
  

 

 

A Comparative Evaluation of Buffer Replacement Algorithms  

 LIRS-WSR and AD-LRU for Flash Memory Based Systems 

 

 Dissertation 

 

  
 Submitted To 

Central Department of Computer Science & Information Technology 

Tribhuvan University 

Kirtipur, Kathmandu 

Nepal 

 
 

In Partial Fulfillment of the Requirements for the Degree of Master of Science 

in Computer Science & Information Technology 

 

Submitted By 

Dabbal Singh Mahara 

March, 2014 

 

 

Supervisor 

Mr. Arjun Singh Saud 



  

 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information 

Technology 

 

         

 

Student’s Declaration 

 

I hereby declare that I am the only author of this work and that no sources other than the 

listed here have been used in this work. 

 

… … … … … … … 

Dabbal Singh Mahara 

Date:      25 Feb, 2014 

 

 



  

 

 Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information 

Technology 

 

 

 

 

 

I hereby recommend that the dissertation prepared under my supervision by Mr. Dabbal 

Singh Mahara entitled “A Comparative Evaluation of Buffer Replacement Algorithms   

LIRS-WSR and AD-LRU for Flash Memory Based Systems” be accepted as in fulfilling 

partial requirement for the completion of Masters Degree of Science in Computer Science & 

Information Technology.  

 

  

 

---------------------------------- 

Mr. Arjun Singh Saud      

 Lecturer, 

Central Department of Computer Science and Information Technology, 

Institute of Science and Technology,  

Kirtipur, Kathmandu, Nepal 

 

Date:       25 Feb,  2014 

 

 

Supervisor’s Recommendation 

 



  

 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information 

Technology 

 

LETTER OF APPROVAL 

We certify that we have read this dissertation work and in our opinion it is appreciable for the 

scope and quality as a dissertation in the partial fulfillment of the requirements of Masters 

Degree of Science in Computer Science & Information Technology. 

 

Evaluation Committee 

 

 

   

 

 

 

 

 

 

 

  

Asst. Prof. Nawaraj Paudel 

Head of Department 

Central Department of Computer Science 

& Information Technology 

Tribhuvan University 

Kirtipur 

 

 

Mr. Arjun Singh Saud 

Lecturer 

 Central Department of Computer Science 

and Information Technology  

(Supervisor) 

 

____________________ 

 

(External Examiner) 

 

 

(Internal Examiner) 

 

 

Date:     6  March,   2014  



  

i 
 

Acknowledgement 

I would like to express my gratitude to all the people who supported and accompanied me 

during the preparation of this dissertation “A Comparative Evaluation of Buffer 

Replacement Algorithms LIRS-WSR and AD-LRU for Flash Memory Based Systems”. 

This research work has been performed under Central Department of Computer Science and 

Information Technology (Tribhuvan University), Kirtipur. I am very grateful to my 

department for giving me an enthusiastic support.  

First, I would like to express my gratitude to my supervisor Mr. Arjun Singh Saud, 

who gave me an enthusiastic support from the beginning to the end of the preparation of this 

dissertation. He is the one who listened to all my problems I faced during this thesis and 

showed me the way to overcome them.  

Most importantly I would like to thank to respected Head of Department of Central 

Department of Computer Science and Information Technology, Asst. Prof. Nawaraj Paudel 

for his kind support, help and constructive suggestions. I am very much grateful and thankful 

to all the respected teachers Prof. Dr. Shashidharram Joshi, Prof. Sudarsan Karanjit, Prof. Dr. 

Subarna Sakya, Mr. Min Bahadur Khati, Mr. Bishnu Gautam, Mr. Jagdish Bhatta, Mr. 

Dheeraj Kedar Pandey, Mr. Sarbin Sayami, Mrs. Lalita Sthapit, Mr. Yog Raj Joshi and Mr. 

Bikash Balami of CDCSIT, TU, for providing me such a broad knowledge and inspirations.  

Special thanks to my family and members of educational organizations that I have been 

working, for their endless motivation, constant mental support and love which have been 

influential in whatever I have achieved so far. All my class fellows are worthy of my 

gratefulness for their direct or indirect support in completion of my dissertation. Finally, I 

would like to thank my friends Mr. Dipak Prasad Bhatt and Mr. Bhupendra Singh Saud for 

their kind co-operation during my work. 

I have done my best to complete this research work. Suggestions from the readers are always 

welcomed, which will improve this work. 

  



  

ii 
 

Abstract 

Flash memory has characteristics of asymmetric I/O latencies for read, write and erase 

operations and out-of-place update. Thus, buffering policy for flash based systems has to 

consider these properties to improve the overall performance. Existing buffer replacement 

algorithms such as LRU, LIRS, ARC etc do not deal with differing I/O latency of flash 

memory. Therefore, these algorithms have been revised to make them suitable for buffering 

policy for flash based systems. Among different flash aware buffer replacement algorithms 

LIRS-WSR and AD-LRU are two new buffer replacement policies that can be suitable for 

flash based systems. LIRS-WSR enhances LIRS by reordering the writes of not-cold-dirty 

pages from the buffer cache to flash storage to focus on the reduction of number of 

write/erase operations as well as preventing serious degradation of buffer hit ratio. AD-LRU 

also focuses on improving overall performance of flash based systems by reducing number of 

write /erase operations and by retaining high buffer hit ratio. We evaluate these two different 

approaches with same objectives of improving buffering policy for flash based systems by 

using trace driven simulation.  

When workload has high reference locality, AD-LRU has significantly superior performance 

than LIRS-WSR in terms of both hit rate and write count. AD-LRU has higher hit rate up to 

22% and minimizes write count up to 40% in comparison to LIRS-WSR. This is because of 

AD-LRU‟s good adaptive technique to handle changes in reference patterns. 

For uniformly distributed workloads, the difference in hit rates and write count of AD-LRU 

and LIRS-WSR is comparatively small. AD-LRU outperforms LIRS-WSR by increasing hit 

rate up to 5% and decreasing write count up to 3% in comparison to LIRS-WSR in its worst 

case. 

 

 

Keywords:  Flash memory, Buffer Replacement Algorithm, LIRS, LIRS-WSR, AD-LRU, 

Hit Rate, Write Count  

 

 

 

 



  

iii 
 

Table of Contents 

       

CHAPTER 1 

Background & Problem Formulation 

1.1. Background                            1-9 

1.1.1. Memory Hierarchy        1 

1.1.2.  Flash Memory                2-4 

1.1.3. Virtual Memory         5 

1.1.4. Memory Management                5-8 

1.1.4.1. Paging         5 

1.1.4.2. Paging Algorithms        6 

1.1.4.2.1. Fetch Algorithm       6 

1.1.4.2.2. Placement Algorithm      6 

1.1.4.2.3. Replacement Algorithm      7 

1.1.4.3. Replacement Policy in Flash Memory Based Systems   8 

1.1.5. Performance Metrics                8-9 

1.1.5.1. Page Fault Count       8 

1.1.5.2. Hit Rate/Miss Rate       8 

1.1.5.3. Write Count         9 

1.1.6. Program Behavior        9 

1.1.6.1. Locality of Reference        9 

1.2. Problem Formulation                            9-13 

1.2.1. LIRS-WSR         10 

1.2.2. AD-LRU         11 

1.2.3. Problem Statement         13 

1.2.4. Objectives                13 

1.3. Motivation           13 

1.4. Thesis Organization                                                                                        14 

 

 

    CHAPTER 2 

Literature Review & Methodology 



  

iv 
 

2.1 Literature Review               15-21 

2.1.1. Traditional Buffer Replacement Algorithms                                            15-19 

2.1.1.1. OPT or MIN Page Replacement Algorithm              15 

2.1.1.2. FIFO Page Replacement Algorithm     15 

2.1.1.3. LRU Page Replacement Algorithm     15 

2.1.1.4. NRU Page Replacement Algorithm     16 

2.1.1.5. LFU Page Replacement Algorithm     16 

2.1.1.6.  EELRU Page Replacement Algorithm    16 

2.1.1.7. LRFU Page Replacement Algorithm     17 

2.1.1.8. LRU-K Page Replacement Algorithm    17 

2.1.1.9. 2Q Page Replacement Algorithm     17 

2.1.1.10. LIRS Page Replacement Algorithm     18 

2.1.1.11. ARC Page Replacement       18 

2.1.1.12. Clock Based Page Replacement Algorithms    18 

2.1.2. Buffer Replacement Algorithms for Flash-Based Systems         19-20 

2.1.2.1. CFLRU        19 

2.1.2.2. CFDC         19 

2.1.2.3. LRU-WSR         20 

2.1.2.4. CCFLRU        20 

2.1.2.5. LIRS-WSR        21 

2.1.2.6. AD-LRU        21 

2.2. Research Methodology            21 

 

CHAPTER 3 

Program Development  

3.1. Development Methodology & Tools       22 

3.2.  LIRS-WSR                22-30 

3.2.1 Data Structure        24 

3.2.2 Stack Pruning        24 

3 .2.3 Algorithm               24-26 

3.2.4 Flowchart         27 

3.2.5 Tracing               28-30 

3.3. AD-LRU                30-35 



  

v 
 

3.3.1 Data Structure        31 

3.3.2 Algorithm               31-32 

3.3.3 Flowchart         33 

3.3.4 Tracing                34-35 

 

CHAPTER 4 

Test Results & Analysis 

4.1 Data Collection                   36 

4.2 Testing                37-39 

4.2.1 Test Result Workload 1        37 

4.2.2 Test Result Workload 2        38 

4.2.3 Test Result Workload 3        38 

4.2.4 Test Result Workload 4         39 

4.3 Analysis                  39-45 

4.3.1  Hit Rate Analysis                39-42 

4.3.2  Write Count Analysis                                                                                           42-45 

 

  

CHAPTER 5 

Conclusion & Future Work 

5.1 Conclusion          46 

5.2 Limitations and Future Work        47 

 

 

Appendices                  51-64 

List of Figures 

Fig. No.  Caption            Pages 

Fig 1.1  - Computer Memory Hierarchy     1 

Fig 1.2  - The Architecture of NAND Flash Memory System  3 

Fig 1.3  - Two Lists of LIRS Algorithm     10 

Fig 1.4  - Double LRU queues of the AD-LRU algorithm  12 

Fig 3.1  - General LIR HIR Transition Diagram    22 

References                                     48-49 

Bibliography           50

   

  

 



  

vi 
 

Fig 3.2  - Specific LIR vs. Resident HIR Transition Diagram  22 

Fig 3.3  - LIR & Non Resident HIR Transition Diagram  23 

Fig 3.4  - Structure of a node in LIRS-WSR Data Structure                  24 

Fig 3.5  -           Flowchart of LIRS –WSR Algorithm    27  

Fig3.6  - State at Virtual Time 1-9     28-30 

Fig.3.7  - Structure of node of ADLRU Data Structure              31 

Fig3.8  - Flowchart of AD-LRU Algorithm    33  

Fig3.9  - State at Virtual Time 1-9     34-35 

Fig4.1  - Graph of Hit Rate for Workload1    39 

Fig4.2  - Graph of Hit Rate for Workload2          40 

Fig4.3  - Graph of Hit Rate for Workload3    40 

Fig 4.4  -  Graph of Hit Rate for Workload4    41 

Fig 4.5  -  Graph of Write Count for Workload1    42 

Fig 4.6  -  Graph of Write Count for Workload2    43 

Fig 4.7  -  Graph of Write Count for Workload3    43 

Fig 4.8  -  Graph of Write Count for Workload4    44 

 

 

  



  

vii 
 

List of Tables 

Table No.  Caption              Pages 

Table 1.1  - Characteristics of flash memory     2 

Table 4.1  -  Simulated trace for Random access     36 

Table 4.2 -  Simulated trace for Read-most access    36 

Table 4.3 -  Simulated trace for Write-most access    37 

Table 4.4 -  Simulated Zipf trace        37 

Table 4.5 - Analysis of Workload 1      37 

Table 4.6 - Analysis of Workload 2      38 

Table 4.7 - Analysis of Workload 3      38 

Table 4.8 - Analysis of Workload 4      39

   



  

viii 
 

List of Abbreviations 

2Q  - Two Queue 

AD-LRU - Adaptive Double Least Recently Used 

ARC  - Adaptive Replacement Cache 

CAR  - Clock with Adaptive Replacement 

CFLRU - Clean First Least Recently Used 

CCFLRU - Cold Clean First Least Recently Used 

CFDC  - Clean First Dirty Clustered 

CLOCK Pro - Clock with Pro 

CPU  - Central Processing Unit 

DBMS  - Database Management System 

EELRU - Early Eviction Least Recently Used 

EEPROM - Electrically Erasable Programmable Read Only Memory 

FC  - First Clean 

FIFO  - First In First Out  

FTL  - Flash Translation Layer 

HIR  - High Inter-reference Recency 

HIRS  - High Inter-reference Recency Set 

IRR  - Inter- Reference Recency 

KB  - Kilo Byte 

LFU  - Least Frequently Used 

LIR  - Low Inter-reference Recency 

LIRS  - Low Inter-reference Recency Set 

LIRS-WSR - Low Inter-reference Recency Set Write Sequence Reordering 

LRFU  - Least Recently Frequently Used 

LRU  - Least Recently Used 

LRU-WSR - Least Recently Used Write Sequence Reordering 

mA  - mili Ampere 

MMU  - Main Memory Unit 

MRU  - Most Recently Used 

NRU  - Not Recently Used 

OLTP  - Online Transaction Processing 

OPT or MIN - OPTimum or MINimum 



  

ix 
 

OS  - Operating System 

PC  - Personal Computer 

PDA  - Personal Digital Assistant 

RAM  - Random Access Memory 

ROM  - Read Only Memory 

SRAM  - Static Random Access Memory 

WSR  - Write Sequence reordering 

 

 

 

 

 

 

 

 

 



  

1 
 

Chapter 1 

BACKGROUND & PROBLEM FORMULATION 

1.1 Background 

1.1.1 Memory Hierarchy 

The evolution of computer from one generation to next generation shows variation not only 

in processing capabilities, but also in storage capabilities. The varieties of memory devices 

which vary on response time, cost, reliability, memory capacity etc. are available in today's 

market. Memory is an important and a very limited resource in a computer.  Computer 

system has to achieve higher performance with in the limited storage capacity. The memory 

hierarchy system consists of all storage devices employed in a computer system from the 

slow high-capacity auxiliary memory to a relatively faster main memory, to an even smaller 

and faster cache memory. 

 

 

 

 

 

 

  

Figure1.1 shows the hierarchy of memories used in a computer system having different speed 

and memory capacity. The arrangement of memory devices in a computer system is such that 

faster memory is at top level and slower memory is at the bottom. Overall performance of 

computer system depends upon management and organization of such memories. All the 

memory management policies are automatically handled by OS and devices are arranged 

according as the principles followed by it. Different types of memories available up to now 

can be categorized into two major groups. They are primary memory and secondary memory 

which can be taken as real memory. Besides real memory OS uses virtual memory to speed 

up the overall performance of the computer system. 

Fig 1.1 Computer Memory Hierarchy 

Cache 

Register 

Physical Memory 

Flash Memory 

Virtual Memory 



  

2 
 

1.1.2 Flash Memory  

Flash memory is an electronic non-volatile computer storage medium that can be electrically 

erased and reprogrammed. Flash memory was developed by Intel and Toshiba in 1980s. 

Flash memory has been gaining popularity in mobile embedded systems as non-volatile 

storage due to its characteristics such as small and lightweight form factor, solid-state 

reliability, and low power consumption. The emergence of single flash memory chip with 

several gigabytes capacity makes a strong tendency to replace magnetic disk with flash 

memory for the secondary storage of mobile computing devices such as tablet PCs, PDAs, 

and smart phones [12]. 

Device 
Current(mA) Access time(4kB) 

 Idle  Active Read Write Erase 

NOR 0.03 32 20 µs 28ms 1.2 sec 

NAND 0.01 10 25µs 250 µs 2 ms  

 

Table 1.1 Characteristics of flash memory [13] 

The term “flash” is said to have originated from the observation that it can write a sector of 

data usually 512 bytes, also called as page, or erase blocks of multiple pages usually 16 or 32 

sectors simultaneously in one action, in contrast to the byte-by-byte EEPROM. This form of 

solid state technology differs from mechanical storage like standard hard drives in which 

information is stored using magnetism. Depending on the logic gate type used, the flash 

memory can be divided into two types: NOR and NAND. NOR flash, developed by Intel, is a 

random-access device, like RAM, that is directly addressable by the processor, and so it is 

good for executing program code. The most common type of flash memory in use today is 

NAND. This name is taken from the electronic logical gate NAND operator because flash 

memory uses floating gate MOSFET transistors that are arranged in a similar way. NAND 

flash is not directly addressable and is controlled using an indirect disk I/O-like interface 

through a bus to an internal command and address register. NAND flash requires fewer gates 

than NOR to store the same number of bits, and so it is smaller and denser and thus is 

appropriate for large data storage. 

Flash memory uses floating gate transistors. These are arranged in a grid. Rather than a 

typical transistor that has one gate, flash NAND memory has two gates. Having two gates 

makes it possible to 'store' a voltage between the two gates so that it doesn't drain away, this 



  

3 
 

is very important and makes any information stored non-volatile. In fact, this 'trapped' voltage 

which represents information on the chip can stay in a locked state for many years or until we 

erase the memory. Information stored is erased by draining the voltage away from between 

the two gates by using the special floating gate feature that is unique to flash memory 

technology. Advantage of the flash memory comes from the fact that it is an electronic 

device, unlike the hard disk which is electromechanical and requires disk head and arm 

movement. This advantage frees the flash memory from the time-consuming seek and 

rotational delay. Even in high-end applications, flash memory can be arrayed together to offer 

capacity comparable to that of hard drives at higher speeds [22]. 

Usually one block consists of 32 sectors each with 512 bytes, and thus its size is usually 16 

Kbytes. Such flash memory is called small block NAND flash. Flash memory vendors have 

started producing large block NAND flash with blocks of 64 sectors and sectors of 

2,212bytes (thus, the size of a block is 128Kbytes) in order to allow faster write and erase 

operations for high-end applications. There are only three basic operations in a NAND flash: 

read a page, write a page, and erase a block. A read or write command specifies chip#, 

block#, sector#, where chip# is the flash chip number, block# the block number in the device, 

and sector# the sector number in the block [22]. 

 

 

                                        

Fig.1.2 The Architecture of NAND Flash Memory System [8] 

 

Figure 1.2 shows the general organization of a NAND flash memory system and the position 

of the FTL within it. A NAND flash memory system consists of one or more flash memory 



  

4 
 

chips, a controller that executes the FTL code in ROM, an SRAM (static RAM) that 

maintains the address mapping information. The host system views the flash memory as a 

hard disk-like device, and thus issues read or write commands along with logical sector 

addresses and data.  In order to make the flash memory appear to applications as a disk drive, 

the flash translation layer (FTL) has been developed. The FTL translates the commands into 

low-level operations, namely read, write and erase, using physical sector addresses. To do the 

address mapping, the FTL looks up the address mapping information in the SRAM. 

The flash memory has characteristics that profoundly affect its performance in managing 

data. Flash memory usually consists of many blocks and each block contains a fixed set of 

pages. Read/write operations are performed on page granularity, whereas erase operations use 

block granularity. The characteristics of flash memory are significantly different from 

magnetic disks. First, flash memory has no latency associated with the mechanical head 

movement to locate the proper position to read or write data. Second, flash memory has 

asymmetric read and write operation characteristic in terms of performance and energy 

consumption. Table 1.1 compares the access time and the energy consumption in flash 

memory when 4KB data is read, written, or erased. Third, flash memory does not support in-

place update; the write to the same page cannot be done before the page is erased. Thus, as 

the number of write operations increases so does the number of erase operations. Erase 

operations are slow and power-wasting that usually decreases system performance. Finally, 

blocks of flash memory are worn out after the specified number of write/erase operations. 

Therefore, erase operations should be avoided for better performance and longer flash 

memory lifetimes. To avoid wearing specific segments out which would affect the usefulness 

of the whole flash memory, data should be written evenly to all segments. This is called even 

wearing or wear-leveling. Buffer replacement algorithms used in an OS or a DBMS in 

general assume that the speed of the read and write operations are about the same, which is 

true in the case of hard disks. The different characteristics of flash memory make it infeasible 

for system developed for hard disks as secondary storage to readily be used for the flash 

memory, and therefore force a reexamination of many key parts of the system architecture. 

Traditional performance metric such as „buffer hit ratio‟ is not sufficient as performance 

indicator for flash based system. One naïve guide for this scheme may be stated as follows: 

“Try to reduce the number of writes/erases at the expense of the read operations.” A new 

performance metric such as write count is also needed, in addition to the „buffer hit ratio‟ 

[11]. 



  

5 
 

1.3 Virtual Memory 

When the system demands more memory to load a program, it may not find enough space in 

the memory. One of the techniques used to replace some part of the program to disk to free 

space for new program to be loaded. A space separated in the hard disk which holds the 

swapped out part. The identified least used pages are swapped out to these places of Hard-

disk. This part of Hard-disk is known as Virtual memory because it behaves like main 

memory but actually it is secondary memory.  

Virtual memory acts as a buffer between main memory and secondary memory. Data is 

fetched in advance from the secondary memory into the main memory so that data is 

available in the main memory when required. The benefit is that the large access delays in 

reading data from secondary storage are avoided. Fotheringham 1961[2], devised a concept 

of virtual memory which is associated with ability to address a memory space much larger 

than the available real memory. Virtual memory is a service provided by an OS that allows 

execution of programs larger than available physical memory. Virtual memory plays vital 

role to overcome limited primary memory.  Handling virtual memory is one of the important 

issues of today's computer system. 

1.1.4 Memory Management 

Memory management and organization has been one of the most important factors that 

influence performance of OS. It has been studied from many years ago. Actually memory 

management is done by memory manager or memory management unit, which is handled by 

OS to manage memory hierarchy. The main job of memory management unit is to keep track 

of processes currently being executed. It keeps track which part of memory is currently in use 

and which is not. It also allocates memory for a process when required and deallocates 

memory when work is temporarily finished. It manages memory for a process to load and 

also manages extra memory that is virtual memory if it is too small to hold for the required 

process. 

1.1.4.1 Paging 

Paging is one of the techniques that organize virtual storage. The address referenced by 

running process is called virtual or logical address whereas the range of address it can 

reference is called virtual or logical address space. The address available in primary storage is 

called real or physical address whereas the available range of address is called real or 

physical address space. Even though a process references only virtual address, the process 



  

6 
 

must run on available real storage. So for every reference Memory Management Unit (MMU) 

maps logical address into corresponding available physical address for that page table is 

maintained. The operating system divides virtual address space into units called pages. Main 

memory is also divided to fixed size units called page frames. Generally, size of frame is 

equals to size of page. If a requested page is unavailable in primary storage page fault occurs. 

Each used page can be either in secondary memory or in a page frame in main memory [2]. 

A paging algorithm is needed to manage paging. A paging algorithm consists of three 

algorithms: placement algorithm, fetch algorithm and replacement algorithm.  The placement 

algorithm is used to decide on which free page frame a page is placed. The fetch algorithm 

decides on which page or pages are to be put in main memory. Finally, the page replacement 

algorithm decides on which page is swapped out [9].  

During page fault MMU notices that the page is unmapped and causes the CPU to trap. Trap 

is generated by OS to stop CPU until required page is not available. Then OS picks little used 

page frame as chosen by page replacement policy. If it has dirty bit then the contents are 

written otherwise if it has clean bit then nothing is written back to secondary storage. Thus 

the required page is placed into freed frame. Then after successful mapping, trap is restarted 

and the process is continued [1]. 

1.1.4.2 Paging Algorithm 

1.1.4.2.1 Fetch Algorithm 

Fetch algorithm initially identifies the requested page block. Paging algorithm can be 

categorized into two major groups. They are demand paging and anticipatory paging. 

Demand paging algorithm waits for a page requested by a running process. But anticipatory 

or pre-paging algorithm guesses which pages are needed before they are requested. Generally 

paging mechanism will not have prior knowledge of the page reference stream or the known 

order of pages requested in. This causes many systems to employ a demand fetch approach, 

where a page fault notification is the first indication that a page must be moved into the 

physical memory. Hence demand paging algorithm is much more effective in real systems 

than pre-paging algorithm. Demand fetching algorithm always fetches a page that has been 

requested during a page fault [9].  

1.1.4.2.2 Placement Algorithm 

Placement algorithm decides where to put the fetched page in available free storage. Initially, 

if placement algorithm allows fully associative then OS can place the requested page any 



  

7 
 

where using any algorithm like First Fit. After a cache is fulfilled then placement policy is 

static that means a requested page is placed in place of removed victim page. The page to be 

replaced is called victim page. A victim page is always replaced by required page which is 

chosen by replacement policy used in that particular system. In case of partially associative 

memory mapping, placement algorithm is restricted only for certain memory location. 

1.1.4.2.3 Replacement Algorithm 

Because the secondary storage, where the remaining pages are stored, has a low speed as 

compared to the speed of the main memory; the operating system uses different algorithms to 

replace pages in the primary storage.  Replacement algorithm identifies the victim page and 

replaces it by fetched page because of lack of primary storage. After a primary storage is 

fulfilled one of the pages must be replaced for execution of the requested page. The replaced 

page is called victim block. There are many algorithms devised for page replacement. 

Optimal page replacement algorithm suggests replacing the page that will not be used for 

longest period of time in future. OS in the least recently used (LRU) algorithm tries to replace 

the blocks that have low probability of being referenced again and, it tries to retain those 

blocks which have high probability of being referenced in near future. 

Locality of reference is one of the properties of page reference pattern, which is used by 

many algorithms to predict about the future references. We say a workload (sequence of page 

references) consists of locality of reference if many memory references are accesses to 

neighboring page of the page referenced just before it. A good approximation to the optimal 

algorithm is based on the observation that pages that have been used heavily in the recent past 

would probably be used again in near future. 

Static page replacement algorithm shares frames equally among all processes such as FIFO, 

LRU, MRU, random, optimal etc. But dynamic page replacement algorithm shares frames 

according to need rather than equality among all processes such as working set page 

replacement algorithm.   

Also page replacement algorithm can maintain global and local policy. Global policy selects 

a replacement from the set of all available frames. Local policy selects a replacement from 

the processes own set of frames. Local page replacement assumes some form of memory 

partitioning that determines how many pages are to be assigned to a given process. 

 



  

8 
 

1.1.4.3 Replacement Policy in Flash Memory Based Systems 

Flash memory has characteristics of out-of-place update and asymmetric I/O latencies for 

read write and erase operations.  Write/erase operations are relatively slow compared to read 

operations. Typically, write operations are about ten times slower than read operations, and 

erase operations are about ten times slower than write operations [13]. A buffer replacement 

algorithm for a disk tries to obtain the optimal I/O sequence from the original I/O sequence 

by reducing the number of accesses for the overall performance. Flash caching is needed for 

reducing flash I/O latencies. The traditional magnetic-disk-based buffering algorithms focus 

on hit-ratio improvement alone, but not on write costs caused by the replacement process. So, 

their straight adoption would result in poor buffering performance and would demote the 

development of flash-based systems. The replacement policy should minimize the number of 

write and erase operations on flash memory and at the same time prevent the degradation of 

the hit ratio. 

1.1.5 Performance Metrics 

Offline performance of buffer replacement algorithm is measured in terms of page fault 

count, hit rate/ hit ratio, miss rate/miss ratio and write count. When an accessed block of 

memory is currently mapped to the physical memory then hit occurs. If it doesn't map them 

miss occurs. Higher hit rate of the algorithm exhibits higher performance. In case of flash 

based system, higher hit rate and lesser number of write count is measure for better 

algorithm. 

1.1.5.1  Page Fault Counts 

An efficient page replacement algorithm always produces less number of page faults. It can 

be computed by counting the occurrences of number of page faults between some intervals of 

references. 

1.1.5.2 Hit/Miss Rate   

Hit rate can be calculated by using the formula: hr = 1 – mr, where hr is the hit rate and mr is 

miss rate. Hit rate is the percentage calculation of hit ratio. Hit ratio is calculated by 

subtracting miss ratio from 1.  

Miss rate is calculated by using the formula: 

mr =  100 x ( (#pf - #distinct) / (#refs – #distinct) ) where #pf is number of page faults, 

#distinct is the number of distinct pages referenced and #refs is the total number of 



  

9 
 

referenced pages [10]. Miss ratio is calculated by dividing total number of page faults by total 

number of references.  

1.1.5.3 Write Counts 

Write count is number of pages propagated to flash memory which can be calculated by 

counting the number of physical page writes to flash memory and at the end of each test the 

dirty pages in the buffer are flushed to the flash memory to get exact write counts. 

 

1.1.6 Program Behavior 

There are several factors that influence performance of page replacement algorithm. The 

performance of page replacement algorithm relies on pattern of pages that are referenced. 

Behavior of program depends upon the access pattern it references memory which is further 

depends upon working set and locality of reference. 

1.1.6.1 Locality of Reference 

During the course of execution of program memory references tend to cluster forming certain 

locality. Locality varies on the basis of time and space. Temporal locality is based on time, it 

assumes that memory location referenced just now is likely to be reference again in near 

future. Looping, subroutines, stacks, variable used for counting & totaling etc supports this 

assumption. Spatial locality is based on space, is assumes that once a memory is referenced 

there is high chance of nearby memory location to be referenced again. Array traversal, 

sequential code execution, related variable declaration nearby in source code supports this 

assumption. Hints of locality are followed in any type memory reference sequence. But some 

follow strongly and some follow weakly. Memory locations that are referenced repeatedly in 

a same order can be viewed as cyclic pattern. Loop generates cyclic pattern. Access of 

memory location at particular place then repeated after some duration, such memory 

reference pattern can be viewed as correlated pattern. Sequential Scan also generates 

correlated pattern. When particular memory block has a stationary reference probability and 

all other blocks are accessed independently with the associated probabilities, such memory 

reference pattern can be viewed as probabilistic pattern [10]. 

1.2 Problem Formulation 

The traditional magnetic-disk-based buffering algorithms LRU [1], Clock [5] LIRS [19], 

ARC [15] etc focus on hit-ratio improvement alone, but not on write costs caused by the 

replacement process. So, their straight adoption would result in poor buffering performance 



  

10 
 

and would demote the development of flash-based systems. The replacement policy should 

minimize the number of write and erase operations on flash memory and at the same time 

prevent the degradation of the hit ratio. Recently, CFLRU [20], LIRS-WSR [8] and AD-LRU 

[16] were proposed as new buffering algorithms for flash-based systems. These new flash 

based buffer replacement policies consider not only buffer hit ratios but also replacement 

costs incurring when a dirty page has to be propagated to flash memory to make room for a 

requested page currently not in the buffer. These algorithms favor to first evict clean pages 

from the buffer so that the number of writes incurring for replacements can be reduced. 

1.2.1 LIRS-WSR (Low Inter-reference Recency Set – Write Sequence Reordering) 

LIRS-WSR algorithm [8] is designed for a buffer cache of the flash memory based storage 

system by enhancing LIRS algorithm with the application of WSR technique. It tries to 

minimize the write requests for generating optimal I/O sequence from the given I/O sequence 

to reduce the write cost and prevent the loss of hit ratio. The objective of LIRS-WSR is to 

reduce the number of flushes of dirty pages from the buffer into flash memory when page 

replacement occurs. To achieve this objective, it uses the strategy: delaying eviction of the 

page which is dirty and has high access frequency as possible.  

The LIRS [19] algorithm uses history information of data accesses in the form of two 

metrics:  the Inter-Reference Recency (IRR) and the Recency. The IRR of a data block refers 

to the number of other distinct blocks accessed between the last two consecutive accesses of 

the data block in question, while recency refers to the number of other distinct blocks 

accessed between the last reference to the current time.  

 

 

 

Fig.1.3 Two Lists of the LIRS algorithm [19] 



  

11 
 

Fig 1.3 shows two data structures LIRS Stack S and HIR queue Q used in LIRS algorithm. It 

uses two sets of pages based on IRR. Set of pages with low IRR value is taken as hot block 

and called low inter-reference recency set (LIRS). Set of pages with high IRR value is taken 

as cold block and called high inter-reference recency set (HIRS). Blocks that can be most 

probably used in future are taken as hot blocks whereas blocks that may not be used in near 

future are taken as cold blocks. Hence HIR blocks are always replaced and LIR blocks are 

never replaced. LIRS always selects HIR page with the largest recency as victim for 

replacement. LIRS stack contains all the LIR pages and some HIR resident or non-resident 

pages. HIR queue Q contains all the resident HIR pages only some of which may not be in 

LIRS stack. Non-resident HIR pages are those HIR pages which have been evicted from HIR 

queue but they are still in LIRS stack as metadata.  WSR policy is a second chance policy in 

which, a page at the bottom of stack is checked to find whether it is cold or not. if it is found 

not-cold and dirty, then  it‟s cold flag is set and moved to top of LIRS stack, next page is 

checked.  Otherwise, the page is moved to the head of HIR queue, switching its status to HIR 

resident page.   

LIRS-WSR uses a Stack S and HIR Q for the same purpose as in LIRS. Stack S contains all 

the pages either LIR, resident HIR or non-resident HIR pages. Q holds all the resident pages 

at some point of time. The operations on these two data structures are same as that of LIRS. 

Every page has additional status either cold or not-cold. Initially all pages are cold, this cold 

flag is cleared if the pages are referenced again when they are in stack S or queue Q.  If a 

page is introduced to the buffer for write request for the first time, it becomes a dirty page 

and enters the top of the stack S as an LIR page.  Every time when Stack bottom is moved to 

HIR Q, WSR policy is applied. That is, if bottom LIR page is dirty and not cold, then its cold 

flag is set and moved to the head of Stack, otherwise it is moved to the head of HIR Q. All 

other operations like pruning, switching between LIR and HIR pages are same as that of 

LIRS.  

1.2.2 AD-LRU (Adaptive Double LRU)  

AD-LRU algorithm [16] is buffer replacement algorithm for flash-based systems which 

focuses to reduce the write costs of the buffer replacement algorithm while keeping a high hit 

ratio. It tries to integrate the properties:  recency, frequency, and cleanness of pages into the 

buffer replacement policy. AD-LRU has two LRU queues: Cold LRU queue and Hot LRU 

queue, to capture the concept of recency and frequency of the page references, among which 

Cold LRU queue stores the pages referenced only once and Hot LRU queue maintains the 



  

12 
 

pages that are referenced at least twice. The sizes of these two LRU queues are dynamically 

adjusted according to changes in reference patterns. When a page is first referenced, it is put 

in the head of cold LRU queue. The pages move from cold LRU queue to head of hot LRU 

queue when it is referenced again and when a page in hot LRU queue is selected as victim, it 

is demoted to head of cold LRU queue. During the eviction procedure, least recently used 

clean page from cold LRU queue is selected as a victim. There is a specific pointer FC (First 

Clean) to point least recently used clean page in each LRU queue. If clean pages do not exist 

in the cold LRU queue, second chance policy is applied. For this purpose, each page in 

double LRU queues is marked by a reference bit which is always set to 1, when the page is 

referenced. When a new page is referenced and buffer is full, the page pointed by FC pointer 

of cold LRU queue (Cold_FC) is evicted, if Cold_FC is not null.  Otherwise dirty page at the 

tail of this queue is evicted if its reference bit is not set. Otherwise, the reference bit is cleared 

to 0 and moved to head of the same queue, process continues to find next dirty page with 

reference bit 0. The second-chance policy ensures that dirty pages in the cold LRU queue will 

not be kept in the buffer for an overly long period. 

There is a parameter MIN_LC to set lowest limit of size of cold LRU queue. This limits size 

of cold LRU queue to prevent from frequent replacement of recent pages. This happens for 

too small size of cold LRU queue because pages are always inserted and removed from cold 

LRU queue. To prevent such frequent replacement of recent pages, the policy applied is:  if 

the size of cold LRU queue reaches MIN_LC, victim will be selected from hot LRU queue 

rather than cold LRU queue. In this case victim page is selected in same way as in cold LRU 

queue but the victim page is moved to head of cold LRU queue.  

 

 

Fig.1.4  Double LRU queues of the AD-LRU algorithm [16] 



  

13 
 

1.2.3  Problem Statement 

The replacement algorithm with flash memory should consider not only the hit rate but also 

the replacement cost caused by selecting dirty victim pages. The evaluation of the buffer 

replacement algorithms for flash-based systems in terms of hit rate and write counts is 

required to compare their performance. Comparison among several buffer replacement 

algorithms have been found in different research papers, but comparison between LIRS-WSR 

and AD-LRU has not been done yet. This dissertation work will mainly focus on 

comparative evaluation of these two algorithms: LIRS-WSR and AD-LRU in terms of 

hit rate and write counts.  

1.2.4 Objective 

The main objective of this dissertation work is: 

 To perform comparative study of LIRS-WSR and AD-LRU buffer replacement 

algorithms for flash based systems in terms of hit rate and write counts for different 

workloads.  

1.3 Motivation 

Memory management is not only the burden of today's computing devices. It has been 

researched for decades. Whatever variety of storage devices found in today's market is the 

great achievement of computer science. But still computer memory is the limited source 

which directly hampers the performance of computing system. Performance gain can be 

achieved by increasing the capacity of primary storage. Expectation of customer is to 

decrease cost price with sufficient working memory. Hence to fulfill this demand for 

manufacturing such device fewer materials are used and size of memory is being decreased. 

But rather than this technical view, it is not possible to gain performance without managing 

memory logically for its usability. Varieties of techniques had been tried for this 

achievement. Among such techniques paging is the successful one. Page replacement 

algorithm is the main part of paging technique because deciding the victim page is a very 

tough job. 

The emergence of single flash memory chip with several gigabytes capacity makes a strong 

tendency to replace magnetic disk with flash memory for the secondary storage of mobile 

computing devices. Most operating systems are customized for disk based storage systems 

and their replacement policies only concern the number of cache hits. However, the operating 

systems that consider flash memory as secondary storage should consider different read and 



  

14 
 

write cost of flash memory when they replace pages to reclaim free space. There are different 

buffer replacement algorithms proposed for flash based storage systems. Some of them 

consider recency factor only, some consider cleanliness, some both of these factors and some 

consider recency, cleanliness and frequency of page references as well. There are different  

papers that have compared the different algorithms for flash based buffer replacement. But, 

the comparison of LIRS-WSR and ADLRU algorithms has not been done yet. So, this 

dissertation work is trying to compare the performance metrics of these two algorithms for 

flash based storage context. 

 1.4 Thesis Organization 

Background part of this dissertation work focuses on page replacement algorithm and the 

related basic terms which are already mentioned above along with an introduction to LIRS-

WSR and AD-LRU. Some more chapters are remaining which clarifies the topics LIRS-WSR 

and AD-LRU fulfilling the objectives of this dissertation work. Chapter 2 consists of 

literature review which briefly reviews the related topics. Literature review includes summary 

of several traditional page replacement algorithms like Optimal, LRU, MRU, LRFU, 2Q etc 

and some flash based page replacement algorithms such as CFLRU, CCF-LRU, CFDC, 

LRU-WSR etc. This chapter also contains the research methodology part which shows the 

flow of our research. Chapter 3 consists of program development steps of our simulation. It 

includes detail design of the program. Also it includes details about the data structures and 

programming language used to develop simulator. Chapter 4 consists of data collection and 

analysis part which includes details about memory references that shows trace driven input, 

output results with several analyzing graphs which are tested for different workloads. Chapter 

5 consists of conclusion of this whole dissertation work and the future work which shows 

guidelines for further research. 

 

 

 

 

 

 

 



  

15 
 

Chapter 2 

LITERATURE REVIEW & METHODOLOGY 

2.1  Literature Review 

2.1.1  Traditional Buffer Replacement Algorithms 

2.1.1.1 OPT or MIN Page Replacement Algorithm 

Various memory management techniques have been used from the beginning for the 

improvement of performance. Belady [1] in 1966 developed optimal page replacement 

algorithm called OPT or MIN. His algorithm depends upon principle of optimality which 

states "To obtain optimal performance the page to replace is the one that will not be used 

again for the furthest time into the future." His optimal algorithm is not applicable for real 

implementation because our OS doesn't know which pages will be used before execution. 

Hence it can be only simulated due to lack of future knowledge. It is used as a benchmark for 

measuring effectiveness of other page replacement algorithms. OPT Replacement algorithm 

replaces page that will not be used for the longest period of time by computing maximum 

forward distance. 

2.1.1.2 FIFO Page Replacement Algorithm 

Fist-In-First-Out (FIFO) page replacement algorithm [1] replaces oldest page during page 

fault. Conceptually FIFO is a queue with limited size. Initially queue is filled by inserting 

page reference from the tail. When the queue is full new reference is inserted from tail and 

old reference is evicted from the head. FIFO is simple but suffers from Belady's Anomaly, a 

strange situation in which page fault increased while increasing number of page frame. That 

is, with increase in physical memory FIFO can decrease page fault performance seemingly at 

random. Like random page replacement algorithm, FIFO still does not take advantage of 

locality trends. But it can be modified very easily. 

2.1.1.3 LRU Page Replacement Algorithm 

This algorithm considers that a page that is recently used will probably be used again very 

soon, and a page that has not been used for a long time, will probably remain unused. This 

algorithm is purely based on recency of page references. Recency is evaluated by maintaining 

LRU stack that is a sorted list on the basis of virtual time, which is the only factor for 

replacement. When page fault occurs, the page that has been unused for the longest time is 

evicted. Thus LRU is simple but is not easy to implement without hardware support. It can 



  

16 
 

adapt faster according as program behavior. LRU like algorithm doesn't suffer from Belady's 

Anomaly as FIFO. It gives good approximation of optimal algorithm. Although LRU is 

theoretically realizable, it is not cheap. To fully implement LRU it is necessary to maintain a 

linked list of all pages in memory, with the most recently used page at head and least recently 

used page at the tail. The difficulty is that the list must be updated on every memory 

reference. Finding a page in the list, deleting it and then moving it to the head is a very time 

consuming operation. 

2.1.1.4 NRU Page Replacement Algorithm 

Pages are categorized into four classes in not recently used (NRU) algorithm. Class 0 

contains pages that are neither referenced nor modified. Class 1 contains pages that are 

modified but not referenced. Class 2 contains pages that are referenced but not modified and 

Class 3 contains pages that are modified as well as referenced. During page fault NRU evicts 

any page from the lowest class [2]. 

2.1.1.5  LFU Page Replacement Algorithm 

Least Frequently Used (LFU) [3] selects a victim page that has not been used often in the 

past. Instead of using a single recency factor as LRU, LFU defines additional information of 

frequency of use associated with each page. This frequency is calculated throughout the 

reference stream by maintaining counting information. Frequency count leads to serious 

problem after a long duration of reference stream. Because when the locality changes, 

reaction to such certain change will be extremely slow. Assuming that a program either 

changes its set of active pages, or terminates and is replaced by a completely different 

program, the frequency count will cause pages in the new locality to be immediately replaced 

since their frequency is much less than the pages associated with the previous program. Since 

the context has changed, the pages swapped out will most likely be needed again soon which 

leads to thrashing. One way to remedy this is to use a popular variant of LFU, which uses 

frequency counts of a page since it was last loaded rather than since the beginning of the page 

reference stream. Each time a page is loaded, its frequency counter is reset rather than being 

allowed to increase indefinitely throughout the execution of the program. LFU still tends to 

respond slowly to change in locality.  

2.1.1.6 EELRU Page Replacement Algorithm 

Some algorithms use recency as history information like LRU and Most Recently Used 

(MRU). LRU is suitable for good locality of reference whereas MRU is somewhat suitable 



  

17 
 

for weak locality of workloads. These two algorithms can be tuned to form adaptive 

algorithm called Early Eviction LRU (EELRU) [24], which was proposed as an attempt to 

mix LRU and MRU, based only on the positions on the LRU queue that concentrate most of 

the memory references. This queue is only a representation of the main memory using the 

LRU model, ordered by the recency of each page. EELRU detects potential sequential access 

patterns analyzing the reuse of pages. One important feature of this algorithm is the detection 

of non-numerically adjacent sequential memory access patterns. Two tunable parameters 

used are early eviction point and late eviction point. LRU queue concentrate most of the 

memory references when it reaches late eviction point. 

2.1.1.7 LRFU Page Replacement Algorithm 

 Least Frequently Used (LFU) algorithm uses frequency factor for page replacement. LRU 

and LFU are tuned to form adaptive algorithm called Least Recently Frequently Used 

(LRFU) [3] that considers both recency and frequency factors. The performance of the LRFU 

algorithm largely relies on a parameter called, , which determines the relative weight of 

LRU or LFU and has to be adjusted according to the system configuration, even according to 

different workloads [6]. 

2.1.1.8 LRU-K Page Replacement Algorithm 

LRU - K [4] evicts the page that is the one whose backward K-distance is the maximum of all 

pages in buffer. Backward K-distance bt(p,K) can be defined as the distance backward to the 

K
th

  most recent reference to page p where reference string known up to time t (r1, r2, …,rt). 

The value of parameter K can be taken as 1, 2 or 3. If K=1, it works as simple LRU 

algorithm. Highly increasing value of K the overall performance of algorithm reduces. LRU-

K can discriminate better between frequently referenced and infrequently referenced pages. 

Unlike the approach of manually tuning the assignment of page pools to multiple buffer 

pools, LRU-K does not depend on any external hints. Unlike LFU and its variants, this 

algorithm copes well with temporally clustered patterns.  

2.1.1.9 2Q Page Replacement Algorithm 

2Q [21] algorithm quickly removes sequentially and cyclically referenced block with after a 

long interval. The algorithm uses special buffer queue A1in of size Kin, ghost buffer queue 

A1out of size Kout and the main buffer Am. Special buffer contains all missed that is first 

time referenced block. Ghost buffer contains replaced blocks from special buffer. Frequently 



  

18 
 

accessed block are available in main buffer. Hence victim blocks are always from special 

buffer and main buffer.  

2.1.1.10  LIRS Page Replacement Algorithm 

Another important algorithm is LIRS which is already described in section 1.2. Its objective 

is to minimize the deficiencies presented by LRU using an additional criterion named IRR 

(Inter- Reference Recency) that represents the number of different pages accessed between 

the last two consecutive accesses to the same page. This means that LIRS does not replace 

the page that has not been referenced for the longest time, but it uses the access recency 

information to predict which pages have more probability to be accessed in a near future.  

2.1.1.11  ARC Page Replacement Algorithm 

Adaptive Replacement Cache (ARC) [15] improves the LRU strategy by splitting the cache 

directory into two lists, T1 and T2, for recently and frequently referenced entries. In turn, 

each of these is extended with a ghost list (B1 or B2) which is attached to bottom of these 

two lists. These ghost lists act as score cards by keeping track of the history of recently 

evicted cache entries, and the algorithm uses ghost hits to adapt to recent change in resource 

usage. The ghost lists only contain metadata (keys for the entries) and not the resource data 

itself, i.e. as an entry is evicted into a ghost list its data is discarded. The combined cache 

directory is organized in four LRU lists: 

i. T1, for recent cache entries. 

ii. T2, for frequent entries, referenced at least twice. 

iii. B1, ghost entries recently evicted from the T1 cache, but are still tracked. 

iv. B2, similar ghost entries, but evicted from T2. 

T1 and B1 together are referred to as L1, a combined history of recent single references. 

Similarly, L2 is the combination of T2 and B2. 

2.1.1.15   CLOCK Based Page Replacement Algorithm 

The clock-based approximations, such as CLOCK [5], CLOCK-PRO [18], and CAR [17], 

usually cannot achieve the high hit ratio compared to their corresponding original algorithms 

(LRU, LIRS, ARC respectively). They organize buffer pages into circular list, and use a 

reference bit or a reference counter to record access information for each buffer page. When a 

page is hit in the buffer, the clock-based approximations set the reference bit or increment the 

counter, instead of modifying the circular list themselves. However, the clock-based 



  

19 
 

approximations can record only limited history access information, i.e. whether a page has 

been accessed or how many times it has been accessed but not in what order the accesses 

occur. The lack of richer history information can hurt their hit ratios. Moreover, many 

sophisticated replacement algorithms do not have clock based approximations since the 

access information they need cannot be approximated by the clock structure.  

 

2.1.2 Buffer Replacement Algorithms for Flash-Based Systems 

2.1.2.1 CFLRU 

Clean First LRU (CFLRU) [20] is the first algorithm designed for flash based systems. It 

modified the LRU policy by introducing a clean first window W, which starts from the LRU 

position and contains the least recently used w*B pages, where B is the buffer size and w is 

the ratio of the window size to buffer size. When victim is selected, CFLRU first evicts least 

recently used clean pages in W. Hence it reduces the number of write operations because 

clean page is not propagated to flash memory. If no clean page is found, then it behaves like 

LRU policy. CFLRU has some problems such as clean-first window size is to be tuned to the 

current workload and cannot suit for differing workloads and it always replaces clean pages 

first, which causes the cold dirty pages residing in the buffer for long time and, in turn, results 

in suboptimal hit ratio. The window size, W, can be tuned statically or dynamically. In this 

sense, CFLRU is known as CFLRU- static or CFLRU- dynamic. In paper [20], CFLRU-static 

and CFLRU-dynamic has been compared with LRU policy for five different workloads. They 

found result that CFLRU static and dynamic reduces the replacement cost by 28.4 % and 

23.1% for swap system buffer cache and 26.2% and 23.5% for file system buffer cache with 

compared to LRU. 

2.1.2.2 CFDC  

Clean First Dirty Clustered (CFDC) [23] manages the buffer in two regions: the working 

region W for keeping hot pages that are frequently and recently revisited, and the priority 

region P responsible for optimizing replacement costs by assigning varying priorities to page 

clusters. A parameter , called priority window, determines the size ratio of P relative to the 

total buffer. Therefore, if the buffer has B pages, then P contains  pages and the remaining  

(1-)*B pages are managed in W. Various conventional replacement policies can be used to 

maintain high hit ratios in W and, therefore, prevent hot pages from entering P. CFDC 

improves the efficiency of buffer manager by flushing pages in clustered fashion based on the 

observation that flash writes with strong spatial locality can be served by flash disks more 



  

20 
 

efficiently than random writes. In paper [23] CFDC has been compared with LRU and 

CFLRU for different four workloads in database engine.  The results show CFDC  

outperforms both competing policies, with a performance gain between 14%  and 41% over 

CFLRU., in turn, is only slightly better than LRU with a maximum performance gain of 6%. 

2.1.2.3 LRU- WSR 

LRU-WSR [7] is a flash-aware algorithm based on LRU and Second Chance [5], using only a 

single list as auxiliary data structure. The idea is to evict clean and cold-dirty pages and keep 

the hot-dirty pages in buffer as long as possible. When a victim page is needed, it starts 

searching from the LRU end of the list. If a clean page is found, it will be returned 

immediately (LRU and clean-first strategy). If a dirty page marked as “cold” is found, it will 

also be returned;  otherwise, it will be marked “cold” (Second Chance), moved to the MRU 

(most-recently used) end of the list, and the search continues. Although LRU-WSR considers 

the hot/cold property of dirty pages, which is not tackled by CFLRU, it has high dependency 

on the write locality of workloads. It shows low performance in case of low write locality, 

which may cause dirty pages to be quickly evicted. In paper [7], LRU-WSR has been 

compared with LRU, CFLRU algorithms for different workloads collected from PostgreSQL, 

GCC, Viewperf and Cscope. LRU-WSR has been found 1.4 times faster than LRU.  In most 

of the cases, LRU-WSR has higher hit ratio and lower write count than others. 

2.1.2.4 CCF-LRU 

The authors of CCF-LRU [25] further refine the idea of LRUWSR by distinguishing between 

cold-clean and hot clean pages. It maintains two LRU queues, a cold clean queue and a mixed 

queue to maintain buffer pages. The cold clean queue stores cold clean pages (first referenced 

pages) while mixed queue stores dirty pages or hot clean pages. It always selects victim from 

cold clean queue and if cold clean queue is empty then employs same policy as that of LRU-

WSR to select dirty page from mixed queue. This algorithm focuses on reference frequency 

of clean pages and has little consideration on reference frequency of dirty pages. Besides, the 

CCF-LRU has no mechanism to control length of cold clean queue, which will lead to 

frequent eviction of recently read pages in the cold clean queue and lower the hit ratio.  In 

paper [25] CCF- LRU has been compared with LRU, CFLRU and LRU-WSR with different 

four workloads. The results show that CCF-LRU performs better than LRU, CFLRU, and 

LRU-WSR with respect to hit rate, write count and run time.  

 



  

21 
 

2.1.2.5 LIRS-WSR 

LIRS-WSR which is already explained in section 1.2.1, is an improvement of LIRS so that it 

can suit the requirements of flash-based systems. It integrates write sequence reordering 

(WSR) technique to original LIRS algorithm to reduce the number of page writes to flash 

memory. In paper [8] LIRS-WSR has been compared with LRU, CFLRU, LIRS and ARC for 

four different workloads: PostgreSQL, gcc, Viewperf and Cscope.  LIRS-WSR has hit ratio 

very close approximate to LIRS and has higher hit ratio than other algorithms. LIRS-WSR 

has minimum write count than all other algorithms. In case of run time, LIRS-WSR is 2 times 

faster than LRU and 1.25 times faster than LIRS algorithm.   

 

  AD-LRU 

Adaptive double-LRU (AD-LRU) , which is already explained in section 1.2.2, takes into 

account both reference frequency of clean pages and dirty pages and has a new mechanism to 

control the length of cold queue to avoid drop in hit ratio. In paper [16] AD-LRU has been 

compared with LRU, CFLRU, LRU-WSR, CCF- LRU algorithms for different four 

workloads: random, read-most, write-most and zipf traces. AD- LRU has been found better 

than other algorithms in terms of hit rate, write count and run time.  In specific, AD-LRU 

reduced write count under zipf trace by 23%, 17% and 21% compared to LRU, CFLRU and 

LRU-WSR respectively.  

 

2.2   Methodology 

Research is a careful study performed to find out new things in a systematic way. In a 

scientific method of research at first problem is formulated then output information is 

generated from collected input data and output is analyzed and finally the result is 

generalized [14]. This dissertation work is truly scientific and flows in the same way. The 

topics memory management and design has been studied from the early generation of 

computer. Page replacement algorithm is one of the major strategies to manage memory 

efficiently. The main exploration of this dissertation focuses on LIRS-WSR and AD-LRU 

algorithms developed to address flash memory characteristics in memory management. Out 

of different types of research methodologies, this dissertation is based on the trace driven 

simulation approach. All the data collected are primary data, which are traces of page 

references. Output information gathered is analyzed in a quantitative approach. Finally, 

conclusion is drawn with the help of analyzed data.  



  

22 
 

LIR HIR 

promotion 

demotion 

Chapter 3 

PROGRAM DEVELOPMENT  

3.1 Development Methodology and Tools 

The simulator is built by using incremental approach. The LRU stack automatically maintains 

recency factor. Information of recently referenced block is available in top of stack and the 

oldest in bottom of stack. Every time when the block is accessed it is kept in top of stack. 

LIRS-WSR and ADLRU algorithms are also implemented by using same stack algorithm. 

The algorithms have been implemented in  C programming language using Dev C++ 4.9.9.2  

compiler on Intel( R) Core (TM) i5-4200U CPU @ 1.6 GHz-2.3GHz with 4 GB RAM 

Windows 7, 32 bit OS. 

  

 3.2 LIRS-WSR  

LIRS-WSR uses basic concept of LIRS algorithm [19]. Sum of size of HIRS and size of 

LIRS is equals to size of cache. HIR block that may be resident or non-resident can be 

promoted to LIR block. At the same time to maintain the LIRS and HIRS size, oldest LIR 

block must be demoted to HIR-resident block. Then one of the resident HIR block becomes 

the victim. The promotion demotion policy is shown in the Fig3.1. Figures 3.2 and 3.3 show 

the specific promotion demotion policy among LIR, resident HIR and non-resident HIR, so 

as to maintain partition size. Every page has additional status either cold or not-cold. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 Specific LIR vs. Resident HIR Transition Diagram 

Fig 3.1  General LIR vs. HIR Transition 

Diagram 

Resident 

HIR 

 

 
LIR 

promotion 

LIR 

Resident 

HIR 

demotion 



  

23 
 

 

 

 

 

 

 

 

 

 

 

 

LIRS-WSR can be implemented by using two lists: LIRS Stack S and HIR queue Q. Stack S 

contains LIR pages as well as HIR pages regardless of their residence status. Some of them 

are resident and others are not, only their metadata are stored in the Stack.  Its main purpose 

is to maintain recency value. As we move toward bottom recency factor increases. Bottom 

most one is always LIR block, which is the oldest block having higher recency factor and 

topmost one is the recent block having recency factor equals to zero. Each stack node 

contains information about reference block. Here information of every page reference is not 

available in stack S due to the major event stack pruning. Some information is also available 

in queue Q and some outdated information is also left in Stack. Queue Q contains collection 

referenced pages that are resident HIR blocks available in cache.  Hence size of HIR cache 

partition determines the size of Queue Q. 

Initially all pages are cold, this cold flag is cleared if the pages are referenced again when 

they are in stack S or queue Q. The block in the Queue can be removed from anywhere if it is 

promoted to LIR. Comparing IRR and recency value is automatically done by the use of Q 

which increases performance.   If a page is introduced to the buffer for write request for the 

first time, it becomes a dirty page and enters the top of the stack S as an LIR page.  Every 

time when Stack bottom is moved to HIR Q, WSR policy is applied. That is, if bottom LIR 

page is dirty and not cold, then its cold flag is set and moved to the head of Stack, otherwise 

it is moved to the head of HIR Q. That is, only clean or dirty cold pages are moved to head of 

HIR Q from the bottom of S. Stack pruning operation is performed on every move of 

operation performed on bottom LIR page of S. 

 

LIR 

Resident HIR 

Non-resident HIR 

demotion 

demotion 

Non-

resident HIR 

LIR 

promotion 

Fig 3.3 LIR vs. Non-Resident HIR Transition 

Diagram 



  

24 
 

struct node  

{ 
      Char pn[9];                          // contains page number  

      Char r;                                 // access type (r/w)  1 for write and 0 for read 

      int isResident;                      // flag to determine Resident/non-resident HIR 
      int isHIR_block;                           // flag to determine HIR/LIR 

      int cold;                               // flag for cold/not cold 

      struct node * LIRS_next;        //next node in LIRS stack 

      struct node * LIRS_prev;         // previous node in LIRS stack 
      struct node* HIR_Rsd_next;     // next node of HIR Q    

      struct node *HIR_Rsd_prev;       // previous node of HIR Q 

      int    recency;                               // flag to indicate page is in stack or not       

} ; 

3.2.1 Data Structure 

The LIRS-WSR algorithm can be implemented by using two LRU lists LIRS stack and HIR 

queue. Each node in the LIR list and HIR Q are implemented as a doubly linked list. Each 

node of the list has structure as in Fig. 3.7. 

 

 

 

 

 

 

 

 

    

Fig. 3.4 Structure of a node in LIRS-WSR Data Structure  

3.2.2 Stack Pruning Function 

The major function stack pruning is conducted during status change. Bold assumption of the 

algorithm is that bottom of stack S is always LIR block. While changing status, the page in 

bottom of stack S is demoted to HIR resident for that it is kept in queue Q. At that time next 

LIR bottom is chosen which is nearer from bottom of stack S and all other HIR bottom are 

removed one by one.  Information of thus removed HIRs is available in queue Q, if it is 

resident. Stack pruning is also conducted if the accessed block P is the bottom LIR because 

recent block is always moved to top of stack S. Stack pruning decreases the size of stack 

hence the stack doesn't keep track of outdated references.  

 3.2.3 Algorithm 

1. Start. 

2. Read new page. 

3. If page is in Stack S, Then 

3.1. If page is LIR page, Then 

3.1.1. Page hit LIR page. 

3.1.2. Clear cold flag, i.e. cold=0. 

3.1.3. Move the page to the head of Stack, S. 

3.1.4. If the page is at bottom of S, then 



  

25 
 

3.1.4.1. Prune the Stack, S. 

3.2. Else if page is HIR, then, 

3.2.1. If page is resident HIR, then 

3.2.1.1. Page hit, HIR resident page. 

3.2.1.2. Move the page to the head of Stack, making it LIR. 

3.2.1.3. Clear cold flag i.e. cold =0. 

3.2.1.4. Remove the page from HIR list Q. 

3.2.1.5. While Stack bottom is dirty and not cold, repeat 

3.2.1.5.1. Move bottom page of Stack, S to the head of Stack, S. 

3.2.1.5.2. Set cold =1 for this page. 

3.2.1.5.3. Prune the Stack  

3.2.1.6. Move Stack bottom to head of the HIR list, making it HIR. 

3.2.1.7. Prune the Stack. 

3.2.2. Else page is non-resident HIR 

3.2.2.1. Page Miss  

3.2.2.2. Remove Tail of HIR Q 

3.2.2.3. Move it to the head of Stack, S, making LIR 

3.2.2.4. Clear cold flag of the page. 

3.2.2.5. While Stack bottom is dirty and not cold, then 

3.2.2.5.1. Set the cold flag of bottom page, i.e. Cold =1 

3.2.2.5.2. Move the page to the head of Stack, S. 

3.2.2.5.3. Prune the Stack. 

3.2.2.6. Move the bottom of Stack to the head of HIR queue, Q. 

3.2.2.7. Make this page resident HIR. 

3.2.2.8. Prune the Stack. 

4. Else if Page is in HIR Q then, 

4.1. Page Hit in HIR Queue. 

4.2.  Move to the head of HIR, Q. 

4.3.  Add to the head of Stack, S. 

5. Else  

5.1. Page miss occurs 

5.2. If free memory is available, then 

5.2.1. If free memory is larger than HIR_Limit then, 

5.2.1.1. Add page to the head of Stack. 



  

26 
 

5.2.1.2. Make it LIR page.  

5.2.1.3. Decrease free memory by one. 

5.2.2. Else  

5.2.2.1. If page is write, Then, 

5.2.2.1.1. Add the page to the head of Stack, S. 

5.2.2.1.2. Make it LIR. 

5.2.2.1.3. While Stack bottom is dirty and not cold, do 

5.2.2.1.3.1. Move bottom of Stack, S to the head of Stack, S. 

5.2.2.1.3.2. Set cold =1 for this page. 

5.2.2.1.3.3. Prune the Stack  

5.2.2.1.4. Move Stack bottom to head of the HIR list 

5.2.2.1.5. Make this page resident HIR. 

5.2.2.1.6. Prune the Stack. 

5.2.2.1.7. Decrease free memory by one. 

5.2.2.2. Else page is read 

5.2.2.2.1. Add the page to head of queue Q. 

5.2.2.2.2. Add the page to the head of Stack, 

5.2.2.2.3. Decrease free memory by one. 

5.3. Else Memory is full. 

5.3.1.  Remove tail of HIR queue, Q. 

5.3.2. If page is write, Then, 

5.3.2.1. Add the page to the head of Stack, S. 

5.3.2.2. Make it LIR. 

5.3.2.3. While Stack bottom is dirty and not cold, do 

5.3.2.3.1. Move bottom of Stack, S to the head of  the Stack. 

5.3.2.3.2. Set cold =1 for this page. 

5.3.2.3.3. Prune the Stack  

5.3.2.4. Move Stack bottom to head of the HIR list 

5.3.2.5. Make this page resident HIR. 

5.3.2.6. Prune the Stack. 

5.3.3. Else page is read 

5.3.3.1. Add the new page to head of Stack, S. 

5.3.3.2. Add the new page to the head of Q. 

6. Stop. 



  

27 
 

3.2.4 Flowchart 

 

 

  

  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Flowchart of LIRS-WSR Algorithm 

no 

 

yes 

 

yes 

 

no 

 yes 

 

yes 

 

no 

 

yes 

 

no 

 

Stop 

Add to the head of 

Stack , Add to the 

head of Q, 

free memory -- 

 

Add to the head 

of Stack and 

Make it LIR 

free memory -- 

Add to the head of 

Stack and Make it LIR 

free memory -- 

no 

 

Prune the Stack 

Is Stack 

bottom dirty 

and not-cold? 

Set cold = 1 

Move page to the head 

of Stack 

Prune the Stack 

Move bottom of 

Stack to head of Q 

Prune the Stack 

Add to the head of 

Stack and Make it LIR 

Add to the head of 

Stack , Add to head 

of HIR Q 

Move to the head of Q  

Move to the head of 

Stack S 
Is 

fm==0? 

Remove the tail of 

HIR Q 

Is page 

write? 

Is fm> 

HIR_Limt

? 

Is page 

write? 

Is LIR? 

Clear Cold. 

Move page to 

the head of Stack 

Is page 

at Stack 

Bottom? 

Is 

Resident? 

Clear Cold. 

Move page to the head 

of Stack, make it LIR 

Remove this page 

from HIR Q 

 

 

Clear Cold. 

Move page to the head 

of Stack, make it LIR 

Remove the page from 

tail of HIR Q 

 

 

yes 

 

Read Page, P 

Start 

Is in 

Stack? 
Is in 

HIR Q? 

yes 

 
no 

 

no 

 

no 

 

no 

 

yes 

 

yes 

 



  

28 
 

1 

HIR queue Q 
LIRS stack S 

HIR queue Q 

1 

HIR queue Q 

LIRS stack S 

1 

LIRS stack S 

3.2.5 Tracing of LIRS-WSR 

Size of LIRS: 2        LIR 

Size of HIRS: 1 

Cache Size: 2+1=3        Resident HIR 

Input References: 1,1  1,2  0,3   0,1  1,4   1,3 0,5  0,2 1,3 

1 = write, 0 = read 

Number of Distinct References: 5                                                                   Non-residents HIR 

Total Number of References: 9 

Other page status:  cold/hot, dirty/clean 

 

 Upon accessing page 1,1 

  Page Miss   

  Page fault                                                        

 

 

                         

       

 

Upon accessing page 1,2 

Page Miss 

Page fault  

    

 

 

 

 

 

 

 

Upon accessing page 0,3 

Page Miss 

 Page fault  

 

 

 

  

 

 

 

 
Head  

Dirty 

Cold 

LIR 

    

Dirty   dirty 

Cold cold 

LIR LIR 

   

head  

HIR  Dirty  Dirty 

Cold Cold Cold 

Clean LIR LIR 

 

   

Fig 3.6.1 State at Virtual Time 1 

Fig 3.6.2 State at Virtual Time 2 

2 3 

Fig 3.6.3 State at Virtual Time 3 

2 

3 

 



  

29 
 

LIRS stack S 

2 

HIR queue Q 

1 

LIRS stack S 

HIR queue Q 

1 

LIRS stack S HIR queue Q 

1 

HIR queue Q LIRS stack S 

Upon accessing page 0,1 

 

Page Hit 

 

 

 

 

  

 

 

Upon accessing page 1,4 

Page Miss, memory full  

Write for first time 

Added to head of stack, 2 is 

Demoted to HIR Q  

3 is removed by pruning. 

page fault 

 

 

Upon accessing 1,3 

Page Miss 

Memory full 

Inserted at the head of stack, 

1 is given second chance and 4  

Is demoted to HIR Q 

2 is removed from Q.  

write count =1 

Page fault  

 

Upon accessing 0,5  

Page miss  

Page fault 

Remove 4 and 5 to head of Stack 

And also Q head 

Write count =2 

 

 

 

 

 

 

 

     

Dirty Clean Dirty 

Hot Cold Cold 

LIR HIR  LIR 

     

Dirty dirty 

Cold hot 

LIR LIR 

Dirty 

Cold 

HIR  

     

Dirty dirty 

Cold cold 

LIR LIR 

Dirty 

Cold 

HIR 

     

Clean 

Cold 

HIR 

dirty Dirty 
cold Cold 

LIR LIR 
 

Fig 3.6.4 State at Virtual Time 4 

1 3 
3 

4 2 

Fig 3.6.5 State at Virtual Time 5 

3 4 

Fig 3.6.6 State at Virtual Time 6 

3 
5 5 

Fig 3.6.7 State at Virtual Time 7 



  

30 
 

LIRS stack S 

HIR queue Q 

1 5 

1 5 

LIRS stack S 

HIR queue Q 

Upon accessing 0,2 

Page miss 

Page fault 

 

 

 

 

 

 

 

Upon accessing 1,3 

Page hit 

 

 

 

 

 

 

 

Total page faults = 7 

Write counts = 4 

 

3.3  AD-LRU 

AD-LRU has two LRU queues to capture the concept of recency and frequency of the page 

references, among which Cold LRU queue stores the pages referenced only once and Hot 

LRU queue maintains the pages that are referenced at least twice. The sizes of these two LRU 

queues are dynamically adjusted according to changes in reference patterns. When a page is 

first referenced, it is put in the head of cold LRU queue. The pages move from cold LRU 

queue to head of hot LRU queue when it is referenced again and when a page in hot LRU 

queue is selected as victim, it is demoted to head of cold LRU queue.  During the eviction 

procedure, least recently used clean page from cold LRU queue is selected as a victim. There 

is a specific pointer FC (First Clean) to point least recently used clean page in each LRU 

queue. If clean pages do not exist in the cold LRU queue, second chance policy is applied. 

For this purpose, each page in double LRU queues is marked by a reference bit which is 

always set to 1, when the page is referenced. When a page is referenced and buffer is full, the 

page pointed by FC pointer of cold LRU queue (Cold_FC) is evicted, if Cold_FC is not null.  

    

  

Clean Clean Dirty dirty 
Cold Cold Cold cold 

HIR Res HIR LIR LIR 

    

  
Dirty Clean Clean Dirty 
Hot Cold Cold Cold 

LIR HIR LIR LIR 

    

    

    

2 

 

Fig 3.6.8 State at Virtual Time 8 

2 

 

3 2 

 

3 2 

 

Fig 3.6.9 State at Virtual Time 9 



  

31 
 

Otherwise dirty page at the tail of this queue is evicted if its reference bit is 0. But if reference 

bit is 1, then the reference bit is cleared to 0 and moved head of this queue, process continues 

to find next dirty page with reference bit 0. There is a parameter MIN_LC to set lowest limit 

of size of cold LRU queue. If the size of cold LRU queue reaches MIN_LC, victim will be 

selected from hot LRU queue rather than cold LRU queue. In this case victim page is selected 

in same way as in cold LRU queue but the victim page is moved to head of cold LRU queue.  

 

3.3.1 Data Structure  

The data structures used are based on stack algorithm. There are two LRU queues one for 

cold pages and another for hot pages.  These both queues have two external pointers HEAD 

and TAIL to indicate most recently used (MRU) and LRU pages in the queue.  These queues 

are implemented as a doubly linked list each node has structure as shown in Fig 3.7.  

     

 

 

 

 

 

 

Fig.3.7 Structure of node of ADLRU Data Structure 

 

 

3.3.2 Algorithm 

1. Start 

2. Read new page, P. 

3. If P is in Hot queue, Then, 

3.1. Hit in Hot queue. 

3.2. Set Ref(P) = 1. 

3.3. Move the page P to the head of Hot queue. 

3.4. Adjust Hot First Clean (Hot_FC) pointer to point LRU clean page in Hot queue. 

4. Else if P is in Cold queue, Then, 

4.1. Hit in Cold queue. 

4.2. Set Ref(P) =1. 

struct node  
{ 

      Char pn[9];                   // contains page number and access type flag 

      Char r;                   // access type (r/w), 1 for write and 0 for read 
      int cold;                           // to flag cold page 1 for cold and 0 for hot  

      int reference;                    // to assist in second chance policy in eviction of page 

      struct node * next;           // pointer to point next node 

      struct node * prev;           // pointer to point previous node  

   }; 



  

32 
 

4.3. Move the page P to the head of Hot queue from Cold queue. 

4.4. Adjust Cold First Clean (Cold_FC) pointer in Cold queue. 

4.5. Adjust Hot_FC in Hot queue. 

4.6. Decrease the size of cold queue, i.e. Cold_Size--. 

5. Else  

5.1. Miss occurs. 

5.2. If free_memory >0, Then 

5.2.1. Free memory is available, Add new page to head of Cold queue. 

5.2.2. Increment size of cold queue, i.e., Cold_Size  ++ . 

5.2.3. Decrement free memory. 

5.3. Else 

5.3.1. Memory is full, page replacement is needed. 

5.3.2. While Cold_Size <= Cold_Min_limit, do, 

        5.3.2.1   If Hot_FC != NULL, Then 

              - Move the page pointed by Hot_FC to the head of Cold queue 

                         - Adjust Hot_FC 

    5.3.2.2   Else  

 -While Ref(Hot queue tail) is 1, do 

 Ref(Hot queue tail) =0 

 Move the Hot queue tail to the head of Hot queue 

     - Move the Hot queue tail to the head of Cold queue 

        5.3.2.3    Cold_Size ++ 

5.3.3.  If Cold_FC != NULL, Then,      

5.3.3..1. Remove  page pointed by Cold_FC from Cold queue 

5.3.3..2. Adjust Cold_FC pointer to point next LRU clean page 

5.3.4. Else        

5.3.4..1.    While Ref(Cold queue tail) is 1, do 

- Ref(Cold queue tail) =0 

- Move the Cold queue tail to the head of Cold queue. 

5.3.4..2. Remove page from tail of Cold queue. 

5.3.5. Add the new page, P to the head of Cold queue. 

5.3.6. Adjust Cold_FC. 

6. Stop. 



  

33 
 

3.3.3 Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Flowchart of AD-LRU Algorithm 

yes 

no 

yes 

yes 

no 

no 

no 

yes 

no 

yes 

yes 

no 

no 
yes 

no 

yes 

Is in 

ColdQ? 

Start 

Is  in 

HotQ? 

Read Page, P. 

Page hit in ColdQ. 

Move the page to 

head of HotQ. 

Adjust Colf_FC and 

Hot_FC, Ref(P) =1 

decrement size of 

ColdQ. 

 

 

Add page to head of 

ColdQ, increase 

ColdQ size , 

decrease Free 

memory 

 

While 

cold_size <= 

Cold_Min? 

Free memory 

available? 
Page Hit 

 Move the page to the 
head of HotQ. 

Ref(P) =1 
Adjust Hot_FC 

 

Stop 

Is Hot_FC 

== NULL? 

Move the page pointed by 

Hot_FC to the head of 

ColdQ, increase ColdQ size 

 

 

Remove the page from tail 

of ColdQ,  Add page P to 

head of oldQ,  

  Adjust Cold_FC 

 

Remove the page pointed by 

Cold_FC, Adjust Cold_FC, 

 Add page  P to head of 

ColdQ, Adjust Cold_FC 

 

Is Cold_FC 

== NULL? 

Ref(ColdQ.tail) = 0 

Move ColdQ.tail to head of 

ColdQ. 

 

While 

Ref(ColdQtail) 

==1? 

While 

Ref(HotQtail) 

==1? 

Ref(HotQtail) = 0 

Move HotQtail page 

to head of HotQ 

Move  page from tail 

of HotQ to head of 

ColdQ 



  

34 
 

Cold queue  
Hot queue  

1 

head tail 

1 2 

tail head 

Cold queue  

Hot queue  

1 2 3 

Hot queue  

Cold queue  

1 

2 3 

Hot queue 

Cold queue  

3.3.4 Tracing of AD-LRU 

Cache Size: =3 

Minimum size of Cold Queue (MIN_LC) = 1       

Input References: 1,1  1,2  0,3   0,1  1,4   1,3 0,5  0,2 1,3 

1 = write, 0 = read 

Number of Distinct References: 5                                                                    

Total Number of References: 9 

Page status:  cold/hot, dirty/clean 

 Upon accessing: 1,1 

   Page fault 

 

  

  

 Upon accessing: 1,2 

Page fault 

 

 

 Upon accessing 0,3    

Page fault  

 

 

 

 Upon accessing 0,1 

Page hit 

 

   

Empty   

dirty 

cold 

   Empty 

dirty 

cold 
dirty 

cold 

    
Empty 

clean 

cold 

dirty 

cold 
dirty 

cold 

  

   

dirty 

Hot 

Fig 3.9.1 State at Virtual Time 1 

Fig 3.9.2 State at Virtual Time 2 

head tail 

FC 

Fig 3.9.2 State at Virtual Time 3 

head 

head 

tail 

tail 

FC 

Fig 3.9.4 State at Virtual Time 4 



  

35 
 

Cold queue  

1 2 4 

Hot queue  

4 3 1 

Hot queue  

Cold queue  

3 

1 

Hot queue  

Cold queue  

1 

Hot queue  

Cold queue  

3 

Cold queue  

Hot queue  

1 

 Upon accessing 1,4 

Page fault 

 

 

 Upon accessing 1,3  

Page miss 

      Page fault 

     Write count =1  

 

 

  Upon accessing 0,5 

Page fault 

     Write count = 2 

 

 

 Upon accessing 0,2 

Page miss 

Page fault  

 

 

 Upon accessing 1,3 

Page hit  

 

 

Total page faults = 7 

Write count  = 4 

 

 
     

dirty 

Hot 
Ref =1 

dirty 

Cold 
Ref =1 

dirty 

Cold 

Ref =1 

     

dirty 

Hot 
Ref =1 

dirty 

Cold 
Ref =1 

dirty 

Cold 
Ref =0 

   

dirty 

Cold 
Ref =1 

clean 

Cold 
Ref =1 

  

dirty 

Hot 
Ref =1 

     

 
clean 
Cold 

Ref =1 

 
dirty 

Cold 
Ref =1 

 
dirty 
Hot 

Ref =1 

   
  

dirty 

Hot 
Ref =1 

dirty 

hot 
Ref =1 

clean 

Cold 
Ref =1 

Fig 3.9.5 State at Virtual Time 5 

Fig 3.9.6 State at Virtual Time 6 

5 

FC 

Fig 3.9.7 State at Virtual Time 7 

2 

FC 

Fig 3.9.8 State at Virtual Time 8 

FC 

Fig 3.9.9 State at Virtual Time 9 

3 2 



  

36 
 

Chapter 4 

TEST RESULTS & ANALYSIS  

4.1  Data Collection 

Data are the sources of information. Hence data should be collected very carefully. In this 

dissertation work four types of synthetic traces [16]  have been used in the simulation 

experiment, i.e., random trace, read- most trace (e.g., of decision support systems), write-

most trace (e.g., of OLTP systems), and Zipf trace as Workload1, Workload  2, Workload 3 

and Workload 4 respectively. These data are real memory traces. Workload represents 

different locality of memory reference pattern that are generated during execution of process 

in real OS. There are total 100,000 page references in each of the first three traces, which are 

restricted to a set of pages whose numbers range from 0 to 49,999. The total number of page 

references in the Zipf trace is set to 500000 in order to obtain a good approximation, while 

the page numbers still fall in [0, 49999].  Zipf trace has a referential locality “20/80” meaning 

that eighty percent of the references deal with the most active twenty percent of the pages. 

Sample of Workload 1, Workload 2, Workload 3 and Workload 4 are in appendix A, 

appendix B, appendix C and appendix D respectively. Table 4.1 to Table 4.4 shows the 

details concerning these workloads. 

 

 

 

 

 

 

 

                                     Table 4.1 Simulated trace for Random access 

 

Attributes Value 

Total I/O references 100,000 

Total Distinct references 43212 

Read/Write ratio 90% /10% 

Reference Patterns Uniform 

Table 4.2 Simulated trace for Read-most access 

Attributes Value 

Total I/O references 100,000 

Total Distinct references 43247 

Read/Write ratio 50% /50% 

Reference Patterns Uniform 



  

37 
 

Attributes Value 

Total I/O references 100,000 

Total Distinct references 43182 

Read/Write ratio 10% /90% 

Reference Patterns Uniform 

Table 4.3 Simulated trace for Write-most access 

 

Attributes Value 

Total I/O references 500,000 

Total Distinct references 47023 

Read/Write ratio 50% /50% 

Reference Locality 20%/80% 

Table 4.4 Simulated Zipf trace 

4.2 Testing 

Each workload is tested in LIRS-WSR and AD-LRU simulator by varying the cache size 

from 512 to 18432. In case of LIRS-WSR algorithms HIR, LIR partition is maintained as 1% 

and 99% of cache size.  For AD-LRU parameter MIN_LC is set 0.5 of the cache size for all 

Workloads.  

4.2.1 Test Result of Workload 1 ( Trace with Random Access ) 

No. of References = 100000                          No. of Distinct Reference = 43247 

No. of Write References = 49974 

 

 

Buffer  

Size 

AD-LRU LIRS-WSR 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write  

Count 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write 

Count 

512 98903 98.1 1.9 49085 98955 98.2 1.8 48950 

1024 97661 95.9 4.1 48141 97926 96.3 3.7 47959 

2048 95446 92.0 8.0 46396 95847 92.7 7.3 46008 

4096 90937 84.0 16.0 42913 91892 85.7 14.3 42538 

6144 86792 76.7 23.3 39875 87951 78.8 21.2 39344 

8192 82462 69.1 30.9 36713 84103 72.0 28.0 36482 

9216 80418 65.5 34.5 35274 82253 68.7 31.3 35180 

10240 78411 62.0 38.0 33871 80421 65.5 34.5 33950 

12288 74679 55.4 44.6 31282 76800 59.1 40.9 31694 

14336 71090 49.1 50.9 28945 73358 53.1 46.9 29706 

16384 67615 42.9 57.1 26794 70076 47.3 52.7 27996 

18432 64354 37.2 62.8 24814 66834 41.6 58.4 26446 

Table 4.5 Test Result of Workload 1 



  

38 
 

4.2.2 Test Result of Workload 2 (Trace with Read-Most Access) 

No. of References = 100000 

No. of Distinct Reference = 43212 

No. of Write References = 9919 

  

 

4.2.3 Test Result of Workload 3 (Trace with Write-Most Access) 

No. of References = 100000 

No. of Distinct Reference = 43182 

No. of Write References = 89145 

 

 

 

Buffer  

Size 

AD-LRU LIRS-WSR 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write  

Count 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write 

Count 

512 98873 98.0 2.0 9295 98948 98.1 1.9 9078 

1024 97698 95.9 4.1 8714 97954 96.4 3.6 8505 

2048 95554 92.2 7.8 7656 95943 92.9 7.1 7680 

4096 91129 84.4 15.6 5849 91877 85.7 14.3 6547 

6144 86854 76.9 23.1 4513 87870 78.6 21.4 5832 

8192 82575 69.3 30.7 4258 84144 72.1 27.9 5339 

9216 80556 65.8 34.2 4258 82330 68.9 31.1 5135 

10240 78449 62.1 37.9 4258 80491 65.6 34.4 4973 

12288 74543 55.2 44.8 4258 76953 59.4 40.6 4706 

14336 70717 48.4 51.6 4258 73402 53.2 46.8 4527 

16384 67324 42.5 57.5 4258 70137 47.4 52.6 4403 

18432 64004 36.6 63.4 4258 66828 41.6 58.4 4334 

Buffer 

Size 

AD-LRU LIRS-WSR 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write  

Count 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write 

Count 

512 98825 97.9 2.1 87981 98933 98.1 1.9 88084 

1024 97664 95.9 4.1 86833 97859 96.2 3.8 87018 

2048 95407 91.9 8.1 84613 95831 92.7 7.3 84999 

4096 91173 84.5 15.5 80454 91903 85.7 14.3 81111 

6144 87102 77.3 22.7 76494 88066 79.0 21.0 77380 

8192 83130 70.3 29.7 72614 84211 72.2 27.8 73621 

9216 81222 67 33.0 70765 82390 69.0 31.0 71869 

10240 79361 63.7 36.3 68953 80578 65.8 34.2 70126 

12288 75550 57 43.0 65258 77008 59.5 40.5 66720 

14336 71887 50.5 49.5 61736 73484 53.3 46.7 63398 

16384 68319 44.2 55.8 58324 70197 47.5 52.5 60300 

18432 64838 38.1 61.9 55007 66856 41.7 58.3 57298 

Table 4.6 Test Result of Workload 2 

Table 4.7 Test Result of Workload 3 



  

39 
 

4.2.2 Test Result of Workload 4   ( Zipf Trace) 

No. of References = 500000 

No. of Distinct References = 47023 

 No. of Write References = 244790 

 

 

4.3  Analysis 

All the results obtained from simulation is analyzed by drawing different graphs. Hit rate and 

write count are used as criteria for analyzing their goodness. 

4.3.1 Hit Rate Analysis 

 

 

Fig 4.1 Graph of Hit Rate for Workload 1 

0

10

20

30

40

50

60

70

H
it

 R
at

e

Buffer Size

ADLRU

LIRSWSR

Buffer 

Size 

AD-LRU LIRS-WSR 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write  

Count 

Page 

Fault 

Miss 

Rate 

Hit 

Rate 

Write 

Count 

512 262251 47.5 52.5 125666 361423 69.4 30.6 163145 

1024 237659 42.1 57.9 112052 327682 62.0 38.0 144910 

2048 210314 36.0 64.0 96416 288224 53.2 46.8 123920 

4096 178852 29.1 70.9 77813 242417 43.1 56.9 100009 

6144 158119 24.5 75.5 65191 212645 36.6 63.4 84817 

8192 142079 21.0 79.0 55381 189960 31.6 68.4 73661 

9216 135200 19.5 80.5 51088 180187 29.4 70.6 68958 

10240 128848 18.1 81.9 47226 171186 27.4 72.6 64718 

12288 117825 15.6 84.4 40509 155797 24.0 76.0 57657 

14336 107985 13.5 86.5 34465 142185 21.0 79.0 51627 

16384 99273 11.5 88.5 29392 130416 18.4 81.6 46630 

18432 91286 9.8 90.2 25349 119561 16.0 84.0 42206 

Table 4.8 Test Result of Workload 4 



  

40 
 

 

Fig 4.2 Graph of Hit Rate for Workload 2 

 

 

 4.3 Graph of Hit Rate for Workload 3 

0

10

20

30

40

50

60

70

H
it

 R
at

e

Buffer Size

ADLRU

LIRSWSR

0

10

20

30

40

50

60

70

H
it

 R
at

e

Buffer Size

ADLRU

LIRSWSR



  

41 
 

 
 

Fig 4.4 Graph of Hit Rate for Workload 4 

 

 

The graphs of Figure 4.1 to Figure 4.4 show that the AD-LRU algorithm is better than the 

LIRS-WSR algorithm since AD-LRU has higher hit rate for different cache sizes. In the 

Figure 4.1 to Figure 4.3 for workloads random, read-most and write-most access type traces 

the hit rates of algorithms are not much different because of the uniform distribution of page 

references. In these workloads there is not clear distinction between hot and cold pages as 

reference locality is not high. Despite the nature of page references in these workloads, AD-

LRU has better hit rate as it adapts the changes in page references pattern dynamically. LIRS-

WSR always treats pages with write request as LIR pages or hot pages. So these write 

reference pages are kept in cache for longer time than read request pages. The read request 

pages are evicted quickly although these may be referenced soon. This reduces the hit rate. 

In addition, the hit rates of both algorithms increase in similar way when buffer size 

increases. The hit rate increases with large buffer size because buffer can hold more pages 

that increases page hit. 

0

10

20

30

40

50

60

70

80

90

100

H
it

 R
at

e

Buffer Size

ADLRU

LIRSWSR



  

42 
 

The graph of Figure 4.4 shows significantly difference in hit rate. This is due to high 

reference locality of page references in zipf trace where 80% of pages references deal with 

active 20 % of pages. AD-LRU adapts more effectively to distinguish hot and cold pages in 

this workload. So, hit rate is much higher than that of LIRS-WSR.  As the buffer size 

increases, the difference in hit rate of these two algorithms is decreasing. This is because of 

increased hit of both as the capacity of buffer increases. 

As a minimum value AD-LRU has up to 3.6% higher hit rate than LIRS-WSR algorithm for 

workload 3 (write-most trace).  As a maximum value AD-LRU has up to 22% higher hit rate 

than LIRS-WSR for smaller buffer size for workload 4 (Zipf trace) and for larger buffer size 

AD-LRU has more than 6% higher hit rate than LIRS-WSR with this workload.  AD-LRU 

has higher hit rate than LIRS-WSR in case of high reference locality workloads. 

 

4.3.2 Write Count Analysis 

 

 

 

Fig 4.5 Graph of Write Count for Workload 1 

0

10000

20000

30000

40000

50000

60000

W
ri

te
 C

o
u

n
t

Buffer Size

ADLRU

LIRSWSR



  

43 
 

 

Fig 4.6 Graph of Write Count for Workload 2 

 

 

Fig 4.7 Graph of Write Count for Workload 3 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

W
ri

te
 C

o
u

n
t

Buffer Size

ADLRU

LIRSWSR

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

W
ri

te
 C

o
u

n
t

Buffer Size

ADLRU

LIRSWSR



  

44 
 

 

 

Fig 4.8 Graph of Write Count for Workload 4 

 

The graphs in the Figure 4.5 to 4.8 show the number of pages propagated to flash memory. 

The number of pages flushed to flash memory is write count. The number is obtained by 

counting the eviction of page references with write request during page replacement event. At 

the end of simulation all the dirty pages in buffer are also added to the count to get the exact 

write count. From the above graphs it is clear that AD-LRU has smaller write count for all the 

work loads used in the simulation. 

Workload 1 has 50% pages as write pages which are uniformly distributed. For smaller buffer 

size, AD-LRU has slightly higher write count than LIRS-WSR. This is because there is not 

clear idea to adapt hot and cold pages and as buffer has smaller capacity, dirty pages are 

evicted faster in AD-LRU than LIRS-WSR. In LIRS-WSR dirty pages are kept in LIRS Stack 

as LIR pages and due to WSR policy they are kept for longer time. As the buffer size 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000
W

ri
te

 C
o

u
n

t

Buffer Size

ADLRU

LIRSWSR



  

45 
 

increases, AD-LRU outperforms LIRS-WSR in write count because of increased page hit in 

larger buffer. 

Workload 2 has read-most access pattern in page references with 10% writes and 90% reads.  

For small buffer size of 512 and 1024, LIRS-WSR has lower write count because of its high 

priority to write pages to keep them in LIRS stack only and delay eviction using WSR policy. 

AD-LRU cannot differentiate them as hot or cold so evicts faster increasing write count. But 

for higher buffer size, AD-LRU works better. This is due to increased hit rate because of 

large buffer capacity. It can delay write page eviction more than WSR technique. 

Workload 3 has 90% writes and only 10% reads in page references. In this case, AD-LRU 

works better for all buffer sizes. There is large number of write pages in trace LIRS-WSR 

cannot accommodate all pages in LIRS-Stack and evicts dirty pages as well continuously. 

AD-LRU adapts reference pattern so it has better output.  

Workload 4 zipf trace has 50% / 50% read write references but has high reference locality of 

80% page references are references to 20% of pages. AD-LRU adapts changes in reference 

pattern and locality. So it has much less write count than LIRS-WSR for all buffer sizes.  

For write-most trace (Workload 3) write count is decreased up to 3% by AD-LRU with 

comparison to LIRS-WSR algorithm. This is the minimum value by which AD-LRU 

outperforms the LIRS-WSR in write count.  

For zipf trace (workload 4) AD-LRU decreased write count up to 40% with comparison to 

LIRS-WSR algorithm. This is largest gap between value of write count of these two 

algorithms. Thus, AD-LRU minimizes write counts significantly when reference locality is 

high. 

 

 

 

 

 

 

 



  

46 
 

Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Flash memory has become an alternative to the magnetic disks, which brings new challenges 

to traditional disk based system. To efficiently support the characteristics of flash storage 

devices, traditional buffering approaches need to be revised to take into account the 

imbalanced I/O property of flash memory. LIRS-WSR uses delayed eviction strategy when 

dirty page is to be replaced. It uses recency and little bit frequency information in 

replacement policy. AD-LRU captures frequency and recency of page references by using 

two LRU queues to classify all the buffer pages into a hot set and a cold set. It uses an 

adaptive mechanism to make the size of two LRU queue suitable for different reference 

patterns. 

From the simulation of these two algorithms for varying buffer size it is found that the AD-

LRU always outperforms LIRS-WSR for hit rate and write count. Specially, when workload 

has high reference locality, AD-LRU has significantly superior performance than LIRS-WSR 

in terms of both hit rate and write count. This is because of AD-LRU‟s good adaptive 

technique to handle changes in reference patterns.  

For uniformly distributed workloads, the difference in hit rates of AD-LRU and LIRS-WSR 

is comparatively small. AD-LRU leads LIRS-WSR in hit rate by a value up to 5%. For high 

reference locality workloads AD-LRU has significantly higher hit rate up to 22% in 

comparison to LIRS-WSR. 

The LIRS-WSR may perform better in write count for uniformly distributed locality 

workloads when buffer size is highly smaller in comparison to size of workload as it treats all 

write pages as hot pages and delays eviction. For larger buffer size and high write reference 

locality workloads, AD-LRU always outperforms LIRS-WSR in write count as AD-LRU 

adapts hot and cold pages better than LIRS-WSR. It seems that in case of uniformly 

distributed write-most access type workload, write count is decreased up to 3% by AD-LRU, 

but for high reference locality workload AD-LRU minimizes write count up to 40% with 

comparison to LIRS-WSR algorithm. Thus, AD-LRU minimizes write counts significantly 

when reference locality is high. 

 

 



  

47 
 

Limitations and Future Work 

In this work, size of HIR block is chosen 1% of total buffer size in LIRS algorithm and 

minimum size of cold LRU queue MIN_LC is selected 50% of buffer size. These   values 

have been used by authors of algorithms. Dynamic approach can be used to self tune these 

parameters. Further research can be done to find the optimal value of these parameters for 

different workloads.  In addition to this, in this work, only four different memory traces have 

been used for simulation purpose. Three of which are of uniform reference patterns and last 

one is with 80/20 reference locality. These are the limitations of this work. This work can be 

further extended by using variety of    real memory trace with different reference locality.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

48 
 

References 

.[1]  A. Silberschatz, P. B Galvin, G. Gagne, “Virtual Memory,” Operating System     

           Concept,  8th   ed., Wiley Student Edition, ch. 9, 2010, pp. 369-390. 

 [2]    A.S. Tanenbaum, Modern Operating Systems (Prentice Hall Second Edition), 2007, pp. 

201-232.  

   [3]     D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho and C. Kim, “On the Existence of a            

              Spectrum of Policies that Subsumes the Least Recently Used (LRU) and Least           

              Frequently Used (LFU) Policies”, Proceeding of 1999 ACMSIMETRICS     

              Conference, 1999. 

    [4]    E.J. O‟Neil, P.E. O‟Neil, G.  Weikum, The LRU-K Page Replacement Algorithm for              

             Database Disk Buffering. In: Proc.of SIGMOD ‟93, 1993, pp. 297-306. 

    [5]   F. J. Corbato, A Paging Experiment with the Multics System, in: In Honor of Philip                 

             M. Morse, MIT Press, Cambridge, Mass, 1969, p. 217. 

    [6]  G. Prakash Joshi, Calculation Of Control Parameter  That Results Into Optimal                            

             Performance In Terms Of Page Fault Rate In The Algorithm Least Recently               

             Frequently Used(LRFU) For Page Replacement, Master's Thesis, Tribhuvan                 

             University, CDCSIT, 2007. 

   [7]   H. Jung, H. Shim, S. Park, S. Kang, J. Cha, LRU-WSR: Integration of LRU and             

            Writes Sequence Reordering for Flash Memory, IEEE Trans. On Consumer                

            Electronics 54 (3) , 2008, pp.1215-1223. 

   [8]    H. Jung, K. Yoon, H. Shim, S. Park, S. Kang, J. Cha, LIRS-WSR: Integration of LIRS              

             and Writes Sequence Reordering for Flash Memory, in: ICCSA'07, Vol. 4705 of            

             LNCS, 2007, pp. 224-237. 

  [9]    H. M. Deitel, Operating Systems, Chap.9 Virtual Storage Management (Pearson A            

              Education, Second Edition). 

 [10]     H. Paajanen, Page Replacement In Operating System Memory Management, Master‟s            

             Thesis in Information Technology, University of Jyväskylä, Department of            

              Mathematical Information Technology(October 23, 2007).   

 [11]     J. Kim, J. M. Kim, S. H. Noh, S. L. Min, Y. Cho, A Space-Efficient Flash Translation              

              Layer for Compact Flash Systems,  IEEE Transactions on Consumer Electronics,  

              Vol.  48, No. 2, May 2002. 

 [12]  L. P. Chang, T. W. Kuo, Efficient Management for Large-Scale Flash-Memory            

             Storage Systems with Resource Conservation, ACM  TOS 1 (4), 2005, pp.381-418. 



  

49 
 

 [13]  M. L. Chiang, C.H. Paul, R.C. Chang, Manage Flash Memory in Personal Communicate    

          Devices. In: Proc. of IEEE Intl. Symposium on Consumer Electronics, IEEE Computer      

         Society Press, Los Alamitos, 1997. 

 [14] M.L. Singh, Understanding Research Methodology, Chap.1 Scientific Method and              

          Research, pp 4. 

 [15] N. Megiddo, D. S. Modha, ARC: A Self-Tuning, Low Overhead Replacement Cache,            

            in: FAST'03, 2003. 

 [16] P. Jin, Y.  Ou, T. Harder, Z. Li, AD-LRU: An Efficient Buffer Replacement             

          Algorithm for Flash-Based Databases. Data Knowl. Eng. : 72, 2012, pp. 83-102. 

 [17]   S. Bansal, D. Modha, CAR: Clock with Adaptive Replacement, In  Proceedings of the  

          USENIX Conference on File and Storage Technologies (FAST‟04),  San Francisco,              

          2004, pp 187-200. 

 [18] S. Jiang, X. Zhang, F. Chen, CLOCK-Pro: An Effective Improvement of the               

          Replacement, ATEC ‟05 Proceedings of the annual conference on USENIX Annual               

          Technical Conference, 2005, pp. 35.  

 [19]  S. Jiang, X. Zhang, LIRS: An Efficient Low Inter-reference Recency Set Replacement               

          Policy to Improve Buffer Cache Performance, ACM SIGMETRICS Performance            

          Evaluation Review archive Vol. 30, Issue 1, 2002, pp. 31-42. 

 [20] S. Park, D. Jung, J. Kang, J. Kim, J. Lee, CFLRU: A Replacement Algorithm for  

          Flash Memory, in: CASES'06, 2006, pp. 234-241. 

 [21] T. Johnson, D. Shasha, 2Q: A Low Overhead High Performance Buffer Management            

          Replacement Algorithm, Proceedings of the 20th International Conference on VLDB,            

         1994, pp 439-450. 

 [22] W. Kim and S. W. Lee: “On Flash-Based DBMSs: Issues for Architectural Re-             

          Examination”, in Journal of Object Technology, vol. 6, no. 8, September-October    

          2007, pp. 39-49, http://www.jot.fm/issues/issue_2007_09/column4. 

 [23] Y. Ou, T. Harder, P. Jin, CFDC: a Flash-Aware Replacement Policy for Database                    

          Buffer Management, in: Proc. of the 5th International Workshop on Data Management              

          on New Hardware, ACM, 2009, pp. 15-20. 

 [24]  Y. Smaragdakis, S. Kaplan, P. Wilson, EELRU: Simple and Effective Adaptive Page              

           Replacement, In Proceedings of the ACM International Conference on Measurement                

           and Modeling of Computer Systems (SIGMETRICS‟99), Atlanta, 1999, pp. 122-133. 

 [25]   Z. Li, P. Jin, X. Su, K. Cui, L. Yue, CCF-LRU: A New Buffer Replacement Algorithm         

            for Flash Memory, Trans. on Cons. Electr. 55, 2009, pp. 1351-1359.   



  

50 
 

Bibliography 

 B. Saud, Sensitivity Analysis of Cache Partition in Clock-Pro Page Replacement and its 

Comparison with Adaptive Clock-Pro, Master‟s Thesis, Tribhuvan University, Central 

Department of Computer Science and Information Technology. 

 B. Subedi, An Evaluation of Page Replacement Algorithm Based on Low Inter-reference 

Recency Set on Weak Locality Workloads, Master‟s Thesis, Tribhuvan University, 

Central Department of Computer Science and Information Technology. 

 Toshiba America Electronic Components, Inc., NAND Flash Applications Design Guide, 

2004. 

 http://www.cse.ohio-state.edu/~zhang/influential-papers.html 

 http://www.docstoc.com/docs/21106969/Role-of-OS-in-virtual-memory-management 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

51 
 

Appendix 1 Sample Random Trace input 

            1,8575  0,17754 0,33289 0,3838  0,19942 1,25113

 1,35145 1,1939  0,40780 0,12831 0,31724 1,37162

 1,861  1,35912 0,39216 1,10863 0,15454 0,32425

 0,42141 1,34769 0,29923 1,3050  0,4043  0,39113

 1,11686 1,25837 0,4941  0,7882  0,39262 1,32631

 0,36490 1,11934 1,8851  1,16962 0,37665 1,23980

 0,41727 0,15074 1,19029 1,1750  0,49554 1,18797

 1,6747  0,31276 1,786  1,42798 0,30971 0,42594

 1,49503 0,23075 1,8717  1,13521 1,988  0,22467

 1,12586 1,45284 1,39329 0,45058 0,14795 0,21120

 0,7786  1,43211 0,47655 0,42213 0,919  0,603  

0,4844  0,44923 1,29324 0,26292 1,31526 1,38097

 1,39819 0,30117 1,14208 1,27844 1,8361  1,16455

 1,5699  0,10670 1,1066  0,9039  1,6477  1,41170

 0,23504 1,32354 0,14280 1,36795 1,8732  1,46002

 1,4880  1,5637  1,21680 1,3496  1,3220  0,13282

 1,42670 0,11669 0,2716  1,49749 0,12437 0,42550

 0,27038 0,26790 1,44095 1,25674 0,4498  1,32206

 0,33123 0,9846  0,46190 0,20089 0,14060 1,28875

 1,16434 1,12575 1,47687 1,41433 0,16610 0,3411 

1,23633 1,17429 0,49681 1,25625 1,34155 0,33804

 0,21089 0,16647 1,3104  0,3843  1,7142  0,30193

 0,12695 1,28453 0,9115  0,25532 0,47722 1,47868

 1,49752 0,6476  1,41825 1,7631  0,14127 0,29127

 1,12805 0,48855 1,33911 0,41079 1,25483 1,39430

 0,1037  0,3297  0,16599 1,36036 0,15578 0,10091

 1,25578 0,23037 0,24073 1,16386 0,15490 1,1048 

0,19682 0,8798  0,26493 0,48889 1,7791  1,35987

 1,16638 1,45825 1,38057 0,30566 0,48228 0,38949

 1,47502 0,26137 1,22920 1,32430 1,7944  1,35589

 1,40867 1,47773 0,46838 1,44616 1,39286 1,39175

 0,42242 1,20480 1,22293 0,20389 0,23900 0,18555  



  

52 
 

Appendix 2 Sample Read most Input Trace 

0,47138 0,8885  0,46509 0,30725 1,15160 0,2460  

0,9807  0,46791 1,5087  0,11237 0,22932 0,37902

 0,6713  0,34922 0,4119  0,42689 0,25737 0,39402

 0,9355  0,10606 0,641  0,27320 0,38193 0,21972

 0,42518 0,10783 0,28314 1,1900  0,13867 0,39219

 0,46605 1,38017 0,46494 0,23527 0,38630 1,21176

 0,293  0,12907 0,39277 0,40610 0,7266  1,41366

 0,30769 1,8749  1,10029 0,1320  0,46614 0,41918

 0,26128 0,41673 0,19547 0,48693 0,37972 0,38947

 0,15954 0,3438  0,18472 0,16481 0,6566  0,9291 

0,43502 1,33032 0,3183  0,19948 0,6053  1,38512

 0,46694 0,33131 0,29974 0,19584 0,49468 1,24278

 0,17376 0,46130 0,4161  0,3133  0,45468 0,35567

 0,36470 0,24196 1,34021 0,39449 0,18771 0,19982

 0,26021 0,17350 0,44669 0,11232 0,2877  0,14913

 0,26197 0,37578 0,44932 0,27057 0,8577  0,21545

 1,19614 0,26010 0,31719 0,21978 0,9246  0,32690

 0,35125 0,29523 0,34981 1,3135  1,2971  0,1054 

0,15836 0,29720 0,39483 0,42668 0,23341 1,7058 

1,37083 0,5836  0,39234 0,30664 0,47423 0,48384

 0,49832 0,47732 0,6181  0,28049 0,20673 0,14815

 1,16584 0,35416 0,15178 1,22743 0,37824 0,20809

 0,43815 0,7992  1,22767 1,981  0,6349  0,22302

 0,1909  0,37810 0,24271 0,27349 0,21940 0,11289

 0,3186  0,14000 0,38546 1,20359 0,34039 0,3939 

 0,3492  0,44098 0,2151  0,17422 0,30562 1,24662

 0,23074 0,26344 1,31895 0,6416  0,48410 0,15522

 0,14390 0,34163 0,13073 0,19750 0,985  0,48011

 1,18012 0,11608 0,14481 0,34997 0,22648 0,26672

 0,15980 0,49335 1,34079 0,11814 0,31534 0,20259

 0,11874 0,45185 1,20792 0,39186 0,18681 0,24097

 0,8582  0,26107 1,11335 0,33248 0,31662 0,47539 



  

53 
 

Appendix 3 Sample Write most Input Trace 

1,12527 1,1216  1,698  1,35286 1,39722 1,25887

 1,45028 1,47558 1,44966 1,10018 1,41052 0,8011 

 1,42731 1,9714  1,39263 1,40196 1,6269  1,39623

 1,33031 1,1853  1,29107 1,5242  1,1010  1,28122

 1,35606 1,27792 1,19845 1,24155 1,20899 1,37819

 1,27592 1,1272  1,2536  1,35733 1,33645 1,37360

 1,13287 1,35073 1,24973 1,31865 1,7424  1,5993 

 1,8751  1,2237  1,39556 1,8440  1,35811 1,25015

 1,42880 1,12603 1,8230  1,45262 1,10924 0,40802

 1,24112 1,38237 1,31304 1,5412  1,43801 1,29898

 1,10638 1,47683 1,4487  1,44810 1,8571  1,9911 

 1,33896 0,35169 1,35950 1,9344  1,2859  1,32483

 1,2158  1,46525 1,32777 1,20380 0,25035 1,5188 

 1,6797  0,24879 1,8889  1,19975 1,8644  1,8494 

 1,17945 1,5175  1,29078 1,36322 1,46605 0,3722 

 1,23254 1,35573 1,44707 1,16353 1,23944 1,24724

 0,40235 1,9453  1,33001 1,23185 1,19468 1,4818 

 1,18662 1,14189 0,1378  1,16011 1,18092 1,36090

 1,37183 1,4364  1,33538 1,41008 1,19253 1,34763

 1,21453 1,5052  1,38178 1,39783 1,33887 1,46310

 1,2396  1,41563 1,18490 1,18554 1,46076 1,3812 

 1,46712 1,22442 0,15937 1,38230 1,45473 1,6945 

 1,24479 1,9632  1,21724 1,12421 1,20451 1,35388

 0,980  1,4486  1,47436 1,44968 1,42560 1,34505

 1,42484 1,8868  1,13237 1,45460 1,40381 1,46871

 1,18937 1,1389  1,22092 1,20688 1,30869 0,45818

 1,47306 1,3497  1,1803  1,6096  1,24012 1,43783

 1,7630  1,24744 1,47367 1,42187 1,43951 1,21302

 1,26076 1,12092 0,38106 1,21666 1,45645 1,12638

 1,5712  0,14779 1,33647 1,29306 1,20191 1,33315

 1,26443 1,11996 1,28139 1,18374 1,24340 1,26206

 1,6606  1,1590  1,16723 1,48509 1,29078 1,36414  



  

54 
 

Appendix 4 Sample zipf Input Trace 

1,8550  0,3609  1,654  1,17913 0,145  0,2550  

1,5970  0,2461  1,33806 0,17  0,1  0,17 

 0,1,370 0,159  0,10290  0,54  0,4  1,40078

 0,481  0,14300 0,1  0,16  0,18  1,1167   

0,7  1,27473 0,47  0,127  0,286  0,35  

 1,1  0,63  0,15  0,17  0,574  1,1815 

 0,173  0,6  0,9172  0,5565  1,69  1,7723 

 0,39491 0,2020  1,1  0,16  1,17217 1,3717 

 1,3294  1,31  1,40143 0,49198 0,15221 0,191 

 0,49491 1,2842  1,2797  0,25825 0,7165  1,40  

 0,3  1,47  0,6  0,8631  0,7375  0,9649 

 0,3530  0,21  1,508  1,8  0,16  1,20349 

 1,4506  1,279  1,111  0,1472  0,2768  0,36002

 0,168  0,631  0,50  0,44415 1,800  0,1847 

 0,1353  0,115  0,28497 1,2611  0,697  1,1728   

0,1  1,32  0,57  1,358  0,522  1,4 

 0,612  0,2599  1,2  1,5  0,47719 1,8 

 1,889  0,345  0,1136  0,242  1,10958 0,1178 

 0,17  1,3  1,20063 0,1992  0,4  1,7485 

 1,1406  0,168  1,87  1,602  0,1638  0,265 

 0,15042 1,42  0,16832 0,12  0,49373 0,2 

 1,2880  0,28  1,761  0,2  1,412  0,30 

 0,40  0,1244  0,146  1,9  0,30606 0,3  

1,2  1,327  0,27188 0,29109 0,4  0,22156

 0,145  1,11837 1,12173 1,41  0,49  0,11 

 1,1256  0,13969 1,18099 1,202  0,9684  0,31846

 0,1303  1,5233  1,109  0,35427 0,29287 0,2080 

 1,74  0,303  1,34  1,4342  1,172  1,46482 

0,4  1,30884 0,10994 0,1  1,36777 1,22311

 0,4502  1,104  0,2  0,2258  0,26534 0,10 

 1,1693  1,15000 1,890  0,14941 1,5200  1,89  

 



  

55 
 

Appendix 5 Source Code for LIRS-WSR Algorithm 

//LIRS WSR algorithm 

void LIRSWSR() 

{ 

   char ref_block[9],s[9]; 

   char r; 

   int i,j; 

   int flag; 

   struct node *temp,*newnode; 

   struct node *hold; 

     

   fseek(trace_fp,0, SEEK_SET);  

  

   fscanf(trace_fp,"%s",s); 

    while (!feof(trace_fp)) 

   { 

         

      for(i=0;i<9;i++) 

           ref_block[i] = '\0'; 

       if(s[0]=='1') 

            r='W'; 

       else 

           r='R'; 

      for(i=2,j=0;s[i]!='\0';i++,j++) 

           ref_block[j] = s[i]; 

      ref_block[j] = '\0';     

               

      flag =0; 

      total_pg_refs++; 

       

      for(i=1;i<=distinct_refs;i++) 

       { 

          if(strcmp(history[i],ref_block)==0) 

            { 

                    flag =1; 

                   break; 

            }  

        }   

      if(flag == 0) 

       { 

              distinct_refs++; 

              strcpy(history[distinct_refs],ref_block);        

       }        

       

  if(r=='W') 

      write_request++; 

                         

            // isin cache 

// Search for hit in LIRS Stack 

     temp= LIRS_stack_head; 



  

56 
 

     while(temp!=NULL) 

     { 

       flag =0;               

      if(strcmp(ref_block,temp->pn)==0) 

       { 

         if(temp->isHIR_block==0) 

         {                     

            if(r=='W') 

                  temp->r='W'; 

             move_to_LIRS_stack_head(temp); 

             temp->cold =0; 

             if(temp->LIRS_next == NULL) 

                  stack_prune(); 

                                                  

           } 

          else if(temp->isHIR_block==1) 

            { 

               if(temp->isResident ==1)  

               { 

                    if(r=='W') 

                            temp->r='W'; 

                    temp->cold =0; 

                    move_to_LIRS_stack_head(temp); 

                    remove_from_HIR_List(temp);  

                   while(LIRS_stack_tail->r=='W' && LIRS_stack_tail->cold==0) 

                       { 

                            move_to_LIRS_stack_head(LIRS_stack_tail); 

                            LIRS_stack_head->cold=1; 

                            stack_prune(); 

                       } 

                    add_to_HIR_List(LIRS_stack_tail); 

                    LIRS_stack_tail=LIRS_stack_tail->LIRS_prev; 

                    LIRS_stack_tail-> LIRS_next->LIRS_prev = NULL; 

                    LIRS_stack_tail->LIRS_next=NULL; 

                    stack_prune();                 

                 } 

                 else 

                 { 

                     num_pg_flt++;  

                     if(r=='W') 

                        temp->r='W'; 

                     else  

                        temp->r='R'; 

                     remove_HIR_tail();  

                         

                     move_to_LIRS_stack_head(temp); 

                     temp->cold=0; 

                     while(LIRS_stack_tail->r=='W' && LIRS_stack_tail->cold==0) 

                     { 

                          move_to_LIRS_stack_head(LIRS_stack_tail); 



  

57 
 

                          LIRS_stack_head->cold=1; 

                          stack_prune(); 

                      } 

                   add_to_HIR_List(LIRS_stack_tail); // move stack bottom to HIR list head 

                   LIRS_stack_tail=LIRS_stack_tail->LIRS_prev; 

                   LIRS_stack_tail->LIRS_next->LIRS_prev = NULL; 

                   LIRS_stack_tail->LIRS_next=NULL; 

                   stack_prune(); 

                 } 

             }  

            

           flag =1; 

           break;      

       } 

       temp=temp->LIRS_next; 

     } 

      if(flag == 1) 

       { 

                  fscanf(trace_fp,"%s",s); 

                 continue; 

        } 

      else // Not in stack 

      { 

                               

         // Search for hit in HIR Q   

          temp = HIR_list_head; 

         while(temp!= NULL) // hit in cache 

         { 

            flag=0;    

            if(strcmp(ref_block,temp->pn)==0) 

            {  

                if(r=='W') 

                   temp->r='W'; 

    move_to_head_HIR_List(temp); 

                add_LIRS_stack_head(temp); 

                flag=1; 

                break; 

            }    

             

            temp= temp->HIR_rsd_next; 

        } 

   }   

           if(flag == 1) 

          { 

                  fscanf(trace_fp,"%s",s); 

                  continue; 

       }  

       else 

       {  

           // printf("\ngenerates block miss */"); 



  

58 
 

           num_pg_flt++; 

           if (free_mem_size == 0) 

           { 

                    remove_HIR_tail(); 

                   

                     newnode = (struct node *) malloc(sizeof(struct node)); 

                     newnode->isHIR_block = 1; 

                     newnode->isResident  = 1; 

                     strcpy(newnode->pn,ref_block); 

                     newnode->recency = 1; 

                     newnode->LIRS_next = NULL; 

                     newnode->LIRS_prev = NULL;           

                     newnode->HIR_rsd_next = NULL; 

                     newnode->HIR_rsd_prev  = NULL; 

                     if(r=='W') 

                            newnode->r='W'; 

                     else  

                            newnode->r='R'; 

                     

                   if(newnode->r=='W') 

                    { 

                        add_LIRS_stack_head(newnode); 

                        newnode->isHIR_block = 0; 

                       while(LIRS_stack_tail->r=='W' && LIRS_stack_tail->cold==0) 

                          { 

                              move_to_LIRS_stack_head(LIRS_stack_tail); 

                              LIRS_stack_head->cold=1; 

                              stack_prune(); 

                           } 

                       add_to_HIR_List(LIRS_stack_tail);  

                       LIRS_stack_tail=LIRS_stack_tail->LIRS_prev; 

                       LIRS_stack_tail->LIRS_next->LIRS_prev = NULL; 

                       LIRS_stack_tail->LIRS_next=NULL; 

                       stack_prune();  

                    } 

                    else 

                    { 

                       add_to_HIR_List(newnode); 

                       add_LIRS_stack_head(newnode); 

                    }   

                     

                    fscanf(trace_fp,"%s",s); 

                     continue;  

                } 

                

         else if( free_mem_size> HIR_block_portion_limit) //to place page in LIR block 

            { 

                newnode = (struct node *) malloc(sizeof(struct node)); 

                newnode->isHIR_block = 0; 

                newnode->isResident  = 0; 



  

59 
 

                strcpy(newnode->pn,ref_block); 

                newnode->recency = 1; 

                newnode->LIRS_next = NULL; 

                newnode->LIRS_prev = NULL;           

                newnode->HIR_rsd_next = NULL; 

                newnode->HIR_rsd_prev  = NULL; 

                if(r=='W') 

                        newnode->r='W'; 

                else  

                        newnode->r='R'; 

                add_LIRS_stack_head(newnode); 

                free_mem_size--; 

                fscanf(trace_fp,"%s",s); 

                continue;  

                 

          } 

          else    //to place page in HIR block 

           { 

                newnode = (struct node *) malloc(sizeof(struct node)); 

                newnode->isHIR_block = 1; 

                newnode->recency = 1; 

                newnode->isResident = 1; 

                strcpy(newnode->pn,ref_block); 

                newnode->LIRS_next = NULL; 

                newnode->LIRS_prev = NULL;           

                newnode->HIR_rsd_next = NULL;                    

                newnode->HIR_rsd_prev  = NULL; 

                if(r=='W') 

                        newnode->r='W'; 

                else  

                        newnode->r='R'; 

                         

               if(newnode->r=='W') 

                { 

                      add_LIRS_stack_head(newnode); 

                      newnode->isHIR_block = 0; 

                      while(LIRS_stack_tail->r=='W' && LIRS_stack_tail->cold==0) 

                          { 

                              move_to_LIRS_stack_head(LIRS_stack_tail); 

                              LIRS_stack_head->cold=1; 

                              stack_prune(); 

                           } 

                       add_to_HIR_List(LIRS_stack_tail); 

                       LIRS_stack_tail=LIRS_stack_tail->LIRS_prev; 

                       LIRS_stack_tail->LIRS_next->LIRS_prev = NULL; 

                       LIRS_stack_tail->LIRS_next=NULL; 

                       stack_prune();  

                       free_mem_size--; 

                    } 

                 else 



  

60 
 

                 {    

                     add_LIRS_stack_head(newnode); 

                     add_to_HIR_List(newnode); 

                     free_mem_size--; 

                 }    

                

                 fscanf(trace_fp,"%s",s); 

                continue;  

            }  

          }         

  } //while closed 

         

   hold = LIRS_stack_head; 

   while(hold!=NULL) 

  { 

      if(hold->r=='W') 

                   write_count++; 

       hold=hold->LIRS_next;   

    }                   

 hold = HIR_list_head; 

             while(hold!=NULL) 

  { 

     if(hold->recency== 0 && hold->r=='W') 

            write_count++; 

      hold=hold->HIR_rsd_next;   

   }                 

}// End of LIRSWSR function 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

61 
 

Appendix 6 Source Code for AD-LRU algorithm 

 

//ADLRU algorithm 

void ADLRU() 

{ 

    

   char ref_block[9],s[15]; 

   char r; 

   int i,j; 

   int flag; 

   struct node * temp, * newnode; 

   struct node *hold;  

   fseek(trace_fp,0, SEEK_SET);  

    

   fscanf(trace_fp,"%s",s); 

   

   while (!feof(trace_fp)) 

   { 

       for(i=0;i<15;i++) 

        ref_block[i] = '\0'; 

         

      if(s[0]=='1') 

         r='W'; 

      else 

         r='R'; 

      for(i=2,j=0;s[i]!='\0';i++,j++) 

         ref_block[j] = s[i]; 

    ref_block[j] = '\0';     

    total_pg_refs++; 

    flag =0;   

    for(i=1;i<=distinct_refs;i++) 

       { 

          if(strcmp(history[i],ref_block)==0) 

            { 

               flag =1; 

               break; 

            }   

        }   

      if(flag == 0) 

       { 

              distinct_refs++; 

              strcpy(history[distinct_refs],ref_block);        

       }        

      if(r=='W') 

        write_request++; 

      

     // is in hot LRU or not 

      temp = HOT_lru_head; 

      while(temp!=NULL) 

      { 



  

62 
 

           flag =0; 

          if(strcmp(temp->pn,ref_block)==0) 

          { 

              if(r=='W') 

                  temp->r='W'; 

              if(temp->reference ==0) 

                 temp->reference=1;   

            

              move_to_head_of_hotq(temp); 

              adjust_Hot_FC();  

              flag = 2; 

              break; 

          }  

           

            temp= temp->next; 

      } // while closed 

             

      if(flag==2) 

       { 

                fscanf(trace_fp,"%s",s); 

                 continue; 

       }  

       else 

       {  

         temp = COLD_lru_head; 

          while(temp!=NULL) 

          { 

             flag =0; 

             if(strcmp(temp->pn,ref_block)==0) 

             { 

                 if(r=='W') 

                    temp->r='W'; 

                                 

                 if(temp->reference ==0) 

                    temp->reference=1;   

            

                remove_from_coldq(temp);  

                add_to_head_of_hotq(temp); 

                adjust_Cold_FC(); 

                cold_counter--;   

                  flag = 3; 

                    break; 

              }  

           

            temp= temp->next; 

         } // while closed 

       }  // else closed 

    if(flag == 3) 

     { 

               fscanf(trace_fp,"%s",s); 



  

63 
 

                 continue; 

     }  

     else 

     { 

                // printf("\ngenerates block miss */"); 

             num_pg_flt++; 

                        

             if (free_mem_size >0)  // there is space in buffer 

             { 

                            

                newnode = (struct node *)malloc(sizeof(struct node));   

                strcpy(newnode->pn,ref_block);  

                newnode->cold=1; 

                newnode->reference =1; 

                newnode->prev = NULL; 

                newnode->next = NULL; 

                 if(r=='W') 

                     newnode->r='W'; 

                else  

                     newnode->r='R';               

                add_to_head_of_coldq(newnode);  

                cold_counter++; 

                free_mem_size--; 

                 

             } 

            else    //memory full 

            { 

                newnode = (struct node *)malloc(sizeof(struct node));   

                strcpy(newnode->pn,ref_block);  

                newnode->cold=1; 

                newnode->reference =1; 

                newnode->prev = NULL; 

                newnode->next = NULL;    

                if(r=='W') 

                     newnode->r='W'; 

               else  

                     newnode->r='R';  

                if(cold_counter>COLD_MIN_limit) 

                       select_victim_from_coldq();  

                 else 

                      select_victim_from_hotq(); 

                add_to_head_of_coldq(newnode); 

                cold_counter++; 

              } 

            fscanf(trace_fp,"%s",s); 

   }  // else closed 

     } // while closed    

   while(HOT_lru_head!=NULL) 

  { 

      



  

64 
 

     if(HOT_lru_head->r=='W') 

        { 

          write_count++; 

            

         } 

      hold = HOT_lru_head; 

      HOT_lru_head= HOT_lru_head->next;  

      free(hold);   

   }                   

   

   while(COLD_lru_head!=NULL) 

  { 

     if(COLD_lru_head->r=='W') 

        { 

          write_count++; 

         } 

        hold= COLD_lru_head; 

       COLD_lru_head= COLD_lru_head->next;   

       free(hold);  

   }                   

} // end of ADLRU function 
 

 


