

Tribhuvan University

Institute of Science and Technology

A Comparative Study of Lossless Data Compression

Algorithms

A Dissertation

Submitted To

Central Department of Computer Science and Information Technology

Tribhuvan University

Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science and Information Technology

Submitted By

Suresh Thapa

CDCSIT, TU

(December, 2012)

A
 C

o
m

p
a
ra

tiv
e S

tu
d

y
 o

f L
o
ssless D

a
ta

 C
o
m

p
re

ssio
n

 A
lg

o
rith

m
s

S

u
resh

 T
h

a
p

a

2
0
1
2

Tribhuvan University

Institute of Science and Technology

A Comparative Study of Lossless Data Compression

Algorithms

A Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Tribhuvan University

Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science and Information Technology

Submitted By

Suresh Thapa

(December, 2012)

Supervisor

Mr. Nawaraj Paudel

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date :- ……………….

Recommendation

I hereby recommend that the dissertation prepared under my supervision by Mr.

Suresh Thapa entitled “A Comparative Study of Lossless Data Compression

Algorithms” be accepted as in fulfilling partial requirements for the degree of Master

of Science in Computer Science and Information Technology.

Mr. Nawaraj Paudel

Asst. Professor

Central Department of Computer Science and Information Technology,

Tribhuvan University, Kritipur

(Supervisor)

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

We certify that we have read this dissertation work and in our opinion it is satisfactory

on the scope and quality as a dissertation in the partial fulfillment for the requirement

of Master of Science in Computer Science and Information Technology.

Evaluation Committee

Date:

(Internal Examiner)

Mr. NawarajPaudel

Acting Head of Department

Central Department of Computer Science

and Information Technology

Tribhuvan University

Kirtipur

(External Examiner)

Mr. NawarajPaudel

Central Department of Computer Science

and Information Technology

Tribhuvan University

Kirtipur

(Supervisor)

Acknowledgement

Let me take an opportunity to express my sincere gratitude to all the persons who

supported and encouraged me to complete this thesis work entitled “A Comparative

Study of Lossless Data Compression Algorithms”.

First of all I would like to thank Tribhuvan University, Central Department of

Computer Science and Information Technology for providing me this opportunity to

perform this research work.

I must record my immense gratitude to my supervisor Mr. Nawaraj Paudel who

patiently listens to many fragments of data and arguments and was able to make then

decisions very stimulating. His guidance and conclusion remarks had remarkable

impact on my thesis. I am greatly obliged to our Department Head, Assoc. Prof. Dr.

Tanka Nath Dhamla for his constant support. He was the one who was always

available to deal with every obstacle that I faced during my study with his insightful

suggestions.

I am also highly thankful to all the teachers and staffs of CDCSIT for providing me

such a broad knowledge and enlightment in two years of study period. Their

motivation and support was really appreciable.

I am also indebted to all my friends who supported me during my Masters. Their

cheerfulness and sense of humor would always brighten bad day; I would have never

made it without their unfailing support. Special thanks to, Mr. Pravakar Ghimire, Mr.

Amar Man Maharjan, Mr. Shiva Raj Panta and Mr. Rabindra Maharjan.

Last but not the least, I would like to acknowledge and appreciate the direct and

indirect support of my friend Ms. Rukamanee Maharjan.

I have given my best effort to make this thesis work complete and error free but still if

it contains some faults, suggestions regarding those mistakes will always be

welcomed.

Suresh Thapa

December, 2012

Abstract

Data Compression is the method for minimizing the resources allocated by reducing

size of the files. Data Compression is widely required in the era of information

communication technology as it is useful for processing, storing and transferring data

that requires lots of resources. There are lots of data compression algorithms which

are available to compress files of different format. This dissertation is basically

concerned with lossless data compression algorithms namely gzip and bzip2 and

performance of these algorithms is analyzed and compared. The performance

parameters are comparison ratio, comparison speed, saving percentage,

decompression speed. For more reliability text data of different file format is

considered for study. With the help of performance parameters, this dissertation is

concluded by stating which algorithm performs well for text data.

Table of Contents

Detail Page no.

CHAPTER 1

Introduction 1-7

1.1 General Background 1

1.2 Bzip2 2

1.3 Gzip 5

CHAPTER 2

Problem Definition 8-11

2.1 Problem Definition 8

2.2 Literature Review and Related Works 9

2.3 Methodology 10

CHAPTER 3

Implementation 12-14

3.1 Implementation 12

 3.1.1 Data Collection 12

 3.1.2 Performance Evaluation 13

CHAPTER 4

Testing and Analysis 15-26

4.1 Testing and Training Data 15

 4.1.1 Testing Data and Result using Bzip2 Algorithm 15

 4.1.2 Testing Data and Result using Gzip Algorithm 17

4.2 Analysis and Interpretation 20

4.3 Verification and Validation 26

CHAPTER 5

Conclusion and Further Study 27-28

5.1 Conclusion 27

5.2 Further Study 27

Bibliography 29

Appendices 31

Appendix A 31

Appendix B 44

Appendix C 48

Appendix D 50

Appendix E 51

List of Figures

Figure 1.1 Huffman Coding 7

Figure 4.1 File Size Vs Compression Ratio 21

Figure 4.2 File Size Vs Compression Time 22

Figure 4.3 File Size Vs Saving Percent 23

Figure 4.4 Decompression Time for Compression File (Bzip2) 24

Figure 4.5 Decompression Time for Compression File (Gzip) 25

Figure 4.6 File Size Vs Compressed File Size 26

List of Tables

Table 3.1 Data for Implementation 13

Table 4.1 Compression Result using bzip2 algorithm 16

Table 4.2 Compression Result using bzip2 algorithm 17

Table 4.3 Compression Result using gzip algorithm 19

Table 4.4 Compression Result using gzip algorithm 20

Table 4.5 Average Compression Ratio 20

Table 4.6 Average Compression Time 21

Table 4.7 Average Saving Percent 23

Table 4.8 Decompression Time 24

Table 4.9 Average Compressed File Size 25

Abbreviation

GIF Graphics Interchange Format

JPG Joint Photographic Group

KB KiloByte

LZ Lempel Ziv

LZH Lempel Ziv Haruyasu

LZMA Lempel Ziv Markov Algorithm

LZSS Lempel Ziv Storer Szymanski

LZW Lempel Ziv Welch

PDF Portable Document Format

TIF Tagged Image File

XML/ xml eXtended Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 General Background

Data Compression is the technique to reduce the size of particular file. Compressing

file is very useful when processing, storing and transferring huge sized file which

needs loads of resources. Choosing technique for data compression wisely can reduce

the size of file and resources needed dramatically. Compressing data is the cost

effective as it stores data relatively on small size and increase the data transfer rate.

Reduction of size of file is achieved by excluding redundant patterns and by encoding

the contents of file using symbols that require less storage space than was originally

required. Basically data compression is taking a stream of symbols and transforming

them into codes [8].

Data Compression = Modeling + Coding

The model is collection of data and rules used to process input symbols and

determines which code to output and code is the produce the appropriate code. If the

compression is effective, the resulting stream of codes will be smaller than original

symbols.

Content of file is changed after compression to an encoded form and the file cannot be

used until it is decompressed. The decompression process is the inverse of

compression. It restores a file to its original form.

There are mainly two families of compressions: Lossy Compression and Lossless

Compression

1.1.1 Lossy Compression

Lossy compression is the technique where to achieve effective compression result

some of the original data can be discarded. This is effective on compressing graphics,

2

images and digital voices. For example, during compression of image file, human eye

cannot detect difference between image generated from original file and image

generated from decompressed file. Here data of some range which could not be

detected by human eye are neglected.

1.1.2 Lossless Compression

Lossless Compression is the technique where discarding any of original data cannot

be acceptable i.e. data obtained from decompressed file should be same as original

data. For example, loss of data in text and data files would not be acceptable as it may

contain words or numbers that are intended for further computing process.

There are many data compression algorithms that has been proposed and used. Some

of main data compression techniques are Huffman Coding, Run Length Encoding,

Shannon Fano Algorithm, Adaptive Huffman Encoding Algorithm, Arithmetic

Encoding Algorithm, Limpel Zev Welch Algrithm, bzip2, gzip, LZMA.

Lossless data compression generally uses one of two different types of modeling

techniques: statistical or dictionary based. Statistical modeling reads in and encodes a

single symbol at a time using probability of appearance of that character. Dictionary

based modeling uses a single code to replace strings of symbols.

1.2 Bzip2

Bzip2 compression files uses the Burrows-Wheeler Block Sorting text compression

algorithm and Huffman coding. Bzip2 compression is considered better than

LZ77/LZ78 based compression and approaches the performance of PPM family of

statistical compression [1].

Bzip2 is flexible library for handling compressed data in the bzip2 format.

1.2.1 Burrows Wheeler Block Sorting Algorithm

Burrows-Wheeler is the block sorting algorithm that processes a block of text as a

single unit. [5] explains that this algorithm transforms a string of N characters by

3

forming the n rotations (cyclic shifts) of S, sorting them lexicographically, and

extracting the last character of each of the rotations. A string L is formed from these

characters, where the ith character of L is the last character of the ith sorted rotation.

In addition to L, the algorithm computes the index I of the original string S in sorted

list of rotations. There is an efficient algorithm to compute the original string S given

only L and I.

The important factor here is implementation of sorting the rotations of input block. So

efficiency can be measured on how well one can sort the rotations of input block.

Also, the selection of input block size plays a vital role.

Let us describe the algorithm with example as defined in [10].

We have taken string S = „banana#‟ as example, N = 7 and the alphabet X = {„#‟, „a‟,

„b‟, „n‟}

C1: Sorting Rotation

C2: Finding Last Character of Rotation, take last character after rotation then

 L = „annb#aa‟, I = 4

M1: Using Move to Front Coding

 Taking Y = {„#‟, „a‟, „b‟, „n‟} and L = „annb#aa‟, we compute vector R as (1 3

0 3 3 3 0)

M2: Encoding

Appling Huffman encoding to the elements of R where each element is treated

as separate token to be encoded.

banana#

anana#b

nana#ba

ana#ban

na#bana

a#banan

#banana

#banana

a#banan

ana#ban

anana#b

banana#

na#bana

nana#ba

Sort in lexicographical order

4

The output of algorithm C is pair of (OUT, I) where OUT is output of coding

process and I is the value computed as in C1.

Here, the output is compressed file format and decompression is just reversed process.

W1: Decoding

Decode the stream OUT using the inverse of coding process used in M2. The

result will be R as (1 3 0 3 3 3 0)

W2: Inverse Move to Front Coding

Taking Y ={„#‟, „a‟, „b‟, „n‟} initially as in algorithm M, compute L=

„annb#aa‟ and I=4

D1: First Character of Rotation

 First character of rotation is computed by sorting the character L to from F.

 F = „#aaabnn‟

D2: Build List of Predecessor characters

Using F and L, the first columns of M and M‟ respectively, we calculate a

vector T that indicated the correspondence between two rows of the two

matrices.

Here T as (1 5 6 4 0 2 3)

D3: Form Output S

 For each i = 0,… , N-1 : S[N – 1 – i] = L[T
i
[I]] where T

0
[x] = x and

T
i+1

[x] = T[T
i
 [x]]

Row M

0 #banana

1 a#banan

2 ana#ban

3 anana#b

4 banana#

5 na#bana

6 nana#ba

Row M’ T

0 a#banan 1

1 na#bana 5

2 nana#ba 6

3 banana# 4

4 #banana 0

5 ana#ban 2

6 anana#b 3

5

 Final Output as S = „banana#‟

1.3 Gzip

Gzip (also known as GNU zip) is lossless compression algorithm that compresses

files. Gzip is based on an algorithm known as DEFLATE, which is also a lossless data

compression algorithm. It uses both the LZ77 algorithm and Huffman Coding [12].

1.3.1 LZ77 Algorithm

LZ77 compression works by finding sequences of data that are repeated. The term

„Sliding Windows‟ is used; at any given point in the data, there is record of what

character went before. For example, a 32K sliding windows means that the

compressor (and decompressor) have a record of what a last 32768 (32*1024)

characters were. When the next sequence of characters to be compressed is identical

to one that can be found within the sliding windows, the sequence of characters is

replaced by two numbers: a distance, representing how far back into the windows the

sequence starts, and a length, representing the number of characters for which the

sequence is identical.

For example, consider the sentence:

 “spain_in_vain_with_rain_in_plain”

where the underscores “_” indicates spaces.

At first, LZ77 outcomes uncompressed characters as there is no repeated character.

i S[N – 1 – i] L[T
i
[I]] Character

0 S[6] L[4] #

1 S[5] L[0] a

2 S[4] L[1] n

3 S[3] L[5] a

4 S[2] L[2] n

5 S[1] L[6] a

6 S[0] L[3] b

6

 spain_

The next chunk of message

 in_

has occurred earlier in message and can be represented as pointer back to that earlier

text, along with a length field.

 spain_<3,3>

Here <3,3> means look back three characters and take three characters from that

position.

After this comes

 v

that has to be output uncompressed

 spain_<3,3>v

then the characters “ain_” is encoded as

 spain_<3,3>v<8,4>

Similarly doing this finally, the original message

“spain_in_vain_with_rain_in_plain”, has been compressed to message

 spain_<3,3>v<8,4>with_r<9,4><3,3>pl<7,3>

Since in both compression algorithms‟, bzip2 and gzip, huffman encoding is used and

is equally important for better compression result. Huffman coding is often used as

backend to these compression algorithms; Huffman coding uses a specific method for

choosing the representation for each symbol, resulting in prefix-free code (that is, the

bit string representing some particular symbol is not a prefix of the bit string

representing any other symbol) that expresses the most common characters using

shorter strings of bits than are used for less common source symbols. A simple

example is used to illustrate the algorithm

Symbol A B C D E

Count 15 7 6 6 5

7

Figure 1.1 Huffman Coding

Symbol Count Code Number of bits

A 15 0 15

B 7 100 21

C 6 101 18

D 6 110 18

E 5 111 15

 Total number of bits 87

8

CHAPTER 2

PROBLEM DEFINITION

2.1 Problem Definition

In today‟s business, information is the key assets and most of information is in digital

format. This information need to transfer from one network to other. All the

information saved in the document, regardless of document format, must be as it is

while transfer. The time of data transmit also plays a vital role. In such a case,

compression of data can help on reducing size. Smaller the size, less likely data

integrity will be compromised in transmission. A good compression can also check

data after transmission to ensure that data received is exactly with the data sent.

Many changes and improvements are seen in recent years in the field of data

compression. Many data compression algorithms have been introduced where some of

them work pretty well and some did not do well. Each algorithm claims that they give

good compression result on the basis of either size or time. Some algorithms work

fine on compression but take inconsiderable time to perform action and vice-versa.

On the basis of popularity, there a few compression techniques nowadays, and most

of them use the concepts of dictionary or statistics. The main idea that these

algorithms use is the utilization of repetition of characters/string in the data to achieve

compression. For lossless ness of data, further analysis is needed and must be verified

after decompression.

It‟s ultimately the end user that makes choice of using which algorithm is best suits

for his/her applications. Hence, confusion is created to user for choosing the right

algorithm. Compression algorithm must be chosen wisely under which circumstance

it is best suit to use. Data compression algorithm that is best for one format of file is

not necessarily be best for other format. If time has to be taken under consideration

than response time for compression must be evaluated.

9

2.2 Literature Review and Related Work

Various kinds of approaches are there for lossless data compression. Each approach

tries to minimize the size of data as possible as it can. The basis principal of these

approaches is almost same, eliminating the redundant patterns and coding the

contents. But the only concern is how these approaches work for elimination

redundant patterns. Algorithms like Run Length Coding, Shannon Coding, Huffman

Coding, Adaptive Huffman Coding and Arithmetic Coding use statistical compression

technique. Basically LZ Family use dictionary based compression technique. LZ77

algorithm uses the concept of sliding windows.

According to official website of bzip2 [1], bzip2 compresses the files to within 10%

to 15% of the best available techniques. Bzip2 compression used the burrows-wheeler

block sorting text compression algorithms and Huffman coding. [10] concluded that

burrows-wheeler block sorting compression algorithm achieves compression

comparable with good statistically modeler and is closer in speed to coders based on

algorithms of LZ. Decompression is faster than compression like LZ.

Gzip (GUN zip) is based on DEFLATE algorithm, which is a combination of Lempel-

Zip (LZ77) and Huffman Encoding [4]. According to [5] DEFLATE algorithm can be

efficiency comparable to the best available general purpose compression methods.

Comparison of different compression algorithm on text data has been done in [15].

Here the method used for the compression is the standard methodology but the

compression is carried out for only fundamental algorithms like Huffman Encoding,

The Shannon Fano Algorithm, Arithmetic Encoding, LZW Algorithm. Since the

methodology adapted and measuring compression done is under standardization but it

lacks the comparison of today‟s popular compression algorithms LZ77, bzip and gzip.

Here compression algorithms are tested on ten text files of different size and different

content. According to study done on [15] for compression algorithm like Run Length,

LZW, Adaptive Huffman, Huffman Encoding and Shannon Fano algorithm, it shows

that considering the compression time, decompression time and saving percentages,

Shannon Fano is considered as most effective algorithm but Shannon Fano algorithm

10

is quite a low compared to the Huffman Encoding algorithm. Huffman Encoding

show similar performances except in the compression time.

Author of [14] has done a comparison of various Statistical compression technique

(Run Length Encoding, Shannon Fano coding, Huffman coding, Adaptive Huffman

coding and Arithmetic coding) and LZ family algorithm. Under study of statistical

compression technique, it shows little different result than [15]. Here, compression

ratio obtained by Huffman coding algorithm is better compared to Shannon Fano

coding algorithm. But on overall, arithmetic coding shows one of best result on the

basis of compression ratio. Under the study of LZ77 family algorithm, [14] concluded

that LZB outperforms LZ77, LZSS and LZH to show marked compression amongst

the LZ77 family.

[9] that focused on prominent data compression algorithms on various file format

particularly .DOC, .TXT, .BMP, .TIF, .GIF and .JPG files. Studied has been carried

out for Run Length Encoding, Huffman Coding, Arithmetic Coding, LZ77 Encoding

and LZW Coding techniques. Through the result obtained using the algorithm, LZW

and Huffman Coding has given nearly result with compression of document and text

file. LZW works on replacing string of characters with single code whereas Huffman

works by representing individual characters by bit sequences.

The importance of data compression in business perspective is defined in [11]. [11]

gives the idea of how data compression increases the efficiencies and decreases the

cost of storing and transferring important business information.

2.3 Methodology

In this dissertation, study will focus on evaluating the effectiveness of compression

algorithms through Compression Ratio, Compression Time, Saving Percentage as

parameters using different file sizes.

Furthermore, to evaluate parameters like compression ratio, compression speed,

saving percentage etc., text files of various sizes will be processed through

11

implementation of code of different compression algorithms and parameters like

compressed file size, compression time, decompression time will be recorded [15].

Compression Ratio is the ratio between the size of the compression file and the size of

source file.

Thus a representation that compresses a 10MB file to 2MB has a compression ratio of

2/10 = 0.2, often notated as an explicit ratio, 1:5. This formulation applies equally for

compression, where the uncompressed size is that of the original; and for

decompression, where the uncompressed size is that of the reproduction.

Compression Factor is the inverse of the compression ratio, i.e. ratio between the size

of the source file and the size of compressed file.

In this case, values greater than 1 indicate compression and values less than 1

expansion. Hence, bigger the compression factor, the better the compression.

Saving Percentage calculate the shrinkage of the source file as percentage.

Above defined methods evaluate the effectiveness of compression algorithm using file

sizes. Compression time and decompression time other methods to evaluate the

performance of compression algorithms which will be used to measure effectiveness.

12

CHAPTER 3

IMPLEMENTATION

3.1 Implementation

Data that are used on analysis is primarily based on common windows desktop files.

To understand the data compression, it is import to know the size, content and format

of the file that is processed for compression. Here, the test data are files of different

sizes and different content with different file format.

3.1.1 Data Collection

To implement the compression algorithms, namely bzip2 and gzip, different format

text files are randomly collected. The collected files are of various file size. Some of

collected files contain fake data and some contain actual user‟s text data. The file

format that are collected for test data are Microsoft Word Document (doc) format file,

Adobe Portable Document Format (pdf) File, Extended Markup Language (xml)

Format File and Database Log file. The files are file with normal English language,

computer programs, E-books which are also in normal English language, database log

file generated with fake as well as with real data. Computers programs and xml files

have more repeating set of words than that of E-books and normal text files. Collected

files with file format and original file size are presented in Table 3.1.

File Name File Format Original File Size in KB

D60_en Pdf 11816

data compression Pdf 6015

Data Compression Book Pdf 1689

GP-zip Family Pdf 2113

isoiec 14496-3 Pdf 7538

Patel Thesis Pdf 2934

PhD_Johns Pdf 5984

Text_Mining_Infrastructure Pdf 686

The Text Mining HandBook Pdf 8108

Thesaurus Pdf 3424

AscolCampus Mdf 2048

DWPDatabase Mdf 2048

13

DWPDatabase_log Ldf 1024

MvcMusicStore Mdf 2304

Pasa Mdf 3072

PasaDB_backup File 2581

pulse_backup Bak 4309

Pulse_log Ldf 1024

SutekiShop Mdf 2304

GMAT Doc 6334

25308-b00 Doc 3625

Compression Docx 653

CustomerInformation Xlsx 5115

Eat Pray Love Doc 916

First Draft Report Doc 842

Matthew MacDonald Doc 4398

Matthew MacDonald Docx 1305

Thesis_final_rukamanee Doc 367

AdobeDreamweaver Xml 6442

AdobeFireworks Xml 6505

Construction Xml 377

FontList Xml 608

GlobalInstallOrder Xml 1927

HealthcarePro Xml 438

PropertyManagement Xml 459

System.Net.Http Xml 153

Calculation Php 162

jquery.ui.theme Css 19

Pasadb Sql 396

SharpZipLib Chm 1308

Table 3.1 Data For Implementation

3.1.2 Performance Evaluation

With these sample data and the result obtained after applying compression algorithms,

both bzip2 and gzip, compression ratio, compression factor, saving percentile and

compression time is calculated. Respective decompression algorithms are used for

decompression the compressed data and decompression time is calculated. The

compression results and the calculation results are tabulated. Source codes for both

algorithms are opened source [1] and [4]. These source codes for compression

algorithm are written in C# language. For the studied purpose the source codes are

modified as according to need.

14

The performance measurements factors discussed above are based on file sizes and

time. The performance measurements could be more than mentioned as performances

could be based on different approaches. So, all of them cannot be applied for all the

selected algorithms. Additionally, the quality difference between the original and

decompressed file is not considered as a performance factor as the selected

algorithms are lossless. The performances of the algorithms depend on the size

of the source file and the organization of symbols in the source file. Therefore,

a set of files including different types of texts such as English phrases, source codes,

user manuals, etc and different file sizes are used as source files. Graphs are

drawn in order to identify the relationship between the file sizes between original and

compressed one, the compression and decompression time and other performance

factors.

The performances of the selected algorithms may vary according to the

measurements. Therefore, all these factors are considered for comparison in

order to identify the best solution. An algorithm which gives an acceptable

saving percentage within a reasonable time period is considered as the best

algorithm.

15

CHAPTER 4

TESTING AND ANALYSIS

4.1 Testing Data

Two lossless algorithms, namely bzip2 and gzip, are tested for forty text files with

different file sizes and different content.

4.1.1 Testing Data and Result using Bzip2 Algorithms

File Name File

Format

Original

File Size in

KB

Compres-

sed File

Size in

KB

Compressio

n Ratio

Compression

Factor

D60_en Pdf 11816 9220 78.02979012 128.1561822

data

compression
Pdf 6015

5553 92.319202 108.3198271

Data

Compression

Book

Pdf 1689

1500 88.80994671 112.6

GP-zip Family Pdf 2113 1612 76.28963559 131.0794045

isoiec 14496-3 Pdf 7538 7164 95.03847174 105.2205472

Patel Thesis Pdf 2934 1612 54.94205862 182.0099256

PhD_Johns Pdf 5984 4408 73.6631016 135.753176

Text_Mining_In

frastructure
Pdf 686

537 78.27988338 127.7467412

The Text

Mining

HandBook

Pdf 8108

4487 55.34040454 180.6997994

Thesaurus Pdf 3424 2559 74.73714953 133.8022665

AscolCampus Mdf 2048 82 4.00390625 2497.560976

DWPDatabase Mdf 2048 101 4.931640625 2027.722772

DWPDatabase_l

og
Ldf 1024

57 5.56640625 1796.491228

MvcMusicStore Mdf 2304 91 3.949652778 2531.868132

Pasa Mdf 3072 190 6.184895833 1616.842105

PasaDB_backup File 2581 140 5.424254165 1843.571429

pulse_backup Bak 4309 339 7.867254583 1271.091445

Pulse_log Ldf 1024 51 4.98046875 2007.843137

SutekiShop Mdf 2304 103 4.470486111 2236.893204

GMAT Doc 6334 1382 21.81875592 458.3212735

16

25308-b00 Doc 3625 876 24.16551724 413.8127854

compression Docx 653 632 96.78407351 103.3227848

CustomerInform

ation
Xlsx 5115

659 12.88367546 776.1760243

Eat Pray Love Doc 916 267 29.14847162 343.071161

First Draft

Report
Doc 842

132 15.67695962 637.8787879

Matthew

MacDonald
Doc 4398

922 20.96407458 477.0065076

Matthew

MacDonald
Docx 1305

1309 100.3065134 99.69442322

Thesis_final_ru

kamanee
Doc 367

86 23.43324251 426.744186

AdobeDreamwe

aver
Xml 6442

1089 16.90468799 591.5518825

AdobeFirework

s
Xml 6505

1132 17.40199846 574.6466431

Construction Xml 377 16 4.24403183 2356.25

FontList Xml 608 66 10.85526316 921.2121212

GlobalInstallOr

der
Xml 1927

80 4.151530877 2408.75

HealthcarePro Xml 438 17 3.881278539 2576.470588

PropertyManage

ment
Xml 459

18 3.921568627 2550

System.Net.Http Xml 153 10 6.535947712 1530

Calculation Php 162 20 12.34567901 810

jquery.ui.theme Css 19 3 15.78947368 633.3333333

Pasadb Sql 396 26 6.565656566 1523.076923

SharpZipLib Chm 1308 1277 97.62996942 102.4275646

Table 4.1 Compression Result using bzip2 Algorithm

File Name File

Format

Saving

Percentage

Compression

Time in

millisecond

Decompression

Time in

millisecond

D60_en pdf 21.97020988 14144 7084

data compression pdf 7.680798005 7312 3751

Data Compression Book pdf 11.19005329 2168 1191

GP-zip Family pdf 23.71036441 2572 1163

isoiec 14496-3 pdf 4.961528257 10038 5136

Patel Thesis pdf 45.05794138 3040 1268

PhD_Johns pdf 26.3368984 9030 3288

Text_Mining_Infrastruct

ure
pdf

21.72011662 870 389

The Text Mining

HandBook
pdf

44.65959546 18645 3501

17

Thesaurus pdf 25.26285047 6283 1921

AscolCampus mdf 95.99609375 1910 284

DWPDatabase mdf 95.06835938 1274 291

DWPDatabase_log ldf 94.43359375 522 163

MvcMusicStore mdf 96.05034722 2109 355

Pasa mdf 93.81510417 1297 458

PasaDB_backup file 94.57574583 1030 370

pulse_backup bak 92.13274542 2071 742

Pulse_log ldf 95.01953125 832 177

SutekiShop mdf 95.52951389 1310 316

GMAT doc 78.18124408 8121 1278

25308-b00 doc 75.83448276 3000 939

Compression docx 3.215926493 875 560

CustomerInformation xlsx 87.11632454 4876 1045

Eat Pray Love doc 70.85152838 1071 279

First Draft Report doc 84.32304038 662 153

Matthew MacDonald doc 79.03592542 5643 877

Matthew MacDonald docx -0.30651341 1702 1148

Thesis_final_rukamanee doc 76.56675749 208 74

AdobeDreamweaver xml 83.09531201 3694 1719

AdobeFireworks xml 82.59800154 3802 1593

Construction xml 95.75596817 438 77

FontList xml 89.14473684 578 138

GlobalInstallOrder xml 95.84846912 2110 313

HealthcarePro xml 96.11872146 565 88

PropertyManagement xml 96.07843137 528 87

System.Net.Http xml 93.46405229 99 31

Calculation php 87.65432099 127 46

jquery.ui.theme css 84.21052632 31 5

Pasadb sql 93.43434343 357 56

SharpZipLib chm 2.370030581 1715 1214

Table 4.2 Compression Result using bzip2 Algorithm

4.1.2 Testing Data and Result using Gzip Algorithm

File Name File

Format

Original

File Size in

KB

Compres-

sed File

Size in

KB

Compressio

n Ratio

Compression

Factor

D60_en Pdf 11816 9175 77.64895058 128.7847411

data

compression
Pdf 6015

5641 93.78221114 106.6300301

Data

Compression

Book

Pdf 1689

1499 88.75074008 112.6751167

18

GP-zip Family Pdf 2113 1606 76.00567913 131.5691158

isoiec 14496-3 Pdf 7538 7255 96.24568851 103.9007581

Patel Thesis Pdf 2934 1972 67.21199727 148.7829615

PhD_Johns Pdf 5984 5098 85.19385027 117.3793645

Text_Mining_In

frastructure
Pdf 686

544 79.30029155 126.1029412

The Text

Mining

HandBook

Pdf 8108

4518 55.72274297 179.459938

Thesaurus Pdf 3424 2678 78.21261682 127.8566094

AscolCampus Mdf 2048 107 5.224609375 1914.018692

DWPDatabase Mdf 2048 134 6.54296875 1528.358209

DWPDatabase_l

og
Ldf 1024

85 8.30078125 1204.705882

MvcMusicStore Mdf 2304 115 4.991319444 2003.478261

Pasa Mdf 3072 247 8.040364583 1243.724696

PasaDB_backup File 2581 196 7.593955831 1316.836735

pulse_backup Bak 4309 434 10.07194245 992.8571429

Pulse_log Ldf 1024 85 8.30078125 1204.705882

SutekiShop Mdf 2304 141 6.119791667 1634.042553

GMAT Doc 6334 1691 26.69718977 374.5712596

25308-b00 Doc 3625 1061 29.26896552 341.6588124

compression Docx 653 630 96.47779479 103.6507937

CustomerInform

ation
Xlsx 5115

1014 19.82404692 504.4378698

Eat Pray Love Doc 916 325 35.48034934 281.8461538

First Draft

Report
Doc 842

157 18.64608076 536.3057325

Matthew

MacDonald
Doc 4398

1160 26.37562528 379.137931

Matthew

MacDonald
Docx 1305

1303 99.8467433 100.1534919

Thesis_final_ru

kamanee
Doc 367

93 25.34059946 394.6236559

AdobeDreamwe

aver
Xml 6442

1610 24.99223844 400.1242236

AdobeFirework

s
Xml 6505

1641 25.22674865 396.4046313

Construction Xml 377 21 5.570291777 1795.238095

FontList Xml 608 69 11.34868421 881.1594203

GlobalInstallOr

der
Xml 1927

88 4.566683965 2189.772727

HealthcarePro Xml 438 23 5.251141553 1904.347826

PropertyManage

ment
Xml 459

24 5.22875817 1912.5

System.Net.Http Xml 153 12 7.843137255 1275

19

Calculation Php 162 23 14.19753086 704.3478261

jquery.ui.theme Css 19 4 21.05263158 475

Pasadb Sql 396 36 9.090909091 1100

SharpZipLib Chm 1308 1272 97.24770642 102.8301887

Table 4.3 Compression Result using gzip Algorithm

File Name File

Format

Saving

Percentage

Compression

Time in

millisecond

Decompression

Time in

millisecond

D60_en pdf 22.35104942 2835 645

data compression pdf 6.217788861 1722 487

Data Compression Book pdf 11.24925992 495 133

GP-zip Family pdf 23.99432087 507 133

isoiec 14496-3 pdf 3.754311488 2066 776

Patel Thesis pdf 32.78800273 677 188

PhD_Johns pdf 14.80614973 1556 370

Text_Mining_Infrastruct

ure
pdf

20.69970845 172 51

The Text Mining

HandBook
pdf

44.27725703 1679 449

Thesaurus pdf 21.78738318 742 104

AscolCampus mdf 94.77539063 483 72

DWPDatabase mdf 93.45703125 398 111

DWPDatabase_log ldf 91.69921875 154 29

MvcMusicStore mdf 95.00868056 468 70

Pasa mdf 91.95963542 615 98

PasaDB_backup file 92.40604417 508 74

pulse_backup bak 89.92805755 821 134

Pulse_log ldf 91.69921875 167 27

SutekiShop mdf 93.88020833 494 74

GMAT doc 73.30281023 1362 307

25308-b00 doc 70.73103448 697 163

Compression docx 3.522205207 132 34

CustomerInformation xlsx 80.17595308 671 221

Eat Pray Love doc 64.51965066 234 55

First Draft Report doc 81.35391924 133 28

Matthew MacDonald doc 73.62437472 952 220

Matthew MacDonald docx 0.153256705 254 41

Thesis_final_rukamanee doc 74.65940054 73 18

AdobeDreamweaver xml 75.00776156 1207 319

AdobeFireworks xml 74.77325135 1183 323

Construction xml 94.42970822 34 9

FontList xml 88.65131579 61 19

GlobalInstallOrder xml 95.43331604 158 38

HealthcarePro xml 94.74885845 37 12

20

PropertyManagement xml 94.77124183 38 12

System.Net.Http xml 92.15686275 15 5

Calculation php 85.80246914 42 71

jquery.ui.theme css 78.94736842 4 5

Pasadb sql 90.90909091 58 10

SharpZipLib chm 2.752293578 266 36

Table 4.4 Compression Result using gzip Algorithm

4.2 Analysis and Interpretation

On the application of compression algorithms on forty test data, following result are

obtained for the compression ratio.

4.2.1 Compression Ratio

Table 4.5 represents the average compression ratio observed for bzip2 and gzip

algorithms.

Compression Algorithm Average Compression Ratio

Bzip2 34.00592447

Gzip 36.8208785

Table 4.5 Average Compression Ratio

On the basis of data recorded on Table 4.5, it is clearly analyzed that bzip2 algorithm

gives excellent compression ratio in comparison to gzip algorithm.

The graphical presentation of observed compression ratio for entire test data under

study is given in Fig 4.1. It can be observed that compression ratio is independent on

file size i.e. file size does not matter in increase or decrease of compression ratio.

21

Fig 4.1 File Size Vs Compression Ratio

4.2.2 Compression Time

Table 4.6 represents the average compression time observed for bzip2 and gzip

algorithms.

Compression Algorithm Average Compression Time (millisecond)

Bzip2 3166.475

Gzip 604.25

Table 4.6 Average Compression Time

On the basis of data recorded on Table 4.5, gzip algorithm can be considered to be

excellent as it can compress files much faster than bzip2.

0

20

40

60

80

100

120

1
9

1
5

3
1

6
2

3
6

7
3

7
7

3
9

6
4

3
8

4
5

9
6

0
8

6
5

3
6

8
6

8
4

2
9

1
6

1
0

2
4

1
0

2
4

1
3

0
5

1
3

0
8

1
6

8
9

1
9

2
7

2
0

4
8

2
0

4
8

2
1

1
3

2
3

0
4

2
3

0
4

2
5

8
1

2
9

3
4

3
0

7
2

3
4

2
4

3
6

2
5

4
3

0
9

4
3

9
8

5
1

1
5

5
9

8
4

6
0

1
5

6
3

3
4

6
4

4
2

6
5

0
5

7
5

3
8

8
1

0
8

1
1

8
1

6

Bzip2

Gzip

File Size in KB

Compression Ratio

22

The graphical representation of observed compression time for entire test data under

study is given in Fig 4.2. It can be seen that the compression time increases as

increase in size of file and vice versa. Some exception has been occurred while

compressing some files. In some cases bzip2 has shown unusual behavior. For

example for file “The Text Mining HandBook” has taken inconsiderable higher

compression time. In other cases, it has shown almost same kind of behavior.

Fig 4.2 File Size Vs Compression Time

4.2.3 Saving Percentage

Average saving percentage, using bzip2 and gzip algorithm, for result obtained from

40 test data is calculated and presented on Table 4.7. From calculation, it can be said

that bzip2 algorithm more saving percent than gzip.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1
9

1
5

3
1

6
2

3
6

7
3

7
7

3
9

6
4

3
8

4
5

9
6

0
8

6
5

3
6

8
6

8
4

2
9

1
6

1
0

2
4

1
0

2
4

1
3

0
5

1
3

0
8

1
6

8
9

1
9

2
7

2
0

4
8

2
0

4
8

2
1

1
3

2
3

0
4

2
3

0
4

2
5

8
1

2
9

3
4

3
0

7
2

3
4

2
4

3
6

2
5

4
3

0
9

4
3

9
8

5
1

1
5

5
9

8
4

6
0

1
5

6
3

3
4

6
4

4
2

6
5

0
5

7
5

3
8

8
1

0
8

1
1

8
1

6

Bzip2

Gzip

File Size in KB

Compression Time in Millisecond

23

Compression Algorithm Average Saving Percentage

Bzip2 65.99407553

Gzip 63.1791215

Table 4.7 Average Saving Percent

The graphical representation of observed saving percentage for entire test data under

study is shown in Fig 4.3.

Fig 4.3 File Size Vs Saving Percent

When studied the saving percentage of test data, as whole bzip2 have better saving

percent than gzip. But if the bzip2 carried out for data like “.docx” format file, it has

negative saving percent value i.e. size of compressed file is increase from original file

size. Since .docx is itself a compressed file and header information is needed. Hence,

may be due to the added information while compression, there is increase in file size.

-20

0

20

40

60

80

100

120

1
9

1
5

3
1

6
2

3
6

7
3

7
7

3
9

6
4

3
8

4
5

9
6

0
8

6
5

3
6

8
6

8
4

2
9

1
6

1
0

2
4

1
0

2
4

1
3

0
5

1
3

0
8

1
6

8
9

1
9

2
7

2
0

4
8

2
0

4
8

2
1

1
3

2
3

0
4

2
3

0
4

2
5

8
1

2
9

3
4

3
0

7
2

3
4

2
4

3
6

2
5

4
3

0
9

4
3

9
8

5
1

1
5

5
9

8
4

6
0

1
5

6
3

3
4

6
4

4
2

6
5

0
5

7
5

3
8

8
1

0
8

1
1

8
1

6

Bzip2

Gzip

File Size in KB

Saving Percent

24

4.2.4 Decompression Time

Table 4.8 represents the average time taken for decompressing the compressed file

using respective algorithms, bzip2 and gzip.

Compression Algorithm Average Compressed

File Size in KB

Decompression Time in

millisecond

Bzip2 1245.625 1089.2

Gzip 1344.675 149.275

Table 4.8 Decompression Time

In both cases, decompression time is less as compare to compression time. On

observing the decompression time of gzip and bzip3, gzip decompressed the file

more quickly than bzip2.

Fig 4.4 Decompression Time for Compressed File (bzip2)

0

1000

2000

3000

4000

5000

6000

7000

8000

3
1

0
1

6
1

7
1

8
2

0
2

6
5

1
5

7
6

6
8

0
8

2
8

6
9

1
1

0
1

1
0

3
1

3
2

1
4

0
1

9
0

2
6

7
3

3
9

5
3

7
6

3
2

6
5

9
8

7
6

9
2

2
1

0
8

9
1

1
3

2
1

2
7

7
1

3
0

9
1

3
8

2
1

5
0

0
1

6
1

2
1

6
1

2
2

5
5

9
4

4
0

8
4

4
8

7
5

5
5

3
7

1
6

4
9

2
2

0

Decompression Time (Bzip2)

File Size in KB

Time in Millisecond

25

Fig 4.5 Decompression Time for Compressed File (gzip)

4.2.5 Overall

Table 4.9 represents the average file size (total size/no. of file) of 40 test data that was

taken under study and their respective average size of compressed file observed for

bzip2 and gzip algorithms.

Compression Algorithm Average File Size

(KB)

Average Compressed File Size

(KB)

Bzip2 2834.25 1245.625

Gzip 2834.25 1344.675

Table 4.9 Average Compressed File Size

Fig 4.6 shows the graphical representation of compressed file using bzip2 and gzip in

compare with original file size considered under study.

0

100

200

300

400

500

600

700

800

900

4
1

2
2

1
2

3
2

3
2

4
3

6
6

9
8

5
8

5
8

8
9

3
1

0
7

1
1

5
1

3
4

1
4

1
1

5
7

1
9

6
2

4
7

3
2

5
4

3
4

5
4

4
6

3
0

1
0

1
4

1
0

6
1

1
1

6
0

1
2

7
2

1
3

0
3

1
4

9
9

1
6

0
6

1
6

1
0

1
6

4
1

1
6

9
1

1
9

7
2

2
6

7
8

4
5

1
8

5
0

9
8

5
6

4
1

7
2

5
5

9
1

7
5

Decompression Time(Gzip)

File Size in KB

Time in Millisecond

26

Fig 4.6 File Size Vs Compressed File Size

It is clear that the compression is only the substituting of repeated pattern by symbol.

Since, xml and program files like css, php, sql have more repeating set of characters

so such files are highly compressed in compare to the files like doc, docx, xls and pdf

which contain less repeating set of characters. Database files, mdf, ldf and bak (used

in sql management), are also highly compressed.

4.3 Verification and Validation

Any loss of data after decompressing is not acceptable in context of lossless

compression. These data could be used in future for further analysis. Accuracy of the

losslessness of text file depends on decompressing compressed file using respective

algorithms and analysis contents. After decompressing, the file size and the file

content obtained must have same size as original file and same content as original file.

On analysis files after decompressing forty compressed file using respective algorithm

for decompression, it is found that the size of file obtained is same as original file and

there is no change on contents i.e the contents of original file and file obtained after

decompression are same. Hence, it can be said that the losslessness of files has been

verified. Therefore, accuracy = 100%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1
9

1
5

3
1

6
2

3
6

7
3

7
7

3
9

6
4

3
8

4
5

9
6

0
8

6
5

3
6

8
6

8
4

2
9

1
6

1
0

2
4

1
0

2
4

1
3

0
5

1
3

0
8

1
6

8
9

1
9

2
7

2
0

4
8

2
0

4
8

2
1

1
3

2
3

0
4

2
3

0
4

2
5

8
1

2
9

3
4

3
0

7
2

3
4

2
4

3
6

2
5

4
3

0
9

4
3

9
8

5
1

1
5

5
9

8
4

6
0

1
5

6
3

3
4

6
4

4
2

6
5

0
5

7
5

3
8

8
1

0
8

1
1

8
1

6

Bzip2

Gzip

File Size in KB

Compressed File Size in KB

27

CHAPTER 5

CONCLUSION AND FURTHER STUDY

5.1 Conclusion

There is the variation of performance of the selected algorithms according to the

measurement, while one algorithm gives higher saving percentage, processing time

needed may be higher. Therefore, all these factors are considered for comparison in

order to get the best solutions. An algorithm is said to be best one if it gives an

acceptable saving percentage within reasonable time period for compression and

decompression.

Bzip2 has compression ratio of nearly 38 whereas the compression ratio of gzip is 34.

Bzip2 has compressed the file on average by 66% and gzip does by 63%. But gzip

compression the file 80% faster than bzip2 as well as decompression speed is also

86% faster than bzip2. Considering all these factors, gzip could be said as better

algorithm in compared to bzip2. Besides, as the needed either of algorithm could be

an option.

If very fast compression is needed, gzip is the clear winner. Bzip2 have more saving

percentage than gzip and hence bzip2 is getting popular beside the slower

compression than gzip. Gzip is again winner in case of speed for decompression.

Bzip2 is slower in this case also.

Gzip is very fast and bzip2 has notably better compression ratio. To choose which

algorithm is best suited, it depends on intended application. If speed is matter, then

gzip is the best options whereas if compression ration than bzip2.

28

5.2 Further Study

The performed work can be extended to evaluate the performance of lossy

compression algorithm which will be useful in multimedia files compression like

image and video.

The performed work can also be extended for parallel data compression of lossless

compression algorithm which works on multiple processors using pthread. Using

parallel data compression may provide more compressed file in high speed rate.

Further, there are lots of other lossless algorithms available and some are better as

well. Hence, clear comparative study for new lossless algorithms and old popular with

newer version could be made.

29

BIBLIOGRAPHY

[1] Bzip2 specification, http://www.bzip.org

[2] Christina Zeeh, “The Limpel Zip Algorithm”, Seminar – Famous Algorithms,

Jan 16, 2003

[3] Guy E. Blelloch, “Introduction to Data Compression”, Computer Science

Department, Carnegie Mellon University, Sept 25, 2010

[4] Gzip specification, http://www.gzip.org

[5] Haroon Altarawneh and Mohammad Altarawneh, “Data Compression

Techniques on Text Files: A Comparison Study”, Albalqa Applied University, Salt,

Jordan, International Journal of Computer Applications, Vol. 26 No. 5, July 2011

[6] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data

Compression”, IEEE Transactions on Information Theory, Vol. 23, No. 3, May 1997

[7] Mamata Sharma, “Compression using Huffman Coding”, S.L. Bawa D.A.V.

College, ICJCSNS, Vol. 10, No. 5, May 2010

[8] Mark Nelson and Jean-Loup Gaily, “The Data Compression Book Second

Edition”, ISBN: 1558514341

[9] Mohammad Al-laham and Ibrahiem M.M. El Emary, “Comparative Study

Between Various Algorithm of Data Compression Techniques”, WCECS, SF, USA,

2007

[10] M. Burrows and D.J. Wheeler, “A Block-sorting Lossless Data Compression

Algorithm”, SRC Research Report 124, Digital System Research Center, Palo Alto,

CA, 1994

[11] PKWARE, “Data Compression Benchmark and ROI analysis”, Technical

White Paper, 2008

30

[12] P. Deutsch, “DEFLATE Compressed Data Format Specification version 1.3”,

Network Working Group, Aladdin Enterprises, May 1996

[13] Sebastian Deorowicz, “Universal Lossless Data Compression Algorithms”,

Ph.D. Thesis, Institute of Computer Science, Sileasion University of Technology,

Gliwice, 2003

[14] Senthil Shanmugasundaram and Robert Lourdusamy, “A Comparative Study

of Text Compression Algorithm”, International Journal of Wisdom Based Computing,

Vol.1 (3), December 2011

[15] S.R. Kodituwakku, U.S. Amarasinghe, “Compression of Lossless Data

Compression for Text Data”, Indian Journal of Computer Science and Engineering

Vol 1 No 4416-425

31

APPENDICES

Appendix A

Main Program for Bzip2

namespace Bzip2

{

 public static class BZip2

 {

 public static void Decompress(Stream inStream, Stream outStream, bool

isStreamOwner)

 {

 if (inStream == null || outStream == null)

 {

 throw new Exception("Null Stream");

 }

 try

 {

 using (BZip2InputStream bzipInput = new BZip2InputStream(inStream))

 {

 bzipInput.IsStreamOwner = isStreamOwner;

 StreamUtils.Copy(bzipInput, outStream, new byte[4096]);

 }

 }

 finally

 {

 if (isStreamOwner)

 {

 outStream.Close();

 }

 }

 }

 public static void Compress(Stream inStream, Stream outStream, bool

isStreamOwner, int level)

 {

 if (inStream == null || outStream == null)

 {

 throw new Exception("Null Stream");

 }

 try

 {

32

 using (BZip2OutputStream bzipOutput = new

BZip2OutputStream(outStream, level))

 {

 bzipOutput.IsStreamOwner = isStreamOwner;

 StreamUtils.Copy(inStream, bzipOutput, new byte[4096]);

 }

 }

 finally

 {

 if (isStreamOwner)

 {

 inStream.Close();

 }

 }

 }

 }

}

/***/

 void MoveToFrontCodeAndSend()

 {

 BsPutIntVS(24, origPtr);

 GenerateMTFValues();

 SendMTFValues();

 }

void GenerateMTFValues()

 {

 char[] yy = new char[256];

 int i, j;

 char tmp;

 char tmp2;

 int zPend;

 int wr;

 int EOB;

 MakeMaps();

 EOB = nInUse + 1;

 for (i = 0; i <= EOB; i++)

 {

 mtfFreq[i] = 0;

 }

 wr = 0;

 zPend = 0;

 for (i = 0; i < nInUse; i++)

 {

33

 yy[i] = (char)i;

 }

 for (i = 0; i <= last; i++)

 {

 char ll_i;

 ll_i = unseqToSeq[block[zptr[i]]];

 j = 0;

 tmp = yy[j];

 while (ll_i != tmp)

 {

 j++;

 tmp2 = tmp;

 tmp = yy[j];

 yy[j] = tmp2;

 }

 yy[0] = tmp;

 if (j == 0)

 {

 zPend++;

 }

 else

 {

 if (zPend > 0)

 {

 zPend--;

 while (true)

 {

 switch (zPend % 2)

 {

 case 0:

 szptr[wr] = (short)BZip2Constants.RunA;

 wr++;

 mtfFreq[BZip2Constants.RunA]++;

 break;

 case 1:

 szptr[wr] = (short)BZip2Constants.RunB;

 wr++;

 mtfFreq[BZip2Constants.RunB]++;

 break;

 }

 if (zPend < 2)

 {

34

 break;

 }

 zPend = (zPend - 2) / 2;

 }

 zPend = 0;

 }

 szptr[wr] = (short)(j + 1);

 wr++;

 mtfFreq[j + 1]++;

 }

 }

 if (zPend > 0)

 {

 zPend--;

 while (true)

 {

 switch (zPend % 2)

 {

 case 0:

 szptr[wr] = (short)BZip2Constants.RunA;

 wr++;

 mtfFreq[BZip2Constants.RunA]++;

 break;

 case 1:

 szptr[wr] = (short)BZip2Constants.RunB;

 wr++;

 mtfFreq[BZip2Constants.RunB]++;

 break;

 }

 if (zPend < 2)

 {

 break;

 }

 zPend = (zPend - 2) / 2;

 }

 }

 szptr[wr] = (short)EOB;

 wr++;

 mtfFreq[EOB]++;

 nMTF = wr;

 }

void SendMTFValues()

 {

35

 char[][] len = new char[BZip2Constants.GroupCount][];

 for (int i = 0; i < BZip2Constants.GroupCount; ++i)

 {

 len[i] = new char[BZip2Constants.MaximumAlphaSize];

 }

 int gs, ge, totc, bt, bc, iter;

 int nSelectors = 0, alphaSize, minLen, maxLen, selCtr;

 int nGroups;

 alphaSize = nInUse + 2;

 for (int t = 0; t < BZip2Constants.GroupCount; t++)

 {

 for (int v = 0; v < alphaSize; v++)

 {

 len[t][v] = (char)GREATER_ICOST;

 }

 }

 /*--- Decide how many coding tables to use ---*/

 if (nMTF <= 0)

 {

 Panic();

 }

 if (nMTF < 200)

 {

 nGroups = 2;

 }

 else if (nMTF < 600)

 {

 nGroups = 3;

 }

 else if (nMTF < 1200)

 {

 nGroups = 4;

 }

 else if (nMTF < 2400)

 {

 nGroups = 5;

 }

 else

 {

 nGroups = 6;

 }

 /*--- Generate an initial set of coding tables ---*/

36

 int nPart = nGroups;

 int remF = nMTF;

 gs = 0;

 while (nPart > 0)

 {

 int tFreq = remF / nPart;

 int aFreq = 0;

 ge = gs - 1;

 while (aFreq < tFreq && ge < alphaSize - 1)

 {

 ge++;

 aFreq += mtfFreq[ge];

 }

 if (ge > gs && nPart != nGroups && nPart != 1 && ((nGroups - nPart) % 2

== 1))

 {

 aFreq -= mtfFreq[ge];

 ge--;

 }

 for (int v = 0; v < alphaSize; v++)

 {

 if (v >= gs && v <= ge)

 {

 len[nPart - 1][v] = (char)LESSER_ICOST;

 }

 else

 {

 len[nPart - 1][v] = (char)GREATER_ICOST;

 }

 }

 nPart--;

 gs = ge + 1;

 remF -= aFreq;

 }

 int[][] rfreq = new int[BZip2Constants.GroupCount][];

 for (int i = 0; i < BZip2Constants.GroupCount; ++i)

 {

 rfreq[i] = new int[BZip2Constants.MaximumAlphaSize];

 }

 int[] fave = new int[BZip2Constants.GroupCount];

 short[] cost = new short[BZip2Constants.GroupCount];

 /*---

37

 Iterate up to N_ITERS times to improve the tables.

 ---*/

 for (iter = 0; iter < BZip2Constants.NumberOfIterations; ++iter)

 {

 for (int t = 0; t < nGroups; ++t)

 {

 fave[t] = 0;

 }

 for (int t = 0; t < nGroups; ++t)

 {

 for (int v = 0; v < alphaSize; ++v)

 {

 rfreq[t][v] = 0;

 }

 }

 nSelectors = 0;

 totc = 0;

 gs = 0;

 while (true)

 {

 /*--- Set group start & end marks. --*/

 if (gs >= nMTF)

 {

 break;

 }

 ge = gs + BZip2Constants.GroupSize - 1;

 if (ge >= nMTF)

 {

 ge = nMTF - 1;

 }

 /*--

 Calculate the cost of this group as coded

 by each of the coding tables.

 --*/

 for (int t = 0; t < nGroups; t++)

 {

 cost[t] = 0;

 }

 if (nGroups == 6)

 {

 short cost0, cost1, cost2, cost3, cost4, cost5;

 cost0 = cost1 = cost2 = cost3 = cost4 = cost5 = 0;

 for (int i = gs; i <= ge; ++i)

38

 {

 short icv = szptr[i];

 cost0 += (short)len[0][icv];

 cost1 += (short)len[1][icv];

 cost2 += (short)len[2][icv];

 cost3 += (short)len[3][icv];

 cost4 += (short)len[4][icv];

 cost5 += (short)len[5][icv];

 }

 cost[0] = cost0;

 cost[1] = cost1;

 cost[2] = cost2;

 cost[3] = cost3;

 cost[4] = cost4;

 cost[5] = cost5;

 }

 else

 {

 for (int i = gs; i <= ge; ++i)

 {

 short icv = szptr[i];

 for (int t = 0; t < nGroups; t++)

 {

 cost[t] += (short)len[t][icv];

 }

 }

 }

 /*--

 Find the coding table which is best for this group,

 and record its identity in the selector table.

 --*/

 bc = 999999999;

 bt = -1;

 for (int t = 0; t < nGroups; ++t)

 {

 if (cost[t] < bc)

 {

 bc = cost[t];

 bt = t;

 }

 }

 totc += bc;

 fave[bt]++;

 selector[nSelectors] = (char)bt;

 nSelectors++;

39

 /*--

 Increment the symbol frequencies for the selected table.

 --*/

 for (int i = gs; i <= ge; ++i)

 {

 ++rfreq[bt][szptr[i]];

 }

 gs = ge + 1;

 }

 /*--

 Recompute the tables based on the accumulated frequencies.

 --*/

 for (int t = 0; t < nGroups; ++t)

 {

 HbMakeCodeLengths(len[t], rfreq[t], alphaSize, 20);

 }

 }

 rfreq = null;

 fave = null;

 cost = null;

 if (!(nGroups < 8))

 {

 Panic();

 }

 if (!(nSelectors < 32768 && nSelectors <= (2 + (900000 /

BZip2Constants.GroupSize))))

 {

 Panic();

 }

 /*--- Compute MTF values for the selectors. ---*/

 char[] pos = new char[BZip2Constants.GroupCount];

 char ll_i, tmp2, tmp;

 for (int i = 0; i < nGroups; i++)

 {

 pos[i] = (char)i;

 }

 for (int i = 0; i < nSelectors; i++)

 {

 ll_i = selector[i];

40

 int j = 0;

 tmp = pos[j];

 while (ll_i != tmp)

 {

 j++;

 tmp2 = tmp;

 tmp = pos[j];

 pos[j] = tmp2;

 }

 pos[0] = tmp;

 selectorMtf[i] = (char)j;

 }

 int[][] code = new int[BZip2Constants.GroupCount][];

 for (int i = 0; i < BZip2Constants.GroupCount; ++i)

 {

 code[i] = new int[BZip2Constants.MaximumAlphaSize];

 }

 /*--- Assign actual codes for the tables. --*/

 for (int t = 0; t < nGroups; t++)

 {

 minLen = 32;

 maxLen = 0;

 for (int i = 0; i < alphaSize; i++)

 {

 if (len[t][i] > maxLen)

 {

 maxLen = len[t][i];

 }

 if (len[t][i] < minLen)

 {

 minLen = len[t][i];

 }

 }

 if (maxLen > 20)

 {

 Panic();

 }

 if (minLen < 1)

 {

 Panic();

 }

 HbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize);

 }

41

 /*--- Transmit the mapping table. ---*/

 bool[] inUse16 = new bool[16];

 for (int i = 0; i < 16; ++i)

 {

 inUse16[i] = false;

 for (int j = 0; j < 16; ++j)

 {

 if (inUse[i * 16 + j])

 {

 inUse16[i] = true;

 }

 }

 }

 for (int i = 0; i < 16; ++i)

 {

 if (inUse16[i])

 {

 BsW(1, 1);

 }

 else

 {

 BsW(1, 0);

 }

 }

 for (int i = 0; i < 16; ++i)

 {

 if (inUse16[i])

 {

 for (int j = 0; j < 16; ++j)

 {

 if (inUse[i * 16 + j])

 {

 BsW(1, 1);

 }

 else

 {

 BsW(1, 0);

 }

 }

 }

 }

 /*--- Now the selectors. ---*/

 BsW(3, nGroups);

 BsW(15, nSelectors);

42

 for (int i = 0; i < nSelectors; ++i)

 {

 for (int j = 0; j < selectorMtf[i]; ++j)

 {

 BsW(1, 1);

 }

 BsW(1, 0);

 }

 /*--- Now the coding tables. ---*/

 for (int t = 0; t < nGroups; ++t)

 {

 int curr = len[t][0];

 BsW(5, curr);

 for (int i = 0; i < alphaSize; ++i)

 {

 while (curr < len[t][i])

 {

 BsW(2, 2);

 curr++; /* 10 */

 }

 while (curr > len[t][i])

 {

 BsW(2, 3);

 curr--; /* 11 */

 }

 BsW(1, 0);

 }

 }

 /*--- And finally, the block data proper ---*/

 selCtr = 0;

 gs = 0;

 while (true)

 {

 if (gs >= nMTF)

 {

 break;

 }

 ge = gs + BZip2Constants.GroupSize - 1;

 if (ge >= nMTF)

 {

 ge = nMTF - 1;

 }

 for (int i = gs; i <= ge; i++)

 {

43

 BsW(len[selector[selCtr]][szptr[i]], code[selector[selCtr]][szptr[i]]);

 }

 gs = ge + 1;

 ++selCtr;

 }

 if (!(selCtr == nSelectors))

 {

 Panic();

 }

 }

44

Appendix B

Main Program for Gzip

namespace Gzip

{

 public static class GZip

 {

 public static void Decompress(Stream inStream, Stream outStream, bool

isStreamOwner)

 {

 if (inStream == null || outStream == null)

 {

 throw new Exception("Null Stream");

 }

 try

 {

 using (GZipInputStream gzipInput = new GZipInputStream(inStream))

 {

 StreamUtils.Copy(gzipInput, outStream, new byte[4096]);

 }

 }

 finally

 {

 if (isStreamOwner)

 {

 outStream.Close();

 }

 }

 }

 public static void Compress(Stream inStream, Stream outStream, bool

isStreamOwner, int level)

 {

 if (inStream == null || outStream == null)

 {

 throw new Exception("Null Stream");

 }

 try

 {

 using (GZipOutputStream gzipOutput = new GZipOutputStream(outStream,

level))

 {

 StreamUtils.Copy(inStream, gzipOutput, new byte[4096]);

 }

 }

45

 finally

 {

 if (isStreamOwner)

 {

 inStream.Close();

 }

 }

 }

 }

}

/**/

protected void Deflate()

 {

 while (!deflater_.IsNeedingInput)

 {

 int deflateCount = deflater_.Deflate(buffer_, 0,

buffer_.Length);

 if (deflateCount <= 0) {

 break;

 }

 baseOutputStream_.Write(buffer_, 0, deflateCount);

 }

 if (!deflater_.IsNeedingInput) {

 throw new BaseException("DeflaterOutputStream can't

deflate all input?");

 }

 }

/**/

public int Deflate(byte[] output, int offset, int length)

 {

 int origLength = length;

 if (state == CLOSED_STATE) {

 throw new InvalidOperationException("Deflater

closed");

 }

 if (state < BUSY_STATE) {

 // output header

 int header = (DEFLATED +

46

 ((DeflaterConstants.MAX_WBITS - 8) << 4))

<< 8;

 int level_flags = (level - 1) >> 1;

 if (level_flags < 0 || level_flags > 3) {

 level_flags = 3;

 }

 header |= level_flags << 6;

 if ((state & IS_SETDICT) != 0) {

 // Dictionary was set

 header |= DeflaterConstants.PRESET_DICT;

 }

 header += 31 - (header % 31);

 pending.WriteShortMSB(header);

 if ((state & IS_SETDICT) != 0) {

 int chksum = engine.Adler;

 engine.ResetAdler();

 pending.WriteShortMSB(chksum >> 16);

 pending.WriteShortMSB(chksum & 0xffff);

 }

 state = BUSY_STATE | (state & (IS_FLUSHING |

IS_FINISHING));

 }

 for (;;) {

 int count = pending.Flush(output, offset, length);

 offset += count;

 totalOut += count;

 length -= count;

 if (length == 0 || state == FINISHED_STATE) {

 break;

 }

 if (!engine.Deflate((state & IS_FLUSHING) != 0, (state

& IS_FINISHING) != 0)) {

 if (state == BUSY_STATE) {

 // We need more input now

 return origLength - length;

 } else if (state == FLUSHING_STATE) {

 if (level != NO_COMPRESSION) {

 /* We have to supply some

lookahead. 8 bit lookahead

 * is needed by the zlib inflater,

and we must fill

47

 * the next byte, so that all bits

are flushed.

 */

 int neededbits = 8 + ((-

pending.BitCount) & 7);

 while (neededbits > 0) {

 /* write a static tree block

consisting solely of

 * an EOF:

 */

 pending.WriteBits(2, 10);

 neededbits -= 10;

 }

 }

 state = BUSY_STATE;

 } else if (state == FINISHING_STATE) {

 pending.AlignToByte();

 // Compressed data is complete. Write

footer information if required.

 if (!noZlibHeaderOrFooter) {

 int adler = engine.Adler;

 pending.WriteShortMSB(adler

>> 16);

 pending.WriteShortMSB(adler &

0xffff);

 }

 state = FINISHED_STATE;

 }

 }

 }

 return origLength - length;

 }

48

Appendix C

Main Program

public static void Bzip2Main(string[] args)

 {

 ArgumentParser parser = new ArgumentParser(args);

 Timer tr = new Timer();

 switch (parser.Command)

 {

 case Command.Help:

 ShowHelp();

 break;

 case Command.Compress:

 //get all the file to be compress on folder

 //Console.WriteLine("Compressing {0} to {1}", parser.Source,

parser.Target);

 LogFile(string.Format("Compressing {0} to {1}", parser.Source,

parser.Target));

 tr.Start();

 BZip2.Compress(File.OpenRead(parser.Source),

File.Create(parser.Target), true, 4096);

 tr.Stop();

 LogFile("Time to Compress: " + tr.Interval.ToString());

 break;

 case Command.Decompress:

 //get all the decompressed file name to be uncompressed

 //Console.WriteLine("Decompressing {0} to {1}", parser.Source,

parser.Target);

 LogFile(string.Format("Compressing {0} to {1}", parser.Source,

parser.Target));

 tr.Start();

 BZip2.Decompress(File.OpenRead(parser.Source),

File.Create(parser.Target), true);

 tr.Stop();

 LogFile("Time to Decompress: " + tr.Interval.ToString());

 break;

 }

 }

49

public static void GzipMain(string[] args)

 {

 ArgumentParser parser = new ArgumentParser(args);

 switch (parser.Command)

 {

 case Command.Help:

 ShowHelp();

 break;

 case Command.Compress:

 Console.WriteLine("Compressing {0} to {1}", parser.Source,

parser.Target);

 GZip.Compress(File.OpenRead(parser.Source),

File.Create(parser.Target), true, 4096);

 break;

 case Command.Decompress:

 Console.WriteLine("Decompressing {0} to {1}", parser.Source,

parser.Target);

 GZip.Decompress(File.OpenRead(parser.Source),

File.Create(parser.Target), true);

 break;

 }

 }

50

Appendix D (License Bzip2)

/* This file was derived from a file containing this license:

 *

 * This file is a part of bzip2 and/or libbzip2, a program and library for lossless,

 * block-sorting data compression.

 *

 * Copyright (C) 1996-1998 Julian R Seward. All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are met:

 *

 * 1. Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * 2. The origin of this software must not be misrepresented; you must

 * not claim that you wrote the original software. If you use this

 * software in a product, an acknowledgment in the product

 * documentation would be appreciated but is not required.

 *

 * 3. Altered source versions must be plainly marked as such, and must

 * not be misrepresented as being the original software.

 *

 * 4. The name of the author may not be used to endorse or promote

 * products derived from this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

AUTHOR BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE

 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

 *

 * Java version ported by Keiron Liddle, Aftex Software <keiron@aftexsw.com>

1999-2001

 */

51

Appendix E (License Gzip)

// Copyright (C) 2001 Mike Krueger

//

// This file was translated from java, it was part of the GNU Classpath

// Copyright (C) 2001 Free Software Foundation, Inc.

//

// This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU General Public License

// as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program; if not, write to the Free Software

// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

//

// Linking this library statically or dynamically with other modules is

// making a combined work based on this library. Thus, the terms and

// conditions of the GNU General Public License cover the whole

// combination.

//

// As a special exception, the copyright holders of this library give you

// permission to link this library with independent modules to produce an

// executable, regardless of the license terms of these independent

// modules, and to copy and distribute the resulting executable under

// terms of your choice, provided that you also meet, for each linked

// independent module, the terms and conditions of the license of that

// module. An independent module is a module which is not derived from

// or based on this library. If you modify this library, you may extend

// this exception to your version of the library, but you are not

// obligated to do so. If you do not wish to do so, delete this

// exception statement from your version.

