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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

Natural language processing (NLP) is meant for any attempt that helps the machine to 

understand the natural language (spoken or written) and to generate the natural language. Thus 

NLP consist of two components: natural language understanding (NLU) and natural language 

generation (NLG). 

NLU consist of steps such as phonological analysis, morphological analysis, lexical analysis, 

syntactic analysis, semantic analysis and pragmatic analysis. In this pipeline of NLP, the lexical 

analysis is early step and the accuracy of this module is significant to other following modules. 

Lexical analysis mainly consists of recognition of lexicon of the language and this is closely 

related with syntactic analysis such as parsing. At this level, one important task is assigning part 

of speech tag to an individual word that conveys the grammatical meaning of words and help to 

reduce the much work of parsing early in the process. 

Tagging in its broad sense is the process of assigning any label to a linguistic unit. The linguistic 

unit may be word, phrase, sentence etc. in this dissertation work the tagging refers to the process 

of assigning part of speech (POS) tag to a word. The computer programs designed to 

automatically assign the POS tag to word in natural language text are called taggers. The outline 

of process is shown as in figure 1.1. 

 

 

 

 

 

POS tagger Module 
एउटा लेख लेख एउटा /CL लेख/NN लेख/VB 

Nepali tagset  

Figure 1.1: POS Tagging Example 
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The tags or tagset are defined in advance by the language expert and are usually covers the all 

POS category of language [20]. 

1.1.1 The Ambiguity Problem 

The natural language is ambiguous in nature. Ambiguity appears in each level of language 

processing pipeline and it represent on of the most difficult problem in language understanding 

domain[17].Part of speech ambiguity in lexical analysis, semantic ambiguity in polysemic word, 

syntactic ambiguity in parsing, word choice selection ambiguity in machine translation etc are 

some representative examples of ambiguity problem in NLP. In order to resolve ambiguity, it is 

necessary to disambiguate two or more syntactically, semantically or structurally distinct 

linguistic unit depending upon the surrounding context. For example, the sentences taken from 

[14] 

He will race the car. 

When will the race end? ………………………….Example (1.1) 

To understand these sentences, first their POS tag ambiguity must be resolved. The words „race‟ 

may take Verb (VB) or NN (Noun) as POS tag. Here, the ambiguity can completely 

disambiguate using their contexts as: 

He will race/VERB the car. 

When will the race/NOUN end?  

1.1.2 POS Tagging Problem 

Part-of-speech tagging is the process of assigning to each word in an input text a proper morpho 

syntactic tag or part of speech tag in its context of appearance [5]. In most case, the ambiguous 

word can be disambiguate completely using the adequate context as in above example 1.1.The  

word „race‟ would be disambiguate as noun because its previous word “the” is determiner, 

ambiguity is resolved by simply looking previous tag. But it is not sufficient to disambiguate the 

word by such simple context and may require much more language knowledge. The most 
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challenging problem in POS tagging disambiguation is to determine the proper context and 

adequate features.  

There are a wide variety of applications of part-of- speech tagging software and tagged text. 

These include information retrieval, word processor spelling and grammar-checking, speech 

processing, handwriting recognition, machine translation, production of corpus-based 

dictionaries and grammars, and applications in the teaching of foreign languages and knowledge 

of grammar [16]. The performance of these tasks depends upon the performance of tagger. So 

they need the fast, accurate, portable and trainable tagger. 

1.1.3 General Approach for POS Tagging 

The general representation of POS tagging process is shown in figure 1.2. The two main 

components are language model learning and disambiguation algorithms or tagging algorithms. 

These two components often related and found to be embedded in single tagger description. 

 

 

 

 

 

 

                          

1.1.3.1 Tokenization and Analysis 

In tokenization, the tokenizer, also called “Lexer” or “Scanner” which takes the raw source text 

and breaks it into the reserved words, constants, identifier and symbols that are defined in the 

language. These tokens so found are collected and assigns the possible tags to each tokens which 

usually involves the ambiguity. This assignment may be by simple lexicon look up or 
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Figure 1.2: Phase of POS Tagging [10] 
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morphological analysis. The lexicon is usually extracted form pre tagged corpora. This lexicon is 

referred as dictionary in this dissertation work. This phase prepare the list of word with their 

possible POS tags. 

1.1.3.2 Disambiguation 

The so described previous stages such as tokenization and analysis are straightforward but the 

most challenging task in part-of-speech tagging is disambiguation. The disambiguation technique 

makes use of some kind of knowledge to reduce the possible POS tags for a lexical unit to few or 

a unique tag. This knowledge comes from different sources and in different representation which 

is known as language model. 

Since the POS tagging disambiguation select the one tag for a word among the possible tags of 

that word in lexicon or given by morphological analysis, it can be recast as classification 

problem [19]. Classification is the supervised machine learning which attempt to classify the raw 

input into a predefined class. In case of POS tagging problem, the POS tags are predefined and 

they act as class and the word to which it is to be disambiguated is here to classify using some 

language knowledge learned during the training of classifier. In this dissertation work, the 

support vector machine [24] with one versus rest classification will be implemented for Nepali 

POS tagging. 

1.2 Motivation 

Nepali is morphologically rich language [21] and to build a language model for such language, 

one has to consider many features. The POS tagging approaches like rule based and hidden 

Markov model can not handle much features. The support vector machine based POS tagger has 

been implemented in [7] for a Bengali language which is also morphologically rich and shown 

the outstanding performance. In [7] rich feature set has been used to model the language 

characteristic. In [8] SVM based tagger was proposed which is efficient, portable, scalable and 

trainable. Support vector machine (SVM) are recently developed supervised learning method 

having good performance and generalization [24]. SVM has been successfully applied in text 

classification and shown that SVM can handle large features and is resist of overfitting [13]. 
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Using many features, we can make a strong language model that can be used for POS 

disambiguation. 

1.3 Objectives 

Since the POS tagger should be accurate, fast, portable and trainable. The main objective of this 

dissertation is to build such a Nepali POS tagger based on support vector machine learning 

framework. The other motives of this study are as follows: 

 Since the POS tagging is a prototyping problem in NLP, the technique developed for this 

can applied for other NLP problem as well. 

 The tagger build in this dissertation will be compared with the existing state of art tagger. 

1.4  Organization of Thesis 

The rest of this thesis is organized as: chapter 2 gives a brief discussion of basic concept related 

to this work, chapter 3 is a survey of the major existing taggers, chapter 4 details the 

implementation of the Support vector Machine based tagging algorithm, chapter 5 presents the 

tagging and tagger-making results, and chapter 6 concludes the thesis, summarizing its 

achievements and further recomendations. 
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CHAPTER 2 

BACKGROUND AND PROBLEM DEFINITION 

 

2.1 Background 

2.1.1  Natural Language Processing 

Natural Language Processing (NLP) has been developed in 1960 as a subfield of Artificial 

Intelligence and Linguistics [14]. The aim of NLP is studying problems in the automatic 

generation and understanding of natural language. A Natural Language is any of the languages 

naturally used by humans, i.e .not an artificial or machine language such as a programming 

language like C language, Java, Perl etc.  

NLP is a convenient description for all attempts to use computers to process natural language. 

NLP is also an area of artificial intelligence research that attempts to reproduce the human 

interpretation of language for computer system processing. The ultimate goal of NLP is to 

determine a system of language, words, relations, and conceptual information that can be used by 

computer logic to implement artificial language interpretation. NLP includes anything a 

computer needs to understand natural language (written or spoken) and also generate the natural 

language. To build computational natural language systems, we need Natural Language 

Understanding (NLU) and Natural Language Generation (NLG). NLG systems convert 

information from computer databases into normal-sounding human language, and NLU systems 

convert samples of human language into more representation that are easier for computer 

programs to manipulate. Some of important levels of NLP are as follows: 

 Phonological Analysis: Phonology is the study of sound system in a language. The minimal 

unit of sound system is the phoneme which is capable of distinguishing the meanings in the 

words. The phonemes combine to form a higher level unit called syllable and syllables combine 

to form the words. Therefore, the organization of the sounds in a language exhibits the linguistic 

as well as computational challenges for its analysis. This level deals with the interpretation of 

speech sounds within and across words. There are, in fact, three types of rules used in 

phonological analysis: 1) phonetic rules – for sounds within words; 2) phonemic rules – for 

variations of pronunciation when words are spoken together, and; 3) prosodic rules – for 
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fluctuation in stress and intonation across a sentence. In an NLP system that accepts spoken 

input, the sound waves are analyzed and encoded into a digitized signal for interpretation by 

various rules or by comparison to the particular language model being utilized. 

Morphological Analysis: This level deals with the componential nature of words, which are 

composed of morphemes – the smallest units of semantic meaning. For example, the word 

preregistration can be morphologically analyzed into three separate morphemes: the prefix pre, 

the root „registra‟, and the suffix „-tion‟. Since the meaning of each morpheme remains the same 

across words, humans can break down an unknown word into its constituent morphemes in order 

to understand its meaning. Similarly, an NLP system can recognize the meaning conveyed by 

each morpheme in order to gain and represent meaning. For example, adding the suffix „-ed‟ to a 

verb, conveys that the action of the verb took place in the past. This is a key piece of meaning, 

and in fact, is frequently only evidenced in a text by the use of the -ed morpheme. Typically, a 

natural language processor knows how to understand multiple forms of a word i.e. its plural and 

singular, for example, ghar (घर) „house‟ ghar-haru (घरहरु.) „house-s‟. From structural point of 

view, the words can be simple, complex and compound. For example, ghar „house‟, ghar-haru 

„house-Plural‟, ghar-ghar-ai „each house‟. 

Lexical Analysis: At this level, humans, as well as NLP systems, interpret the meaning of 

individual words. Several types of processing contribute to word-level understanding – the first 

of these being assignment of a single part-of-speech (POS) tag to each word. In this processing, 

words that can function as more than one part-of-speech are assigned the most probable part-of 

speech tag based on the context in which they occur. The lexical level may require a lexicon, and 

the particular approach taken by an NLP system will determine whether a lexicon will be 

utilized, as well as the nature and extent of information that is encoded in the lexicon. 

Syntactic Analysis: Syntactic analysis uses the results of morphological analysis and lexical 

analysis to build a structural description of the sentence. The goal of this process, called parsing, 

is to convert the flat list of words that forms the sentence into a structure that defines the units 

that are represented by that flat list. The important thing here is that a flat list of words has been 

converted into a hierarchical structure and that the structures correspond to meaning units when 

semantic analysis is performed. 
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Semantic Analysis: It derives an absolute (dictionary definition) meaning from context; it 

determines the possible meaning of a sentence in a context .The structures created by the 

syntactic analyzer are assigned meaning. Thus, a mapping is made between individual words into 

appropriate objects in the knowledge base or data base. It must create the correct structure s to 

correspond to the way the meaning of the individual words combine with each other. The 

structures for which no such mapping is possible are rejected. 

Example: the sentence “colorless green ideas……..” would be rejected as it has no such semantic 

mapping, because colorless and green make no sense. 

 

Discourse Integration: The meaning of an individual sentence may depend on the sentences 

that precede it and may influence the meaning of the sentences that follow it. 

Example: the meaning of word “it” in the sentence, “you wanted it” depends on the previous 

discourse context.  

 

Pragmatic Analysis: It derives knowledge from external commonsense information; it means 

understanding the purposeful use of language in situations, particularly those aspects of language 

which require world knowledge. 

Example: If someone says “the door is open” then it is necessary to know which door “the door” 

refers to; here it is necessary to know what the intention of the speaker: could be a pure statement 

of fact, could be an explanation of how the cat got in, or could be a request to the person 

addressed to close the door.  

 

2.1.2 Major Application of Natural Language Processing 

NLP is having a very important place in our day-to-day life due to its large natural language 

applications. By means of these NLP applications the user can interact with computers in their 

own mother tongue by means of a keyword and a screen. The few NLP processes are: 

 

 Part-of-speech tagging 

 Information retrieval 

 Machine translation 

 Named entity recognition 
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 Natural language generation 

 Question answering 

 Spoken dialogue system 

 Text simplification 

 Text to speech 

 Speech recognition etc. 

 

2.1.3 Computational Linguistics  

Computational linguistics is the scientific study of language (i.e. statistical and/or rule-based 

modeling of natural language) from a computational perspective. Traditionally, computational 

linguistics was usually performed by computer scientists who had specialized in the application 

of computers to the processing of a natural language. Computational linguists often work as 

members of interdisciplinary teams, including linguists (specifically trained in linguistics), 

language experts (persons with some level of ability in the languages relevant to a given project), 

and computer scientists. In general, computational linguistics draws upon the involvement of 

linguists, computer scientists, and experts in artificial intelligence, mathematicians, logicians, 

cognitive scientists, cognitive psychologists, psycholinguists, anthropologists and 

neuroscientists, amongst others. Some of the areas of research that are studied by computational 

linguistics include: 

 Computational complexity of natural language, largely modeled on automata theory, with 

the application of context-sensitive grammar. 

 Computational semantics comprises defining suitable logics for linguistic meaning 

representation, automatically constructing them and reasoning with them. 

 Computer-aided corpus linguistics.  

 Design of parsers or chunkers for natural languages.  

 Design of taggers like POS-taggers. 

 Machine translation.  
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2.1.4 Corpus linguistics 

Corpus linguistics is now seen as the study of linguistic phenomena through large collections of 

machine-readable texts: corpora. These are used within a number of research areas going from 

the descriptive study of the syntax of a language to language learning. Corpus linguistics has 

developed considerably in the last decades due to the great possibilities offered by the processing 

of natural language by computers having large storage capacity. The availability of computers 

and machine-readable text has made it possible to get data quickly and easily and also to have 

this data presented in a format suitable for analysis. Corpus linguistics is, however, not the same 

as mainly obtaining language data through the use of computers. Corpus linguistics is the study 

and analysis of data obtained from a corpus. The main task of the corpus linguist is not to find 

the data but to analyze it [10]. Computers are useful, and sometimes indispensable, tools used in 

this process. 

2.1.5 Machine learning 

It is a recent field of artificial intelligence (AI) which aim to make a machine able to learn as 

human learns the things. Marvin Minsky (1986) defined learning as “it is making useful change 

in the working of our mind”. Machine learning exists in various forms: supervised learning, 

unsupervised learning, semi supervised or minimally supervised learning, reinforcement learning 

etc. In its basic form, machine learn the knowledge form some sources and then generalize that 

knowledge for other instances. 

2.1.5.1 Classification 

Given the example data {(xi,yi), i=1….n},where the xi is input vector and the yi is its associated 

label or class. Then the classification task is to learn the discriminate function 

y=f(x), 

which correctly classify the example data and optimized so that it will make minimal error on the 

classification of unseen data. 

 

If the label „y‟ is not discrete as above, then this task is called regression. Based on these 

examples (xi, yi), one is particularly interested to predict the answer for other cases before they 
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are explicitly observed. Hence, learning is not only a question of remembering but also of 

generalization to unseen cases. 

 

2.1.5.2 Support Vector Machine (SVM) 

This is the supervised machine learning approach that can be used for both classification and 

regression. In their basic form, SVM construct the hyperplane in input space that correctly 

separate the example data into two classes. This hyperplane can be used to make the prediction 

of class for unseen data. The hyperplane exist for the linearly separable data [4]. 

This can be illustrated with figure  

 

 

 

The equation for general hyperplane can be written as 

  𝑤. 𝑥 − 𝑏 = 0   (Equation 2.1) 

Where x is point vector, w is a weight vector and b is bias. The hyperplane should separate 

training data{(xi,yi), i=1….n and yi ∈(+1,-1)} in such way that  𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1. The two plane 

H1 and H2 are supporting hyperplane. We can see that there exist so many hyperplans that can 

separate the training data correctly but the SVM find one hyperplane that maximize the margin 

between two supporting hyperplanes. It finds the w and b such that the distance (margin) 

between H1 and H2 is maximum. This can be formulated as optimization problem as 

 

Figure 2.1: Support Vector Machine 
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Minimize f= 
|𝑤 |2

2
 ………………………………(Equation 2.2) 

Subject to constraints   𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1 

 

This can be solved by the variant of quadratic programming technique [13] 

 

2.1.5.2.1 Kernel Trick 

To deal with nonlinear separation, the same formulation and techniques as for the linear case are 

still used.  We only transform the input data into another space (usually of a much higher 

dimension) so that a linear decision boundary can separate positive and negative examples in the 

transformed space. The transformed space is called the feature space. The original data space is 

called the input space [4].  

The basic idea is to map the data in the input space X to a feature space F via a nonlinear 

mapping “”,  

 

 

After the mapping, the original training data set {(x1, y1), (x2, y2), …, (xr, yr)} becomes:  

      {((x1), y1), ((x2), y2), …, ((xr), yr)}  

Then perform linear separation in this feature space. Geometric interpretation is shown in figure 

2.2. 
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Figure 2.2: Feature Mapping [4] 
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The potential problem with this explicit data transformation and then applying the linear SVM is 

that it may suffer from the curse of dimensionality [4]. The number of dimensions in the feature 

space can be huge with some useful transformations even with reasonable numbers of attributes 

in the input space. This makes it computationally infeasible to handle. Fortunately, explicit 

transformation is not needed. In SVM, this is done through the use of kernel functions, denoted 

by K,  

  K(x, z) = (x)  (z)  

 

For example let us take Polynomial kernel  

  K(x, z) = x  z
d
  

Let us compute the kernel with degree d = 2 in a 2-dimensional space: x = (x1, x2) and z = (z1, z2). 

 

This shows that the kernel x  z
2
 is a dot product in a transformed feature space. 

 

,)()(            

)2()2(            

2            

)(

2222

2222

22

1

22

11

22

1

22

11

2

1

2

1

2

11

2









zx

  

zx



zz,z,zxx,x,x

zxzxzxzx

zxzx

 

 

2.1.6 Optimization 

Many situations arise in machine learning where we would like to optimize the value of some 

function. It turns out that in the general case, finding the global optimum of a function can be a 

very difficult task. However, for a special class of optimization problems, known as convex 

optimization problems [13], we can efficiently find the global solution in many cases. Here, 

“efficiently” has a both practical and theoretical connotation: it means that we can solve many 

real-world problems in a reasonable amount of time, and it means that theoretically we can solve 

problems in time that depends only polynomially on the problem size.  

A convex optimization problem is an optimization problem of the form 

 



14 
 

minimize f(x) 

subject to x ∈  C 

where f is a convex function, C is a convex set, and x is the optimization variable. A linearly 

constrained optimization problem with a quadratic objective function is called a quadratic 

program (QP). The general quadratic program can be written as 

 

Minimize f(x) = cx +1/2 x
T
Q x 

Subject to Ax ≤ b and x ≥0 

where c is an n-dimensional row vector describing the coefficients of the linear terms in the 

objective function, and Q is an (n ×n) symmetric matrix describing the coefficients of the 

quadratic terms. If a constant term exists it is dropped from the model. As in linear 

programming, the decision variables are denoted by the n-dimensional column vector x, and the 

constraints are defined by an (m×n) A matrix and an m-dimensional column vector b of right-

hand-side coefficients. We assume that a feasible solution exists and that the constraint region is 

bounded. 

 

2.2  Problem Statement  

A Nepali sentence can be expressed as 

 S=(w1, w2,……………..wn) 

 

Where wi is the i
th

 Nepali word in sentence S. The POS tagging will assign a tag to each word 

and then after the POS tagging, result will be  

 

 T=(t1,t2,………………tn) 

 

Where ti is the tag assigned to word wi. Our goal is to determine correct tag for each word in a 

given sentence. The categories indicated by POS tags are defined in advance so the POS tagging 

problem is equivalent to classification problem. Hence they are capable of being handled by 

machine learning methods. In this work, Support Vector machine with one versus rest multi 

classification approach will be applied to solve the problem. 
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CHAPTER 3 

LITERATURE REVIEW  

3.1 Existing Corpus Review  

 A corpus is valuable resources in Natural Language Processing. There existence in correct form 

makes the NLP a more fruitful process. The most well known corpora for English are probably 

the Brown Corpus and the PenTreeBank corpus. The Brown Corpus contains over a million 

words of American English and it was tagged in 1979 using the TAGGIT [23]
 
tagger. Nowadays, 

corpora tend to be much larger, and are compiled mainly through projects and initiatives such as 

the Linguistic Data Consortium (LDC), the Consortium for Lexical Research (RLC) etc. These 

associations provide corpora as the Wall Street Journal (WSJ, 300 million words of American 

English), the Hansard Corpus (bilingual corpus containing 6 years of Canadian Parliament 

sessions), The Lancaster Spoken English Corpus (SEC) etc. Although most corpora limit their 

annotation level to part of speech tags, some other higher level annotations and constitute an 

important source of knowledge for those researching in NLP. For instance, PennTreebank corpus 

is an example of syntactically analyzed corpora (called Treebanks), which contains 3 million 

words from the WSJ corpus. Until few years ago, the existing corpora were all of the English 

language. Nevertheless, the success and applicability of corpus in linguistics as well as in NLP, 

has raised a wide interest and caused its quick extension to other languages. The following list 

(not exhaustive) provides some examples of available corpora of languages other than English. 

1. Spanish: The LexEsp 
 
corpus  which contains 5.5 million morph syntactically tagged words, 

the corpus of the Real Academia Espanola, which contains 200 million tagged and lemmatized 

words.  

2. German: The NEGRA
3
 corpus from the Saarland University, which contains German 

newspaper texts with syntactic annotation.  

3. French: The `Tresor de la Langue Francaise' (TLF) which contains 150 million words of 

written French. Swedish: The `Bank of Swedish' corpus and other materials collected by the 

Department of Swedish of the University of Goteborg.  



16 

4. Nepali: The Nepali National Corpus (NNC) from NELRALEC (Nepali Language Resources 

and Localization for Education and Communication) project, which contain 14 milion Nepali 

words. It is consists of speech corpus, spoken corpus, core sample (CS) ,general collection,  and 

parallel data. It was first manually tagged some part (One hundred and sixty texts from the 

NNC–CS were annotated manually using this tagset with 112 tags). This data then served as the 

basis for the training of an automatic tagger. The Nepali English parallel corpus annotated with 

43 pos tag developed at Madan Puraskar Pustakalaya (MPP) contains nearly 88000 words [20]. 

3.2 Nepali Tagset Review 

NELRALAC tagset is the fist work in developing Nepali tagset which consist of 112 tags. This 

tagset has been compiled with reference to widely published grammars of Nepali. This tagset 

was used to tag (Nepali National Corpus) NNC manually and semi manually. With large tagset, 

as in [20] showed that error rates of annotation could be much higher when the size of the tagset 

was a big one, the reason primarily being the chances of assigning incorrect tags to the words out 

of confusion while manually annotating the training data itself. 

It was with such motivations that a smaller sized POS Tagset was later on developed that consist 

of just 43 tags. While developing the tagset, maximum care has been taken to ensure that this 

minimalist approach does not unnecessarily eliminate the unavoidable lexical categories of the 

language. The design of this Nepali POS Tagset was inspired by the PENN Treebank POS 

Tagset. Hence, whenever possible, the same naming convention has been used as in the case of 

the Penn Treebank Tagset. In this dissertation work, this tagset is used as resource and referred 

as Nepali POS tagset. 

3.2.1 Specification of Nepali POS Tagset 

In this section, the development of the POS tagset for Nepali will be discussed in brief. One of 

the crucial issues that needs to be subtly addressed while designing a POS tagset is its‟ size. 

Generally, the assumption is –“the smaller the tagset, the greater the accuracy”. However, in 

saying so, the compulsory categories evident in the language would not be missed and at the 

same time also not necessarily increase the size of the tagset whenever economy can be 

maintained. Hence, a middle ground has been adopted while designing a POS tagset for Nepali. 
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The tagset for Nepali currently includes 43 tags and covers almost all the grammatical categories 

in the Nepali language. By the reference of Penn Treebank Tagset, the tagset of the Nepali was 

designed [21]. The grammatical categories person, number and gender are found distinctively in 

pronouns and adjectival and verbal inflections. In this tagset, these distinctions have not been 

considered. That is both masculine and feminine pronouns get the same tag. Similarly, adjectives 

inflected for masculine and feminine references receive the same tag. 

3.2.2 Description of Nepali Tagset 

In this dissertation, the total of 43 tags described in [21] are used for part-of-speech tagging of 

Nepali text and covers almost all the grammatical categories in Nepali language. Basically, the 

tagset was guided by the general principle  “The smaller the size of the tagset, the more accurate 

a tagger” [21]. The short description of tags in [21] is given in the following table 1. It contains 

the main 21 categories and 43 POS tags. 

Category POS Tag 

ID No 

POS Name  POS 

Tag 

Example 

Noun 1 Common Noun NN हरयरे बाइ/NN राई किताफ ददमो 

2 Proper Noun NNP हरय/NNP रे सरयता/NNP राई 

किताफ  ददमो 

Pronoun 3 Personal Pronoun PP ततमभ/PP रे बात खामौ? 

4 Possessive Pronoun PP$ मो भेयो/PP$ घय हो 

5 Reflexive Pronoun PPR आपू/PPR त बात खाइन्छ 

6 Marked 

Demonstrative 

DM अिी/DM िेटी, मस्ता/DM िेटा. 
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7 Unmarked 

Demonstrative 

DUM त्मो/DUM भेयो साथी. 

Verb 8 Finite Verb VBF श्माभरे बात खामो/VBF 

9 Auxiliary Verb VBX याभ बात खादै थथमो/VBX 

10 Verb Infinitive VBI हरय खाना खान/VBI घय गमो 

11 Prospective Participle VBNE िाभ गने/ VBNE भान्छेराई 

फोराऊ 

12 Aspectual Participle VBKO ततभीरे ददएिो/ VBKO किताफ 

याम्रो छ 

13 Other Participle Verb VBO ऊ िाभ सिेय/VBO घय गमो 

Adjective 14 Normal/Unmarked JJ असर/JJ िेटी टीबी हेदैछे 

15 Marked Adjective JJM त्मो िेटी धेयै याम्री/JJM छे 

16 Degree Adjective JJD उच्चतभ/JJD बफन्द ु

Adverb 17 Manner Adverb RBM ऊ दिरो/RBM दहड्छ 

18 Other Adverb RBO महाॉ/RBO फस 

Intensifier 19 Intensifier INTF ऊ धेयै/INTF चराख छ 

Postpositions 20 Le-Postposition PLE हरय-रे/PLE बाइराई िूट्मो 
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21 Lai-Postposition PLAI बाइ-राई/PLAI िूट्मो 

22 Ko-Postposition PKO याभ-िी/PKO फहीनी चराख छे 

23 Other Postpositions POP किताफ टेफुर भाथथ/POP छ 

Conjunction 24 Coordinating CC भ खाजा खान्छु य/CC अकपस 

जान्छु 

25 Subordinating 

Conjunction 

CS किनबने, मद्धपऩ, बन्दा, मदद 

Interjection 26 Interjection UH आहा!/UH िस्तो याम्रो फगैचा! 

Number 27 Cardinal Number CD ऩाॉच/CD जना भान्छे दौडदैछन 

28 Ordinal Number OD हरय ऩयीऺाभा ऩाॉचौँ/OD बमो 

Plural Marker 29 Plural Marker हरु HRU गाई-हरु/HRU आए 

Question 

Word 

30 Question Word QW ततभी किन/QW महाॉ? 

Classifier 31 Classifier CL दशजना/CL भान्छे आउदैछन ्

Particle 32 Particle RP खै/RP भैरे त/RP ततम्रो िुया फुझझन 

Determiner 33 Determiner DT त्मो /DT िेटो भेयो साथी हो 

Unknown 

Word 

34 Unknown Word UNW उसरेउत्तयभा नेिोम्प्रेनास/UNW 
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बन्मो 

Foreign Word 35 Foreign Word FW उसरे भध्मान्नभा बेटेय ऩतन 

गुड/FW भतनिङ/FW बन्मो 

Punctuation 36 Sentence Final YF ?/YF, 

37 Sentence Medieval YM ,/YM,  ;/YM,  :/YM, 

38 Quotation  YQ „/YQ, “/YQ 

39 Brackets  YB () {} []/YB 

Header List 40 Header List  ALPH ि)/ALPH, अ/ALPH,   

Symbol 41 Symbol  SYM २/CD %/SYM ब्माज 

Abbreviation 42 Abbreviation FB .भ.ऩ.ुऩु./FB, भऩुऩ/ुFB 

 

NULL 43 NULL NULL Noisy symbol, control character 

etc. 

 

 

3.3 A Review of POS Tagging Approaches 

Considerable amount of work has already been done in the field of POS tagging for English. 

Different approaches like the rule based approach, the stochastic approach and the 

transformation based learning approach along with modifications have been tried and 

Table 3.1: Description of Nepali Tagset 



21 

implemented. However, if we look at the same scenario for South-Asian languages such as 

Bangla, Hindi and Nepali, we find out that not much work has been done.  

The work on automatic part of speech tagging started in early 1960s [11]. Klein and Simmon‟s 

rule based POS tagger can be considered as the first automatic tagging system [15]. Since rule 

based approaches needs more sophisticated rules to capture the language knowledge, later on the 

data driven approaches were developed as [5] and recently machine learning approaches are 

being developed [ 3, 8,17]. In the following sections, the some of the related tagger that has been 

implemented for English and other language with their performance will be reported and 

subsequently, the tagger available for Nepali language are also mentioned.  

3.3.1 Linguistic Tagger 

The tagger based on rules engineered by linguist is referred as linguistic tagger. The most 

representative of such pioneer taggers was TAGGIT [23], which was used for an initial tagging 

of the Brown Corpus. These tagger model the language learning through the help of rules that 

may vary from hundreds to thousand in number. Each rule contains instructions for an operation 

to be performed, and a context describing where that rule should be applied. The operation 

specified by the matching rule will be performed to alter the list of tags associated with an 

ambiguously-tagged word so that one or more potential tags are eliminated from consideration 

and reduces the ambiguity. In both sentences below, initially run would be tagged as a verb: 

The run lasted thirty minutes.  

We run three miles every day. 

Now the rules for disambiguation are there to choose the correct POS tag. The following table 

shows sample template that is used in Brill‟s rule tagger in table 3.2.  

Rule Expalnation 

Change(A,B, prevTag(C) Change tag A to Tag B if previous tag is C 

Change(A,B, NextTag(C) Change tag A to Tag B if the following tag is C 

 

 

Table 3.2: Rule Template in Brill Tagger 
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After applying one of these rule, the word „run‟ will be tagged as noun in first sentence and as 

verb in second sentence.  

Rule based approaches are often associated with parsing. For example, the program of Harris 

[11] was a parser and Klein and Simmons [15] describe rule-based tagging as a preliminary stage 

to an eventual parsing process. However, there is no necessary link between rule-based 

approaches and parsing, as demonstrated by Green and Rubin [23], who‟s tagging was not 

associated particularly with a parser. 

The earliest work on rule based tagging was by Klein and Simmons and Greene and Rubin [15, 

23], which was begun before any other methodology had been developed, and marked the first 

attempt to solve the problem of automated POS disambiguation.  

The accuracy reported by the first rule-based linguistic English tagger was slightly below 80% 

[3]. It is tedious and requires the language expert to write the contextual rule and then it is 

computatiolly expensive to match the rule. 

 3.3.2 Probabilistic Taggers Using Markov Models 

The basic idea of probabilistic or stochastic approaches consist of building statistical model of 

language and use it to disambiguate the word sequence by assigning the most probable tag 

sequence using maximum likelihood. The model is build on the basis of statistical information 

concerning the frequency with which sequences of tags occurs. This information is gathered 

from long stretches of running text usually form training corpus. For instance, acquiring 

frequency statistics on a tagged corpus of English, a system might discover that the tag for a 

subject pronoun is followed by the tag for a verb 70% of the time, the tag for an adverb 29% of 

the time, and the tag for a noun 1% of the time. If that system, during the course of tagging, then 

encounters a word following a subject pronoun that was ambiguously tagged as either noun or 

verb, it can use its statistical knowledge to deduce that the verb tag is most likely to be correct 

[10]. 

In practice, a model as primitive as the example here would be incapable of handling long 

sequences of ambiguous tokens and would be unlikely to perform particularly well.  
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The most representative model of this category is hidden Markov model (HMM), which can be 

represented as in [22], with five elements.  

1. The number of distinct states (N) in a model. We denote the individual state as S={s1,s2,…sn}. 

In case of Part-of-speech tagging, N is the number of tags in the tagset {T} that will be used by 

the system. Each tag in the tagset corresponds to one state in the HMM.  

 2. The number of distinct output symbols (M) in the HMM. We denote the individual symbol as 

V = {v1,v2,…..vm}. For Part-of-Speech tagging, M is the number of words in the lexicon of the 

system.   

3. The state transition probabilities A = {aij}. The probability aij is the probability that the 

process will move from state i to state j in one transition.. In part-of-speech tagging, the states 

represent the tags, so aij is the probability that the model will move from tag t i to tj (1 <= i,j <= 

N) - in other words, the probability that tag tj follows ti. This probability can be estimated using 

data from a training corpus. 

4. The observation symbol probability distribution, B = {bj(k)}. The probability bj(k) is the 

probability that the k
th
 output symbol will be emitted when the model is in state j. For part-of-

speech tagging, this is the probability that the word wk will be emitted when the system is at tag tj 

(i.e., P(wk|tj) where,1<= j <= N & 1 <= k <= M ). This probability can be estimated using data 

from a training corpus. 

5. The initial state distribution ,π = {πi},. πi is the probability that the model will start in state i 

where, 1<= i <= N. For part-of-speech tagging, this is the probability that the sentence will begin 

with tag ti. 

When using an HMM to perform POS tagging, the aim is to determine the most likely tag 

(states) sequence that generates the words of a sentences (the sequence of output symbols). In 

other words, HMM taggers choose the tag sequence that maximizes the following formula 
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Where the first part is n-gram and second part is most frequent tag. The Markov assumption is 

that the “probability of a word depend one its own tag and the probability of current tag depends 

upon n-previous tag” [18]. 

Now the most probable tag sequences can be searched using Viterbi algorithm [22]. 

3.3.2.1 Variation on HMM 

In the first order Markov model, the state transition probability of a particular tag ti depends on 

the previous one tag in the sequence. The symbol emission and state transition probabilities are 

estimated directly from the labeled training data as follows.  

Contextual probability or state transition probability:  

P(ti|ti-1)  =    
)( C

) t, (t C

1

1





i

ii

t
  …………………..(Equation 3.1). 

  And lexical probability or symbol emission probability: 

P(wi|ti) =    
)C(t

) t, C(w

i

ii  ………………………(Equation 3.2). 

This is also called Bi-gram HMM model since it takes two tag pair in account for modeling the 

language context [5]. 

For the second order HMM, the transition probability is calculated as 

P(ti|ti-1,ti-2)= 
)t,( C

)t, t, (t C

2-i1

2-i1





i

ii

t
 

And lexical probability is calculated with the Equation 3.2. 

Where C( ) denotes the number of occurrence in the labeled training data. As we are dealing with 

a small labeled corpora (FinalNepaliCorpus), it is often possible that C( ) will become zero. To 

cope with the above situation, state transition probabilities are smoothed and symbol emission 

probabilities are estimated for handling unknown words that are not in the labeled corpora. 

…………………….(Equation 3.3) 
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TnT [2] tagger is a widely used tri gram tagger which is based on second order HMM. The other 

consideration taken in TnT are the methods of smoothing and interpolation and suffix analysis to 

handle the unknown words.  

The essential difference between using bigrams and trigrams is that the latter has S times as 

many parameters to be estimated, where S is the size of the tagset. This requires more training 

data, since the average frequency of each trigram is so much lower than the average frequency of 

the equivalent bigram; [5] suggest that as a rule of thumb, “the training set needs to be large 

enough to contain on average ten instances of each type of tag sequence that occurs”. However, 

there does not appear to be any general agreement about whether calculating Markov model path 

probabilities using trigrams produces a notable improvement over bigrams, or on whether the 

improvement is worth the necessary extra data. 

On the one hand, several studies into part-of-speech disambiguation algorithms have made use of 

trigrams. Merialdo [18] uses to compare training on tagged and untagged text, is a trigram 

tagger. Merialdo [18] suggest that “trigram models are usually superior to bigram ones” with the 

provision that sufficient training data must be available. On the other hand, other studies have 

questioned the use of trigrams. [6] test a bigram and a trigram version of their Markov model 

tagger  and reports that the trigram model has a lower error rate but is slower at processing time. 

However, in general, the performances reported for the taggers discussed in this section ranges 

between 95% and 97% for English. 

3.3.1 Neural Network Based Taggers 

A neural network is a learning system whose architecture consists of two or more interconnected 

layers of processing units. Each unit may be activated or not activated. The activations of the 

bottom layer correspond to the input to the system, and the activations of the top layer indicate 

the output. The optional intermediate layers are called “hidden” because while they contribute to 

the processing, they do not connect to the world outside the system at all. The activation of each 

unit propagates to other units via that links connecting them. The parameters of the system are 

the weights given to the links, and the activation values of the units. Thus, the activation of non-

input units depends upon the activations of the units to which they are connected and the 

weightings of the links connecting them. The training of a neural network consists of iteratively 
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adjusting the weights of the connections and the activation values to produce a system which 

produces the correct output for the training data. 

 

Prior to their application to part-of-speech disambiguation, neural networks had been 

successfully used in speech recognition. The subsequent systems using neural networks include 

Nakamura‟s NETgram system and the Net-Tagger system of Schmid [24]. 

 

The input to a neural network disambiguation system is the ambiguously tagged word, and some 

amount of context. For each word examined by the network, there is a set of units in the input 

layer equal in number to the number of tags in the tagset. The input units corresponding to the 

tag or tags marked up on the word examined are activated. The output layer then indicates the tag 

the system has chosen. The amount of context used varies greatly between different systems. In 

[24], they used as their input the four unambiguously tagged words preceding the target word 

and one ambiguously tagged word following it. Nakamura‟s Netgram system allows the scope of 

the system to be varied, taking one, two or three words before the target word as the context, but 

no words after it. [24] also experimented with different context scopes, reporting that three words 

before the target word and two words afterwards were optimal (to wit, using more context did 

not improve the system, using less only worsened it slightly). It can thus be seen that in general, 

neural networks use a wider context than a Markov model can, based on bigram or trigram 

transition probabilities. This is because the number of parameters that must be estimated for a 

Markov model is equal to the size of the tagset raised to the power of the length of the sequences 

examined. Thus, the amount of training data needed to accurately estimate (say) six-gram 

probabilities for a tagset of (say) 100 – giving one trillion transition probabilities –would be 

astronomical [24]. For a neural network, the number of parameters is much smaller, since they 

are what Benello, Mackie and Anderson refer to as “complex conditional probabilities” rather 

than “simple first-order transition statistics”. Therefore wider contexts can realistically be taken 

into account. However, neural network taggers still use surface-level linguistic information only. 

They do not use any knowledge of syntactic structure. 
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3.3.2 Decision Tree Induction Based Taggers 

Decision tree is a classification approaches which construct the tree in top down manner using 

the attribute the data satisfies. 

Statistical decision tree to solve the tagging problem is used in [17]. Using 96% of WSJ of Penn 

Treebank as the training data, the authors group all multi-tag words into 253 ambiguity classes, 

such as class JJ-VBG (e.g. amusing, exciting, etc.) and class JJ-VBD-VBN (e.g. amused, excited, 

surprised, etc.). The tagging problem thus becomes a classification problem. They selected the 

following attributes: the third tag to the left of the word in question (t-3), the second tag to the left 

(t-2), the first tag to the left (t-1), the first tag to the right (t+1), and the second tag to the right (t+2), 

and the word‟s spelling features, such as capitalization, containing digits, etc. In other words, the 

best tag of a word is decided by it contextual and spelling characteristics.  

They tested their tagger on the remaining 4% of WSJ and the reported accuracy was 97%.  

3.3.3 Support Vector Machine based taggers 

SVM is binary classification method which can be extended for multiclass classification method. 

SVM do the classification of data into two classes with a hyperpalne which is drawn by 

maximizing the margin between the example data nearest to hyperplane. Since POS tagging is 

multiclass classification, SVM are extended for such problems using One-against-all method. 

The basic idea of SVM is to separate the instances into two class by a hyperplane.  the POS 

tagging is done by training a classifier for each POS tag and then the word to be classified is 

given to all classifer to classify this word either the word has that tag or not. Now the highest 

valued classes is taken as the final POS tag to that word. This strategy is called “one versus rest” 

[20]. This is computationally cost to train each POS tag with the one vs all technique but in case 

of POS tagging, the different heuristic can be used to enhance the process [8].  

Support Vector Machines (SVM) has been used for POS tagging with simplicity and efficiency. 

Nakagawa in [20], first used the SVM based machine learning technique for POS tagging. The 

main disadvantage of the system was low efficiency (running speed of 20 words per second was 

reported). Further, Gimenez and Marquez [8] in their work proposed a SVM based POS tagging 
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technique which is 60 times faster than the earlier one. The tagger also significantly outperforms 

the TNT tagger [8]. 

Support vector machines have two advantages over other models: They can easily handle high 

dimensional spaces i.e. large number of features and they are usually more resistant to over 

fitting. 

3.3.4 Nepali Language Taggers 

After giving short description of previous work on POS tagging for English and other resource 

rich language, in this section, the work done in Nepali language related with POS tagging and 

NLP are reviewed. 

The Unitag
1
 has been developed or customized for Nepali language and was used for semi 

automatic tagging of Nepali National Corpus under the NERLAC project. The tagset used is 

NERLAC tag set with 112 tags. Unitag was originally developed for Urdu language by hardie et 

[10].It consists of a powerful morphological and lexical analysis system, and twin 

disambiguation modules, one based on hand-written rules and the other using a probabilistic 

system based on a Markov model. After tagging, the corpus was manually reviewed and the 

correction was done. Since the tagset used was which large, it introduced the more error in 

tagging. 

In [1 ] , the TnT  has been used as POS tagger with the 43 tags and training corpus of mideum siz 

as one of the pipelined module for computational grammar analyzer. 

First order Markov model has been implemented in [12] which use the same POS tagset as in [1] 

and reports the good accuracy (91%) for known word. 

3.4 Measurement of the performance of taggers 

The performance measurement for POS tagger is difficult in the sense that there is no universal 

agreed system for rating the performance of a tagger. The taggers are designed with different 

aspect in mind such as efficiency, accuracy, and portable. So these four criteria are not 

necessarily mentioned in their literature.  

                                                             
1 Unitag is originally developed for Urdu and later customized for Nepali by Hardie et.al at Bhashasanchar project. 
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Probably the most widely used system of assessing the performance of a tagger is to look at the 

percentage of tokens which are tagged correctly. This is the measurement of accuracy of tagger. 

The accuracy is a measure of how much of the information that the system returned is actually 

correct, and is also known as accuracy. Accuracy is defined as follows:  

Accuracy = 
possibleisthatpairtagtokencorrectofnumber

occurancepairtagtokenofnocorrect
 

The efficiency of tagger is measured in terms of number of word it can tag per seconds. Since the 

accuracy is major concern in POS tagging, this measurement is not much used in performance 

comparison of tagger.  

The other two criteria: portable and trainable are related to language independent issue. The first 

criterion says that whether a particular tagger can be used for other language than the language 

for which it is developed with out or with minimal modification. “Trainable” refers to whether 

the tagger can improve itself or produce a new tagger if given a pre-tagged corpus by users.  

The following Table 3.3 show the comparison of different tagger reviewed in this chapter based 

upon these four criteria.  

S.N Major Algorithms Accuracy Efficiency(word 

per second) 

Portable Trainable 

1 Rule Based [15] 83% 20 NO No 

2 Rule Based 

(Using Transformation Rules)[5] 

 

95%-97% 

 
Unknown YES No 

3 Hidden Markov Model (TnT 

tagger) [2] 

96.7% Unknown YES YES 

4 Support Vector Machine 

(SVMtool) [8] 

96.7% 1230 YES No 

5 Neural Network Based[24] 97.7% Unknown YES No 

6 Decision Tree Based[17] 97% 300  YES No 

 

Table 3.3: Comparison of Existing Tagger for English 
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CHAPTER 4 

IMPLEMENTATION 

 

4.1 Support Vector Machine Algorithm 

 

The optimization problem for SVM in its basic form is 

Minimize f= 
|𝑤 |2

2
   …………………….( Equation 4.1) 

Subject to constraints   𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1[ as in chapter 2] 

 

The equivalent dual formulation of this problem can be written as 

Min w b max α  
1

2
| 𝑊 |2 −  𝛼𝑗 [𝑦𝑗 < 𝑥𝑗 .𝑤 > +𝑏 − 1]𝑗  

Subject to  𝛼𝑗 ≥ 0 

Where α’s are lagrangian multipliers. 

 

With some simplification, the equations can be written as 

Min w,b Max α  
1

2
| 𝑊 |2 −  𝛼𝑗  𝑦𝑗 < 𝑥𝑗 .𝑤 > +𝑏  +𝑗  𝛼𝑗𝑗        …………..(Equation 4.2) 

Subject to   𝛼𝑗 ≥ 0 

 

Wishing to minimize both w and b while maximizing α’s leaves us to determine the saddle 

points. The saddle points [4] correspond to those values where the rate of change equals to zero. 

This is done by differentiating the Lagrangian-primal (Lp) equation (4.2), with respect to w and 

b and setting their derivatives to zero: 
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𝛿𝐿

𝛿𝑤
= 0 𝑤 ⇒ 𝑤 −  𝛼𝑗𝑦𝑗𝑗 𝑋𝑖 = 0………………………(Equation 4.3) 

𝑤 =  𝛼𝑗 𝑦𝑗𝑋𝑖     ……………………………………….(Equations 4.4)                   

𝛿𝐿

𝑏
= 0 ⇒ − 𝛼𝑗𝑦𝑗𝑗 =0              ……………………….(Equations 4.5) 

 𝛼𝑗𝑦𝑗 = 0𝑗                                 ………………………(Equations 4.6) 

 

Putting the value of (4.4) and (4.6) in above equation (4.2), we have 

𝑚𝑎𝑥𝛼      −
1

2
 𝛼𝑗𝑦𝑗𝑋𝑗  𝛼𝑗

𝑗𝑗

𝑦𝑗𝑋𝑗 +  𝛼𝑗

𝑗

 

Equal to 

𝑚𝑎𝑥𝛼  𝛼𝑗

𝑗

−
1

2
 𝛼𝑗𝑦𝑗𝑋𝑗

𝑗

𝛼𝑖𝑦𝑖𝑋𝑖  

Now the optimization problem becomes 

𝑚𝑎𝑥𝛼   𝐿 =      𝛼𝑗

𝑗

−
1

2
 𝛼𝑗𝑦𝑗𝑋𝑗

𝑖 ,𝑗

𝛼𝑖𝑦𝑖𝑋𝑖  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝛼𝑗𝑦𝑗 = 0

𝑗

 

  𝛼 ≥ 0 

 

This is the quadratic optimization problem and can be solved using the decomposition algorithm 

as in [13].Decomposition algorithm breaks the whole optimization problem in to smaller sets and 

solves each set iteratively. 
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Class NN 

 

Class CL 

Class VB 

CL vs Rest 
NN vs Rest 

VB vs Rest 

ऱेख 

ऱेख 

एउटा 

4.2 Problem Setting 

POS tagging is a multi classification problem since in natural language there exist more than two 

tags. As an instance, Nepali language has 43 tags defined to cover all grammatical categories. 

Number of tags is the number of classes. Since SVM are binary classifier so binarization of 

problem must be performed before apply them to POS tagging. [8] has suggested the one vs rest 

binarization of problem. i.e. a SVM is trained for each POS tag in order to distinguish this class 

and the rest. When tagging the word, the most confident prediction among the all binary SVM is 

selected. Hence the support vector machine used in this dissertation work is in fact the 

implementation of support vector machine with one versus rest method as explained below. 

4.2.1 One Vs. Rest Binarization of Multiclass Classification 

This strategy is based on idea of building one classifier per class. To train N different binary 

classifiers, each one trained to distinguish the examples in a single class from the examples in all 

remaining classes. When it is desired to classify a new example, the N classifiers are run, and the 

classifier which outputs the largest (most positive) value is chosen. 

This can be explained with an example 

एउटा /CL ऱेख/NN ऱेख/VB 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: One Vs. Rest Classification Example 
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4.2.2 The Overall System Flowchart 

 

 

 

 

The tagged Nepali corpus will be used as a training corpus from which the feature vectors are 

created for each word in the corpus. The SVM light [9] will be used to learn the model from 

these training vectors. Finally the Tagging algorithm will be implemented to perform the tagging 

of raw sentence in the input to produce the tagged output sentence.  

 

4.2.3 Dictionary 

A dictionary is extracted from the training corpus which contains all possible tags of each word. 

A dictionary entry has the following format  

< word > < N occurrences > < N possible tags > 1{< tag(i ) > < N occurrences(i )}N 

 

Tagged  
Sentence 

Untagged  
Sentence 

Tagged Corpus (Nepali monolingual 

corpus annotated with POS information) 

Feature Extraction and Selection 

(Construction of feature Vector) 

SVM training 
(Learn SVM classifier) 

SVM Tagger 

Figure 4.2: Implementation Model 
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Example: 

भने 4 3 VBNE 1 VBO 1, VBF 2 
इन्जिननयररङ 13 2 JJ 1 NN 10 
अज्य 54 3 RBO 1 JJ 1 NN 8 
 

4.2.4 Feature Set 

The features used in the experiment are tabulated in the table 4.1. 

 

Word Feature w-3,  w-2,  w-1,   w0,   w1,   w2,  w3 

POS Feature p-3,  p-2,  p-1 

Word Bigrams (w-3,w-2),(w-2,w-1),(w-1,w0),(w0,w1),(w1,w2) 

POS Bigrams (p−3, p−2)  (p−2, p-1) 

Word Trigram (w-3,w-2,w-1), (w-2,w-1,w0), (w-1,w0,w1), 

(w0,w1,w2),  (w1,w2,w3) 

Ambiguity Classes a0, a1, a2,a3 

Maybe’s m0, m1, m2, m3 

 

 

Feature Vector Construction  

प्याऱेस्टाइनी<JJ> ओऱन्पिक<NN> कममटट<NN>का<PKO> एक<CD> अधिकारी<NN>ऱे<PLE> भने<VBNE> 
कममटट<NN>ऱे<PLE> सब<JJ>भजदा<VBO> िटहऱे<PLE> १९७९<CD> मा<POP> सदस्यता<NN>का<PKO> 
ऱाधग<POP> ननवेदन<NN> टदएको<VBKO> धियो<VBX> 

The dictionary entry for target word “भने” is:  

भने 126 4 VBKO 1 VBNE 1 VBO 1 VBF 4 

Some of the features along with their ids for the target word भने /VBNE are: 

w(-3)_is_एक 71 

Table 4.1: Description of Feature Set 
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w(-2)_is_अधिकारी 72 

w(-1)_is_ ऱे 73 

w(0)_is_ भने 37 

w(1)_is_कममटट 74 

w(2)_is_ऱे  75 

w(3)_is_सब 76 

p(-3)_is_CD 77 

p(-2)_is_ NN 78 

p(-1)_is_PLE 79 

a(0)_is_VBKO-VBNE-VBO-VBF 42 

m(0)_may_be VBNE 43 

m(0)_may_be_VBO 7 

m(0)_may_be_VBF 45 

a(1)_is_NN-VBO 80 

m(1)_may_be_NN 81 

m(1)_may_be_VBO 82 

…………. 

………….. 

The feature vector for target word भने is 

+1 71:1 72:1: 73:1  37:1 74:1 75:1 76:1 77:1 78:1 79:1 42:1 43:1 7:1 43:1 7:1 45:1 80:1 81:1 

82:1……… 

Feature Filtering 

The feature space can be kept in a convenient size. Smaller models allow for a higher efficiency. 

In the experiment, the total 88135 features are used. Certain features that appear less then certain 

threshold values are discarded and the accuracy is not even in the attainable level. The features 
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that appear less than once are discarded by default. The bigram feature appears less than 10, 

trigram feature that appears less than 5 and unigram feature that appears 50 are discarded and the 

overall accuracy is same as for by default. 

 

4.2.5 Algorithm for Training (Algorithm 1) 

INPUT:  Formatted Train-file 

OUTPUT:  SVM models learned for all part of speech tags  

POS[ ] = {the set of possible part of speech tags} 

//Create a different example file corresponding to each POS 

1. for each example word w tagged as ti in the train-file do 

Extract features, codify features and create a feature vector fi 

T={the set of possible tags for w}  

Use fi as a positive example for ti 

Use fi as a negative example for all tj in {T-ti} 

        end for 

2. Learn SVM model for each example file 

for each pi in POS do 

Run the “svm_learn ” on the examples corresponding to pi 

end for 

3. return the SVM models learned for each part of speech 

 

Enhancement in Training 

However, not all training examples have been considered for all classes. Instead, a dictionary is 

extracted from the training corpus with all possible tags for each word, and when considering the 

occurrence of a training word w tagged as ti, this example is used as a positive example for class 

ti and a negative example for all other tj classes appearing as possible tags for w in the dictionary. 

In this way, the generation of excessive (and irrelevant) negative examples can be avoided, and 

training step can be made faster. 
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4.2.6 Tagging Algorithm (Algorithm 2) 

 INPUT: Formatted test file, Learned SVM models 

OUTPUT: Part-of-speech tagged test file 

1. initialize  score = 0 

2. for each target word w in the test file do 

         a)  Extract features and create a feature vector for w 

         b)  Possible pos[] = possible tags of w in the dictionary 

         c)  for each pi in possible pos do 

                   ans = svm classify with pi SVM model 

                   if ans > score then 

                               score=ans 

                              target pos=pi 

                  end if 

            end for 

          Assign target pos to w 

    end for 

3.  return the Part-of-speech tagged test file 

 

4.2.7 Sample Input Output of Different Taggers 

Input 

सुश्री हाग एमऱयाजटी को भूममका खेल्नुहुजछ । रोल्स-रोयस मोटरकार इजकिोरेटटड ऱे १९९० मा सॊयुक्त राज्य 
अमेररका मा यस को बबक्री १२०० मा न्स्िर हुने अिेऺा राखेको बतायो । िनछल्ऱो वषष सुबबिा सपिजन गाडी 
ननमाषता ऱे सॊयुक्त राज्य अमेररका मा १२१४ वटा कार हरू बबक्रक्र गयो । अध्यऺ तिा प्रमुख कायषकारी 
अधिकृत होवाडषमोशर ऱे उहाॉ ऱे बेऱायत तिा युरोि र सुदरू िूवी बिार हरू मा सुबबिा सपिजन गाडी ननमाषता 
हरू काऱाधग सॊवदृ्धि को आशा गरेको बताउनुभयो । बेऱ औद्योधगक सॊस्िा ऱे यस को तै्रमामसक ऱाभाॊश मा 
एक सेयर मा ७ सेजट बाट १० सेजट मा बढायो | 
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Output  

TnT Tagger 

सुश्री/NN  हाग/NNP  एमऱयाजटी/NNP को/PKO  भूममका/NN  खेल्नहुुजछ/VBF ।/YF  रोल्स-रोयस/NNP 

मोटरकार /NN  इजकिोरेटटड/NN  ऱे/PLE  १९९०/CD  मा/POP  सॊयकु्त/JJ  राज्य NN/ अमेररका/NNP  मा/POP  

यस/DUM  को/PKO  बबक्री/NN  १२००/CD  मा/POP  न्स्िर/JJ  हुने/VBNE  अिेऺा/NN  राखेको/VBKO  

बतायो/VBF  ।/YF  िनछल्ऱो/JJM  वषष/NN  सुबबिा/NN सपिजन/JJ  गाडी/NN ननमाषता/NN ऱे/PLE  सॊयकु्त/JJ  

राज्य/NN  अमेररका/NNP  मा/POP  १२१४/CD  वटा/CL  कार/NN  हरू/HRU  बबक्रक्र/NN  गयो/VBF  ।/YF  

अध्यऺ/NN  तिा/CC  प्रमुख/JJ  कायषकारी/NN  अधिकृत/NN  होवाडषमोशर/NN  ऱे/PLE  उहाॉ/PP  ऱे/PLE 

बेऱायत/NNP  तिा/CC  यरुोि/NNP र/CC सुदरू/JJ  िवूी/JJ बिार/NN हरू/HRU मा/POP सुबबिा/NN 

सपिजन/JJ गाडी/NN ननमाषता/NN हरू/HRU कालागि/VBO  सॊवदृ्धि/NN  को PKO/आशा NN/गरेको 
VBKO/बताउनभुयो VBX/।/YF बेऱ/NNP औद्योधगक/JJ सॊस्िा/NN ऱे/PLE यस/DUM को/PKO त्रमैामसक/JJ 

ऱाभाॊश/NN मा/POP एक/CD सेयर/NN मा/POP ७/CD सेजट/NNP बाट/POP १०/CD सेजट/NNP मा/POP 

बढायो/VBF ।/YF 

 

SVM Tagger 

सुश्री/NN  हाग/NNP एमऱयाजटी/NNP  को/PKO भूममका/NN खेल्नुहुजछ/VBF ।/YF रोल्स-रोयस/NNP 

मोटरकार/NN  इजकिोरेटटड/NN  ऱे/PLE १९९०/CD  मा/POP  सॊयुक्त/JJ  राज्य/NN  अमेररका/NNP  मा/POP 

यस/ DUM को/PKO  बबक्री/NN १२००/CD मा/POP न्स्िर/JJ हुने/VBNE अिेऺा /NN राखेको/VBKO 

बतायो/VBF  ।/ YF  िनछल्ऱो/JJM  वषष/NN  सुबबिा/NN   सपिजन/JJ   गाडी/NN   ननमाषता/NN  ऱे/PLE 

सॊयुक्त/JJ  राज्य/NN   अमेररका/NNP   मा/POP   १२१४/CD   वटा/CL   कार/NN   हरू/HRU   बबक्रक्र/NN 

गयो/VBF ।/YF  अध्यऺ/NN          तिा/CC   प्रमुख/JJ   कायषकारी/NN   अधिकृत/NN   होवाडषमोशर/NNP 

ऱे/PLE  उहाॉ/PP ऱे/PLE  बेऱायत/NNP         तिा /CC  युरोि/NNP  र/CC  सुदरू/JJ   िूवी/JJ   बिार/NN 

हरू/HRU   मा/POP  सुबबिा/NN  सपिजन/JJ   गाडी/NN ननमाषता/NN हरू/HRU कालागि/POP सॊवदृ्धि/NN 

को/PKO आशा/NN गरेको/VBKO बताउनुभयो/VBX ।/YF बेऱ/NNP औद्योधगक/JJ सॊस्िा/NN ऱे/PLE 

यस/DUM को/PKO तै्रमामसक/JJ ऱाभाॊश/NN मा/POP एक/CD सेयर/NN मा/POP ७/CD सेजट/NNP बाट/POP 

१०/CD सेजट/NNP मा/ OP बढायो/VBF  ।/YF  



39 
 

CHAPTER 5  

TESTING AND ANALYSIS 

 

5.1 Nepali Tagged Corpus Data Statistics 

The tagged Nepali corpus named FinalNepaliCorpus which contains 111475 Unicode Nepali 

words is used for training and testing. This corpus is manually tagged with the 43 tags as 

described in [21]. This is a text file with the “word <tag>” as entry in file. For example: 

६१<CD> वर्षीय<JJ> पियरे<NNP> भिन्केन<NNP> नोिेम्बर<NNP> २९<CD> बाट<POP> सल्ऱाहकार<NN>को<PKO> 

रूि<NN> मा<POP> सञ्चाऱक<NN> सभमति<NN>मा<POP> आउनुहुनेछ<VBX> ।<YF> 

 5.2 The Dictionary Data Statistics 

The dictionary used in the experiment contains the following statistics about ambiguous and 

unambiguous words. Here the word represents the unique word found in the Nepali Corpus. 

 

Unambiguous words 11676 

Ambiguous words 792 

Total words in dictionary 12468 

 

 

In comparisons to wall street journal (WSJ) corpus which contains 44526 (5985 ambiguous + 

38541 unambiguous) unique words, it is smaller which limit the performance of the tagger we 

have implemented then the same tagger for English.  

 

Table 5.1: The Word Distribution on Dictionary 
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5.3 Test Data Analysis 

Test data is prepared form the original corpus. It consists of 10775 tokens from the original 

corpus. This part of data is not used during training period. Since the count of tokens should be in 

whole number, some consideration has made about the percentage of testing data to make it 

whole number. The test data contains total of 10775 randomly selected tokens out of which 82% 

are unambiguous, 13% are unknown tokens and 5% are of ambiguous. This is shown in the 

following pie chart. 

 

 

 

 

Accuracy measurement of tagger 

The accuracy is measured with matching two file: one is test file and another is manually tagged 

test gold file. The correctly tagged tokens are those which match in both files and the remaining 

tokens are tagged incorrectly. For this a matcher program is written which sequentially reads the 

both file and match the line by line and increment the count if both line matched in both files. 

On the test file of 11147 words, the overall accuracy is calculated as  

82%

13%

5%

unambiguous word

Unknown words

ambiguous words

Figure 5.1: Statistics of sample test 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑎𝑔𝑔𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑓𝑖𝑙𝑒
=

10050

10775
= 93.27% 

 

The detail comparison of tagger performance with ambiguous and unambiguous word is 

tabulated below (In table 5.2). 

 

 No of tokens  Accuracy Error 

ambiguous word 538 490/538 (91.07%) 48/538(5.88) 

Unambiguous words 8819 8290/8819(94.01%) 265/8819(1.07%) 

Unknown words 1418  1270/1418(89.56) 141/558(9.94%) 

 

 

Validation and Evaluation 

Cross validation technique is used to validate the measured accuracy of tagger. The general k- 

cross validation is a technique which divides the whole corpus into ten parts and nine part(90%) 

of data is used for training and remaining one part is used for testing. The process is repeated for 

ten times taking each of ten parts as testing instances. 

Here the 10-cross validation is adapted in which the whole corpus is divided into 10 portions 

sequentially and in each iteration of program, the 9 folds are used for training and the remaining 

1 fold is used for testing.  

And in other respect, the learning nature of tagger is evaluated with the different size of training 

data. The size of training data is gradually increased and the performance of tagger is observed. 

The result so found is presented in the table 5.3. 

 

Table 5.2: Unknown and Known word accuracy 
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Training data size 

(in tokens) 

Accurcy(%) 

SVM HMM 

10000 71% 61% 

20000 79% 69% 

40000 85% 72% 

80000 90% 90% 

100000 92% 91% 

 

 

The corresponding learning curve is presented below 

 

 

The learning curve shows the gradual increment in accuracy for the large size of training data for 

the HMM tagger and it performs not very well for the small set of training data since the bigram 

probabilities are not found sufficiently in the case of small size data and most of the case it 

becomes zero. But the SVM tagger does not depends upon the probabilities rather it depends 
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upon the features extracted from the training and testing data. So it performs very well for the 

small training data size as well as for large data size. 

 

5.4 Results 

The following table shows the performance of different tagger. 

 

 

 

The overall accuracy is slightly better for SVM then other two taggers as shown table 5.4. This is 

because of rich pattern set provided for SVM. TnT perform well for known word but it gives 

lower accuracy for unknown word, it is because there is no mechanism to deal with unknown 

word for Nepali language. 

 Accuracy 

Taggers Known words Unknown word Over all 

TnT 92% 56% 74% 

SVM 96.48% 90.06% 93.27% 

Table 5.4: Overall Result of Different Taggers 
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CHAPTER 6 

CONCLUSION AND FURTHER RECOMMENDATION 

6.1 Conclusion 

The Support Vector Machine (SVM) based part-of-speech tagger is built which assigns the most 

appropriate part-of-speech tag to each of word of the Nepali text. In this work, the study has 

gone through the empirical analysis of the performance of the tagger for morphologically rich 

and order free language like Nepali. It is observed from the experiment that the tagger based on 

SVM outperform the other two taggers: First order HMM and TnT. The SVM based tagger 

incorporate diverse set of feature such as word features, POS features and other features, while 

the other tagger rely on only local features such as current word and one or two previous word.  

Here, during the development of the model, the impact of the size of training data and test data 

on the performance was observed. From tests made for various sizes of training data, it had 

shown that the performance of the tagger depend upon the size of the training data, as well as 

number of tokens that are present and absent in the training data. Here, in this dissertation, the 

average overall accuracy of this tagger for morphologically rich and order free language –Nepali 

is 93.27%. 

 

6.2 Further Recommendation 

In this dissertations, the SVM based POS tagger is built which uses the dictionary as a primary 

resources. This dictionary is collected from the FinalNepaliCorpus which contains only 11147 

unique words. The performance of tagger is dependent on this dictionary and so in future; such 

dictionary may be built using the information on news sources and available Nepali raw text with 

the help of morphological analyzer and part of speech acquisitions techniques.  

 

The limitation of the SVM tagger built is the speed. It is found to be slow in training than other 

tagger. Since the SVM based POS tagger uses the different set of features to construct the feature 

vectors, the empirical analysis to find the optimal set of features may be the future work which 

may concentrate on speed optimization of tagger.  
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APPENDIX 

SAMPLE PROGRAM CODE 

1. Source program that implement the Algorithm for tagging (Perl source code) 

#read the test file into the testexamples array 

$i=0; 

open (FH, '<', $testfile) or die "Cannot open '$testfile': $!"; 

while(<FH>){ 

 chomp; 

 ($testexamples[$i]{word})=(/(\S+)/); 

 $i++; 

 } 

close FH; 

#build the feature vector for each test example. 

my $ntestexamples= scalar (@testexamples); 

my $k=0; 

for (my $i=0; $i < $ntestexamples; $i++){ 

#add word features in the hash 

    my $dictindex=search_dictionary($testexamples[$i]{word}); 

  #print "testexamples[$i]{word} => $testexamples[$i]{word}\n\n"; 

  if($dictindex == -1){ 

       print "Couldn't find dicionary entry for the word $testexamples[$i]{word} ...skipping the  

     instance\n"; 

      next; 

     } 

# evaluate for all part of speech tags and assign the most confident tag 



My    @possiblePOS=extract_possible_tags($dictionary[$dictindex]{tags},  

dictionary[$dictindex]{ntags}); 

# extract features of the ith instance and returns a feature vector 

my @features = extract_features($i,"test",\@testexamples);   

my $testinstance="0 "; 

my $m=0; 

my %FEATURES; 

my @uniquefeatures;  

   

foreach my $f (@features){ 

$FEATURES{$f} = "$f"; 

} 

 

foreach my $f (keys %FEATURES) { 

  $uniquefeatures[$m++]= $FEATURES{$f}; 

  } 

 

$testinstance="$testinstance".join( ":1 ",sort { $a <=> $b }(@uniquefeatures)).":1";  

print "testexamples[$i]{word} => $testexamples[$i]{word}\n\n"; 

print join(" ",@features); 

print "\n\n"; 

 

$testinstance="$testinstance".join( ":1 ",sort { $a <=> $b }(@features)).":1"; 

my $testinstancefile="tmp.test"; 

     open (FH, '>', $testinstancefile) or die "Cannot open '$testinstancefile': $!"; 



  print FH "$testinstance\n"; 

 close FH; 

my $confidenttag; 

my $score=-100; 

foreach my $ppos (@possiblePOS){ 

 my $modelsubstring=$ppos; 

 if($ppos !~ /[A-Z]+|(a-z)+/){ 

 $modelsubstring="$sTag{$ppos}"; 

 print "modelsubstring => $modelsubstring\n\n";     

} 

    

my $modelfile="$modeldir"."$model.$modelsubstring.$svmext"; 

print "$modelfile"; 

system("svm_classify -v 0 $testinstancefile $modelfile") == 0 or die "system failed: $?"; 

open (FH, '<', "svm_predictions") or die "Cannot open 'svm_predictions': $!"; 

while(<FH>){ 

chomp; 

 if( $_ > $score){ 

  $score=$_; 

  $confidenttag=$ppos; 

  } 

 } 

close FH; 

} 

$testexamples[$i]{pos}=$confidenttag; 



print "word => $testexamples[$i]{word}\t pos => $testexamples[$i]{pos}\n\n"; 

} 

open(FH, '>', 'outputtagedfile.txt'); 

 for (my $l=0; $l < $ntestexamples; $l++){ 

  print FH "$testexamples[$l]{word} $testexamples[$l]{pos}\n"; 

  } 

close(FH); 


