
1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Natural language processing (NLP) is meant for any attempt that helps the machine to

understand the natural language (spoken or written) and to generate the natural language. Thus

NLP consist of two components: natural language understanding (NLU) and natural language

generation (NLG).

NLU consist of steps such as phonological analysis, morphological analysis, lexical analysis,

syntactic analysis, semantic analysis and pragmatic analysis. In this pipeline of NLP, the lexical

analysis is early step and the accuracy of this module is significant to other following modules.

Lexical analysis mainly consists of recognition of lexicon of the language and this is closely

related with syntactic analysis such as parsing. At this level, one important task is assigning part

of speech tag to an individual word that conveys the grammatical meaning of words and help to

reduce the much work of parsing early in the process.

Tagging in its broad sense is the process of assigning any label to a linguistic unit. The linguistic

unit may be word, phrase, sentence etc. in this dissertation work the tagging refers to the process

of assigning part of speech (POS) tag to a word. The computer programs designed to

automatically assign the POS tag to word in natural language text are called taggers. The outline

of process is shown as in figure 1.1.

POS tagger Module
एउटा लेख लेख एउटा /CL लेख/NN लेख/VB

Nepali tagset

Figure 1.1: POS Tagging Example

1

2

The tags or tagset are defined in advance by the language expert and are usually covers the all

POS category of language [20].

1.1.1 The Ambiguity Problem

The natural language is ambiguous in nature. Ambiguity appears in each level of language

processing pipeline and it represent on of the most difficult problem in language understanding

domain[17].Part of speech ambiguity in lexical analysis, semantic ambiguity in polysemic word,

syntactic ambiguity in parsing, word choice selection ambiguity in machine translation etc are

some representative examples of ambiguity problem in NLP. In order to resolve ambiguity, it is

necessary to disambiguate two or more syntactically, semantically or structurally distinct

linguistic unit depending upon the surrounding context. For example, the sentences taken from

[14]

He will race the car.

When will the race end? ………………………….Example (1.1)

To understand these sentences, first their POS tag ambiguity must be resolved. The words „race‟

may take Verb (VB) or NN (Noun) as POS tag. Here, the ambiguity can completely

disambiguate using their contexts as:

He will race/VERB the car.

When will the race/NOUN end?

1.1.2 POS Tagging Problem

Part-of-speech tagging is the process of assigning to each word in an input text a proper morpho

syntactic tag or part of speech tag in its context of appearance [5]. In most case, the ambiguous

word can be disambiguate completely using the adequate context as in above example 1.1.The

word „race‟ would be disambiguate as noun because its previous word “the” is determiner,

ambiguity is resolved by simply looking previous tag. But it is not sufficient to disambiguate the

word by such simple context and may require much more language knowledge. The most

3

challenging problem in POS tagging disambiguation is to determine the proper context and

adequate features.

There are a wide variety of applications of part-of- speech tagging software and tagged text.

These include information retrieval, word processor spelling and grammar-checking, speech

processing, handwriting recognition, machine translation, production of corpus-based

dictionaries and grammars, and applications in the teaching of foreign languages and knowledge

of grammar [16]. The performance of these tasks depends upon the performance of tagger. So

they need the fast, accurate, portable and trainable tagger.

1.1.3 General Approach for POS Tagging

The general representation of POS tagging process is shown in figure 1.2. The two main

components are language model learning and disambiguation algorithms or tagging algorithms.

These two components often related and found to be embedded in single tagger description.

1.1.3.1 Tokenization and Analysis

In tokenization, the tokenizer, also called “Lexer” or “Scanner” which takes the raw source text

and breaks it into the reserved words, constants, identifier and symbols that are defined in the

language. These tokens so found are collected and assigns the possible tags to each tokens which

usually involves the ambiguity. This assignment may be by simple lexicon look up or

Raw

Text

Language

Model

 Tagged

Text
Morphological

analysis

Disambiguation

Algorithm

Figure 1.2: Phase of POS Tagging [10]

4

morphological analysis. The lexicon is usually extracted form pre tagged corpora. This lexicon is

referred as dictionary in this dissertation work. This phase prepare the list of word with their

possible POS tags.

1.1.3.2 Disambiguation

The so described previous stages such as tokenization and analysis are straightforward but the

most challenging task in part-of-speech tagging is disambiguation. The disambiguation technique

makes use of some kind of knowledge to reduce the possible POS tags for a lexical unit to few or

a unique tag. This knowledge comes from different sources and in different representation which

is known as language model.

Since the POS tagging disambiguation select the one tag for a word among the possible tags of

that word in lexicon or given by morphological analysis, it can be recast as classification

problem [19]. Classification is the supervised machine learning which attempt to classify the raw

input into a predefined class. In case of POS tagging problem, the POS tags are predefined and

they act as class and the word to which it is to be disambiguated is here to classify using some

language knowledge learned during the training of classifier. In this dissertation work, the

support vector machine [24] with one versus rest classification will be implemented for Nepali

POS tagging.

1.2 Motivation

Nepali is morphologically rich language [21] and to build a language model for such language,

one has to consider many features. The POS tagging approaches like rule based and hidden

Markov model can not handle much features. The support vector machine based POS tagger has

been implemented in [7] for a Bengali language which is also morphologically rich and shown

the outstanding performance. In [7] rich feature set has been used to model the language

characteristic. In [8] SVM based tagger was proposed which is efficient, portable, scalable and

trainable. Support vector machine (SVM) are recently developed supervised learning method

having good performance and generalization [24]. SVM has been successfully applied in text

classification and shown that SVM can handle large features and is resist of overfitting [13].

5

Using many features, we can make a strong language model that can be used for POS

disambiguation.

1.3 Objectives

Since the POS tagger should be accurate, fast, portable and trainable. The main objective of this

dissertation is to build such a Nepali POS tagger based on support vector machine learning

framework. The other motives of this study are as follows:

 Since the POS tagging is a prototyping problem in NLP, the technique developed for this

can applied for other NLP problem as well.

 The tagger build in this dissertation will be compared with the existing state of art tagger.

1.4 Organization of Thesis

The rest of this thesis is organized as: chapter 2 gives a brief discussion of basic concept related

to this work, chapter 3 is a survey of the major existing taggers, chapter 4 details the

implementation of the Support vector Machine based tagging algorithm, chapter 5 presents the

tagging and tagger-making results, and chapter 6 concludes the thesis, summarizing its

achievements and further recomendations.

6

CHAPTER 2

BACKGROUND AND PROBLEM DEFINITION

2.1 Background

2.1.1 Natural Language Processing

Natural Language Processing (NLP) has been developed in 1960 as a subfield of Artificial

Intelligence and Linguistics [14]. The aim of NLP is studying problems in the automatic

generation and understanding of natural language. A Natural Language is any of the languages

naturally used by humans, i.e .not an artificial or machine language such as a programming

language like C language, Java, Perl etc.

NLP is a convenient description for all attempts to use computers to process natural language.

NLP is also an area of artificial intelligence research that attempts to reproduce the human

interpretation of language for computer system processing. The ultimate goal of NLP is to

determine a system of language, words, relations, and conceptual information that can be used by

computer logic to implement artificial language interpretation. NLP includes anything a

computer needs to understand natural language (written or spoken) and also generate the natural

language. To build computational natural language systems, we need Natural Language

Understanding (NLU) and Natural Language Generation (NLG). NLG systems convert

information from computer databases into normal-sounding human language, and NLU systems

convert samples of human language into more representation that are easier for computer

programs to manipulate. Some of important levels of NLP are as follows:

 Phonological Analysis: Phonology is the study of sound system in a language. The minimal

unit of sound system is the phoneme which is capable of distinguishing the meanings in the

words. The phonemes combine to form a higher level unit called syllable and syllables combine

to form the words. Therefore, the organization of the sounds in a language exhibits the linguistic

as well as computational challenges for its analysis. This level deals with the interpretation of

speech sounds within and across words. There are, in fact, three types of rules used in

phonological analysis: 1) phonetic rules – for sounds within words; 2) phonemic rules – for

variations of pronunciation when words are spoken together, and; 3) prosodic rules – for

7

fluctuation in stress and intonation across a sentence. In an NLP system that accepts spoken

input, the sound waves are analyzed and encoded into a digitized signal for interpretation by

various rules or by comparison to the particular language model being utilized.

Morphological Analysis: This level deals with the componential nature of words, which are

composed of morphemes – the smallest units of semantic meaning. For example, the word

preregistration can be morphologically analyzed into three separate morphemes: the prefix pre,

the root „registra‟, and the suffix „-tion‟. Since the meaning of each morpheme remains the same

across words, humans can break down an unknown word into its constituent morphemes in order

to understand its meaning. Similarly, an NLP system can recognize the meaning conveyed by

each morpheme in order to gain and represent meaning. For example, adding the suffix „-ed‟ to a

verb, conveys that the action of the verb took place in the past. This is a key piece of meaning,

and in fact, is frequently only evidenced in a text by the use of the -ed morpheme. Typically, a

natural language processor knows how to understand multiple forms of a word i.e. its plural and

singular, for example, ghar (घर) „house‟ ghar-haru (घरहरु.) „house-s‟. From structural point of

view, the words can be simple, complex and compound. For example, ghar „house‟, ghar-haru

„house-Plural‟, ghar-ghar-ai „each house‟.

Lexical Analysis: At this level, humans, as well as NLP systems, interpret the meaning of

individual words. Several types of processing contribute to word-level understanding – the first

of these being assignment of a single part-of-speech (POS) tag to each word. In this processing,

words that can function as more than one part-of-speech are assigned the most probable part-of

speech tag based on the context in which they occur. The lexical level may require a lexicon, and

the particular approach taken by an NLP system will determine whether a lexicon will be

utilized, as well as the nature and extent of information that is encoded in the lexicon.

Syntactic Analysis: Syntactic analysis uses the results of morphological analysis and lexical

analysis to build a structural description of the sentence. The goal of this process, called parsing,

is to convert the flat list of words that forms the sentence into a structure that defines the units

that are represented by that flat list. The important thing here is that a flat list of words has been

converted into a hierarchical structure and that the structures correspond to meaning units when

semantic analysis is performed.

8

Semantic Analysis: It derives an absolute (dictionary definition) meaning from context; it

determines the possible meaning of a sentence in a context .The structures created by the

syntactic analyzer are assigned meaning. Thus, a mapping is made between individual words into

appropriate objects in the knowledge base or data base. It must create the correct structure s to

correspond to the way the meaning of the individual words combine with each other. The

structures for which no such mapping is possible are rejected.

Example: the sentence “colorless green ideas……..” would be rejected as it has no such semantic

mapping, because colorless and green make no sense.

Discourse Integration: The meaning of an individual sentence may depend on the sentences

that precede it and may influence the meaning of the sentences that follow it.

Example: the meaning of word “it” in the sentence, “you wanted it” depends on the previous

discourse context.

Pragmatic Analysis: It derives knowledge from external commonsense information; it means

understanding the purposeful use of language in situations, particularly those aspects of language

which require world knowledge.

Example: If someone says “the door is open” then it is necessary to know which door “the door”

refers to; here it is necessary to know what the intention of the speaker: could be a pure statement

of fact, could be an explanation of how the cat got in, or could be a request to the person

addressed to close the door.

2.1.2 Major Application of Natural Language Processing

NLP is having a very important place in our day-to-day life due to its large natural language

applications. By means of these NLP applications the user can interact with computers in their

own mother tongue by means of a keyword and a screen. The few NLP processes are:

 Part-of-speech tagging

 Information retrieval

 Machine translation

 Named entity recognition

9

 Natural language generation

 Question answering

 Spoken dialogue system

 Text simplification

 Text to speech

 Speech recognition etc.

2.1.3 Computational Linguistics

Computational linguistics is the scientific study of language (i.e. statistical and/or rule-based

modeling of natural language) from a computational perspective. Traditionally, computational

linguistics was usually performed by computer scientists who had specialized in the application

of computers to the processing of a natural language. Computational linguists often work as

members of interdisciplinary teams, including linguists (specifically trained in linguistics),

language experts (persons with some level of ability in the languages relevant to a given project),

and computer scientists. In general, computational linguistics draws upon the involvement of

linguists, computer scientists, and experts in artificial intelligence, mathematicians, logicians,

cognitive scientists, cognitive psychologists, psycholinguists, anthropologists and

neuroscientists, amongst others. Some of the areas of research that are studied by computational

linguistics include:

 Computational complexity of natural language, largely modeled on automata theory, with

the application of context-sensitive grammar.

 Computational semantics comprises defining suitable logics for linguistic meaning

representation, automatically constructing them and reasoning with them.

 Computer-aided corpus linguistics.

 Design of parsers or chunkers for natural languages.

 Design of taggers like POS-taggers.

 Machine translation.

10

2.1.4 Corpus linguistics

Corpus linguistics is now seen as the study of linguistic phenomena through large collections of

machine-readable texts: corpora. These are used within a number of research areas going from

the descriptive study of the syntax of a language to language learning. Corpus linguistics has

developed considerably in the last decades due to the great possibilities offered by the processing

of natural language by computers having large storage capacity. The availability of computers

and machine-readable text has made it possible to get data quickly and easily and also to have

this data presented in a format suitable for analysis. Corpus linguistics is, however, not the same

as mainly obtaining language data through the use of computers. Corpus linguistics is the study

and analysis of data obtained from a corpus. The main task of the corpus linguist is not to find

the data but to analyze it [10]. Computers are useful, and sometimes indispensable, tools used in

this process.

2.1.5 Machine learning

It is a recent field of artificial intelligence (AI) which aim to make a machine able to learn as

human learns the things. Marvin Minsky (1986) defined learning as “it is making useful change

in the working of our mind”. Machine learning exists in various forms: supervised learning,

unsupervised learning, semi supervised or minimally supervised learning, reinforcement learning

etc. In its basic form, machine learn the knowledge form some sources and then generalize that

knowledge for other instances.

2.1.5.1 Classification

Given the example data {(xi,yi), i=1….n},where the xi is input vector and the yi is its associated

label or class. Then the classification task is to learn the discriminate function

y=f(x),

which correctly classify the example data and optimized so that it will make minimal error on the

classification of unseen data.

If the label „y‟ is not discrete as above, then this task is called regression. Based on these

examples (xi, yi), one is particularly interested to predict the answer for other cases before they

11

are explicitly observed. Hence, learning is not only a question of remembering but also of

generalization to unseen cases.

2.1.5.2 Support Vector Machine (SVM)

This is the supervised machine learning approach that can be used for both classification and

regression. In their basic form, SVM construct the hyperplane in input space that correctly

separate the example data into two classes. This hyperplane can be used to make the prediction

of class for unseen data. The hyperplane exist for the linearly separable data [4].

This can be illustrated with figure

The equation for general hyperplane can be written as

 𝑤. 𝑥 − 𝑏 = 0 (Equation 2.1)

Where x is point vector, w is a weight vector and b is bias. The hyperplane should separate

training data{(xi,yi), i=1….n and yi ∈(+1,-1)} in such way that 𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1. The two plane

H1 and H2 are supporting hyperplane. We can see that there exist so many hyperplans that can

separate the training data correctly but the SVM find one hyperplane that maximize the margin

between two supporting hyperplanes. It finds the w and b such that the distance (margin)

between H1 and H2 is maximum. This can be formulated as optimization problem as

Figure 2.1: Support Vector Machine

12

Minimize f=
|𝑤 |2

2
 ………………………………(Equation 2.2)

Subject to constraints 𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1

This can be solved by the variant of quadratic programming technique [13]

2.1.5.2.1 Kernel Trick

To deal with nonlinear separation, the same formulation and techniques as for the linear case are

still used. We only transform the input data into another space (usually of a much higher

dimension) so that a linear decision boundary can separate positive and negative examples in the

transformed space. The transformed space is called the feature space. The original data space is

called the input space [4].

The basic idea is to map the data in the input space X to a feature space F via a nonlinear

mapping “”,

After the mapping, the original training data set {(x1, y1), (x2, y2), …, (xr, yr)} becomes:

 {((x1), y1), ((x2), y2), …, ((xr), yr)}

Then perform linear separation in this feature space. Geometric interpretation is shown in figure

2.2.

)(

:

xx

FX

Figure 2.2: Feature Mapping [4]

13

The potential problem with this explicit data transformation and then applying the linear SVM is

that it may suffer from the curse of dimensionality [4]. The number of dimensions in the feature

space can be huge with some useful transformations even with reasonable numbers of attributes

in the input space. This makes it computationally infeasible to handle. Fortunately, explicit

transformation is not needed. In SVM, this is done through the use of kernel functions, denoted

by K,

 K(x, z) = (x) (z)

For example let us take Polynomial kernel

 K(x, z) = x z
d

Let us compute the kernel with degree d = 2 in a 2-dimensional space: x = (x1, x2) and z = (z1, z2).

This shows that the kernel x z
2
 is a dot product in a transformed feature space.

,)()(

)2()2(

2

)(

2222

2222

22

1

22

11

22

1

22

11

2

1

2

1

2

11

2

zx

zx

zz,z,zxx,x,x

zxzxzxzx

zxzx

2.1.6 Optimization

Many situations arise in machine learning where we would like to optimize the value of some

function. It turns out that in the general case, finding the global optimum of a function can be a

very difficult task. However, for a special class of optimization problems, known as convex

optimization problems [13], we can efficiently find the global solution in many cases. Here,

“efficiently” has a both practical and theoretical connotation: it means that we can solve many

real-world problems in a reasonable amount of time, and it means that theoretically we can solve

problems in time that depends only polynomially on the problem size.

A convex optimization problem is an optimization problem of the form

14

minimize f(x)

subject to x ∈ C

where f is a convex function, C is a convex set, and x is the optimization variable. A linearly

constrained optimization problem with a quadratic objective function is called a quadratic

program (QP). The general quadratic program can be written as

Minimize f(x) = cx +1/2 x
T
Q x

Subject to Ax ≤ b and x ≥0

where c is an n-dimensional row vector describing the coefficients of the linear terms in the

objective function, and Q is an (n ×n) symmetric matrix describing the coefficients of the

quadratic terms. If a constant term exists it is dropped from the model. As in linear

programming, the decision variables are denoted by the n-dimensional column vector x, and the

constraints are defined by an (m×n) A matrix and an m-dimensional column vector b of right-

hand-side coefficients. We assume that a feasible solution exists and that the constraint region is

bounded.

2.2 Problem Statement

A Nepali sentence can be expressed as

 S=(w1, w2,……………..wn)

Where wi is the i
th

 Nepali word in sentence S. The POS tagging will assign a tag to each word

and then after the POS tagging, result will be

 T=(t1,t2,………………tn)

Where ti is the tag assigned to word wi. Our goal is to determine correct tag for each word in a

given sentence. The categories indicated by POS tags are defined in advance so the POS tagging

problem is equivalent to classification problem. Hence they are capable of being handled by

machine learning methods. In this work, Support Vector machine with one versus rest multi

classification approach will be applied to solve the problem.

15

CHAPTER 3

LITERATURE REVIEW

3.1 Existing Corpus Review

 A corpus is valuable resources in Natural Language Processing. There existence in correct form

makes the NLP a more fruitful process. The most well known corpora for English are probably

the Brown Corpus and the PenTreeBank corpus. The Brown Corpus contains over a million

words of American English and it was tagged in 1979 using the TAGGIT [23]

tagger. Nowadays,

corpora tend to be much larger, and are compiled mainly through projects and initiatives such as

the Linguistic Data Consortium (LDC), the Consortium for Lexical Research (RLC) etc. These

associations provide corpora as the Wall Street Journal (WSJ, 300 million words of American

English), the Hansard Corpus (bilingual corpus containing 6 years of Canadian Parliament

sessions), The Lancaster Spoken English Corpus (SEC) etc. Although most corpora limit their

annotation level to part of speech tags, some other higher level annotations and constitute an

important source of knowledge for those researching in NLP. For instance, PennTreebank corpus

is an example of syntactically analyzed corpora (called Treebanks), which contains 3 million

words from the WSJ corpus. Until few years ago, the existing corpora were all of the English

language. Nevertheless, the success and applicability of corpus in linguistics as well as in NLP,

has raised a wide interest and caused its quick extension to other languages. The following list

(not exhaustive) provides some examples of available corpora of languages other than English.

1. Spanish: The LexEsp

corpus which contains 5.5 million morph syntactically tagged words,

the corpus of the Real Academia Espanola, which contains 200 million tagged and lemmatized

words.

2. German: The NEGRA
3
 corpus from the Saarland University, which contains German

newspaper texts with syntactic annotation.

3. French: The `Tresor de la Langue Francaise' (TLF) which contains 150 million words of

written French. Swedish: The `Bank of Swedish' corpus and other materials collected by the

Department of Swedish of the University of Goteborg.

16

4. Nepali: The Nepali National Corpus (NNC) from NELRALEC (Nepali Language Resources

and Localization for Education and Communication) project, which contain 14 milion Nepali

words. It is consists of speech corpus, spoken corpus, core sample (CS) ,general collection, and

parallel data. It was first manually tagged some part (One hundred and sixty texts from the

NNC–CS were annotated manually using this tagset with 112 tags). This data then served as the

basis for the training of an automatic tagger. The Nepali English parallel corpus annotated with

43 pos tag developed at Madan Puraskar Pustakalaya (MPP) contains nearly 88000 words [20].

3.2 Nepali Tagset Review

NELRALAC tagset is the fist work in developing Nepali tagset which consist of 112 tags. This

tagset has been compiled with reference to widely published grammars of Nepali. This tagset

was used to tag (Nepali National Corpus) NNC manually and semi manually. With large tagset,

as in [20] showed that error rates of annotation could be much higher when the size of the tagset

was a big one, the reason primarily being the chances of assigning incorrect tags to the words out

of confusion while manually annotating the training data itself.

It was with such motivations that a smaller sized POS Tagset was later on developed that consist

of just 43 tags. While developing the tagset, maximum care has been taken to ensure that this

minimalist approach does not unnecessarily eliminate the unavoidable lexical categories of the

language. The design of this Nepali POS Tagset was inspired by the PENN Treebank POS

Tagset. Hence, whenever possible, the same naming convention has been used as in the case of

the Penn Treebank Tagset. In this dissertation work, this tagset is used as resource and referred

as Nepali POS tagset.

3.2.1 Specification of Nepali POS Tagset

In this section, the development of the POS tagset for Nepali will be discussed in brief. One of

the crucial issues that needs to be subtly addressed while designing a POS tagset is its‟ size.

Generally, the assumption is –“the smaller the tagset, the greater the accuracy”. However, in

saying so, the compulsory categories evident in the language would not be missed and at the

same time also not necessarily increase the size of the tagset whenever economy can be

maintained. Hence, a middle ground has been adopted while designing a POS tagset for Nepali.

17

The tagset for Nepali currently includes 43 tags and covers almost all the grammatical categories

in the Nepali language. By the reference of Penn Treebank Tagset, the tagset of the Nepali was

designed [21]. The grammatical categories person, number and gender are found distinctively in

pronouns and adjectival and verbal inflections. In this tagset, these distinctions have not been

considered. That is both masculine and feminine pronouns get the same tag. Similarly, adjectives

inflected for masculine and feminine references receive the same tag.

3.2.2 Description of Nepali Tagset

In this dissertation, the total of 43 tags described in [21] are used for part-of-speech tagging of

Nepali text and covers almost all the grammatical categories in Nepali language. Basically, the

tagset was guided by the general principle “The smaller the size of the tagset, the more accurate

a tagger” [21]. The short description of tags in [21] is given in the following table 1. It contains

the main 21 categories and 43 POS tags.

Category POS Tag

ID No

POS Name POS

Tag

Example

Noun 1 Common Noun NN हरयरे बाइ/NN राई किताफ ददमो

2 Proper Noun NNP हरय/NNP रे सरयता/NNP राई

किताफ ददमो

Pronoun 3 Personal Pronoun PP ततमभ/PP रे बात खामौ?

4 Possessive Pronoun PP$ मो भेयो/PP$ घय हो

5 Reflexive Pronoun PPR आपू/PPR त बात खाइन्छ

6 Marked

Demonstrative

DM अिी/DM िेटी, मस्ता/DM िेटा.

18

7 Unmarked

Demonstrative

DUM त्मो/DUM भेयो साथी.

Verb 8 Finite Verb VBF श्माभरे बात खामो/VBF

9 Auxiliary Verb VBX याभ बात खादै थथमो/VBX

10 Verb Infinitive VBI हरय खाना खान/VBI घय गमो

11 Prospective Participle VBNE िाभ गने/ VBNE भान्छेराई

फोराऊ

12 Aspectual Participle VBKO ततभीरे ददएिो/ VBKO किताफ

याम्रो छ

13 Other Participle Verb VBO ऊ िाभ सिेय/VBO घय गमो

Adjective 14 Normal/Unmarked JJ असर/JJ िेटी टीबी हेदैछे

15 Marked Adjective JJM त्मो िेटी धेयै याम्री/JJM छे

16 Degree Adjective JJD उच्चतभ/JJD बफन्द ु

Adverb 17 Manner Adverb RBM ऊ दिरो/RBM दहड्छ

18 Other Adverb RBO महाॉ/RBO फस

Intensifier 19 Intensifier INTF ऊ धेयै/INTF चराख छ

Postpositions 20 Le-Postposition PLE हरय-रे/PLE बाइराई िूट्मो

19

21 Lai-Postposition PLAI बाइ-राई/PLAI िूट्मो

22 Ko-Postposition PKO याभ-िी/PKO फहीनी चराख छे

23 Other Postpositions POP किताफ टेफुर भाथथ/POP छ

Conjunction 24 Coordinating CC भ खाजा खान्छु य/CC अकपस

जान्छु

25 Subordinating

Conjunction

CS किनबने, मद्धपऩ, बन्दा, मदद

Interjection 26 Interjection UH आहा!/UH िस्तो याम्रो फगैचा!

Number 27 Cardinal Number CD ऩाॉच/CD जना भान्छे दौडदैछन

28 Ordinal Number OD हरय ऩयीऺाभा ऩाॉचौँ/OD बमो

Plural Marker 29 Plural Marker हरु HRU गाई-हरु/HRU आए

Question

Word

30 Question Word QW ततभी किन/QW महाॉ?

Classifier 31 Classifier CL दशजना/CL भान्छे आउदैछन ्

Particle 32 Particle RP खै/RP भैरे त/RP ततम्रो िुया फुझझन

Determiner 33 Determiner DT त्मो /DT िेटो भेयो साथी हो

Unknown

Word

34 Unknown Word UNW उसरेउत्तयभा नेिोम्प्रेनास/UNW

20

बन्मो

Foreign Word 35 Foreign Word FW उसरे भध्मान्नभा बेटेय ऩतन

गुड/FW भतनिङ/FW बन्मो

Punctuation 36 Sentence Final YF ?/YF,

37 Sentence Medieval YM ,/YM, ;/YM, :/YM,

38 Quotation YQ „/YQ, “/YQ

39 Brackets YB () {} []/YB

Header List 40 Header List ALPH ि)/ALPH, अ/ALPH,

Symbol 41 Symbol SYM २/CD %/SYM ब्माज

Abbreviation 42 Abbreviation FB .भ.ऩ.ुऩु./FB, भऩुऩ/ुFB

NULL 43 NULL NULL Noisy symbol, control character

etc.

3.3 A Review of POS Tagging Approaches

Considerable amount of work has already been done in the field of POS tagging for English.

Different approaches like the rule based approach, the stochastic approach and the

transformation based learning approach along with modifications have been tried and

Table 3.1: Description of Nepali Tagset

21

implemented. However, if we look at the same scenario for South-Asian languages such as

Bangla, Hindi and Nepali, we find out that not much work has been done.

The work on automatic part of speech tagging started in early 1960s [11]. Klein and Simmon‟s

rule based POS tagger can be considered as the first automatic tagging system [15]. Since rule

based approaches needs more sophisticated rules to capture the language knowledge, later on the

data driven approaches were developed as [5] and recently machine learning approaches are

being developed [3, 8,17]. In the following sections, the some of the related tagger that has been

implemented for English and other language with their performance will be reported and

subsequently, the tagger available for Nepali language are also mentioned.

3.3.1 Linguistic Tagger

The tagger based on rules engineered by linguist is referred as linguistic tagger. The most

representative of such pioneer taggers was TAGGIT [23], which was used for an initial tagging

of the Brown Corpus. These tagger model the language learning through the help of rules that

may vary from hundreds to thousand in number. Each rule contains instructions for an operation

to be performed, and a context describing where that rule should be applied. The operation

specified by the matching rule will be performed to alter the list of tags associated with an

ambiguously-tagged word so that one or more potential tags are eliminated from consideration

and reduces the ambiguity. In both sentences below, initially run would be tagged as a verb:

The run lasted thirty minutes.

We run three miles every day.

Now the rules for disambiguation are there to choose the correct POS tag. The following table

shows sample template that is used in Brill‟s rule tagger in table 3.2.

Rule Expalnation

Change(A,B, prevTag(C) Change tag A to Tag B if previous tag is C

Change(A,B, NextTag(C) Change tag A to Tag B if the following tag is C

Table 3.2: Rule Template in Brill Tagger

22

After applying one of these rule, the word „run‟ will be tagged as noun in first sentence and as

verb in second sentence.

Rule based approaches are often associated with parsing. For example, the program of Harris

[11] was a parser and Klein and Simmons [15] describe rule-based tagging as a preliminary stage

to an eventual parsing process. However, there is no necessary link between rule-based

approaches and parsing, as demonstrated by Green and Rubin [23], who‟s tagging was not

associated particularly with a parser.

The earliest work on rule based tagging was by Klein and Simmons and Greene and Rubin [15,

23], which was begun before any other methodology had been developed, and marked the first

attempt to solve the problem of automated POS disambiguation.

The accuracy reported by the first rule-based linguistic English tagger was slightly below 80%

[3]. It is tedious and requires the language expert to write the contextual rule and then it is

computatiolly expensive to match the rule.

 3.3.2 Probabilistic Taggers Using Markov Models

The basic idea of probabilistic or stochastic approaches consist of building statistical model of

language and use it to disambiguate the word sequence by assigning the most probable tag

sequence using maximum likelihood. The model is build on the basis of statistical information

concerning the frequency with which sequences of tags occurs. This information is gathered

from long stretches of running text usually form training corpus. For instance, acquiring

frequency statistics on a tagged corpus of English, a system might discover that the tag for a

subject pronoun is followed by the tag for a verb 70% of the time, the tag for an adverb 29% of

the time, and the tag for a noun 1% of the time. If that system, during the course of tagging, then

encounters a word following a subject pronoun that was ambiguously tagged as either noun or

verb, it can use its statistical knowledge to deduce that the verb tag is most likely to be correct

[10].

In practice, a model as primitive as the example here would be incapable of handling long

sequences of ambiguous tokens and would be unlikely to perform particularly well.

23

The most representative model of this category is hidden Markov model (HMM), which can be

represented as in [22], with five elements.

1. The number of distinct states (N) in a model. We denote the individual state as S={s1,s2,…sn}.

In case of Part-of-speech tagging, N is the number of tags in the tagset {T} that will be used by

the system. Each tag in the tagset corresponds to one state in the HMM.

 2. The number of distinct output symbols (M) in the HMM. We denote the individual symbol as

V = {v1,v2,…..vm}. For Part-of-Speech tagging, M is the number of words in the lexicon of the

system.

3. The state transition probabilities A = {aij}. The probability aij is the probability that the

process will move from state i to state j in one transition.. In part-of-speech tagging, the states

represent the tags, so aij is the probability that the model will move from tag t i to tj (1 <= i,j <=

N) - in other words, the probability that tag tj follows ti. This probability can be estimated using

data from a training corpus.

4. The observation symbol probability distribution, B = {bj(k)}. The probability bj(k) is the

probability that the k
th
 output symbol will be emitted when the model is in state j. For part-of-

speech tagging, this is the probability that the word wk will be emitted when the system is at tag tj

(i.e., P(wk|tj) where,1<= j <= N & 1 <= k <= M). This probability can be estimated using data

from a training corpus.

5. The initial state distribution ,π = {πi},. πi is the probability that the model will start in state i

where, 1<= i <= N. For part-of-speech tagging, this is the probability that the sentence will begin

with tag ti.

When using an HMM to perform POS tagging, the aim is to determine the most likely tag

(states) sequence that generates the words of a sentences (the sequence of output symbols). In

other words, HMM taggers choose the tag sequence that maximizes the following formula

n

i

iiniii

T

twPttttP
n

T ttt
1

121

*^

)|(*),.....,|(
21 maxarg,.......,,

24

Where the first part is n-gram and second part is most frequent tag. The Markov assumption is

that the “probability of a word depend one its own tag and the probability of current tag depends

upon n-previous tag” [18].

Now the most probable tag sequences can be searched using Viterbi algorithm [22].

3.3.2.1 Variation on HMM

In the first order Markov model, the state transition probability of a particular tag ti depends on

the previous one tag in the sequence. The symbol emission and state transition probabilities are

estimated directly from the labeled training data as follows.

Contextual probability or state transition probability:

P(ti|ti-1) =
)(C

) t, (t C

1

1

i

ii

t
 …………………..(Equation 3.1).

 And lexical probability or symbol emission probability:

P(wi|ti) =
)C(t

) t, C(w

i

ii ………………………(Equation 3.2).

This is also called Bi-gram HMM model since it takes two tag pair in account for modeling the

language context [5].

For the second order HMM, the transition probability is calculated as

P(ti|ti-1,ti-2)=
)t,(C

)t, t, (t C

2-i1

2-i1

i

ii

t

And lexical probability is calculated with the Equation 3.2.

Where C() denotes the number of occurrence in the labeled training data. As we are dealing with

a small labeled corpora (FinalNepaliCorpus), it is often possible that C() will become zero. To

cope with the above situation, state transition probabilities are smoothed and symbol emission

probabilities are estimated for handling unknown words that are not in the labeled corpora.

…………………….(Equation 3.3)

25

TnT [2] tagger is a widely used tri gram tagger which is based on second order HMM. The other

consideration taken in TnT are the methods of smoothing and interpolation and suffix analysis to

handle the unknown words.

The essential difference between using bigrams and trigrams is that the latter has S times as

many parameters to be estimated, where S is the size of the tagset. This requires more training

data, since the average frequency of each trigram is so much lower than the average frequency of

the equivalent bigram; [5] suggest that as a rule of thumb, “the training set needs to be large

enough to contain on average ten instances of each type of tag sequence that occurs”. However,

there does not appear to be any general agreement about whether calculating Markov model path

probabilities using trigrams produces a notable improvement over bigrams, or on whether the

improvement is worth the necessary extra data.

On the one hand, several studies into part-of-speech disambiguation algorithms have made use of

trigrams. Merialdo [18] uses to compare training on tagged and untagged text, is a trigram

tagger. Merialdo [18] suggest that “trigram models are usually superior to bigram ones” with the

provision that sufficient training data must be available. On the other hand, other studies have

questioned the use of trigrams. [6] test a bigram and a trigram version of their Markov model

tagger and reports that the trigram model has a lower error rate but is slower at processing time.

However, in general, the performances reported for the taggers discussed in this section ranges

between 95% and 97% for English.

3.3.1 Neural Network Based Taggers

A neural network is a learning system whose architecture consists of two or more interconnected

layers of processing units. Each unit may be activated or not activated. The activations of the

bottom layer correspond to the input to the system, and the activations of the top layer indicate

the output. The optional intermediate layers are called “hidden” because while they contribute to

the processing, they do not connect to the world outside the system at all. The activation of each

unit propagates to other units via that links connecting them. The parameters of the system are

the weights given to the links, and the activation values of the units. Thus, the activation of non-

input units depends upon the activations of the units to which they are connected and the

weightings of the links connecting them. The training of a neural network consists of iteratively

26

adjusting the weights of the connections and the activation values to produce a system which

produces the correct output for the training data.

Prior to their application to part-of-speech disambiguation, neural networks had been

successfully used in speech recognition. The subsequent systems using neural networks include

Nakamura‟s NETgram system and the Net-Tagger system of Schmid [24].

The input to a neural network disambiguation system is the ambiguously tagged word, and some

amount of context. For each word examined by the network, there is a set of units in the input

layer equal in number to the number of tags in the tagset. The input units corresponding to the

tag or tags marked up on the word examined are activated. The output layer then indicates the tag

the system has chosen. The amount of context used varies greatly between different systems. In

[24], they used as their input the four unambiguously tagged words preceding the target word

and one ambiguously tagged word following it. Nakamura‟s Netgram system allows the scope of

the system to be varied, taking one, two or three words before the target word as the context, but

no words after it. [24] also experimented with different context scopes, reporting that three words

before the target word and two words afterwards were optimal (to wit, using more context did

not improve the system, using less only worsened it slightly). It can thus be seen that in general,

neural networks use a wider context than a Markov model can, based on bigram or trigram

transition probabilities. This is because the number of parameters that must be estimated for a

Markov model is equal to the size of the tagset raised to the power of the length of the sequences

examined. Thus, the amount of training data needed to accurately estimate (say) six-gram

probabilities for a tagset of (say) 100 – giving one trillion transition probabilities –would be

astronomical [24]. For a neural network, the number of parameters is much smaller, since they

are what Benello, Mackie and Anderson refer to as “complex conditional probabilities” rather

than “simple first-order transition statistics”. Therefore wider contexts can realistically be taken

into account. However, neural network taggers still use surface-level linguistic information only.

They do not use any knowledge of syntactic structure.

27

3.3.2 Decision Tree Induction Based Taggers

Decision tree is a classification approaches which construct the tree in top down manner using

the attribute the data satisfies.

Statistical decision tree to solve the tagging problem is used in [17]. Using 96% of WSJ of Penn

Treebank as the training data, the authors group all multi-tag words into 253 ambiguity classes,

such as class JJ-VBG (e.g. amusing, exciting, etc.) and class JJ-VBD-VBN (e.g. amused, excited,

surprised, etc.). The tagging problem thus becomes a classification problem. They selected the

following attributes: the third tag to the left of the word in question (t-3), the second tag to the left

(t-2), the first tag to the left (t-1), the first tag to the right (t+1), and the second tag to the right (t+2),

and the word‟s spelling features, such as capitalization, containing digits, etc. In other words, the

best tag of a word is decided by it contextual and spelling characteristics.

They tested their tagger on the remaining 4% of WSJ and the reported accuracy was 97%.

3.3.3 Support Vector Machine based taggers

SVM is binary classification method which can be extended for multiclass classification method.

SVM do the classification of data into two classes with a hyperpalne which is drawn by

maximizing the margin between the example data nearest to hyperplane. Since POS tagging is

multiclass classification, SVM are extended for such problems using One-against-all method.

The basic idea of SVM is to separate the instances into two class by a hyperplane. the POS

tagging is done by training a classifier for each POS tag and then the word to be classified is

given to all classifer to classify this word either the word has that tag or not. Now the highest

valued classes is taken as the final POS tag to that word. This strategy is called “one versus rest”

[20]. This is computationally cost to train each POS tag with the one vs all technique but in case

of POS tagging, the different heuristic can be used to enhance the process [8].

Support Vector Machines (SVM) has been used for POS tagging with simplicity and efficiency.

Nakagawa in [20], first used the SVM based machine learning technique for POS tagging. The

main disadvantage of the system was low efficiency (running speed of 20 words per second was

reported). Further, Gimenez and Marquez [8] in their work proposed a SVM based POS tagging

28

technique which is 60 times faster than the earlier one. The tagger also significantly outperforms

the TNT tagger [8].

Support vector machines have two advantages over other models: They can easily handle high

dimensional spaces i.e. large number of features and they are usually more resistant to over

fitting.

3.3.4 Nepali Language Taggers

After giving short description of previous work on POS tagging for English and other resource

rich language, in this section, the work done in Nepali language related with POS tagging and

NLP are reviewed.

The Unitag
1
 has been developed or customized for Nepali language and was used for semi

automatic tagging of Nepali National Corpus under the NERLAC project. The tagset used is

NERLAC tag set with 112 tags. Unitag was originally developed for Urdu language by hardie et

[10].It consists of a powerful morphological and lexical analysis system, and twin

disambiguation modules, one based on hand-written rules and the other using a probabilistic

system based on a Markov model. After tagging, the corpus was manually reviewed and the

correction was done. Since the tagset used was which large, it introduced the more error in

tagging.

In [1] , the TnT has been used as POS tagger with the 43 tags and training corpus of mideum siz

as one of the pipelined module for computational grammar analyzer.

First order Markov model has been implemented in [12] which use the same POS tagset as in [1]

and reports the good accuracy (91%) for known word.

3.4 Measurement of the performance of taggers

The performance measurement for POS tagger is difficult in the sense that there is no universal

agreed system for rating the performance of a tagger. The taggers are designed with different

aspect in mind such as efficiency, accuracy, and portable. So these four criteria are not

necessarily mentioned in their literature.

1 Unitag is originally developed for Urdu and later customized for Nepali by Hardie et.al at Bhashasanchar project.

29

Probably the most widely used system of assessing the performance of a tagger is to look at the

percentage of tokens which are tagged correctly. This is the measurement of accuracy of tagger.

The accuracy is a measure of how much of the information that the system returned is actually

correct, and is also known as accuracy. Accuracy is defined as follows:

Accuracy =
possibleisthatpairtagtokencorrectofnumber

occurancepairtagtokenofnocorrect

The efficiency of tagger is measured in terms of number of word it can tag per seconds. Since the

accuracy is major concern in POS tagging, this measurement is not much used in performance

comparison of tagger.

The other two criteria: portable and trainable are related to language independent issue. The first

criterion says that whether a particular tagger can be used for other language than the language

for which it is developed with out or with minimal modification. “Trainable” refers to whether

the tagger can improve itself or produce a new tagger if given a pre-tagged corpus by users.

The following Table 3.3 show the comparison of different tagger reviewed in this chapter based

upon these four criteria.

S.N Major Algorithms Accuracy Efficiency(word

per second)

Portable Trainable

1 Rule Based [15] 83% 20 NO No

2 Rule Based

(Using Transformation Rules)[5]

95%-97%

Unknown YES No

3 Hidden Markov Model (TnT

tagger) [2]

96.7% Unknown YES YES

4 Support Vector Machine

(SVMtool) [8]

96.7% 1230 YES No

5 Neural Network Based[24] 97.7% Unknown YES No

6 Decision Tree Based[17] 97% 300 YES No

Table 3.3: Comparison of Existing Tagger for English

30

CHAPTER 4

IMPLEMENTATION

4.1 Support Vector Machine Algorithm

The optimization problem for SVM in its basic form is

Minimize f=
|𝑤 |2

2
 …………………….(Equation 4.1)

Subject to constraints 𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1[as in chapter 2]

The equivalent dual formulation of this problem can be written as

Min w b max α
1

2
| 𝑊 |2 − 𝛼𝑗 [𝑦𝑗 < 𝑥𝑗 .𝑤 > +𝑏 − 1]𝑗

Subject to 𝛼𝑗 ≥ 0

Where α’s are lagrangian multipliers.

With some simplification, the equations can be written as

Min w,b Max α
1

2
| 𝑊 |2 − 𝛼𝑗 𝑦𝑗 < 𝑥𝑗 .𝑤 > +𝑏 +𝑗 𝛼𝑗𝑗 …………..(Equation 4.2)

Subject to 𝛼𝑗 ≥ 0

Wishing to minimize both w and b while maximizing α’s leaves us to determine the saddle

points. The saddle points [4] correspond to those values where the rate of change equals to zero.

This is done by differentiating the Lagrangian-primal (Lp) equation (4.2), with respect to w and

b and setting their derivatives to zero:

31

𝛿𝐿

𝛿𝑤
= 0 𝑤 ⇒ 𝑤 − 𝛼𝑗𝑦𝑗𝑗 𝑋𝑖 = 0………………………(Equation 4.3)

𝑤 = 𝛼𝑗 𝑦𝑗𝑋𝑖 ……………………………………….(Equations 4.4)

𝛿𝐿

𝑏
= 0 ⇒ − 𝛼𝑗𝑦𝑗𝑗 =0 ……………………….(Equations 4.5)

 𝛼𝑗𝑦𝑗 = 0𝑗 ………………………(Equations 4.6)

Putting the value of (4.4) and (4.6) in above equation (4.2), we have

𝑚𝑎𝑥𝛼 −
1

2
 𝛼𝑗𝑦𝑗𝑋𝑗 𝛼𝑗

𝑗𝑗

𝑦𝑗𝑋𝑗 + 𝛼𝑗

𝑗

Equal to

𝑚𝑎𝑥𝛼 𝛼𝑗

𝑗

−
1

2
 𝛼𝑗𝑦𝑗𝑋𝑗

𝑗

𝛼𝑖𝑦𝑖𝑋𝑖

Now the optimization problem becomes

𝑚𝑎𝑥𝛼 𝐿 = 𝛼𝑗

𝑗

−
1

2
 𝛼𝑗𝑦𝑗𝑋𝑗

𝑖 ,𝑗

𝛼𝑖𝑦𝑖𝑋𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛼𝑗𝑦𝑗 = 0

𝑗

 𝛼 ≥ 0

This is the quadratic optimization problem and can be solved using the decomposition algorithm

as in [13].Decomposition algorithm breaks the whole optimization problem in to smaller sets and

solves each set iteratively.

32

Class NN

Class CL

Class VB

CL vs Rest
NN vs Rest

VB vs Rest

ऱेख

ऱेख

एउटा

4.2 Problem Setting

POS tagging is a multi classification problem since in natural language there exist more than two

tags. As an instance, Nepali language has 43 tags defined to cover all grammatical categories.

Number of tags is the number of classes. Since SVM are binary classifier so binarization of

problem must be performed before apply them to POS tagging. [8] has suggested the one vs rest

binarization of problem. i.e. a SVM is trained for each POS tag in order to distinguish this class

and the rest. When tagging the word, the most confident prediction among the all binary SVM is

selected. Hence the support vector machine used in this dissertation work is in fact the

implementation of support vector machine with one versus rest method as explained below.

4.2.1 One Vs. Rest Binarization of Multiclass Classification

This strategy is based on idea of building one classifier per class. To train N different binary

classifiers, each one trained to distinguish the examples in a single class from the examples in all

remaining classes. When it is desired to classify a new example, the N classifiers are run, and the

classifier which outputs the largest (most positive) value is chosen.

This can be explained with an example

एउटा /CL ऱेख/NN ऱेख/VB

Figure 4.1: One Vs. Rest Classification Example

33

4.2.2 The Overall System Flowchart

The tagged Nepali corpus will be used as a training corpus from which the feature vectors are

created for each word in the corpus. The SVM light [9] will be used to learn the model from

these training vectors. Finally the Tagging algorithm will be implemented to perform the tagging

of raw sentence in the input to produce the tagged output sentence.

4.2.3 Dictionary

A dictionary is extracted from the training corpus which contains all possible tags of each word.

A dictionary entry has the following format

< word > < N occurrences > < N possible tags > 1{< tag(i) > < N occurrences(i)}N

Tagged
Sentence

Untagged
Sentence

Tagged Corpus (Nepali monolingual

corpus annotated with POS information)

Feature Extraction and Selection

(Construction of feature Vector)

SVM training
(Learn SVM classifier)

SVM Tagger

Figure 4.2: Implementation Model

34

Example:

भने 4 3 VBNE 1 VBO 1, VBF 2
इन्जिननयररङ 13 2 JJ 1 NN 10
अज्य 54 3 RBO 1 JJ 1 NN 8

4.2.4 Feature Set

The features used in the experiment are tabulated in the table 4.1.

Word Feature w-3, w-2, w-1, w0, w1, w2, w3

POS Feature p-3, p-2, p-1

Word Bigrams (w-3,w-2),(w-2,w-1),(w-1,w0),(w0,w1),(w1,w2)

POS Bigrams (p−3, p−2) (p−2, p-1)

Word Trigram (w-3,w-2,w-1), (w-2,w-1,w0), (w-1,w0,w1),

(w0,w1,w2), (w1,w2,w3)

Ambiguity Classes a0, a1, a2,a3

Maybe’s m0, m1, m2, m3

Feature Vector Construction

प्याऱेस्टाइनी<JJ> ओऱन्पिक<NN> कममटट<NN>का<PKO> एक<CD> अधिकारी<NN>ऱे<PLE> भने<VBNE>
कममटट<NN>ऱे<PLE> सब<JJ>भजदा<VBO> िटहऱे<PLE> १९७९<CD> मा<POP> सदस्यता<NN>का<PKO>
ऱाधग<POP> ननवेदन<NN> टदएको<VBKO> धियो<VBX>

The dictionary entry for target word “भने” is:

भने 126 4 VBKO 1 VBNE 1 VBO 1 VBF 4

Some of the features along with their ids for the target word भने /VBNE are:

w(-3)_is_एक 71

Table 4.1: Description of Feature Set

35

w(-2)_is_अधिकारी 72

w(-1)_is_ ऱे 73

w(0)_is_ भने 37

w(1)_is_कममटट 74

w(2)_is_ऱे 75

w(3)_is_सब 76

p(-3)_is_CD 77

p(-2)_is_ NN 78

p(-1)_is_PLE 79

a(0)_is_VBKO-VBNE-VBO-VBF 42

m(0)_may_be VBNE 43

m(0)_may_be_VBO 7

m(0)_may_be_VBF 45

a(1)_is_NN-VBO 80

m(1)_may_be_NN 81

m(1)_may_be_VBO 82

………….

…………..

The feature vector for target word भने is

+1 71:1 72:1: 73:1 37:1 74:1 75:1 76:1 77:1 78:1 79:1 42:1 43:1 7:1 43:1 7:1 45:1 80:1 81:1

82:1………

Feature Filtering

The feature space can be kept in a convenient size. Smaller models allow for a higher efficiency.

In the experiment, the total 88135 features are used. Certain features that appear less then certain

threshold values are discarded and the accuracy is not even in the attainable level. The features

36

that appear less than once are discarded by default. The bigram feature appears less than 10,

trigram feature that appears less than 5 and unigram feature that appears 50 are discarded and the

overall accuracy is same as for by default.

4.2.5 Algorithm for Training (Algorithm 1)

INPUT: Formatted Train-file

OUTPUT: SVM models learned for all part of speech tags

POS[] = {the set of possible part of speech tags}

//Create a different example file corresponding to each POS

1. for each example word w tagged as ti in the train-file do

Extract features, codify features and create a feature vector fi

T={the set of possible tags for w}

Use fi as a positive example for ti

Use fi as a negative example for all tj in {T-ti}

 end for

2. Learn SVM model for each example file

for each pi in POS do

Run the “svm_learn ” on the examples corresponding to pi

end for

3. return the SVM models learned for each part of speech

Enhancement in Training

However, not all training examples have been considered for all classes. Instead, a dictionary is

extracted from the training corpus with all possible tags for each word, and when considering the

occurrence of a training word w tagged as ti, this example is used as a positive example for class

ti and a negative example for all other tj classes appearing as possible tags for w in the dictionary.

In this way, the generation of excessive (and irrelevant) negative examples can be avoided, and

training step can be made faster.

37

4.2.6 Tagging Algorithm (Algorithm 2)

 INPUT: Formatted test file, Learned SVM models

OUTPUT: Part-of-speech tagged test file

1. initialize score = 0

2. for each target word w in the test file do

 a) Extract features and create a feature vector for w

 b) Possible pos[] = possible tags of w in the dictionary

 c) for each pi in possible pos do

 ans = svm classify with pi SVM model

 if ans > score then

 score=ans

 target pos=pi

 end if

 end for

 Assign target pos to w

 end for

3. return the Part-of-speech tagged test file

4.2.7 Sample Input Output of Different Taggers

Input

सुश्री हाग एमऱयाजटी को भूममका खेल्नुहुजछ । रोल्स-रोयस मोटरकार इजकिोरेटटड ऱे १९९० मा सॊयुक्त राज्य
अमेररका मा यस को बबक्री १२०० मा न्स्िर हुने अिेऺा राखेको बतायो । िनछल्ऱो वषष सुबबिा सपिजन गाडी
ननमाषता ऱे सॊयुक्त राज्य अमेररका मा १२१४ वटा कार हरू बबक्रक्र गयो । अध्यऺ तिा प्रमुख कायषकारी
अधिकृत होवाडषमोशर ऱे उहाॉ ऱे बेऱायत तिा युरोि र सुदरू िूवी बिार हरू मा सुबबिा सपिजन गाडी ननमाषता
हरू काऱाधग सॊवदृ्धि को आशा गरेको बताउनुभयो । बेऱ औद्योधगक सॊस्िा ऱे यस को तै्रमामसक ऱाभाॊश मा
एक सेयर मा ७ सेजट बाट १० सेजट मा बढायो |

38

Output

TnT Tagger

सुश्री/NN हाग/NNP एमऱयाजटी/NNP को/PKO भूममका/NN खेल्नहुुजछ/VBF ।/YF रोल्स-रोयस/NNP

मोटरकार /NN इजकिोरेटटड/NN ऱे/PLE १९९०/CD मा/POP सॊयकु्त/JJ राज्य NN/ अमेररका/NNP मा/POP

यस/DUM को/PKO बबक्री/NN १२००/CD मा/POP न्स्िर/JJ हुने/VBNE अिेऺा/NN राखेको/VBKO

बतायो/VBF ।/YF िनछल्ऱो/JJM वषष/NN सुबबिा/NN सपिजन/JJ गाडी/NN ननमाषता/NN ऱे/PLE सॊयकु्त/JJ

राज्य/NN अमेररका/NNP मा/POP १२१४/CD वटा/CL कार/NN हरू/HRU बबक्रक्र/NN गयो/VBF ।/YF

अध्यऺ/NN तिा/CC प्रमुख/JJ कायषकारी/NN अधिकृत/NN होवाडषमोशर/NN ऱे/PLE उहाॉ/PP ऱे/PLE

बेऱायत/NNP तिा/CC यरुोि/NNP र/CC सुदरू/JJ िवूी/JJ बिार/NN हरू/HRU मा/POP सुबबिा/NN

सपिजन/JJ गाडी/NN ननमाषता/NN हरू/HRU कालागि/VBO सॊवदृ्धि/NN को PKO/आशा NN/गरेको
VBKO/बताउनभुयो VBX/।/YF बेऱ/NNP औद्योधगक/JJ सॊस्िा/NN ऱे/PLE यस/DUM को/PKO त्रमैामसक/JJ

ऱाभाॊश/NN मा/POP एक/CD सेयर/NN मा/POP ७/CD सेजट/NNP बाट/POP १०/CD सेजट/NNP मा/POP

बढायो/VBF ।/YF

SVM Tagger

सुश्री/NN हाग/NNP एमऱयाजटी/NNP को/PKO भूममका/NN खेल्नुहुजछ/VBF ।/YF रोल्स-रोयस/NNP

मोटरकार/NN इजकिोरेटटड/NN ऱे/PLE १९९०/CD मा/POP सॊयुक्त/JJ राज्य/NN अमेररका/NNP मा/POP

यस/ DUM को/PKO बबक्री/NN १२००/CD मा/POP न्स्िर/JJ हुने/VBNE अिेऺा /NN राखेको/VBKO

बतायो/VBF ।/ YF िनछल्ऱो/JJM वषष/NN सुबबिा/NN सपिजन/JJ गाडी/NN ननमाषता/NN ऱे/PLE

सॊयुक्त/JJ राज्य/NN अमेररका/NNP मा/POP १२१४/CD वटा/CL कार/NN हरू/HRU बबक्रक्र/NN

गयो/VBF ।/YF अध्यऺ/NN तिा/CC प्रमुख/JJ कायषकारी/NN अधिकृत/NN होवाडषमोशर/NNP

ऱे/PLE उहाॉ/PP ऱे/PLE बेऱायत/NNP तिा /CC युरोि/NNP र/CC सुदरू/JJ िूवी/JJ बिार/NN

हरू/HRU मा/POP सुबबिा/NN सपिजन/JJ गाडी/NN ननमाषता/NN हरू/HRU कालागि/POP सॊवदृ्धि/NN

को/PKO आशा/NN गरेको/VBKO बताउनुभयो/VBX ।/YF बेऱ/NNP औद्योधगक/JJ सॊस्िा/NN ऱे/PLE

यस/DUM को/PKO तै्रमामसक/JJ ऱाभाॊश/NN मा/POP एक/CD सेयर/NN मा/POP ७/CD सेजट/NNP बाट/POP

१०/CD सेजट/NNP मा/ OP बढायो/VBF ।/YF

39

CHAPTER 5

TESTING AND ANALYSIS

5.1 Nepali Tagged Corpus Data Statistics

The tagged Nepali corpus named FinalNepaliCorpus which contains 111475 Unicode Nepali

words is used for training and testing. This corpus is manually tagged with the 43 tags as

described in [21]. This is a text file with the “word <tag>” as entry in file. For example:

६१<CD> वर्षीय<JJ> पियरे<NNP> भिन्केन<NNP> नोिेम्बर<NNP> २९<CD> बाट<POP> सल्ऱाहकार<NN>को<PKO>

रूि<NN> मा<POP> सञ्चाऱक<NN> सभमति<NN>मा<POP> आउनुहुनेछ<VBX> ।<YF>

 5.2 The Dictionary Data Statistics

The dictionary used in the experiment contains the following statistics about ambiguous and

unambiguous words. Here the word represents the unique word found in the Nepali Corpus.

Unambiguous words 11676

Ambiguous words 792

Total words in dictionary 12468

In comparisons to wall street journal (WSJ) corpus which contains 44526 (5985 ambiguous +

38541 unambiguous) unique words, it is smaller which limit the performance of the tagger we

have implemented then the same tagger for English.

Table 5.1: The Word Distribution on Dictionary

40

5.3 Test Data Analysis

Test data is prepared form the original corpus. It consists of 10775 tokens from the original

corpus. This part of data is not used during training period. Since the count of tokens should be in

whole number, some consideration has made about the percentage of testing data to make it

whole number. The test data contains total of 10775 randomly selected tokens out of which 82%

are unambiguous, 13% are unknown tokens and 5% are of ambiguous. This is shown in the

following pie chart.

Accuracy measurement of tagger

The accuracy is measured with matching two file: one is test file and another is manually tagged

test gold file. The correctly tagged tokens are those which match in both files and the remaining

tokens are tagged incorrectly. For this a matcher program is written which sequentially reads the

both file and match the line by line and increment the count if both line matched in both files.

On the test file of 11147 words, the overall accuracy is calculated as

82%

13%

5%

unambiguous word

Unknown words

ambiguous words

Figure 5.1: Statistics of sample test

41

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑎𝑔𝑔𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑓𝑖𝑙𝑒
=

10050

10775
= 93.27%

The detail comparison of tagger performance with ambiguous and unambiguous word is

tabulated below (In table 5.2).

 No of tokens Accuracy Error

ambiguous word 538 490/538 (91.07%) 48/538(5.88)

Unambiguous words 8819 8290/8819(94.01%) 265/8819(1.07%)

Unknown words 1418 1270/1418(89.56) 141/558(9.94%)

Validation and Evaluation

Cross validation technique is used to validate the measured accuracy of tagger. The general k-

cross validation is a technique which divides the whole corpus into ten parts and nine part(90%)

of data is used for training and remaining one part is used for testing. The process is repeated for

ten times taking each of ten parts as testing instances.

Here the 10-cross validation is adapted in which the whole corpus is divided into 10 portions

sequentially and in each iteration of program, the 9 folds are used for training and the remaining

1 fold is used for testing.

And in other respect, the learning nature of tagger is evaluated with the different size of training

data. The size of training data is gradually increased and the performance of tagger is observed.

The result so found is presented in the table 5.3.

Table 5.2: Unknown and Known word accuracy

42

Training data size

(in tokens)

Accurcy(%)

SVM HMM

10000 71% 61%

20000 79% 69%

40000 85% 72%

80000 90% 90%

100000 92% 91%

The corresponding learning curve is presented below

The learning curve shows the gradual increment in accuracy for the large size of training data for

the HMM tagger and it performs not very well for the small set of training data since the bigram

probabilities are not found sufficiently in the case of small size data and most of the case it

becomes zero. But the SVM tagger does not depends upon the probabilities rather it depends

0

10

20

30

40

50

60

70

80

90

100

10000 20000 40000 80000 100000

%
 o

f
A

cc
u

ra
cy

Training size

SVM

TnT

Table 5.3: The tagging accuracy for different training size

Figure 4.2: Learning Curve for Tagging Nepali

corpus

43

upon the features extracted from the training and testing data. So it performs very well for the

small training data size as well as for large data size.

5.4 Results

The following table shows the performance of different tagger.

The overall accuracy is slightly better for SVM then other two taggers as shown table 5.4. This is

because of rich pattern set provided for SVM. TnT perform well for known word but it gives

lower accuracy for unknown word, it is because there is no mechanism to deal with unknown

word for Nepali language.

 Accuracy

Taggers Known words Unknown word Over all

TnT 92% 56% 74%

SVM 96.48% 90.06% 93.27%

Table 5.4: Overall Result of Different Taggers

44

CHAPTER 6

CONCLUSION AND FURTHER RECOMMENDATION

6.1 Conclusion

The Support Vector Machine (SVM) based part-of-speech tagger is built which assigns the most

appropriate part-of-speech tag to each of word of the Nepali text. In this work, the study has

gone through the empirical analysis of the performance of the tagger for morphologically rich

and order free language like Nepali. It is observed from the experiment that the tagger based on

SVM outperform the other two taggers: First order HMM and TnT. The SVM based tagger

incorporate diverse set of feature such as word features, POS features and other features, while

the other tagger rely on only local features such as current word and one or two previous word.

Here, during the development of the model, the impact of the size of training data and test data

on the performance was observed. From tests made for various sizes of training data, it had

shown that the performance of the tagger depend upon the size of the training data, as well as

number of tokens that are present and absent in the training data. Here, in this dissertation, the

average overall accuracy of this tagger for morphologically rich and order free language –Nepali

is 93.27%.

6.2 Further Recommendation

In this dissertations, the SVM based POS tagger is built which uses the dictionary as a primary

resources. This dictionary is collected from the FinalNepaliCorpus which contains only 11147

unique words. The performance of tagger is dependent on this dictionary and so in future; such

dictionary may be built using the information on news sources and available Nepali raw text with

the help of morphological analyzer and part of speech acquisitions techniques.

The limitation of the SVM tagger built is the speed. It is found to be slow in training than other

tagger. Since the SVM based POS tagger uses the different set of features to construct the feature

vectors, the empirical analysis to find the optimal set of features may be the future work which

may concentrate on speed optimization of tagger.

45

REFERENCES

[1] B.K. Bal, and P. Shrestha, Reports on Computational Grammar Madan Puraskar Pustakalaya,

Patan Dhoka, Lalitpur, Kathmandu.

[2] T. Brants, TnT -- A Statistical Part-of - Speech Tagger, In: Proceedings of the 6th Applied

NLP Conference, (ANLP-2000), 2000.

[3] E. Brill, A Simple Rule-Based Part of Speech Tagger. In: Proceedings of the Third

Conference on Applied Natural Language Processing (ANLP-1992), Torento, 1992.

[4] N. Cristianini and J. S. Taylor, An Introduction to Support Vector Machines and Other

Kernel- based Learning Methods, (Cambridge University Press 2002), pp 126.

[5] K. Church, A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text. In:

Proceedings of the Second Conference on Applied Natural Language Processing, ACL, 1988.

[6] D. Cutting, J. Kupiec, J. Pederson and P. Sibun, A Practical Part-of-Speech Tagger, In:

Proceedings of the Third Conference on Applied Natural Language Processing, ACL, 1992.

[7] A. Ekbal and S. Bandopadhya, Part of Speech Tagging in Bengali Using Support Vector

Machine, In: Proceeding of IEEE 2008.

[8] Jesus Giménez and Lluís Márquez . SVMTool: A General POS Tagger Generator Based on

Support Vector Machines, In: Proceedings of the 4th International Conference on Language

Resources and Evaluation (LREC-2004). Lisbon, Portugal, 2004.

[9] R. Garside G. Leech and G. Sampson, CLAWS Word-tagging system, 1987.

[10] A. Hardie, The Computational Analysis of Morphosyntactic Categories in Urdu, (PhD

Thesis, Department of Linguistics and Modern English Language, Lancaster University, 2003)

46

[11] Z. Harris, String Analysis of Sentence Structure, The Hague: Mouton, 1962.

[12] M. R. Jaishi., Hidden Markov Model Based Probabilistic Part Of Speech Tagging For

Nepali Text, (Masters Dissertation, Central Department of Computer Science and IT ,Tribhuvan

University, Nepal).

[13] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in Kernel Methods -

Support Vector Learning, B., Schölkopf and C. Burges and A. Smola (ed.), MIT-Press, 1999.

[14] D. Jurafsky, J.H. Martin, An Introduction to Natural Language Processing, Computational

Linguistics, and Speech Recognition, University of Colorado, Boulder,(Pearson Education,

2000), pp 343.

[15] S. Klein, RF. Simmons, A Computational Approach to Grammatical Coding of English

Words, Journal of the Association for computing machinery (JACM), 1963 pp 334-347.

[16] G. Leech, and N. Smith, The Use of Tagging. In: van Halteren (1999a), 1999.

[17] L. M`arquez, H. Rodr´ıguez, J. Carmona, and J. Montolio. Improving POS Tagging Using

Machine-Learning Techniques. In: Proceedings of EMNLP/VLC,1999.

[18] B. Merialdo, Tagging English Text with a Probabilistic Model, Computational Linguistics,

20 (2), 1994.

[19] Masaki Murata, Qing Ma, Hitoshi Isahara, Comparision of Three Machine Learning Method

for Thai Part of Speech Tagging, In: Proceeding of ACM Transactions on Asian Language

Information Processing (TALIP-2002), 2002.

47

[20] T. Nakagawa, T. Kudoh, and Y. Matsumoto, Unknown Word Guessing and Part-of-Speech

Tagging using Support Vector Machines, In: Proceedings of the Sixth Natural Language

Processing Pacific Rim Symposium, 2001.

 [21] B. Prasain, LP. Khatiwada, B.K. Bal, and P. Shrestha. Part-of-speech Tagset for Nepali,

Madan Puraskar Pustakalaya, 2008.

[22] Lawrence R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. In: Proceeding of the IEEE, 1989.

[23] GM. Rubin, BB Greene, Automatic grammatical tagging of English. Providence, Rhode

Island: Brown University Department of Linguistics, 1971.

[24] Helmut Schmid, part of speech tagging with neural network, Institute of computational

linguistic Germany

[25] Valdimir Vapnik, Corinna Cortes, Support vector networks, machine learning 20, 273-297,

Kunwer Acedemic Publisher 1995.

48

Bibliography

Ethem Alpaydın, Introduction to Machine Learning, (Second Edition, 2010, The MIT Press,

Cambridge, Massachusetts London, England).

Lutz Hamel, Knowledge Discovery with Support Vector Machine (John Wiley and Sons Inc.,

New Jersey, USA, 2009)

APPENDIX

SAMPLE PROGRAM CODE

1. Source program that implement the Algorithm for tagging (Perl source code)

#read the test file into the testexamples array

$i=0;

open (FH, '<', $testfile) or die "Cannot open '$testfile': $!";

while(<FH>){

 chomp;

 ($testexamples[$i]{word})=(/(\S+)/);

 $i++;

 }

close FH;

#build the feature vector for each test example.

my $ntestexamples= scalar (@testexamples);

my $k=0;

for (my $i=0; $i < $ntestexamples; $i++){

#add word features in the hash

 my $dictindex=search_dictionary($testexamples[$i]{word});

 #print "testexamples[$i]{word} => $testexamples[$i]{word}\n\n";

 if($dictindex == -1){

 print "Couldn't find dicionary entry for the word $testexamples[$i]{word} ...skipping the

 instance\n";

 next;

 }

evaluate for all part of speech tags and assign the most confident tag

My @possiblePOS=extract_possible_tags($dictionary[$dictindex]{tags},

dictionary[$dictindex]{ntags});

extract features of the ith instance and returns a feature vector

my @features = extract_features($i,"test",\@testexamples);

my $testinstance="0 ";

my $m=0;

my %FEATURES;

my @uniquefeatures;

foreach my $f (@features){

$FEATURES{$f} = "$f";

}

foreach my $f (keys %FEATURES) {

 $uniquefeatures[$m++]= $FEATURES{$f};

 }

$testinstance="$testinstance".join(":1 ",sort { $a <=> $b }(@uniquefeatures)).":1";

print "testexamples[$i]{word} => $testexamples[$i]{word}\n\n";

print join(" ",@features);

print "\n\n";

$testinstance="$testinstance".join(":1 ",sort { $a <=> $b }(@features)).":1";

my $testinstancefile="tmp.test";

 open (FH, '>', $testinstancefile) or die "Cannot open '$testinstancefile': $!";

 print FH "$testinstance\n";

 close FH;

my $confidenttag;

my $score=-100;

foreach my $ppos (@possiblePOS){

 my $modelsubstring=$ppos;

 if($ppos !~ /[A-Z]+|(a-z)+/){

 $modelsubstring="$sTag{$ppos}";

 print "modelsubstring => $modelsubstring\n\n";

}

my $modelfile="$modeldir"."$model.$modelsubstring.$svmext";

print "$modelfile";

system("svm_classify -v 0 $testinstancefile $modelfile") == 0 or die "system failed: $?";

open (FH, '<', "svm_predictions") or die "Cannot open 'svm_predictions': $!";

while(<FH>){

chomp;

 if($_ > $score){

 $score=$_;

 $confidenttag=$ppos;

 }

 }

close FH;

}

$testexamples[$i]{pos}=$confidenttag;

print "word => $testexamples[$i]{word}\t pos => $testexamples[$i]{pos}\n\n";

}

open(FH, '>', 'outputtagedfile.txt');

 for (my $l=0; $l < $ntestexamples; $l++){

 print FH "$testexamples[$l]{word} $testexamples[$l]{pos}\n";

 }

close(FH);

