Tribhuvan University

Institute of Science and Technology

Predicting Sentence Using N-Gram Language Model For Nepali Language

Dissertation
Submitted to
Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science and Information Technology

by
Ananda K.C.
December, 2012

Tribhuvan University

Institute of Science and Technology

Predicting Sentence Using N-Gram Language Model For Nepali Language

Dissertation
Submitted to
Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Master’s Degree in Computer Science and Information Technology
by
Ananda K.C.
December, 2012

Supervisor

Prof. Dr. Shashidhar Ram Joshi

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science and Information Technology
Student’s Declaration

| hereby declare that | am the only author of this work and that no sources other than the
listed here have been used in this work.

Ananda K.C.
December, 2012

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor’s Recommendation

We hereby recommend that this dissertation prepared under our supervision by Mr. Ananda
K.C. entitled “Predicting Sentence Using N-Gram Language Model For Nepali
Language” be accepted as partial fulfillment of the requirements for the degree of M. Sc. in
Computer Science and Information Technology. In our best knowledge this is an original

work in computer science.

Prof. Dr. Shashidhar Ram Joshi
Department of Electronics and Computer Engineering
Tribhuvan University

Institute of Engineering
Pulchowk
(Supervisor)

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope
and quality as a dissertation in the partial fulfillment for the requirement of Master’s Degree

in Computer Science and Information Technology.

Evaluation Committee

Prof. Dr. Shashidhar Ram Joshi Assoc. Prof. Dr. Tanka Nath Dhamala
Department of Electronics and Computer Engineering Head of Department (HOD)
Tribhuvan University Central Department of Computer Science and
Institute of Engineering Information Technology (CDCSIT)
Pulchowk Tribhuvan University
(Supervisor) Kirtipur

External Examiner ;
() (Internal Examiner)

ACKNOWLEDGEMENT

The journey of this research and my study would have not been possible without cooperation,

warm support and company of many others.

| would like to extent my, first and foremost, gratitude and sincerest thanks to my respected
Supervisor Prof. Dr. Shashidhar Ram Joshi, Department of Electronics and Computer
Engineering, Institute of Engineering, Pulchowk for his impressive tutelage, constructive
criticism and intellectual support bestowed for me sacrificing his invaluable time . His crucial

role to make this report culminate is indescribable.

I would like to express my gratitude to the respected teachers and others staffs of Central
Department of Computer Science and Information Technology (CDCSIT) for granting me

broad knowledge and inspirations within the time period of two years.

I am tremendously grateful to Mr. Tej Shahi for providing the supportive environment to
conduct this research and for his sharp insights, constructive comments and tireless guidance
during the research and for the whole study period.

| would like to thank Dr. Keith Trnka (PhD graduate in Computer and Information Sciences
from the University of Delaware), Dr. Andreas Stolcke (Principal Researcher at
Conversational Systems Lab at Microsoft in Mountain View) for their continuous support and

encouragement during the entire course of the dissertation.

My two years at CDCSIT were golden due to company of entire classmates who have

supported me whenever | was in need of their help and co-operation.

Love, affection, benevolence and inspiration from my family members have always
enlightened my life to achieve those miracles those I couldn’t even have thought of it.
Without them, | would never have been what | am now. Thank you my little brother Bibek
for always being behind with me and ready to help in any moments and my sisters Bhawana,
Kamana and Anjana for your wonderful love, unconditional support and inspiration who have

helped me to pave the path for successful journey in my academic pursuits.

Ananda K.C.
kcananda@gmail.com
December, 2012

http://www.cis.udel.edu/
http://www.udel.edu/
mailto:kcananda@gmail.com

ABSTRACT

Sentence completion is a real time ubiquitous feature directed to predict a succeeding
words sequence, an appropriate completion of a given initial text fragment. Sentence
completion able a user to retrieve desired information with little knowledge over
exact keywords and with least typing efforts. Under statistical method, this work will
deal with N-gram method to predict the remaining part of sentence for Nepali language
using Viterbi as a decoding algorithm. By analyzing the result of this work, Trigram
Prediction Model is more accurate than Bigram Prediction Model. To get the best result,
this work recommends taking a large corpus with sufficient repetition of words.

TABLE OF CONTENTS

LIST OF FIGURES....cccitiiiiiiiiiiiniiiiiiiieeiieiiacieiiseiisesiasiasssssssstassrassssssssssssssasssnns v
LIST OF TABLEScuiiiiiiiiiiiiiiiiiiiiiiiieiiiesieesiassiassnesisesisessassssssssssssssssssasssasssases Vi
LIST OF ABBREVIATIONccciiuiieeiiniruiiniinenieiieireniresisesissrassrssssssssssrassrasssssssnsss vii
1 INTRODUCTION. . ..ciuiituiireiineitancinireiiassiasiacrssisssissstassrsssssssssssassrassssssssssssssssssnns 1
I L 04 T U Tox £ o] o [T PSPPSR PR PP PP 1
1.1.1 The Challenge of Natural Language ProCessingc.ccccovveveieiiieiesiese s seesre e 1
1.1.2 Areas of Natural Language PrOCESSINGc.ccuiiririirerieieieisisie st 2
1.1.2.1 Natural Language Understanding (NLU).....cc..cciieiuiiiiienierieencereeeneeseennseeseennseeseennsesenes 2
1.1.2.2 Natural Language Generation (NLG)cccceuuciriemunciriemncereennniereennseeseennssessennssssesnssssenes 2

1.2 IMIOTIVAION ...t bbbt b bbbt bbb et b bbb b 2
1.3 SentenNCe COMPIELION.......coiiici et e st sbe et e e besreebesbe e e e sreeres 3
1.4 ODJECTIVES. ...ttt bbbt b bbb Rt bbbttt bbb b n e 4
1.5 0Organization OF THESIS........coueiiiiiiiiee bbbt bbb 4

2 BACKGROUND AND PROBLEM DEFINITIONcccciuiiieiiieiinniinnieineinesinesinesnannens 5
BN S 7= Tod (o 01U o ISP 5
2.1.1 Natural Language PrOCESSINGccerueieiririiriistesieniesieeees sttt sse bt sne e nnenes 5
2.1.2 Levels of Natural Language ProCeSSINGcciiiieiiiiiiie i ste e ste e sre e sre st sneenesre s 5

p 20 W 8 N 1o 4 Vo] [Y-V U 5
2.1.2.2 MOIPROIOGY...cceueiiiiiiiiitiiicittiscrten e een e s senessesesnsssssssnsssssssasssssennssssnennsssssenesssssennnns 6

P N - 1o | 6
P25 7 2 BN 1| - o1 1 [o TR 6

R 30 T =T oS 7

R 0 0 1 o T U N 7

0 I o V- 1 -) (o 7

2.1.3 Approaches to Natural Language ProCeSSiNG.........cccereueiriririneniesiesiesesesesie e 7
2.1.3.1 Symbolic (KNnowledge-Based)ccccuucereeeuiiieenniereeanieereeanceneeaseeenennssessennsesssenssesssennnns 7
2.1.3.2 Statistical (STOChASEIC)cceuuiiieieiiiiiiic e crrcereerreecere e e e seeaneesenaseseeennsessnennsansennnnns 8
2.1.3.3 Connectionist APProach......ccccieeiiieiiiiiiiiiiiiicieeirreereneserenereesereassssnsessnsssssnssssnsessnsans 8

2.1.4 Major Application of Natural Language ProCessingccucuvererenererieieeiisesesesie e 8
2.1.5 COrPUS HNQUISTICSeeteeiesiieies ettt sttt et st s et e s e e seeste e e e saeeseesbesneeneeneeens 9

2.1.6 STATISTICAI NP ... ettt ettt e e e e e et e e s st e e e st et e e sabateesrareeeesrreeeesaares 10

2. L. NG M oo ———— 10

0 0 = T o 11
0 T A I 4 -4 - 1o T 12

2.2 ProbIlem DefiNITION.c..coiiiiiiiie et 12

3 LITERATURE REVIEWcciuiiiiiiiiiiiiiiiiiniiiieieesiaiieiiaiiesinesisesssssssssssssssassses 14
3.1 Literature Review and Related WOIKS ..o 14

4 IMPLEMENTATION ...cuiiiiiiiiiiiiiiieeiieiiaineiiseiieesisssissrssssssassrassssssssssssssasssssssnns 18
4.1 Framework for Sentence COMPIELIONcooiiiiiiiiiee s 18
O I o =T o] oot Tty [T TR =] PSS 19

4.2 Bigram/Trigram Language Model using Backoff Smoothing ... 19

L VAT (=T oI N [To] | 4] PSS 21
4.3.1 Tracing of the Viterbi algorithim ... 23
AASRILIM L.t b bt b e bt b e R ehe e R sRr e e bt bt beenreenrne s 28
4.5 JAVA Programming LANGUAGEc.cueieiiiiiriiite sttt sttt sbe e 31

5 TESTING AND ANALYSIS ...ouiiiiriiiieiiiiiiiieiiaiiieiiiesissiaireirssisesississsssssssssassses 33
5.1 Nepali Corpus DAta STATISTICScceiverieieieieisiese e 33
5.2 Training and TeSHING DAtcccccveiiiiiiii e s re et sr e be e s reebaesbeare s 33
5.3 INPUL AN OULPUL ...ttt bbbttt bbb 35
5.3.1 Snapshot of the output of the trigram and bigram model.............c.ccoovviiiiiiiiicce, 38

5.4 Analysis of the Prediction MOEl ..o 40
5.4.1 Calculation of Precision, Recall And F-Score of Bigram Prediction Model...................... 40
5.4.2 Calculation of Precision, Recall and F-Score of Tri-gram Prediction Model..................... 41
5.4.3 Comparison between Bigram and Trigram Prediction Modelcccccoovviviienniiieiennne 41

5.5 DiscusSion Of the RESUIT ..o 41

6 CONCLUSION AND RECOMMENDATION.....ccctteitmeirairniineninesissnscrasssesssessassnes 43
6.1 CONCIUSTON ...t e bttt r e r e 43
6.2 RECOMMENAALION.ciiiiiieie ittt ettt ettt e te et esbeese e beane e besteesaesteesaenrenres 43
3= =T =] 4 o= 44
PAY o] 01T 4 e [47

Figure 2.1:
Figure 3.1:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

LIST OF FIGURES

Types of Data for Linguistic ANalySiS..........ccovveieiiieiiiiie e e 9
Combination of Multiple EXPErtS.........cccviiiiieiiee e 16
Framework for Sentence COMPIELION.........ccoeiiiiiiiiinieieeee e 19
V/OCAD PrEPOSSESSING. ... cuveveteteitieiiatiesiet ettt sttt 20
COrPUS PrepOSSESSING....cvvevierieireeiieiesieesteeeestaestesseesteesteeaessaesaeeseaseesseesaesneeses 20
UnIgram MOGEL...........oooiieiee e 30
BIgram MOGEL..........c.ooiiieie e 30
TrGram MOUGEBL ..o 31
COMPUS SAMPIE....eeiiiieeee ettt e e sreete s e e sreenee s 33
Snapshot of Bigram OULPUL...........ccveiieiiie e 38
Snapshot Of Trigram OULPUL..........coieiireiererese e 39
Comparison between Bigram and Trigram Prediction Model...............c.cc......... 41

LIST OF TABLES

Table 4.1: Transition Matrix of 8 words from COrpuUS.........cccccvveiieieiieiiee e 23
Table 4.2: Viterbi Matrix INItaliZation.............ccooiiiiiiiiiiee e 24
Table 4.3: Backtrack Matrix INItialization...........ccovviiiiiiiiie e 24
Table 4.4:1st Iteration to find Viterbi MatriX..........ccooieeiiiiniiiieiie e 24
Table 4.5: Viterbi matrixX-After 1St reCUISION.........ccviiiieieiee e 25
Table 4.6: Backtrack Matrix after 1St FECUISION.........cuvivieiiriierceieee e 25
Table 4.7:2nd Iteration to find ViterbDi MatriX.........ccooovieiieiiniesiesece e 25
Table 4.8: Viterbi Matrix-After 2St reCUISION.coviieiieieie e e 26
Table 4.9: Backtrack Matrix after 2nd reCUrSION.........cccoveieienininisieee e 26
Table 4.10:3rd Iteration to find Viterbi MatriX..........coovvieiieiiiecc e 26
Table 4.11: Viterbi matrix-After 3rd reCUISIONcccvevveieiiierese e 27
Table 4.12: Backtrack Matrix after 3rd reCUISIONcooverieieiieie e 27
Table 4.13: Final VIterbi IMALIIX.......ccoiiiiiiiieieieiesie sttt 27
Table 4.14: Final BaCKtraCk IMatriX........ccveveiierieriiiiiieienie ettt st 27
LI L0 L0 =TS B DT L USSR 33-35
Table 5.2: Input and Output of the Prediction Model..............ccooeoiiiiiiiiiiiiccn, 35-37

Vi

LIST OF ABBREVIATION

NLU Natural Language Understanding

NLP Natural Language Processing

NLG Natural Language Generation

IOLA Ideal On-line Learning Algorithm

HMM Hidden Markov Model

SLM Statistical language modeling

LM Language Model

MLE Maximum Likelihood Estimation

SRILM Stanford Research Institute Language Modeling

JVM Java Virtual Machine

vii

CHAPTER 1

INTRODUCTION

1.1 Introduction

Natural Language Processing (NLP) is meant for any attempt that helps the machine to
understand the natural language and to generate the natural language. While researching
NLP, it is to be considered that there are different types of language involved. Two different
types of language can be distinguished : formal language and natural language[1].

Formal Language

Now, a formal language can be defined as a set of strings, this definition is too general to
distinguish it from natural language. However, formal language does possess the property of
being defined in a strict way. All sentences that are defined in such a formal language should
meet the requirements as set in the definition of the language. This ensures that every
sentence is set up in a standard way, which creates the possibility for computers to process
these sentences.

Natural Language

Natural languages are the ones which mostly used by people to communicate. Although
natural languages can differ a lot, they all share the same property of being natural. This is
because these languages are not strictly bound by definitions, and so there is a natural aspect
about them. For example, there are lots of pieces of language that are never used on paper,
but are heavily used as spoken language in daily life violating the standards set by rules of

grammar.

1.1.1 The Challenge of Natural Language Processing

Because sentences of natural language are not set up in a standard, it is very difficult for
computers to understand what such a sentence states. Computers are only capable of
processing language following a standard pattern. Therefore, in order to understand natural
language, computers must somehow translate the natural language sentences into formal
language sentences. Exactly that is the challenge which inspires scientists to research these

issues within the field of natural language processing.

1.1.2 Areas of Natural Language Processing

In this section the different areas that are part of the broader term NLP are discussed. Natural
language understanding is the subject of Section 1.1.2.1 whereas Natural language generation
is of Section 1.1.2.2.

1.1.2.1 Natural Language Understanding (NLU)

Within the field of NLP, natural language understanding can be identified, which according
to [9] is associated with the more ambitious goal of having a computer system actually
comprehend natural language as a human being might or closer. Therefore the term NLU is

used for the translation of human language into a format that is analyzable.

1.1.2.2 Natural Language Generation (NLG)

NLG can be defined as the subfield of artificial intelligence and computational linguistics that
is concerned with the construction of computer systems that can produce understandable texts
in English or other human languages from some underlying nonlinguistic representation of

information[2].

Each sentence in formal language is formulated in a structured and standardized way. NLG
can play an important role in the process of making a person understand these formal
languages, by translating it into a language the person can understand.

1.2 Motivation

Sentence completion had been a vast research area for many other languages but due to
technological and resources limitation, it is a new but with much vast scope in Nepali
language. The usefulness and prospect of the NLP research in Government offices had
initially intrigued me. Various minor but time consuming works in offices like letter typing,
interacting with owns data warehouse, etc. can drastically increase the effectiveness and

efficiency of available resources.

Another scope of Sentence completion lies within medical sciences. Various neurological
disorders like “Motor Aphasia” in which a person cannot verbalize his/her thought can be

benefitted from such research greatly improving life quality.

Sentence completion can be a milestone in various language processing aspects like grammar
checking, machine level understanding etc. As sentence completion presents itself with many
interesting and real life scopes, | am motivated to contribute in the understanding and
research of this area.

1.3 Sentence Completion

Sentence prediction, a ubiquitous feature, is directed to predict which words sequence is
likely to succeed given initial text fragment. It is a real time feature of returning appropriate
completion. Sentence completion ables a user to retrieve desired information with little

knowledge over exact keywords and with least typing efforts.

Not surprisingly, sentence prediction has found wide adoption as a feature in a variety of
application. This feature is available today in program editors such as Visual Studio,
command shells such as the Unix Shell, search engines such as Google, Yahoo and Desktop
search. Sentence completion is also gaining popularity for mobile devices since it can assist
the users in keying in contacts and text messages [3].

Consider a user wants to type “ZdTeh{d $1ei” the system may suggest “FH&es M=o, By

suggesting words in any given context, word completion can assist in fast composition of

well-formed text.

There are different methods for sentence prediction such as Graph completion method,
Information retrieval method, Confabulation method, Statistical method, etc. Under statistical
method, this work will deal with N-gram method to predict the remaining part of sentence for

Nepali language.

The premise behind using N-gram language models for sentence prediction is the idea that a
word is primarily dependent on previous few words. In sentence prediction, when a sequence
of words is seen, the N-gram model raises the question “What words have I seen in training
that followed these ones?” To do this, an N-gram model is built from some training data by
recording how often each word follows a sequence of words. The number of words in the
prior sequence determines the order of the N-gram model. If only the previous two words are
considered, then it is called a trigram model. Similarly, for one word it is called a bigram

model and a model that ignores the previous word is called a unigram model[4].

1.4 Objectives
The objectives of this work are

e To predict succeeding text fragment for sentence completion using N gram Statistical

method with backoff smoothing.

e To analyze and compare the performance of backoff smoothed bigram and trigram

language model with Viterbi algorithm.
1.5 Organization of Thesis

The rest of this thesis is organized as: Chapter 2 gives a brief discussion of basic concept
related to this work, Chapter 3 is a survey of the major existing solution of sentence
completion problem, Chapter 4 details the implementation of the Sentence completion using
Smoothing Bigram/Trigram model using Katz backoff smoothing with Viterbi Algorithm,
Chapter 5 presents Sentence completion results, and Chapter 6 concludes the thesis,

summarizing its achievements and recommendations.

CHAPTER 2

BACKGROUND AND PROBLEM DEFINITION

2.1 Background

2.1.1 Natural Language Processing

NLP began in the 1950s as the intersection of artificial intelligence and linguistics originally
distinct from text information retrieval (IR), which employs highly scalable statistics-based
techniques to index and search large volumes of text efficiently. With time, however, NLP

and IR have converged somewhat and also other various diverse fields.

The aim of NLP is studying problems in the automatic generation and understanding of
natural language. A Natural Language is any of the languages naturally used by humans, i.e.
not an artificial or machine language such as a programming language like C language, Java,
Perl etc. Cognitive and linguistic motivation is to gain a better insight into how humans
communicate using natural language. Technologically it is motivating to build intelligent
computer systems such as machine translation systems, natural language interfaces to
databases, man-machine interface to computers in general, speech understanding systems,
text analysis and understanding systems, computer aided instruction systems, systems that

can read and understand printed or handwritten text.
2.1.2 Levels of Natural Language Processing

The most clarifying method for presenting what actually happens within a Natural Language
Processing system is by concept of the “levels of language” approach, also referred to as the
synchronic model of language distinguished from the earlier sequential model, which
hypothesizes that the levels of human language processing follow one another in a strictly

sequential manner[5].

2.1.2.1 Phonology

Phonology is a branch of linguistics concerned with the systematic organization of sounds in
languages. Classically it has focused largely on study of the systems of phonemes in
particular languages, but it may also cover any linguistic analysis either at a level beneath the

word or at all levels of language where sound is considered to be structured for conveying
5

http://en.wikipedia.org/wiki/Linguistics
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Language
http://en.wikipedia.org/wiki/Linguistic_analysis
http://en.wikipedia.org/wiki/Sound

linguistic meaning. Phonology also incorporates the study of equivalent organizational
systems in sign languages[6].This level deals with the interpretation of speech sounds within
and across words. In an NLP system that accepts spoken input, the sound waves are analyzed
and encoded into a digitized signal for interpretation by various rules or by comparison to the

particular language model being utilized[7].

2.1.2.2 Morphology

This level deals with the componential nature of words, which are composed of morphemes —
the smallest units of meaning. For example, the word preregistration can be morphologically
analyzed into three separate morphemes: the prefix “pre”, the root “registra”, and the suffix
“tion”. Since the meaning of each morpheme remains the same across words, an unknown
word can be broken down into its constituent morphemes so that humans can understand its
meaning. Similarly, an NLP system can recognize the meaning conveyed by each morpheme
in order to gain the meaning. For example, adding the suffix —ed to a verb, conveys that the

action of the verb occurred in past[5].

2.1.2.3 Lexical

At this level, NLP systems, interpret the meaning of individual words. Several types of
processing contribute to word-level understanding — the first of these being assignment of a
single part-of-speech tag to each word. In this processing, words that can function as more
than one part-of-speech are assigned the most probable part-of-speech tag based on the
context in which they occur. Additionally at the lexical level, those words that have only one
possible sense or meaning can be replaced by a semantic representation of that meaning. The
nature of the representation varies according to the semantic theory utilized in the NLP

system[5].

2.1.2.4 Syntactic

This level specializes on analyzing the words in a sentence so as to uncover the grammatical
structure of the sentence. This requires both a grammar and a parser. The output of this level
of processing is a representation of the sentence that shows the structural dependency
relationships between the words. There are several grammars that can be utilized, and which

will, in turn, impact the choice of a parser.

http://en.wikipedia.org/wiki/Linguistic_meaning
http://en.wikipedia.org/wiki/Sign_language

2.1.2.5 Semantic

This is the level at which most people think meaning is determined, however, as it can be
seen in the above defining of the levels, it is all the levels that contribute to meaning.
Semantic processing determines the possible meanings of a sentence by focusing on the

interactions among word-level meanings in the sentence.

2.1.2.6 Discourse

As syntax and semantics work with sentence-length units, the discourse level of NLP works
with units of text longer than a sentence meaning it does not interpret multi-sentence texts as
just concatenated sentences, but each can be interpreted singly. Rather, discourse specializes
on the properties of the text as a whole that convey meaning by making connections among

component sentences.

2.1.2.7 Pragmatic

The level is to explain how extra meaning is read into texts without being actually encoded in
them. The purposeful use of language in situations is concerned .Above the contents of the
text are used for understanding requiring a lot of world knowledge. Knowledge bases and
inferencing modules are utilized in some NLP applications.

2.1.3 Approaches to Natural Language Processing

Natural language processing approaches fall roughly into four groups: symbolic, statistical,
connectionist, and hybrid. Symbolic and statistical approaches have coexisted since the
beginning. Connectionist NLP work first appeared in the 1960’s. For a long time, symbolic
approaches dominated the field. In the 1980’s, statistical approaches regained popularity as a
result of the availability of critical computational resources and the need to deal with broad,
practical contexts. Connectionist approaches also recovered from earlier criticism by

demonstrating the utility of neural networks in NLP.

2.1.3.1 Symbolic (Knowledge-Based)

Based on explicit representation of facts about language through well-understood knowledge
representation schemes and associated algorithms [8] symbolic approaches is seen in logic or
rule-based systems. In logic-based systems, the symbolic structure is commonly in the form

of logic propositions. Manipulations of such structures are defined by inference procedures

that are generally truth preserving. Rule-based systems usually consist of a set of rules, an
inference engine, and a workspace or working memory. Knowledge is represented as facts or
rules in the rule-base. The inference engine repeatedly identifies a rule whose condition is
satisfied and executes the rule.

2.1.3.2 Statistical (Stochastic)

Stochastic models ability is to work well even in the presence of incomplete linguistic
knowledge about an application domain. Such models thrive on the inherent inflexibility and
fragility of symbolic models, which stem from our lack of complete understanding of many
linguistic phenomena — an essential prerequisite to developing successful symbolic
models[8].A frequently used statistical model is the Hidden Markov Model (HMM) inherited
from the speech community. Statistical approaches have typically been used in works such as
speech recognition, parsing, part-of-speech tagging, collocations, statistical machine

translation, statistical grammar learning, and lexical acquisition.

2.1.3.3 Connectionist Approach

Similar to the statistical approaches, connectionist approaches also develop generalized
models from examples of linguistic phenomena. What separates connectionism from other
statistical methods is that it combines statistical learning with various theories of
representation — thus the connectionist representations allow transformation, inference, and
manipulation of logic formulae. In addition, in connectionist systems, linguistic models are
difficult to observe due to the fact that connectionist architectures are less constrained than

statistical ones[9].

2.1.4 Major Application of Natural Language Processing

The following is a list of some of the most commonly researched tasks in NLP. Some of these
tasks have direct real-world applications, while others more commonly serve as subtasks that
are used to aid in solving larger tasks. What distinguishes these tasks from other potential and
actual NLP tasks is not only the volume of research devoted to them but the fact that for each
one there is typically a well-defined problem setting, a standard metric for evaluating the
task, standard corpora on which the task can be evaluated, and competitions devoted to the
specific task.

e Part-of-speech tagging

e Information retrieval

http://en.wikipedia.org/wiki/Corpora

e Machine translation

e Morphological segmentation
e Question answering

e Relationship extraction

e Sentiment analysis

e Speech segmentation

e Word segmentation

e Word sense disambiguation

e Natural language generation
e Machine translation

e Named entity recognition

e Automatic summarization

e Discourse analysis

2.1.5 Corpus linguistics

Corpus linguistics is a method of carrying out linguistic analyses. It can be used for the
investigation of many kinds of linguistic questions. Also as it has been shown to have the
potential to yield highly interesting, fundamental, and often surprising new insights about
language, it has become one of the most wide-spread methods of linguistic investigation in
recent years. Corpus linguistics thus is the analysis of naturally occurring language on the
basis of computerized corpora. Usually, the analysis is done with the help of the computer,
i.e. with specialized software, and takes into account the frequency of the phenomena

investigated. Roughly, four types of data for linguistic analysis can be distinguished.

The researcher’s own intuition

Data gained by intuition (“introspection”)

2

Other people’s (“informant’s”) intuition

Randomly collected texts or occurrences

Naturally occurring language (“anecdotal evidence”)

Systematic collections of texts (“‘corpora”)

Figure 2.1: Types of data for linguistic analysis

A corpus can be defined as a systematic collection of naturally occurring texts. “Systematic”

means that the structure and contents of the corpus follows certain extra linguistic principles.
9

http://en.wikipedia.org/wiki/Machine_translation
http://en.wikipedia.org/wiki/Morphology_%28linguistics%29
http://en.wikipedia.org/wiki/Question_answering
http://en.wikipedia.org/wiki/Relationship_extraction
http://en.wikipedia.org/wiki/Sentiment_analysis
http://en.wikipedia.org/wiki/Speech_segmentation
http://en.wikipedia.org/wiki/Word_segmentation
http://en.wikipedia.org/wiki/Word_sense_disambiguation
http://en.wikipedia.org/wiki/Automatic_summarization
http://en.wikipedia.org/wiki/Discourse_analysis

For example, a corpus is often limited to certain text types, to one or several varieties of

Nepali, and to a certain time span.

2.1.6 Statistical NLP

Statistical language Modeling (SLM) is the attempt to capture regularities of natural language
for the purpose of improving the performance of various natural language applications. By
and large, statistical language modeling amounts to estimating the probability distribution of
various linguistic units, such as words, sentences, and whole documents. Statistical language
modeling is crucial for a large variety of language technology applications. These
incorporates speech recognition, machine translation, document classification and routing,
optical character recognition, information retrieval, handwriting recognition, spelling
correction, and many more[10].The use of statistical methods to natural language processing
has been strikingly successful over the past two decades. The wide availability of text and
speech corpora has played a major role in their success since, as for all learning techniques,
these methods heavily rely on data. Many of the components of complex natural language
processing systems, e.g., text normalizers, morphological or phonological analyzers, part-of-
speech taggers, grammars or language models, acoustic Hidden-Markov Models (HMMs),
pronunciation models, and context dependency models are statistical models derived from
large datasets using modern learning techniques. These models are often given as weighted
automata or weighted finite-state transducers either directly or as a result of the
approximation of more complex models.

In the current literature on natural language processing (NLP), a distinction is often made
between “rule-based” and ‘statistical” methods for NLP. However, it is seldom made clear
what the terms “rule-based” and “statistical” really refer to in this connection otherwise it is
said to be stochastic. Furthermore, a stochastic model is said to be probabilistic or statistical,

if its representation is from the theories of probability or statistics, respectively.

2.1.7 N-Gram
Probabilities are based on counting things. Counting of things in natural language is based on

a corpus (plural corpora), an on-line collection of text or speech. The goal is to compute the

probability of the given word “w” with given some history “h”. If the history is “SI® T

AfaYTsT SR then the probability the next word is “§?F’ is

10

P (§=T|ote aiersr dfaunet s (2.1)

One way to estimate the probability is from relative frequency counts. From the very large

corpus count the no of times “31& AYAT FAUT IR and “Sic TIUAT FfAUTT S

g?l"’ occurred. The probability is calculated as

C (13 AT AT SR §=) (2.2)
C (STo atgaAT afayre s

P (§=|Ve @t dfaenst siT) =

While this method of estimating probabilities directly from counts works fine in many cases,
it turns out that even the corpus isn’t big enough to give us good estimates in most cases. This
is because language is creative; new sentences are created all the time, and this won’t always
be able to count entire sentences. A sequence of N words is represented
asWy, Wy, Ws........ W,or W* .For the joint probability of each word in a sequence having a
particular value, this work will use P(W;, W, , W,.). Now the probability of the entire

sequence is calculated by using the chain rule of probability as

P(Wy,......... W) =P(W)P(Wy|W)P(Ws|W2) ... P(W, WD) (2.3)

n
= | [pwilwi)
k-1

The intuition of the N-gram model is that instead of computing the probability of a word
given its entire history, the history is approximated by just the last few words. Thus the
general equation for this N-gram approximation to the conditional probability of the next

word in a sequence is
P(WolW™) = P(W4 Wiy 1) (2.4)

2.1.7.1 Bigram

The bigram model approximates the probability of a word given all the previous words
P(W, |[w*~1) by the conditional probability of the preceding word P(W,,|W,,_,).Given the
bigram assumption for the probability of an individual word, the probability of a complete

word sequence can be calculated using equation 2.3 as

11

n 2.5)
P wr Y = | | PWIWi-)
k=1

The simplest and most intuitive way to estimate probabilities is called Maximum Likelihood

Estimation (MLE). For the general case of MLE, N-gram parameter estimation

C(WyZys1Wn) (2.6)
AU

P(Wn|W1Il—_1\}+1) =
So for the bigram model the probability is derived from equation 2.6 as

C(Wn—lwn) (27)

P(Wnlwn—l) = C(W _1)

2.1.7.2 Trigram

The trigram model approximates the probability of a word given all the previous words
P(W,|W* 1) by the conditional probability of the preceding two words
P(W,\W,,_,W,,_1).Given the bigram assumption for the probability of an individual word,

the probability of a complete word sequence can be calculated using equation 2.3 as

n (2.8)
PWRIWE) = | | POl WeaWie)

k=1

So, for the trigram model the probability is calculated from equation 2.6 as
C(Wn—ZWn—IWn) (29)
P(W W) =
" 2 C(Wn—ZWn—l)

2.2 Problem Definition
If we have given the text fragmentW,,......... , W, ,then the problem is to find the most
likely word sequence Wiiq,.vvvvnn... , Wit to complete the sentence for the given text

fragment.

Sentence prediction facilitates text entry by suggesting sequence of words. If the desired text
fragment is suggested, the user can select with a mouse click or a keystroke, thereby saving
the effort of typing the remaining words. Otherwise, the user can continue typing while the

software continues to display new sequence of words based on the input.

12

Sentence completion in search is one of the most popular features to be found in wide

variety of application environments. As the user searches for the text, suggestions

based on typed content are returned[11].For example when the user types “3i& T#T”

then text fragment “TTAEITT ST ?W is given by the system for sentence completion.

It has been widely adopted in text & code editors, and in almost every possible browsing
Graphical User Interfaces (GUIs), -where user tries to input information. In absence of
Sentence completion, a user would either type entire string or part of it which may or

may not return the desired results[12].

It is also used by human translator who will choose a given foreign sentence[13, 14].In

translation from English to Nepali such as “I love my mother.” After a user writes “& #RI
3TTHATATS” then “HTAT 31?” option should be provided. Then the user will select the right one.
The sentence prediction also assist user in search engine[3, 12].When the user types “sTqTel#T

Wﬂ'&'ﬁ” then the sentence completion system provides “&hfd I8, Also when the user is

typing, it can save time to type the remaining words. For example: when the input is

“HelTHCADI ol@” then the purposed system gives the word “cI&H JHIG caehicl §T-[”

then it can save time and also typing effort. Also for the user with little knowledge of Nepali

language, this feature can assist by providing possible succeeding words for completion.

13

CHAPTER 3

LITERATURE REVIEW

3.1 Literature Review and Related Works

Through analysis of the predictability of sequence of letters, it was revealed that written
English has a high degree of redundancy[15]. The ordinary literary English has long range
statistical effects which reduce the entropy to something of the order of one bit per letter,
with a corresponding redundancy of roughly 75% [15]. In addition, their redundancy may be
still higher when structure extending over paragraphs, chapters, etc. is considered. The
parameters in question become more erratic and uncertain with the increased in lengths and in
turn they depend more critically on the type of text involved. Therefore, based on this
finding, it is obvious to ask whether the system can support users in the process of writing

text which predict the intended next words, keystroke or sentence [13].

It has been studied that “Interactive keyboard” uses the sequence of past keystrokes to predict
the most likely succeeding keystroke [16].This approach[16] of keystrokes was determined

statistically. After that, almost all of the predictive models developed.
Normally, the Statistical methods imply words based on:

a) Frequency, either in the context of relevant corpora or what the user has typed in the past;

or
b) Recently, where suggested words are those the user has most recently typed.

This method has its own shortcomings but it reduces keystrokes and increase efficiency.
Though it was designed for general purpose, this computer interface has great scope to

enhance the ease and rate of communication especially for physically limited people.

Identifying user-dependent information, which can be automatically collected, helps to build

a user model by which

a) To predict what the user wants to do next and

b) To do relevant processing

14

This information is often relational which can be best represented by a set of directed graphs.
A machine learning technique called graph-based induction (GBI) efficiently extracts
regularities from such data. Based on which a user-adaptive interface is built which can
predict next command, generate scripts and pre fetch files in a multi task environment. The
core of GBI is pair wise chunking. This approach shows how this simple mechanism can be
applied to the top down induction of decision tress for nested attribute representation as well
as finding frequently occurring patterns in a graph. The results, activated by the user
commands, show that the dependency analysis of computational processes is really useful to

build a behavior model and increase prediction accuracy[17].

The approach[18] where the recent actions strongly affect future actions than older actions
propose the following description of an Ideal On-line Learning Algorithm (IOLA). In order to

contain the desirable characteristics of the best algorithms, an IOLA would:

a) Have predictive accuracy at least as good as the best known resource-unlimited methods,
b) Operate incrementally,

c) Be affected by all events,

d) Not need to retain a copy of the user’s full history of actions,

e) Output a list of predictions, sorted by confidence,

f) Adapt to changes to the target concept,

g) Be fast enough for interactive use,

h) learn by passively watching and

i) Apply even in the absence of domain knowledge.

This approach[19] has discover a variety of techniques to improve its accuracy, including a

“mixture of experts” model as shown in figure 3.1.

15

Command History

Sequence of Pamed
Commands Expert

B

Sequence of Commands
Expert
E

AC

Last 100 Commands
Expert

I:I.ICI:I

Figure 3.1: Combination of Multiple Experts[19]

On a series of experiments with real world data, this approach show

a) Within 50% of the time, the simple system can correctly predict the user’s next command
and can perform robustly across a range of different users and

b) It is extremely difficult to further improve this result

A problem of predicting the next action of a user is frequently dealt by the area of human
computer interface design. Unix shell is developed which predicts the command stubs that a
user is most likely to enter, given the current history of entered commands[17, 18].This idea
has been elaborated which predicts whole command lines [19]. To predict the next
keystrokes, the Reactive Keyboard [16]uses length-k modeling which is based on the
previous keystrokes typed. Thought it is similar to work[19], it is also predicting the next
complete command line which is based on the previous command lines typed, rather than a

keystroke at a time.

A number of different models have been purposed for the prediction of words, keystroke or
sentence for example: An indexing which efficiently retrieves the sentence from a collection
was developed that is most similar to a given initial fragment[20].To address the sentence
completion problem, the cogent confabulation model was used[21]. Cogent confabulation, a
bio-inspired model, extracts posterior probabilities among objects at the symbol level. Also, a
graph mining methodology can be used to address the same sentence completion problem
[12].

The email programs suggestions which come from auto completion database, is created
from users mailing history and contacts list. This characteristic support users to fill up

address field just after they typed few characters in “TO”, ”CC” or “BCC” field of an
16

outgoing email. Beyond this, there are many other applications that uses different forms auto
complete as per the relevance. Just like the text processors generate their suggestions list
based on previous search history or from a predefined list. However, in majority of
text processors this suggestions are only limited to word length. Even though they
might not actually exist in the text which user is trying to get useful information

from, are based on the typed characters[12].

Several scholars has conducted many research on statistical language model and its
associated corpus [4]. Likewise the grammatical judgment task is also used for Sentence
completion task[22].

Statistical language model [23, 24] mainly N-gram language model [11, 18, 20, 22, 25, 26]
having backoff smoothing[4]has been used in sentence completion. In addition, this models

also uses application of the Viterbi principle[27] for sentence completion.

17

CHAPTER 4

IMPLEMENTATION

4.1 Framework for Sentence Completion

Sentence completion flowchart is given in Figure 4.1. This describes top level data flow
diagram of sentence completion problem, used in this work. The proposed system
framework consists of three steps; preprocessing, train the data using bigram/trigram
language model with back off smoothing and find the most probable sequence using Viterbi

algorithm.

Preprocessing sub engine has Nepali corpus as input. After preprocessing, only important
data is stored. Training the corpus is the most powerful and is the heart of Sentence
completion Model. After training corpus, the most probable sequence for the input text

fragment is find out using Viterbi algorithm.

Corpus

Preprocessing

!

Preprocessed Corpus

Using Bigram/Trigram
Language Model

Input Text Segment l
Bigram/Trigram
model
Viterbi Algorithm
Sentence <

completion Model

[
Output

| Sentence
» | Prediction

Figure 4.1:- Framework for Sentence Completion

18

4.1.1 Preprocessing Step

Preprocessing is one of the important steps in sentence completion. It helps to make the raw
data suitable for analysis by improving the data quality. Preprocessing step makes input ready
for the Stanford Research Institute Language Modeling (SRILM). In preprocessing step two
file are created. The input format for the SRILM toolkit is shown in figure 4.2 and

4.3.Accordingly the java program is written to make the necessary file.

441411

Tam

G

TERTRR

3
[

Figure 4.2: Vocab Prepossessing

e At T O OF G 1 IS 8 TR T O] o] O AT R i adrs TG T O] Oeai® g e AT T e me
T U TR SuT e HaT T 9t WA 3 AT i 3 A e

A EITET 53 T AnTe s 390 e OIS 18 Bam] 99900 07 Tema] tiaR aF (67 8= 181 950 HIH 57

L EEE! WEHTT Uioeaetes! wy el a1 $Taa] 31 WP Siaar 941 T 95 451

Arelt TiEd fEAe HHY Boane! HEiE a4 50 g9 HIsl §

T IO G W AN g SU0 SHIEET TS 18 e 9T H07 Tewa] eroR 6 (67 DS 157 9% HEE 5

FETiE TUET TEUIET 9% RS SaE [aaed e

Figure 4.3: Corpus Prepossessing

4.2 Bigram/Trigram Language Model using Backoff Smoothing

The major problem with the maximum likelihood estimation process for training the
parameters of an N-gram model is sparse data. The problem sparse data is caused by the fact
that maximum likelihood estimate was based on a particular set of training data. Any N-gram

that occurred a sufficient number of times have a good estimate of its probability. But

19

because any corpus is limited, some perfectly acceptable nepali word sequences are bound to
be missing from it. This missing data means that the N-gram matrix for any given training
corpus is bound to have a very large number of cases of putative “zero probability N-grams”
that should really have some non-zero probability. Furthermore, the MLE method also

produces poor estimates when the counts are non-zero but still small.

The way to solve this “zero probability N-grams” problem is Smoothing.Not only do
smoothing methods generally prevent zero probabilities, but they also attempt to improve the
accuracy of the model as a whole. Whenever a probability is estimated from few counts,

smoothing has the potential to signicantly improve estimation.

One way to solve this problem is called Katz backoff.In a Katz backoff N-gram model,if the
N-gram concerned has zero counts,it is approximated by backing off to the (N-1)-gram.In

this backing off a history that has some counts is reached.

P*(W; Wi, Wi_q), if C(Wi_,W;_ W) >0
Prat: (WilW;_o,Wi_y) =4 a(Wi_ ;Wi)P (Wi IW;_y), elseif C(W;_,W;) >0 (4.1)
a(W,)P*(W,), ortherwise
{ Pr(W[Wiy), if C(Wi W) >0
Peatz WilWi-1) = {a(Wi_l)P*(Wi), otherwise (4.2)

Here P* is defined as the discounted estimate of the conditional probability of an N-gram.

C*(Wytn+1)

P*(WplWin-1) = (4.3)

C(Wityss
(C + 1) NIC\‘I+1 -C (k +]]\-I)Nk+1
* C 1 < < .
C 1_(k+1)Nk+1 Jforl<C <k 4.4
Ny

By discounting ,this will leave some probability mass for the lower order N-gram, which is
then distributed by the a weight and the total amount is represent of left-over-probability

mass by the function $,a function of the (N-1)-gram context.

BWESLD =1- Y P IS (45)

Wn:C(Wyly41)>0

20

— ﬁ(WT?—_I\}+1)
ZVVn:C(WT?_N_‘_]_):O PkatZ (Wn | Wnn__l\}+2

a(Wn—_I\:}+1) _ (46)
" 1- Z:Wn:C(W,{l_,\,Jrl)>o P*(WolWihs1)

P*(WalWitys2)

1= 2Wn:C(W;}—N+1)>O
4.3 Viterbi Algorithm

The problem is to find the most likely word sequence W;,;...... W, given an initial word

sequenceW; ... W,.

Werro WeerPWess - Wear Wy . W) 7

By using joint probability of the missing word the equation 4.8 can be obtained.

argmax T (4.8)
e er PWepto o Woir Wy W) = P(Wey ;Wi . Wey i)
WesgoWer =1
Using N-gram model simplifies the equation 4.8 in equation 4.9
argmax T
VlZing-?XWt+TP(Wt+1 v W [Wy o W) = HP(Wt+j|Wt+j—N+1---Wt+]'—1) (4.9

By identifying the recursive structure in equation 4.7, lead to Viterbi algorithm that retrieves
the most likely word sequence. At first an auxiliary variable
[2P WNIWeZNg2y e enns ,Wy)is defined in equation 4.10; which quantifies the
greatest possible probability over all arbitrary word sequences W;,4,....... , Wi, followed
by the word sequence W, .4 = W/, , Wiisin=Wy.In equation 4.11, the last transition
is factorized and then the N-th order Markov assumption is applied. In equation 4.12, after
splitting the maximization, a new random variable Wy for W,,, is introduced. Now the

recursion can be observed in equation 4.13 referring the definition of§.

— max ! !
= w0 PWigq, . Wisa Wi, W AW, ps2reeenn-. W)

21

(4.11)
= WJET.WHSP(WAHWL o WR_DPWegas oo, Wepe, WH, o W (Weyga, -, W)
Ses(Wi, oo, WyIWe_yy2)- o, W)
max , , , , , , W, _ (4.12)
= ,Wt+1.T:GII/)I/('t+S_1P(WN|W11"' WN—l)P (Wt+1'--: Wiys = Wo, Wy, .., Wy_4 _f’%;tz
0
5t,S(W1,'"'IWI\’IIWt—N+2f---th) (4 13)

= P (W WY, .., Wy_1) By 1 (W, Wiy [Wesn—as .., W)

Exploiting the N-th order Markov assumption, target probability in terms of & is expressed in

equation 4.14.

Wt+r1r.lf.).(wt+TP Wegtsene- WerrWenizenenen. W) (4.14)
= Wll maXWIo St,T—N (Wll,) WI\’T IWt—N+21) Wt)

The last N words in the most likely sequence are simply the

W{ai%fi;/v SernWi,....... IWHWeZjgzr e ,W,).In order to collect the preceding most

likely words, an auxiliary variable ¢ is defined in equation 4.15 that can be determined in

equation 4.16.

(pt,S(WlI' LR W1<]|Wt—N+2, ey Wt)

argmax (4.15)
- W, We+t -r-r-l-?-)-(---Wt+s—1P(Wt+1' T Wt+s’ LR W1,V|Wt—N+2, . Wt)
t+s
(pt,S(Wlll L] WI\,I|Wt—N+2’ veay Wt)
(4.16)

= arngrlllgxgt,S—l(WO,l ey WI(I—lIWt—N+2’ ey Wt)P(WI\Illwll' e WA”_l)

The Viterbi algorithm starts with the most recently entered word W; and moves
iteratively into future. Viterbi search is stopped when T reaches 4[13].

Viterbi java function:

/I Viterbi Matrix Initialization
for(int j=0;j<h.size();j++)

Vmatrix[j][0]=Tmatrix[][j];

22

}

/I Backtrack Matrix Initialization
for(int j=0;j<h.size();j++)
Bmatrix[j][0]=l;
/I Viterbi matrix and backtrack matrix calculation
int index=0;

for(int t=1;t<4;t++)

{
for(int ip=0;ip<h.size();ip++)
{

double value=0.0;
for(int j=0:j<h.size():j++)
{ if(Vmatrix[j][t-1]* Tmatrix[j][ip]>Value)
vai{ue:VmatrixU][t—l]*Tmatrix[i][ip];

index=j;
}

Vmatrix[ip][t]=value;
Bmatrix[ip][t]=index;
}

}

4.3.1 Tracing of the Viterbi algorithm

Tables 4.1 represent a transition matrix of 8 words from the corpus.

g T Fr dfedd | WeAT | S4Tel fase Sl
THE | 0.001789938 | 0.08395 | 0.004858407 | 0.001279 | 0.003452 | 0.001662 | 3.84E-04 | 0.006776
T 0.001886556 | 6.74E-04 | 0.058731487 | 0.001348 | 0.003638 | 0.001752 | 4.04E-04 | 0.007142
Cal 0.001841183 | 6.58E-04 | 0.004997502 | 0.010326 | 0.003551 | 0.00171 | 3.95E-04 | 0.00697
3ifeda | 0.001873347 | 6.69E-04 | 0.005084805 | 0.001338 | 0.03924 | 0.00174 | 4.01E-04 | 0.007092
WoTAT | 0.00188778 | 6.74E-04 | 0.00512398 | 0.001348 | 0.003641 | 0.010876 | 4.05E-04 | 0.007147
9Tl | 0.00182362 | 6.51E-04 | 0.004949831 | 0.001303 | 0.003517 | 0.001693 | 3.91E-04 | 0.006904
fsS | 0.001529034 | 5.46E-04 | 0.004150239 | 0.001092 | 0.002949 | 0.00142 | 3.28E-04 | 0.391772
Tel. 4.95E-05 1.77E-05 | 1.34E-04 3.54E-05 | 9.55E-05 | 4.60E-05 | 1.06E-05 | 1.87E-04

Table 4.1:Transition Matrix of 8 words from corpus

l. Let the system have the input “<s> =qTel”
. At first, the initialization of the Viterbi matrix is as shown in table 4.2.

23

0.001823620 0.000000000 | 0.000000000 0.000000000
0.000651293 0.000000000 | 0.000000000 0.000000000
0.004949831 0.000000000 | 0.000000000 0.000000000
0.001302586 0.000000000 | 0.000000000 0.000000000
0.003516984 0.000000000 | 0.000000000 0.000000000
0.001693364 0.000000000 | 0.000000000 0.000000000
0.000390776 0.000000000 | 0.000000000 0.000000000
0.006903708 0.000000000 | 0.000000000 0.000000000

Table 4.2:Viterbi Matrix Initialization

Il. Backtrack matrix initialization is as shown in Table 4.3.

Viterbi[2][0]*

5

OO0 |0 |O0|o|o

OO |00 |0 |o|o

o1|Oo1 o1 |01 (O1 (01O

0

0

O OO0 |0 |O |o

Table 4.3:Backtrack Matrix Initialization
IV. Recursion to calculate the Viterbi matrix 2" column and Backtrack matrix 2" column,

this work multiplies Viterbi[0][0]* Transition[0][1], Viterbi[0][1]* Transition[1][1],
Viterbi[4][0]*
Transition[4][1], Viterbi[5][0]* Transition[5][1], Viterbi[6][0]* Transition[6][1],and
Viterbi[7][0]*Transition[7][1].To fill in the Viterbi[0][1],find the maximum result from
above and to fill in the backtrack[0][1],find from which index the maximum Viterbi value
has been derived. The table 4.4 shows the multiplication to find the Viterbi value for 2"
column. Underlined figures are the highest figure in their respective column.

Transition[2][1],

Viterbi[3][0]*Transition[3][1],

T

a

T

&

3feds

el AT

AT

EiECY

Bl

0.000003264

0.000153095

0.000008860

0.000002332

0.000006295

0.000003031

0.000000699

0.000012357

0.000001229

0.000000439

0.000038251

0.000000878

0.000002370

0.000001141

0.000000263

0.000004652

0.000009114

0.000003255

0.000024737

0.000051114

0.000017576

0.000008463

0.000001953

0.000034501

0.000002440

0.000000871

0.000006623

0.000001743

0.000051114

0.000002266

0.000000523

0.000009238

0.000006639

0.000002371

0.000018021

0.000004742

0.000012804

0.000038251

0.000001423

0.000025134

0.000003088

0.000001103

0.000008382

0.000002206

0.000005956

0.000002867

0.000000662

0.000011690

0.000000598

0.000000213

0.000001622

0.000000427

0.000001152

0.000000555

0.000000128

0.000153095

0.000000342

0.000000122

0.000000927

0.000000244

0.000000659

0.000000317

0.000000073

0.000001294

Table 4.4:1% Iteration to Find Viterbi Matrix

V. So the Viterbi matrix after the 1% recursion is shown in table 4.5.

24

VI.

0.001823620 | 0.000009114 | 0.000000000 0.000000000
0.000651293 | 0.000153095 | 0.000000000 0.000000000
0.004949831 | 0.000038251 | 0.000000000 0.000000000
0.001302586 | 0.000051114 | 0.000000000 0.000000000
0.003516984 | 0.000051114 | 0.000000000 0.000000000
0.001693364 | 0.000038251 | 0.000000000 0.000000000
0.000390776 | 0.000001953 | 0.000000000 0.000000000
0.006903708 | 0.000153095 | 0.000000000 0.000000000

Table 4.5:Viterbi Matrix-After 1% recursion

And the Backtrack matrix after the 1% recursion is shown in table 4.6.

5 2 0

o1 |o1 o1 |o1 | Ol
N[~ WIN [P O

o O |0 |O0|o|o
OO0 |0 |O0O|O0 |0 |Oo

5 6 0
Table 4.6:Backtrack Matrix after 1% Recursion

At 2" recursion, to find the Viterbi value and backtrack value for the third column the
multiplication is shown in table 4.7. Underlined figures are the highest figure in their respective

VIL.

VIII.

column.

e

A

T

&l

3fede

AT

9Tl

EECY

<

Sl

~

0.000000016

0.000000765

0.000000044

0.000000012

0.000000031

0.000000015

0.000000003

0.000000062

0.000000289

0.000000103

0.000008992

0.000000206

0.000000557

0.000000268

0.000000062

0.000001093

0.000000070

0.000000025

0.000000191

0.000000395

0.000000136

0.000000065

0.000000015

0.000000267

0.000000096

0.000000034

0.000000260

0.000000068

0.000002006

0.000000089

0.000000021

0.000000362

0.000000096

0.000000034

0.000000262

0.000000069

0.000000186

0.000000556

0.000000021

0.000000365

0.000000070

0.000000025

0.000000189

0.000000050

0.000000135

0.000000065

0.000000015

0.000000264

0.000000003

0.000000001

0.000000008

0.000000002

0.000000006

0.000000003

0.000000001

0.000000765

0.000000008

0.000000003

0.000000021

0.000000005

0.000000015

0.000000007

0.000000002

0.000000029

Table 4.7:2™ Iteration to Find Viterbi Matrix

So the Viterbi matrix after the 2™ recursion is shown in table 4.8.

25

IX.

0.001823620 | 0.000009114 | 0.000000289 0.000000000
0.000651293 | 0.000153095 | 0.000000765 0.000000000
0.004949831 | 0.000038251 | 0.000008992 0.000000000
0.001302586 | 0.000051114 | 0.000000395 0.000000000
0.003516984 | 0.000051114 | 0.000002006 0.000000000
0.001693364 | 0.000038251 | 0.000000556 0.000000000
0.000390776 | 0.000001953 | 0.000000062 0.000000000
0.006903708 | 0.000153095 | 0.000001093 0.000000000

Table 4.8:Viterbi Matrix-After 2% Recursion

And the Backtrack matrix after the 2™ recursion is shown in table 4.9.

5 2 1 0
5 0 0 0
5 1 1 0
5 2 2 0
5 3 3 0
5 4 4 0
5 2 1 0
5 6 1 0

Table 4.9:Backtrack Matrix after 2" recursion

X. At 3" recursion, to find the Viterbi value and backtrack value for the third column the
multiplication is shown in table 4.10. Underlined figures are the highest figure in their
respective column.

qHg T Hr Jifedd WolAT AqTeTr fase

N

Bl

XI.

0.000000001

0.000000024

0.000000001

0.000000000

0.000000001

0.000000000

0.000000000

0.000000002

0.000000001

0.000000001

0.000000045

0.000000001

0.000000003

0.000000001

0.000000000

0.000000005

0.000000017

0.000000006

0.000000045

0.000000093

0.000000032

0.000000015

0.000000004

0.000000063

0.000000001

0.000000000

0.000000002

0.000000001

0.000000015

0.000000001

0.000000000

0.000000003

0.000000004

0.000000001

0.000000010

0.000000003

0.000000007

0.000000022

0.000000001

0.000000014

0.000000001

0.000000000

0.000000003

0.000000001

0.000000002

0.000000001

0.000000000

0.000000004

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000024

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

Table 4.10:3" Iteration to Find Viterbi Matrix

So the Viterbi matrix after the 3" recursion is shown in table 4.11.

26

XII.

0.001823620 | 0.000009114 | 0.000000289 0.000000017
0.000651293 | 0.000153095 | 0.000000765 0.000000024
0.004949831 | 0.000038251 | 0.000008992 0.000000045
0.001302586 | 0.000051114 | 0.000000395 0.000000093
0.003516984 | 0.000051114 | 0.000002006 0.000000032
0.001693364 | 0.000038251 | 0.000000556 0.000000022
0.000390776 | 0.000001953 | 0.000000062 0.000000004
0.006903708 | 0.000153095 | 0.000001093 0.000000063

Table 4.11:Viterbi Matrix-After 3 Recursion

And the Backtrack matrix after the 3" recursion is shown in table 4.12.

2

o1 |Oo1 o |01 (01|01 | O

N |~ WN |- O

P |~ WIN (PO

5

6

1

NN ININIEFP|IOIN

Table 4.12:Backtrack Matrix after 3rd Recursion

XIIIl. So for backtracking purpose, the greatest value at the 4th column of the final Viterbi matrix has to

be found as shown in table 4.13.

0.001823620 | 0.000009114 | 0.000000289 0.000000017 ‘\’\
0.000651293 | 0.000153095 | 0.000000765 0.000000024
0.004949831 | 0.000038251 | 0.000008992 0.000000045 .
Maximum value
0.001302586 | 0.000051114 | 0.000000395 0.000000093
0.003516984 | 0.000051114 | 0.000002006 0.000000032
0.001693364 | 0.000038251 | 0.000000556 0.000000022
0.000390776 | 0.000001953 | 0.000000062 0.000000004 /
0.006903708 | 0.000153095 | 0.000001093 0.000000063
Table 4.13:Final Viterbi Matrix
XIV. So this work backtrack from the highest value using backtrack matrix
€« S 2 1 2
5 | =0 0 0
5 1| 1 1
5 2 2 1 N2
5 3 3 2
5 4 4 4
5 2 1 2
5 6 1 2

Table 4.14:Final Backtrack Matrix

27

XV.

So the final predicted text fragment will be :
<s> AUTT GHg ‘T &l e
4.4 SRILM

SRILM[28, 29] is a toolkit for building and evaluating statistical language models (LMs).
Most of the LM types it supports are based on N-gram statistics, including the standard back-
off models, with an array of standard smoothing algorithms (Good-Turing, Witten-Bell,
Kneser-Ney, etc.). Models based on word classes (automatically induced or externally
defined) are also supported. SRILM implements various methods for interpolating and
adapting LMs, as well as pruning for trading off size against performance. Once an LM is
trained, it can be evaluated or used in a variety of standard tasks, such as perplexity

computation, N-best and lattice rescoring, and text tagging and segmentation.

SRILM consists of three software layers. The core functionality is implemented in C++,
comprising classes for containers (arrays, associative maps, tries, N-gram counts),
application-related data structures (N-best lists, lattices, confusion net-works, text statistics),
smoothing methods, and the LMs themselves. The latter are arranged in a class hierarchy,
reflecting the fact that many LM types are variants of more basic types, for which most of the
implementation can be shared. The second layer, and the one most relevant to most users, is a
set of executable tools that carry out the standard tasks of LM building and application, as
well as manipulation of lattices, N-best lists, and confusion networks. A third layer comprises
tools implemented as scripts in the Bourne shell, Gawk, and Perl languages for miscellaneous
tasks that are carried out primarily through simple manipulation of text files or on top of the
second-layer tools. The tools in the second and third layers are designed to combine via Unix
pipes to carry out more complex tasks[29].

The techniques that help accommodate large data and models can be summarized as follows:
Count-of-count Statistics:

When count cutoffs on N-grams are used, as they usually are in training large LMs, it is not
necessary to load all N-gram counts into memory. Rather, the count-of-count statistics
required for discounting algorithms can be computed off-line (in constant memory), and for
N-grams that fall below the frequency threshold only these count-of- need to be passed to the

28

LM estimation algorithm. This method is encapsulated in the SRILM make-big-Im script.
Vocabulary sub setting:

At test time, the data can usually be split into manageable chunks, each of which utilizes only
a small subset of the vocabulary. All LM types now support a loading method triggered by N-
gram -limit-vocab, whereby only those LM parameters are loaded that intersect with a given

vocabulary subset.
Binary File Formats:

N-gram counts and backoff LMs now support binary formats that are inherently faster to read
and, more importantly, support very fast loading with -limit-vocab, efficiently skipping over
file portions that are outside a given vocabulary. While the format is binary, it is still portable

between different byte-orders and machine word sizes.
Indirect Integer Storage:

Large counts require 64 bits for encoding, yet this would entail wasted space for most N-
grams, which are still infrequent. An integer data type can be implemented that stores small
count values inline using 2- or 4- byte words, while referencing a table for large values that
do not fit in 15 or 31 bits, respectively.

Optimized Heap Allocation:

The overall overhead in heap memory allocation is lowered by providing a special-purpose
allocator that keeps lists of small memory chunks, as are typically found in N-gram trie data
structures. (This, too, exploits the fact that N-gram frequency distributions have a long tail of
infrequent N-gram types, leading to a large number of trie nodes with small number of
children.) For a 6-gram LM with 690M N-grams, this reduced memory usage by 30% (from
33GB to 23GB).

Destructive LM Merging:

Since large LMs are typically constructed as a static interpolation of component LMs by N-
gram merging, N-gram LM merging is made destructive, so that the total memory demand is
only the sum of the result LM and the smaller of the two inputs. This way, very large LMs
can be built by successively merging the component models.

29

This work uses this SRILM toolkit to find the alpha and discounted value for the unigram and

also alpha and discounted value for the bigram and the discounted probability for the trigram

model. The snapshot of the output of the unigram, bigram and trigram model is given in

figure 4.4, 4.5 and 4.6 respectively.

—3.4488¢1
—3.745831
—3.7458391
—3.27277

—3.7458391
—3.4488¢1
—3.147831
—-3.27277

—3.7485831
—3.4488¢1
—3.7458391
—3.0503821
—3.4488¢1
—3_.27277

—3.44888€1
—3.7458391
—3.7488391
—3.4488¢1
—2.€35547
—3.7458391
—3.7458391
—3.749891
—2_.7084S8
—3.147831
—3.7458391
—3.4488¢61
—2.5047353

98T -0.054€9852
a=iEt -0.15083
geEifya -0.15083
aqET —o0.z157018
aETET -0.1503072
amETaETe -0.09454393
4t -0.19865943

g% —0.1467143

g2 —-0.1507527

T3}k —0.1505z202

g5 —-0.1497467

gHad -0.1045253
gHaaTs= —-0.1504434
o541 -0.1505981

gy -0.15083

gaTScS®l —0.1506754

2 = -0.1507527
gEudasT —0.09469852
It -0.5183965

I_HUs! —-0.1500SES
g9 -0.15083

TRIgT —0.15083

oEag= —-0.4358803
ROt —-0_.1196112
OqRET —0_.1503661

Eerat —-0.03454353
gar -o0.12335083

Figure 4.4: Unigram Model

—0_7072967
—1.1i8s511is8
—0.841357
—1i.1i8s5118
—0.883388
—0_.40&€39¢cc¢e
—0_70729867
—1.78€478
—1.3€0503
—1.3€0503
—0._883388
—0.883388
—0.8325354
—1.309357
—1.3039357
—0.48351745S
—0_70723967
—0._.883388
—0.5315054
—1.5z20z21
—1.5523385
—0_70728&67
—0_7072967
—0._.883388
—1.008327
—1.008327
—0.8329354
—1.3089357

gaad S9! 0.01303357
TOfSId T 0. 0038272065
oS TNesT 0.1434708
oxrfera Tt 0.59714539
ofREwe < -0.02334817
a1 1.193132

T93oH] 0.0&305053
oEeiE@s -0.01344435S
gfediges SOy 0_.0189635

ofeaiges giagas 0_.02327158
OUSTE 1.204646

gusI el 1.034895

URTR> 0.1590&1

o= T —-0.01245145
TSI 1.706591

g 9T 1.34z025

Oogior g%ﬂi'm YS®T 0.0630S053

O3 NS 0.0&S05053

gears Y —-0.3515127
wfergif=rar <t 0_.003&33081
wufagia=T 2 -0_.01713&87

ufagutst w¥3T 0 _ 0505053
ues==1 f@fe=d o.oesososs

ufaarst 989 0_.0&8305053
o Sasg 0.06305053
ufaare FaasEaET 0_.06305053
UgTE TNe®] 0.012344239

U9 TR —0.01313738

Figure 4.5: Bigram Model

30

—-1.23838¢ BN D < /s>

-1_.23896 =71 o S 5
-1_2383%¢6 I SHIC O

-0_06694679 TRE®I T </s>
-0.8107345 NO®ISg</s>
-1.2383%¢& o S </s=>
-1.2383¢ TSI B </ s>
-0_.06694679 SUOIGI B </s>
—-0_.0EE94675 HISI B9 </s>
-0.25138098 (USETI<s/s>
-0.8107345 A DA </s>

-1.2389¢ TS </s>
—-1_.2383¢ ST S, O

-1 _2383¢ Thee®T 5, ade S
-0.2513203 SaF Se®9g

-1.23896 o< [l THE
-1.53999 FEHTRE §9eS o=
-1.23896 HIETd Java=l &ie
-1_.2389¢ TN SO EraedaT
-1_.23896 HE IO ET 5o

-1.23896 =g o ===
-1_23839¢ ot fSfag </s>
-0_2s513809% Suny o sfyar==n
-1_.23896 ¢ 5= TRafs

-1.23896 Y SEagT SS9
-1_.2389¢6 TT® STea 39
-1 z=2A/9& ST G NaTe ! =o=T s e

Figure 4.6: Trigram Model

4.5 JAVA Programming Language

Java is a programming language originally developed by James Gosling at Sun Microsystems
and released in 1995 as a core component of Sun Microsystems' Java platform. The language
derives much of its syntax from C and C++ but has a simpler object model and fewer low-
level facilities than either C or C++. Java applications are typically compiled to byte-code
(class file) that can run on any Java Virtual Machine (JVM) regardless of computer
architecture. Java is a general-purpose, concurrent, class-based, object-oriented language that
is specifically designed to have as few implementation dependencies as possible. It is
intended to let application developers "write once, run anywhere” (WORA), meaning that
code that runs on one platform does not need to be recompiled to run on another. Java is as of
2012 one of the most popular programming languages in use, particularly for client-server

web applications, with a reported 10 million users.

The original and reference implementation Java compilers, virtual machines, and class
libraries were developed by Sun from 1995. As of May 2007, in compliance with the
specifications of the Java Community Process, Sun relicensed most of its Java technologies

under the GNU General Public License. Others have also developed alternative

31

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Java_%28software_platform%29
http://en.wikipedia.org/wiki/Syntax_%28programming_languages%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Class_%28file_format%29
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/General_purpose_programming_language
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Class-based
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Reference_implementation_%28computing%29
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Java_Community_Process
http://en.wikipedia.org/wiki/GNU_General_Public_License

implementations of these Sun technologies, such as the GNU Compiler for Java and GNU

Class path.

32

http://en.wikipedia.org/wiki/GNU_Compiler_for_Java
http://en.wikipedia.org/wiki/GNU_Classpath
http://en.wikipedia.org/wiki/GNU_Classpath

CHAPTER S
TESTING AND ANALYSIS

5.1 Nepali Corpus Data Statistics

The Nepali corpus named cancatout.txt which contains 5241 Unicode Nepali words is used
for training and testing. The corpus is collected from the Kantipur and Nagarik newspaper.

The cancatout.txt corpus consist of the words like

AT ¢ T FATAT SNATT TA% TATTSHY 2.0 FFesan! ATty HfctaATT atgar yfAems e
S| TR IRTTAH N TEIH Afed gfer BRA RERT S| Tehrhed ATHETEIRT HTITAT FaT T4
WAFE AATAd WIS AT Herqafaast fagaa sreat a¥ e faas &) 30 amverrt Fd @
Y fAeesT I 319 FAR T SATATHT FHART g3+t oot)

Figure 5.1: Corpus Sample
5.2 Training and Testing Data

Training and testing data is prepared form the original corpus. Training data consists of the
text from the concatout.txt and also testing data for the model is obtained from the original

corpus. This thesis uses the 35 test case. The 35 test case with the goal sentence is shown in
the table 5.1.

INITIAL TEXT
GOAL SENTENCE(TESTING DATA)
FRAGMENT(INPUT)
1 ek et Aok el IHAT GIATAT B</S>
2 TFR Th TFER U WATST fahrd ASSels X
3 EUECRY STTSTel T Qlegtael 41 g o
4 SHS FATFTHRT EHS FATFITHT Aleeq Aediens gaw </S>
5 AT Sraer AT Saer @isiar f&ar</s>
6 KIIESCITRUT 3TEAER Tfd TT4TeAT Beh </S>
7 AqTeT Bedel A9l Beael Heel STATTH S

33

8 sfoceer SATeTATS sfoTcTer Semeders 3-¢ o Wiford a=ar

9 A 092 U 08 AT Yo el </S>

10 CECEEIR) g% a¥Te T desshy o forea

11 <S>aAqTelt ATl TS Ereltel HTIT foled U &

12 qfsea fHrfcare ST R Az iRAeTH deT &

13 godleh ghestiaaRser Jodleh glestlaaRsehT TRIY TR sRIadl del
14 <S>3gHres <S>3GETCH LG HF HUF WelgeALY

15 <S> 37T <S>3THT IRETT FAGTHT 3oTel AT [Ge

16 RIS T TRITSTTT IR ST Bl STHHT TG sRTadT Wl
17 ISl STUST ITeTc STUST CHETUT Hee, 3aX HITATeT

18 <S>clte oot | R 2042 SR ¢hico

19 <S>Yfger <S>UfEell ST ¢-o0 o fasT uTvahl &

20 [iffgd qgee QI HerdTe Facle HUIT Jehotol TigeliTee
21 g0l 2-o of faST UTTah! & </S>

22 faToT ufaTelT ETEToT UTAATeN Welehe, (FTIT) T SHAT wAdTeTel 2 TF0T
23 TR her HUHT Hel WAgTHEY Higell Heael Yol

24 T avgar T I gfgeTee 3ufer foiest 3ifarsrar

o5 SATATeTel Bl glad el SATATeTel gleglaH a1 IMERE SRTaT Yol </S>
26 s QoraAT I8 WelAT IIg A AT aqF:H Schee Jadia

27 qTeT Wels! AUTCl YATSISAIC IR IR B

28 Teh gueT Ueh GUCT AGTeT BT fATU</S>

29 g3 TR S TR AT TorUaHT Tet</S>

30 HEHTTIAT ST HEHITIAT AT AUTel aT feH YhaR FHAH 33! T,
31 et 3R Tt 33T 9 TR I JeTol

32 aferor snrRament STETOT SIRATT CT3eT Y3 AT </S>

33 e INATS el INUTS Fehfess cafPaae Taeer

34

34

[GIGKEICEIE

TARITeT GITeTelTs TRITSI IR 81e =it

35

Seotehel oIdMUR

Sootdrde SIIUR T RGeS </S>

Table 5.1; Test Data

5.3 Input and Output

INITIAL TEXT PREDICTION USING PREDICTION USING GOAL SENTENCE
FRAGMENT BIGRAM TRIGRAM
1 BEIGIC HTATATS A 0¢ T 3RAT SEIHT & </S> Aok AeT IHAT GIATAT B</S>
Tl HRReTTSells JA | AR Teh WeTs! [aehrd Asaorrs
2 FF Th gueT Helel SIS v
0 SUYS
3 EUSCES Holfar s o </S> BlesXHhT ST £ </S> STTSTeT T glegdehT did g15</S>
4 | eHe FFIEeT | Ofcey diedlens v </S> | Afeey diediens guv </S> Hiegq RIS gT </S>
5 | fAfRaa oaesr TSI 7R & </S> QRIS IR & </S> fAfaa der @shar faar</s>
3T Feheh! GaHEITAT 3SR T TSTETeAT e </S>
6 | 3msdeR afa JTeIfFaeneh! TR AT Bl
IR &
AU el Heel STATTH &
7 | @Tel $esd ol STATUH & </S> HE STATUH & </S>
</S>
sfacea sfoicce JaedTs 3-¢ o
8 3-9 of GToId IRT 3-¢ o gAY </S>
JATEH TS RITST =
9 U 023 HT HUH T </S> HI HUH & </S> A 2083 AT WA o] </S>
10| gs avsm TORTRT arrdT get gt ! gosehd faer ol | g3 au3fer v ey of foicar
<S> AqTell TS Srellel AT
11| <S> aAurelr 2l s ot </S> 2Ioll TIFER R 2083
o SUh &
AT FIfTATT dArgt TR
12 | USCT RITTAET | WASHAT FoAeh! 1227 </S> YATSIAT Yoieh! AT </S>
qET T
goiih ST STERTEE S Joileh Slestfa sl I
13 3R TeaT SRIRY Fiter .
S ESIGEIREE) </S> TR S Yol

35

<s>3aa1z?ra§%§$ma:r

14 | <S>3cHred 5 T% AU Sl 5. T% AU Bol
=gt e gt e N
TR FoIasT Faras TP ForaAT Gatos <S> 31T IRFEE FelaAT 3eTor
15 <S>3THT
vt BT agr feet
TRITSTT IR ST BleglaHeT
16 | ORITSIcT I THATS ¢-0 of Wifad I 2Ro¢ HT Bl
IMeRETd ST Wedr
eIl STUST @IV Hee, 30X
17 ISl STUST EsheTAT 2WT3e] et JT3AT TESheTHT Y 08 T
HIRTT
ofreT ATATafS JRA 04 3MSATR
18 <S>7reT AT T 208 &Y 3RAT GATHT & </S> ‘
SRt
<S>C|%T~|’r SI9TAT ¢-0 of [aoTg
19 <S>ufger AT ¢-0 o Wifaid AT -0 o Wifard
qIUH &
Tddwd U ohelel ARTT FESTE TadeT HTIAT
20 | GRS gueTe TS HUIT Jshelel </S>
gfgeivee ool Tigeildee
21 g-0of WIS IRD S </S> RITSIT IRPT & </S> ¢-0 of fIoTT UTUah & </S>
WeTFhe TRYEH HEE afaror vfeare Wege (| &
22 | efEyor TRaely Yershe, aRe (@) of
|t 3AT AUTelel R FqOT
U dhgl Welgeaed Afgel
feerat wfgen wftey
23| TR Rt e TR ifetaTe TS WA
HrfctarT
T a¥Tar gfgelidee 3aTfeY
24 | T AT gigeldee JI 02 T gfgclIee e Al Bl
IEGEIERIGE)
25 8-0 o TRTToIc IRl g-0 oF gAY </S>
Bleglad e TS VAT </S>
WSH HeTHHEH Schse &GS WolHT WIS Hfeaeas
26 | gSWoAT AHATS TR T </S>
e 3T UG

36

27 | SiOT Weldr Tl USRI B </S> TAIC IR IR Bl AT WATSISAIE IR IR B
28 T gueT HeTe orse U </S> Herd orse T </S> Teh gueT Al SIS fAu</S>
29 | g3 ECIhehl 3731 foruehT &t </S> 37T fIuehT &t </S> T oS>
SREIEICH TEATRICT STeAT3eT uTelt gar feat
30 =gl qaTeT AT </S> GRICIRACIRECE T
A3 USRI IHTh 35! T,
31 et 3T b3 FTHIT IR </S> b3 FHIX I Bel e 31T b3 TR IR 3oTel
STEIOT HIRTRT T3 et
32 | SRETOTHRINGIR | @S Yaren &I </S> I3+ Y3t AT </S>
T </5>
Sl el SIANTUR YT el IS f3thiess TafFradst
33| M NUfD Sthizss TaFaae HUH Bef
TR FeTel
foRITeT GaterelTs oISt aw 87t
34 | Torerme gaterens AT IR S </S> qUSTd IR S </S>
pIBIiE
el Soolardel oTITU JATH ITRIGHT
35 I IRHT & </S> T IR R T
MW T </S>

Table 5.2: Input and Output of the Prediction Model

37

5.3.1 Snapshot of the output of the trigram and bigram model

: Qutput

% Qutput 5!|
- » ; =]
DD Trigramtransaction (run) x | Viterbifinal (run) = § u> Viterbifinal (run) * | Trigramtransaction (run) =
W 1e07 122 122 122 ;:) [gvse v wie v
1607 1780 1780 1780 ’ 203z 378 1472 738
1607 189 189 189 B 2032 509 509 508
% 1607 EEE 559 EEE] 2p 2032 a1z 122 122
1607 110 110 110 2032 1780 1780 1780
1607 1070 470 470 2032 183 169 163
1607 302 302 302 2032 593 539 599
1607 32 3z 32 203z 110 110 110
1607 1358 1358 1358 203z 378 1472 470
sentencer completion for the input sentence using bigram***+++ #F AT **++ i 2032 302 302 90z
HAE T 2042 W The viterbi value is 3.476332705364329E-4 203z 32 32 3z
BUILD SUCCESSFUL (total time: 29 seconds) 2032 378 1472 298
sentencer completion for the input sentence using bigram *+*%#*#+ §'§' @T‘ﬁ kid iz
ST R B9 </s> The viterbi value is 0.0023651844231571526
EEDJIDLIT:| BUILD SUCCESSFUL (total time: 28 seconda)
S | output ss| Qutput H|
o
E u> Trigramiransaction (run) x | Viterbifinal (run) % U> Trgramtransaction (run) % | Viterbfinal {run) x
@ u> 945 L1137 1id L1137 u> 33 178 INEY) 173
945 530 79 373 3 %30 118 773
Elss 509 505 sa Ml ose s s
% 845 12 122 12 % 33 122 122 122
945 1780 1780 1780 2 1780 1780 1780
945 169 189 163 13 169 169 169
245 533 593 533 33 599 59 599
245 110 110 110 3 10 10 10
e P #o@m uE M
345 302 s02 302 ” W W -
I3 I3 I3
245 32 3z 32 " . .
3 3 32 32
245 530 79 3738
) . . k] 830 1388 197
sentencer completion for the input sentence using bigram **« %% TOF FAFTHIT *++ ?ﬁ"{
i i i EELTT LY Hhww g
'H'ECW uft g 7T /5> The viterbi value is 0.001775352986252424 sentencer completion fu.[the‘mput sentence using bigram FEm is
Ty S, T T AT /3> The viterbi velue is 0.01200048393814561
BUILD SUCCESSFUL (total time: 28 seconds)

& output | Output
o
E u> Trigramiransaction (run) x Viterbifinal (run) %) u> Viterhifingl {ruﬂ} * | Trigramiransaction (run} X
@ u> gL L L L u> N N .
: g1 17 iy T sl 1
8| m 509 509 509 B 1885 1780 1780 1780
% 871 122 12 1 o 1ess 188 lg9 1g8
871 1780 1115 1780 % 1835 593 539 533
e s T 9% 10 10 10
. 55 . 59 1885 1303 987 47
a7l 110 110 110
a7l 1070 1113 878 b e . 0
B s sz 90 I
[l 3z 3 3z 1885 1388 1358 1358
71 1838 11139 1338 sentencer completion for the input sentence using bigram #+##++ 5’5’ T 444 i3
sentencer completion for the input sentence using bigram **+++# TIF TG #4%+ § T T 'ﬁ E‘(The viterbi value is 3.7132055946408028-4
W Ul e ﬂﬁ'l%fﬂ The viterbi value i3 3.1419433475417352-4 BUTLD SUCCESSFUL (total time: &7 seconds)
BUILD 5SUCCESSFUL (total time: 28 seconds) |

& [ouput

Figure 5.2: Snapshot of Bigram Output

38

() Mavig

 Qutput

D> Trigramtransaction (run) * | viterbifinal (run) =

u> 1807

12z 122 12z

1807 1780 1780 1780

oo | 1807 168 168 183
% 1807 538 5338 539
1807 110 110 110
1807 1070 470 470
1807 50z 30z 80z
1807 32 3 3

1807 1358 1358 1358

sentencer completion for the input sentence using trigram *##+&+ T AT e i
ST EHAT T </s> The viterbi value is 0.003060735306381845
BUILD SUCCESSFUL (totzl time: 32 seconds)

7| [output

2 output
by
z u) Trigramiyansacton (un) x| Viterifnalun) =
é m T R VAU T E 1]
35 830 079 373
B s s 5o
% EE IR I 74
35 1780 1780 1780
5 189 1§y 1g9
95 599 539 599
35 110 10 10
55 B30 470 40
95 s sz 9
us X kH kH
55 1388 1388 379
sentencer completion for the input sentence using trigram **%*++ THF TG *+4+ iz
e AE T </s> The viverbi value is 0.00386862348013264
BUILD SUCCESSFUL (total time: 21 seconds)
g Qutput H‘
2 |[D| Tigrambansacton fw) x | vierbiind () =
éw Bl 113 PYETS 173
871 1802 1119 72
B e s s so
Splem o 12
871 1780 1119 1780
871 18 18 18
871 53 53 53
g7l 10 10 1
B7L 1070 1119 876
g7L sz sz 9w
a7 8z 32 32
871 lga@ 1119 1383

sentencer completion for the input sentence using trigram *#4+&+ T AR #+++ is
RhTeT YT & The viterbi value is 8.1175878997810042-4
BUILD SUCCESSFUL (total time: Z1 seconds)

Qutput H‘

u> Viterbifinal (run) x | Trigramiransaction frun) =

u> PO TR V- VR N V]
203z ane 1472 363

Ll 203z 509 509 509

%& 203z 12z 12z 12z
203z 1780 1780 1780
203z 1e3 1le3 1le3
203z 593 593 593
203z 110 110 110
203z ane 470 470
203z 502 502 502
203z 3z 3z 3z
203z 1358 1358 296

sentencer completion for the input sentence using trigram *####+ ;‘é TG #+ds ig
Eun ﬁqm 7 </s> The viterbi value iz 0.00387355423573564

BUILD SUCCESSFUL (total time: Z0 seconds)

Output # ‘

D> Trgpamtransaction (ur) % | Yiterifnal un) %

u> 33 1181 INEN INELS
B9 18 3
Blw s s s
% R B R
EE BN VRN I
T B TS+
T B TR
¥ W W
BB o
®oooMm W oW
B % w o n
¥ LML

sentencer completion for the input sentence using trigram #+e#++ C@W TR +e4é ig
T AT </e The viterbi value is 0.003853633¢8015064
BUILD SUCCESSFUL (total time: 20 seconds)

Qutput E‘

u) Trigramtransaction (run) x| iterbifinal (un)

u> s L LiE LA
1835 340 887 1828

U 1835 503 503 508

% 1895 122 12z 122
1835 1780 1780 1780
1895 1689 189 169
1835 593 EEE] 583
1895 110 110 110
1835 440 987 470
1835 a02 S0z S02
1835 3 3z 32
1835 13808 1358 1358

sentencer completion for the input sentence using trigram *##+#* §§ T +++v is
T e WA 89 The vitersi value is £.0344101807330362-4
BUILD SUCCESSFUL (total time: Z1 seconds)

Figure 5.3: Snapshot of Trigram Output

39

5.4 Analysis of the Prediction Model

Given an initial text fragment, a predictor that solves the sentence completion problem has to
conjecture as much of the sentence that the user currently intends to write but preferably, but

not necessarily, the entire remainder[13].

What is an appropriate performance measure for this problem? The perceived benefit of an
assistance system is highly subjective, but it is influenced by measurable quantitative factors.

So, a system of three performance indicators is defined.

For the evaluation this thesis will use precision, recall and F-Score. Recall equals the fraction
of saved keystrokes. Precision is the ratio of characters that the users have to scan for each
character they accept. F; score (also F-score or F-measure) is a measure of a test's accuracy. It

considers both the precision and the recall of the test to compute the score.

o Y. Accepted completion of words
Precision = - (5.1)
Y. Suggested completion of word

Y. Accepted completion of words
Recall = — - (5.2)
Y. Length of missing part for sentence completion

Precison*Recall

F-Score = 2 * —
Precision+Recall (53)

5.4.1 Calculation of Precision, Recall And F-Score of Bigram Prediction Model

Precision =—2= 0.371429

140
Recall :gz 0.590909091

0.371429%0.590909091
0.371429+0.590909091

F-Score =2* =0.456140351

40

http://en.wikipedia.org/wiki/Precision_%28information_retrieval%29
http://en.wikipedia.org/wiki/Recall_%28information_retrieval%29

5.4.2 Calculation of Precision, Recall and F-Score of Tri-gram Prediction Model

Precision S 0.47857
140

Recall =2Z= 0.91780
73

0.47857%0.91780
0.47857+0.91780

F-Score =2* =0.62910

5.4.3 Comparison between Bigram and Trigram Prediction Model

1
0.9

0.8

0.7

0.6

0.5 O Bigram

0.4 W Trigram
0.3
0.2

0.1

0

Precision Recall F-Score

Figure 5.4: Comparison between Bigram and Trigram Prediction Model

5.5 Discussion of the Result

The result is found using the mechanism precision, recall and F-score. The F-score can be
interpreted as a harmonic mean of the precision and recall, where an F-score reaches its best
value at 1 and worst score at 0.Thus, by analyzing the result for all the 35 input, Trigram
Prediction Model is 62.9% accuracy whereas Bigram Prediction Model is 45.6% accuracy.
From this finding it is clear that overall Trigram Prediction Model is more accurate than
Bigram Prediction Model.

But for Nepali language, the output for some of the input to the Bigram Prediction Model is
better than the Trigram Prediction Model. For the input cases 5, 8, 18, 20 the Bigram
Prediction Model is better than the Trigram Prediction Model. Also there are cases 4, 7, 13,

14, 28, 29, 32 where both the Trigram and Bigram Prediction Model have the same output.

41

http://en.wikipedia.org/wiki/Harmonic_mean#Harmonic_mean_of_two_numbers

There are also input cases where both Bigram Prediction Model and Trigram Prediction

Model prediction sentence has not been selected as in test case 2,6,12,17,23,25.

42

CHAPTER 6

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

This thesis has predicted the sentence fragment for sentence completion with input text
fragment using Bigram and Trigram Language Model with Viterbi algorithm as a decoding
algorithm which is a dynamic algorithm. By using the measuring criteria Precision, Recall
and F-score, this thesis found out that Trigram Language Model predicts the word more
accurately than Bigram Language Model. It is found that overall 62.9% accuracy of Trigram
Language Model whereas 45.6% for Bigram Language model. But for individual input there
are cases where some of the output of the Bigram Prediction Model is better than Trigram
Prediction Model. Also there are some input cases where the output of the Bigram and

Trigram Prediction Model is not selected.

Prediction using Trigram Prediction Model has more complexity than bigram prediction
model in terms of time. This work used the corpus consisting of 5241 Unicode Nepali words
which is used for training and testing. Due to the limitation of the size of the words in the
corpus, the no of bigram and trigram counts is low. When this work predicts the word
segment based on the bigram and trigram counts, results in low accuracy. So to increase the

accuracy, the corpus size should be increased.
6.2 Recommendation

This work has predicted the sentence fragment using Bigram and Trigram Language Model.
There are some cases where both the Bigram and Trigram Prediction Model output is not
selected by the use, so further 4-gram, 5-gram, up to N-gram can be used to predict the
sentence may solve the problem. By increasing the value of N, the accuracy of the system
may increase but also increase the complexity in terms of time. Not only the sentence
completion can be analyzed, but also the grammar judgment of the sentence completion task
can be performed. Also the size of corpus could be increased to get the better result.
Furthermore, Confabulation Based method, Graph Method can be used to complete the

sentence.

43

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach: Pearson
Education, 2003.

E. Reiter and R. Dale, Building Natural Language Generation Systems: Cambridge
University Press, 2000.

S. Chaudhuri and R. Kaushik, "Extending Autocompletion To Tolerate Errors,”
Proceedings of the 35th SIGMOD international conference on Management of data -
SIGMOD 09, pp. 707-718, 20009.

K. Trnka and K. F. McCoy, "Corpus studies in word prediction,” Proceedings of the
9th international ACM SIGACCESS conference on Computers and accessibility -
Assets 07, october 2007,

E. D. Liddy, "Natural Language Processing,” in Encyclopedia of Library and
Information Science, 2nd ed: Marcel Decker, 2001.

(2012, September 22). http://en.wikipedia.org/wiki/Phonology.

J. Zhou, "Educational Tool For Charnik's Marker-Passing Algorithm," Master of
Science in Computer Science, San Diego State University, 2011.

B. Manaris, "Natural Language Processing: A Human—Computer Interaction
Perspective,” Advances in Computers (Marvin V. Zelkowitz, ed.), vol. 47, p. 66, 1998.
(September 22). http://omarsbrain.wordpress.com/2010/08/12/natural-language-

processing-the-big-picture/.

R. Rosenfield, "Two Decades of Statistical Language Modeling- Where Do We Go
From," Computer Science Department,Carnegie Mellon University, vol. 1321, 2000.
Z. Wei, D. Miao, J.-H. Chauchat, R. Zhao, and W. Li, "N-grams based feature
selection and text representation for Chinese Text Classification,” International
Journal of Computational Intelligence Systems, vol. Vol.2, pp. 365-374, December,
2009.

N. Agrawal and M. Swain, "Auto Complete Using Graph Mining: A Different
Approach " IEEE, 2011.

S. Bickel, P. Haider, and T. Scheffer, "Predicting sentences using N-gram language

models,"” Proceedings of the conference on Human Language Technology and

Empirical Methods in Natural Language Processing, pp. 193-200, 2005.

44

http://en.wikipedia.org/wiki/Phonology
http://omarsbrain.wordpress.com/2010/08/12/natural-language-processing-the-big-picture/
http://omarsbrain.wordpress.com/2010/08/12/natural-language-processing-the-big-picture/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

L. Nepveu, G. Lapalme, P. Langlais, and G. Foster, "Adaptive Language and
Translation Models for Interactive Machine Translation,” Conference on Empirical
Methods on Natural Language Processing, 2005.

C. E. Shannon, "Prediction and Entropy of Printed English," In Bell systems Technical
Journal, vol. 30, pp. 50-60, 1948.

J. Darragh and I. Witten, The Reactive Keyboard: Cambridge University Press, 1992.
H. Motoda and K. Yoshida, "Machine Learning Techniques to Make Computers
Easier to Use," In proceddings of the fifteenth International Joint Conference on
Artificial Intelligence, 1997.

B. D. Davison and H. Hirsh, "Predicting Sequences of User Actions,"”
AAAI/ICMLWorkshop on Predicting the Future: Al Approaches to Time-Series
Analysis, 1998

B. Korvemaker and R. Greiner, "Predicting UNIX Command Lines : Adjusting to
User Patterns,” American Association for Artificial Intelligence, 2000.

K. Grabski and T. Scheffer, "Sentence Completion,” Proceedings of the 27th annual
international ACM SIGIR conference on Research and Development in Information
Retrieval, 2004.

Q. Qiu, Q. Wu, D. J. Burns, M. J. Moore, R. E. Pino, M. Bishop, and R. W.
Linderman, "Confabulation Based Sentence Completion for Machine Reading,"
IEEE, 2011.

A. Renaud, F. Shein, and V. Tsang, "Grammaticality Judgement in a Word
Completion Task,"” Proceedings of the NAACL HLT 2010 Workshop on
Computational Linguistics and Writing, pp. 15-23, 2010.

C. D. Manning and H. Schiitze, Foundations of Statistical Natural Language
Processing: MIT Press, 1999.

D. Jurafsky and J. H. Martin, An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition: Draft of February 11, 2007,
2006.

A. Almeida and P. Bhattacharyya, "Experiments in N-gram based indexing and
retrieval in Marathi ".

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai, "Class-Based

N-gram Models of Natural Language,” Association for computer linguistics,, 1992.

45

[27] R. Sramek, "The on-line Viterbi algorithm,” Masters, Department of Computer
Science Faculty of Mathematics, Physics and Informatics Comenius University,
Bratislava, 2007.

[28] A. Stolcke, "SRILM — An Extensible Language Modeling Toolkit," Proc. Intl. Conf.
on Spoken Language Processing, vol. 2, p. 4, 2002.

[29] A. Stolcke, J. Zheng, W. Wang, and V. Abrash, "SRILM at Sixteen: Update and
Outlook."

46

Appendix

/I program to create the bigram transition matrix
package bigram;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.util.Hashtable;

public class Bigram {

public static Hashtable<String, Integer> h=new Hashtable<>();
public static Hashtable<Integer, String> ih=new Hashtable<>();
public static Hashtable<String,UnigramBackoff> UH=new Hashtable<>();

public static void main(String[] args) throws Exception {

Bigram b= new Bigram();
b.MakeHash();
/[b.MakeCountMatrix();
b.UnigramHashTable();
b.BigramProbability();

}
[l function to make the hash table for the entire vocab and its inverse also

public void MakeHash() throws Exception
{
FileReader fin=new FileReader("vocab3.txt");
String s;
try (BufferedReader f = new BufferedReader(fin)) {
inti=1;
h.put("<s>", 0);
ih.put(0, "<s>");

while((s=f.readLine())!=null)

{
h.put(s, i);
ih.put(i, s);
i++;
}
h.put("</s>",i);
ih.put(i, "</s>");
}
}

[[function to make the bigram count matrix table

47

public void MakeCountMatrix() throws Exception {
int countmatrix[][]=new int[h.size()][h.size()]; //initialization the size of the count matrix
String s;
FileReader fincount=new FileReader("countout.txt™);
try (BufferedReader fc = new BufferedReader(fincount)) {
while((s=fc.readLine())!=null)

{
int j,k;
String [Jtokens=s.split("\t");
String [Jsubtokens=tokens[0].split(" ");
j=h.get(subtokens[0]);
k=h.get(subtokens[1]);
System.out.printIn(j+k);
System.out.printIn(subtokens[0]+"\t"+subtokens[1]);
countmatrix[j][k]= Integer.parselnt(tokens[1]);
}
}
for(int 1=0;1<h.size();1++)
{
for(int m=0;m<h.size();m++) {
System.out.print(countmatrix[l][m]+"\t");
}
System.out.printin();

}
// to make the unigramhash table containing the discounted probability and also the alpha value

public void UnigramHashTable()throws Exception{
String s;
FileReader fincount=new FileReader("probability13.txt"); //read the file contaning the unigram
discounted probability and the alpha value
try (BufferedReader fc = new BufferedReader(fincount))

{
while((s=fc.readLine())!=null){

String [Jtoken=s.split("\t");
UnigramBackoff b=new UnigramBackoff(Double.valueOf(token[0].trim()).doubleValue(),
Double.valueOf(token[2].trim()).doubleValue());
UH.put(token[1],b);
}

fc.close();

}catch(Exception €)

{
System.out.printin(e);

¥
System.out.printin(UH);

}

// to make the bigram probability matrix

public void BigramProbability() throws Exception{
String s;
48

double BigramMatrix[][]=new double[h.size()][h.size()];

UnigramBackoff b1=new UnigramBackoff();

UnigramBackoff b2=new UnigramBackoff();

FileReader fincount=new FileReader("probability23.txt"); // to read the file containing the
discounted probability of the bigram words

try (BufferedReader fc = new BufferedReader(fincount)) {
// to input the discounted probility in the bigram matrix

while((s=fc.readLine())!=null)
{

intjk;

String [Jtokens=s.split("\t");

String [Jsubtokens=tokens[1].split(" ");
j=h.get(subtokens[0]);
k=h.get(subtokens[1]);
BigramMatrix[j][k]= Double.parseDouble((tokens[Q]));

fc.close();
}catch(Exception €)

{

System.out.printin(e);

¥

// to print the matrix before backoff

System.out.printin("Before Backoff");
for(int I=0;l<h.size();1++){
for(int m=0;m<h.size();m++) {
System.out.print(BigramMatrix[l][m]+"\t");
}
System.out.printin();

}
I/ loop for the backoff purpose

for(int I1=0;l<h.size();1++)

for(int m=0;m<h.size();m++)
{
if(BigramMatrix[1][m]==0.0){
String s1=ih.get(l);
String s2=ih.get(m);
b1=UH.get(s1);
b2=UH.get(s2);
BigramMatrix[l][m]=b1.getAlphavalue()+b2.getDiscountedProb();

¥
}

49

}
I/ writing the bigrammatrix in the fileto use the viterbi in that bigram matrix

FileWriter fw=new FileWriter("testaftercommenting.txt");
BufferedWriter fout=new BufferedWriter(fw);

for(int 1=0;l<h.size();I++)
{

for(int m=0;m<h.size();m++)

{
fout.write(BigramMatrix[I][m]+"\t");

fout.write("\n");
}
¥
}

package bigram;

public class UnigramBackoff {
private double discountedProb;
private double alphavalue;

public UnigramBackoff(){

discountedProb=0.0;

alphavalue=0.0;

¥

public UnigramBackoff(double a){
discountedProb=a;

}

/I to assing the value to discountedprob and the alpha value which receives as an argument
public UnigramBackoff(double a, double b){
discountedProb=a;
alphavalue=b;

public double getDiscountedProb(){
return discountedProb;

public double getAlphavalue(){
return alphavalue;

¥
¥

/Iprogram to use the Viterbi algorithm to decode the sequence in bigram matrix transition

package viterbifinal,

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Hashtable;

50

import java.math.*;
public class Viterbifinal {

public static Hashtable<String, Integer> h=new Hashtable<>();
public static Hashtable<Integer, String> ih=new Hashtable<>();

public static void main(String[] args) throws Exception

{

FileReader fin=new FileReader(*'vocab.txt");
String s;
try (BufferedReader fc = new BufferedReader(fin)) {
int k=0;
while((s=fc.readLine())!=null)
{
h.put(s, k);
ih.put(k, s);
k++;

}

/I to read the bigram transition table from the text file

FileReader fi=new FileReader("transition.txt");
double Tmatrix[][]=new double[h.size()][h.size()];
try (BufferedReader f = new BufferedReader(fi)){
int i=0;
while((s=f.readLine())!=null){
String [Jtokens=s.split("\t");
for(int j=0;j<tokens.length;j++)
{
Tmatrix[i][j]J=Double.parseDouble(tokens[j]);
Tmatrix[i][j]J=Math.pow(10.0, Double.parseDouble(tokens[j]));

}

i++;

double []J[]Vmatrix=new double[h.size()][4];
int [][1Bmatrix= new int[h.size()][4];

/I System.out.printin("Enter the fragment of text");
/1 to read the input from the text file
FileReader finput=new FileReader("input.txt");
BufferedReader inputbuffer = new BufferedReader(finput);
int 1=0;
/[String inputtextfragment;
/I inputtextfragment=inputbuffer.readLine();

/I to read the last word of the input sentence for the Sentence Completion Purpose

51

while((s=inputbuffer.readLine())!=null){
String [Jtokensinput=s.split(" ");
System.out.printIn(tokensinput[tokensinput.length-1]);
I=h.get(tokensinput[tokensinput.length-1]);

}
/[\Veterbi Matrix Intialization
System.out.printIn(*vmatrix initializlnation print");
for(int j=0;j<h.size();j++)
Vmatrix[j][0]=Tmatrix[I][j];

/I System.out.printin(\Vmatrix[j][0]+"\t");
}

//Backtrack Matrix Initialization
System.out.printIn("backtrack initialization print");
for(int j=0;j<h.size();j++)

Bmatrix[j][0]=I;

/I System.out.printin(Bmatrix[j][0]+"\t");
¥

/I viterbi matrix and backtrack matrix calculation

int index=0;
for(int t=1;t<4;t++) //for calculating veterbi matrix columns
{
for(int ip=0;ip<h.size();ip++) //loop for searching max value
double value=0.0;
for(int j=0;j<h.size();j++)
{
if(Vmatrix[j][t-1]* Tmatrix[j][ip]>value)
value=VVmatrix[j][t-1]* Tmatrix[j][ip];
index=j;
}
}

Vmatrix[ip][t]=value;
Bmatrix[ip][t]=index;

}

52

/lprinting the Veterbi Matrix

System.out.printin("The verterbi matrix is");
for(i=0;i<h.size();i++)
{
for(int j=0;j<4;j++)
{

System.out.print(Vmatrix[i][j]+"\t");

}
System.out.printin();

¥

/lprinting the Backtrack Matrix

System.out.printIn("The Backtrack matrix");
for(i=0;i<h.size();i++)

for(int j=0;j<4;j++)

System.out.print(Bmatrix[i][j]+"\t");

}
System.out.printin();

/fto calculate the greatest value at the last row of the viterbi matrix
int tbindex=0; [ltraceback index
double greatestvalue =0.0; /fto find the maximum no of the viterbi matrix
for(int ak =0;ak<h.size();ak++)
if(Vmatrix[ak][3]>greatestvalue)

greatestvalue= Vmatrix[ak][3];
tbindex=ak;
}
}

/Ito find the sequence for the sentence completion by bactracking

String []last = new String [5];
last[4]=ih.get(tbindex);

inta;
for(int ij=3;ij>0;ij--)

a=Bmatrix[tbindex][ij];
last[ij]=ih.get(a);
tbindex=a;
}
53

/I reading input from the file for the printing purpose

FileReader finputforsentencecompletion=new FileReader("input.txt");

BufferedReader inputbufferforprintingpurpose = new
BufferedReader(finputforsentencecompletion);

String inputforprinting;

inputforprinting=inputbufferforprintingpurpose.readLine();

System.out.printIn(*"sentencer completion for the input sentence****** " + jnputforprinting + "

*kk*k iS ");
/I giving the output text fragment for the sentence completion
for (int mn =1;mn<5;mn++)

{
}

System.out.printIn("The viterbi value is " + greatestvalue);

System.out.print(last[mn] +" ");

¥
by
}
¥

/I program to create the trigram transition matrix and use of the Viterbi algorithm for sentence
decoding

package trigramtransaction;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.util.*;

import java.math.*;

public class Trigramtransaction {

public static Hashtable<String, Integer> h=new Hashtable<>();

public static Hashtable<Integer, String> ih=new Hashtable<>();

public static Hashtable<String,Ubackoff> UH=new Hashtable<>();

public static Hashtable<String,Bbackoff> BH=new Hashtable<>();

public static Hashtable<Integer, String> ICV= new Hashtable<>();

public static Hashtable<String, Integer> CV=new Hashtable<>();

public static double Tmatrix[][]J=new double[ih.size()][ih.size()];//initialization of the bigram
transition matrix

public static double TrigramMatrix[][]=new double[CV .size()][h.size()];

public static void main(String[] args) throws Exception {

Trigramtransaction t= new Trigramtransaction();
t.MakeHash();
54

Tmatrix= t.MakeBigram();

t. TrigramProbability();
TrigramMatrix=t.ValueTrigramProbability();
t.veterbi();

}

// to make the hash table of the vocabulary

public void MakeHash() throws Exception
{
FileReader fin=new FileReader(""vocab.txt");
String s;
try (BufferedReader fc = new BufferedReader(fin)) {
int k=0;
while((s=fc.readLine())!=null)
{

h.put(s.trim(), k);
ih.put(k, s.trim());
k++;

¥

// to read bigram transition table from file....for backoff purpose

by
¥

public double[][] MakeBigram() throws Exception

double Tmatrix[][]=new double[ih.size()][ih.size()];
I/ reading the bigramtransition text file and assign it in Tmatrix
FileReader fi=new FileReader("transition.txt");
String s;
try (BufferedReader f = new BufferedReader(fi)){
int i=0;

while((s=f.readLine())!=null){
String [Jtokens=s.split("\t");
for(int j=0;j<tokens.length;j++)

Tmatrix[i][j]J=Math.pow(10.0,Double.parseDouble(tokens][j]));

}
i++;
}
}
return Tmatrix;

¥

I to make the hash table of the rows index of the trigram transtion matrix

public void TrigramProbability() throws Exception{

String s;

Ilreading the textfile containing the trigram discounted probability file
55

FileReader fincount=new FileReader("tirgramprobability.txt");
try (BufferedReader fc = new BufferedReader(fincount)) {
int z=0;
while((s=fc.readLine())!=null)
{
intjk;
String [Jtokens=s.split("\t");
String [Jsubtokens=tokens[1].split(" ");
String cd=subtokens[0]+" "+subtokens[1];
String ef=subtokens|[2];

ICV.put(z,cd);
CV.put(cd, 2);
Z++:

¥

fc.close();
}catch(Exception €)

{

System.out.printin(e);

by
¥

// to make the trigram transition matrix

public double[][] ValueTrigramProbability() throws Exception{
double TrigramMatrix[][]=new double[CV .size()][h.size()];
String s1;
FileReader fincount=new FileReader("tirgramprobability.txt");
try (BufferedReader fcc = new BufferedReader(fincount)) {

while((s1=fcc.readLine())!=null)
{
1 System.out.print("start");
intjk;
String [Jtokens=s1.split("\t");
String [Jsubtokens=tokens[1].split(" ");
String cd=subtokens[0]+" "+subtokens[1];
String ef=subtokens[2];
j=CV.get(cd);
k=h.get(ef);
if(j<CV.size() && k<h.size()){
TrigramMatrix[j][k]=Math.pow(10.0,Double.parseDouble((tokens[0])));

¥
}
fcc.close();
}catch(Exception e)

{
56

System.out.printin(e);

¥

for(int I=0;1<CV.size();1++)
for(int m=0;m<h.size();m++)

if(TrigramMatrix[l][m]==0.0){
String str1=ICV.get(l);
String str2=ih.get(m);

/I System.out.printin(stri+" "+str2);
String [Jtokens=str1.split(" ");
int index1=h.get(tokens[1]);
int index2=h.get(str2);

TrigramMatrix[l][m]=Tmatrix[index1][index2];
}
}
}

return TrigramMatrix;

/[function to apply the viterbi decoding algrithm to trigram transition table
public void veterbi() throws Exception

double [J[JVmatrix=new double[h.size()][4];
int [J[IBmatrix= new int[h.size()][4];

FileReader finput=new FileReader("input.txt");
BufferedReader inputbuffer = new BufferedReader(finput);
/I FileWriter foutl=new FileWriter("out");
/I BufferedWriter outbuffer=new BufferedWriter(foutl);
String s;
String [Jtokensinput=null;
int 1=0;
while((s=inputbuffer.readLine())!=null){
tokensinput=s.split(" ");
System.out.printIn(tokensinput[tokensinput.length-1]);
I=CV.get(tokensinput[tokensinput.length-2]+" "+tokensinput[tokensinput.length-1]);
System.out.print("value of I is " + I);

}

System.out.print("value of l'is " + I);
/[Veterbi Matrix Intialization
System.out.printIn("Vmatrix initializlnation print™);

for(int j=0;j<h.size();j++)
57

Vmatrix[j][0]=TrigramMatrix[I][j];
/I System.out.printin(Vmatrix[j][0]+"\t");
¥

//Backtrack Matrix Initialization
System.out.printin(backtrack initialization print");
int b=h.get(tokensinput[tokensinput.length-1]);
for(int j=0;j<h.size();j++)

{

Bmatrix[j][0]=b;
I/ System.out.printin(Bmatrix[j][0]+"\t");
¥

// viterbi and backtrack matrix calculation
int index=0;

for(int t=1;t<4;t++) //for calculating veterbi matrix columns

{
for(int ip=0;ip<h.size();ip++) //loop for searching max value

double value=0.0;
if(Vmatrix[j][t-1]*Tmatrix[j][ip]>value)

value=VVmatrix[j][t-1]* Tmatrix[j][ip];
index=j;

}

}

Vmatrix[ip][t]=value;
Bmatrix[ip][t]=index;
}
¥

/I printing the Veterbi Matrix

System.out.printin(*The verterbi matrix is");
for(int i=0;i<h.size();i++)

{
for(int j=0;j<4;j++)

System.out.print(Vmatrix[i][j]+"\t");

}
System.out.printin();

¥

/lprinting the Backtrack Matrix

System.out.printIn("The Backtrack matrix");
for(int i=0;i<h.size();i++)
58

{
for(int j=0;j<4;j++)
{

System.out.print(Bmatrix[i][j]+"\t");

}
System.out.printin();

/to calculate the greatest value at the last row of the viterbi matrix

int tbindex=0; Iftraceback index
double greatestvalue =0.0; /fto find the maximum no of the viterbi matrix

for(int ak =0;ak<h.size();ak++)

{
if(Vmatrix[ak][1]>greatestvalue)

greatestvalue= Vmatrix[ak][1];
tbindex=ak;
}
}

/1to find the sequence for the sentence completion

String []last = new String [5];
last[4]=ih.get(tbindex);
/I System.out.printin(last);

int a;
for(int ij=3;ij>0;ij--)

a=Bmatrix[thindex][ij];
/I System.out.printin(a);
last[ij]=ih.get(a);
tbindex=a;

/I System.out.printin();

}

Il reading input from the file for the printing purpose

FileReader finputforsentencecompletion=new FileReader("input.txt");

BufferedReader inputbufferforprintingpurpose = new
BufferedReader(finputforsentencecompletion);

String inputforprinting;

inputforprinting=inputbufferforprintingpurpose.readLine();

System.out.printIn("'sentencer completion for the input sentence****** " + inputforprinting +"
*kkk iS ");

for (int mn =1;mn<5;mn++)

{
}

System.out.print(lastfmn] + " ");

59

System.out.printIn("The viterbi value is " + greatestvalue);

60

