
1

CHAPTER ONE

BADKGROUND AND PROBLEM FORMULATION

1.1 Background

In recent days, there is rapid growth in memory size but access time is comparatively

slow. To minimize the gap between CPU speed and memory speed, the concept of

caching arises. The cache is a small amount of very fast associative memory. Caching is a

technique in which a fast memory is used from which access time is very fast as

compared from secondary storage. To locate a memory address within a cache, a mapping

function is used. There are three types of mapping functions- direct mapping, fully

associative and set associative [9]. If each block has only one place it can appear in the

cache, the cache is said to be direct mapped. If a block can be placed anywhere in the

cache, the cache is said to be fully associative. And, if a block can be placed in a

restricted set of places in the cache, the cache is set associative. A cache is set of group of

blocks in the cache. A block is first mapped onto a set, and then the block can be placed

anywhere within that set.

At a time computers running multiple processes, each with its own address space. So, it

would be too expensive to dedicate a full address space worth of memory for each

process. Hence, there must be a means of sharing a smaller amount of physical memory

among many processes. To do this, Fotheringham [15] devised virtual memory which

divides physical memory into small blocks and allocates them to different processes.

Handling the virtual memory is one of the challenging tasks of memory management.

1.1.1 Virtual Memory

Virtual memory works silently and automatically without any intervention from the

application programmer. The virtual memory is a method which automatically manages

the two levels of the memory hierarchy represented by main memory and secondary

storage. It moves required program into physical main memory for their execution and

part of it not currently being execution are stored in secondary storage. Virtual memory

makes the task of programming much easier because the programmer no larger needs to

worry about the amount of physical memory available. The main memory is efficiently

managed by virtual memory with treating it as cache keeping only the active data or

program in main memory, and transferring data back and forth between disk and main

memory as required during program execution. Virtual memory provides uniform address

2

space to each process for memory management and protects the address space of each

process from corruption by other processes. Due to different advantages and efficient

technique, virtual memory is a popular and widely used memory management technique

in the computer systems.

Figure 1.1 Virtual memory management

1.1.2 Memory Hierarchy

The performance of the computer system largely depends upon the memory. So, the

memory is a major component of the computer system. There are varieties of memory

devices are available in market which vary on their response time, cost, reliability,

capacity etc. Memory Hierarchy is the ranking of memory devices so as to achieve higher

performance with in the limited storage capacity. The computer architecture uses the term

memory hierarchy when discussing performance issues in computer architectural design,

algorithm predictions, and the lower level programming constructs such involving

locality of reference. Memory hierarchy consists of different levels according to speed

and cost.

Figure 1.2 General memory hierarchy.

 Physical addresses

Address translation

add

Virtual addresses

Disk addresses

Mzgnetic tape

Mzgnetic Disk

Main memory

Cache

Registers

3

Figure 1.2 shows the arrangement of memory devices of computer system in which faster

memory is at the top level and that of slower memory is at the bottom level. However,

overall performance of computer system depends upon management and organization of

such memories. The memory management is done by OS according to different policies

followed by it. Besides real memory OS uses virtual memory to speed up the overall

performance of the computer system. Different types of memory available are divided

into two groups-primary memory and secondary memory. The main memory is a volatile

memory usually too small and stores needed data and program temporally. The secondary

storage is non-volatile memory considered as an extension of main memory and can store

large quantities of data permanently.

1.1.3 Page Table Structure

A virtual address is translated to corresponding physical address before the memory can

be used. This address translation is made in every memory reference and done by special

hardware called Memory Management Unit (MMU). Virtual memory system maps

virtual addresses onto physical addresses with the help of page table. Using this mapping

information MMU performs translation. If the given virtual address is not mapped to the

main memory, MMU traps the operating system. This trap is called page fault and gives

the operating system an opportunity to bring the desired page from the secondary storage

and page table is updated. A typical page table entry includes most important field called

page frame number which is used as an index to find the entry for that virtual page. Page

table contains Present/absent bit. When this bit is 1, then the entry is valid otherwise

(i.e.0) invalid and required page is not in memory and can't be used. Page table includes

modified and referenced bits that keep track of page usage.

Figure 1.3 A typical page table structure [1].

Page frame number

Present/absent

Protection Referenced

Modified

Caching

disabled

4

1.1.4 Paging

Paging is the process of memory management in which memory is allocated in the non

contiguous form, i.e. the program is break into block of fixed size known as page and also

the main memory also break down into block of same size known as frame or page frame.

In paging a computer can store and retrieve data from secondary storage for use in main

memory and avoids the considerable problem of fitting memory chunks of varying sizes

onto the backing store. Each page fits within page frame because generally page and

frame size are equal. Initially, program is executed after loading only a few pages in

memory. During program execution, if the references page is not currently in main

memory then OS creates trap is called page fault. To increase the degree of

multiprogramming the program or data that is not currently in main memory is required to

be brought into main memory as needed and, some other page should be removed from

memory to allocate the space for incoming page.

1.1.5 Demand Paging and Prepaging

In demand paging only those pages are brought into main memory which is required

during program execution. At that time, when a program needs other pages it will swap

out the unused pages from the main memory and swap in the desired page. Thus, it is

possible to execute the program though the space available is not sufficient to bring the

whole program into main memory. One of the problem arises due to demand paging is

page fault which is caused due to required page not found in main memory for which we

require swapping.

In prepaging strategy, only needed pages are brought once in the main memory before

program execution then, program is executed. With pre-paging, pages other than the one

demanded by a page fault are brought in. Prepaging attempts to guess which pages are

needed next by placing them to main memory before they are needed. In general cases, it

is very difficult to make accurate guesses of page usage and demand paging is generally

accepted as a better choice. The selection of such pages is done based on common access

patterns, especially for secondary memory devices.

1.1.6 Page fault Handling

As mentioned earlier, typically page fault occurs when a process references a page that is

not present in the main memory. This page faults are triggered by the CUP and handled

5

by the page fault handler. The procedure for handling this page fault is straightforward

which is shown in figure 1.4.

In page fault handling process, page fault handler checks the page table to determine

whether the reference of the requested page is valid or invalid. If the reference is valid

then the requested page is loaded. If reference bit is invalid then MMU creates trap to the

OS then the missing page is swap in to main memory from the backing store and page

table entry for referenced page is updated to valid. Now, OS restarts the instruction to

execute properly. In the case when memory is full and the reference page has invalid bit

in the page table then OS decides which page is to be removed according to the page

replacement algorithms. If the page to be removed is modified while in memory, it must

be rewritten to the disk so that the disk copy remains up to date. If, however, the page has

not been changed (e.g., it contains program text), the disk copy is already up to date, so

no rewrite is needed.

1.1.7 Page Replacement algorithms

The page replacement is the process of choosing a page frame to replace when a page

fault occurs and, the page frame chosen for the replacement is called victim frame. The

algorithm used by operating system to find victim frame is called page replacement

algorithm. The most operating system has to choose a page frame to remove from main

memory to make room for page that has to be brought in from secondary storage when

reference

Figure 1.4 Page fault handling processes.

Page table

Restart

Reference

Execution

trap

Physical

memory

Back store

M

Load M

V
Free frame

OS

6

page fault occurs. The page to be read in just overwrites the page being evicted. While it

would be possible to pick a random page to evict at each page fault, system performance

is much better if a page that is not heavily used is chosen. If a heavily used page is

removed, it will probably have to be brought back in quickly, resulting in extra overhead.

Much work has been done on the subject of page replacement algorithms, both theoretical

and experimental [8].

The area of page replacement policy is the probably the most studied area of memory

management. When all of the frames in main memory are occupied and it is necessary to

bring in a new page to satisfy a page fault, the page replacement algorithm determines

which page currently in main memory to be replaced. All of the page replacement

algorithms have as their objective that the page that is removed should be the page least

likely to be referenced in the near future. Because of the principle of locality, there is

often a high correlation between recent referencing history and near future referencing

pattern. Thus, most page replacement algorithms try to predict future behavior on the

basic of past behavior. One tradeoff that must be considered is that the more elaborate and

sophisticated the replacement policy, the grater the hardware and software overhead to

implement it. The page replacement policy is also used in a Web server to improve the

performance of web service to employ web caching mechanism. The web caching caches

popular heavily used objects at location close to the clients, so it is considered one of the

effective solutions to avoid web service bottleneck, reduce traffic over the internet and

improve scalability of the web system [12].

A page replacement algorithm can be either global or local. Local replacement means that

replacement candidates are searched only from pages that belong to the page faulted

process. This effectively means that, if the working set of the process does not fit to the

memory reserved for it, the process will page fault constantly. This generally leads to

poor usage of memory resources. In global page replacement all processes compete for

the main memory and the replacement algorithm automatically adapts to changing

working set sizes of running processes [8].

Static page replacement algorithms share frames equally among processes. It splits m

frames to n users such that each user gets m/n frames. For example, if we have 100

frames and 5 processes then each process will get 20 frames. But, some applications

require more frames than others. Compare a database program of 127k and a small

7

student process of 10k. One solution to this problem is to decide the number of frames at

initial load time according to program size, or priority.

Dynamic paging algorithms share frames according to needs rather than equally. Some

processes need more frames than others and sometimes a process needs more frames than

other times. Change of locality when change of function. Some localities require more

pages and Change of localities requires more pages. These issues can be addressed with

dynamic page replacement algorithm. Although it is apparent that Dynamic Algorithms

are more versatile in their ability to deal with locality changes and the natural occurrence

of working page set changes, their complexity makes them a reality only for large-scale

systems.

One would naturally expect the behavior of static paging algorithms to be linear; after all,

they are static in nature. Instinct tells us that by increasing the available physical memory

for storing pages, and thus decreasing the needed number of page replacements, that the

performance of the algorithm would increase. However, with most simple algorithms this

is not necessarily the case. In fact, by increasing the available physical memory, some

algorithms such as FIFO can decrease in page fault performance seemingly at random, as

evidenced by [15]. This occurrence is referred to as Belady’s Anomaly.

1.1.8 Performance Metrics

An offline performance of the algorithm can be determined using page fault count, hit

rate, miss rate etc. Page hit occurs when the requested block is available in memory. If it

doesn’t occur in memory during program execution then, page fault occurs. Generally,

increase in memory size reflects increase in hit rate. Higher hit rate leads better

performance of the algorithm than higher miss rate.

1.1.7.1 Page Fault Count

Page fault count is also known as page fault frequency (PFF) which is the number of

occurrence of page faults between some intervals of reference. A better page replacement

algorithm has always less number of page fault frequency.

1.1.7.2 Hit Rate & Hit Ratio

Hit rate is the percentage calculation of hit ratio and calculated by using formula:

HR = 100 - MR

8

Where HR is the hit rate and MR is the miss rate. Hit ratio is calculated by dividing total

number of hits by total references and further by subtracting miss ratio from 1.

1.1.7.3 Miss Rate & Miss Ratio

Miss rate (MR) is the percentage calculation of miss ratio and calculated by using

formula:

MR = 100 × ((NPF - NDP) / (TNPR - NDP))

Where, NPF is the number of page faults, NDP is the number of distinct pages referenced

and TNPR is the total number of pages referenced [3]. Miss Ratio is calculated by

dividing total number of page fault by total references ignoring the distinct references.

1.1.9 Program Behavior

The performance of page replacement algorithm depends on several factors. The page

replacement algorithm shows different behaviors according to different memory reference

patterns as well as locality of reference and working set.

1.1.9.1 Memory Reference Pattern

The operating system accesses different memory locations with different reference

manner within time is called memory reference pattern. There are different types of

memory reference patterns that influence on the performance of the page replacement

algorithms. Some of the memory reference patterns are: cyclic pattern, correlated access

pattern, probabilistic pattern, temporally clustered patterns which are described below.

1.1.9.1.1 Cyclic Access Pattern

In cyclic patterns (references), all blocks are accessed repeatedly with a regular interval or

period such as looping. For example, let p1, p2, p3, p4 be the memory pages used then,

cyclic pattern is of the form p1, p2, p3, p4, p1, p2, p3, p4, p1, p2, p3, p4, p1, p2, p3, p4.

Here loop executes five times.

1.1.9.1.2 Correlated Pattern

The memory reference pattern is said to be correlated if frequently accessed memory

locations at particular place are repeated after some time duration. Sequential scan can be

taken as an example of correlated pattern. For example, let p1, p2, p3 are the memory

pages frequently accessed then, correlated pattern is of the form p1, p2, p3, p4, p5, p6, p7,

p8, p1, p2, p3, p10, p11, p12, p13, p15, p1, p2, p3, p16, p17, p18,…so on.

9

1.1.9.1.3 Probabilistic Pattern

The memory reference pattern is said to be probabilistic if particular memory block has a

stationary reference probability and all other blocks are accessed independently with the

associated probabilities [8]. For example, let p1, p2, p3 be the memory pages frequently

accessed then, probabilistic pattern is of the form p1, p2, p4, p5, p6, p1, p7, p8, p2, p10,

p11, p12, p13, p3, p7, p14, p1, p5, p3, p6, … so on.

1.1.9.1.4 Temporally Clustered Pattern

Temporally clustered patterns are such references in which blocks accessed more recently

are the once more likely to be accessed in the near future. For example, temporally

clustered pattern is of the form p1, p2, p1, p3, p2, p4, p3, p1, p2, p5, p6, p7, p8, p9, p10,

....so on.

1.1.9.2 Locality of Reference

In computer system, locality of reference, also known as principle of locality, is the

phenomenon of the same data value or related storage locations being frequently

accessed. Locality is merely one type of predictable behavior that is used by many page

replacement algorithms to predict about future references. There are two basic types of

reference locality. Temporal locality refers to the reuse of specific data within relatively

small time durations. In temporal locality, if at one point in time a particular memory

location is referenced, then it is likely that the same location will be referenced again in

near future. The spatial locality is property of page reference pattern in which if a

particular memory location is referenced at a particular time, then it is likely that nearby

memory locations will be referenced in the near future. Furthermore, locality of reference

may strong and weak. In strong locality of reference, there is high probability of reference

of memory location again in the near future. Locality of reference is said to be weak if

there is low probability of same memory location to be referenced in near future. There

are different types of algorithms that take locality of reference for choosing victim frame

when page fault occurs. Some of them are for weak locality of reference and some of

them are for strong locality of reference [15].

1.1.9.3 Working Set

The working set is the set of pages that are physically in memory at any one time and

frequenty accessed by an applications or set of applications. Page fault will occur if a

working set is not available in cache. The operating system constantly swaps pages out to

10

disk to make room to swap in pages that an application wants to access. If swapped out

pages are in working set then, it will almost immediately be needed again and have to

swap in from disk meaning that there is regular occurrence of page fault. This is referred

to as thrashing. Thrashing leads slowing down the execution of a program because CPU

spends more time to handle it. The page replacement algorithm is based on the working

set and basic idea is to find a page that is not in working set and evict it [1].

1.2 Introduction

The memory management is a major concern in today's computer system. There are

several page replacement algorithms with own advantages and disadvantages. Among

them Least Recently Used (LRU) is a popular, simple, flexible and low overhead page

replacement algorithm. LRU is a recency based algorithm in which replacement of victim

frame is based on recency. That is, LRU replaces page that is not accessed for longest

time. Recency is defined as the virtual time difference between the current time and last

time when the oldest block is accessed. LRU is the best algorithm for good locality of

reference but it shows worse performance with weak locality of reference. Reason behind

it is that LRU makes bold assumption that a block that has not been accessed for the

longest time would wait for the longest time to be used again. Here are some

representative examples reported in the research literature, to illustrate how LRU poorly

behaves:-

a. Under the LRU, a burst of references to infrequently used blocks such as

"sequential scans" through a large file may cause replacement of commonly

referenced blocks [17]. Suppose a memory consists of 51 page frames. Consider a

program in which there is a regularly repeated access to 50 pages and once in

every 25 references there is a reference to a new page. In such case LRU replaces

the frequently used page frame.

b. For a cyclic (loop-like) pattern of accesses to a file that is only slightly larger than

the cache size, LRU always mistakenly evicts the blocks that will be accessed for

the longest time [6]. For example, let us consider memory consist of 4 page

frames and consider a program which repeatedly references 5 pages in cyclic

order. Let P1, P2, P3, P4, and P5 are the pages which are referenced repeatedly as:

P1, P2, P3, P4, P5, P1, P2, P3, P4, P5, P1, P2, P3, P4, P5, ……so on. Here, when

the program references the age P5, the native LRU replaces page P1, because it is

11

the oldest unused page in memory. However, this page (i.e.P1) will be used in the

next reference. So this behavior of LRU is undesirable.

In above mentioned cases, if the "frequency" of each page reference is taken into

consideration, it will perform better in the case where workload has weak locality. The

Least Recently Used (LFU) uses the "frequency" for the prediction. This algorithm keeps

track of the number of references to each page, and the page selected for replacement is

the page that has the least number of references. In another word, this policy is based of

the presumption that the page that has been more frequently referenced in the past is

more likely to be referenced in the near future.

The LRU and LFU are two streams of independent algorithms. To overcome the merits

and demerits of both algorithms, there are several page replacement algorithms have

been developed. Least Recently Frequently Used (LRFU) page replacement algorithm

combines both "recency" and "frequency" factors on the replacement decision [4].

1.2.1. Problem Statement

Generally, in most page replacement algorithms, the page fault rate decreases as the

memory size increases. But in some algorithms just opposite i.e. increasing in memory

size leads to increase in page fault rate. This unexpected result is known as anomaly. The

LRFU page replacement algorithm also shows anomalous behaviors some times. But

LRU and LFU algorithm never shows anomalous behavior. This study mainly focused to

identify the reasons behind the anomalous behavior of LRFU and adopted the algorithm

so that anomalous behavior could be avoided.

1.2.1. Objectives

The objectives of this research work are:

1. To analyze LRFU algorithm to identify causes of its anomalous behavior.

2. To list sample workloads causing anomalous behavior of LRFU algorithm.

3. To adopt LRFU page replacement algorithm so that anomalous behavior of the

algorithm can be removed.

1.3 Motivation

The operating system manages the computer hardware. The memory management is a

major concern to computer system and it is not only the burden of today's computing

devices. It has been researched for decades. Whatever variety of storage devices found in

12

today's market is the great achievement of computer science. But still computer memory

is the limited source which directly hampers the performance of computing system.

Performance gain can be achieved by increasing the capacity of primary storage.

Expectation of customer is to decrease cost price with sufficient working memory. It is

not possible to gain performance without managing memory logically for its usability.

Varieties of techniques had been tried for this achievement. Among such techniques

paging is the successful one. Page replacement algorithm is the main part of paging

technique because deciding the victim page is a very tough job. Optimal page

replacement algorithm is the best one. But it can be only simulated since references

should be known earlier, which is not possible in most of the real systems.

Many near-optimal replacement schemes have been found, but their complexity and

various practical considerations tend to limit the effectiveness of the algorithms

implemented in real systems. Implementing LRU is a successful idea due to its simplicity,

flexibility and performance gain. But still LRU shows worse performance with weak

locality workloads. It is better if an algorithm could work as LRU comparatively

equivalent to computational complexity as well as it could solve the problem on weak

locality workloads. For this locality of workloads LFU shows somewhat better than

earlier LRU. LRFU algorithm combines both LRU and LFU to overcome merits and

demerits which shows better performance than earlier both algorithms. But the

performance of LRFU algorithm largely depends on the control parameter λ. An optimal

value of the control parameter λ=1 that results optimal performance of LRFU. However,

LRFU shows anomalous behavior sometimes according to different workloads [10].

1.4 Report Structure

The background and introduction part of this dissertation work have been mentioned in

this chapter including concept of virtual memory, page replacement algorithm and other

related basic terms. This chapter has also included problem definition and objectives of

this dissertation work. The research methodology and literature review part of this

dissertation work are described in chapter 2. Several page replacement algorithms such as

LFU, LRU-k, FBR, LIRS, 2Q, ARC, SEQ, EELRU etc. have mentioned in literature

review part of this chapter. Chapter 3 contains detail description and tracing of algorithm

which have been studied and implemented during study.

13

Chapter 4 consists of program development steps of our simulation. It includes detail

design of the program such as flowcharts. It also includes details about the data structures

and programming language used to build the simulation. Chapter 5 consists of data

collection and analysis part which includes output results with several analyzing graphs

which are tested for probabilistic pattern, cyclic pattern, temporally clustered pattern and

mixed pattern workloads. Chapter 6 consists of conclusion of this whole dissertation work

and the future work which shows guidelines for further research.

14

CHAPTER 2

 LITERATURE REVIEW AND METHODOLOGY

2.1. Research Methodology

Research is common parlance refers to a search for knowledge. It is an aggregate of

activities carried out by using scientific methods in sequential order to describe an event

or phenomenon or arrive or draw conclusion about the happening of an event or

phenomenon on the basic of available information about a factor of elements involved in

the events or phenomenon. The system of collecting data for research projects is known

as research methodology. The validity of research data is a important factor in research

methodology.

The topics memory management and design has been studied from the early generation of

computer. Page replacement algorithm is one of the major strategies to manage memory

efficiently. All data collected are primary data, which are traces of page references. This

dissertation work is based on trace driven simulation. Output information gathered is

analyzed in a quantitative approach. Finally conclusion is drawn with the help of analyzed

data which is generalized form. This work takes different types of workloads such as

cyclic pattern, probabilistic pattern, temporally clustered pattern and mixed pattern.

2.2. Literature Review

An optimal page replacement algorithm [13] is an ideal replacement algorithm that has

the lowest page-fault rate and will never suffer from anomaly. An optimal page

replacement algorithm replaces the page that will not be used for the longest period of

time. Use of this page replacement algorithm guarantees the lowest possible page fault

rate for a fixed number of frames. Unfortunately, this algorithm is difficult to implement,

because it requires future knowledge of the reference string, so this algorithm can

not be realized in practice.

 The management of virtual memory is a central issue in today's computer system. LRU is

a most commonly used page replacement algorithm in various forms. It is used for the

management of virtual memory, file buffer caches, and data buffers in database systems.

Many enhancement and modifications have been made to overcome the problems of

LRU. Different page replacement algorithms can be categorized and explained in the next

section.

15

2.1.1. Replacement Algorithms Based on User-Level Hint

Application-controlled file caching and application-informed prefetching and caching [5]

are the algorithm based on user-level hints. By taking user-level hints, applications are

hinted during caching and pre-fetching which rely on users understanding of data access

patterns. These algorithms identify frames less likely to be re accessed in the near future

based on the hints provided by user programs. To provide appropriate hints, programmers

need to understand the data access patterns, which add to the programming burden [18].

2.1.2. Replacement Algorithms using Deeper History Information

LRU uses the limited history information for the replacement so that it behaves worse

performance than other simple algorithms. This is due to limited history information it

uses. Therefore, to overcome limitations of LRU, several algorithms were proposed that

use more “deeper” history information than LRU.

2.1.2.1 LFU Page Replacement Algorithm

Least Frequently Used (LFU) algorithm replaces the page that has been used least

frequently. This algorithm is based on the presumption that the block that has been more

frequently referenced in the past is more likely to be referenced in the near future. The

motivation for this algorithm is that some pages are accessed more frequently than others

so that the reference counts can be used as an estimate of the probability of a page being

referenced. Instead of using a single recency factor as LRU, LFU defines additional

information of frequency which is equal to number times the page used with each page.

This frequency is calculated throughout the reference stream by maintaining counting

information. Frequency count leads to serious problem after a long duration of reference

stream. Because when the locality changes, reaction to such certain change will be

extremely slow. Assuming that a program either changes its set of active pages, or

terminates and is replaced by a completely different program, the frequency count will

cause pages in the new locality to be immediately replaced since their frequency is much

less than the pages associated with the previous program. Since the context has changed,

the pages swapped out will most likely be needed again soon which leads to thrashing.

One way to remedy this is to use a popular variant of LFU, which uses frequency counts

of a page since it was last loaded rather than since the beginning of the page reference

stream. Each time a page is loaded, its frequency counter is reset rather than being

16

allowed to increase indefinitely throughout the execution of the program. LFU still tends

to respond slowly to change in locality [18].

2.1.2.2 LRU-k Page Replacement Algorithm

The LRU-K algorithm makes the decision about the victim frame based on the time of

reference of kth-to-last reference to the block [6]. It ignores the recency of the k-1

references. For example, assume that {4, 9, 16, 18, 20} is the reference history of a block,

then LRU-4 would treat its decision on the time of fourth-to-last reference of this block

(i.e. 9). If this time is least over all blocks present in the memory, then the algorithm

replaces this block. LRU-K algorithm violates the rule of thumb that the more recent

behavior predicts the future better. For example, let reference histories of blocks a and b

are {1, 3, 10, 20} and {2, 3, 5, 20} respectively. Then LRU-3 treats both a and b equally

because their 3
rd

-to-last reference time is same (i.e.3). Intuitively, block b have greater

possibility of being replaced. Since, the block a is references recently than block b (10

vs.5).

2.1.2.3 FBR Page Replacement Algorithm

Frequency Based Replacement (FBR) algorithm [11] is a hybrid replacement algorithm

which combines both LRU and LFU algorithms in order to capture the benefits of both

algorithms. It maintains the LRU ordering of all blocks in the memory, but the

replacement decision is primarily based upon the frequency. It divides LRU list into three

sections: new, middle, and old. For every page in memory, a counter is also maintained.

On a page hit, the hit page is moved to the MRU position; moreover, if the hit page was

in the middle or the old section, then its reference count is incremented. The key idea

known as factoring out locality was that if the hit page was in the new section then the

reference count is not incremented. On a page miss, the page in the old section with the

smallest reference count is replaced. A limitation of the algorithm is that to prevent cache

pollution due to stale pages with high reference count but no recent usage the algorithm

must periodically resize (rescale) all the reference count. The algorithm also has several

tunable parameters, namely, the size of all three sections, and some other parameters Cmax

and Amax that control periodic resizing.

17

2.1.2.4 2Q Page Replacement Algorithm

2Q replacement algorithm [19] is based on the modification that the cold pages would

recently removed from the memory. It uses one FIFO queue Alin and two LRU lists, Alout

and Am. It places a block in Alin on the first access and promotes the block to Am on the

second access. It replaces a block in Alin and put the block’s identifier in Alout if Alin has

more than fixed number of blocks. Otherwise, it replaces a block in Am.

2.1.2.5 LIRS Page Replacement Algorithm

Low Inter-Reference Recency Set (LIRS) algorithm [17] is another important

replacement algorithm which is suitable for weak locality of references. It minimizes the

deficiencies of LRU algorithm using Inter-Reference Recency (IRR) history instead of

just access recency for making a replacement decision. IRR of a page is the number of

other pages accessed between two consecutive references to the page. The algorithm

assumes the existence of some behavior inertia and, according to the collected IRRs,

replaces the page that will take more time to be referenced again. This means that LIRS

does not replace the page that has not been referenced for the longest time, but uses the

access recency information to predict which pages have more probability to be accessed

in a near future. Pages with smaller IRR values are favored than those with larger IRR

values.

2.1.2.6 ARC Page Replacement Algorithm

An Adaptive Replacement Cache (ARC) algorithm [14] combines recency and frequency

by using two lists L1 and L2. The first list contains pages that have been seen once

recently, while other list contains pages that have been seen at least twice recently.

Therefore, list L1 is thought of as "recency" and L2 as "frequency". For the replacement,

replace the LRU page in L1, if |L1|=c; otherwise, replace the LRU page in L2. The basic

idea is to divide L1 into top T1 and bottom B1 and to divide L2 into top T2 and bottom

B2. The pages in T1 and T2 are in the cache and in the cache directory, while the history

pages in B1 and B2 are in the cache but not in the cache. The pages evicted from T1

(resp. T2) are put on the history list B1 (resp.B2). The algorithm sets a target size p for

the list T1. During replacement, replace the LRU page in T1, if |T1|≥p; otherwise replace

the LRU page in T2. ARC algorithm dynamically adjusts their sizes depending which

factor is more important.

18

2.1.3. Replacement Algorithms Based on Detection and Adaptation of Access

Regularities

Algorithms that are adapted themselves by carefully observing the page reference pattern

at run time can gain better performance than former.

2.1.3.1 SEQ Page Replacement Algorithm

An SEQ replacement algorithm [7] is an adaptive version of the LRU algorithm. It shows

better performance in the case of linearly sequential memory accesses, than the original

LRU algorithm. An SEQ replacement algorithm detects long sequences of page faults and

applies MRU replacement to such sequences. The goal is to avoid LRU flooding, which

occurs when a program accesses a large address space range sequentially. If a program

accesses an address range once, LRU would page out useful pages that would be accessed

again; if the range is larger than physical memory, LRU would page out the pages in the

order in which they are accessed and thus perform poorly. If no sequences are detected,

SEQ performs LRU replacement.

2.1.3.2 EELRU Page Replacement Algorithm

Early Eviction LRU (EELRU) is a simple adaptive page replacement algorithm. LRU

exhibits worse performance for regular access patterns over more pages than the main

memory can hold (e.g., large looping). To eliminate this problem of LRU, EELRU

algorithm is arises which uses only the kind of information needed by LRU-how recently

each page has been touched relative to the others [20]. EELRU is not affected by high-

frequency behavior (e.g., loops much smaller than the memory size), chooses pages to

evict in a way that respects both the memory size and aggregate memory-referencing

behavior of the program. Moreover, by an aggregate analysis, EELRU cannot quickly

respond to the changing access patterns. EELRU performs LRU replacement by default

but diverges from LRU and evicts pages early when it notices that too many pages are

being touched in a roughly cyclic patterns can be reliably detected using recency

information. EELRU maintains some kind of information for reference pages as resident

and nonresident pages.

19

2.1.4. AI Based Page Replacement Algorithms

Recent adaptive algorithms use Artificial Intelligence techniques in order to help them in

the adaptation. For example the FPR [2] and FAPR [16] algorithms apply fuzzy inference

techniques to manage the replacement priorities of the resident pages. All these

algorithms bring important conceptual benefit to the traditional page replacement

algorithms, but they also present more complex implementations. In many cases

additional data structures to hold nonresident pages are necessary increasing space

requirements. Some algorithms require data update in every memory access, making

impracticable its real implementation.

20

CHAPTER 3

PAGE REPLACEMENT ALGORITHMS STUDIED

3.1. Least Recently Frequently Used (LRFU) Algorithm

LFU and LRU algorithms that consider either frequency or recency but LRFU algorithm

takes into account both the frequency and recency of references in its replacement

decision. LRFU algorithm associates a value with each page frame. This value is called

the CRF (Combined Recency and Frequency) value and quantifies the likelihood that the

page would be referenced in the near future. Each reference to a block in the past

contributes to CRF value and a reference’s contribution is determined by a weighting

function F(x), where x is the time span from the reference in the past to the current time.

In general, F(x) should be decreasing function to give more weight to more recent

references and, therefore, a reference’s contribution to the CRF value is proportional to

the recency of the reference. Weighting function that subsumes both LRU and LFU is

given by:

 F(x)=(1/p)
λx

Where, x is difference between current time and the time of reference in the past, p>=2,

and λ is a control parameter which ranges from 0 to 1 [4]. The performance of the LRFU

algorithm depends on the parameter λ [10]. LRFU algorithm replaces a block whose CRF

value is minimum and CRF value of each page is calculated as follows:

Definition 1 Assume that the system time can be represented by an integer value by using

a system clock and that at most one block may be referenced at any one time. The CRF

value of a block b at time tbase, denoted by Ctbase(b), is defined as [4]-

 Ctbase(b)=∑ F(tbase-tbi)

Where F(x) is a weighting function and {tb1, tb2, …..,tbk} are reference times of blocks b

and tb1<tb2<……<tbk<=tbase.

For example, assume that block b was referenced in the past at times 2, 4, 7, and 9, and

that the current time (tc) is 10. Then, the CRF value of the block at current time tc is

denoted by Ctbase(b) and, is computed as:

i=1

k

21

j=i+1

k

 Ctbase(b)=F(10-2)+F(10-4)+F(10-7)+F(10-9)

 =F(8)+F(6)+F(3)+F(1)

Property 1: If F(x)=c for all x where c is a constant, then the LRFU algorithm replaces

the same block as the LFU algorithm [4].

In case of LFU algorithm, the replacement decision is made on the basis of frequency of

reference. It means that LFU algorithm does not discriminate a block in accordance to the

time of reference (it only counts the frequency of reference). Therefore, CRF value of any

block, if LRFU algorithm were managed to follow LFU algorithm, would be independent

of time span, i.e., F(x) = c, where c is a constant, for all time span x. To be more precise,

F(x) should give the reference count of a block. So, F(x) = 1, for all x.

Property 2: If F(x) satisfies the following condition, then the LRFU algorithm replaces

the same block as the LRU algorithm [4].

∀i, F(i) >∑ F(j) for any k where k ≥ i + 1

A weighting function F(x)=(1/2)
λx

 satisfies both property 1 and property 2 [4]. Spectrum

generated by LRFU algorithm according to the function F(x)= (1/2)
λx

 is given below:

Figure 3.1 Spectrum of LRFU according to weighting function F(x)= (1/2)
λx

, where

x=(current time-reference time).

Current Time – reference time

Spectrum

(Recency/Frequency)

1

0

F(x) = (1/2)
x
 (LRU Extreme)

F(x) = 1 (LFU Extreme)

F(x)

22

In general, computing the CRF value of a block requires the reference times of all the

previous references to the block. This obviously requires unbounded memory and, thus

algorithm may not be implementable. This necessitates re-computing the CRF value of

every block at each time step, makes the algorithm unimplementable. So, to reduce

storage and computational overheads, two properties: F(x+y)=F(x)F(y) and

F(x+y)=F(x)+F(y) have been identified [4]. Using this property, the CRF value at the time

of the K'th reference can be computed using the time of the (K-1)'th reference and CRF

value at that time as:

Ctbk(b)=F(0)+F(δ)Ctbk-1(b)

Where Ctbk(b) is CRF value of block b at the time of K'th reference, Ctbk-1(b) is CRF value

of block b at the time of (K-1)'th reference and δ =tc-tbk[4]. This implies that, at any time

the CRF value can be computed using only two variables for each block.

3.1.1. Algorithm

1. If b is already in the buffer cache

1.1. then

1.2. CRFlast(b)= F(0)+ CRF(b)

1.3. LAST (b) =tc

1.4. Restore (H,b)

2. Else

2.1. Fetch the missed block from the disk

2.2. CRFlast(b)= F(0)

2.3. LAST (b) =tc

2.4. Victim = ReplaceRoot (H, b)

3. End if

4. End

5. Restore (H, b)

5.1. If b is not a leaf node

5.1.1. Then

5.1.2. Let smaller be the child that has smaller CRF

5.1.3. If CRF(b) > CRF (smaller)

5.1.3.1. Then

5.1.3.2. Swap (H, b, smaller)

5.1.3.3. Restore (H, smaller)

23

5.1.4. End if

5.2. End if

6. End Restore

7. Replace root (H . b)

7.1. Victim=H . root

7.2. H . root =b

7.3. Restore (H , b)

7.4. Return victim

8. End Replace root

9. CRF (b)

9.1.Return F(tc –LAST(b)) * CRFlast(b)

10. End CRF

3.1.2. LRFU Tracing

Suppose reference string and virtual time is represented by integer value are given in the

following table as:

Assume that number of page frames in memory are 7 and weighting function

F(x)=(1/2)
λx

, where λ=1/8. Each LRFU node (b) contains three fields: first field contains

page number, middle field contains CRF value of that page, CRFlast(b) and last field

contains last access time of the page, LAST(b).

Step 1: At current time (tc)=0, page 5 is referenced which is not in memory (page fault).

Step 2: At current time(tc)=1, referenced page=10 which is not in memory (page fault).

Time
0 1 2 3 4 5 6 7 8 9 10

Reference String
5 10 7 3 9 15 3 6 7 15 16

CRF(5)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(5)=tc=0

5 1 0

24

Step 3: At current time(tc)=2, referenced page=7 which is not in memory (i.e. page fault)

Step 4: At current time(tc)=3, referenced page=3 which is not in memory (i.e. page fault)

Step 5: At current time(tc)=4, referenced page=9 which is not in memory (i.e. page fault)

Step 6: At current time(tc)=5, referenced page=15 which is not in memory (i.e.page fault)

CRF(10)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(10)=tc=1

CRF(7)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(7)=tc=2

CRF(3)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(3)=tc=3

CRF(9)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(9)=tc=4

5 1 0

10 1 1

5 1 0

10 1 1 7 1 2

9 1 4 3 1 3

5 1 0

10 1 1 7 1 2

3

1 3

5 1 0

10 1 1 7 1 2

25

Step 7: At current time(tc)=6, referenced page=3 which is already in the memory (i.e.

page hit)

Step 8: At current time(tc)=7, referenced Page=6 which is not in memory (page fault)

Step 9: At current time(tc)=8, referenced page=12 which is not in memory(i.e.page fault).

CRF (3)=F(0)+ CRF (3)

 =1+ F(6 - 3)*1

 =1+ F(3)*1

 =1+0.771

 =1.771

LAST(3)=tc=6

CRF (12)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(12)=tc=8

CRF(15)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(15)=tc=5

CRF(6)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(6)=tc=0

6 1 7 9 1 4

5 1 0

10 1 1 7 1 2

3 1.771 6 15 1 5

15 1 5 9 1 4 3 1.771 6

5 1 0

10 1 1 7 1 2

15 1 5 9 1 4 3 1 3

5 1 0

10 1 1 7 1 2

12 1 8

10 1 1 7 1 2

3 1.771 6 15 1 5 6 1 7 9 1 4

26

Step 10: At current time(tc)=9, referenced page=15 which is already in the memory

(i.e.page hit)

Step 11: At current time(tc)=10, referenced page=16 which is not in the memory. At this

time memory is full and hence, a page should be removed from the memory to make

room for the fetched page. For this, swap root node with last node and discard this last

node from the heap. Then, insert new node at this position and perform restore operation

on each of non- leaf node of the heap.

3.2. Adapted LRFU algorithm

FIFO algorithm replaces the page that has been referenced earlier i.e. the oldest page has

been replaced when page fault occurs. This algorithm is easy to understand and

implement but it shows anomalous behavior. Here, anomalous behavior is an unexpected

result when increasing page frame number leads to increase in page fault rate. It is shown

by study and analysis that LRFU algorithm also shows this type of anomalous behavior

sometimes [12]. In LRFU algorithm each node associates a CRF value. A node with

minimum CRF value at the root is removed and newly fetched block is placed at the root.

This root node is swapped with last node and restore operation is done to obtain minimum

CRF (15)=F(0)+ CRF (15)

 =1+ F(9 - 5)*1

 =1+ F(4)

 =1+(1/2)
 (1/2)

 =1.707

LAST(15)=tc=9

16 1 10

10 1 1

3 1.771 6 6 7 1

7

1 2

15 1.707 9 9 1 4

0

9 1 4

12 1 8

3 1.771 6

7 1

.

2 10 1 1

6 7 1 15 1.707 9

27

CRF value block at root. Thus, LRFU removes recently referenced block when CRF

values of blocks are equal. Some adaptations have been made in LRFU algorithm so that

such anomalous behavior can be avoided.

Adapted LRFU replaces the smallest CRF value with least recently used block. In

Adapted LRFU, min-heap is made according to CRF value and Last reference time. Here,

the root of min-heap contains a node with minimum last access time if CRF values of

nodes are equal. Therefore, when page faults occurs the root of the min-heap is removed.

This change has been made in Adapted LRFU algorithm and is the key point of my

dissertation work.

3.2.1 Algorithm

1. If b is already in the buffer cache

1.1. then

1.2. CRFlast(b)= F(0)+ CRF(b)

1.3. LAST (b) =tc

1.4. Restore (H.b)

2. Else

2.1. Fetch the missed block from the disk

2.2. CRFlast(b)= F(0)

2.3. LAST (b) =tc

2.4. Victim = ReplaceRoot (H, b)

3. End if

4. End

5. Restore (H, b)

5.1. If b is a leaf node then goto step 6

5.2. If b is not a leaf node

5.1.1. Set flag=0

5.1.2. Let smaller be the child that has smaller CRF value

5.1.3. If CRF(b) > CRF (smaller)

5.1.3.1. flag=1 then goto 5.1.4

5.1.4. If Flag=0

5.1.4.1. Iet smaller be tha child that has equal CRF value to parent

5.1.4.2. Check Last(b)>Last(smaller)

28

5.1.4.3. Goto 5.1.5

5.1.5. If(smaller!=i)

5.1.5.1. Swap (H, b, smaller)

5.1.5.2. Restore (H, smaller)

6. End Restore

7. Replace root (H , b)

7.1. Victim=H . root

7.2. H . root =b

7.3. Restore (H , b)

7.4. Return victim

8. End Replace root

9. CRF (b)

9.1.Return F(tc –LAST(b)) * CRFlast(b)

10. End CRF

3.2.2 Adapted LRFU Tracing

The tracing of adapted LRFU algorithm takes same reference string, page frame number,

weighting function and value of control parameter λ as mentioned in previous tracing

section 3.1.2.

Step 1: At current time (tc)=0, page 5 is referenced which is not in memory (i.e. page

fault).

Step 2: At current time(tc)=1, referenced page=10 which is not in memory (i.e. page

fault).

CRF(5)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

=1

LAST(5)=tc=0

CRF(10)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

=1

LAST(10)=tc=1

5 1 0

10 1 1

5 1 0

29

Step 3: At current time(tc)=2, referenced page=7 which is not in memory (i.e. page fault).

Step 4: At current time(tc)=3, referenced page=3 which is not in memory (i.e. page fault).

Step 5: At current time(tc)=4, referenced page=9 which is not in memory (i.e. page fault).

Step 6: At current time(tc)=5, referenced page=15 which is not in memory (i.e. page

fault).

CRF(7)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(7)=tc=2

CRF(3)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(3)=tc=3

CRF(9)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(9)=tc=4

CRF(15)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(15)=tc=5

5 1 0

10 1 1 7 1 2

9 1 4 3 1 3

5 1 0

10 1 1 7 1 2

15 1 5 9 1 4 3 1 3

5 1 0

10 1 1 7 1 2

3

1 3

5 1 0

10 1 1 7 1 2

30

Step 7: At current time(tc)=6, referenced page=3 which is already in the memory

(i.e.page hit).

Step 8: At current time(tc)=7, referenced Page=6 which is not in memory (i.e. page

fault).

Step 9: At current time(tc)=8, referenced page=12 which is not in the memory (i.e.page

fault).

Step 10: At current time(tc)=9, referenced page=15 which is already in the memory

(i.e.page hit)

CRF (3)=F(0)+ CRF (3)

 =1+ F(6 - 3)*1

 =1+ F(3)*1

 =1+0.771

 =1.771

LAST(3)=tc=6

CRF (12)=F(0)

 = (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(12)=tc=8

CRF(6)=F(0)

= (1/2)
 (1/8)*x

 = (1/2)
 0

 =1

LAST(6)=tc=0

6 1 7 9 1 4

5 1 0

10 1 1 7 1 2

3 1.771 6 15 1 5

15 1 5 9 1 4

5 1 0

10 1 1

3 1.771 6

7 1 2

6 1 7

10 1 1

9 1 4

3 1.771 6

7 1 2

15 1 5 12 1 8

31

Step 11: At current time(tc)=10, referenced page=16 which is not in the memory. At this

time memory is full hence, a page should be removed from the memory to make room

for the fetched page. For this, swap root node with last node and discard this last node

frome heap. Then, insert new node at this position and perform restore operation on each

of non- leaf node of the heap.

CRF (15)=F(0)+ CRF (15)

 =1+ F(9 - 5)*1

 =1+ F(4)

 =1+(1/2)
 (1/2)

 =1.707

LAST(15)=tc=9

7 1 2

9 1 4

3 1.771 6 16 10 1

12 1 8

15 1.707 9 6 1 7

0

6 1 7

10 1 1

9 1 4

3 1.771 6

7 1

.

2

15 1.707 9 12 8 1

32

CHAPTER 4

IMPLEMENTATION

4.1. Tools used

4.1.1. Programming Language

Java Programming Language is used for the implementation of proposed

algorithms. Java is a general-purpose, concurrent, class-based object

oriented programming language. It is portability language means that any

program written in java language can run similarly on any other

configuration of hardware and software platform. End-users generally use

a Java Runtime Environment (JRE) installed on their own machine for

standalone java applications, or in a web browser for java applets.

Furthermore, Java is a robust language. It provides many safeguards to

ensure reliable code. It has strict compile time and run time checking for

data types. It is designed as a garbage-collected language ease the

programmer's virtually all memory management problems. Java also

incorporates the concepts of exception handling which captures series

errors and eliminates any risk of crashing the system.

4.1.2. NetBeans IDEs

IDE is an open source Integrated Development Environment (IDE), written

in the Java programming language for developing primarily with java. The

NetBeans platform allows applications to be developed from a set of

33

modular software components called modules. The NetBeans project

consists of a full-featured open source IDE and a rich client application

platform, which can be used as a generic framework to build any kind of

application.

4.2. Data Structure Used

4.2.1. Heap
A Heap is a partially ordered complete binary tree. The complete binary tree is a binary

tree in which each level of the tree is completely filled, except possibly the bottom level.

At this level, it is filled from left to right. To say that a heap is partially ordered is to say

that there is some relationship between the value of a node and the values of it's children.

This property is known as heap order property. In a min-heap, the value of a node is less

than or equal to the values of its children. In a max-heap, the value of a node is greater

than or equal to the values of its children. Consequently, smallest value (largest value) in

a min-heap (max-heap) is at the root of heap.

The LRFU uses the min-heap data structure to maintain the

ordering of blocks according to their CRF values. The root of the

heap contains the smallest CRF value block. Since, LRFU replaces the

root of the heap when page fault occurs. The algorithm first checks

whether the requested block b is in the buffer cache. If it is,

the algorithm recalculates its CRF value, updates the time of the

last reference, and, if needed, restores the heap property of the

sub-heap rooted by b. In the other case where the block is

not in the buffer cache, the missed block is fetched from disk

and its CRF value and the time of the last reference are

34

initialized. Then, the root block of the heap is replaced with the

newly fetched block and the heap property is maintained.

Similarly, the Adapted LRFU also uses the min-heap data structure to

maintain the blocks according to their CRF values and last reference

times. The root of the min-heap contains the block whose CRF value and

last reference time are smallest. The reference time is represented by

real integer value. Since, Adapted LRFU replaces the root of the heap

when page fault occurs. And other processes are same as LRFU takes

but CRF values and last reference times of blocks are taken in

consideration during restore operation.

Structure of LRFU and Adapted LRFU node

public class LRFUNode

{

 int pn; //page number

 int fn; //frame number

 int last; //last reference time

 double CRFlast; //CRF value of last referenced page

 boolean isresident;

}

4.3 Flowcharts

No Yes

Begin

Is b available in

buffer?

Read b

35

36

Figure 4.3 Restore Operation for LRFU

No

Let smaller be the Child that

has smaller CRF value

If CRF(b)>
CRF(smaller)

If b is not a

leaf node

No

Yes

Stop
Swap (H, b, smaller)

Restore (H, smaller)

Begin

Yes

 If (smaller!=i)

Yes

No

Yes

Yes

Let smaller be the Child
that has smaller CRF
value

Is b is a

leaf node?

No

Begin

Swap (H, b, smaller)

Restore (H, smaller)

Victim=H.root

H.root=b

Restore(H, b)

If CRF(b)>

CRF(smaller)

37

Let smaller be the Child that

has smaller CRF value

If CRF(b) > CRF(smaller)

se

Is b is not a

leaf node?

No

Yes

Swap (H, b, smaller)

Restore (H , smaller)

Begin

Set flag = 0

If flag=0

If (smaller!=i)

Flag =1
Yes

No

Let smaller be the Child that

has equal CRF value to parent

Yes

No

Yes

 No

If Last(b)>

Last(smaller)

Yes/No

smaller

38

4.4 Memory Traces

In this dissertation work, following real memory traces are used during data collection-

a. Cs- is an interactive c source program examination tool trace. The total size of C

programs used as input is roughly 5 Mb [17].

b. Cpp- is GNU C compiler pre-processor trace. The total size of C programs used

as input is roughly 11 Mb [17].

c. 2_pools- is a synthetic trace which simulates application behavior. It contains

100,000 references [17].

d. Sprite is from the Sprite Network file system, which contains request to a file

server from client workstations for a tow-day period [17].

Figure 4.3 Restore Operation for

Adapted LRFU

39

e. Multi is obtained by executing two workloads cs and cpp together [17].

4.5 Sample Test Case (sprite)

0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 9 15 16 17 9 18 9 19 9 20 21 22 23 24 25 26 15 16 4

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

85 5 86 87 88 89 2 3 90 91 92 93 94 95 96 97 98 99 100 8 101 54 59 4 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 102 103 104 105 106 107 108 109 110 111 112 113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 82 83 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

126 129 129 130 131 132 133 133 133 133 134 134 134 134 135 135 136 136 136 136

136 136 137 137 137 138 138 138 139 139 139 139 139 139 139 139 139 139 140 140

140 140 140 140 141 141 141 141 141 142 142 142 142 143 143 144 144 145 145 145

145 145 146 146 146 146 146 146 146 146 146 146 147 147 147 147 147 148 148 148

149 149 149 149 149 149 149 149 149 150 150 150 150 150 150 151 151 151 152 152

152 153 153 153 154 154 154 154 154 155 155 155 133 133 133 135 135 135 135 135

135 135 135 135 156 156 156 156 156 156 156 156 156 156 156 156 156 157 157 157

158 158 158 158 158 158 158 158 158 159 159 159 159 159 159 159 159 159 160 160

160 160 160 160 161 161 161 161 161 161 161 161 161 161 161 136 136 136 136 162

162 162 163 164 164 164 164 164 164 165 165 165 166 166 166 167 167 167 168 168

168 138 138 138 138 138 138 138 138 138 139 139 139 142 142 142 144 144 144 144

144 169 169 169 145 145 145 170 170 170 171 171 171 172 151 151 173 174 174 159

CHAPTER 5

DATA COLLECTION AND ANALYSIS

5.1. Data Collection

Data is a main source of information. First of all sample input is designed through hand

tracing experiments such that the anomalous behavior can be verified with this. Besides

this different real memory traces will be given as input to the simulated algorithms and hit

rate of the algorithms is calculated. This Dissertation work will be solely based on

primary data. These primary data are generated by the simulated page replacement

algorithms. In this study, different types of workloads such as cyclic pattern (cs),

probabilistic patterns (2_pools and cpp), temporally clustered pattern (sprite) and mixed

40

pattern (multi) are used as input. Number of page fault is collected with real memory

traces in the interval of 1 varying memory size 8 to 32 for the purpose of analyzing

anomalous behavior. In addition, data is also collected with real memory traces in the

interval of 64 varying memory size 64 to 1024 for the purpose of analyzing performance.

5.1.1. Analyzing Anomalous Behavior of LRFU

5.1.1.1. Sample Input Causing Anomalous Behavior

Suppose a sample input as

2 1 5 4 2 6 1 5 5 5 6 1 5 5 5 6 1

Let memory size varies from 2 to 10 page frames in the interval of 1.

Memory Size Number of page faults

LRFU Adapted LRFU

2 11 12

3 6 8

4 10 6

5 5 5

6 5 5

7 5 5

8 5 5

9 5 5

10 5 5

Table 5.1 Number of page faults with sample input.

Figure 5.1 Graph for table 5.1

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10

LRFU

Adapted LRFU

 P
a

g
e

fa
u

lt

Memory size

41

The graph of above figure 5.1 shows that the LRFU shows anomalous behavior

sometimes. Generally, number of page faults decreases as the memory size increases. But

reversely, LRFU shows that increase in memory size leads also increase in number of

page faults (memory size=3, no. of page fault=6 and memory size=4, no. of page

fault=10). This is because LRFU replaces recently accessed page when CRF values of

memory pages are equal. The line graph of Adapted LRFU (Fig.5.1) shows that

increasing in memory size leads decrease in page faults. It means that Adapted LRFU

does not show anomalous behavior.

5.1.1.1. Analysis with Real Memory Traces

Memory

Size

LRFU

2_pools Cs Sprite Multi

Page Fault Hit Rate Page

Fault

Hit Rate Page Fault Hit Rate Page Fault Hit Rate

8 97971 2.25 6677 1.93 129436 3.59 26162 0.72

9 97966 2.26 6678 1.92 129355 3.66 26154 0.76

10 97478 2.80 6678 1.92 129204 3.78 26169 0.69

11 97470 2.81 6678 1.92 129059 3.89 26154 0.76

12 96964 3.37 6677 1.93 129049 3.90 26141 0.82

13 96961 3.37 6677 1.93 128961 3.97 26113 0.96

14 96469 3.92 6677 1.93 128802 4.09 26113 0.96

15 96464 3.93 6677 1.93 128719 4.16 26079 1.12

16 95970 4.47 6676 1.95 128597 4.25 26078 1.13

17 95965 4.48 6676 1.95 128604 4.25 26150 0.78

18 95450 5.05 6676 1.95 128403 4.41 26150 0.78

19 95448 5.05 6675 1.97 128470 4.35 26150 0.78

20 94939 5.61 6676 1.95 128336 4.46 26154 0.76

21 94937 5.62 6675 1.97 128277 4.51 26151 0.78

22 94922 5.64 6675 1.97 128129 4.62 26135 0.85

23 94395 6.22 6675 1.97 128015 4.71 26103 1.01

24 94392 6.23 6674 1.99 127936 4.77 26073 1.15

25 93894 6.78 6674 1.99 127915 4.79 26073 1.15

26 93888 6.78 6674 1.99 127825 4.86 26065 1.19

27 93373 7.36 6674 1.99 127733 4.93 26065 1.19

28 93368 7.36 6670 2.07 127628 5.02 26058 1.23

29 92881 7.90 6666 2.14 127644 5.00 26057 1.23

30 92876 7.91 6666 2.14 127487 5.13 25993 1.54

31 92871 7.92 6666 2.14 127469 5.14 25993 1.54

32 92362 8.48 6666 2.14 127352 5.23 25986 1.58

 Table 5.2 Page faults and hit rates with 2_pools, cpp, sprite and multi.

42

 (a)

 (b)

 (c)

0

1

2

3

4

5

6

7

8

9

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

2_pools

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

cs

0

1

2

3

4

5

6

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

sprite

Memory size

H
it

 R
a

te

Memory size

H
it

 R
a

te

Memory size

H
it

 R
a

te

43

 (d)

Figure 5.2 (a) Hit rates with 2_pools.(b) Hit rates with cs.(c) Hit rates with sprite and (d)

Hit rates with multi.

Above graph 5.2(a) shows that the hit rates increases as the memory size also increases.

Thus LRFU does not show anomalous behavior with 2_pools. But LRFU shows

anomalous behavior with cs, sprite and multi because hit rate sometimes decreases with

increase in memory size (see fig.5.2(b), fig.5.2(c), fig.5.2(d)) with them. Thus, LRFU

shows anomalous behavior with real memory traces also.

5.1.2. Performance Analysis

5.1.2.1. Test Result for 2_pools, cpp, sprite and multi

Memory

Size

LRFU Adapted LRFU

Hit Rates Hit Rates

2_pools cpp sprite multi 2_pools cpp sprite Multi

64 16.80 60.22 6.22 10.65 16.64 29.59 16.71 7.62

128 31.41 78.27 8.32 23.68 29.93 88.61 30.08 30.25

192 40.97 91.03 10.61 37.41 39.77 94.56 40.72 47.85

256 47.74 92.55 12.72 41.28 46.84 96.06 53.36 51.26

320 51.84 93.88 14.36 46.85 51.29 96.84 64.27 53.58

384 54.36 97.52 14.70 49.34 54.04 97.32 73.02 54.48

448 55.80 98.40 14.89 51.65 55.77 97.81 79.14 55.22

512 56.16 98.58 15.14 53.75 56.86 98.30 82.65 55.58

576 57.05 98.82 16.51 57.25 57.62 98.91 86.95 56.19

640 57.91 99.08 21.95 59.09 58.18 99.36 89.21 56.36

704 58.28 99.55 35.10 64.54 58.65 99.46 91.19 56.69

768 58.60 99.65 43.05 66.33 59.09 99.74 92.59 56.54

832 59.15 99.68 46.65 70.14 59.49 99.76 93.81 57.53

0

0.5

1

1.5

2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

multi

Memory size

H
it

 R
a

te

44

896 59.50 99.68 52.61 72.25 59.85 99.76 94.63 57.62

960 59.85 99.73 53.25 74.15 60.22 99.82 95.38 57.70

1024 60.52 99.73 53.97 76.17 60.58 99.92 95.43 57.85

Table 5.3 Hit Rates with 2_pools, cpp, sprite and multi.

 (a)

(b)

 (c)

0

10

20

30

40

50

60

70

LRFU

Adapted LRFU

0

20

40

60

80

100

120

LRFU

Adapted LRFU

0

20

40

60

80

100

120

LRFU

Adapted LRFU H
it

 R
a

te

Memory size

Memory size

H
it

 R
a

te

Memory size

H
it

 R
a

te

45

 (d)

Figure 5.3 (a) Hit rates with 2_pools (b) Hit rates with cpp (c) Hit rates with sprite and (d)

Hit rates with multi.

The performance of adapted LRFU is comparative with LRFU (see Fig.5.3 (a), Fig.5.3

(b), and Fig.5.3 (d)). Further, with strong locality of workload the performance of

Adapted LRFU is better than LRFU (see Fig.5.3(c)).

CHAPTER 6

CONCLUSION AND FURTHER STUDY

6.1. Conclusion

Anomalous behavior of page replacement policies is the subject of research since second

generation of computer. The class of algorithms that never shows anomalous behavior is

called stack algorithms. LRFU is a page replacement policy that suffers from anomaly.

Until to now none of the research had listed the sample input with which LRFU show

anomaly.

0

10

20

30

40

50

60

70

80

LRFU

Adapted LRFU

Memory size

H
it

 R
a

te

r rt

46

This dissertation successfully lists a sample workload where LRFU shows anomalous

behavior and also modifies the existing LRFU such that anomalous behavior can be

avoided. Besides, this study used real memory traces cs, 2_pools, sprite and multi to

experiment them with LRFU and showed that anomaly can also be seen with real memory

traces. Finally, the dissertation compares LRFU and Adapted LRFU with real memory

traces cpp, 2_pools, sprite and multi and showed that LRFU and Adapted LRFU had

comparative performance. Thus, the dissertation successfully verified anomalous

behavior of LRFU and able to remove this anomalous behavior.

6.2. Future Work

Even, if there are lots of studies that evaluate the impact of control parameter λ on

performance. The correlation between λ and function F(x) is not much studied. Therefore,

it is one of the interesting future work. Further, the performance evaluation of Adapted

LRFU in other areas such as database cache replacement etc is another area of further

study.

References

[1] A. S. Tanenbaum, 2008, “Modern Operating Systems (Prentice Hall Second

Edition)”, pp 175-248.

[2] Bagchi, S., Nygaard M., 2004, “A Fuzzy Adaptive Algorithm for Fine Grained

Cache Paging”. 8th International Workshop (SCOPES’04), Netherlands, pp 200-

213.

[3] B. Subedi, “An Evaluation of Page Replacement Algorithm Based on Low Inter-

Reference Recency Set (LIRS) Scheme on Weak Locality Workloads”, Master's

47

Dissertation in Computer Science and Information Technology, Tribhuvan

University, Central Department of Computer Science and Information Technology.

[4] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, 1996,

“LRFU (Least Recently/Frequently Used) Replacement Policy: A Spectrum of

Block Replacement Policies,” IEEE Trans. Computers, March, pp. 1-24.

[5] E. G. Coffman and P.J. Denning, 1973, “Operating Systems Theory”. Prentice-Hall.

[6] E. J. O’Neil, and G. Weikum, 1993, “The LRU-K Page Replacement Algorithm for

Database Disk Buffering”, proc. 1993 ACM SIGMOD Int’l Conf. Management of

Data, pp.297-306, May.

[7] G. Glass and P. Cao, 1997, “Adaptive Page Replacement Based on Memory

Reference Behavior,” Proc. 1997 ACM SIGMETRICS Conf. Measuring and

Modeling of Computer Systems, May, pp. 115-126..

[8] H. Paajanen, 2007, “Page Replacement In Operating System Memory

Management”, Master’s Thesis in Information Technology, University of Jyvaskyla,

Department of Mathematical Information Technology, October 23.

[9] John L. Hennessy and David A. Patterson, 2010, “Computer architecture A

Quantitative Approach”, Mogan Kaufmann Publisher fourth edition, pp, C1-C58.

[10] Joshi Gyan Prakash, 2004, “Calculation Of Control Parameter That Results Into

Optimal Performance In Terms Of Page Fault Rate In The Algorithm Least

Recently Frequently Used (LRFU) For Page Replacement”, Master's Thesis,

Tribhuvan University, Central Department of Computer Science and Information

Technology.

[11] J. T. Robinson and N.V. Devarakonda, 1990, “Data Cache Management Using

Frequency-Based Replacement,” Proc. 1990 ACM SIGMETRICS Conf. Measuring

and Modeling of Computer Systems, , May, pp. 134-142.

[12] K Muralidhar, and N. Geethanjali, 2012, “Fuzzy Replacement Algorithm for

Browser Web Caching”. International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622, Vol. 2, pp.3017-3023.

[13] L. A. Belady, 1966, “A Study of Replacement Algorithms for a Virtual-Storage

Computer”, IBM SYSTEM JOURNAL, pp. 78-101, vol. 5, No. 2.

[14] Megiddo, N. and Modha, D. S., 2003, “ARC: A Self-Tuning, Low Overhead

Replacement Cache”, In Proceedings of the USENIX Conference on File and

Storage Technologies (FAST’03), San Francisco, pp 115-130.

48

[15] Silberschatz, A., Galvin, P. B., & Gagne, G., 2004, “Operating system concepts (7th

Edition)”. Wiley.Stuart.

[16] Sabeghil, M. and Yaghmaee, M. H., 2006, “Using fuzzy logic to improve cache

replacement decisions”. IJCSNS International Journal of Computer Science and

Network.

[17] S. Jiang and X. Zhang, 2002, “LIRS: An Effective Low Inter-Reference Recency

Set Replacement Policy to Improve Buffer Cache Performance,” Proc.

SIGMETRICS, PP. 31-42.

[18] Song Jiang and Xiaodong Zhang, 2005, “Making LRU Friendly to Weak Locality

Workloads: A Novel Replacement Algorithm to Improve Buffer Cache

Performance”, IEEE Transactions on Computers, Vol. 54, and No. 8, August, pp

939-952.

[19] T. Johnson and D. Shasha, 1994, “2Q: A Low Overhead High Performance Buffer

Management Replacement Algorithm", Proceedings of the 20th International

Conference on VLDB, pp. 439-450.

[20] Y. Smaragdakis, S. Laplan, and P. Wilson, 1999, “EELRU: Simple and Effective

Adaptive Page Replacement”, Proc. 1999 ACM SIGMETRICS Conf. Measuring

and Modeling of Computer Systems, May, pp. 122-133.

