

Tribhuvan University

Institute of Science and Technology

Predicting Sentence Using N-Gram Language Model For Nepali Language

Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science and Information Technology

by

Ananda K.C.

December, 2012

Tribhuvan University

Institute of Science and Technology

Predicting Sentence Using N-Gram Language Model For Nepali Language

Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science and Information Technology

by

Ananda K.C.

December, 2012

Supervisor

Prof. Dr. Shashidhar Ram Joshi

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the

listed here have been used in this work.

… … … … … … …

Ananda K.C.

December, 2012

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor’s Recommendation

We hereby recommend that this dissertation prepared under our supervision by Mr. Ananda

K.C. entitled “Predicting Sentence Using N-Gram Language Model For Nepali

Language” be accepted as partial fulfillment of the requirements for the degree of M. Sc. in

Computer Science and Information Technology. In our best knowledge this is an original

work in computer science.

…………………………..

Prof. Dr. Shashidhar Ram Joshi

Department of Electronics and Computer Engineering

Tribhuvan University

Institute of Engineering

Pulchowk

 (Supervisor)

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope

and quality as a dissertation in the partial fulfillment for the requirement of Master’s Degree

in Computer Science and Information Technology.

Evaluation Committee

…………………………..

Prof. Dr. Shashidhar Ram Joshi
Department of Electronics and Computer Engineering

Tribhuvan University

Institute of Engineering

Pulchowk

 (Supervisor)

…………………………..

Assoc. Prof. Dr. Tanka Nath Dhamala

Head of Department (HOD)
Central Department of Computer Science and

Information Technology (CDCSIT)

Tribhuvan University

Kirtipur

(External Examiner)

(Internal Examiner)

i

ACKNOWLEDGEMENT

The journey of this research and my study would have not been possible without cooperation,

warm support and company of many others.

I would like to extent my, first and foremost, gratitude and sincerest thanks to my respected

Supervisor Prof. Dr. Shashidhar Ram Joshi, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk for his impressive tutelage, constructive

criticism and intellectual support bestowed for me sacrificing his invaluable time . His crucial

role to make this report culminate is indescribable.

I would like to express my gratitude to the respected teachers and others staffs of Central

Department of Computer Science and Information Technology (CDCSIT) for granting me

broad knowledge and inspirations within the time period of two years.

I am tremendously grateful to Mr. Tej Shahi for providing the supportive environment to

conduct this research and for his sharp insights, constructive comments and tireless guidance

during the research and for the whole study period.

I would like to thank Dr. Keith Trnka (PhD graduate in Computer and Information Sciences

from the University of Delaware), Dr. Andreas Stolcke (Principal Researcher at

Conversational Systems Lab at Microsoft in Mountain View) for their continuous support and

encouragement during the entire course of the dissertation.

My two years at CDCSIT were golden due to company of entire classmates who have

supported me whenever I was in need of their help and co-operation.

Love, affection, benevolence and inspiration from my family members have always

enlightened my life to achieve those miracles those I couldn’t even have thought of it.

Without them, I would never have been what I am now. Thank you my little brother Bibek

for always being behind with me and ready to help in any moments and my sisters Bhawana,

Kamana and Anjana for your wonderful love, unconditional support and inspiration who have

helped me to pave the path for successful journey in my academic pursuits.

Ananda K.C.

kcananda@gmail.com

December, 2012

http://www.cis.udel.edu/
http://www.udel.edu/
mailto:kcananda@gmail.com

ii

ABSTRACT

Sentence completion is a real time ubiquitous feature directed to predict a succeeding

words sequence, an appropriate completion of a given initial text fragment. Sentence

completion able a user to retrieve desired information with little knowledge over

exact keywords and with least typing efforts. Under statistical method, this work will

deal with N-gram method to predict the remaining part of sentence for Nepali language

using Viterbi as a decoding algorithm. By analyzing the result of this work, Trigram

Prediction Model is more accurate than Bigram Prediction Model. To get the best result,

this work recommends taking a large corpus with sufficient repetition of words.

iii

TABLE OF CONTENTS

LIST OF FIGURES .. v

LIST OF TABLES .. vi

LIST OF ABBREVIATION ... vii

1 INTRODUCTION .. 1

1.1 Introduction ... 1

1.1.1 The Challenge of Natural Language Processing ... 1

1.1.2 Areas of Natural Language Processing .. 2

1.1.2.1 Natural Language Understanding (NLU) .. 2

1.1.2.2 Natural Language Generation (NLG) ... 2

1.2 Motivation .. 2

1.3 Sentence Completion ... 3

1.4 Objectives ... 4

1.5 Organization of Thesis .. 4

2 BACKGROUND AND PROBLEM DEFINITION .. 5

2.1 Background ... 5

2.1.1 Natural Language Processing ... 5

2.1.2 Levels of Natural Language Processing ... 5

2.1.2.1 Phonology ... 5

2.1.2.2 Morphology ... 6

2.1.2.3 Lexical ... 6

2.1.2.4 Syntactic .. 6

2.1.2.5 Semantic ... 7

2.1.2.6 Discourse ... 7

2.1.2.7 Pragmatic .. 7

2.1.3 Approaches to Natural Language Processing.. 7

2.1.3.1 Symbolic (Knowledge-Based) ... 7

2.1.3.2 Statistical (Stochastic) .. 8

2.1.3.3 Connectionist Approach ... 8

2.1.4 Major Application of Natural Language Processing .. 8

2.1.5 Corpus linguistics ... 9

2.1.6 Statistical NLP .. 10

iv

2.1.7 N-Gram ... 10

2.1.7.1 Bigram... 11

2.1.7.2 Trigram ... 12

 2.2 Problem Definition .. 12

3 LITERATURE REVIEW .. 14

3.1 Literature Review and Related Works ... 14

4 IMPLEMENTATION ... 18

4.1 Framework for Sentence Completion ... 18

4.1.1 Preprocessing Step ... 19

4.2 Bigram/Trigram Language Model using Backoff Smoothing .. 19

4.3 Viterbi Algorithm .. 21

4.3.1 Tracing of the Viterbi algorithm .. 23

4.4 SRILM ... 28

4.5 JAVA Programming Language ... 31

5 TESTING AND ANALYSIS ... 33

5.1 Nepali Corpus Data Statistics .. 33

5.2 Training and Testing Data ... 33

5.3 Input and Output .. 35

5.3.1 Snapshot of the output of the trigram and bigram model .. 38

5.4 Analysis of the Prediction Model ... 40

5.4.1 Calculation of Precision, Recall And F-Score of Bigram Prediction Model 40

5.4.2 Calculation of Precision, Recall and F-Score of Tri-gram Prediction Model 41

5.4.3 Comparison between Bigram and Trigram Prediction Model .. 41

5.5 Discussion of the Result .. 41

6 CONCLUSION AND RECOMMENDATION ... 43

6.1 Conclusion ... 43

6.2 Recommendation ... 43

References .. 44

Appendix .. 47

v

LIST OF FIGURES

Figure 2.1: Types of Data for Linguistic Analysis...9

Figure 3.1: Combination of Multiple Experts..16

Figure 4.1: Framework for Sentence Completion..19

Figure 4.2: Vocab Prepossessing...20

Figure 4.3: Corpus Prepossessing..20

Figure 4.4: Unigram Model..30

Figure 4.5: Bigram Model..30

Figure 4.6: Trigram Model...31

Figure 5.1: Corpus Sample...33

Figure 5.2: Snapshot of Bigram Output...38

Figure 5.3: Snapshot of Trigram Output..39

Figure 5.4: Comparison between Bigram and Trigram Prediction Model............................41

vi

LIST OF TABLES

Table 4.1: Transition Matrix of 8 words from corpus..23

Table 4.2: Viterbi Matrix Initialization..24

Table 4.3: Backtrack Matrix Initialization...24

Table 4.4:1st Iteration to find Viterbi Matrix..24

Table 4.5: Viterbi matrix-After 1st recursion..25

Table 4.6: Backtrack Matrix after 1st recursion..25

Table 4.7:2nd Iteration to find Viterbi Matrix...25

Table 4.8: Viterbi Matrix-After 2st recursion... ..26

Table 4.9: Backtrack Matrix after 2nd recursion...26

Table 4.10:3rd Iteration to find Viterbi matrix..26

Table 4.11: Viterbi matrix-After 3rd recursion ..27

Table 4.12: Backtrack Matrix after 3rd recursion ...27

Table 4.13: Final Viterbi Matrix...27

Table 4.14: Final Backtrack Matrix..27

Table 5.1: Test Data..33-35

Table 5.2: Input and Output of the Prediction Model...35-37

vii

LIST OF ABBREVIATION

NLU Natural Language Understanding

NLP Natural Language Processing

NLG Natural Language Generation

IOLA Ideal On-line Learning Algorithm

HMM Hidden Markov Model

SLM Statistical language modeling

LM Language Model

MLE Maximum Likelihood Estimation

SRILM Stanford Research Institute Language Modeling

JVM Java Virtual Machine

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Natural Language Processing (NLP) is meant for any attempt that helps the machine to

understand the natural language and to generate the natural language. While researching

NLP, it is to be considered that there are different types of language involved. Two different

types of language can be distinguished : formal language and natural language[1].

Formal Language

Now, a formal language can be defined as a set of strings, this definition is too general to

distinguish it from natural language. However, formal language does possess the property of

being defined in a strict way. All sentences that are defined in such a formal language should

meet the requirements as set in the definition of the language. This ensures that every

sentence is set up in a standard way, which creates the possibility for computers to process

these sentences.

Natural Language

Natural languages are the ones which mostly used by people to communicate. Although

natural languages can differ a lot, they all share the same property of being natural. This is

because these languages are not strictly bound by definitions, and so there is a natural aspect

about them. For example, there are lots of pieces of language that are never used on paper,

but are heavily used as spoken language in daily life violating the standards set by rules of

grammar.

1.1.1 The Challenge of Natural Language Processing

Because sentences of natural language are not set up in a standard, it is very difficult for

computers to understand what such a sentence states. Computers are only capable of

processing language following a standard pattern. Therefore, in order to understand natural

language, computers must somehow translate the natural language sentences into formal

language sentences. Exactly that is the challenge which inspires scientists to research these

issues within the field of natural language processing.

2

1.1.2 Areas of Natural Language Processing

In this section the different areas that are part of the broader term NLP are discussed. Natural

language understanding is the subject of Section 1.1.2.1 whereas Natural language generation

is of Section 1.1.2.2.

1.1.2.1 Natural Language Understanding (NLU)

Within the field of NLP, natural language understanding can be identified, which according

to [9] is associated with the more ambitious goal of having a computer system actually

comprehend natural language as a human being might or closer. Therefore the term NLU is

used for the translation of human language into a format that is analyzable.

1.1.2.2 Natural Language Generation (NLG)

NLG can be defined as the subfield of artificial intelligence and computational linguistics that

is concerned with the construction of computer systems that can produce understandable texts

in English or other human languages from some underlying nonlinguistic representation of

information[2].

Each sentence in formal language is formulated in a structured and standardized way. NLG

can play an important role in the process of making a person understand these formal

languages, by translating it into a language the person can understand.

1.2 Motivation

Sentence completion had been a vast research area for many other languages but due to

technological and resources limitation, it is a new but with much vast scope in Nepali

language. The usefulness and prospect of the NLP research in Government offices had

initially intrigued me. Various minor but time consuming works in offices like letter typing,

interacting with owns data warehouse, etc. can drastically increase the effectiveness and

efficiency of available resources.

Another scope of Sentence completion lies within medical sciences. Various neurological

disorders like ―Motor Aphasia‖ in which a person cannot verbalize his/her thought can be

benefitted from such research greatly improving life quality.

3

Sentence completion can be a milestone in various language processing aspects like grammar

checking, machine level understanding etc. As sentence completion presents itself with many

interesting and real life scopes, I am motivated to contribute in the understanding and

research of this area.

1.3 Sentence Completion

Sentence prediction, a ubiquitous feature, is directed to predict which words sequence is

likely to succeed given initial text fragment. It is a real time feature of returning appropriate

completion. Sentence completion ables a user to retrieve desired information with little

knowledge over exact keywords and with least typing efforts.

Not surprisingly, sentence prediction has found wide adoption as a feature in a variety of

application. This feature is available today in program editors such as Visual Studio,

command shells such as the Unix Shell, search engines such as Google, Yahoo and Desktop

search. Sentence completion is also gaining popularity for mobile devices since it can assist

the users in keying in contacts and text messages [3].

Consider a user wants to type ―मगुकवि बनेय‖ the system may suggest ―कसराई चचननन्छ”. By

suggesting words in any given context, word completion can assist in fast composition of

well-formed text.

There are different methods for sentence prediction such as Graph completion method,

Information retrieval method, Confabulation method, Statistical method, etc. Under statistical

method, this work will deal with N-gram method to predict the remaining part of sentence for

Nepali language.

The premise behind using N-gram language models for sentence prediction is the idea that a

word is primarily dependent on previous few words. In sentence prediction, when a sequence

of words is seen, the N-gram model raises the question ―What words have I seen in training

that followed these ones?‖ To do this, an N-gram model is built from some training data by

recording how often each word follows a sequence of words. The number of words in the

prior sequence determines the order of the N-gram model. If only the previous two words are

considered, then it is called a trigram model. Similarly, for one word it is called a bigram

model and a model that ignores the previous word is called a unigram model[4].

4

1.4 Objectives

The objectives of this work are

 To predict succeeding text fragment for sentence completion using N gram Statistical

method with backoff smoothing.

 To analyze and compare the performance of backoff smoothed bigram and trigram

language model with Viterbi algorithm.

1.5 Organization of Thesis

The rest of this thesis is organized as: Chapter 2 gives a brief discussion of basic concept

related to this work, Chapter 3 is a survey of the major existing solution of sentence

completion problem, Chapter 4 details the implementation of the Sentence completion using

Smoothing Bigram/Trigram model using Katz backoff smoothing with Viterbi Algorithm,

Chapter 5 presents Sentence completion results, and Chapter 6 concludes the thesis,

summarizing its achievements and recommendations.

5

CHAPTER 2

BACKGROUND AND PROBLEM DEFINITION

2.1 Background

2.1.1 Natural Language Processing

NLP began in the 1950s as the intersection of artificial intelligence and linguistics originally

distinct from text information retrieval (IR), which employs highly scalable statistics-based

techniques to index and search large volumes of text efficiently. With time, however, NLP

and IR have converged somewhat and also other various diverse fields.

The aim of NLP is studying problems in the automatic generation and understanding of

natural language. A Natural Language is any of the languages naturally used by humans, i.e.

not an artificial or machine language such as a programming language like C language, Java,

Perl etc. Cognitive and linguistic motivation is to gain a better insight into how humans

communicate using natural language. Technologically it is motivating to build intelligent

computer systems such as machine translation systems, natural language interfaces to

databases, man-machine interface to computers in general, speech understanding systems,

text analysis and understanding systems, computer aided instruction systems, systems that

can read and understand printed or handwritten text.

2.1.2 Levels of Natural Language Processing

The most clarifying method for presenting what actually happens within a Natural Language

Processing system is by concept of the ―levels of language‖ approach, also referred to as the

synchronic model of language distinguished from the earlier sequential model, which

hypothesizes that the levels of human language processing follow one another in a strictly

sequential manner[5].

2.1.2.1 Phonology

Phonology is a branch of linguistics concerned with the systematic organization of sounds in

languages. Classically it has focused largely on study of the systems of phonemes in

particular languages, but it may also cover any linguistic analysis either at a level beneath the

word or at all levels of language where sound is considered to be structured for conveying

http://en.wikipedia.org/wiki/Linguistics
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Language
http://en.wikipedia.org/wiki/Linguistic_analysis
http://en.wikipedia.org/wiki/Sound

6

linguistic meaning. Phonology also incorporates the study of equivalent organizational

systems in sign languages[6].This level deals with the interpretation of speech sounds within

and across words. In an NLP system that accepts spoken input, the sound waves are analyzed

and encoded into a digitized signal for interpretation by various rules or by comparison to the

particular language model being utilized[7].

2.1.2.2 Morphology

This level deals with the componential nature of words, which are composed of morphemes –

the smallest units of meaning. For example, the word preregistration can be morphologically

analyzed into three separate morphemes: the prefix ―pre‖, the root ―registra‖, and the suffix

―tion‖. Since the meaning of each morpheme remains the same across words, an unknown

word can be broken down into its constituent morphemes so that humans can understand its

meaning. Similarly, an NLP system can recognize the meaning conveyed by each morpheme

in order to gain the meaning. For example, adding the suffix –ed to a verb, conveys that the

action of the verb occurred in past[5].

2.1.2.3 Lexical

At this level, NLP systems, interpret the meaning of individual words. Several types of

processing contribute to word-level understanding – the first of these being assignment of a

single part-of-speech tag to each word. In this processing, words that can function as more

than one part-of-speech are assigned the most probable part-of-speech tag based on the

context in which they occur. Additionally at the lexical level, those words that have only one

possible sense or meaning can be replaced by a semantic representation of that meaning. The

nature of the representation varies according to the semantic theory utilized in the NLP

system[5].

2.1.2.4 Syntactic

This level specializes on analyzing the words in a sentence so as to uncover the grammatical

structure of the sentence. This requires both a grammar and a parser. The output of this level

of processing is a representation of the sentence that shows the structural dependency

relationships between the words. There are several grammars that can be utilized, and which

will, in turn, impact the choice of a parser.

http://en.wikipedia.org/wiki/Linguistic_meaning
http://en.wikipedia.org/wiki/Sign_language

7

2.1.2.5 Semantic

This is the level at which most people think meaning is determined, however, as it can be

seen in the above defining of the levels, it is all the levels that contribute to meaning.

Semantic processing determines the possible meanings of a sentence by focusing on the

interactions among word-level meanings in the sentence.

2.1.2.6 Discourse

As syntax and semantics work with sentence-length units, the discourse level of NLP works

with units of text longer than a sentence meaning it does not interpret multi-sentence texts as

just concatenated sentences, but each can be interpreted singly. Rather, discourse specializes

on the properties of the text as a whole that convey meaning by making connections among

component sentences.

2.1.2.7 Pragmatic

The level is to explain how extra meaning is read into texts without being actually encoded in

them. The purposeful use of language in situations is concerned .Above the contents of the

text are used for understanding requiring a lot of world knowledge. Knowledge bases and

inferencing modules are utilized in some NLP applications.

2.1.3 Approaches to Natural Language Processing

Natural language processing approaches fall roughly into four groups: symbolic, statistical,

connectionist, and hybrid. Symbolic and statistical approaches have coexisted since the

beginning. Connectionist NLP work first appeared in the 1960’s. For a long time, symbolic

approaches dominated the field. In the 1980’s, statistical approaches regained popularity as a

result of the availability of critical computational resources and the need to deal with broad,

practical contexts. Connectionist approaches also recovered from earlier criticism by

demonstrating the utility of neural networks in NLP.

2.1.3.1 Symbolic (Knowledge-Based)

Based on explicit representation of facts about language through well-understood knowledge

representation schemes and associated algorithms [8] symbolic approaches is seen in logic or

rule-based systems. In logic-based systems, the symbolic structure is commonly in the form

of logic propositions. Manipulations of such structures are defined by inference procedures

8

that are generally truth preserving. Rule-based systems usually consist of a set of rules, an

inference engine, and a workspace or working memory. Knowledge is represented as facts or

rules in the rule-base. The inference engine repeatedly identifies a rule whose condition is

satisfied and executes the rule.

2.1.3.2 Statistical (Stochastic)

Stochastic models ability is to work well even in the presence of incomplete linguistic

knowledge about an application domain. Such models thrive on the inherent inflexibility and

fragility of symbolic models, which stem from our lack of complete understanding of many

linguistic phenomena – an essential prerequisite to developing successful symbolic

models[8].A frequently used statistical model is the Hidden Markov Model (HMM) inherited

from the speech community. Statistical approaches have typically been used in works such as

speech recognition, parsing, part-of-speech tagging, collocations, statistical machine

translation, statistical grammar learning, and lexical acquisition.

2.1.3.3 Connectionist Approach

Similar to the statistical approaches, connectionist approaches also develop generalized

models from examples of linguistic phenomena. What separates connectionism from other

statistical methods is that it combines statistical learning with various theories of

representation – thus the connectionist representations allow transformation, inference, and

manipulation of logic formulae. In addition, in connectionist systems, linguistic models are

difficult to observe due to the fact that connectionist architectures are less constrained than

statistical ones[9].

2.1.4 Major Application of Natural Language Processing

The following is a list of some of the most commonly researched tasks in NLP. Some of these

tasks have direct real-world applications, while others more commonly serve as subtasks that

are used to aid in solving larger tasks. What distinguishes these tasks from other potential and

actual NLP tasks is not only the volume of research devoted to them but the fact that for each

one there is typically a well-defined problem setting, a standard metric for evaluating the

task, standard corpora on which the task can be evaluated, and competitions devoted to the

specific task.

 Part-of-speech tagging

 Information retrieval

http://en.wikipedia.org/wiki/Corpora

9

 Machine translation

 Morphological segmentation

 Question answering

 Relationship extraction

 Sentiment analysis

 Speech segmentation

 Word segmentation

 Word sense disambiguation

 Natural language generation

 Machine translation

 Named entity recognition

 Automatic summarization

 Discourse analysis

2.1.5 Corpus linguistics

Corpus linguistics is a method of carrying out linguistic analyses. It can be used for the

investigation of many kinds of linguistic questions. Also as it has been shown to have the

potential to yield highly interesting, fundamental, and often surprising new insights about

language, it has become one of the most wide-spread methods of linguistic investigation in

recent years. Corpus linguistics thus is the analysis of naturally occurring language on the

basis of computerized corpora. Usually, the analysis is done with the help of the computer,

i.e. with specialized software, and takes into account the frequency of the phenomena

investigated. Roughly, four types of data for linguistic analysis can be distinguished.

Data gained by intuition

The researcher’s own intuition

(―introspection‖)

Other people’s (―informant’s‖) intuition

Naturally occurring language

Randomly collected texts or occurrences

(―anecdotal evidence‖)

Systematic collections of texts (―corpora‖)

Figure 2.1: Types of data for linguistic analysis

A corpus can be defined as a systematic collection of naturally occurring texts. ―Systematic‖

means that the structure and contents of the corpus follows certain extra linguistic principles.

http://en.wikipedia.org/wiki/Machine_translation
http://en.wikipedia.org/wiki/Morphology_%28linguistics%29
http://en.wikipedia.org/wiki/Question_answering
http://en.wikipedia.org/wiki/Relationship_extraction
http://en.wikipedia.org/wiki/Sentiment_analysis
http://en.wikipedia.org/wiki/Speech_segmentation
http://en.wikipedia.org/wiki/Word_segmentation
http://en.wikipedia.org/wiki/Word_sense_disambiguation
http://en.wikipedia.org/wiki/Automatic_summarization
http://en.wikipedia.org/wiki/Discourse_analysis

10

For example, a corpus is often limited to certain text types, to one or several varieties of

Nepali, and to a certain time span.

2.1.6 Statistical NLP

Statistical language Modeling (SLM) is the attempt to capture regularities of natural language

for the purpose of improving the performance of various natural language applications. By

and large, statistical language modeling amounts to estimating the probability distribution of

various linguistic units, such as words, sentences, and whole documents. Statistical language

modeling is crucial for a large variety of language technology applications. These

incorporates speech recognition, machine translation, document classification and routing,

optical character recognition, information retrieval, handwriting recognition, spelling

correction, and many more[10].The use of statistical methods to natural language processing

has been strikingly successful over the past two decades. The wide availability of text and

speech corpora has played a major role in their success since, as for all learning techniques,

these methods heavily rely on data. Many of the components of complex natural language

processing systems, e.g., text normalizers, morphological or phonological analyzers, part-of-

speech taggers, grammars or language models, acoustic Hidden-Markov Models (HMMs),

pronunciation models, and context dependency models are statistical models derived from

large datasets using modern learning techniques. These models are often given as weighted

automata or weighted finite-state transducers either directly or as a result of the

approximation of more complex models.

In the current literature on natural language processing (NLP), a distinction is often made

between ―rule-based‖ and ―statistical‖ methods for NLP. However, it is seldom made clear

what the terms ―rule-based‖ and ―statistical‖ really refer to in this connection otherwise it is

said to be stochastic. Furthermore, a stochastic model is said to be probabilistic or statistical,

if its representation is from the theories of probability or statistics, respectively.

2.1.7 N-Gram

Probabilities are based on counting things. Counting of things in natural language is based on

a corpus (plural corpora), an on-line collection of text or speech. The goal is to compute the

probability of the given word ―w‖ with given some history ―h‖. If the history is ―जेठ चौधभा

सॊविधान जायी‖ then the probability the next word is ―हुन‖ is

11

 (हुन|जेठ चौधभा सॊविधान जायी)

(2.1)

One way to estimate the probability is from relative frequency counts. From the very large

corpus count the no of times ―जेठ चौधभा सॊविधान जायी‖ and ―जेठ चौधभा सॊविधान जायी

हुन‖ occurred. The probability is calculated as

 (हुन|जेठ चौधभा सॊविधान जायी)

 जेठ चौधभा सॊविधान जायी हुन

 जेठ चौधभा सॊविधान जायी

(2.2)

While this method of estimating probabilities directly from counts works fine in many cases,

it turns out that even the corpus isn’t big enough to give us good estimates in most cases. This

is because language is creative; new sentences are created all the time, and this won’t always

be able to count entire sentences. A sequence of N words is represented

as or
 .For the joint probability of each word in a sequence having a

particular value, this work will use P . Now the probability of the entire

sequence is calculated by using the chain rule of probability as

 = | |
 |

 (2.3)

 ∏ (|

)

The intuition of the N-gram model is that instead of computing the probability of a word

given its entire history, the history is approximated by just the last few words. Thus the

general equation for this N-gram approximation to the conditional probability of the next

word in a sequence is

 |
 |

 (2.4)

2.1.7.1 Bigram

The bigram model approximates the probability of a word given all the previous words

 |
 by the conditional probability of the preceding word | .Given the

bigram assumption for the probability of an individual word, the probability of a complete

word sequence can be calculated using equation 2.3 as

12

 |

 ∏ |

(2.5)

The simplest and most intuitive way to estimate probabilities is called Maximum Likelihood

Estimation (MLE). For the general case of MLE, N-gram parameter estimation

 |

(2.6)

So for the bigram model the probability is derived from equation 2.6 as

 |

(2.7)

2.1.7.2 Trigram

The trigram model approximates the probability of a word given all the previous words

 |
 by the conditional probability of the preceding two words

 | .Given the bigram assumption for the probability of an individual word,

the probability of a complete word sequence can be calculated using equation 2.3 as

 |

 ∏ |

(2.8)

So, for the trigram model the probability is calculated from equation 2.6 as

 |

(2.9)

2.2 Problem Definition

If we have given the text fragment the problem is to find the most

likely word sequence to complete the sentence for the given text

fragment.

Sentence prediction facilitates text entry by suggesting sequence of words. If the desired text

fragment is suggested, the user can select with a mouse click or a keystroke, thereby saving

the effort of typing the remaining words. Otherwise, the user can continue typing while the

software continues to display new sequence of words based on the input.

13

Sentence completion in search is one of the most popular features to be found in wide

variety of application environments. As the user searches for the text, suggestions

based on typed content are returned[11].For example when the user types “जेठ चौधभा”

then text fragment “सॊविधान जायी हुन सकेन” is given by the system for sentence completion.

 It has been widely adopted in text & code editors, and in almost every possible browsing

Graphical User Interfaces (GUIs), -where user tries to input information. In absence of

Sentence completion, a user would either type entire string or part of it which may or

may not return the desired results[12].

It is also used by human translator who will choose a given foreign sentence[13, 14].In

translation from English to Nepali such as ―I love my mother.‖ After a user writes ―भ भेयो

आभाराई‖ then ―भामा गछुु‖ option should be provided. Then the user will select the right one.

The sentence prediction also assist user in search engine[3, 12].When the user types ―नेऩारभा

कम्प्मुटयको‖ then the sentence completion system provides ―कनत ऩछु‖.Also when the user is

typing, it can save time to type the remaining words. For example: when the input is

―भुनाभदनका रेखक‖ then the purposed system gives the word ―रक्ष्भी प्रसाद देिकोटा हुन‖्

then it can save time and also typing effort. Also for the user with little knowledge of Nepali

language, this feature can assist by providing possible succeeding words for completion.

14

CHAPTER 3

LITERATURE REVIEW

3.1 Literature Review and Related Works

Through analysis of the predictability of sequence of letters, it was revealed that written

English has a high degree of redundancy[15]. The ordinary literary English has long range

statistical effects which reduce the entropy to something of the order of one bit per letter,

with a corresponding redundancy of roughly 75% [15]. In addition, their redundancy may be

still higher when structure extending over paragraphs, chapters, etc. is considered. The

parameters in question become more erratic and uncertain with the increased in lengths and in

turn they depend more critically on the type of text involved. Therefore, based on this

finding, it is obvious to ask whether the system can support users in the process of writing

text which predict the intended next words, keystroke or sentence [13].

It has been studied that ―Interactive keyboard‖ uses the sequence of past keystrokes to predict

the most likely succeeding keystroke [16].This approach[16] of keystrokes was determined

statistically. After that, almost all of the predictive models developed.

Normally, the Statistical methods imply words based on:

a) Frequency, either in the context of relevant corpora or what the user has typed in the past;

or

b) Recently, where suggested words are those the user has most recently typed.

This method has its own shortcomings but it reduces keystrokes and increase efficiency.

Though it was designed for general purpose, this computer interface has great scope to

enhance the ease and rate of communication especially for physically limited people.

Identifying user-dependent information, which can be automatically collected, helps to build

a user model by which

a) To predict what the user wants to do next and

b) To do relevant processing

15

This information is often relational which can be best represented by a set of directed graphs.

A machine learning technique called graph-based induction (GBI) efficiently extracts

regularities from such data. Based on which a user-adaptive interface is built which can

predict next command, generate scripts and pre fetch files in a multi task environment. The

core of GBI is pair wise chunking. This approach shows how this simple mechanism can be

applied to the top down induction of decision tress for nested attribute representation as well

as finding frequently occurring patterns in a graph. The results, activated by the user

commands, show that the dependency analysis of computational processes is really useful to

build a behavior model and increase prediction accuracy[17].

The approach[18] where the recent actions strongly affect future actions than older actions

propose the following description of an Ideal On-line Learning Algorithm (IOLA). In order to

contain the desirable characteristics of the best algorithms, an IOLA would:

a) Have predictive accuracy at least as good as the best known resource-unlimited methods,

b) Operate incrementally,

c) Be affected by all events,

d) Not need to retain a copy of the user’s full history of actions,

e) Output a list of predictions, sorted by confidence,

f) Adapt to changes to the target concept,

g) Be fast enough for interactive use,

h) learn by passively watching and

i) Apply even in the absence of domain knowledge.

This approach[19] has discover a variety of techniques to improve its accuracy, including a

―mixture of experts‖ model as shown in figure 3.1.

16

Figure 3.1: Combination of Multiple Experts[19]

On a series of experiments with real world data, this approach show

a) Within 50% of the time, the simple system can correctly predict the user’s next command

and can perform robustly across a range of different users and

b) It is extremely difficult to further improve this result

A problem of predicting the next action of a user is frequently dealt by the area of human

computer interface design. Unix shell is developed which predicts the command stubs that a

user is most likely to enter, given the current history of entered commands[17, 18].This idea

has been elaborated which predicts whole command lines [19]. To predict the next

keystrokes, the Reactive Keyboard [16]uses length-k modeling which is based on the

previous keystrokes typed. Thought it is similar to work[19], it is also predicting the next

complete command line which is based on the previous command lines typed, rather than a

keystroke at a time.

A number of different models have been purposed for the prediction of words, keystroke or

sentence for example: An indexing which efficiently retrieves the sentence from a collection

was developed that is most similar to a given initial fragment[20].To address the sentence

completion problem, the cogent confabulation model was used[21]. Cogent confabulation, a

bio-inspired model, extracts posterior probabilities among objects at the symbol level. Also, a

graph mining methodology can be used to address the same sentence completion problem

[12].

The email programs suggestions which come from auto completion database, is created

from users mailing history and contacts list. This characteristic support users to fill up

address field just after they typed few characters in ―TO‖, ‖CC‖ or ―BCC‖ field of an

17

outgoing email. Beyond this, there are many other applications that uses different forms auto

complete as per the relevance. Just like the text processors generate their suggestions list

based on previous search history or from a predefined list. However, in majority of

text processors this suggestions are only limited to word length. Even though they

might not actually exist in the text which user is trying to get useful information

from, are based on the typed characters[12].

Several scholars has conducted many research on statistical language model and its

associated corpus [4]. Likewise the grammatical judgment task is also used for Sentence

completion task[22].

Statistical language model [23, 24] mainly N-gram language model [11, 18, 20, 22, 25, 26]

having backoff smoothing[4]has been used in sentence completion. In addition, this models

also uses application of the Viterbi principle[27] for sentence completion.

18

CHAPTER 4

IMPLEMENTATION

4.1 Framework for Sentence Completion

Sentence completion flowchart is given in Figure 4.1. This describes top level data flow

diagram of sentence completion problem, used in this work. The proposed system

framework consists of three steps; preprocessing, train the data using bigram/trigram

language model with back off smoothing and find the most probable sequence using Viterbi

algorithm.

Preprocessing sub engine has Nepali corpus as input. After preprocessing, only important

data is stored. Training the corpus is the most powerful and is the heart of Sentence

completion Model. After training corpus, the most probable sequence for the input text

fragment is find out using Viterbi algorithm.

Preprocessed Corpus

Corpus

Preprocessing

Bigram/Trigram

model

Sentence

Prediction

Viterbi Algorithm Sentence

completion Model

Input Text Segment

Output

Using Bigram/Trigram

Language Model

Figure 4.1:- Framework for Sentence Completion

19

4.1.1 Preprocessing Step

Preprocessing is one of the important steps in sentence completion. It helps to make the raw

data suitable for analysis by improving the data quality. Preprocessing step makes input ready

for the Stanford Research Institute Language Modeling (SRILM). In preprocessing step two

file are created. The input format for the SRILM toolkit is shown in figure 4.2 and

4.3.Accordingly the java program is written to make the necessary file.

Figure 4.2: Vocab Prepossessing

Figure 4.3: Corpus Prepossessing

4.2 Bigram/Trigram Language Model using Backoff Smoothing

The major problem with the maximum likelihood estimation process for training the

parameters of an N-gram model is sparse data. The problem sparse data is caused by the fact

that maximum likelihood estimate was based on a particular set of training data. Any N-gram

that occurred a sufficient number of times have a good estimate of its probability. But

20

because any corpus is limited, some perfectly acceptable nepali word sequences are bound to

be missing from it. This missing data means that the N-gram matrix for any given training

corpus is bound to have a very large number of cases of putative ―zero probability N-grams‖

that should really have some non-zero probability. Furthermore, the MLE method also

produces poor estimates when the counts are non-zero but still small.

The way to solve this ―zero probability N-grams‖ problem is Smoothing.Not only do

smoothing methods generally prevent zero probabilities, but they also attempt to improve the

accuracy of the model as a whole. Whenever a probability is estimated from few counts,

smoothing has the potential to signicantly improve estimation.

One way to solve this problem is called Katz backoff.In a Katz backoff N-gram model,if the

N-gram concerned has zero counts,it is approximated by backing off to the (N-1)-gram.In

this backing off a history that has some counts is reached.

 | {

 |

 |

 (4.1)

 | {

 |

 (4.2)

Here is defined as the discounted estimate of the conditional probability of an N-gram.

 |

 (4.3)

 (4.4)

By discounting ,this will leave some probability mass for the lower order N-gram, which is

then distributed by the weight and the total amount is represent of left-over-probability

mass by the function ,a function of the (N-1)-gram context.

 ∑ |

 (
)

(4.5)

21

∑ |

 (
)

 ∑ |

 (

)

 ∑ |

 (
)

(4.6)

4.3 Viterbi Algorithm

The problem is to find the most likely word sequence given an initial word

sequence .

 |

 (4.7)

By using joint probability of the missing word the equation 4.8 can be obtained.

 |

∏ (|)

(4.8)

Using N-gram model simplifies the equation 4.8 in equation 4.9

 |

∏ (|)

 (4.9)

By identifying the recursive structure in equation 4.7, lead to Viterbi algorithm that retrieves

the most likely word sequence. At first an auxiliary variable

 | is defined in equation 4.10; which quantifies the

greatest possible probability over all arbitrary word sequences followed

by the word sequence

 .In equation 4.11, the last transition

is factorized and then the N-th order Markov assumption is applied. In equation 4.12, after

splitting the maximization, a new random variable
 is introduced. Now the

recursion can be observed in equation 4.13 referring the definition of .

 |

 |

(4.10)

22

 |

 |

 |
(4.11)

 |

 |

 (

 |

)

(4.12)

 |

 |

 |
(4.13)

Exploiting the N-th order Markov assumption, target probability in terms of is expressed in

equation 4.14.

 |

 |

(4.14)

The last N words in the most likely sequence are simply the

 |

.In order to collect the preceding most

likely words, an auxiliary variable is defined in equation 4.15 that can be determined in

equation 4.16.

 |

 |

(4.15)

 |

 |
 |

(4.16)

The Viterbi algorithm starts with the most recently entered word Wt and moves

iteratively into future. Viterbi search is stopped when T reaches 4[13].

Viterbi java function:

 // Viterbi Matrix Initialization

 for(int j=0;j<h.size();j++)

 {

 Vmatrix[j][0]=Tmatrix[l][j];

23

 }

 // Backtrack Matrix Initialization

 for(int j=0;j<h.size();j++)

 {

 Bmatrix[j][0]=l;

 }

 // Viterbi matrix and backtrack matrix calculation

 int index=0;

 for(int t=1;t<4;t++)

 {

 for(int ip=0;ip<h.size();ip++)

 {

 double value=0.0;

 for(int j=0;j<h.size();j++)

 {

 if(Vmatrix[j][t-1]*Tmatrix[j][ip]>value)

 {

 value=Vmatrix[j][t-1]*Tmatrix[j][ip];

 index=j;

 }

 }

 Vmatrix[ip][t]=value;

 Bmatrix[ip][t]=index;

 }

 }

4.3.1 Tracing of the Viterbi algorithm

 Tables 4.1 represent a transition matrix of 8 words from the corpus.

सभहू 'ए' को अन्न्तभ खेरभा नेऩार भबड्दै छन ्

सभहू 0.001789938 0.08395 0.004858407 0.001279 0.003452 0.001662 3.84E-04 0.006776

'ए' 0.001886556 6.74E-04 0.058731487 0.001348 0.003638 0.001752 4.04E-04 0.007142

को 0.001841183 6.58E-04 0.004997502 0.010326 0.003551 0.00171 3.95E-04 0.00697

अन्न्तभ 0.001873347 6.69E-04 0.005084805 0.001338 0.03924 0.00174 4.01E-04 0.007092

खेरभा 0.00188778 6.74E-04 0.00512398 0.001348 0.003641 0.010876 4.05E-04 0.007147

नेऩार 0.00182362 6.51E-04 0.004949831 0.001303 0.003517 0.001693 3.91E-04 0.006904

भबड्दै 0.001529034 5.46E-04 0.004150239 0.001092 0.002949 0.00142 3.28E-04 0.391772

छन ् 4.95E-05 1.77E-05 1.34E-04 3.54E-05 9.55E-05 4.60E-05 1.06E-05 1.87E-04

Table 4.1:Transition Matrix of 8 words from corpus

I. Let the system have the input ―<s> नेऩार‖

II. At first, the initialization of the Viterbi matrix is as shown in table 4.2.

24

0.001823620 0.000000000 0.000000000 0.000000000

0.000651293 0.000000000 0.000000000 0.000000000

0.004949831 0.000000000 0.000000000 0.000000000

0.001302586 0.000000000 0.000000000 0.000000000

0.003516984 0.000000000 0.000000000 0.000000000

0.001693364 0.000000000 0.000000000 0.000000000

0.000390776 0.000000000 0.000000000 0.000000000

0.006903708 0.000000000 0.000000000 0.000000000

Table 4.2:Viterbi Matrix Initialization

III. Backtrack matrix initialization is as shown in Table 4.3.

5 0 0 0

5 0 0 0

5 0 0 0

5 0 0 0

5 0 0 0

5 0 0 0

5 0 0 0

5 0 0 0

Table 4.3:Backtrack Matrix Initialization

IV. Recursion to calculate the Viterbi matrix 2
nd

 column and Backtrack matrix 2
nd

 column,

this work multiplies Viterbi[0][0]* Transition[0][1], Viterbi[0][1]* Transition[1][1],

Viterbi[2][0]* Transition[2][1], Viterbi[3][0]*Transition[3][1], Viterbi[4][0]*

Transition[4][1], Viterbi[5][0]* Transition[5][1], Viterbi[6][0]* Transition[6][1],and

Viterbi[7][0]*Transition[7][1].To fill in the Viterbi[0][1],find the maximum result from

above and to fill in the backtrack[0][1],find from which index the maximum Viterbi value

has been derived. The table 4.4 shows the multiplication to find the Viterbi value for 2
nd

column. Underlined figures are the highest figure in their respective column.

V. So the Viterbi matrix after the 1
st
 recursion is shown in table 4.5.

सभूह 'ए' को अन्न्तभ खेरभा नेऩार भबड्दै छन ्

0.000003264 0.000153095 0.000008860 0.000002332 0.000006295 0.000003031 0.000000699 0.000012357

0.000001229 0.000000439 0.000038251 0.000000878 0.000002370 0.000001141 0.000000263 0.000004652

0.000009114 0.000003255 0.000024737 0.000051114 0.000017576 0.000008463 0.000001953 0.000034501

0.000002440 0.000000871 0.000006623 0.000001743 0.000051114 0.000002266 0.000000523 0.000009238

0.000006639 0.000002371 0.000018021 0.000004742 0.000012804 0.000038251 0.000001423 0.000025134

0.000003088 0.000001103 0.000008382 0.000002206 0.000005956 0.000002867 0.000000662 0.000011690

0.000000598 0.000000213 0.000001622 0.000000427 0.000001152 0.000000555 0.000000128 0.000153095

0.000000342 0.000000122 0.000000927 0.000000244 0.000000659 0.000000317 0.000000073 0.000001294

Table 4.4:1st
 Iteration to Find Viterbi Matrix

25

0.001823620 0.000009114 0.000000000 0.000000000

0.000651293 0.000153095 0.000000000 0.000000000

0.004949831 0.000038251 0.000000000 0.000000000

0.001302586 0.000051114 0.000000000 0.000000000

0.003516984 0.000051114 0.000000000 0.000000000

0.001693364 0.000038251 0.000000000 0.000000000

0.000390776 0.000001953 0.000000000 0.000000000

0.006903708 0.000153095 0.000000000 0.000000000

Table 4.5:Viterbi Matrix-After 1
st
 recursion

VI. And the Backtrack matrix after the 1
st
 recursion is shown in table 4.6.

5 2 0 0

5 0 0 0

5 1 0 0

5 2 0 0

5 3 0 0

5 4 0 0

5 2 0 0

5 6 0 0

Table 4.6:Backtrack Matrix after 1
st
 Recursion

VII. At 2
nd

 recursion, to find the Viterbi value and backtrack value for the third column the

multiplication is shown in table 4.7. Underlined figures are the highest figure in their respective

column.

सभूह 'ए' को अन्न्तभ खेरभा नेऩार भबड्दै छन ्

0.000000016 0.000000765 0.000000044 0.000000012 0.000000031 0.000000015 0.000000003 0.000000062

0.000000289 0.000000103 0.000008992 0.000000206 0.000000557 0.000000268 0.000000062 0.000001093

0.000000070 0.000000025 0.000000191 0.000000395 0.000000136 0.000000065 0.000000015 0.000000267

0.000000096 0.000000034 0.000000260 0.000000068 0.000002006 0.000000089 0.000000021 0.000000362

0.000000096 0.000000034 0.000000262 0.000000069 0.000000186 0.000000556 0.000000021 0.000000365

0.000000070 0.000000025 0.000000189 0.000000050 0.000000135 0.000000065 0.000000015 0.000000264

0.000000003 0.000000001 0.000000008 0.000000002 0.000000006 0.000000003 0.000000001 0.000000765

0.000000008 0.000000003 0.000000021 0.000000005 0.000000015 0.000000007 0.000000002 0.000000029

Table 4.7:2nd
 Iteration to Find Viterbi Matrix

VIII. So the Viterbi matrix after the 2
nd

 recursion is shown in table 4.8.

26

0.001823620 0.000009114 0.000000289 0.000000000

0.000651293 0.000153095 0.000000765 0.000000000

0.004949831 0.000038251 0.000008992 0.000000000

0.001302586 0.000051114 0.000000395 0.000000000

0.003516984 0.000051114 0.000002006 0.000000000

0.001693364 0.000038251 0.000000556 0.000000000

0.000390776 0.000001953 0.000000062 0.000000000

0.006903708 0.000153095 0.000001093 0.000000000

Table 4.8:Viterbi Matrix-After 2
st
 Recursion

IX. And the Backtrack matrix after the 2
nd

 recursion is shown in table 4.9.

5 2 1 0

5 0 0 0

5 1 1 0

5 2 2 0

5 3 3 0

5 4 4 0

5 2 1 0

5 6 1 0

Table 4.9:Backtrack Matrix after 2
nd

 recursion

X. At 3
rd

 recursion, to find the Viterbi value and backtrack value for the third column the

multiplication is shown in table 4.10. Underlined figures are the highest figure in their

respective column.

सभूह 'ए' को अन्न्तभ खेरभा नेऩार भबड्दै छन ्

0.000000001 0.000000024 0.000000001 0.000000000 0.000000001 0.000000000 0.000000000 0.000000002

0.000000001 0.000000001 0.000000045 0.000000001 0.000000003 0.000000001 0.000000000 0.000000005

0.000000017 0.000000006 0.000000045 0.000000093 0.000000032 0.000000015 0.000000004 0.000000063

0.000000001 0.000000000 0.000000002 0.000000001 0.000000015 0.000000001 0.000000000 0.000000003

0.000000004 0.000000001 0.000000010 0.000000003 0.000000007 0.000000022 0.000000001 0.000000014

0.000000001 0.000000000 0.000000003 0.000000001 0.000000002 0.000000001 0.000000000 0.000000004

0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000024

0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

Table 4.10:3rd
 Iteration to Find Viterbi Matrix

XI. So the Viterbi matrix after the 3
rd

 recursion is shown in table 4.11.

27

0.001823620 0.000009114 0.000000289 0.000000017

0.000651293 0.000153095 0.000000765 0.000000024

0.004949831 0.000038251 0.000008992 0.000000045

0.001302586 0.000051114 0.000000395 0.000000093

0.003516984 0.000051114 0.000002006 0.000000032

0.001693364 0.000038251 0.000000556 0.000000022

0.000390776 0.000001953 0.000000062 0.000000004

0.006903708 0.000153095 0.000001093 0.000000063

Table 4.11:Viterbi Matrix-After 3
rd

 Recursion

XII. And the Backtrack matrix after the 3
rd

 recursion is shown in table 4.12.

5 2 1 2

5 0 0 0

5 1 1 1

5 2 2 2

5 3 3 2

5 4 4 4

5 2 1 2

5 6 1 2

Table 4.12:Backtrack Matrix after 3rd Recursion

XIII. So for backtracking purpose, the greatest value at the 4th column of the final Viterbi matrix has to

be found as shown in table 4.13.

0.001823620 0.000009114 0.000000289 0.000000017

0.000651293 0.000153095 0.000000765 0.000000024

0.004949831 0.000038251 0.000008992 0.000000045

0.001302586 0.000051114 0.000000395 0.000000093

0.003516984 0.000051114 0.000002006 0.000000032

0.001693364 0.000038251 0.000000556 0.000000022

0.000390776 0.000001953 0.000000062 0.000000004

0.006903708 0.000153095 0.000001093 0.000000063

Table 4.13:Final Viterbi Matrix

XIV. So this work backtrack from the highest value using backtrack matrix

5 2 1 2

5 0 0 0

5 1 1 1

5 2 2 2

5 3 3 2

5 4 4 4

5 2 1 2

5 6 1 2

Table 4.14:Final Backtrack Matrix

Maximum value

28

XV. So the final predicted text fragment will be :

<s> नेऩार सभहू 'ए' को अन्न्तभ

4.4 SRILM

SRILM[28, 29] is a toolkit for building and evaluating statistical language models (LMs).

Most of the LM types it supports are based on N-gram statistics, including the standard back-

off models, with an array of standard smoothing algorithms (Good-Turing, Witten-Bell,

Kneser-Ney, etc.). Models based on word classes (automatically induced or externally

defined) are also supported. SRILM implements various methods for interpolating and

adapting LMs, as well as pruning for trading off size against performance. Once an LM is

trained, it can be evaluated or used in a variety of standard tasks, such as perplexity

computation, N-best and lattice rescoring, and text tagging and segmentation.

SRILM consists of three software layers. The core functionality is implemented in C++,

comprising classes for containers (arrays, associative maps, tries, N-gram counts),

application-related data structures (N-best lists, lattices, confusion net-works, text statistics),

smoothing methods, and the LMs themselves. The latter are arranged in a class hierarchy,

reflecting the fact that many LM types are variants of more basic types, for which most of the

implementation can be shared. The second layer, and the one most relevant to most users, is a

set of executable tools that carry out the standard tasks of LM building and application, as

well as manipulation of lattices, N-best lists, and confusion networks. A third layer comprises

tools implemented as scripts in the Bourne shell, Gawk, and Perl languages for miscellaneous

tasks that are carried out primarily through simple manipulation of text files or on top of the

second-layer tools. The tools in the second and third layers are designed to combine via Unix

pipes to carry out more complex tasks[29].

The techniques that help accommodate large data and models can be summarized as follows:

Count-of-count Statistics:

When count cutoffs on N-grams are used, as they usually are in training large LMs, it is not

necessary to load all N-gram counts into memory. Rather, the count-of-count statistics

required for discounting algorithms can be computed off-line (in constant memory), and for

N-grams that fall below the frequency threshold only these count-of- need to be passed to the

29

LM estimation algorithm. This method is encapsulated in the SRILM make-big-lm script.

Vocabulary sub setting:

At test time, the data can usually be split into manageable chunks, each of which utilizes only

a small subset of the vocabulary. All LM types now support a loading method triggered by N-

gram -limit-vocab, whereby only those LM parameters are loaded that intersect with a given

vocabulary subset.

Binary File Formats:

N-gram counts and backoff LMs now support binary formats that are inherently faster to read

and, more importantly, support very fast loading with -limit-vocab, efficiently skipping over

file portions that are outside a given vocabulary. While the format is binary, it is still portable

between different byte-orders and machine word sizes.

Indirect Integer Storage:

Large counts require 64 bits for encoding, yet this would entail wasted space for most N-

grams, which are still infrequent. An integer data type can be implemented that stores small

count values inline using 2- or 4- byte words, while referencing a table for large values that

do not fit in 15 or 31 bits, respectively.

Optimized Heap Allocation:

The overall overhead in heap memory allocation is lowered by providing a special-purpose

allocator that keeps lists of small memory chunks, as are typically found in N-gram trie data

structures. (This, too, exploits the fact that N-gram frequency distributions have a long tail of

infrequent N-gram types, leading to a large number of trie nodes with small number of

children.) For a 6-gram LM with 690M N-grams, this reduced memory usage by 30% (from

33GB to 23GB).

Destructive LM Merging:

Since large LMs are typically constructed as a static interpolation of component LMs by N-

gram merging, N-gram LM merging is made destructive, so that the total memory demand is

only the sum of the result LM and the smaller of the two inputs. This way, very large LMs

can be built by successively merging the component models.

30

This work uses this SRILM toolkit to find the alpha and discounted value for the unigram and

also alpha and discounted value for the bigram and the discounted probability for the trigram

model. The snapshot of the output of the unigram, bigram and trigram model is given in

figure 4.4, 4.5 and 4.6 respectively.

Figure 4.4: Unigram Model

Figure 4.5: Bigram Model

31

Figure 4.6: Trigram Model

4.5 JAVA Programming Language

Java is a programming language originally developed by James Gosling at Sun Microsystems

and released in 1995 as a core component of Sun Microsystems' Java platform. The language

derives much of its syntax from C and C++ but has a simpler object model and fewer low-

level facilities than either C or C++. Java applications are typically compiled to byte-code

(class file) that can run on any Java Virtual Machine (JVM) regardless of computer

architecture. Java is a general-purpose, concurrent, class-based, object-oriented language that

is specifically designed to have as few implementation dependencies as possible. It is

intended to let application developers "write once, run anywhere" (WORA), meaning that

code that runs on one platform does not need to be recompiled to run on another. Java is as of

2012 one of the most popular programming languages in use, particularly for client-server

web applications, with a reported 10 million users.

 The original and reference implementation Java compilers, virtual machines, and class

libraries were developed by Sun from 1995. As of May 2007, in compliance with the

specifications of the Java Community Process, Sun relicensed most of its Java technologies

under the GNU General Public License. Others have also developed alternative

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Java_%28software_platform%29
http://en.wikipedia.org/wiki/Syntax_%28programming_languages%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Class_%28file_format%29
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/General_purpose_programming_language
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Class-based
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Reference_implementation_%28computing%29
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Java_Community_Process
http://en.wikipedia.org/wiki/GNU_General_Public_License

32

implementations of these Sun technologies, such as the GNU Compiler for Java and GNU

Class path.

http://en.wikipedia.org/wiki/GNU_Compiler_for_Java
http://en.wikipedia.org/wiki/GNU_Classpath
http://en.wikipedia.org/wiki/GNU_Classpath

33

CHAPTER 5

TESTING AND ANALYSIS

5.1 Nepali Corpus Data Statistics

The Nepali corpus named cancatout.txt which contains 5241 Unicode Nepali words is used

for training and testing. The corpus is collected from the Kantipur and Nagarik newspaper.

The cancatout.txt corpus consist of the words like

महिऱा १ सय ममटरमा देवीमाया पनेरुऱे बनाएको १२.०२ सकेेन्डको राष्ट्रिय कीर्त िमान तोड्ने प्रममऱाको ऱक्ष्य

छ। सरकार पररवतिनसॉग ैराखपेको नेततृ्व पर्न फेररने परम्परा छ। एकीकृत माओवादीको भागमा यवुा तथा

खेऱकुद मन्राऱय परेपर्छ ऱामा सदस्यसचिवका र्नयकु्त भएको वर्ि हदन बबतकेो छ। उनी आएऱगत्त ैकेिी खेऱ

सॊघ ववघटन गरे भने करार र ज्याऱाका कमििारी िटाउने र्नर्िय गरे।

Figure 5.1: Corpus Sample

5.2 Training and Testing Data

Training and testing data is prepared form the original corpus. Training data consists of the

text from the concatout.txt and also testing data for the model is obtained from the original

corpus. This thesis uses the 35 test case. The 35 test case with the goal sentence is shown in

the table 5.1.

INITIAL TEXT

FRAGMENT(INPUT)
GOAL SENTENCE(TESTING DATA)

1 चके तीन चके तीन अॊकभा दोस्रोभा छ</S>

2 नम्पफय एक नम्पफय एक खेराडी विकास शे्रष्ठराई हयाएय

3 ब्रान्जर य ब्रान्जर य होन्डुयसका फीच हुनेछ

4 दभक क्माम्पऩसका दभक क्माम्पऩसका सन्न्दऩ चौधयीराई हयाए </S>

5 ननन्चचत न्जतको ननन्चचत न्जतको खोजीभा चथमो</S>

6 आइतफाय यानत आइतफाय यानत याजधानी पके </S>

7 नेऩार पुटफर नेऩार पुटफर सॊघरे जनाएको छ

34

8 इन्ज्टरे फेरारुसराई इन्ज्टरे फेरारुसराई ३-१ रे ऩयान्जत गर ्मो

9 मुयो २०१२ मुयो २०१२ भा खेल्नेछन ्</S>

10 दईुिर्अुनघ दईु िर्अुनघ फपपा िल्र्डकऩ नै न्जत्मो

11 <S>नेऩारी नेऩारी यान्ष्िम टोरीरे बाग भरने बएको छ

12 यान्ष्िम कीनतभुान यान्ष्िम कीनतभुान तोड्ने प्रभभराको रक्ष्म छ

13 ऩुल्चोक इन्न्जननमरयङका ऩुल्चोक इन्न्जननमरयङका आभिर् आचामसुॉग फयाफयी खेरे

14 <S>उद घाटन <S>उद घाटन नहुॉदै सुरु बएका खेरहरुभध्मे

15 <S>आभी <S>आभी अफपसस ुक्रफभा उनरे तसे्रो ददन

16 ऩयान्जत गयेको ऩयान्जत गयेको जाऩानरे होन्डुयससॉग गोरयहीत फयाफयी खेल्मो

17 गरत झण्डा गरत झण्डा देखाएको बन्दै उत्तय कोरयमारी

18 <S>तीन तीन साताऩनछ मुयो २०१२ आइतफाय टुॊचगॉदैछ

19 <S>ऩदहरो <S>ऩदहरो रेगभा १-० रे विजम ऩाएको छ

20 सोभबमत सॊघफाट सोभबमत सॊघफाट स्ितन्र बएमता मुके्रनरे ऩदहरोऩल्ट

21 १-० रे १-० रे विजम ऩाएको छ </S>

22 दक्षऺण एभसमारी दक्षऺण एभसमारी खेरकुद (साग) को उसुभा नेऩाररे २ स्िण ु

23 बएका केही बएका केही खेरहरुभध्मे भदहरा पुटफर खेरभा

24 तीन िर्मुता तीन िर्मुता ऩदहरोऩल्ट उऩाचध न्जत्ने अभबमानभा

25 जाऩानरे होन्डुयससॉग जाऩानरे होन्डुयससॉग गोरयहीत फयाफयी खेल्मो </S>

26 दईु खेरभा दईु खेरभा प्राइभरे अन्न्तभसम्पभ उत्कृष्ट प्रदिुन

27 नेऩारी खेराडी नेऩारी खेराडीछनोट ऩाय गयेका छन ्

28 एक घण्टा एक घण्टा भैदान छाडकेा चथए</S>

29 दईु स्िोकको दईु स्िोकको अग्रता भरएका छन<्/S>

30 सहबाचगता जनाउन सहबाचगता जनाउन नेऩारी मुिा दटभ िुक्रफाय त्मसतपु उडकेो छ,

31 तीन ओबय तीन ओबय ७५ स्कोय गयेका उनरे

32 दक्षऺण कोरयमाको दक्षऺण कोरयमाको देखाउन ऩुगेका चथए </S>

33 गोर गयेऩनछ गोर गयेऩनछ डडपेन्न्डङ च्मान्म्पऩमन स्ऩेनरे

35

34 ननिान ढुॊगेरराई ननिान ढुॊगेरराई ऩयान्जत गये बने चौथोभा

35 इन्जेक्सन रगाएय इन्जेक्सन रगाएय प्रमास गरययहेकाछन ्</S>

Table 5.1: Test Data

5.3 Input and Output

INITIAL TEXT

FRAGMENT

PREDICTION USING

BIGRAM

PREDICTION USING

TRIGRAM

GOAL SENTENCE

1 चके तीन साताऩनछ मुयो २०१२ को अॊकभा दोस्रोभा छ </S> चके तीन अॊकभा दोस्रोभा छ</S>

2 नम्पफय एक घण्टा भैदान छाडकेा चथए

स्ऩेनरे आमयल्मान्डराई मुयो

२०१२

नम्पफय एक खेराडी विकास शे्रष्ठराई

हयाएय

3 ब्रान्जर य भरेभसमा भबड्दै छन ्</S> होन्डुयसका फीच हुनेछ </S> ब्रान्जर य होन्डुयसका फीच हुनेछ</S>

4 दभक क्माम्पऩसका सन्न्दऩ चौधयीराई हयाए </S> सन्न्दऩ चौधयीराई हयाए </S> सन्न्दऩ चौधयीराई हयाए </S>

5 ननन्चचत न्जतको खोजीभा बएको छ </S> ऩयान्जत गयेको छ </S> ननन्चचत न्जतको खोजीभा चथमो</S>

6 आइतफाय यानत

ओरन्म्पऩकको ऩुिसुन्ध्माभा

बएको छ

ओरन्म्पऩकको तमायी गयेका छन ्

आइतफाय यानत याजधानी पके </S>

7 नेऩार पुटफर सॊघरे जनाएको छ </S> सॊघरे जनाएको छ </S>

नेऩार पुटफर सॊघरे जनाएको छ

</S>

8

इन्ज्टरे

फेरारुसराई

३-१ रे ऩयान्जत गयेको ३-१ रे हयामो </S>

इन्ज्टरे फेरारुसराई ३-१ रे

ऩयान्जत गर ्मो

9 मुयो २०१२ भा बएको छ </S> भा बएको छ </S> मुयो २०१२ भा खेल्नेछन ्</S>

10 दईु िर्अुनघ फपपा ियीमता हेने हो फपपा िल्र्डकऩ न्जतकेा छन ् दईु िर्अुनघ फपपा िल्र्डकऩ नै न्जत्मो

11 <S> नेऩारी टोरी भबड्दै छन ्</S> टोरी सोभफाय मुयो २०१२

<S> नेऩारी यान्ष्िम टोरीरे बाग

भरने बएको छ

12 यान्ष्िम कीनतभुान खेराडीभा चुनेको चथमो </S> खेराडीभा चुनेको चथमो </S>

यान्ष्िम कीनतभुान तोड्ने प्रभभराको

रक्ष्म छ

13

ऩुल्चोक

इन्न्जननमरयङका

आभिर् आचामसुॉग फयाफयी

</S>

आभिर् आचामसुॉग फयाफयी गोर

ऩुल्चोक इन्न्जननमरयङका आभिर्

आचामसुॉग फयाफयी खेरे

36

14 <S>उद घाटन नहुॉदै सुरु बएका छन ् नहुॉदै सुरु बएका छन ्

<S>उद घाटन नहुॉदै सुरु बएका

खेरहरुभध्मे

15 <S>आभी
अफपसस ुक्रफभा सिाुचधक

सपर

अफपसस ुक्रफभा सिाुचधक

सपर

<S>आभी अफपसस ुक्रफभा उनरे

तसे्रो ददन

16 ऩयान्जत गयेको रुसराई १-० रे ऩयान्जत फेरामतरे १९०८ भा छन ्

ऩयान्जत गयेको जाऩानरे होन्डुयससॉग

गोरयहीत फयाफयी खेल्मो

17 गरत झण्डा न्स्क्रनभा देखाउनु ऩने ठाउॉभा न्स्क्रनभा मुयो २०१२ को
गरत झण्डा देखाएको बन्दै उत्तय

कोरयमारी

18 <S>तीन साताऩनछ मुयो २०१२ को अॊकभा दोस्रोभा छ </S>

तीन साताऩनछ मुयो २०१२ आइतफाय

टुॊचगॉदैछ

19 <S>ऩदहरो रेगभा १-० रे ऩयान्जत रेगभा १-० रे ऩयान्जत

<S>ऩदहरो रेगभा १-० रे विजम

ऩाएको छ

20 सोभबमत सॊघफाट

स्ितन्र बएमता मुके्रनरे

ऩदहरोऩल्ट

स्ितन्र बएमता मुके्रनरे </S>

सोभबमत सॊघफाट स्ितन्र बएमता

मुके्रनरे ऩदहरोऩल्ट

21 १-० रे ऩयान्जत गयेको छ </S> ऩयान्जत गयेको छ </S> १-० रे विजम ऩाएको छ </S>

22 दक्षऺण एभसमारी
खेरकुद ऩरयर्द्का सदस्म

सचचि

खेरकुद ऩरयर्द् (याखेऩ) रे

दक्षऺण एभसमारी खेरकुद (साग) को

उसुभा नेऩाररे २ स्िण ु

23 बएका केही
ददनभै भदहरा यान्ष्िम

कीनतभुान

ददनभै भदहरा यान्ष्िम कीनतभुान

बएका केही खेरहरुभध्मे भदहरा

पुटफर खेरभा

24 तीन िर्मुता ऩदहरोऩल्ट मुयो २०१२ को ऩदहरोऩल्ट 'इन्डोय' भा छन ्

तीन िर्मुता ऩदहरोऩल्ट उऩाचध

न्जत्ने अभबमानभा

25

जाऩानरे

होन्डुयससॉग

१-० रे ऩयान्जत गयेको १-० रे हयामो </S>

जाऩानरे होन्डुयससॉग गोरयहीत

फयाफयी खेल्मो </S>

26 दईु खेरभा ग्रीसराई हयाएको छ </S>

प्राइभरे अन्न्तभसम्पभ उत्कृष्ट

प्रदिुन

दईु खेरभा प्राइभरे अन्न्तभसम्पभ

उत्कृष्ट प्रदिुन

37

27 नेऩारी खेराडी छनोट बएका छन ्</S> छनोट ऩाय गयेका छन ् नेऩारी खेराडीछनोट ऩाय गयेका छन ्

28 एक घण्टा भैदान छाडकेा चथए </S> भैदान छाडकेा चथए </S> एक घण्टा भैदान छाडकेा चथए</S>

29 दईु स्िोकको अग्रता भरएका छन ्</S> अग्रता भरएका छन ्</S>
दईु स्िोकको अग्रता भरएका छन<्/S>

30

सहबाचगता

जनाउन

रन्डन ऩुगेका चथए </S> नेऩारी टोरी भबड्दै छन ्

सहबाचगता जनाउन नेऩारी मुिा दटभ

िुक्रफाय त्मसतपु उडेको छ,

31 तीन ओबय ७५ स्कोय गये </S> ७५ स्कोय गयेका छन ् तीन ओबय ७५ स्कोय गयेका उनरे

32 दक्षऺण कोरयमाको देखाउन ऩुगेका चथए </S> देखाउन ऩुगेका चथए </S>

दक्षऺण कोरयमाको देखाउन ऩुगेका

चथए </S>

33 गोर गयेऩनछ

इन्जेक्सन रगाएय प्रमास

गरययहेका
डडपेन्न्डङ च्मान्म्पऩमन बएका छन ्

गोर गयेऩनछ डडपेन्न्डङ च्मान्म्पऩमन

स्ऩेनरे

34 ननिान ढुॊगेरराई ऩयान्जत गयेको छ </S> ऩयान्जत गयेको छ </S>

ननिान ढुॊगेरराई ऩयान्जत गये बने

चौथोभा

35

इन्जेक्सन

रगाएय

प्रमास गयेको छ </S> प्रमास गरययहेका २ सम

इन्जेक्सन रगाएय प्रमास गरययहेका

छन ्</S>

Table 5.2: Input and Output of the Prediction Model

38

5.3.1 Snapshot of the output of the trigram and bigram model

sdfsdfdfdsfsdfs

Figure 5.2: Snapshot of Bigram Output

39

Figure 5.3: Snapshot of Trigram Output

40

5.4 Analysis of the Prediction Model

Given an initial text fragment, a predictor that solves the sentence completion problem has to

conjecture as much of the sentence that the user currently intends to write but preferably, but

not necessarily, the entire remainder[13].

What is an appropriate performance measure for this problem? The perceived benefit of an

assistance system is highly subjective, but it is influenced by measurable quantitative factors.

So, a system of three performance indicators is defined.

For the evaluation this thesis will use precision, recall and F-Score. Recall equals the fraction

of saved keystrokes. Precision is the ratio of characters that the users have to scan for each

character they accept. F1 score (also F-score or F-measure) is a measure of a test's accuracy. It

considers both the precision and the recall of the test to compute the score.

∑

∑

(5.1)

∑

∑

(5.2)

 F-Score

(5.3)

5.4.1 Calculation of Precision, Recall And F-Score of Bigram Prediction Model

Precision =

= 0.371429

Recall =

= 0.590909091

F-Score =2*

 =0.456140351

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29

41

5.4.2 Calculation of Precision, Recall and F-Score of Tri-gram Prediction Model

Precision =

= 0.47857

Recall =

= 0.91780

F-Score =2*

 =0.62910

5.4.3 Comparison between Bigram and Trigram Prediction Model

Figure 5.4: Comparison between Bigram and Trigram Prediction Model

5.5 Discussion of the Result

The result is found using the mechanism precision, recall and F-score. The F-score can be

interpreted as a harmonic mean of the precision and recall, where an F-score reaches its best

value at 1 and worst score at 0.Thus, by analyzing the result for all the 35 input, Trigram

Prediction Model is 62.9% accuracy whereas Bigram Prediction Model is 45.6% accuracy.

From this finding it is clear that overall Trigram Prediction Model is more accurate than

Bigram Prediction Model.

But for Nepali language, the output for some of the input to the Bigram Prediction Model is

better than the Trigram Prediction Model. For the input cases 5, 8, 18, 20 the Bigram

Prediction Model is better than the Trigram Prediction Model. Also there are cases 4, 7, 13,

14, 28, 29, 32 where both the Trigram and Bigram Prediction Model have the same output.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F-Score

Bigram

Trigram

http://en.wikipedia.org/wiki/Harmonic_mean#Harmonic_mean_of_two_numbers

42

There are also input cases where both Bigram Prediction Model and Trigram Prediction

Model prediction sentence has not been selected as in test case 2,6,12,17,23,25.

43

CHAPTER 6

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

This thesis has predicted the sentence fragment for sentence completion with input text

fragment using Bigram and Trigram Language Model with Viterbi algorithm as a decoding

algorithm which is a dynamic algorithm. By using the measuring criteria Precision, Recall

and F-score, this thesis found out that Trigram Language Model predicts the word more

accurately than Bigram Language Model. It is found that overall 62.9% accuracy of Trigram

Language Model whereas 45.6% for Bigram Language model. But for individual input there

are cases where some of the output of the Bigram Prediction Model is better than Trigram

Prediction Model. Also there are some input cases where the output of the Bigram and

Trigram Prediction Model is not selected.

Prediction using Trigram Prediction Model has more complexity than bigram prediction

model in terms of time. This work used the corpus consisting of 5241 Unicode Nepali words

which is used for training and testing. Due to the limitation of the size of the words in the

corpus, the no of bigram and trigram counts is low. When this work predicts the word

segment based on the bigram and trigram counts, results in low accuracy. So to increase the

accuracy, the corpus size should be increased.

6.2 Recommendation

This work has predicted the sentence fragment using Bigram and Trigram Language Model.

There are some cases where both the Bigram and Trigram Prediction Model output is not

selected by the use, so further 4-gram, 5-gram, up to N-gram can be used to predict the

sentence may solve the problem. By increasing the value of N, the accuracy of the system

may increase but also increase the complexity in terms of time. Not only the sentence

completion can be analyzed, but also the grammar judgment of the sentence completion task

can be performed. Also the size of corpus could be increased to get the better result.

Furthermore, Confabulation Based method, Graph Method can be used to complete the

sentence.

44

References

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach: Pearson

Education, 2003.

[2] E. Reiter and R. Dale, Building Natural Language Generation Systems: Cambridge

University Press, 2000.

[3] S. Chaudhuri and R. Kaushik, "Extending Autocompletion To Tolerate Errors,"

Proceedings of the 35th SIGMOD international conference on Management of data -

SIGMOD ’09, pp. 707-718, 2009.

[4] K. Trnka and K. F. McCoy, "Corpus studies in word prediction," Proceedings of the

9th international ACM SIGACCESS conference on Computers and accessibility -

Assets ’07, october 2007.

[5] E. D. Liddy, "Natural Language Processing," in Encyclopedia of Library and

Information Science, 2nd ed: Marcel Decker, 2001.

[6] (2012, September 22). http://en.wikipedia.org/wiki/Phonology.

[7] J. Zhou, "Educational Tool For Charnik's Marker-Passing Algorithm," Master of

Science in Computer Science, San Diego State University, 2011.

[8] B. Manaris, "Natural Language Processing: A Human–Computer Interaction

Perspective," Advances in Computers (Marvin V. Zelkowitz, ed.), vol. 47, p. 66, 1998.

[9] (September 22). http://omarsbrain.wordpress.com/2010/08/12/natural-language-

processing-the-big-picture/.

[10] R. Rosenfield, "Two Decades of Statistical Language Modeling- Where Do We Go

From," Computer Science Department,Carnegie Mellon University, vol. 1321, 2000.

[11] Z. Wei, D. Miao, J.-H. Chauchat, R. Zhao, and W. Li, "N-grams based feature

selection and text representation for Chinese Text Classification," International

Journal of Computational Intelligence Systems, vol. Vol.2, pp. 365-374, December,

2009.

[12] N. Agrawal and M. Swain, "Auto Complete Using Graph Mining: A Different

Approach " IEEE, 2011.

[13] S. Bickel, P. Haider, and T. Scheffer, "Predicting sentences using N-gram language

models," Proceedings of the conference on Human Language Technology and

Empirical Methods in Natural Language Processing, pp. 193-200, 2005.

http://en.wikipedia.org/wiki/Phonology
http://omarsbrain.wordpress.com/2010/08/12/natural-language-processing-the-big-picture/
http://omarsbrain.wordpress.com/2010/08/12/natural-language-processing-the-big-picture/

45

[14] L. Nepveu, G. Lapalme, P. Langlais, and G. Foster, "Adaptive Language and

Translation Models for Interactive Machine Translation," Conference on Empirical

Methods on Natural Language Processing, 2005.

[15] C. E. Shannon, "Prediction and Entropy of Printed English," In Bell systems Technical

Journal, vol. 30, pp. 50-60, 1948.

[16] J. Darragh and I. Witten, The Reactive Keyboard: Cambridge University Press, 1992.

[17] H. Motoda and K. Yoshida, "Machine Learning Techniques to Make Computers

Easier to Use," In proceddings of the fifteenth International Joint Conference on

Artificial Intelligence, 1997.

[18] B. D. Davison and H. Hirsh, "Predicting Sequences of User Actions,"

AAAI/ICMLWorkshop on Predicting the Future: AI Approaches to Time-Series

Analysis, 1998

[19] B. Korvemaker and R. Greiner, "Predicting UNIX Command Lines : Adjusting to

User Patterns," American Association for Artificial Intelligence, 2000.

[20] K. Grabski and T. Scheffer, "Sentence Completion," Proceedings of the 27th annual

international ACM SIGIR conference on Research and Development in Information

Retrieval, 2004.

[21] Q. Qiu, Q. Wu, D. J. Burns, M. J. Moore, R. E. Pino, M. Bishop, and R. W.

Linderman, "Confabulation Based Sentence Completion for Machine Reading,"

IEEE, 2011.

[22] A. Renaud, F. Shein, and V. Tsang, "Grammaticality Judgement in a Word

Completion Task," Proceedings of the NAACL HLT 2010 Workshop on

Computational Linguistics and Writing, pp. 15-23, 2010.

[23] C. D. Manning and H. Schiitze, Foundations of Statistical Natural Language

Processing: MIT Press, 1999.

[24] D. Jurafsky and J. H. Martin, An Introduction to Natural Language Processing,

Computational Linguistics, and Speech Recognition: Draft of February 11, 2007,

2006.

[25] A. Almeida and P. Bhattacharyya, "Experiments in N-gram based indexing and

retrieval in Marathi ".

[26] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai, "Class-Based

N-gram Models of Natural Language," Association for computer linguistics,, 1992.

46

[27] R. Sramek, "The on-line Viterbi algorithm," Masters, Department of Computer

Science Faculty of Mathematics, Physics and Informatics Comenius University,

Bratislava, 2007.

[28] A. Stolcke, "SRILM — An Extensible Language Modeling Toolkit," Proc. Intl. Conf.

on Spoken Language Processing, vol. 2, p. 4, 2002.

[29] A. Stolcke, J. Zheng, W. Wang, and V. Abrash, "SRILM at Sixteen: Update and

Outlook."

47

Appendix

// program to create the bigram transition matrix

package bigram;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.Hashtable;

public class Bigram {

 public static Hashtable<String, Integer> h=new Hashtable<>();

 public static Hashtable<Integer, String> ih=new Hashtable<>();

 public static Hashtable<String,UnigramBackoff> UH=new Hashtable<>();

 public static void main(String[] args) throws Exception {

 Bigram b= new Bigram();

 b.MakeHash();

 // b.MakeCountMatrix();

 b.UnigramHashTable();

 b.BigramProbability();

 }

 // function to make the hash table for the entire vocab and its inverse also

 public void MakeHash() throws Exception

 {

 FileReader fin=new FileReader("vocab3.txt");

 String s;

 try (BufferedReader f = new BufferedReader(fin)) {

 int i=1;

 h.put("<s>", 0);

 ih.put(0, "<s>");

 while((s=f.readLine())!=null)

 {

 h.put(s, i);

 ih.put(i, s);

 i++;

 }

 h.put("</s>",i);

 ih.put(i, "</s>");

 }

 }

 //function to make the bigram count matrix table

48

 public void MakeCountMatrix() throws Exception {

 int countmatrix[][]=new int[h.size()][h.size()]; //initialization the size of the count matrix

 String s;

 FileReader fincount=new FileReader("countout.txt");

 try (BufferedReader fc = new BufferedReader(fincount)) {

 while((s=fc.readLine())!=null)

 {

 int j,k;

 String []tokens=s.split("\t");

 String []subtokens=tokens[0].split(" ");

 j=h.get(subtokens[0]);

 k=h.get(subtokens[1]);

 System.out.println(j+k);

 System.out.println(subtokens[0]+"\t"+subtokens[1]);

 countmatrix[j][k]= Integer.parseInt(tokens[1]);

 }

 }

 for(int l=0;l<h.size();l++)

 {

 for(int m=0;m<h.size();m++) {

 System.out.print(countmatrix[l][m]+"\t");

 }

 System.out.println();

 }

}

 // to make the unigramhash table containing the discounted probability and also the alpha value

public void UnigramHashTable()throws Exception{

 String s;

 FileReader fincount=new FileReader("probability13.txt"); //read the file contaning the unigram

discounted probability and the alpha value

 try (BufferedReader fc = new BufferedReader(fincount))

 {

 while((s=fc.readLine())!=null){

 String []token=s.split("\t");

 UnigramBackoff b=new UnigramBackoff(Double.valueOf(token[0].trim()).doubleValue(),

Double.valueOf(token[2].trim()).doubleValue());

 UH.put(token[1],b);

 }

 fc.close();

 }catch(Exception e)

 {

 System.out.println(e);

 }

 System.out.println(UH);

 }

 // to make the bigram probability matrix

 public void BigramProbability() throws Exception{

 String s;

49

 double BigramMatrix[][]=new double[h.size()][h.size()];

 UnigramBackoff b1=new UnigramBackoff();

 UnigramBackoff b2=new UnigramBackoff();

 FileReader fincount=new FileReader("probability23.txt"); // to read the file containing the

discounted probability of the bigram words

 try (BufferedReader fc = new BufferedReader(fincount)) {

 // to input the discounted probility in the bigram matrix

 while((s=fc.readLine())!=null)

 {

 int j,k;

 String []tokens=s.split("\t");

 String []subtokens=tokens[1].split(" ");

 j=h.get(subtokens[0]);

 k=h.get(subtokens[1]);

 BigramMatrix[j][k]= Double.parseDouble((tokens[0]));

 }

 fc.close();

 }catch(Exception e)

 {

 System.out.println(e);

 }

 // to print the matrix before backoff

 System.out.println("Before Backoff");

 for(int l=0;l<h.size();l++){

 for(int m=0;m<h.size();m++) {

 System.out.print(BigramMatrix[l][m]+"\t");

 }

 System.out.println();

 }

 // loop for the backoff purpose

 for(int l=0;l<h.size();l++)

 {

 for(int m=0;m<h.size();m++)

 {

 if(BigramMatrix[l][m]==0.0){

 String s1=ih.get(l);

 String s2=ih.get(m);

 b1=UH.get(s1);

 b2=UH.get(s2);

 BigramMatrix[l][m]=b1.getAlphavalue()+b2.getDiscountedProb();

 }

 }

50

 }

 // writing the bigrammatrix in the fileto use the viterbi in that bigram matrix

 FileWriter fw=new FileWriter("testaftercommenting.txt");

 BufferedWriter fout=new BufferedWriter(fw);

 for(int l=0;l<h.size();l++)

 {

 for(int m=0;m<h.size();m++)

 {

 fout.write(BigramMatrix[l][m]+"\t");

 }

 fout.write("\n");

 }

 }

 }

package bigram;

public class UnigramBackoff {

 private double discountedProb;

 private double alphavalue;

 public UnigramBackoff(){

 discountedProb=0.0;

 alphavalue=0.0;

 }

 public UnigramBackoff(double a){

 discountedProb=a;

 }

 // to assing the value to discountedprob and the alpha value which receives as an argument

 public UnigramBackoff(double a, double b){

 discountedProb=a;

 alphavalue=b;

 }

 public double getDiscountedProb(){

 return discountedProb;

 }

 public double getAlphavalue(){

 return alphavalue;

 }

}

//program to use the Viterbi algorithm to decode the sequence in bigram matrix transition

package viterbifinal;

import java.io.BufferedReader;

import java.io.FileReader;

import java.util.Hashtable;

51

import java.math.*;

public class Viterbifinal {

public static Hashtable<String, Integer> h=new Hashtable<>();

public static Hashtable<Integer, String> ih=new Hashtable<>();

 public static void main(String[] args) throws Exception

 {

 FileReader fin=new FileReader("vocab.txt");

 String s;

 try (BufferedReader fc = new BufferedReader(fin)) {

 int k=0;

 while((s=fc.readLine())!=null)

 {

 h.put(s, k);

 ih.put(k, s);

 k++;

 }

 // to read the bigram transition table from the text file

 FileReader fi=new FileReader("transition.txt");

 double Tmatrix[][]=new double[h.size()][h.size()];

 try (BufferedReader f = new BufferedReader(fi)){

 int i=0;

 while((s=f.readLine())!=null){

 String []tokens=s.split("\t");

 for(int j=0;j<tokens.length;j++)

 {

 Tmatrix[i][j]=Double.parseDouble(tokens[j]);

 Tmatrix[i][j]=Math.pow(10.0, Double.parseDouble(tokens[j]));

 }

 i++;

 }

 double [][]Vmatrix=new double[h.size()][4];

 int [][]Bmatrix= new int[h.size()][4];

 // System.out.println("Enter the fragment of text");

 // to read the input from the text file

 FileReader finput=new FileReader("input.txt");

 BufferedReader inputbuffer = new BufferedReader(finput);

 int l=0;

 // String inputtextfragment;

 // inputtextfragment=inputbuffer.readLine();

 // to read the last word of the input sentence for the Sentence Completion Purpose

52

 while((s=inputbuffer.readLine())!=null){

 String []tokensinput=s.split(" ");

 System.out.println(tokensinput[tokensinput.length-1]);

 l=h.get(tokensinput[tokensinput.length-1]);

 }

 //Veterbi Matrix Intialization

 System.out.println("vmatrix initializlnation print");

 for(int j=0;j<h.size();j++)

 {

 Vmatrix[j][0]=Tmatrix[l][j];

 // System.out.println(Vmatrix[j][0]+"\t");

 }

 //Backtrack Matrix Initialization

 System.out.println("backtrack initialization print");

 for(int j=0;j<h.size();j++)

 {

 Bmatrix[j][0]=l;

 // System.out.println(Bmatrix[j][0]+"\t");

 }

 // viterbi matrix and backtrack matrix calculation

 int index=0;

 for(int t=1;t<4;t++) //for calculating veterbi matrix columns

 {

 for(int ip=0;ip<h.size();ip++) //loop for searching max value

 {

 double value=0.0;

 for(int j=0;j<h.size();j++)

 {

 if(Vmatrix[j][t-1]*Tmatrix[j][ip]>value)

 {

 value=Vmatrix[j][t-1]*Tmatrix[j][ip];

 index=j;

 }

 }

 Vmatrix[ip][t]=value;

 Bmatrix[ip][t]=index;

 }

 }

53

 //printing the Veterbi Matrix

 System.out.println("The verterbi matrix is");

 for(i=0;i<h.size();i++)

 {

 for(int j=0;j<4;j++)

 {

 System.out.print(Vmatrix[i][j]+"\t");

 }

 System.out.println();

 }

 //printing the Backtrack Matrix

 System.out.println("The Backtrack matrix");

 for(i=0;i<h.size();i++)

 {

 for(int j=0;j<4;j++)

 {

 System.out.print(Bmatrix[i][j]+"\t");

 }

 System.out.println();

 }

 //to calculate the greatest value at the last row of the viterbi matrix

 int tbindex=0; //traceback index

 double greatestvalue =0.0; //to find the maximum no of the viterbi matrix

 for(int ak =0;ak<h.size();ak++)

 {

 if(Vmatrix[ak][3]>greatestvalue)

 {

 greatestvalue= Vmatrix[ak][3];

 tbindex=ak;

 }

 }

 //to find the sequence for the sentence completion by bactracking

 String []last = new String [5];

 last[4]=ih.get(tbindex);

 int a;

 for(int ij=3;ij>0;ij--)

 {

 a=Bmatrix[tbindex][ij];

 last[ij]=ih.get(a);

 tbindex=a;

 }

54

 // reading input from the file for the printing purpose

 FileReader finputforsentencecompletion=new FileReader("input.txt");

 BufferedReader inputbufferforprintingpurpose = new

BufferedReader(finputforsentencecompletion);

 String inputforprinting;

 inputforprinting=inputbufferforprintingpurpose.readLine();

 System.out.println("sentencer completion for the input sentence****** " + inputforprinting + "

**** is ");

 // giving the output text fragment for the sentence completion

 for (int mn =1;mn<5;mn++)

 {

 System.out.print(last[mn] + " ");

 }

 System.out.println("The viterbi value is " + greatestvalue);

 }

 }

 }

 }

// program to create the trigram transition matrix and use of the Viterbi algorithm for sentence

decoding

package trigramtransaction;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.*;

import java.math.*;

public class Trigramtransaction {

 public static Hashtable<String, Integer> h=new Hashtable<>();

 public static Hashtable<Integer, String> ih=new Hashtable<>();

 public static Hashtable<String,Ubackoff> UH=new Hashtable<>();

 public static Hashtable<String,Bbackoff> BH=new Hashtable<>();

 public static Hashtable<Integer, String> ICV= new Hashtable<>();

 public static Hashtable<String, Integer> CV=new Hashtable<>();

 public static double Tmatrix[][]=new double[ih.size()][ih.size()];//initialization of the bigram

transition matrix

 public static double TrigramMatrix[][]=new double[CV.size()][h.size()];

 public static void main(String[] args) throws Exception {

 Trigramtransaction t= new Trigramtransaction();

 t.MakeHash();

55

 Tmatrix= t.MakeBigram();

 t.TrigramProbability();

 TrigramMatrix=t.ValueTrigramProbability();

 t.veterbi();

 }

 // to make the hash table of the vocabulary

 public void MakeHash() throws Exception

 {

FileReader fin=new FileReader("vocab.txt");

 String s;

 try (BufferedReader fc = new BufferedReader(fin)) {

 int k=0;

 while((s=fc.readLine())!=null)

 {

 h.put(s.trim(), k);

 ih.put(k, s.trim());

 k++;

 }

 // to read bigram transition table from file....for backoff purpose

 }

 }

 public double[][] MakeBigram() throws Exception

 {

 double Tmatrix[][]=new double[ih.size()][ih.size()];

 // reading the bigramtransition text file and assign it in Tmatrix

 FileReader fi=new FileReader("transition.txt");

 String s;

 try (BufferedReader f = new BufferedReader(fi)){

 int i=0;

 while((s=f.readLine())!=null){

 String []tokens=s.split("\t");

 for(int j=0;j<tokens.length;j++)

 {

 Tmatrix[i][j]=Math.pow(10.0,Double.parseDouble(tokens[j]));

 }

 i++;

 }

 }

 return Tmatrix;

 }

 // to make the hash table of the rows index of the trigram transtion matrix

 public void TrigramProbability() throws Exception{

 String s;

 //reading the textfile containing the trigram discounted probability file

56

 FileReader fincount=new FileReader("tirgramprobability.txt");

 try (BufferedReader fc = new BufferedReader(fincount)) {

 int z=0;

 while((s=fc.readLine())!=null)

 {

 int j,k;

 String []tokens=s.split("\t");

 String []subtokens=tokens[1].split(" ");

 String cd=subtokens[0]+" "+subtokens[1];

 String ef=subtokens[2];

 ICV.put(z,cd);

 CV.put(cd, z);

 z++;

 }

 fc.close();

 }catch(Exception e)

 {

 System.out.println(e);

 }

}

 // to make the trigram transition matrix

public double[][] ValueTrigramProbability() throws Exception{

 double TrigramMatrix[][]=new double[CV.size()][h.size()];

 String s1;

 FileReader fincount=new FileReader("tirgramprobability.txt");

 try (BufferedReader fcc = new BufferedReader(fincount)) {

 while((s1=fcc.readLine())!=null)

 {

 // System.out.print("start");

 int j,k;

 String []tokens=s1.split("\t");

 String []subtokens=tokens[1].split(" ");

 String cd=subtokens[0]+" "+subtokens[1];

 String ef=subtokens[2];

 j=CV.get(cd);

 k=h.get(ef);

 if(j<CV.size() && k<h.size()){

 TrigramMatrix[j][k]=Math.pow(10.0,Double.parseDouble((tokens[0])));

 }

 }

 fcc.close();

 }catch(Exception e)

 {

57

 System.out.println(e);

 }

 for(int l=0;l<CV.size();l++)

 {

 for(int m=0;m<h.size();m++)

 {

 if(TrigramMatrix[l][m]==0.0){

 String str1=ICV.get(l);

 String str2=ih.get(m);

 // System.out.println(str1+" "+str2);

 String []tokens=str1.split(" ");

 int index1=h.get(tokens[1]);

 int index2=h.get(str2);

 TrigramMatrix[l][m]=Tmatrix[index1][index2];

 }

 }

 }

 return TrigramMatrix;

}

//function to apply the viterbi decoding algrithm to trigram transition table

 public void veterbi() throws Exception

 {

 double [][]Vmatrix=new double[h.size()][4];

 int [][]Bmatrix= new int[h.size()][4];

 FileReader finput=new FileReader("input.txt");

 BufferedReader inputbuffer = new BufferedReader(finput);

 // FileWriter fout1=new FileWriter("out");

 // BufferedWriter outbuffer=new BufferedWriter(fout1);

 String s;

 String []tokensinput=null;

 int l=0;

 while((s=inputbuffer.readLine())!=null){

 tokensinput=s.split(" ");

 System.out.println(tokensinput[tokensinput.length-1]);

 l=CV.get(tokensinput[tokensinput.length-2]+" "+tokensinput[tokensinput.length-1]);

 System.out.print("value of l is " + l);

 }

 System.out.print("value of l is " + l);

 //Veterbi Matrix Intialization

 System.out.println("Vmatrix initializlnation print");

 for(int j=0;j<h.size();j++)

58

 {

 Vmatrix[j][0]=TrigramMatrix[l][j];

 // System.out.println(Vmatrix[j][0]+"\t");

 }

 //Backtrack Matrix Initialization

 System.out.println("backtrack initialization print");

 int b=h.get(tokensinput[tokensinput.length-1]);

 for(int j=0;j<h.size();j++)

 {

 Bmatrix[j][0]=b;

 // System.out.println(Bmatrix[j][0]+"\t");

 }

 // viterbi and backtrack matrix calculation

 int index=0;

 for(int t=1;t<4;t++) //for calculating veterbi matrix columns

 {

 for(int ip=0;ip<h.size();ip++) //loop for searching max value

 {

 double value=0.0;

 if(Vmatrix[j][t-1]*Tmatrix[j][ip]>value)

 {

 value=Vmatrix[j][t-1]*Tmatrix[j][ip];

 index=j;

 }

 }

 Vmatrix[ip][t]=value;

 Bmatrix[ip][t]=index;

 }

 }

 // printing the Veterbi Matrix

 System.out.println("The verterbi matrix is");

 for(int i=0;i<h.size();i++)

 {

 for(int j=0;j<4;j++)

 {

 System.out.print(Vmatrix[i][j]+"\t");

 }

 System.out.println();

 }

 //printing the Backtrack Matrix

 System.out.println("The Backtrack matrix");

 for(int i=0;i<h.size();i++)

59

 {

 for(int j=0;j<4;j++)

 {

 System.out.print(Bmatrix[i][j]+"\t");

 }

 System.out.println();

 }

 //to calculate the greatest value at the last row of the viterbi matrix

 int tbindex=0; //traceback index

 double greatestvalue =0.0; //to find the maximum no of the viterbi matrix

 for(int ak =0;ak<h.size();ak++)

 {

 if(Vmatrix[ak][1]>greatestvalue)

 {

 greatestvalue= Vmatrix[ak][1];

 tbindex=ak;

 }

 }

 //to find the sequence for the sentence completion

 String []last = new String [5];

 last[4]=ih.get(tbindex);

 // System.out.println(last);

 int a;

 for(int ij=3;ij>0;ij--)

 {

 a=Bmatrix[tbindex][ij];

 // System.out.println(a);

 last[ij]=ih.get(a);

 tbindex=a;

 // System.out.println();

 }

 // reading input from the file for the printing purpose

 FileReader finputforsentencecompletion=new FileReader("input.txt");

 BufferedReader inputbufferforprintingpurpose = new

BufferedReader(finputforsentencecompletion);

 String inputforprinting;

 inputforprinting=inputbufferforprintingpurpose.readLine();

 System.out.println("sentencer completion for the input sentence****** " + inputforprinting + "

**** is ");

 for (int mn =1;mn<5;mn++)

 {

 System.out.print(last[mn] + " ");

 }

60

 System.out.println("The viterbi value is " + greatestvalue);

 }

}

