynomial- time computable
function f:{0, 1}* — {0, 1}* such that for all x €{0, 1}* ,x e X if andonly if f(x) €

Y. Thenotation X <, Y is often states as “Y is as harder as X” [6,30].

Lemma2.1 LetX andY betwo decision problemssuch that X <, Y,thenY € P =

X e P



NP-Complete class
A decision problem X is NP-Complete if
1. X e NP
2. Every problem in NP isreducibleto X.

i.e, NP-complete are the hardest problems among the NP-class.

Example 2.3

One example of an NP-complete problem is the subset sum problem which is:
given a finite set of integers, determine whether any non-empty subset of them sum to
zero. A supposed answer is very easy to verify for correctness, but there is no known
efficient algorithm to find an answer; that is, al known algorithm are impracticaly slow

for larger sets of integers.

NP-hard

Itisaclass of all problems X such that for all Y € NP, Y <, X i.e. there may be

aproblem X which is as hard as any problem in NP, but one may not be able to prove its

NP-completeness. NP-hard can contain problems other than decision problems [6, 30].

Theorem2.1. P < NP

Theorem 2.2. If any NP-complete problem is polynomial time solvable, then P= NP.

Theorem 2.3. If P= NP, then no NP-hard problem can be solved in polynomial time.

10



3  Scheduling algorithms

In a scheduling problem one has to find time slots in which activities (or jobs)
should be processed under given constraints. The main constraints are resource
constraints and precedence constraints between activities. In this chapter, the basic
formulation of the scheduling theory is studied. The definition and classification of
scheduling problems and examples mentioned in this chapter follow the notation used in
[13]. Asin this work single machine case is considered, only single machine scheduling

problem are only briefed below the chapter.

3.1 Clasdsification of scheduling problems

The theory of scheduling is characterized by a virtually unlimited number of

problem types. Here basic classifications of the scheduling problems are covered.

3.1.1 Scheduling problems

Suppose that m machinesM; (j = 1, 2, 3, ....., m ) have to process n jobs J; (i =1,
2, ..., n). A schedule is for each job an allocation of one or more time intervals on one or
more machines. Schedules may be represented by Gantt charts as shown in Figure 1

Gantt chats may be machine oriented (Figure 1(a)) or job oriented (Figure 1(b)).

11
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Figure 1 Gantt Charts.

312 Thethreefield notation a|blg

Every scheduling problem can be denoted by the three-field notationa‘b|g ,

where, a denotes machine environment, b denotes the jobs and g denotes objective

function used in scheduling [4].

12



M achine environment
The a notation denoting the machine environment consists of concatenation of
a1 and a, where a ; denotes the machine characteristic and a , denotes number of
machines used. Further morea 1 € {f, P, Q, R, O, F, J} where
T : single machine
: identical parallel machine

: uniform parallel machine

. open shop

P
Q
R : unrelated parallel machine
O
F: flow shop

J

: job shop

Similarly, a , € { T, k} where,
T : number of machinesis assumed to be variable

k : k number of machines.

Job characteristics

The b - field denotes the jobs and their interrelations is detailed by concatenation
of six variablesas b =b 1. b2. b3. b4. b5. bswhere,

b = f, if preemptionisnot allowed,
o pmtm, if preemptionisallowed

Preemption alow a job being processed to be paused arbitrarily, and start some

another available job.

13



b= f, if no resourceconstraints,
2= . . .
resc, if resourceconstraintsaregiven.

T, If no precedenceconstraints,

prec, if precedence intheformof anarbitrary DAG given
b ;=<tree, if precedence intheformof treegiven

intree, if precedence intheformof intreegiven

outtree, if precedence intheformof outtreegiven.

b= T, if releasedateiszerofor al job,
“ I, if releasedateisgiven for each job.
b= T, if jobshavearbitrary processing time,
° P, if al jobshave processing timeequlato p.

b= T, if nodeadlinesgiven,
°71d, if jobshavedeadlines.

Objective function

Let us denote each job by J, their finish times or the completion times by C;,
smilarly release times by r;, priority or weight assigned to each job by w;. Then
following parameter can be calcul ated.

Flow time F=Cj-r;

Lateness L;=C;-d;

Tardiness Tj=max{ C;-d;,0}

Earliness Ej=max{d-C;,0}, and on the basis of above parameter we can have
following objective functions :

Schedule length (makespan) Crax = max { Cj}

Weighted completiontime > w;C;

Total completiontime > Cj

14



Mean flow time Frean = (1n) > F
Flow time variance Fuar = (n) > (F- Finean) 7

In scheduling problems, one of these objective function has to be minimized.

3.1.3 Examples

To illustrate the three field notation a |b |g we present some examples. In each

case we will give the description of the problem. Furthermore, we will specify an

instance and present a feasible schedule for the instance in form of Gantt chars.

Example 3.1

P | prec;pi = 1 | Cmax is the problem of scheduling jobs with unit processing
times and arbitrary precedence constraints on m identical machines such that makespan is
minimized. An instance is given by a directed graph with n vertices and the number of
machines. Figure 2 show an instance of the problem and a corresponding feasible

schedule.

My

]
o 1 }: 4

Cnapx = 5

15
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Example 3.2

1 | batch | Z w;C; is the problem of splitting a set of jobs into batches and

scheduling these batches on one machine such that weighted flow time is minimized

these batches on one machine such that weighted flow time is minimized.

Figure 3 shows an instance of this problem and a corresponding schedule with
three batches.
[ 1 2 3 4 5 6

pi 3 2 2 3 1 1

Wi 1 2 1 1 4 4 s=1

The objective value for the schedule is
> wiG =2x3+(1+1+4) x 10+ (1+4)15.

=141

16



E:

Figure3 1|batch| > wiC

3.2 Combinatorial optimization

Scheduling problem can be solved by converting them into some feasible
programming like linear programs, maximum flow problems or transportation problems.
Such problems are stated as combinatorial optimization problems. Beyond these there are
some other standard techniques like dynamic programming and branch and bound

methods to solve the scheduling problems.

3.2.1 Linear and integer programming

A linear program is an optimization problem of the form

minimizes z(X) = C1Xg+ ............ + CnXp (2.0
subjected to:
a Xy o ta, X, 2by
(2.2
A Xyt ta X, 20

17



Xj > 0fori=1, ....... , N,

A vector X = (X1, ....... , Xn) satisfying (2.2) is called feasible solution. The
problem is to find a feasible solution, which minimizes (2.1). A linear program that has a
feasible solution is called feasible.

An integer linear program is a linear program in which all variables x; are
restricted to be integer. If the variables x; can take only the values O or 1 then the
corresponding integer linear program is called a binary linear program. If in a linear
program only some variables are restricted to be integer then we have a mixed integer

linear program.

3.2.2 Theassignment problem

Consider the complete bipartite graph, G = (V1 U V3, V1 x V3). Assume w.|.0.g
that n = [V4] < |V2| = m. Associated with each arc (i, j) there is a real number cjj. An
assignment is given by a one-to-one mapping J : Vi1 — V». The assignment problem is

to find an assignment j such that

D, ¢ isminimized.
ieVy

Assume that V1 = {i, ..., n} and V, = {i, ...., m}. Then the assignment problem

has the following linear programming formulation with 0-1- variable x;;:

minimize ) Zm: GiXj St

-1 j=1

i Xij:]. i:].,....,l’]

i=1
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3.3 Single machine scheduling problems

There are many algorithms published for single machine scheduling problems,
which are polynomial or pseudo-polynomial (e.g. 1 | r; | Lmax is polynomially solvalable
under certain constraints). It is useful to note the following general result which holds for
single machine problems: if al r; = 0 and if the objective function is a monotone function
of the finish times of the jobs, then only schedules without preemption and without idle
times need to be considered. This follows from the fact that the optimal objective value

does not improve if preemption is allowed.

3.4 Maximum latenessand related criteria

Let us consider the problem 1 | rj | Lmax. Thisis NP-hard problem. However, under the

following cases the problem can be polynomially solvable [4].
a) teker;=rvj=1,..n

We have an optimal schedule by applying earliest due date rule i.e.

schedule jobs in order of non decreasing due dates.
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b) taked, =d Vj=1,...,n.
We have an optimal schedule by scheduling jobs in order of non-

decreasing release dates.

C) p=1Vvj=1 ..n
At any time schedule an available job with smallest due date.

All of these rules take O(n log n) steps. Cases a, b and ¢ may be extended to the
corresponding problems with precedence relations between jobs. Case b required
modification of the release dates while in case a and ¢ similar modification is to be

done in due date using the following rule.

Ifi — jandd, =d - p; <di then replace d; by the modified due date d, .

Algorithm Modify d;
1. fori=1tondon =0

2. fori=1tondo

3. foralj e IP(i)don=nj.;
4, F=f
5. fori=1tondo
6. if i =0thenF=F v {i}
7. whileF = f do
8. begin
0. choosej € F
10. forali e |1 P(j)do
begin
11 d = min {d;, d; - p;}
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12 n=n-1

13 ifi=0then F=F u {i}
end

14. F=F\{j}

end

3.5 Somesimple scheduling algorithm

W.A. Horn [13] presented some simple scheduling algorithm where jobs require
only one operation on a single machine. Some of the algorithms are stated as bel ow.
1. Minimizing maximum |lateness

2 Minimizing total delay.

3.5.1 Minimizing maximum |lateness

Assuming al jobs are available at time O and for each job i due date d; have been
given, we can get minimize the maximum lateness scheduling the jobs in the order of

increasing d;. For such case W.A. Horn presents the following algorithm.

Algorithm 3.1 Let E be the subset of all jobs with earliest time of availability, which we
designate A;. Let A, be the next earliest time of availability. Let job i beajob in E which
has earliest due date d; of al jobs in E. Let Li=min{d;, A>-A;}. Assign job i to the

interval [A1, A1tL4]. If job i is not completed, reduce d; by L4, otherwise drop job i from
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the list. Repeat this operation for all remaining jobs, stipulating a minimum availability

timeof A; + L4, for all remaining jobs. Continue until all jobs are completely assigned.

3.5.2 Minimizingtotal delay

When we have no due dates are given and our objective is to minimize the total

delayi.e. Z (fi - &), where f; isthe finished time and & is the available time for each

job i, W.A. Horn states the following algorithms.

Casel If al jobs are available at the same time then schedule jobs in the order of

increasing d;, where di=fi-a.

Case2. If jobsareavailable at different time then apply the following agorithm.

3.6 Realistic scheduling problem

All the scheduling problems so far we have discussed are the theoretical model of
scheduling problems. The model of scheduling problem that have practical signification
and could be carried and tested in real life falls under realistic scheduling problem. We
have different models of realistic scheduling problems like online scheduling problems,
real-time scheduling problems and just-in-time scheduling problems. The nature of
realistic scheduling problems varies on how they address the rea time difficulties like

unavailability of job information until it arrives, resource constraints and so on [33,37].
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3.6.1 Onlinescheduling

In online version of scheduling, the scheduler receives jobs that arrive over time,

and generally much schedule the jobs without any knowledge of the future. 1 |r; | Z G

is aonline scheduling problem. In such a problem goal of scheduling problem remains to

reduce the average response time and efficient utilization of resources [15].

3.6.2 Real-time scheduling

Real-time scheduling problems are the typical computer related online version of
scheduling problem [33, 37]. Generaly, real-time system is an operating system
embedded in some electronic devices and the correct functioning of the system depends

on the time when jobs are completed. Some of the real-time systems are:

3.6.2.1 Just-in-time debugging

The Windows operating system has the built-in capability to perform "just-in-
time" debugging. Just-in-time, or JIT, debugging is where an application crashes while
not running under a debugger, and the operating system arranges to start up an available
debugger and attach it to the crashed process in order to obtain a back trace. The system
registry contains an entry for the debugger that should be invoked when this happens.
The Functional Developer Professional and Enterprise Editions are capable of acting as a
JT debugger; during the installation process you have the opportunity to install

Functional Developer as your machine's default debugger. For more detail see [11].
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3.6.2.2 JIT compiler

In computing, just-in-time compilation (JIT), aso known as dynamic translation,
is a technique for improving the runtime performance of a computer program. JIT builds
upon two earlier ideas in run-time environments: bytecode compilation and dynamic
compilation. It converts code at runtime prior to executing it natively, for example byte
code into native machine code. The performance improvement over interpreters
originates from caching the results of trandating blocks of code, and not simply
reevaluating each line or operand each time it is met interpreted language. It aso has
advantages over statically compiling the code at development time, as it can recompile
the code if this is found to be advantageous, and may be able to enforce security
guarantees. Thus JIT can combine some of the advantages of interpretation and static
compilation.

Several modern runtime environments, such as Microsoft's .NET Framework and
most implementations of Java and most recently Action script 3, rely on J'T compilation

for high-speed code execution. For more detail see [36].

3.7 Scheduling in operating system

Scheduling issues have a great impact in computer science. Almost all operation
system (OS) needs their job scheduled in a efficient way. In an OS, a machine is a
processor and jobs are processes i.e. job is a program ready for execution [28, 33, 37].
Machine environment varies on no of processor used, either preemption of program
allowed or not and on the resource constraints. Objective function may be one of the
following:

Process utilization: Average fraction of time during which processor is busy
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Throughput: Number of processes executed per unit time.
Average waiting time: Time that a process spends waiting resources.

Average responsetime: Time taken by a process to response after it is released.
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4 Just-in-time production system

41 Somekey elementsof JIT

This section contains a brief description of key elements used in mixed-model just-in-

time system.

1. Reduceor eliminate setup times:

Aim for single digit setup times (less than 10 minutes) or "one-touch”
setup -- this can be done through better planning, process redesign, and product
redesign. A good example of the potential for improved setup times can be found
in auto racing, where aNASCAR pit crew can change all four tires and put gasin

the tank in under 20 seconds [5].

2. Reducelot sizes:
Reducing setup times allows economical production of smaller lots; close
cooperation with suppliers is necessary to achieve reductions in order lot sizes for

purchased items, since thiswill require more frequent deliveries.

3. Reducelead times:
Production lead times can be reduced by moving work stations closer
together, applying group technology and cellular manufacturing concepts,
reducing queue length and improving the coordination and cooperation between

successive processes, delivery lead times can be reduced through close
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4.2

cooperation with suppliers, possibly by inducing suppliers to locate closer to the

factory.

Flexible work force:

Workers should be trained to operate severa machines, to perform
maintenance tasks, and to perform quality inspections. In general, JIT requires
teams of competent, empowered employees who have more responsibility for
their own work. The Toyota Production System concept of “respect for people”

contributes to a good relationship between workers and management.

. Small-lot conveyance:

Use a control system such as a kanban (card) system (or other signaling
system) to convey parts between workstations in small quantities (ideally, one
unit at atime). Initslargest sense, JIT is not the same thing as a kanban system,
and a kanban system is not required to implement JIT (some companies have
instituted a JIT program aong with a MRP system), although JIT is required to
implement a kanban system and the two concepts are frequently equated with one

another.

JIT system examples

4.2.1 JIT-stylelearning and training

The best kind of quality-oriented learning (and training) is just-in-time-style

learning, i.e., learning that happens on the job and knowledge is applied immediately as
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needed. The sooner you can apply the materia you learned, the better you will
understand it and the longer it will be retained. Instead of training masses of employees
for long periods, in JIT-style training, education is implemented as an ongoing series of
short sessions (just a few hours a week) during which employees are taught only what
they can apply soon, without suffering information overload.

Innovative e-learning services create new opportunities for such on the job JIT-
style learning and training. In particular, this first-ever Ten3 online Business e-Coach
provides very effective JIT-style e-learning opportunity which is available free anytime

to anybody [32].

4.2.2 Kanban —acommunication tool in JIT production system

Being a very important tool for just-in-time production, kanban has become

synonymous with the JIT production system.

Kanban, meaning label or signboard, is used as a communication tool in JIT
system. A kanban is attached to each box of parts as they go to the assembly line. A
worker from the following process goes to collect parts from the previous process
leaving a kanban signifying the delivery of a given quantity of specific parts. Having all
the parts funneled to the line and used as required, the same kanban is returned back to
serve as both a record of work done and an order for new parts. Thus kanban
coordinates the inflow of parts and components to the assembly line, minimizing the

processes [5].
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4.2.3 Toyota production system

Toyota Motor Corporation's vehicle production system is a way of "making
things' that is sometimes referred to as a "lean manufacturing system™ or a "just-in-time
(JIT) system,” and has come to be well known and studied worldwide. This production
control system has been established based on many years of continuous improvements,
with the objective of "making the vehicles ordered by customers in the quickest and most
efficient way, in order to deliver the vehicles as quickly as possible” [38].

The Toyota Production System (TPS) was established based on two concepts. The
first is caled "jidoka'(which can be loosely translated as "automation with a human
touch") which means that when a problem occurs, the equipment stops immediately,
preventing defective products from being produced; The second is the concept of "just-
in-time," in which each process produces only what is needed by the next process in a
continuous flow.

Based on the basic philosophies of jidoka and just-in-time, the TPS can efficiently
and quickly produce vehicles of sound quality, one at a time, that fully satisfy customer

requirements.

4.3 Mixed-model production

Mixed-model production is the practice of assembling severa distinct models of a
product on the same assembly line without changeovers and then sequencing those
models in away that smoothes the demands for upstream components [5].

The objective isto smooth demand on upstream work centers, manufacturing cells

or suppliers and thereby reduce inventory, eliminate changeovers, improve kanban
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operation. It also eliminates difficult assembly line changeovers.
Toyota developed the concept in the 1960’s in response to the problems created
by line changeovers. It was originally applied to long assembly lines such as those used

in automotive.

44  Push versus pull production system

Push system: Total demand is forecast, and the producer alocates ("pushes’) items
to users based on the expected needs of all users. Finished goods accumulate in

inventory. - Produce for Forecast [28].

Pull system: Each user requests ("pulls’) items from the producer only as they are

required. Units are only produced if there is demand for them. - Produce For Demand

e production is pulled through the supply chain in response to actual

demand

o first seen injust-in-time systems in Japan
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5  Mixed-modd just-in-time production system

Just-in-time systems are formulated under the assumption that the system have
negligible switching over cost from one product to another and that each products are
produced in a unit time [9, 22]. The system has a constant rate of usage of all parts and
the sequencing problem aims to minimize the variation so that earliness and tardiness

penalties are minimized.

51 ThePRYV problem formulation

Under the assumption that the product requires approximately the same number
and mix of parts, Miltenburg [24, 17] reduces the sequencing problem into the product
rate variation (PRV) problem, asingle-level case [24, 17].

Suppose D units of n products are to be produced with respective demands d;, i =
1,...,nwithD :Zi”:l di during a specified time horizon. Then the objective is to
maintain the cumulative production X, anon-negativeinteger,i=1,...,n; k=1,...,D
of product i during the time periods 1 through k as close to the ideal production kr;, a

non-negative rational number, i=1,...,n;k=1,...,Dwithri= d—D' and Zi":l rn=1as

possible. The total production time horizon is partitioned into D equal time units of which
1 time unit is required for a unit of a product to be produced. In [24] Miltenburg
formulates a non-linear integer programming with nonnegative, convex and symmetric
function having minimum 0O at 0 as the sum of the square and the absolute deviations

between the actual and the ideal production. Kubiak and Sethi [19] generadize this
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problem as the unimodal convex function fi(x) satisfying f;(0) =0, fi(y) >0fory = 0,1 =
1,..., n. The mathematical model of the PRV problem P1[19, 24, 35] isasfollows:

minimize [F: mE\xfi (X - kri)} (1)
and

minimize |6 =Y 3" f, (x, -kn))| 2
subject to

> xk=k, k=1, ..., D ©)

Xik1 < Xik . i=1, ......... k=2, ..., ,D (4)

Xip = di xi0=0,i=1, veeeen o N (5)

Xik = 0, integer (6)

The constraint (3) shows that exactly k units of products are produced in the
periods 1 through k. (4) states that the total production is a non-decreasing function of k.
(5) guarantees the demands are met exactly. (3), (4), and (6) ensure that exactly one unit

of aproduct is sequenced during atime unit. In Particular we can extend the above
formulation as:

Fa= mex %, —kr; |

Fs= maeX (%, —kr)?
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Ga= 25:1 Zin:1 |Xik —kr |
Gs= 25:1 Zinzl (Xik —kn )2

in P1 as the particular objectives. Here we denote, for example, problem Ffor the
problem P1 with the objective function F,and the constraints (3) — (6). The sequence (let
SAY S = S1..nnnne Sp ) generated by P1 always keeps the actual production level xix as
close to the ideal production level kr; as possible all the times.

An aternative objective, i.e. the minimization of the deviations between the times
at which a unit of a product be actually produced and the time at which the unit of the
product is needed to be produced, has been introduce by Inman and Bulfin [14]. This
objective appropriates with the objective established by Miltenburg [24].

5.2 TheORYV problem formulation

In the more practical approach, we have a production system that consists of a
hierarchy of several distinct production levels such as products, sub-assemblies,
component parts, raw materials, etc. In such system, the part demand rate at upper level
defines the part demand rate down the level. Such system is known as Output rate
variation (ORV) problem, a mixed-model multi-level JIT sequencing problem [17, 25,
26]. Hence, the mathematical model of the ORV problem must incorporate the method so
that partsfit together to form products.

Let the systems consist of L different production levels |, | = 1, . . ., L with
product level 1. d; be the demand for part typei of level I, i =1, ..., n, n the number of

different part types of level |. ti, represents the number of total units of part typei at level

| required to produce one unit of product p, p=1, ..., n and dj = ZL tiipdp1, the
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dependent demand for part i of level | determined by dy, p=1, ..., ni. Note that tjp =1

for i = p, and O otherwise. D; = Z”':l d; stands for total part demands of level | with

demand rater;; - % and le m=1forl=1,...,L.

This is a non-preemptive model. The total time horizon in the product level is
partitioned into D;equal time units such that there will be k complete units of various
products p at level 1 during the first k time units. As the demands of part type
requirement at the lower level are pulled forward according to the need of the product
level, the system is also referred as pull system.

L et Xk denotes the quantity of part i produced at level | in the time units 1 through

k and yi = ZL Xiik be the total quantity produced at level | during the time units 1

through k. Clearly, at leve 1, yi = Z_”':l Xik = k. The required cumulative production

for part i of level I, | = 2 through k time units will be x;x = Z:)' tiipXpik. Consider f;

=1
unimodal convex function with minimum O at 0,i =1, ..., n,. The mathematical model

for the ORV problem P2 [19, 26] isasfollows:

minimize [ F= max fi(Xik -yifi)] (7)
and
Dl L n\l
minimize [G=)_ D fili - yiri)] (8)
k=1 I=1 i=1
subject to
nl .
Xilkzztilpxplk, |=1,...,n|;I:1,...,L; kzl,...,Dl (9)
p=1
N
yk = D Xik, l=2,...,L; k=1,...,D: (10)

i=1
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L]
yw= Y Xp=k, k=1,....D; (11

b1
Xplk = Xpl(k-1)» p=1,...,n;k=1,...,Ds (12)
Xpip = di, Xp10= 0, p=1...,m (13)
Xik = 0O, integer, i=1,...,n; I1=1,...,L;k=1,...,D1 (14)

Constraint (9) ensures that the necessary cumulative production of part i of
level | by the end of time unit k is determined explicitly by the quantity of
products produced at level 1. Constraints (10) and (11) show the total cumulative
production of level | and level 1, respectively, during the time units 1 through k.
Constraint (12) ensures that the total production of every product over k time
units is a non-decreasing function of k. Constraint (13) guarantees that the
demands for each product are met exactly. Constraints (11), (12), (14) ensure that
exactly one unit of a product is scheduled during one time unit in the product
level. In particular, denote

Fa= max | Xiik = YikTil |

Fs= rir}aKX(Xilk_ Yiklit )2

fary

D1 L n
1

Ga= ) Z | Xitk = YikTi |

k=1 1=l =l
Dl

G Y,

k=1

My

Z ( Xik = Yiit )°

i=1

M-

Il
=

in P2 as the particular objectives. We denote, for example, problem Fafor

the problem P2 with objective function Faand the constraints (9)-(14).
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5.3 Thetotal PRV problem

5.3.1 Assignment costs

Kubiak and Sethi [19] reduces the total PRV problem G with unimodal, convex,
symmetric and non negative function f;(0) = 0, fi(y) >0 fory # 0 to an assignment
problem that can efficiently be solved pseudo-polynomially with time complexity O(D?) .

The ideal position for the production of (i, j), the j™ copy of product i is, Z;
:{212—;1} the point of intersection between f; for (i, j) and f; for (i, ) -1),i=1,..., n; j
=1,..., d; i.e. the unique crossing point satisfying fi(j —kiri) = fi( — 1 — kyri ). If al

copies of product i are scheduled at their ideal positions, the product i will contribute the

cost inf fi(j — kr;) to the total cost of the solution. The idea position {212_1—‘ minimizes
r

both the problems F and G, however, leads to infeasibility whenever more than one copy
competes for the same ideal position in the sequence. Higher priority is given to j over j’
whenever j <j'.

Lee X ={(@,},Kli=1...,nj=1,...,d;k=1,...,D}. Thecost Cj = 0 for (i,
J, K) € X with respect to the ideal position Z;; of assigning (i, j) to the time unit k is

defined as follows.

Zl < .

Zi:ijw if k<Zz;,

Cin= 0 if k=Zij|
k=1 o .

Zi=zlijj i if k>Zz,,
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where,

il

f(i-Ir)-f(j-1-r) ifl <z,
{fi(j—l—lri)—fi(j—lri) ifl >=2,

5.3.2 Assignment method

The total PRV problem in the form of assignment problem P4 [19] is

D n di

min [H=> > > CyX (18)
k=1 i=1 =1

subject to

n d;

> > xk=1k=1,..., D (19)

i=1  j=1

D

Z Xijk = 1, i=1,..., n;j =1,..., di. (20)

k=1

where,

1, if (i,])isassigned totimeunit k
Xijk = .
0, otherwise

nk=1..., D is optimal to problem G. Hence, any optimal solution to problem G can
be constructed from any optimal solution of problem H in O(D) time It is, by induction,
shown that there is at least a sequence that preserves order i.e. (j +1)% copy of product i
will not appear before the j™ copy in the sequence. The assignment problem with 2D

nodes can be solved in O(D?) time [17].
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A st X ¢ XisX feasibleif the following constraints hold:

ci:Foreachk, k=1,..., D, thereisexactly one (i, j),i =1, ..., nj=1,..., d; such

that (i, j, K) € X, i.e, exactly one copy is produced at one time unit.

C;:Foreach(i,j),i=1,...,n;j=1,...,d,theeisexactly onek, k=1, ...,D such

that (i, j, k) € X, i.e., each copy is produced exactly once.

ca If (i,], k), (1,)', k") e Xandk <k'thenj <]', i.e, lower indices copies are produced
earlier.

c: and ¢, are the assignment problem constraints whereas c; is different that
imposes an order on copies of a product. The sequences=s;S, ... withsc=,k=1,..
.,D,if (i, J, k) € X, for some |, is feasible for any instance (d1, . . ., dn). Kubiak and
Sethi [15] obtain the result.

54 Thepegged ORV problem

Goldstain and Yeoman [34] show that the ORV problem under the pegging
assumption can be reduced to the weighted PRV problem [34]. Pegged parts of output i at
level I, 1 =2,...,L, are dedicated to be assembled into the particular product at level such
that the parts are dedicated to be assembled into the different products are distinct. They
give the first mathematical formulation for pegging in a JT environment. They aso
formulated several heuristic solution techniques for the pegged, multi-level min-sum
model (ORV problem). The pegged ORV problem Fe with absolute deviation function

can be written as
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Min Max {\Nh1|xh1k - krh1|’vvi' ‘Xhlktijh - ktijhrh‘ }’

h,i,j,k !
h=1,.., n;i=1,..,n; k=1,.., Dyl =2,...,L with constraints (9) - (14).
Letting | =1, ..., L and transforming the weighting actors [25] the pegged ORV
problem has been reduced in [34] to the following weighted PRV problem min max X; k

wi* [Xik -kri|, 1 =1,...,n; k =1,...,.D, where w;* = max; { w;(tin) } with constraints(3) - (6).

5.5 Cyclic sequence

Miltenburg [24] and Miltenburg and Sinnamon [26] study the existence of the
cyclic sequence in problem Gs. They introduce the concept of cyclic sequencing and
show that the time complexity of the existing algorithms (pseudo-polynomially solvable)
can be substantialy reduced Still the big question whether a concatenation sum of m
copies of an optimal sequence s for the Instance (da,..., dy)is optimal for ( mgg,..., Mgy ),M
> 1to build a sequence for alonger time horizon remains open.

Kubiak in [18] reviews the PRV problem and shows that the cyclic JI'T sequences
are optimal. He takes a PRV problem with a given n products 1, .., i, ...., n and n positive

integer demands ds, ....., dj, ...., dn. He supposes a sequence a = a g,....., at,T=

Zi":l di, of the products, where product i occurs exactly d; times that always keeps the

actual product level, equal the number of product i occurrencesin the prefix a j,....., a¢
,t=1,......, T, and the desired product level, equal r;t, wherer; = d//T, of each product i
as close to each other as possible. And provesif b isan optimal sequence for dy, ....., dj,

...., dn , then concatenation b ™ of m copies of b is an optimal sequence for md, .....,

mdi, ...., md,,.
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6 Mixed-model JIT problems

6.1 Nearest integer point problem

Aiming to minimize the total deviation or sum of al deviation of the real
production from the ideal but rational production, Miltenburg in [26] has purposed some

algorithms and heuristics.

Problem statement

Define the point Xy = (X1, X2, «vuvennn. Xn,) € Rn where X x = kr;, ZXi’k =k,and R
i=1
is the set of real number. Problem is to find the “nearest” integer point My = (m,, ,m,,,,

............. , m,,,) € Z" to the point My where Zmi’k =k, Z is the set of nonnegative

i=1
n
integers and “nearest” means minimize Z(mi]k X))’

i=1

Algorithm 1 The following algorithm finds the nearest integer point M = (m,,,m,,,,

............. , M,,.) €Z"toapoint X = (X1, Xz, ........ Xn,) € Ro Where > m; =>"x; =k.
i=1 i

n
I
i=1

1. Calculatek = > x,

i=1
2. Find the nearest nonnegative integer m, to each coordinate x;. That is, find m, so
that |mi-xi| < 05,i=1,2, .............. , N.
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3. Calculate ky=) m,

i=1
a if k-ky=0stop. The nearest integer pointisM = (mg, my, ......... , Mp)
b. if k-kn>0gotostepb.
c. ifk-kn<0gotostepb.

4. Find the coordinate x;, with the smallest m;-x;. Increment the value of this mi;

m; — M;41. Go to step 3.

5. Find the coordinate x;, with the largest m; — x;. Decrease the value of this my;

m; — Mj1

Problem with algorithm 1
For X = (30/13, 30/13, 5/13) the integer point is (2, 2, 1). Then for X = (36/13,
36/13, 6/13) the integer point is (3, 3, 0). Production schedule is 1, 2, -3 which in

impossible as production cannot be destroyed. Hence the schedule is not feasible.

Conclusion

Algorithm-1 may lead to infeasible solution.

Algorithm 2

1 Solve the problem P1 (using Algorithm 1), and determine
whether the schedule isfeasible.( It isfeasible if m; y — m; .1 > Ofor al i,

k.) If the scheduleis feasible, stop. Otherwise, to go step 2.

2 For the infeasible schedule determined in step I, find the first (or next)
stage | where mj; — m;,..1 < 0. Set 0 = number of product i, for which m;; —
m; .1 < 0. Reschedule stages| - 0, | - 0 + 1, ....., I+1 by considering all
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possible sequences that begin with the schedule for stage | -0 - 1 and end
with the schedule for stage| + 1.
3 Repeat step 2 for other stages where m; « — m; .1 < 0. Then stop.

Problem with algorithm 2

In general there aren! / (n - 0 -2)! possible sequences, each of length 0 + 2, to
consider for each infeasibility. While total enumeration works for small problems of this
type (products where similar part requirements) it does not work well for larger problems,

nor for problems where products have differing part requirements.

Algorithm 3

1. Solve problem P1 (using Algorithm-1), and determine whether the schedule is
feasible. (It is feasible if mjx — mix.1 > O for al i, k.) If the schedule is feasible,
stop.

2. For the infeasible schedule determine in step 1, find the first (or next) stage |
wherem; | —m; .1 < 0. set d = number of products i, for which m; | — m; ;.1 <0, and
beginning at stage | - @ use Heuristic 1 or Heuristic 2 to schedule stages | - 9, | -
0+1, ..., I + W, where W > 0. | + W is the first stage where the schedule
determined by heuristic matches the schedule determined in step 1.

3. Repeat step 2 for other schedule determined in step 1.

Heuristic 1.
For a stage k, schedule the product i with the lowest X x— kr; .

Heuristic 2.
For each stage k:
1. set h=1
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2. Tentatively schedule product h to be produced in stagek. Calculate the
variation for stage k and call it V1,

3. Schedule the product | with the lowest x; x— (k+1)r;,

4, Increment h; h —> h+ 1. If h>ngoto step 5, otherwise go to step2

5. Schedule the product h with the lowest Vi,

6.2 Dynamic programming algorithm

6.2.1 Problem statement

In [27] Miltenburg, Steiner and Yeomans consider both the usage goa and

loading goal as a prime factor in min sum PRV problem and aimsto

D
minimize . (@U, +a,L,) (D1)
k=1
st
Z Xik:k, k:1,2, ......... , D
1=1
XiD= di, i= 1,2, ... , N
Xio = 0 i= 1,2, ........... , N

Xiky < Xik, Vik
where,
a ,isrelative weight for usage goal

a | isrelative weight for loading goal.



Zn: (X|k kr.

=1

= D, t(xic-kn)?

1=1

Redefining T>= a ,+ a t’, the objective function in D1 can re re-written as

D n
minimize . > TZ(xx—kr)?

k=1 I=1

6.2.2 Dynamic programming (DP) procedure

The objective function in problem (D1) requires the minimization of a quadratic
integer function. The large number of integer variables, along with the first and last
groups of constraints, makes it impossible to solve by genera integer programming
techniques. Here is a specia purposed DP procedure instead, which enables us to find the
optimal JIT schedule for practical-sized problems.

Letd=(dy, dy, ......... dn) be the product requirements vector. Define subsetsin a
schedule as X = (X1, X2, «.uvenn.s Xn), Where x; IS a non-negative integer representing the
production of exactly x; units of product i,, x; < d;, for al i. Let e be the usua i unit
vector; with n entries, al of which are zero except asingle 1 in the i™ place. A subset X

D xi .Let f(X) be the minimal total

i=1

can be schedule in the first k stagesif K = | X |
variation of any schedule where the products in X are produced during the first k stages.

Letg(X)= Z T;? (xjk - k)
i=1

The following DP recursion holds for f(X):
f(X) =1f(Xqg, Xz, ... Xn)



min{f(X- g )+g(X)| 1=1,2,...,n;xi =1 > O},
f(X|V xp= 0)
= (0,0, ......, 0)
=0
itisclear that f ( X ) > 0, and it follows easily from the definition of the ri-s that
gXxX |V xi = d)=0.

f(®)

Theorem

The DP recursion solves the JIT scheduling problem in

O(nf[ (d, +1)] time

and

O(lﬂ[ (d, +1)j space.

6.3 Min-max-absolute-chain algorithm

In [8] Dhamala, extended the formulation of single-level JIT sequencing
problem under a number of chain constraints. He purposed the following min-

max-absol ute-chain-algorithm.
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6.3.1 Min-max-absolute-chain-algorithm

Given: d; fori=1,2,......,nrand t=1,2, ........, m;

an upper bound B for min-max-absol ute-chain-problem;

chaing, chain, .......... , chaing, ............, chaing;
Update: number of demandsn=n
demand ratesdi fori=1, 2, ......,n;

total demand D = d,.

Step 1: Calculate windows [E( 1, }), L(i,))] forj=1,2, ...... , di and
i=1,2, ... , n by STEINER / YEOMANS [35]

Step 2: Modify theduedate L (1, j).
if (i,)) = (i°,§°) then L(i, j) := min {L(i, j), L(i",j)}

Step 3: Schedule the jobs by EDD -Algorithm of HORN [13].

Output : B feasiblefor (n, D) if Lyjax < O.

6.3.2 Min-max-absolute-chain-algorithm for overlapping sequence

- Let assign the chain Id with each job
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Hence let say if job a fallsin chain; and chain,, the job a will be converted

into job ay and job &y where O istheid of chain; and 1 istheid of chain,.

Now the input become pseudo-Non-Overlapping sequence and hence can

be solved by the algorithm purposed at 4.3.3.
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7  Implementation

After the study of different types of problems and algorithms, the application
software to illustrate these problems and algorithm is implemented in Java. For each

problem a package is defined. The Java Swing is used to develop GUI.
Machine Specification

Pantium 4 CPU 3.06 GHz.
496 MB RAM.

7.1  Architectureview of project

The architecture view of whole implementation is shown by the following tree

view.
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- ‘;:'? OnThesovalbility andmplementationdf 1ITProblem
+- [ costhssignment:,com
+- [ costhssignment, GUL
+- [ costAssignment, madel
+- 1} costhssignment,POJ0
+- [ dynamicPragramming, com
+ ﬂ} dynaricProgramming, QLI
+ Hﬂ dynamicProgramming. modsl
+ EB dynaricProgramming, POI0
+- [ eatliestDueDate, com
+- [ eatliestDueDate, GUI
#- [ eatliestDueDate. mods
+ 4 earliestDueDate POI0
- i oui
t J mainfFrame. jaya
+- MinaxabsoluteChain, cam
#- [ MinMaxAbsoluteChain, GLT
+- [ MinMaxAbsoluteChain, mode!
+- [H MinMaxAbsoluteChain,POI0
+ 13 NearestIntegerPoint. com
+ ﬂ} MearestIntegerPoint, GLI
#- [ MearestIntegerPoint model
+- 1 NearestIntegerPoint, POIO
- [ il
¥ |_| Doublelt. java
¥ J J| ListiewModel java
+ J MyMatrix. java
+ J J| ShowSchedule, java
B, JRE System Library [jrel,6.0]

e T

+

Figure 4 Architectural view of whole project

The implementation project consists of implementation of five problems:

1) Nearest integer point problem
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2) Earliest due date problem

3) Cost assignment problem

4) Dynamic programming problem

5) Min-max-absolute-chain problem with constraints

For each package we have the same architecture. Each consists of 4 sub-packages:

a) GUI

b) Com
c) POJO
d) Modd

GUI package consists of the class files that define the graphic interface to input data.
The com package consists of the class files that hold the main algorithm. The POJO
consists of class files that define the structure of the entities required for the algorithm.
Finally the model sub-package consists of the class files that contain definition of data

and tabular view.

Beside these we have two sub-packages

a UTIL
b) GUI

These two packages consist of classfilesthat are used by all of the five projects.

7.1.1 UTIL package

The UTIL package consists of four classfiles:
DoubleUtil.java

ListViewMode.java
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MyMatrix.java
ShowSchedulejava

DoubleUtil.java consists the logic required to operate with double valueslike :

Doubl e get RoundDoubl e(doubl e val ue,

i nt no_of _decimal _point_to_round);

i nt upperFl oor (doubl e d);

Class ListViewModel consists the structure of the table that holds the list of data
to view the results.

Class MyMatrix consists the definition for the matrix that is used to hold records

Finally, class ShowSchedule is used to view the result list defined by class
listViewModel.

7.1.2 GUI package

The GUI package consists of
i) mainframejava

Mainframe,javais the main controller for the implementation. It consists of menu

for switching between the projects. The interface of mainframe looks like:
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Figure5 Interface of main GUI

7.2 Nearest integer point implementation issue

Nearest integer point falls under the min-sum PRV problem. The main objective
of the program is to minimize the total variation. Architecture view of Nearest Integer

Point Problem implementation is shown by the following tree view.

| = ”EI MearestrtegerPairt.con

{ J Algcrizbral. jave

i J Hewvigkicl jewa

=k :E i"-learest[rtegerFurt“(.E_l[
LJ Tnputlch, jave

-'J| Showschedule.-ava

it MearestirtegerPaint, rodel
"J ZoaDataMoce java
lJ TabelModelFo-Job java
-H} MearestirtegerPoint FOI0
£[1) Zojava

-i+|

l+|

m
|+. I+. tl:-" |-_+|- I+

Figure 6 Architectural view of nearest-integer-point package
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This Package implements the nearest Integer Point algorithm developed by

Meltenburg and one of his heuristic.

E® Input Job Demand For Meorssi Integar Point Algerithms __| E||i|
Procadure
Jdob o Oermatid

| =3

s ki

a3 1

Jobild: 3 Meerrwamd: |1
Adld Hew Et T |

Figure 7 Date input frame for nearest-integer-point package.

The figure 7 show a sample date used for testing the algorithm. There are n = 3
products with demands D = (6, 6, 1) to be assembled on a mixed-model assembly

line. Hence the vector of demand ratios, is r = (6/13, 6/13, 1/13).The schedule

generated by algorithm 1 is demonstrated by the figure below.

B oot Integer Foink Algarithn 1 . =0 ]
Stare (k) S0 W] ¥17] [0 W] M Siedart 8 sendoc[llaEl Tedal waiiat oo
g m471h4 47154 IREIEN 1 M | il T NASE N AR AR
2 nazi0g 092308 215338 I | ] +3 20355 05938
il CARRD 1 172R% T2NFT - 1 il 11 157970 T T
1 ' BI6° S |.8161£ 2.307 39 3 2 ] +3 21143 CREEAT
5 227763 21076RE J.a0452 z 2 1 1z 156025 S 0232
i 75953 205925 R T = 3 ) +1 +3 -3 231953 35385
7 323077 323077 133846 = 3 | +: 131933 247337
A FRATR FRATH 151538 4 2 i + #3 -3 [TORATN FN4147
4 4 5283 1. 338E 23933 4 - | +I 22 303313
1 4 R1507 4 R150r TFRA2D L 5 i [ Rt B B 1 s 4 N7
| SOTESZ A.0TEAZ R g 4§ 1 + 2.7355 4 " 651
T 2adlds 2.0 U4 Jdan Iz i J L A P (| R A Y
3 fin fin 11 F Fi 1 " 11 R

Table1 Schedule generated by Algorithm 1
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The optimal production over 5 stages is (2, 2, 1) while the optimal production
over 6 stagesis (3, 3, 0). During the sixth stage one unit of product 1 and one unit of
product 2 must be produced while one unit of product 3 must be destroyed. Of course
this is impossible. Only one product can be assembled during a stage and products
assembled earlier cannot be destroyed. However, based on these results, we can
develop a number of “feasible” schedules.

The figure below demonstrates the schedule generated by the heuristic 1 as

purposed by Meltenbure to as a “feasible” schedule solution.

E\earest Inteper Point Probien - Correction Using Heuriskic 1 1 =1
Stage {1 X0 e =12 M[Z] 1[1] b2 “rodact Szh o guabim|i K- Tots] Yarst on

1 M 4F 154 M 4154 I7F 1 I 1 + n=nNaaa M5 ARA

2 1) Y234 ] Y2 Al L1545 1 I Il il (L 1) 54444

3 135462 - 3BdA2 0.Z3C7T Z i i £ 0279838 . adih

q 1.84615 b L 0.30769 Z 2 i 2 n.14z01 122627

> 230764 13076 038402 Z 2 1 T 0.ZEG00 18452

3 2. 7E020 2GR [.461 52 ] z 1 - 02321 Za )

f 32077 32300 0.53C46 3 c 1 +2 0.:"0s3 ERIEE R

= Rt 3 EI2H .57 £38 ] = 1 i 0r8d 281065

z L EIRS 4 15385 .59 4 4 1 + n.142m ER S

111 L KRR 4 H10F 11 Pk 9 4 1 + 1=4HH LA -TRL

| a.07692 507358z 0.34E15 ] = | + 0.-354 £ 87805

12 5.A2553 35334 032205 B = 1 + 050658 07692

13 k.0 fi 0 1.1 g E 1 2 0.z DOFGEE

Table2 Schedule generated by Heuristic 1

The variable k counts the stage of the production. That is, k runs from 1 to total
demand and at each stage one of the items is produced. Array X [] consist the rationa
value of demand of the product to the total demand. Array M [] consists the nearest
integer to the array X [] of respective product. At any stage k, M [] consists of the integer
value denoting the number of items to be produced at the stage and product schedule is

identified according to M[K] — M[k-1] .



Under this topic we have implemented Algorithm 1 and Heuristic 1 purposed by
Miltenburg [24] and mentions on 6.1. Algorithm 1 found to be easier then Heuristic 1
while coding and understanding, however, Heuristic 1 removes the infeasibility issue
found in Algorithm 1. The analytical study of Algorithm 1 and Heuristic 1 under different
cases (considering the number of infeasible case encounter and total variation) is

tabulated as below:

7.2.1 Comparative study of Algorithm 1 and Heuristic 1

CASE TOTAL VARIATION INFEASIBILITY
VSALGORITHM

CASE : (6,6,1)
ALGORITHM 1 5.38462 4
HEURISTIC 1 5.07692 0

CASE: (52,4,7)

ALGORITHM 1 7.09259 1
HEURISTIC 1 6.64815 0
CASE : (2,3,4)
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ALGORITHM 1 2.37037 0

HEURISTIC 1 2.37037 0
CASE : (1,5)

ALGORITHM 1 1.05556 0
HEURISTIC 1 1.05556 0

CASE: (1,5,7,3)

ALGORITHM 1 6.625 2

HEURISTIC 1 6.125 0

CASE: (1,5,7,3,9)

ALGORITHM 1 13.12 3

HEURISTIC 1 12.32 0

Table 3 Analytical view of Algorithm 1 vs. Heuristic 1

From study we can say that heuristic 1 removes the case of infeasibility seen in

Algorithm 1 and also minimize the total variation in the case when infeasibility occurs.
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7.3 Earliest due date implementation issue

Earliest Due Date is amin-sum PRV problem and is an easier solution of Nearest
Integer Point Algorithm [24]. It is simple and doesn’t lead any infeasible case as given by
Algorithm 1 of Meltenburg, Hence, doesn’t need any heuristics and is more faster then
Algorithm 2 or Algorithm 3 of Meltenburg. However the total variation seems to be little
deviating then those given by Algorithm 3. Still, being simple to understand and fast
execution time it has advantage over Meltenburg’s algorithms. The architecture view of

Earliest Due Date Problem implementation is shown by the following tree view.

S » f ot lieskOiieDate com

fE /| EarliestDueDate java
i earliestDueDate, GLIT

i [g InputDemand. java

i earliestDueDate, model

* 11| JobDatatModel java

- 4] TabeModelForJob.java
1 earliestDueDate, POIO
[0 Jobujava

Figure 8 Architectural view of earliest due date package

To demonstrate the EDD approach consider Example 2 of Miltenburg ( 1989)
withn=3D1=6,D2=6,D3=1and T =13. Thereare atotal of 13 jobs to be assigned

to 13 positions.
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Earliest Due Date - Input Demand

Jaob I Jemanc

doh Id: A1 Nemand : L

Add New Save Schedule

Figure 9 Date input frame for earliest due date package

The following table list the calculated due date value according to the algorithm

considered.

Earliosl Dua Dala r.;l |E,| |E

Hrndet Llnit e | ate

.083
3.258
S.417
T.O83
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.97
.083
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T.H83
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]
== |2 T o [P | = [0 T 0 [Pt | —

K
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Table4 Schedule generated by earliest due date

The variable unit run from 1 to the number of items to be product for each product

i. and due date for product of each unit of each product is calculated by the formula t, =
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[(k—1/2)r]%). ,i=1,....., n; k = 1,.....D; as mention by Inman and Bulfin[14]. At each

stage, we choose a unit of the product whose due date is minimum, as production unit.

7.4  Dynamic programming implementation issue

Dynamic Programming is of the solution for ORV problems. The architecture
view of Dynamic Programming Problem implementation is shown by the following tree

view.

=} dynamicHrogramming, conm
i+ LF] Lynamickrogramming. jawva
= dynamicProgramming . sUT
#. [0 Inputbiemand. java
= H3 dynarnicProgearneing . ol
I+ :F_. Tl iPsAl At el jAwA
+ 'r_, Tal ikl nl-IF e Tl jAva
= EB dyiamicProor anniig, POI0
- |J] Job.java

Figure 10 Architectural view of dynamic programming

The variable stage runs from 1 to the total number of demand. The array X|] at
any stage consists of possible combination of the production items. The value of f(X-¢€),
g(x) is calculated as mention in session 6.2.2. The value of f(x) at any stage is the sum of
f(X-€) and current g(x). There may be many possible combination production at any stage
and are denoted by the Expand field whose values is E. One of the combination at a stage
whose Expand field is E is chosen according to the minimum f(x).

Consider athree-product example with the date shown in fig 5.7. Three products

with demands 3, 2 and 1 are to be produced. The DP procedure is used to determine the
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optimal production schedule and thisis done in table below

E® pemand Input Franee For Dynanic Prooranmming = = 0] =|
dals el Cizinz el Tirne
E 1
2 2 g
3 [1 |2
Job id: ¢ Liemane | |2 lime : |4 B
. o
Aild Mew | | Sawe || Schedue

Figure 11 Date input frame for dynamic programming testing

At each stage k, all subsets X which are feasible ( [X| =k and x; < d; Vi) are
generated. For each subset, all possible X — g are then generated. The value of f( X
— g ) is available from the computations done at stage k -1; the value of g(X) is
computed; and the two are added together. The minimum of these valuesis f(X).

Consider, for example, the subset X = (1,2,0) at k =3 g is either (1, 0, 0) or (0, 1,
0) but not (0, 0, 1) sincex3 =0; so X — g takes the values (0, 2, 0) and (1, 1, 0). From the
computationdoneat k =2, f (0, 2,0) =57.35 and f(1, 1, 0) = 6.36.

g(X) =9(1, 2, 0) = 12(1-3(.5))? + 52(2-3(.333))* + 22(0 — 3(0.167))?

=.0250 + 25(1) + 4( 0.250)
=26.25

Therefore, f (1, 2, 0) = min (57.35 + 26.25, 6.36 + 26.25) = 32.61. The total

minimum variability for the problem is 13.97 and by working backwards through table 5

we obtain the optimal sequence, 1-2-3-1-2-1.
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7.5 Cost assignment problem

Cost assignment problem is min-sum PRV problem. Differ to Meltenburg’s
Algorithms or the EDD rule, the cost assignment problem calculate the cost of scheduling
each product and chose the one with minimum cost. As Meltenburg’s Algorithm 1, Cost
assignment problem does not product any infeasible hence doesn’t need any heuristic
solution. So, is reliable then Meltenburg’s Algorithms. Calculating the cost through
excess inventory or shortage calculation add extrawork henceit is slower then EDD rules
or Meltenburg’s algorithm but is more perfect and have minimum total variation then
both Meltenburg’s Algorithm or EDD. The architecture view of Cost Assignment

Problem implementation is shown by the following tree view.

1
=}

costAssignment, com

[g Cosktassignment. java
costassignment, GUIL

LT InputDernand. java
}nqr.ﬁ.qqignmﬁnr.mndﬁl
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iJ| TabelModelForlob.java
costAssignmnent, POJ0

# [J] Job.java

+- -1

T
l

|
.'-Ij::

BeE

Figure 12 Architectural view of cost assignment problem

Consider three part types A1, Az and Az with demands d; = 2, d, =3 and d3 = 5,

respectively, as shown in Figure below.
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Figure 13 Date input frame for cost assignment problem

Thus, T=10,r, =0.2,r,=0.3 and r3 = 0.5. Theideal position computed by using

the formulais shown in the table below.
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Table 6 Excessinventory or shortage costs calculated
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Table 7 Schedule generated by cost assignment problem
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7.5.1 Comparative study of min-sum PRV problem

The following table lists the nature of Algorithml, Heuristic 1, EDD and Cost

Assignment problem over different input cases (run time calculated in millisecond):

CASE/Algorithm Total Run Time

Case:(6,6,1)

Algorithm 1 16 1,2 1,2 3, (1, 2, -3), | Not Feasible
31 ( ) 21 _3)1 31 (11 21 -
3),3,(1,2,-3),3

Heuristic 1 31 1,2,1,23,1,21,2, | Feashle
1,212

EDD 15 1,2,1,21,2 3,1, 2, | Feashle
1,212

Cost Assignment 141 1,2,1,2,3, 1,1, 2, 2, | Feasble
1,212

Case: (3,5, 7,2)

Algorithm 1 31 3,2,1,3 4,23, 1, 3, | Feasble
2,3,2,4,3,1,2,3

Heuristic 1 31 3,2,1,3 4,23, 1, 3, | Feasble
2,3,2,4,3,1,2,3

EDD 18 3,2,1,3,4,23,1, 2, | Feasible
3,3,2,4,3,1,2,3

Cost Assignment 156 3,2,1,3 4,231, 3, | Feasible
2,3,2,4,3,1,2,3
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Case: (7,3, 1)

Algorithm 1 15 1,2 1,13, (1, 2, -3), | Not Feasible
1,1,2,1

Heuristic 1 31 1,2,1,1,3,1,21,1, | Feasble
2,1

EDD 14 1,2,1,1,3,1,1,1,1, | Feasible
2,2

Cost Assignment 140 1,2,1,1,1,2,3,1,1, | Feashle
2,1

Case: (5,3,7)

Algorithm 1 25 3,1,231,3,2 3,1, | Feasble
3,1,3,213

Heuristic 1 25 3,1,231,3, 23,1, | Feashle
3,1,3,213

EDD 12 3,1,231,3,1, 2 3, | Feashle
3,1,3213

Cost Assignment 125 3,1,231,3 21,3, | Feasble

31,3213

Table 8 Comparative studies of min-sum PRV problems
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7.6 Min-max-absolute-chain sequencing problem

The min-max-absol ute-chain sequencing problem is min-max PRV problem. The
architecture view of the implementation of modified Min-Max-Absolute-Chain algorithm

for both overlapping and non-overlapping sequences as chain constraints is presented

below in tree view.

= {7 MinMaxAbsoluteChain, com
+-[J] RunCombineChain. java

=i MinMaxzabsoluteChain, GUI
ERNIN [rputChain java

=i MinMaxzAbsoluteChain, model
+-1J] ChainDataMadel. java
+-11| TabelModelForChain.java

=i MinMaxabsoluteChain, POIO
+ 'lJ'J Chain. java
+-[J] Job.java

Figure 14 Architectural view of min-max-absolute-chain sequencing problem

7.6.1 Non-overlapping sequences

Testing for the modified algorithm for non overlapping sequence is done in the

implementation as follows.
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Chain Id hain String
i} abcah
1 ialaglalgala)
P sfust:
Chainld: 2 Chain String: |stust
Add New Save Edit Combine Chain
sas

Figure 15 Input frame: min-max-absolute-chain (non-overlapping sequence)

Calculation of Window Yalua

EEX

Zhain le Job Jarno Eadico: Duz Date Late 2uc Cane
C E] 4.0 ca
C b A0 £a
L [ a.n ca
C ) 12.0 12.0
C ] 120 13.0
1 m an .o
1 n an .o
1 i 20 o
1 n .0 L)
1 m 14.0 14.0
1 n 4.0 14.0
" c 40 £a
z 1 40 £a
g 1] 2.0 c.0
Z 5 120 13.0
Z 1 12.0 13.0
Table9 Calculation of window value for non-overlapped sequence
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B2 podilisd Bus Dala

Zlraralal Job Mana Eargst Lus Lste Late Ligs Liste
E) k] 4.0 5.0
) b .0 5.0
Jd i L1 =l
d A 1.1 1.0
J 2] 12 .1 1°1.U
1 I EA AU
1 n pAl J.u
1 n (=A1] .1
1 1] = 4.U
1 n 4.0 14.0
1 n 14.10 14.0
o & .U a4
o t AU A
o 1] (=A1] 4.4
K S 1.l 1.0
o t 1u.U 14.U

S leiule o
nabrsicnanabsann

Table 10 Output: min-max-absolute-chain (nhon-overlapping sequence)

7.6.2 Overlapping-sequences

Testing for the modified algorithm for overlapping sequence is done in the

implementation as follows.

B paic Input Frame For Mix MaxAbsolute Chain Problem

Chimin [d Chisin Sihrirng
1] ablya
1 1
2 Siac
Chain Id: 1 Chain String: ||'n|'| T |
Add New Sanve || Edit | | Combine Chain |
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Figure 16 Input frame: min-max-absolute-chain (overlapping sequence)

E2® Calculation of Window ¥alu=

Chair I nk Mame atliest Nue Date | ate Mue Mate
u] = 3.0 1.0
M b an 4N
u] 4] a.0 10.0
u] A 9.0 10.0
1 I =Rl 4.1
1 r 2.0 1.0
1 1 an 1nn
| il 9.0 0.0
2 A 3.0 4.0
2 [ 2. 4.1
2 = 9.0 10.0
o 1 an 1nn

2 Modilicd Due Dale

Chat

Job MNalmne

Earlast Lya Lrata

Table11 Calculation of window value for overlapped sequence

[= |

Lata Lua Lrata

il i an 4 1
u] ] 2.0 4.0
il 1] an 1nn
U a2 H.u TuU.u
1 rri 2.0 4.0
1 1 S 4.4
il [} .0 100
1 r 1l 110
2 El J.0 4.0
2 1 an 4
at a2 H.u 0.1
2 [ Q.0 100
sChadula :

O b0 mini azczb0admind azc2

Table 12 output: min-max-absolute-chain algorithm (overlapping sequences)
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8 Conclusion and Recommendation

In this dissertation, different algorithms and heuristics of mixed-model-JIT
seguencing problems have been studied. Most of these algorithms and some heuristics are
implemented. Finally, a new agorithm is purposed which modifies the min-max-
absolute-chain algorithm to adopt overlapping sequence.

It islet to identify either the algorithm can be implemented for cyclic sequence or
it can be extended for priority chain system and for multi-processor system. Likewise,
much more work is left to convert the pseudo solution raised in this dissertation to the
real version. It is aso remains to study these problems for sum deviation objectives.

These works are left open for the further study.
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