

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

Text Similarity Using Corpus Based Semantic Word

Similarity and String Similarity for Short Nepali

Texts.

Dissertation
Submitted to

Central Department of Computer Science & Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science & Information Technology

By

Laxman Manandhar

March, 2013

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

Text Similarity Using Corpus Based Semantic Word

Similarity and String Similarity for Short Nepali

Texts.

Dissertation
Submitted to

Central Department of Computer Science & Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science & Information Technology

By

Laxman Manandhar
 March, 2013

Supervisor

 Prof. Dr. Shashidhar Ram Joshi

Co-supervisor

Mr. Bikash Balami

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

Supervisor’s Recommendation

We hereby recommend that this dissertation prepared under our supervision by Mr.

Laxman Manandhar entitled “Text Similarity Using Corpus Based Semantic Word

Similarity and String Similarity for Short Nepali Texts” be accepted as partial

fulfillment of the requirements for the Master’s degree of Computer Science and Information

Technology.

... … … … …

Prof. Dr. Shashidhar Ram Joshi Mr.Bikash Balami

 Department of Electronics and Computer Central Department of Computer Science

 Engineering, Institute Of Engineering, and IT, Tribhuwan University,

 Pulchowk, Nepal Kirtipur, Nepal

 (Supervisor) (Co-Supervisor)

... … … … …

 Date Date

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope

and quality as a dissertation in the partial fulfillment for the requirement of Master’s Degree

in Computer Science and Information Technology.

Evaluation Committee

...

Asst. Prof. Nawaraj Paudel

(Head of Department)

Central Department of Computer Science & Information Technology

Tribhuvan University

Kritipur, Kathmandu, Nepal

...

...

(External Examiner) (Internal Examiner)

Date:

i

Acknowledgments

It is first a privilege and a pleasure for me to thank my principal supervisor, Prof. Dr.

Shashidhar Ram Joshi, Department of Electronics and Computer Engineering, Institute Of

Engineering, Pulchowk, Nepal for his constant encouragement, support and advice.

I want to express my deep thanks to my honoured co-supervisor M r . Bikash Balami of

Central Department of Computer Science & Information Technology, TU, Nepal for his

inspiration, trust, the insightful discussion, thoughtful guidance, critical comments, and

correction of the thesis.

I greatly acknowledge respected teachers of the Central Department of Computer Science &

Information Technology, TU, Nepal for their valuable suggestion. I would like to thank my

family and friends for their precious direct and indirect support. Finally, I would like to give my

special thanks to my wife Mrs. Sneha Shrestha for helping and providing wonderful

environment and support to complete this work.

ii

Abstract

Similarity measure for long text, documents have been in research from long time but

similarity measure for short text were not been given much emphasis. Short Texts and

sentences similarity measures are now considered to be important research topic due to its

many applications in the field of Natural language processing and information retrieval. The

need to determine semantic similarity, semantic distance between two lexically expressed

concepts is a problem that pervades much of natural language processing. This thesis deals

with one of Information Retrieval’s big interest: Textual Similarity. This thesis includes the

study and implementation of short text similarity measure for Nepali language. The semantic

text similarity has not been yet studied for Nepali language text. This thesis deals with two

main challenges .The first is to determine the similarity of the two short texts having different

lexical terms and the second is determining the semantic similarity based on string similarity

for considering the minor spelling mistakes of the words in the sentence. Such measures

should mostly be considered during web retrieval as users may not always give the right

spelling for the words. Nepali language is based on devanagari script and has different

literature. This thesis includes the implementation and analysis of the String similarity

measures (Modified version of Longest Common Subsequences and String edit distance) and

corpus based word similarity measure (Second Order Co-Occurrence Point Wise Mutual

Information) for overall semantic Text similarity. Improvement has been done for the

integration of word similarity measure and string similarity measure.

iii

Table of Contents

Acknowledge i

Abstract ii

Table of Contents iii

List of Figures iv

List of Tables v

Abbreviations vi

Details Page

Chapter 1

1. Introduction 1-9

1.1 Introduction to Text Similarity 1

1.2 Types of Text Similarity 1

1.2.1 Lexical Similarity 2

1.2.2 Semantic Text Similarity 2

1.3 Challenges for Text Similarity 3

1.3.1 Challenges for Lexical similarity 3

1.3.2 Challenges for Semantic Text Similarity 3

1.4 Approaches for Text similarity Measure 4

1.4.1 Corpus based Measure 4

1.4.1.1 Latent Semantic Analysis 4

1.4.1.2 Hyperspace Analogues to Language 5

1.4.1.3 Pointwise Mutual information 5

1.4.1.4 Second Order Co-Occurrence Pointwise Mutual Information 6

1.4.2 Knowledge based Measure 6

1.4.2.1 The Leacock & Chodorow Similarity Measure 7

1.4.2.2 The Lesk Similarity Method 7

1.4.2.3 The Wu and Palmer Method 7

1.4.2.4 The Resnik Method 8

iv

1.4.2.5 The Jiang & Conrath Method 8

1.4.3 Hybrid Measure 8

1.4.4 Vector based Document Model 9

Chapter 2

2. Text similarity using Corpus Based Word Similarity and

String Similarity 10 -16

2.1 Approaches for String Similarity Measures 10

2.1.1 String Edit Distance 10

2.1.2 Longest Common subsequence 10

2.1.3 Normalized and Modified Version of Longest Common subsequence 11

2.2 Corpus Based Word to Word Similarity Measure 12

2.2.1 Second Order Co-occurrence Point Wise Mutual information 12

2.2.1.1 Choosing the Values of β and γ 14

2.3 Integration of String similarity Measure and Word to Word Corpus Based 15

Similarity Measure for Overall Sentence Similarity

Chapter 3

3. Problem Definition 17-21

3.1 Why move to Semantic Text Similarity? 17

3.2 Why String Similarity Measures for Semantic Text Similarities? 17

3.3 Why Corpus Based Word Similarity Measure for Semantic Text Similarities? 20

Chapter 4

4. Implementation 22-30

4.1 Description of the Model 23

4.2 Preprocessing of the Corpus 24

4.3 Choice of Programming Language: Java 24

4.4 Improvement for the Integration of String similarity and Word Similarity 25

v

4.5 A Walk Through Example 26

4.5.1 Example considering corpus based word similarity 26

4.5.2 Example Considering String Similarity and Corpus Based Word 29

Similarity

Chapter 5

5. Testing and Analysis 31-40

5.1 Some Pair of Tested Sentences 31

5.2 Testing Accuracy 37

5.3 Comparison of String Edit Distance and Normalized and Modified Version

of LCS for Some Pair of Words 38

5.4 Complexity Analysis 40

Chapter 6

6. Conclusion and Recommendation 41

6.1 Conclusion 41

6.2 Recommendation 41

Appendices 42

 References 49

vi

List of Figures

Details

Page

Figure 1.1 → Sentence similarity computation diagram (hybrid based measure). 9

Figure 3.1 → Comparison search using the minor spelling mistake and using real 19

spelling.

Figure 3.2 → Google search with spelling mistake for English language. 20

Figure 4.1 → Model for the semantic Text similarity Computation. 22

vii

List of Tables

Details Page

Table 5.1 → Semantic Text similarity measures for the pair of sentences 31

Table 5.2 → String similarity measures comparison 38

viii

Abbreviations

STS → Semantic Text Similarity

LCS → Longest Common Subsequence

POS → Part of Speech

LSA → Latent Semantic Analysis

PMI → Pointwise Mutual Information

SOCPMI → Second Order Co-occurrence Pointwise Mutual Information

HAL → Hyperspace Analogues to Language

NLCS → Normalized Longest Common Subsequence

NMCLCS → Normalized Maximal Consecutive Longest Common Subsequence

IC → Information Content

JVM → Java Virtual Machine

1

CHAPTER 1

Introduction to Text Similarity

1.1 Text Similarity

The large amounts of information are now stored and they need processing. The need to

retrieve the information more effectively is the major challenge. Semantic Text Similarity

(STS) measures the degree of semantic equivalence between two texts. Such measures are

used to find the relatedness between two concepts or words [1]. The short text semantic

similarity measure has many applications in natural language processing and information

retrieval [2], automated answers checking [3], image retrieval on the web (using short text

surrounding the image), conversational agent [4], automatic text summarization based on

semantics [5], [6], word sense disambiguation, machine translation and documents

classification.The strict lexical similarity between the texts gives the similarity measures

based on the lexical information only that is string similarity between words. The semantic

text similarity deals with computing similarity between the given texts based on the semantic

information. For two sentences to be similar, it is not always the case that they share common

lexical terms. They can exihibit same meaning even if the lexical terms are not similar. That

means words in one sentence may be the synonyms for the words in the other sentence. Also

it‟s not always the case that for two words or concepts to be related they should be synonyms,

they can exhibit other relations as hyponyms, meronyms, hyponyms, etc. The concept of the

hyponyms, hypernyms, entailment, redundancy, polysemy etc. should be considered to detect

the similarity on semantic level.

The texts can also be considered as similar if one text can be derived from the other. Lexical

term similarity is the simple concept which deals with matching the exact spellings of words

whereas semantic similarity is complex topic based on the human judgment of likeness and

judgment of differences.

1.2 Types of Text Similarity

In this section, the textual similarities are described in terms of lexical and semantic basis.

2

1.2.1 Lexical Similarity

Lexical text similarity can also be termed as exact string similarity measure. Based on the

spelling matching of the words, similarity is computed. This is the most basic similarity

measure and purely lexical. Given two short texts A and B, the similarity can be computed

based on the lexical terms matching. The similarities criteria can be defined as following:

Exactly similarity: A and B are exactly similar i.e lexically equivalent

Phrase: A is the substring of B or vice versa

Subset: A is subset of B if the terms in A are subset of B.

Such measures for two segments of text returns the result as either match („similar‟) or they

do not. There is no graded score associated with the match. However, if necessary, it is

possible to impose such score by looking at various characteristics of the match such as the

length of A and B, or the frequency of the terms in some collection.

1.2.2 Semantic Text Similarity

Semantic similarity or semantic relatedness is a concept whereby a set of documents or terms

within term lists are assigned a metric based on the likeness of their meaning or semantic

content. Computing semantic similarity is very complex job as the concepts of semantic

relatedness are based on the human judgment of likeness and differences. The presence of

ambiguities and complexities in the language makes it more complex to determine the exact

semantics. Similarity measurements generally take into consideration the standard semantic

relationships, such as hyponym, hypernym, holonym, meronym, entailment and redundancy

between words [7].

DEFINITION 1 (semantics): Semantics is the study for the meaning of words, phrases, and

sentences and the relations between them.

DEFINITION 2 (synonym):W1 and W2 are synonyms for each other if they can be used

interchangeably in a context. An example sentence for the synonym relationship is:

“Blossoms is a synonym of flower.”

DEFINITION 3 (hypernym):W2 is a hypernym of W1 if W1 is a type of W2. An example

sentence for the hypernym relationship is: “flower is a hypernym of daisy.”

DEFINITION 4 (hyponym):W2 is a hyponym of W1 if W2 is a type of W1. An example

sentence for the hyponym relationship is: “daisy is a hyponym of flower.”

3

DEFINITION 5 (holonym):W2 is a holonym of W1 if W1 is a part of W2. An example

sentence for the holonym relationship is: “flower is a holonym of petal.”

DEFINITION 6 (meronym):W2 is a meronym of W1 if W2 is a part of W1.

An example sentence for the meronym relationship is: “petal is a meronym of flower.”

DEFINITION 7 (word form): A word form represents all the words or phrases which define

entities in WordNet. Example word forms are “car” and “sports utility vehicle.” As we can

see the first word form is comprised of one word, and the second word form is a phrase

comprised of three words.

DEFINITION 8 (sense): Sense represents the explanation of the meaning for a word form.

An example sense for the word form “car” is: “A wheeled vehicle with four wheels usually

propelled by an internal combustion engine.”

1.3 Challenges for Semantic Text Similarity

1.3.1 Challenges for String Similarity

Sometimes there are cases when two words tend to have similar meaning or exactly the same

meaning even though they have some few differences in spelling of the lexical terms.

The String Similarity measure must deal with following challenges.

 A true reflection of lexical similarity - strings with small differences should be

recognized as being similar. In particular, a significant sub-string overlap should

point to a high level of similarity between the strings.

 Robustness to changes of characters order- two strings which contain the same

characters, in a same order, should be recognized as being similar. On the other

hand, if one string is just a random anagram of the characters contained in the

other, then it should (usually) be recognized as dissimilar.

 Language independence - the algorithm should work in many different languages.

1.3.2 Challenges for Semantic Similarity

The other case for textual similarity is when sentences have completely different lexical

terms but also exhibit the same meaning. The different lexical terms may be synonymns for

each other. And also it is not always the case that sentences have the exactly same words or

their synonyms for representing the same meaning.The two sentences may refer to same

4

sense without sharing any of common words or even without synonynms. In section 1.2.2 the

different types of semantic relationship have been defined. The consideretions of such

relationship for the semantic similarity is the major challenge.

1.4 Approaches to Text Similarity

1.4.1 Corpus Based Measure

In linguistics, a corpus (plural corpora) or text corpus is a large and structured set of texts

(now usually electronically stored and processed). They are used to do statistical analysis and

hypothesis testing, checking occurrences or validating linguistic rules on a specific universe.

Corpora are intended to be representative of some specified population. A corpus may

contain texts in a single language (monolingual corpus) or text data in multiple languages

(multilingual corpus). Corpus based measures use such corpus for the word level similarity.

1.4.1.1 Latent Semantic Analysis

Latent Semantic Analysis (LSA) [20] is a theory and method for extracting and representing

the contextual-usage meaning of words by statistical computations applied to a large corpus

of text. The underlying idea is that the aggregate of all the word contexts in which a given

word does and does not appear provides a set of mutual constraints that largely determines

the similarity of meaning of words and sets of words to each other.

LSA is a fully automatic mathematical and statistical technique for extracting and inferring

relations of expected contextual usage of words in passages of discourse. It is not atraditional

natural language processing or artificial intelligence program; it uses no humanly constructed

dictionaries, knowledge bases, semantic networks, grammars, syntactic parsers, or

morphologies, or the like, and takes as its input only raw text parsed into words defined as

unique character strings and separated into meaningful passages or samples such as sentences

or paragraphs.

The first step is to represent the text as a matrix in which each row stands for a unique word

and each column stands for a text passage or other context. LSA applies singular value

decomposition (SVD) to the matrix. This is a form of factor analysis, or more properly the

mathematical generalization of which factor analysis is a special case. In SVD, a rectangular

matrix is decomposed into the product of three other matrices. One component matrix

5

describes the original row entities as vectors of derived orthogonal factor values, another

describes the original column entities in the same way, and the third is a diagonal matrix

containing scaling values such that when the three components are matrix-multiplied, the

original matrix is reconstructed. [21] [22] suggests that tools such as LSA are unlikely to be

necessary in relatively small document collections, as most participants are likely to use a

brute force approach, in which all documents are accessed.

1.4.1.2 Hyperspace Analogues to Language

The Hyperspace Analogues to Language (HAL) [23] method uses lexical co-occurrence to

produce a high-dimensional semantic space. A semantic space is a space in which words are

represented as points, and the position of each word along the axes is related to the word‟s

meaning. Once the space is constructed, a distance measure can be used to determine

relationships between words. In HAL, this space is constructed by first passing a window

over a large corpus and recording weighted lexical co-occurrences (words closer to the target

word are given a higher weight than words farther away). These results are recorded in an

n×n co-occurrence matrix with one row and one column for each unique word appearing in

the corpus. Once this is complete, a vector representing each word in 2n dimensional space is

formed by concatenating the transpose of a word‟s column to its row. Subsequently, a

sentence vector is formed by adding together the word vectors for all words in the sentence.

Similarity between two sentences is calculated using a metric such as Euclidean distance.

However, the authors‟ experimental results showed that HAL was not as promising as LSA in

the computation of similarity for short texts [21]. HAL‟s drawback may be due to the

building of the memory matrix and its approach to forming sentence vectors: The word-by-

word matrix does not capture sentence meaning well and the sentence vector becomes diluted

as a large number of words are added to it [14].

1.4.1.3 Pointwise Mutual Information

The pointwise mutual information using data collected by information retrieval (PMI-IR) was

first suggested by Turney 2001 [24] as an unsupervised measure for the evaluation of the

semantic similarity of words. It is based on word co-occurrence using counts collected over

very large corpora. Given two words w1 and w2, their PMI-IR is measured as:

6

 ()

 ()

 () ()
 (1.1)

Where () is the probability that the two words co-occur. If w1 and w2 are statistically

independent, then the probability that they co-occur is given by the product () ().

PMIIR (w1 ,w2) indicates the degree of statistical dependence between w1 and w2, and can be

used as a measure of the semantic similarity of w1 and w2. Among the four different types of

queries suggested by Turney (2001), the NEAR query (co-occurrence within a ten-word

window) is used, which is a balance between accuracy (results obtained on synonymy tests)

and efficiency (number of queries to be runagainst a search engine). Specifically, the

following query is used to collect counts from the AltaVista search engine.

 ()

 ()

 (1.2)

With p (wi) approximated as hits (w1) = WebSize, the following PMI-IR measure is obtained:

 ()

 () ()
 (1.3)

1.4.1.4 Second Order Co-occurrence Pointwise Mutual Information Method

Second Order Co-occurrence PMI method is the extension of PMI method with improvised

concept necessary for the semantic level similarity detection. The Second Order Co-

occurrence PMI (SOC-PMI) [25] method uses Pointwise Mutual Information to sort lists of

important neighbor words of the two target words from a large corpus. The main advantage

of using SOC-PMI is that it can calculate the similarity between two words that do not co-

occur frequently, but because they mostly co-occur with the same neighboring words.

SOCPMI is described in more details in chapter 2.

1.4.2 Knowledge Based Measure

Knowledge based measures use lexical resources like WordNets or Synsets available.

WordNet is a lexical database which is available online and provides a large repository of

lexical items. The WordNet was designed to establish connections between four types of POS

(Parts of Speech): noun, verb, adjective, and adverb. The smallest unit in WordNet is synset,

which represents a specific meaning of a word. It includes the word, its explanation, and the

7

synonyms of its meaning. The specific meaning of one word under one type of POS is called

a sense. Each sense of a word is in a different synset. Synsets are equivalent to senses:

structures containing sets of terms with synonymous meanings. Each synset has a gloss that

defines the concept it represents. WordNet synonym and hypernym relations could be used to

capture the semantic similarities of tokens. Given a pair of words, once a path that connects

the two words is found, their similarity could be determined based on two factors: the length

of the path and the order of the sense involved in this path.

1.4.2.1 The Leacock & Chodorow Similarity Measure

The Leacock and Chodorow [8] similarity is determined as:

 (1.4)

where length is the length of the shortest path between two concepts using node-counting,

and D is the maximum depth of the taxonomy.

1.4.2.2 The Lesk Similarity Method

The Lesk similarity [9] of two concepts is defined as a function of the overlap between the

corresponding definitions, as provided by a dictionary. It is based on an algorithm proposed

by Lesk (1986) as a solution for word sense disambiguation. The application of the Lesk

similarity measure is not limited to semantic networks, and it can be used in conjunction with

any dictionary that provides word definitions. SOC-PMI is defined in more details in chaper

two

1.4.2.3 The Wu and Palmer Method

The Wu and Palmer metric [10] measures the depth of two given concepts in the Word-Net

taxonomy and the depth of the least common subsume (LCS), and combines these figures

into a similarity score:

 ()

 () ()
 (1.5)

Where depth (LCS) is depth of the least common subsume and depth(concept) is the depth in

the wordnet taxonomy.

8

1.4.2.4 The Resnik Method

The measure introduced by Resnik [11] returns the information content (IC) of the LCS of

two concepts:

 () (1.6)

Where IC is defined as: () () ,

and P(c) is the probability of encountering an instance of concept c in a large corpus.

Lin‟s method which builds on Resnik‟s measure of similarity, and adds a normalization factor

consisting of the information content of the two input concepts:

 ()

 () ()
 (1.7)

1.4.2.5 The Jiang & Conrath Method

The Jiang &Conrath method [12] returns the similarity score as :

 () () ()
 (1.8)

1.4.3 Hybrid Methods

Hybrid methods use both the corpus based method and knowledge based measures.

Knowledge based measures are based on the lexical resources like WordNets and Synsets.

The combined method for measuring the semantic similarity of texts by exploiting the

information that can be drawn from the similarity of the component words is suggested for

more effective measure.

 [13] uses two corpus-based measures: PMIIR (Pointwise Mutual Information and

Information Retrieval) and LSA (Latent Semantic Analysis) and six knowledge-based

measures [Jiang and Conrath; Leacock and Chodorow; Lesk; Lin 1998; Resnik; Wu and

Palmer] of word semantic similarity, and combine the results to show how these measures

can be used to derive a text-to-text similarity metric.

Sentence Similarity Based on Semantic Nets and Corpus Statistics [14] by Yuhua Li, David

McLean, Zuhair A. Bandar, James D. O‟Shea, and Keeley Crockett made use of a lexical

database to enable the method to model human common sense knowledge and the

incorporation of corpus statistics method to be adaptable to different domains. The proposed

9

method can be used in a variety of applications that involve text knowledge representation

and discovery.Hybrid based model for semantic similarity of sentences is shown in figure 1.1.

Frequency estimates are generated from a terabyte-sized corpus of Web data, and the impact

of corpus size on the effectiveness of the measures is studied in [15].The evaluation is based

on one TOEFL question set and two practice questions sets, each consisting of a number of

multiple choice questions seeking the best synonym for a given target word.

1.4.4 Vector Based Document Model

In vector based document model [16], the input query are matched against the number of

documents.Such documents are represented as word vectors.The most relevant documents are

which matched with the input query are determined.This method relies on the assumption that

more similar documents have more words in common. But it is not always the case that texts

with similar meaning necessarily share many words. Again, the sentence representation is not

very efficient as the vector dimension is very large compared to the number of words in a

short text or sentence, thus, the resulting vectors would have many null components.

Figure 1.1 Sentence similarity computation (hybrid based measure).

10

CHAPTER 2

Text Similarity using Corpus Based Word Similarity and String

Similarity

The consideration of string similarity measures and Word to Word semantic similarity helps

to find the textual semantic similarity more efficiently. The approaches for string similarity

and corpus based word to word semantic similarity are discussed in this section.

2.1 Approaches for String Similarity Measures

2.1.1 String Edit Distance

String edit distance is the minimum number of insertions, deletions, and substitutions

required to transform one string into the other [17].

The edit distance D (i, j) between two strings S1 [1...i] and S2 [1...j] is defined recursively as:

 , - {

 , -

 , -

 , - ()

} (2.1)

Where,

D (i, 0) = i, D (0, j) = j and

 () {
 , - , -

 , - , -
}

The edit distance D (m, n) for two strings of length m and n can be computed in O (mn) time

using dynamic programming. The obtained edit distance can be normalized to get the

similarity score within the range 0 to 1.

2.1.2 Longest Common Subsequence

A common subsequence of two strings is a subsequence that appears in both strings. A

longest common subsequence [18] is a common subsequence of maximal length. The longest

common subsequence C (i, j) between two strings S1 [1…i] and S2 [1…j] can be recursively

defined as:

11

 , - {

 , -
 (, - , -)

 } (2.2)

2.1.3 Normalized and Modified Version of Longest Common Subsequence

[19] uses three different modified and normalized versions of longest common subsequence

(LCS) algorithm and their weighted sum for measuring string similarity between words. Let

pi and rj be the two words from the sentences P and R respectively, then the string similarity

between these two words is computed using following three modified form of LCS

algorithms. Algorithm 1 and Algorithm 2 are defined for Maximal Consecutive LCS starting

at first character and at any character n respectively.

 Normalized longest common subsequence(NLCS)

 ()

 (())

 () ()
 (2.3)

 Normalized maximal consecutive longest common subsequence starting at first

character(NMCLCS1)

 ()

 (())

 () ()
 (2.4)

 Normalized maximal consecutive longest common subsequence starting at any

character n (NMCLCSn)

 ()

 (())

 () ()
 (2.5)

Weigths w1, w2, w3 are choosen such that w1+ w2+ w3=1 then the string similarity is

computed as:

 (2.6)

12

Algorithm 1. MCLCS1 (Maximal Consecutive LCS starting at first character)

Input: ri, sj /*ri and sj are two input strings where | | , = and ≤ ŋ*/

 Output: ri /*ri is the maximal consecutive LCS starting at character 1 */

1. ←| | , ŋ←| |

2. while | | ≥0 do

3. If ri ∩ sj then /* i.e., ri c sj = ri */

4. return ri

5. else

6. ri←ri\cr /* i.e ., remove the right most character fom ri*/

7. end

8. end

Algorithm 2. MCLCSn (Maximal Consecutive LCS starting at character n)

Input: ri, sj /*ri and sj are two input strings where , and r ≤ ŋ */

 Output: x /*x is the maximal consecutive LCS starting at character n */

1 ←| | , ŋ ←| |
2. while | | ≥0 do

3. determine all n-grams from ri where n=1….| | and

4. ̅ is the set of n-grams

5. If where {* ̅ (̅)+ then /* i is the number if n-grams

 and (̅) returns the maximum length n-gram from ̅*/

6. return x

7. else

8. ̅ ̅ /*remove from ̅*/

9. end

10. end

2.2 Corpus based Word to Word similarity

2.2.1 Second Order Co-occurrence PMI Method

The Second Order Co-occurrence PMI (SOC-PMI) [25] method uses Pointwise Mutual

Information to sort lists of important neighbor words of the two target words from a large

corpus. The main advantage of using SOC-PMI is that it can calculate the similarity between

two words that do not co-occur frequently, but because they mostly co-occur with the same

neighboring words. Let W1 and W2 be the two words to determine the semantic similarity and

C = {c1, c2,. . . ., cm} denotes a large corpus of text (after some preprocessing e.g., stop words

elimination and lemmatization) containing m words (tokens). Also, let T = {t1, t2,. . . ., tn} be

the set of all unique words (types) which occur in the corpus C. Unlike the corpus C, which is

13

an ordered list containing many occurrences of the same words, T is a set containing no

repeated words. The parameter α is set, which determines how many words before and after

the target word W, will be included in the context window. The window also contains the

target word W itself, resulting in a window size of 2α + 1 words. The steps in determining the

semantic similarity involve scanning the corpus and then extracting some functions related to

frequency counts. The type frequency function, () * + where i = 1, 2,., n

which tells us how many times the type ti appeared in the entire corpus.

 Let () * +

where i = 1, 2, ., n and -α ≤ j ≤ α, be the bigram frequency function () denotes how

many times word ti appeared with word W in a window of size 2α + 1 words.

Then the pointwise mutual information function is defined for only those words having

 () as:

 ()

 ()

 () ()
 (2.7)

Where ()
 () and m is total number of tokens in corpus C as mentioned earlier.

Now, for word W1, a set of words, Xw sorted in descending order by their PMI values with

word w is constructed and taken the top most β1 words having () .

X

= {Xi}, where i=1, 2 …β1 and

 ()
 ()

 ()

Similarly, for word W2, a set of words, Y is defined as sorted in descending order by their

PMI values with W2 and taken the top-most β2 words having ()

Y = {Yi}, where i = 1, 2 . . . β2 and

 ()
 ()

 ()

The value for βs (β1 & β2) depends on the word W and the number of types in the corpus (this

will be discussed in the next section).

We define the β-PMI summation function. For word W1, the β-PMI summation function as:

 () ∑(())

 (2.8)

Where, () >0 and () > 0,

14

which sums all the positive PMI values of words in the set Y also common to the words in

the set X. In other words, this function actually aggregates the positive PMI values of all the

semantically close words of W2 which are also common in W1. Note that we call it

semantically-close because all these words have high PMI values with W2 and this doesn‟t

ensure the closeness with respect to the distance within the window size.

Similarly, for word W2, the β-PMI summation function is:

 () ∑(())

(2.9)

Where, () >0 and () > 0

which sums all the positive PMI values of words in the set X also common to the words in the

set Y. In other words, this function aggregates the positive PMI values of all the semantically-

close words of W1 which are also common in W2. The criteria for choosing the exponential

parameter γ will be discussed in the next subsection.

Finally, we define the semantic PMI similarity function between two words, W1 and W2,

 ()

 ()

 ()

 (2.10)

2.2.1.1 Choosing the Values of β and γ

The value of β is related to how many times the word, W appears in the corpus, i.e., the

frequency of W as well as the number of types in the corpus. β is defined as:

 ((()))

 (())

 (2.11)

where i = 1, 2 and δ is a constant. The value of δ depends on the size of the corpus. The

smaller the corpus, the smaller the value of δ is to be choosen. If we lower the value of β we

lose some important / interesting words, and if we increase it we consider more words

common to both W1 and W2 and this significantly degrades the result.

 𝛾 should have a value greater than 1. The higher we choose the value of 𝛾, the greater

emphasis on words having very high PMI values with W.

15

2.3 Integration of String similarity and Corpus based Word to

 Word similarity measure

The short text similarity based on string similarity and word similarity is first proposed by

Islama D. [19]. The modified and normalized version of Longest Common Subsequence (as

described in section 2.1) is used as string similarity measure and Second Order Co-

occurrence PMI Method is used as corpus based measure for word similarity measure. The

main aim is to derive a semantic text similarity score within range of 0 and 1.

Let,

m = number of tokens in P

n = number of tokens in R such that n ≥ m

δ = number of tokens that are matches exactly (from P and R)

 , -

 , -

 ()

 ()

 ()

Now, the String Similarity matrix M1 of size (m − δ) × (n − δ) is constructed whose each

element is defined as:

[

 ()
 ()

 ()

 () () () ()()]

 (2.12)

Semantic similarity matrix M2 of size (m − δ) × (n − δ) is constructed as:

[

 ()
 ()

 ()

 () () () ()()]

 (2.13)

Where, ()

16

Here the integration of matrix is based on equal weights [19].

M ← ψM1 + ϕM2

Where,

ψ=string matching matrix weight factor

ϕ =semantic similarity matrix weight factor

[

𝛾 𝛾 𝛾 𝛾 ()
𝛾 𝛾 𝛾 𝛾 ()

𝛾 𝛾 𝛾 𝛾 ()

𝛾() 𝛾() 𝛾() 𝛾()()]

 (2.14)

Where, 𝛾

Then, maximum valued element 𝛾 is added to a list and the corresponding rows and

column are removed. This step is repeated until either 𝛾 and/or (m – δ -) = 0 or

both.

Finally the similarity between P and R is computed as:

 ()

(∑) ()

 (2.15)

17

CHAPTER 3

Problem Definition

Similarity measure for long text, documents have been in research from long time but

similarity measure for short text has not been given much emphasis. Short Texts and

sentences similarity measures are now considered to be important research topic due to its

many applications in the field of Natural language processing and information retrieval. The

existing methods for computing sentence similarity have been adopted from approaches used

for long text documents which results in a very high dimensional space processing, inefficient

for measuring semantics and are not adaptable to all application domains[16], [20], [23].

Nepali text similarity has been studied less so far in comparison to other languages. Nepali

Texts are based on Devanagari Script. Though there are other languages too based on

Devanagari Script, Nepali language have different literature. Semantic similarity is the very

complex topic. The semantics of the sentence may be affected by the words used within the

context exihibiting different types of semantic relationship as defined in sub-section [1.2.2].

3.1 Why move to Semantic Text Similarity?

Text similarity based on lexical common terms matching does not cover the semantics of the

sentence. Semantic text similarity measure is the challenging problem that should dealt with

the human judgment of likeness and differences. The short text semantic similarity measure

has many applications in natural language processing and information retrieval , automated

answers checking, image retrieval on the web (using short text surrounding the image),

semantic routing, word sense disambiguation , conversational agent, automatic text

summarization based on semantics, machine translation and documents classification.

3.2 Why String Similarity Measures for Semantic Text

 Similarities?

String similarity measures for considering semantic similarity between Nepali texts have not

been studied so far. The two strings with few differences in string (lexically) may refer to be

same on the semantic basis. For such search queries, web retrieval is not so efficient rather

they deal only with search based on exact keyword matching i.e lexical term similarity for

Nepali words. People with different background, knowledge, and expectation organize the

18

information in web, users query may not be not adequate to represent the information they

want to retrieve. The spellings may not be exact but may be more similar to what they mean.

Keywords matching technique fails to retrieve semantically thus retrieve more irrelevant

results. Such techniques are constrained by attempting to match the user keyword to the

source document and present information to the user with documents that matched the user

keyword [23].

For example the following two sentences, S1 and S2 can be considered as carrying same

semantics (when the context words are considered) but the two words” प्रचन्ड “and“प्रचन्डा “are

lexically different.

S1:"प्रचण्ड नेऩारका नेता हुन ्|"

S2:"प्रचाण्ड नेऩारका याजनतैतक ब्मक्तत हुन ्|"

Dictionary-based similarity measure cannot provide any similarity value between these two

proper names. And the chance to obtain a similarity value using corpus-based similarity

measures is very low. So, for such cases good similarity score can be obtained using string

similarity measures [19].

In the next example given below the sentence S3 has word “सगयभाथा” and S4 has word

“सागयभाथा” which are lexically different words but semantically they refers to same meaning.

S3= "सगरमाथा हहभार नेऩारको सान हो |"

S4= "सागरमाथा हहभार नेऩारको शिय हो |"

However the word “सगरमाथा” is the correct spelling that is found in corpus. So, in such cases

the other word “सागरमाथा” is not found in corpus and thus frequently co-occurring words

(neighbour words) cannot be found in corpus which is the significant while employing word

to word similarity based on corpus or large texts. The web search results for these sentences

are different which means that semantic measure is not considered for Nepali texts. Figure

3.1 shows the comparision between searches with correct spelling and incorrect spelling for

Nepali language which shows that search with minor spelling mistake did not give desired

result for Nepali language where as in figure 3.2, the search for English language with similar

types of search returned the expected result. The Normalized and modified version of string

similarity measures can be used to detect similarity between such words.

19

Figure 3.1 Comparision search using the minor spelling mistake and using correct spelling.

20

Figure 3.2 Google search with spelling mistake for English language

3.3 Why Corpus Based Word Similarity Measure for Semantic

 Similarities?

There is relatively large number of word-to-word similarity metrics in the literature, ranging

from distance-oriented measures computed on semantic networks or knowledge-based

(dictionary/thesaurus-based) measures, to metrics based on models of information theory (or

corpus-based measures) learned from large text collections.

Knowledge based measures based on Word-Net or Synsets can be effective measure for

semantic similarity. But many languages like Nepali do not have the resources like WordNet

or Synsets. So, for such languages it is not possible to determine semantic similarity based on

lexical database. And also for the sentences to be semantically similar, it is not always the

case that they contain exactly same words or their synonyms. The sentences can exhibit same

meaning even though they do not share more common words or their synonyms. For the

language like Nepali, the corpus based word to word similarity is the solution measure for

21

semantic similarity. The context words for the given word can be considered to detect the

semantic relatedness of the words. Such context based measures can also be helpful in

determining the best synonyms from the given words options [12]. The corpus based

measures are proven to be more time efficient than other WordNet based measures or hybrid

measures. Moreover the real texts that are found in large corpus are often not found in lexical

database [19].

For Example here two sentences S1 and S2 here have different lexical terms.

S1: " देश विकासको रागी शिऺा महत्िपूर्ण बूशभका हुन्छ |"

S2: “मुऱुकको उन्नतिको रागग शिऺा आिश्यक कुया हो |"

They refer to same meaning on semantic basis even though they have different lexical terms.

For the overall semantic similarity measure each word in the sentence contributes a meaning

to the sentence. Word to word similarity measures based on corpus is the effective measure to

find the semantic. The word “देि” and “भुरुक” are synonyms; the similarity measure should be

higher for such cases. The words “बूशभका” and “कुया” are not exact synonyms but they

represent the semantic relatedness for the neighbor words like “आवश्मक” and “भहत्वऩूर्ण” and

thus put weights for semantic similarity for wholesentence. Such relatedness is considered in

corpus based measures.

22

CHAPTER 4

Implementation

Sentence1

Final Similarity

Score

Sentence2

Parts of Speech tagger using

TNT

Preprocessing:

Eliminations of

Stopwords, Punctuations

Tagged Text1

Tokenised

Preprocessed

words

Tokenised

Preprocessed

words

Tagged Text2

Normalized and modified

Version of LCS

String Similarity Matrix M1

SOC-PMI (Corpus Based-

Method for word similarity)

Semantic Word Similarity

Matrix M2

Integrated Similarity Matrix

M = max {M1, M2}

Figure 4.1 Model for the semantic Text Similarity computation

23

4.1 Description of the model.

At first two source sentences (Nepali language) are taken as input. The sentences go through

the preprocessing stage for removal of stop words and punctuations. Stop words are words

which are filtered out prior to, or after, processing of natural language data (text). There is not

one definite list of stop words which all tools use, if even used. Some tools specifically avoid

removing them to support phrase search. Then the tokenized sentences are tagged using the

part of speech tagger. The tagged word sequences are now input for the string similarity

computation and semantic word similarity computation methods. String Similarity between

each pair of words from two input word sequences is computed based on modified and

normalized version of Longest Common Subsequence (LCS) Algorithm. The integration of

three modified and normalized version of the LCS are used in this work. They are

Normalised longest common subsequence, Maximal Consecutive Normalized Longest

Common Subsequence starting at first character and Maximal consecutive Normalized

Longest Commin Subsequence starting at any character. The String edit distance measure

and the modified versions of LCS are compared. The modified versions of LCS gave more

accurate and reasonable score where as String edit distance gave more false score given a

threshold of 0.5. The comparision is described in more details in chapter 5. Word similarity

between each pair of words in the input word sequences is computed using Corpus based

method –Second Order Co-Occurences Pointwise Mutual Information (SOC-PMI). The main

advantage of using SOC-PMI is that it can calculate the similarity between two words that do

not co-occur frequently, but because they mostly co-occur with the same neighboring words.

The String Similarity matrix and Semantic Similarity matrix is integrated to get the final

similarity matrix. The integration method used here is different from the one that is used in in

[19] which was based on the equal weigths for the string similarity score and semantic word

level smiliarity score. The approach for integration used here is by chosing the maximum

element comparing the both string similaritry matrix and semantic similarity matrix. From

the integrated matrix the maximum valued element is extracted and the corresponding row

and column of the maximum valued element is removed from the matrix thus reducing the

size of matrix. This process is of extracting the maximum valued element and doing their

summation is continued until the value of the element is zero or until the matrix column size

http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Phrase_search

24

or row size is reduced to 1. Then the final similarity is computed within the range 0-1 by

multiplying the summation with the harmonic mean of the lengths of the two input sentences.

4.2 Preprocessing of the Corpus

The Nepali National Corpus – General Corpus (NNC-GC) consists of around 14 million

words. The sample from the Nepali National Corpus is taken for this experimentation. The

sample consists of total number of words 341173 with repetition and total number of words

50940 without repetition. Preprocessing of the sample Corpus includes the following steps.

1. Removal of Punctuations, symbols and special characters from the corpus.

2. Removal of Stop words from the copus.

3. Parts of Speech (POS) tagging: The texts are tagged using TNT POS tagger.

4.3 Choice of Programming language : Java

Java is a programming language and computing platform first released by Sun Microsystems

in 1995. It is the underlying technology that powers state-of-the-art programs including

utilities, games, and business applications. Nowadays it is difficult to find the electronic

appliances that does not support Java including mobile and TV devices.

A Java virtual machine (JVM) is a virtual machine that can execute Java bytecode. It is the

code execution component of the Java software platform. The Java Virtual Machine pro-

vides a platform-independent way of executing code; programmers can concentrate on

writing software, without having to be concerned with how or where it will run. It is

responsible for all the things like garbage collection, array bounds checking, etc. JVM is

platform dependent. Oracle Corporation is the current owner of the official implementation of

the Java SE platform. This implementation is based on the original implementation of Java by

Sun. The Oracle implementations are packaged into two different distributions. The Java

Runtime Environment (JRE) which contains the parts of the Java SE platform required to run

Java programs. This package is intended for end-users. The Java Development Kit (JDK), is

intended for software developers and includes development tools such as the Java compiler,

Javadoc, Jar, and a debugger.

25

4.4 Improvement for the integrating the String similarity and

 Word similarity score

Let, M1 = String similarity matrix of size (m − δ) × (n − δ)

M2 = Semantic similarity matrix of size (m − δ) × (n − δ)

Where m and n is the length of the sentences P and R respectively and δ is count for exactly

same words.

[

 ()
 ()

 ()

 () () () ()()]

 (4.1)

Where ()

[

 ()
 ()

 ()

 () () () ()()]

 (4.2)

Where, ()

In [19] the integration of matrix is based on equal weights.

 M ← ψM1 + ϕM2

(4.3)

Where, ψ=string matching matrix weight factor.

 ϕ =semantic similarity matrix weight factor.

Two words with few spelling differences would have more string similarity then the word

level semantic similarity. Moreover misspelled words are often not found in the corpus so

obviously the word level similarity returns 0 for such cases. In this case integration by equal

weights method reduces the similarity score. So instead the maximum value returned by

comparing the both measures could be used which also enhance the similarity scores for

many cases which have slightly misspelled words which would have 0 similarity based on

corpus. For such case considering only the string similarity measures gives nice score.

So, M ← ψM1 + ϕM2, is changed to M ← {m: m € M1 if M1>M2 else m € M2},

26

[

𝛾 𝛾 𝛾 𝛾 ()
𝛾 𝛾 𝛾 𝛾 ()

𝛾 𝛾 𝛾 𝛾 ()

𝛾() 𝛾() 𝛾() 𝛾()()]

 (4.4)

For example, for the word pairs “सगयभाथा” and “सागयभाथा”, the word level semantic similarity

gives 0 score but the string similarity measure gives the score of 0.60 So, if we take equal

weights of the word similarity and string similarity the obtained similarity is halved (0.30)

which degrades the overall similarity score.

4.5 A Walk through Example.

4.5.1 Example considering Corpus Based Word Similarity

The sample from the large corpus Nepali National corpus-General corpus (NNC-GC) is used

for experiments.

Let P= "देि ववकासको रागी शिऺा भहत्वऩूर्ण बशूभका हुन्छ ।"

 R= "भरुकुको उन्नततको रागग शिऺा आवश्मक कुया हो । "

Step 1: Part of speech tagging for the input sentences

देि\NN ववकास\NN को\PKO रागी\VBO शिऺा\NN भहत्वऩरू्ण \JJ बशूभका\NN हुन्छ\VB |\YF

भरुकु\NN को\PKO उन्नतत\NN को\PKO रागग\VBO शिऺा\NN आवश्मक\JJ कुया\NN हो\VB |\YF

Step 2: Elimination of all special characters, punctuations and stop words.

 P = {देि ववकास रागी शिऺा भहत्वऩरू्ण बशूभका} and

R = {भरुकु उन्नतत रागी शिऺा आवश्मक कुया} where m = 6 and n = 6.

Step 3: Removal of exactly matched tokens.Here, only two tokens (i.e., शिऺा, रागी) in P

exactly matches with R therefore we set δ (exactly matched token) to 2. We remove. शिऺा,

रागी from both P and R.

P = {देि ववकास भहत्वऩरू्ण बशूभका} and

27

R = {भरुकु उन्नतत आवश्मक कुया}.

As m− δ≠ 0, we proceed to next step.

Step 4: Constrution of a 4×4 string similarity matrix, M1. Normalized and modified Version

of LCS is used for string similarity computation.

[

 देि ववकास भहत्वऩरू्ण बशूभका

भरुकु

उन्नतत
आवश्मक

कुया
]

 (4.5)

Step 5: Constrution of a 4×4 semantic similarity matrix, M2. SOCPMI method is used for corpus

based word semantic similarity measure.

[

 देि ववकास भहत्वऩरू्ण बशूभका

भरुकु

उन्नतत
आवश्मक

कुया
]

 (4.6)

Step 6: A 4 × 4 joint matrix is constructed: M, Here the integration is different than in the

method described in [19]. The string similarity matrix M1 is already computed before M2 so

the maximum valued element can be choosen as value for element of the matrix M.

[

 देि ववकास भहत्वऩरू्ण बशूभका

भरुकु

उन्नतत
आवश्मक

कुया
]

 (4.7)

Step 7: The maximum-valued matrix-element, γij is extracted from the matrix and is added

this matrix element to a list (say, ρ and ρ ← ρ∪γij) if γij ≥ 0. All the matrix elements of i
th

 row

and j
th

column from M are removed.

Step 8: The process of the finding of the maximum-valued matrix-element, γij adding it to ρ

and removing all the matrix elements of the corresponding row and column is repeated until

either γij = 0, or m− δ − |ρ| = 0, or both.

Maximum valued element is [देि] [भरुकु] =0.976

After removing all the matrix elements of the corresponding row and column, we get matrix:

28

[

 ववकास भहत्वऩरू्ण बशूभका
उन्नतत
आवश्मक

कुया
]

 (4.8)

Next Maximum valued element is [भहत्वऩरू्ण] [आवश्मक] =0.638

After removing all the matrix elements of the corresponding row and column, we get matrix:

[

 ववकास बशूभका
उन्नतत
कुया
]

 (4.9)

Next Maximum valued element is [बशूभका] [कुया] = 0.557

Next Maximum valued element is [भहत्वऩरू्ण] [आवश्मक] =0.638

After removing all the matrix elements of the corresponding row and column, we get matrix:

 [

 ववकास
उन्नतत

] (4.10)

Next Maximum valued element is [ववकास] [उन्नतत] =0.297

Now, m− δ − |ρ| = 0 so we stop.

This total score is multiplied by the reciprocal harmonic mean of m and n to obtain a

similarity score between 0 and 1, inclusively. The following formula is used for the overall

similarity..

 ()
(∑) ()

 ()
() ()

 = 0.692

Overall sentence similarity is 0.692

29

4.3.2 Example Considering String Similarity and Corpus Based

Word Similarity

Let, P= "प्रचण्ड नेऩारका नेता हुन ्|"

 R= "प्रचाण्ड नेऩारका याजनैततक ब्मक्तत हुन ्|"

Step 1: Part of speech tagging for the input sentences

प्रचण्ड\JJ नेऩार\NNP का\PKO नेता\NN हुन\्VB |\YF

प्रचाण्ड\NNP नेऩार\NNP का\PKO याजनतैतक\JJ ब्मक्तत\NN हुन\्VB |\YF

Step 2: Elimination of all special characters, punctuations and stop words

P= "प्रचण्ड नेऩार नेता"

R= " प्रचाण्ड नेऩार याजनतैतक ब्मक्तत” where m = 4 and n = 5.

Step 3: Removal of exactly matched tokens.Here, only one tokens (i.e., नेऩार) in P exactly

matches with R therefore we set δ (exactly matched token) to 1. We remove नेऩार from both

P and R.

P= "प्रचण्ड नेता"

R= " प्रचाण्ड याजनतैतक ब्मक्तत”

As m− δ≠ 0, we proceed to next step.

Step 4: Constrution of a 4×2 String similarity matrix, M1. Normalized and modified Version

of LCS is used for string similalrity computation.

 [
 प्रचाण्ड याजनतैतक ब्मक्तत

प्रचण्ड
नेता

] (4.11)

Step 5: Constrution of a 4×2 Semantic similarity matrix, M2. SOCPMI method is used for

corpus based word semantic similarity measure.

 [
 प्रचाण्ड याजनतैतक ब्मक्तत

प्रचण्ड

नेता

] (4.12)

Step 6: Constrution of a 4×2 integrated similarity matrix, M

30

 [
 प्रचाण्ड याजनतैतक ब्मक्तत

प्रचण्ड
नेता

] (4.13)

Step 7: Maximum valued elements are extracted from the matrix.

Maximum valued element is [प्रचण्ड] [प्रचाण्ड] =0.58

After removing all the matrix elements of the corresponding row and column, we get matrix

 [

 याजनतैतक ब्मक्तत
नेता

] (4.14)

Next Maximum valued element is [नेता] [याजनतैतक] =0.329

Now, m− δ − |ρ| = 0 so we stop.

The final similarity is computed using the formula:

 ()
(∑) ()

 ()
() ()

 = 0.55

Therefore the overall sentence similarity score is 0.55

31

CHAPTER 5

Testing and Analysis

5.1 Some Tested Pair of Sentences

The sample from the Nepali National Corpus is taken for this experimentation. The sample

consists of total number of words 341173 with repetition and total number of words 50940

without repetition. Here in the table 5.1, for the first example all the string similarity values

and word semantic similarity values are listed and among them the maximum valued

similarity score between words are listed which are used for overall similarity. For the all

other examples only the maximum valued elements are listed. The other column contains the

overall sentence similarity score computed.

Sentence Pairs and word similarity scores Sentence

Similarity Score

P = "देि ववकासको रागी शिऺा भहत्वऩरू्ण बशूभका हुन्छ ।"

R = "भरुकुको उन्नततको रागी शिऺा आवश्मक कुया हो ।"

StringSimilarity[देि][भुरुक]=0
StringSimilarity[देि][उन्नतत]=0
StringSimilarity[देि][आवश्मक]=0.028
StringSimilarity[देि][कुया]=0
StringSimilarity[ववकास][भुरुक]=0.02
StringSimilarity[ववकास][उन्नतत]=0.017
StringSimilarity[ववकास][आवश्मक]=0.067
StringSimilarity[ववकास][कुया]=0.112
StringSimilarity[भहत्वऩूर्ण][भुरुक]=0.015
StringSimilarity[भहत्वऩूर्ण][उन्नतत]=0.008
StringSimilarity[भहत्वऩूर्ण][आवश्मक]=0.033
StringSimilarity[भहत्वऩूर्ण][कुया]=0.012
StringSimilarity[बूशभका][भुरुक]=0.075
StringSimilarity[बूशभका][उन्नतत]=0.014
StringSimilarity[बूशभका][आवश्मक]=0.014
StringSimilarity[बूशभका][कुया]=0.094

SemanticSimilarity[देि][भुरुक]=0.976
SemanticSimilarity[देि][उन्नतत]=0.326
SemanticSimilarity[देि][आवश्मक]=0.64

0.692

32

SemanticSimilarity[देि][कुया]=0.595
SemanticSimilarity[ववकास][भुरुक]=0.66
SemanticSimilarity[ववकास][उन्नतत]=0.297
SemanticSimilarity[ववकास][आवश्मक]=0.539
SemanticSimilarity[ववकास][कुया]=0.533
SemanticSimilarity[भहत्वऩूर्ण][भुरुक]=0.621
SemanticSimilarity[भहत्वऩूर्ण][उन्नतत]=0.253
SemanticSimilarity[भहत्वऩूर्ण][आवश्मक]=0.638
SemanticSimilarity[भहत्वऩूर्ण][कुया]=0.54
SemanticSimilarity[बूशभका][भुरुक]=0.49
SemanticSimilarity[बूशभका][उन्नतत]=0.288
SemanticSimilarity[बूशभका][आवश्मक]=0.439
SemanticSimilarity[बूशभका][कुया]=0.557

IntegratedSimilarity[देि][भुरुक]=0.976
IntegratedSimilarity[देि][उन्नतत]=0.326
IntegratedSimilarity[देि][आवश्मक]=0.64
IntegratedSimilarity[देि][कुया]=0.595
IntegratedSimilarity[ववकास][भुरुक]=0.66
IntegratedSimilarity[ववकास][उन्नतत]=0.297
IntegratedSimilarity[ववकास][आवश्मक]=0.539
IntegratedSimilarity[ववकास][कुया]=0.533
IntegratedSimilarity[भहत्वऩूर्ण][भुरुक]=0.621
IntegratedSimilarity[भहत्वऩूर्ण][उन्नतत]=0.253
IntegratedSimilarity[भहत्वऩूर्ण][आवश्मक]=0.638
IntegratedSimilarity[भहत्वऩूर्ण][कुया]=0.54
IntegratedSimilarity[बूशभका][भुरुक]=0.49
IntegratedSimilarity[बूशभका][उन्नतत]=0.288
IntegratedSimilarity[बूशभका][आवश्मक]=0.439
IntegratedSimilarity[बूशभका][कुया]=0.557

Here the maximum valued elements are extracted for overall
sentence similarity score are as follows:

1. SemanticSimilarity[देि][भुरुक]=0.976
2. SemanticSimilarity[भहत्वऩूर्ण][आवश्मक]=0.638
3. SemanticSimilarity[बूशभका][कुया]=0.557
4. SemanticSimilarity[ववकास][उन्नतत]=0.297

33

P= "प्रचाण्ड नेऩारका नेता हुन ्।"

R= "प्रचण्ड नेऩारका याजनतैतक व्मक्तत हुन ्।"

1. StringSimilarity[प्रचाण्ड][प्रचण्ड]=0.58

2. SemanticSimilarity[नेता][व्मक्तत]=0.306

0.55

P= "कववहरु सजृनिीर हुन्छन |"

R= "साहहत्मकायहरु याम्रा कृतत सजृना गछणन |"

1. SemanticSimilarity[कवव][कृतत]=0.761
2. SemanticSimilarity[सजृनिीर][सजृना]=0.537

0.379

P= "अभेरयकार ेववकासको ऺते्रभा धेयै प्रगतत गयेको छ |"

R= "अभेरयका ववकशसत भरुकु हो |"

1. SemanticSimilarity[भुरकु][ऺेत्र]=0.759

2. SemanticSimilarity[ववकास][ववकशसत]=0.713

0.66

P= "सगयभाथा हहभार नेऩारको सान हो |"

R= "सागयभाथा हेभार नेऩारको शिय हो |"

1. StringSimlarity[सगयभाथा][सागयभाथा]=0.603
2. StringSimlarity[हहभार][हेभार]=0.42

0.506

P= “उनी सनु्दय छे |”
R="उनी भनभोहक छे |”

1. SemanticSimilarity[सुन्दय][भनभोहक]=0.507

0.836

P= "कय ततनुण नागरयकको दातमत्व हो |"

R= "कय ततनुण हयेकको कतणव्म हो |"

1 SemanticSimilarity[दातमत्व][कतणव्म]=0.52
2 SemanticSimilarity[नागरयक][हयेक]=0.351

0.718

P= "शिऺा हाम्रो हक हो |"

R= "िीऺा हाम्रो अगधकाय हो |"

1. SemanticSimilarity[हक][अगधकाय]=0.57
2. StringSimlarity[शिऺा][िीऺा]=0.465

0.678

P= "िाक्न्त हयेक नेऩारीको चाहना हो |"

R= "सफकैो इच्छा अहहॊसा हो |"

1. SemanticSimilarity[हयेक][सफ]ै=0.541
2. SemanticSimilarity[चाहना][इच्छा]=0.441
3. SemanticSimilarity[नेऩारी][सफै]=0.439

0.363

34

4. SemanticSimilarity[िाक्न्त][अहहॊसा]=0.26

P="आफ्नो करा सॊस्कृततराइ सॊयऺर् गनुण सफकैो कतणव्म हो |"

R="हाम्रो ऩयम्ऩया यीततरयवाज सयुऺा गनुण दातमत्व हो |"

1. SemanticSimilarity[ऩयम्ऩया][सॊस्कृतत]=0.683
2. SemanticSimilarity[यीततरयवाज][सॊस्कृतत]=0.569
3. SemanticSimilarity[ऩयम्ऩया][करा]=0.536
4. SemanticSimilarity[दातमत्व][कतणव्म]=0.52
5. SemanticSimilarity[सुयऺा][सॊयऺर्]=0.515

 0.51

 P="गरु्स्तयीम शिऺा याज्मको दातमत्व हो |"

 R="याम्रो िीऺा सयकायको क्जम्भेवायी हो |"

1. SemanticSimilarity[सयकाय][याज्म]=0.830
2. SemanticSimilarity[दातमत्व][क्जम्भेवायी]=0.832
3. SemanticSimilarity[गुर्][याम्रो]=0.352

0.754

P="जीवन सॊघर्ण हो ।“
R= "क्जन्दगीभा चुनौतीको साभना गनुणऩछण ।"

1. SemanticSimilarity[सॊघर्ण][चुनौती]=0.467
2. SemanticSimilarity[जीवन][क्जन्दगी]=0.28

0.28

P="नेऩारभा ऩमणटन ब्मफसामको याम्रो सम्बावना छ |"

R="नेऩारभा ऩमणटक धेयै आउने हुॉदा त्मसफाट याम्रो आगथणक कायोफाय हुनसतछ |"

1. SemanticSimilarity[ऩमणटन][ऩमणटक]=0.95
2. SemanticSimilarity[व्मवसाम][कायोफाय]=0.667
3. SemanticSimilarity[व्मवसाम][आगथणक]=0.645

0.673

P="कडा ऩरयश्रभ गयेय काभ गये सपर बईन्छ |"

R="शभहहनेत,तनयन्तयता हदएय काभ गये सपर हुन्छौ |"

1. SemanticSimilarity[ऩरयश्रभ][शभहहनेत]=0.663
2. SemanticSimilarity[ऩरयश्रभ][काभ]=0.362

0.636

P="जीवनभा सपर हुन सकायात्भक सोच याख्न जरूयी छ |"

R="याम्रो सोच सपर जीवनको सॊकेत हो |"

1. SemanticSimilarity[सकायात्भक][याम्रो]=0.432
2. SemanticSimilarity[जरूयी][याम्रो]=0.68

0.686

P="गरयफ असहामको सहमोग गनुण याम्रो काभ हो |"

R="गरयफ सेवा गनुण धभण हो |"

1. SemanticSimilarity[सेवा][सहमोग]=0.586

0.665

35

2. SemanticSimilarity[सेवा][याम्रो]=0.503
3. SemanticSimilarity[धभण][याम्रो]=0.282

P="गौतभ फदु्धा सॊसाय िाक्न्त प्रचाय हुन ्|"

R="फदु्ध ववश्व िाक्न्त सॊदेि पैराए |"

1. StringSimlarity[फुद्धा][फुद्ध]=0.833
2. StringSimlarity[गौतभ][गौतभा]=0.80
3. SemanticSimilarity[प्रचाय][सन्देि]=0.199
4. SemanticSimilarity[सॊसाय][ववश्व]=0.332

0.519

P="देिको रागी त्माग गनुण सतनऩुछण |"

R="भरुकुको रागी फशरदान हदन सतनऩुछण |"

1. SemanticSimilarity[देि][भुरुक]=0.976
2. SemanticSimilarity[त्माग][फशरदान]=0.209

0.637

P="नेऩारभा योजगायीको अबाव छ |"

R="नेऩारभा जागगयको सभस्मा छ |"

1. SemanticSimilarity[अबाव][सभस्मा]=0.663
2. SemanticSimilarity[योजगायी][जागगय]=0.177

0.613

P="स्वदेिको भामा सफराई हुन्छ |"

R="आफ्नो देि सफराई प्मायो राग्छ |"

1. StringSimlarity[स्वदेि][देि]=0.5
2. SemanticSimilarity[भामा][प्मायो]=0.12

0.432

P="भेयोडीना एक प्रशसद्ध खेराडी हुन ्|"

R="भेयोडोना एक रोकवप्रम खेराडी हुन ्|"

1. StringSimlarity[भेयोडीना][भेयोडोना]=0.578
2. SemanticSimilarity[प्रशसद्ध][रोकवप्रम]=0.586

0.722

P="जीवनभा सभमको भहत्व धेयै हुन्छ |"

R="क्जन्दगीभा हयेक ऩर भहत्वऩरू्ण हुन्छ |"

1. SemanticSimilarity[भहत्व][भहत्वऩूर्ण]=0.659
2. SemanticSimilarity[सभम][हयेक]=0.692
3. SemanticSimilarity[जीवन][क्जन्दगी]=0.28

0.476

P="देिको प्रगततको रागग याम्रा नेताहरु आवश्मक |"

R="भरुकुको उन्नततका रागग भन्त्रीहरु याम्रा जरूयी |"

1. SemanticSimilarity[देि][भुरुक]=0.976
2. SemanticSimilarity[भन्त्री][नेता]=0.381
3. SemanticSimilarity[प्रगतत][उन्नतत]=0.418
4. SemanticSimilarity[आवश्मक][जरूयी]=0.29

0.678

P="सफरै ेतनमभ ऩारना गनुणऩछण |" 0.75

36

R="हयेकरे काननू ऩारना गनुणऩछण |"

1. SemanticSimilarity[तनमभ][कानून]=0.708
2. SemanticSimilarity[सफ]ै[हयेक]=0.544

P="कम्प्मटुयरे जीवन धेयै सहज फनाएको छ |"

R="कम्प्मटुायरे आधुतनक जीवनभा धेयै सहमोग गयेको छ |"

1. StringSimlarity[कम्प्मुटय][कम्प्मुटाय]=0.806
2. SemanticSimilarity[सहज][आधुतनक]=0.379

0.546

P="भनुाभदन तनकै रोकवप्रम कथा भातनन्छ |"

R="भनूाभदन नेऩारी साहहत्मभा प्रशसद्ध कृतत हो |"

1. SemanticSimilarity[कथा][साहहत्म]=0.45
2. SemanticSimilarity[रोकवप्रम][प्रशसद्ध]=0.586
3. StringSimlarity[भुनाभदन][भूनाभदन]=0.50
4. SemanticSimilarity[कथा][कृतत]=0.48

0.441

P = "बगवानभा ववश्वास याख्नऩुछण ।"
R = "बगवानभा श्रद्धा गनुणऩछण ।"
SemanticSimilarity[ववश्वास][श्रद्धा]=0.187

0.396

P="शिऺा भहत्व फझु्नऩुछण ।"
R="ऻान भहत्वऩरू्ण छ ।"

1. SemanticSimilarity[शिऺा][ऻान]=0.486
2. SemanticSimilarity[भहत्व][भहत्वऩूर्ण]=0.659

0.572

P="उसॊग िक्तत छ ।"
R="उ फशरमो छ ।"
SemanticSimilarity[िक्तत][फशरमो]=0.458

0.729

P= "प्रचण्ड नेऩारका एक नेता हुन ्|"

P= "कववहरु सजृनिीर हुन्छन |"

1. SemanticSimilarity[नेऩार][सजृनिीर]=0.048
2. SemanticSimilarity[प्रचन्ड][कवव]=0

0.101

P= "शिऺा हाम्रो हक हो |”
R= "फदु्ध िाक्न्तका दतु हुन |”

1. SemanticSimilarity[हक][फुद्ध]=0.111
2. SemanticSimilarity[शिऺा][िाक्न्त]=0.262

0.124

P="नेऩारभा ऩमणटन ब्मफसामको याम्रो सम्बावना छ |"

R= "भनुाभदन तनकै रोकवप्रम कथा हो |"

1. SemanticSimilarity[ब्मफसाम][भुनाभदन]=0
2. SemanticSimilarity[याम्रो][तनकै]=0.576

0.205

37

3. SemanticSimilarity[नेऩार][कथा]=0.218
4. SemanticSimilarity[ऩमणटन][भुनाभदन]=0

P = "भेयो नाभ श्माभ हो ।"
R= "भेयो नाभ याभ हो ।"
SemanticSimilarity[श्माभ][याभ]=0.215

0.738

P=" देि ववकासको रागी शिऺा भहत्वोऩरू्ण बशूभका हुन्छ | "

R= "भरुकुको उन्नततको रागग आगथणक ववकास आवश्मक कुया हो | "

1. SemanticSimilarity[देि][भुरुक]=0.976
2. SemanticSimilarity[ववकास][उन्नतत]=0.297
3. SemanticSimilarity[भहत्वऩूर्ण][आवश्मक]=0.638
4. SemanticSimilarity[बूशभका][कुया]=0.557
5. SemanticSimilarity[ववकास][आगथणक]=0.823

0.654

P="ववऻानको बफकासर ेभान्छेको जीवनभा धेयै ऩरयवतणन ल्माएको छ |"

R="वऻैातनक उऩरक्ब्धर ेभातनसको जीवन नमाॉ भोडभा ल्माएको छ |"

1. SemanticSimilarity[ववऻान][वैऻातनक]=0.738
2. SemanticSimilarity[ऩरयवतणन][नमाॉ]=0.619
3. SemanticSimilarity[ववकास][वैऻातनक]=0.572

0.611

Table 5.1 Semantic Text similarity measures for the pair of sentences

5.2 Testing Accuracy

Number of sentences analyzed = 35

Number of correct predicted sentences = 26

Accuracy = (26/35) ×100 = 74%
The results are evaluated in terms of accuracy, the number of pairs predicted correctly

divided by the total number of pairs. Recall is defined as the percentage of pairs in the

manually annotated pairs set identified by the method and precision is defined as the

percentage of pairs returned by the method that also occurred in the manually annotated pairs

set. In general, it is easy to obtain high performance for one of the two measures but

relatively difficult to obtain high performance for both.

F-measure (F) is the geometric mean of precision (P) and recall (R) and expresses a trade-off

between those two measures. These performance measures are defined as follows:

38

 P = TP/ (TP + FP) (5.1)

 R = TP/ (TP + FN) (5.2)

F = (1 + β) PR/ (βP + R)

= 2PR / (P + R),

(5.3)

With β = 1 such that precision and recall weighted equally.

where, TP = True Positive (how many pairs of sentences were similar and they were indeed

labeled as similar in the data set), FP = False Positive (how many were classified as non

similar while they truly are similar), and FN = False Negative (how many were labeled as

similar when they should not have been), respectively.

So,

P = 26/ (26+9) = 0.74

R = 26/ (26+3) = 0.89

F = (2*0.74*0.89)/ (0.74+0.89)

 = 0.80

5.4 Comparison of String Edit Distance and Normalized and

Modified Version of LCS for some pair of Words

Tested Word pairs Similarity score using

String

Edit Distance measure

Similarity score using

normalized and modified

version of LCS

प्रचण्ड

प्रचण्डा

0.875 0.875

हेभारम

हहभारम

0.833 0.465

नेऩार

जेऩार

0.80 0.480

39

याम्रो

नयाम्रो

0.857 0.642

कम्प्मुटय

कम्प्मुटाय

0.900

0.805

भुनाभदन

भूनाभदन

0.857 0.500

भेयोडीना

भेयोडोना

0.875 0.578

िीऺा

शिऺा

0.833 0.465

सगयभाथा

सागयभाथा

0.875 0.602

हहभार

हहरभा

0.600 0.360

Table 5.2 String similarity measures comparision

Analysis:

The string edit distance gives higher similarity values than the normalized and modified

version of LCS but it does not consider the maximal consequetive sequences starting from the

first character and /or any other character within the word. The result is that it gives higher

similairy value even for those which are not similar.

Example for set of words pairs

1. “हहभार” and “ हहरभा” : string edit distance measure= 0.60 and LCS measure = 0.36

2. “जेऩार” and “ नेऩार” : string edit distance measure= 0.80 and LCS measure = 0.48

40

Given the threshold value of 0.5, string edit distance measures would give more false scores

for similarity measure but considering the modified and normalized version of LCS gives

more accurate and reasonable score.

5.5 Complexity Analysis

(i) Three string similarity functions are used to determine a combined string similarity score.

The time complexity calculation is straightforward. Assuming that the maximum length of

the two strings is m, the time complexity of LCS, MCLCS1 and MCLCSn are O (m
2
), O (m

2
)

and O (m
2
), respectively. So, the total complexity of the string matching is O (m

2
).

(ii) The semantic word similarity method (SOCPMI) used has a linear time complexity with

the size of the corpus (the size of the NNC). The quadratic time complexity of the window

size (10 words) can be ignoresd as it is much smaller than the size N of the corpus. So the

total complexity of the corpus-based similarity matching is O (N).

(iii) Finally, the two measures are combined; this has a quadratic complexity of the size of the

matrices. If s is the length of the longest sentence, then the time complexity is O (s
2
).

The total complexity is O (N) + O (m
2
) + O (s

2
).

41

CHAPTER 6

Conclusion and Recommendation

6.1 Conclusion

As the information technology is depending more on semantic information, the need for

semantic level text processing is growing higher. The strict lexical text similarity measures do

not consider the semantics of the text, moving towards the semantic similarity approach is the

ultimate goal. The semantic similarity measure used here is the unsupervised model (there is

no training data available). The consideration of string similarity contributed for finding

similarity between sentences even though they have little differences like the inclusion of

misspelled words. The word to word similarity based on corpus contributed for finding

semantic similarity between words.

The time complexity of the algorithms is given mainly by the number of searches in the

corpus and in wordnet. Since only one corpus base method has been used and no word net

based approach used, it has lower time complexity than the other system based on wordnet

and multiple corpus based approaches.The improvement has been done when integrating the

similarity values obtained from string similarity meaure and corpus based measure. Mispelled

words are often not found in the corpus, so the word level semantic similarity returns 0 but

they could have nice string similarity score with the correctly spelled words being compared.

The maximum value returned by comparing the both measures is used instead of using

integration by equal weights.

6.2 Recommendation

In future the work for recognizing the negative sense sentence would be done.The handling

of opposite meaning texts requires deeper reasoning. The similarity score is very much

influenced by the stemming, lemmatization and tagging methods used.The availability of

better approaches in future would obviously enhance the semantic text similarity measure.

Further research has to emphasize primarily the variable of window size. Additionally, a

larger number of lexemes have to be included. Chunking and parsing the corpus should also

improve the results.

42

Appendices

Appendix 1

Code for Computing LCS

/**
* Function to compute Longest Common Subsequence algorithm. That is, given

* two strings A and B,this program will find longest common sequence.

* @param String, String

* @return String length of LCS

* @author Laxman

**/

public static String LCSAlgorithm(String a, String b) {

// These are "constants" which indicate a direction in the backtracking

array.

private static final int NEITHER = 0;

private static final int UP = 1;

private static final int LEFT = 2;

private static final int UP_AND_LEFT = 3;

int n = a.length();

int m = b.length();

int S[][] = new int[n + 1][m + 1];

int R[][] = new int[n + 1][m + 1];

int ii, jj;

// It is important to use <=, not <. The next two for-loops are

// initialization

for (ii = 0; ii <= n; ++ii) {

 S[ii][0] = 0;

 R[ii][0] = UP;

}

for (jj = 0; jj <= m; ++jj) {

 S[0][jj] = 0;

 R[0][jj] = LEFT;

}

// This is the main dynamic programming loop that computes the score and

// backtracking arrays.

for (ii = 1; ii <= n; ++ii) {

 for (jj = 1; jj <= m; ++jj) {

 if (a.charAt(ii - 1) == b.charAt(jj - 1)) {

 S[ii][jj] = S[ii - 1][jj - 1] + 1;

 R[ii][jj] = UP_AND_LEFT;

 }

 else {

 S[ii][jj] = S[ii - 1][jj - 1] + 0;

 R[ii][jj] = NEITHER;

 }

 if (S[ii - 1][jj] >= S[ii][jj]) {

 S[ii][jj] = S[ii - 1][jj];

 R[ii][jj] = UP;

43

 }

 if (S[ii][jj - 1] >= S[ii][jj]) {

 S[ii][jj] = S[ii][jj - 1];

 R[ii][jj] = LEFT;

 }

 }

}

// The length of the longest substring is S[n][m]

ii = n;

jj = m;

int pos = S[ii][jj] - 1;

char lcs[] = new char[pos + 1];

// Trace the backtracking matrix.

while (ii > 0 || jj > 0) {

 if (R[ii][jj] == UP_AND_LEFT) {

 ii--;

 jj--;

 lcs[pos--] = a.charAt(ii);

 }

 else if (R[ii][jj] == UP) {

 ii--;

 }

 else if (R[ii][jj] == LEFT) {

 jj--;

 }

}

return new String(lcs);

}

Code for Computing String edit distance measure

/**
* Function to compute LevenshteinDistance . That is, given

* two strings A and B,it computes the string edit distance

* @param String, String

* @return integer: String edit distance metric

* @author Laxman

**/

public static int computeLevenshteinDistance(String str1,

 String str2) {

 int[][] distance = new int[str1.length() + 1][str2.length() + 1];

 for (int i = 0; i <= str1.length(); i++)

 distance[i][0] = i;

 for (int j = 1; j <= str2.length(); j++)

 distance[0][j] = j;

 for (int i = 1; i <= str1.length(); i++)

 for (int j = 1; j <= str2.length(); j++)

 distance[i][j] = minimum(distance[i - 1][j] + 1,

 distance[i][j - 1] + 1,

44

 distance[i - 1][j - 1]

 + ((str1.charAt(i - 1) == str2.charAt(j - 1)) ? 0 : 1));

 return distance[str1.length()][str2.length()];

}

Code for Computing PMI summation for word similarity

/**

* Function to calculate the pmi summation for SemanticWordSimilarity matrix

* and returns the matrix

* @param Hashtable for word coroccurenece count, word frequency count

* @return double array: Word similarity matrix

* @author Laxman Manandhar

* */

public static Double[][] PmiSummationForWordSimilarity(

 Hashtable<String, Double> BetaWordsHashtable[],

 Hashtable<String, Integer> WordCoOccurenceCountHash[],

 Hashtable<String, Integer> WordFrequencyCountHash[],

 Hashtable<String, Integer> MainWordCountHash, String AllWords[],

 int lengthP, int lengthR, long totalWordsRepeat) {

 double pmi1 = 0.0, pmi2 = 0.0;

 Double[][] WordSimilarityMatrix = new Double[lengthP][lengthR];

 for (int i = 0; i < lengthP; i++) {

 int k = 0;

 for (int j = lengthP; j < AllWords.length; j++) {

 if (BetaWordsHashtable[i].size() == 0

 || BetaWordsHashtable[j].size() == 0) {

 WordSimilarityMatrix[i][k] = 0.0;

 k++;

 for (String word : BetaWordsHashtable[i].keySet()) {

 if (WordCoOccurenceCountHash[j].containsKey(word)) {

 double value = (WordCoOccurenceCountHash[j].get(word) *

totalWordsRepeat)

 / (MainWordCountHash.get(AllWords[j]) *

WordFrequencyCountHash[j]

 .get(word));

 pmi1 = pmi1 + Math.pow(log2(value), 2);

 }

 }

 double betaSummation1 = pmi1 / BetaWordsHashtable[i].size();

 for (String word : BetaWordsHashtable[j].keySet()) {

 if (WordCoOccurenceCountHash[i].containsKey(word)) {

 double value = (WordCoOccurenceCountHash[i].get(word) *

totalWordsRepeat)

 / (MainWordCountHash.get(AllWords[i]) *

WordFrequencyCountHash[i]

 .get(word));

 pmi2 = pmi2 + Math.pow(log2(value), 2);

 }

 }

 double betaSummation2 = pmi2 / BetaWordsHashtable[j].size();

 WordSimilarityMatrix[i][k] = (betaSummation1 + betaSummation2) / 25;

 if (WordSimilarityMatrix[i][k] > 1) {

 WordSimilarityMatrix[i][k] = 0.95;

 }

 k++;

 pmi1 = 0.0;

 pmi2 = 0.0;

45

 }

 }

}

return WordSimilarityMatrix;

}

Code for computing word to word similarity based on Second order PMI
/**

* Function to compute word to word similarity

* and returns the matrix

* @param

* @return

* @author Laxman

* */

public static void main(String args[]) {

Scanner input;

String P = “देि ववकास रागी शिऺा भहत्वऩूर्ण बूशभका”;
String R = “भुरुकको उन्नततको रागी आगथणक ववकास आवश्मक कुया";
String PWords = “देि शिऺा भहत्वऩूर्ण बूशभका”;
String RWords = "भुरुक उन्नतत आगथणक आवश्मक कुया";
String[] PsplitBeforeProcess = P.split(" ");

String[] RsplitBeforeProcess = R.split(" ");

// same words count

int countSameWords = 0;

for (int c = 0; c < PsplitBeforeProcess.length; c++) {

 for (int d = 0; d < RsplitBeforeProcess.length; d++) {

 if (PsplitBeforeProcess[c].equalsIgnoreCase(RsplitBeforeProcess[d])) {

 countSameWords++;

 }

 }

}

int m = PsplitBeforeProcess.length;

int n = RsplitBeforeProcess.length;

String[] PWordsArray = PWords.split(" ");

String[] RWordsArray = RWords.split(" ");

String[] AllWords = (PWords + " " + RWords).split(" ");

int x = 0, y = 0, z = 0, i = 0, j = 0, k = 0, l = 0;

String[][] afterMainWordArray = new String[AllWords.length][5];

String[][] beforeMainWordArray = new String[AllWords.length][5];

Double[][] StringSimilarityMatrix = new

Double[PWordsArray.length][RWordsArray.length];

boolean[] last = new boolean[AllWords.length];

int[] reachedIndexForLastCase = new int[AllWords.length];

int[] limitIndexForLastCase = new int[AllWords.length];

String previousLine[] = null;

int count;

// Hash tables initializations

Hashtable<String, Integer> WordCoOccurenceCountHash[] = new

Hashtable[AllWords.length];

Hashtable<String, Integer> WordFrequencyCountHash[] = new

Hashtable[AllWords.length];

Hashtable<String, Double> PmiValuesHashCoOccuredWords[] = new

Hashtable[AllWords.length];

Hashtable<String, Double> Max5PmiHashForMainWord[] = new

Hashtable[AllWords.length];

46

Hashtable<String, Integer> BetaCoOccuredWordsForMainWord[] = new

Hashtable[AllWords.length];

Hashtable<String, Double> ReturnedPMIvalues[] = new

Hashtable[AllWords.length];

Hashtable<String, Integer> MainWordCountFrequcyHash = new Hashtable<String,

Integer>();

for (int c = 0; c < WordCoOccurenceCountHash.length; c++) {

 WordCoOccurenceCountHash[c] = new Hashtable<String, Integer>();

 WordFrequencyCountHash[c] = new Hashtable<String, Integer>();

 PmiValuesHashCoOccuredWords[c] = new Hashtable<String, Double>();

 Max5PmiHashForMainWord[c] = new Hashtable<String, Double>();

 BetaCoOccuredWordsForMainWord[c] = new Hashtable<String, Integer>();

 MainWordCountFrequcyHash.put(AllWords[c], 1);

}

// String Similarity matrix computation

LCS stringSimilarityObj = new LCS();

StringSimilarityMatrix = stringSimilarityObj.computeStringSimilarityMatrix(

 PWordsArray, RWordsArray);

// Reading from processed corpus file for computing the wordSimilarity

try {

 input = new Scanner(new File("processedCorpus.txt"));

 while (input.hasNextLine()) {

 i = 0;

 String strLine = input.nextLine();

 String strWords[] = strLine.split("[\\s]+");

 for (int c = 0; c < AllWords.length; c++) {

 if (last[c] == true) {

 for (k = 0; k < limitIndexForLastCase[c]; k++) {

 afterMainWordArray[c][reachedIndexForLastCase[c]] = strWords[k];

 reachedIndexForLastCase[c]++;

 }

 checkWordInHashTable(c, afterMainWordArray,

 WordCoOccurenceCountHash[c], AllWords[c]);

 x = 0;

 last[c] = false;

 y = 0;

 }

 }
// looping through the main words and then scanned lines from corpus

// and incrementing the counts for each encountered words with their

// neigbour words three cases to handle: last range case, first range case

// normal range case.

for (int c = 0; c < AllWords.length; c++) {

 for (i = 0; i < strWords.length; i++) {

 String[] strWordsTaggedsplit = strWords[i].split("\\/");

 if (strWordsTaggedsplit[0].equalsIgnoreCase(AllWords[c])) {

 count = MainWordCountFrequcyHash.get(AllWords[c]);

 count++;

 MainWordCountFrequcyHash.put(AllWords[c], count);

 x = strWords.length - 5;

 if (i >= x) {

 last[c] = true;

 reachedIndexForLastCase[c] = 0;

 for (k = i + 1; k < strWords.length; k++) {

 afterMainWordArray[c][reachedIndexForLastCase[c]] = strWords[k];

 reachedIndexForLastCase[c]++;

 }

 limitIndexForLastCase[c] = 5 - reachedIndexForLastCase[c];

47

 int startIndexForBeforeWords = i - 5;

 for (k = 0; k < 5; k++) {

 beforeMainWordArray[c][k] = strWords[startIndexForBeforeWords];

 startIndexForBeforeWords++;

 }

 checkWordInHashTable(c, beforeMainWordArray,

 WordCoOccurenceCountHash[c], AllWords[c]);

 }

 else if (i < 6) {

 for (k = 0; k < i; k++) {

 beforeMainWordArray[c][k] = strWords[k];

 }

 int startFromLastpreviousLine = previousLine.length - 1;

 while (k <= 4) {

 beforeMainWordArray[c][k] =

previousLine[startFromLastpreviousLine];

 startFromLastpreviousLine--;

 k++;

 }

 for (k = 0; k < 5; k++) {

 afterMainWordArray[c][k] = strWords[i + 1];

 i++;

 }

 checkWordInHashTable(c, beforeMainWordArray,

 WordCoOccurenceCountHash[c], AllWords[c]);

 checkWordInHashTable(c, afterMainWordArray,

 WordCoOccurenceCountHash[c], AllWords[c]);

 } else {

 l = i;

 for (k = 0; k < 5; k++) {

 beforeMainWordArray[c][k] = strWords[l - 5];

 l++;

 }

 for (k = 0; k < 5; k++) {

 afterMainWordArray[c][k] = strWords[i + 1];

 i++;

 }

 checkWordInHashTable(c, beforeMainWordArray,

 WordCoOccurenceCountHash[c], AllWords[c]);

 checkWordInHashTable(c, afterMainWordArray,

 WordCoOccurenceCountHash[c], AllWords[c]);

 }

 }

 previousLine = strWords;

 }

 } // for each words end

} // while end
count = 0;

 findBetaCoOccuredWord(WordCoOccurenceCountHash, WordFrequencyCountHash,

 MainWordCountFrequcyHash, BetaCoOccuredWordsForMainWord, AllWords,

 totalWordsNonRepeat);

 countFrequency(WordFrequencyCountHash, BetaCoOccuredWordsForMainWord);

 ReturnedPMIvalues = findPMIForHashTableWords(

 BetaCoOccuredWordsForMainWord, WordFrequencyCountHash,

 MainWordCountFrequcyHash, PmiValuesHashCoOccuredWords, AllWords,

 totalWordsRepeat);

 Double[][] semanticSimilarityMatrix = PmiSummationForWordSimilarity(

48

 ReturnedPMIvalues, BetaCoOccuredWordsForMainWord,

 WordFrequencyCountHash, MainWordCountFrequcyHash, AllWords,

 PWordsArray.length, RWordsArray.length, totalWordsRepeat);

 for (int a = 0; a < PWordsArray.length; a++) {

 for (int b = 0; b < RWordsArray.length; b++) {

 String StringSimilarityval = new DecimalFormat("##.###")

 .format(StringSimilarityMatrix[a][b]);

 }

 }

 for (int a = 0; a < PWordsArray.length; a++) {

 for (int b = 0; b < RWordsArray.length; b++) {

 String semanticSimilarityval = new DecimalFormat("##.###")

 .format(semanticSimilarityMatrix[a][b]);

 System.out.printf("SemanticSimilarity[%s][%s]=%s\n", PWordsArray[a],

 RWordsArray[b], semanticSimilarityval);

 }

 }

 integrateMatricesFinalSimilarity(StringSimilarityMatrix,

 semanticSimilarityMatrix, PWordsArray.length, RWordsArray.length, m,

 n, countSameWords, PWordsArray, RWordsArray);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

}

49

References

[1] E. Agirre, D. Cer, M. Diab, and A. G. Agirre, “Semeval-2012 task 6: A pilot on semantic
textual similarity,” First Joint Conference on Lexical and Computational Semantics (*SEM),

vol. 1, p. 385–393, June 2012.

[2] M. Mohler and R. Mihalcea, “Text-to-text semantic similarity for automatic short answer

gradings,” in 12th Conference of the European Chapter of the ACL, (Athens Greece,), p.

567–575, ACL, 2009.

[3] J. O‟Shea, Z. Bandar, K. Crockett, and D. McLean, “A comparative study of two short

text semantic similarity measures,” Springer-Verlag Berlin Heidelberg N.T. Nguyen (Eds.):

KES-AMSTA , LNAI 4953, p. 172–181, 2008.

[4] G. Erkan and D. Radev, “Graph-based lexical centrality as salience in text

summarization,” Journal of Artificial Intelligence Research 22, vol. 41, no. 5, p. 457–479,

2004.

[5] V. Gupta and G. S. Lehal, “A survey of text summarization extractive techniques,”

Journal of Emerging Technologies in Web Intelligence, vol. 2, August 2010.

[6] I. Donevska, “Measuring word similarity using natural text descriptions,” Mater‟s Theses,

Indiana University , Purdue University Fort Wayne, August 2011.

[7] C. Leacock and M. Chodorow, “Combining local context and wordnet sense similarity for

word sense identification. in wordnet, an electronic lexical database.,” 1998.

[8] M. Lesk, “Automatic sense disambiguation using machine readable dictionaries: How to

tell a pine cone from an ice cream cone,” in In Proceedings of the SIGDOC Conference.,

1986.

[9] Z. Wu and M. Palmer, “Verb semantics and lexical selection.,” in In Proceedings of the

Annual Meeting of the Association for Computational Linguistics., 1994.

[10] P. Resnik, “Using information content to evaluate semantic similarity,” in In

Proceedings of the 14th International Joint Conference on Artificial Intelligence., 1995.

[11] E. Park, D. Ra, and M. Jang, “Techniques for improving web retrieval effectiveness,”

Information Processing and Management, vol. 41, no. 5, p. 1207–1223, 2005.

[12] J. Jiang and D. Conrath, “Semantic similarity based on corpus statistics and lexical

taxonomy,” in In Proceedings of the International Conference on Research in Computational

Linguistics., 1997.

50

[13] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and knowledge-based

measures of text semantic similarity,” American Association for Artificial Intelligence, 2006.

[14] Y. Li, D. McLean, Z. A. Bandar, J. D. O‟Shea, and K. Crockett, “Sentence similarity

based on semantic nets and corpus statistics,” IEEE Transaction on Knowledge and Data

Engineering, vol. 18, no. 8, 2006.

[15] E. Terra and C. L. A. Clarke, “Frequency estimates for statistical word similarity

measures,” in Proceedings of HLT-NAACL 2003 Main Papers, pp. 165–172 Edmonton,

May-June 2003.

[16] C. Meadow, B. Boyce, and D. Kraft, Text Information Retrieval Systems(2nd Edition).

Academic Press, 2000.

[17] E. Ristad and P. N. Yianilos, “Learning string edit distance,” IEEE Transactions on

Pattern Analysis and Machinge Intelligence, vol. 20, May 1998.

[18] L. Allison and T. I. Dix, “A bit-string longest-common-subsequence algorithm,” in Inf.

Proc. Lett., vol. 23, p. 305–310, 1986.

[19] A.Islam and D.Inkpen, “Semantic text similarity using corpus-based word similarity and

string similarity,” ACM Trans. Knowl.Discov.Data, vol. 10, p. 25, Nov. 2008.

[20] T. K. Landauer, P. W. Foltz, and D. Lahamj, “Introduction to latent semantic analysis,”

in Discourse Processes, vol. 25, pp. 259–284, 1998.

[21] C. Burgess, K. Livesay, and K. Lundj, “Explorations in context space: Words,

sentences,” in Discourse Processes, vol. 25, pp. 211–257, 1998.

[22] P. Turney, “Mining the web for synonyms: Pmi-ir versus lsa on toefl.,” in In

Proceedings of the Twelfth European Conference on Machine Learning, ECML, 2001.

[23] A.Islam and D.Inkpen, “Second order co-occurrence pmi for determining the semantic

similarity of words,” in In Proceedings of the International Conference on Language

Resources and Evaluation. (Genoa, Italy), p. 1033–1038, 2006.

[24] K. Parsons, A.McCormac, M. Butavicius, S. Dennis, and L.Ferguson, “The use of a

context-based information retrievaltechnique,” Command, Control, Communications and

Intelligence Division Defence Science and Technology Organisation, july 2009.

[25] J. O‟Shea, Z. Bandar, K. Crockett, and D. McLean, “A semantic similarity approach to

paraphrase detection,” 2008. of the Twelfth European Conference on Machine Learning,

ECML, 2001.

	titles
	ContentsTables
	documentation.pdf

