
Tribhuvan University
Institute of Science and Technology

Improved Dynamic Programming Approach for The Response Time

Variability Problem

Dissertation

Submitted to:

Central Department of Computer Science and Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master’s Degree in Computer Science
and Information Technology

by

Shiv Raj Pant

April, 2011

Tribhuvan University
Institute of Science and Technology

Improved Dynamic Programming Approach for The Response Time

Variability Problem

Dissertation
Submitted to

Central Department of Computer Science and Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master’s Degree in Computer Science

and Information Technology

by

Shiv Raj Pant

(April, 2011)

Supervisor

Prof. Dr. Shashidhar Ram Joshi

Co-Supervisor
Mr. Bikash Balami

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed
here have been used in this work.

Shiv Raj pant

Date: 18-04-2011

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Shiv Raj Pant

entitled “Improved Dynamic Programming Approach for The Response Time Variability

Problem” in partial fulfillment of the requirements for the degree of M. Sc. in Computer Science

and Information Technology be processed for the evaluation.

… … … … … … … … …
Prof. Dr. Shashidhar Ram Joshi
Date: 18-04-2011

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and

quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in

Computer Science and Information Technology.

Date: 18-04-2011

Evaluation Committee

… … …. … … … …
Prof. Dr. Jeevan Jyoti Nakarmi
Acting Head,
Central Department of Computer Science
and Information Technology,
Tribhuvan University, Nepal
(Head)

… … …. … … … …
(External Examiner)

… … …. … … … …
Prof. Dr. Shashidhar Ram Joshi
Head,

Department of electronics and computer

engineering,

Institute of Engineering.

Tribhuvan University, Nepal

(Supervisor)

… … …. … … … …
(Internal Examiner)

ACKNOWLEDGEMENT

I would like to express my sincere and hearty gratitude to my supervisor Prof. Dr. Shashidhar

Ram Joshi for guiding me throughout the study. His cooperation, suggestions, constructive

comments and keen interest in this study are appreciable. His vigorous efforts made me present

this dissertation work in this form.

I would also like to express my sincere gratitude to Prof. Dr. Jeevan Jyoti Nakarmi , for his

inspiration and cooperation for this dissertation. I would also like to express my sincere gratitude

to Mr. Min B. Khati, Mr. Dinesh Bajracharya, Mr. Arjun Singh Saud, Mr. Jagadish Bhatta, Mr.

Bikash Balami, Mr. Yoga Raj Joshi, Mr Nabaraj Paudel, Mr. Bishnu Gautam, and Mr. Ashim

Ghising for their invaluable suggestions and help.

Finally, I would like to extend my thanks to all my friends and colleagues and all my well

wishers who directly and indirectly helped me during this work.

ABSTRACT

Fair sequences are useful in a variety of manufacturing and computer systems. The concept of

fair sequence has emerged independently from scheduling problems of diverse environments,

principally from manufacturing, hard real-time systems, operating systems and network

environments. There has been a growing interest in scheduling problems where fair sequence is

needed. There are various applications where jobs, clients, or products need to be scheduled in

such a way that they get their necessary resources at a constant interval, without being too early

or too late. The concept of variation in response time has been recently appeared in literature and

a lot of research is being carried out in this area.

The problem of variation in the response time is known as Response Time Variability Problem

(RTVP). This dissertation includes recent researches regarding the response time variability

problem. RTVP is very hard to solve optimally. It has been proved to be NP-hard. Our concern

in this dissertation is to find out the optimal sequence of jobs with objective of minimizing the

response time variability. Various solutions based on heuristics exist in the literature to fulfill

this objective. One of the approaches is the dynamic programming approach. This dissertation

work focuses on the dynamic programming approach. Dynamic programming approach is a

complete enumeration scheme that minimizes the amount of computation to be done by dividing

the problem into series of subproblems. It solves the subproblems until it finds the solution of the

original problem. This approach is not supposed to be a practical solution because of the

exponential time and space complexity. The main objective of this dissertation is to improve the

dynamic programming approach to RTVP to obtain an efficient solution. The dynamic

programming approach will be practically improved by applying some heuristic methods. The

basic idea behind the improvement is that we need not search the whole state space if we can

find that some states do not lead to an optimal solution. Heuristics will be applied to prune the

nonoptimal states. Since, the problem is NP-hard, we cannot theoretically reduce exponential

complexity to polynomial complexity. But practically, we can apply heuristic methods to modify

the algorithm that can solve the larger instances of the problem.

Table of Contents

Chapter 1

1.1 Introduction …………………………………………………………………………...1

1.2 The Response Time Variability Problem……………………………………………...4

Chapter 2

2.1 Problem definition…………………………………………………………….............5

2.1.1 Complexity ………………………………………………………….............5

2.1.2 The dynamic programming algorithm………………………………………5

2.2 Objective……………………………………………………………………………....6

2.3 Literature survey………………………………………………………………………7

Chapter 3

3.1 Design of the improved algorithm…………………………………………………….9

3.1.1 Pseudo code of the algorithm………………………………………………..9

3.1.2 Details of the algorithm……………………………………………………..9

3.1.2.1 The initial sequences………………………………………………9

3.1.2.1 Finding RTV on partial sequences……………………………….10

3.2 Implementation………………………………………………………………………13

3.2.1 Changes in the state representation………………………………………...13

Chapter 4

4.1 Computational results………………………………………………………………..14

Chapter 5

5.1 Conclusions and future research……………………………………………………..22

References……………………………………………………………………………….23

Appendix A: Initial sequences obtained using Webster’s method……………………...25

Appendix B: The solution for n = 2……………………………………………………..30

List of Abbreviations

ATM Asynchronous Transfer Mode

GRASP Greedy Random Adaptive Search Procedure

JIT Just-In-Time

MILP Mixed Integer Linear Programming

PSO Particle Swarm Optimization

RAM Random Access Memory

RTV Response Time Variability

RTVP Response Time Variability Problem

Chapter 1

1.1 INTRODUCTION

Response time variability problem is a scheduling problem that has recently appeared in the

literature with a broad range of real-life applications. This problem occurs whenever events, jobs,

clients or products need to be sequenced so as to minimize the variability of time they wait for

their next turn in obtaining the necessary resources.

Most modern systems share their resources between different jobs. The jobs define a certain

amount of work to be done, for instance the file size to be transmitted to or from a server or the

number of cars of a particular model to be produced on a mixed-model assembly line. To ensure

fair sharing of common resources between different jobs, this work is divisible in atomic tasks,

for instance data blocks or cars. These tasks, in turn, are required to be evenly distributed so that

the distance between any two consecutive tasks of the same job is as regular as possible, in other

words, ideally constant.

The following are some real-life applications described in [1] :

The Asynchronous Transfer Mode (ATM) networks divide each application (voice, large data

file, video) into cells of fixed size so that the application can be preempted after each cell.

Furthermore, isochronous applications, for instance voice and video, require that a inter-cell

distance in a cell stream be as close to being constant as possible and in the worst case not

exceeding some pre-specified value. The latter is to account for limited resources shared with

other applications. In fact multimedia systems should avoid presenting video frames too early or

too late which would result in jagged motion perceptions.

On a mixed-model, just-in-time assembly line a sequences of different models to produce is

sought where each model is distributed as ”evenly” as possible but appears a given number of

times to satisfy demand for different models. Consequently, shortages and excessive inventories

are reduced.

1

The stride scheduling is a deterministic scheduling technique where each client is first issued a

number of tickets. The resources are then allocated in discrete time slices called quanta. The

client to be allocated resources in next quantum is calculated as a certain function of the number

of allocations obtained in the past and the number of tickets issued. Here the throughput error

and the response time variability are the two main metrics of the schedule obtained.

The RTVP also appears in computer multithreaded systems ([9] and [10]). Multithreaded

systems (operating systems, network servers, media-based applications etc) do different tasks to

attend to the requests of the client programs that take place concurrently. These systems need to

manage the scarce resources in order to service the requests of the clients. For example,

multimedia systems must not display video frames too early or too late, because this would

produce jagged motion perceptions. Authors of [9], considering that resource rights could be

represented by tickets and that each client had its own number of tickets, suggested the RTV

metric to evaluate the sequence of resource rights.

Two real-life cases of RTVP applications were reported in the literature. In [16], the study is

motivated by the problem faced by the National Broadcasting Company (BNC) of U.S.A., on of

the main firms in the television industry. Major advertisers buy to BNC hundreds of time slots to

air commercials. The advertisers ask to BNC that the airings of their commercials are evenly

spaced as much as possible over the broadcast season. In [12], the author came up with the

RTVP while working with a healthcare facility that needed to schedule the collection of waste

from waste collection rooms throughout the building. Based on data about how often a waste

collector had to visit each room and in view of the fact that different rooms require a different

number of visits per shift, the facility manager wanted these visits to occur as regular as possible

so that excessive waste would not collect in any room. For instance, if a room needed four visits

per eight-hour shift, it should be ideally visited every two hours.

Other contexts in which the RTVP can be applied are the design of sales catalogs [16], the

periodic machine maintenance problem [15] as well as other distance-constrained problems.

The abovementioned applications are examples of very common situation, in manufacturing and

in services, in which a resource must be used successively by different units and it is important to

2

schedule them in such a way that the different types of units share the resource in some fair

manner. The RTVP proposes a new universal measure of fairness: to minimize the variability of

the distance between any two consecutive units of the same product, event, job, or client; i.e., to

have the distances between any two given consecutive units of the same product as constant as

possible.

The RTVP has been proved to be NP-hard [1]. Thus, this problem has been mostly solved by

means of heuristics and metaheuristic methods. Among various solutions, one is the dynamic

programming approach which is formulated in [1]. Due to exponential space and time

complexity, dynamic programming approach is not supposed a practical solution. This

dissertation proposes an improved dynamic programming approach for the RTVP which will be

more efficient.

The remainder of the dissertation is organized as follows. Section 1.2 presents a formal definition

of the RTVP. Problem definition along with the introduction of the dynamic programming

approach is given in section 2.1. The objectives of the dissertation are listed in section 2.2.

Section 2.3 presents a brief review of literature. Section 3.1 and 3.2 describe the design and

implementation of the improved dynamic programming approach. Section 4.1 shows the

computational results and finally section 5.1 describes the conclusion and future researches.

3

1.2 The Response Time Variability Problem

The response time variability problem is formulated in [1]. Let n be the number of symbols

(jobs), di the number of copies to be scheduled of symbol i (i=1…n) and D the total number of

copies (equal to Σi=1,…,di).

Consider a sequence S=S1S2…..SD of length D where i (a client, a product, or a task; in this

dissertation we will use the term “job” most often) occurs exactly d i times. Such a sequence is

called feasible. Here Sj is the copy sequenced in position j of sequence S and S1 immediately

follows SD. For any two consecutive occurrences of i, we define distance t between them as the

number of positions that separate them plus 1. So there are di distances t1
i……tdi

i for i.

So we have

t1
i+……+tdi

i=D.

The average distance ti’ between the i’s equals D/di

The response time variability for i is defined as

RTVi = Σ (tj
i – ti’)2

1<=j<=di

The total response time variability is defined as

n n di

RTV = Σ RTVi = Σ Σ (tj
i – ti’)2

i=1 i=1 j=1

An input to the total response time variability problem is a list of n positive integers

d1<=d2<=……..<=dn (the number of copies of each job). The solution to RTVP is a sequence S

of jobs and the objective is to minimize the value of RTV obtained above.

An illustrative example is the following:

Let n=3 with symbols A, B, C. Also consider dA=2, dB=2 and dC=4. Thus D=8, tA’=4, tB’=4 and

tC’=2. Then the sequence C A C B C B A C is a solution and has

RTV = ((5-4)2 + (3-4)2) + ((2-4)2 + (6-4)2) + ((2-2)2 + (3-2)2) = 12

4

Chapter 2

2.1 Problem Definition

2.1.1 Complexity

The RTVP is difficult to be solved optimally. It has been proved to be NP-hard. Authors of [1]

studied the computational complexity of the RTVP and proved that it is NP-hard. The reduction

is from the Periodic Maintenance Scheduling Problem studied by [8]. The Periodic Maintenance

Scheduling Problem is defined as follows: Given m machines and integer service intervals

l1,l2,…lm such that Σ(1/li)< 1. Does there exist a servicing schedule S1,S2,…SL where L = lcm(l1,

l2, . . . , lm) is the least common multiple of l1,l2,….,lm, of these machines in which consecutive

servicing of machine i are exactly li time slots apart and no more than one machine is serviced in

a single time slot ?

The Periodic Maintenance Scheduling Problem has been proved to be NP-complete [8].

2.1.2 The Dynamic Programming Algorithm

RTVP is a combinatorial optimization problem and no polynomial-time algorithm is known for

solving it. Various algorithms have been proposed to find the near-to-optimal solution of RTVP.

One of the solutions is the dynamic programming approach.

Dynamic programming approach to RTVP is suggested in [1]. This is a straightforward dynamic

program formulated as follows:

The state of the dynamic program is represented by a quadruple (f,l,r,d) where,

- f is an n dimensional vector f = (f1,f2,….,fn), where fi=0,1,….,D-di+1 for i = 1,2,…..,n

represents the position of the first copy of job i.

- l is an n dimensional vector l = (l1,l2,…..ln) where li=0,di+1,…..,D for i = 1,…..n

represents the last copy of the job i.

- r is an n dimensional vector r = (r1,…..rn) where ri = 0,1,…..di represents the number of

copies that remain to be sequenced of job i.

- d is the length of the current sequence , d = 0,1,…..D

5

Initially f = l = 0, r = (d1,d2,…..dn), and d = 0.

A final state is any state with r = 0 and d = D.

There is a weighted arc from a non-final state (f,l,r,d) to a state (f’,l’,r’,d’) if and only if there is

an i such that

ri’ = ri-1>=0,

d’=d+1,

li’=d’

The weight of the arc is calculated as follows for di>=2,

0, ri = di ;

W<f,l,r,d><f’,l’,r’,d’> = (d’ - li - D/di)
2 , di -1 >= ri > 1 ;

(d’- li - D/di)
2 + (D - d’ + fi - D/di)

2 , ri = 1

Finally, we connect all final states to a dummy state referred to as the destination. All arcs to the

destination have zero weight. The shortest path between the initial state and the destination

defines an optimal solution to the total RTV. However, the number of states grow exponentially

and practically it is hard to find an optimal solution for an instance of moderate size. According

to [1], the time complexity is exponential in D. i.e D3n+1.

2.2 Objective

 To improve the dynamic programming approach for the response time variability

problem for obtaining an efficient solution.

 To implement and analyze improved dynamic programming algorithm based on heuristic

methods.

6

2.3 Literature Survey

The RTVP is an optimization sequencing problem which was first reported in [9] and formally

formulated in [1]. Since RTVP is NP-hard, research on RTVP is mainly focused on finding the

optimal solution for large instances by means of heuristic and metaheuristic procedures. The

two-symbol case is optimally solved with a quick algorithm proposed in [1]. For a general case,

several solutions based on heuristics and metaheuristics have been proposed.

One of the first situations in which the idea of regular sequence appeared was the sequencing on

mixed-model assembly lines at Toyota Motor Corporation under the just-in-time (JIT)

production system. Since Toyota popularized the JIT production systems, the problem of

sequencing on mixed-model assembly lines has acquired high relevance. One of the main aims

of JIT is to eliminate sources of waste and inefficiency. In the case of Toyota, the main source of

waste was the production of excessive volumes of stock. To solve this problem, JIT systems

produce only the specific models required and in the quantities needed at any given time. In this

type of system the units should be scheduled in such a way that the consumption rates of the

components in the production process remain constant. Authors of [11] also studied this

scheduling problem and considered only the demand rates for the model. The problem proposed

in [11] intended to minimize variations in production rate in different models.

The RTVP has been first time solved in [9] using a method called lottery scheduling. This

method is based on generating a solution at random as follows. For each position of the

sequence, the symbol to be sequenced is chosen at random and the probability of each symbol is

equal to the number of copies of this symbol that remain to be sequenced divided by the total

number of copies that remain to be sequenced. The same authors proposed a greedy heuristic

method that they called stride scheduling in [10] that obtains better results than the lottery

scheduling method. However, the stride scheduling method is, in fact, the Jefferson method

originally designed to solve the apportionment problem.

In [1], five heuristics are proposed to solve the RTVP: the bottleneck algorithm used in [14] to

solve the Minmax Product Rate Variation problem, random generation, two classical parametric

7

methods for solving the apportionment problem called Webster method and Jefferson method

and a new heuristic called Insertion method by the authors; moreover, a local search procedure is

applied to the solutions obtained with the five heuristics. Parametric methods are defined as

follows. Let xik be the number of copies of symbol i that have been already sequenced in the

sequence of length k, k = 0, 1, … (asumme xi0 = 0); the symbol to be sequenced in position k + 1

is i* = arg maxi {di/(xik+ δ)}, where δ = (0,1]. . Webster method and Jefferson method are

parametric methods that use a δ value equal to 0.5 and 1, respectively. Authors of [13] proposed

construction of perfect aggregation to eliminate RTV. More complex algorithms based on

metaheuristic schemes and other approaches have also been proposed. Some of the techniques

that have been published till date are

 Dynamic Programming Algorithm[1]

 Algorithms based on metaheuristics (multi-start, GRASP and PSO)[3]

 Variable Neighbourhood Search Algorithm[7]

 Tabu Search Algorithm[6]

 Mixed Integer Linear Programming (MILP)[4]

 Genetic Algorithm[5]

The tabu search algorithm and MILP algorithm are supposed to be the best algorithms known.

Using MILP approach, instances with 25 to 40 copies of symbols (jobs) can be solved optimally.

The disadvantage of the MILP approach is that general software is used to solve the MILP model

and it is difficult to take advantage of all characteristics of the problem. Therefore we need some

exact algorithm. We will focus on the dynamic programming approach. The dynamic

programming approach is not supposed to be the practical solution since it cannot solve the

instances of moderate size because of exponential time and space complexity. Heuristics will be

applied to improve it.

8

Chapter 3

3.1 Design of the Improved Algorithm

The naive dynamic programming approach proposed in [1] will be improved as follows: An

initial sequence will be created. The value of RTV in initial sequence will be taken as upper

bound. In every state with partial sequence, we will calculate the RTV using heuristic methods.

This RTV will be taken as lower bound. Based on these bounds, a state will be pruned if its

lower bound exceeds the upper bound. The pseudo code of the algorithm is given in section

3.1.1.

3.1.1 Pseudo Code of the Algorithm

1. Create initial sequence S using Jefferson’s method or Webster’s method

2. Calculate the value of RTV in S. Let the value be V.

3. for every state Sp with partial sequence do

apply heuristic to calculate RTV on Sp

if RTV(Sp)>V then prune the state

3.1.2 Details of the Algorithm

3.1.2.1 The Initial Sequence

The methods of creating initial sequence are described in [1] which are Bottleneck (minimum

throughput error) sequences, Random sequences, Webster’s sequences, Jefferson’s sequences

and Insertion sequences. These methods are heuristic methods to create sequences with near-to-

optimal RTV.

 Webster’s sequences are obtained by applying the parametric method of apportionment

with parameter δ = ½. The sequence is generated as follows. Consider xit , the number of

copies of job i in sequence of length t, t = 0,1,….. Assume x i0 =0, i = 1,…..,n. The job to

be sequenced in position t + 1 is computed as follows:

i* = arg maxi {di/(xit+ δ)}

9

 Jefferson’s sequences are generated by applying the parametric method of apportionment,

described above with δ =1.

 The bottleneck sequences can be obtained by solving the bottleneck problem to optimality

with the algorithm given in [14].

 The random sequences can be obtained by randomizing the bottleneck sequence. The

bottleneck sequences can be randomized as follows. For each position x in 1….D, get a

random number ran in the range 1….D, then swap S[x] with S[ran].

A detailed analysis of all of above methods is described in [1]. All of these methods have

comparable results. According to Authors of [1], all of the above mentioned methods have

comparable results for small value of n, but Webster and Jefferson methods have relatively poor

result for large value of n. We will use Webster’s sequences in our implementation. The value of

RTV obtained on initial sequence will be taken as upper bound.

3.1.2.2 Finding RTV on Partial Sequences

Heuristics for finding RTV on partial sequences are described in [2]. Consider that a partial

sequence has built up and including position k. Given a job, if we compare the cost of allocating

a copy of it to position k+1 and the cost of allocating it to position k+2, the difference between

the latter and the former can be called the opportunity cost of allocating the copy to position k+2

(instead of allocating it to position k+1). It is reasonable, then, to allocate to position k+1 the job

with a greater opportunity cost. As this cost cannot be calculated without an optimizing

algorithm, the decision can be taken on the basis of an estimation of it, i.e., the value equal to

PLB(i,k+2) – PLB(i,k+1), where PLB(i,k+2) and PLB(i,k+1), are lower bounds on the objective

function when a copy of job i is placed at positions k+2 or at position k+1, respectively.

As described in [1], a decomposition vector of D into di components can be defined as λi = (λ1

…λdi) of di positive integers that add up to D and λ1 >=…..>=λdi . The components of vector λi

are distances between the di copies of job i. Thus the minimum value of RTV for job i, RTVi ,

can be obtained when D mod di and di – D mod di components of λi are equal to

and respectively.

10

D/di

D/di

D/diD/di

For example, let D=24, n=4, d=(9,8,5,2) and t’=(2.67,3,4.8,12). The decomposition vectors

λ1 = (3,3,3,3,3,3,2,2,2), λ2 = (3,3,3,3,3,3,3,3), λ3 = (5,5,5,5,4), and λ4 = (12,12) provide the

minimum values of RTVi (i=1,…,4). A lower bound on the value of RTVi, i.e. RTVLBi, and a

lower bound on the value of RTV, i.e. RTVLB, can be defined as follows:

RTVLBi = (D mod di)* (- t’i)2 + (di –D mod di) *(- t’i)2 and

n
RTVLB = Σ RTVLBi

i=1

Hence
RTVLB = [6*(3-2.67)2 + 3*(2-2.67)2] + [8*(3-3)2]

+ [4*(5-4.8)2 + 1*(4-4.8)2] + [2*(12-12)2]
= 1.18

But in this case, a lower bound, PLB, is needed for a partial solution, i.e., a solution in which one
copy of job has been assigned to each of the first k positions.

A bound for a partial sequence, Sp, can be obtained by adding, for all the jobs with di >=2, the

sum of RTVps (the value associated with the distances between the copies of the job allocated in

[1,…..,k], if any) and RTVrem (a bound corresponding to the assignment of the remaining

copies, if any, to the free positions).

Let i be a job, with di >=2, whose copies have not all been assigned in the partial solution Sp.

Now there are three cases:

 Case 1: No copy of job i has been assigned in the k time slots. In this case, we must

distribute D time slots among di distances between two copies of job i, guaranteeing that

one distance be greater than or equal to k+1.

 Case 2: Only one copy of job i has been assigned to position h (<=k). In this case, we

must distribute D time slots among di distances, guaranteeing that one distance be greater

than or equal to k-h+1 and another be greater than or equal to h.

 Case 3: p copies of job i have been assigned in k time slots, the first in the sequence in

position hf and the last one in the position hl . In this case, we must distribute D-hl+hf

11

D/diD/di

time slots among di-p+1 distances, but guarantee that on distance be greater than or equal

to k-hl+1 and another be greater than or equal to hf . Case 2 can be reduced to Case 3

taking into account that hf = hl = h and p = 1. Case 1 can be reduced to case 3 taking into

account that hf = hl = h = 0 and p = 1.

Thus, the problem consists of distributing D-hl+hf units of distance among di-p+1 distances ti
j

(j=1,…., di-p+1), taking into account that two distances are lower bounded by k-hl+1 and hf,

respectively, and the others are lower bounded by 1, with the objective of minimizing a function

of the discrepancy between the distances and the average distance ti’. Thus it is the

apportionment problem with lower bounds. For the discrepancy function considered here, the

procedure is described in [2] as follows:

ti
1 = k - hl +1

ti
2 = hf

for j=3 to di-p+1

{

ti
j = 1

next j

}

for j = 1 to D-k+p-di

{

Find s* such that ti
s* = min (ti

s)
1<=s<=max(2,di-p+1)

ti
s* = ti

s* + 1

next j

}

Example: For the instance n = 4 and d = (9,8,5,2) and the partial solution Sp =

(1,3,2,1,1,3,3,3,1,,,,,,,,,,,,,,,), we have:

RTVps = [1*(4-2.67)2+1*(3-2.67)2+1*(1-2.67)2] + [1*(4-4.8)2+2*(1-4.8)2 = 34.187

12

Now, applying the procedure described above, the distances (3,3,3,3,2,2), (7,3,3,3,2,2,2,2), (9,9),

(12,12) are obtained for job 1, 2, 3 and 4 respectively. The value corresponding to these

distances, RTVrem is:

RTVrem = [4*(3-2.67)2+2*(2-2.67)2] + [1*(7-3)2+3*(3-3)2+4*(2-3)2] +[2*(9-4.8)2]+[2*(12-12)2]

= 56.613

Finally, PLB = RTVps + RTVrem = 34.187 + 56.613 = 90.8

When breaking ties, jobs are selected in descending order of i.

3.2 Implementation

3.2.1 Changes in the State representation of Naive Dynamic Program

The state of the naïve dynamic program will be changed as follows: Every state of the dynamic

program will be represented by a 5-tuple (f,l,r,d,p), where other symbols have usual meaning

except the symbol ‘p’. Here p represents the pruned state. p = 0 represents that the state is not

pruned and p = 1 represents that the state has been pruned. The initial state and the final states

will have p = 0. Other fields can also be added such as the partial sequence associated with the

state and cost of the arc etc to make searching easy.

Dynamic programming approach is an exact algorithm. So, it can be implemented directly in any

conventional programming language. Unlike some other approaches, no additional software (e.g.

MILP model uses general software) is required. Implementation should be made efficient by

using suitable representation for the states (representations that require less memory).

13

Chapter 4

4.1 Computational results

The computational experiments have been carried out in order to illustrate the improved dynamic

programming algorithm. The experiment consists of applying the naïve dynamic programming

algorithm and improved dynamic programming algorithm separately to an instance of the

problem. All codes have been implemented in C. Both the naïve algorithm and improved

algorithm has been implemented and executed on a PC with Intel Pentium 4 (2.26 GHz)

processor and 512 MB of RAM.

Instances for this experiment are generated by fixing the total number of units D and number of

jobs n, and randomly selecting the number of copies of each job, di. In the improved algorithm,

the initial sequences have been generated by using Webster’s method. We will examine the

improvement in terms of the number of states generated by each algorithm.

The experimental results show that the numbers of states are tremendously reduced by the

improved algorithm. For n=2 , the improvement is about by 54% on average. For n=3, the states

are reduced by 89% on average. For n=4, the states are reduced by 94% on average. For n=5, the

states are reduced by 95% on average. These calculations based on reduction in the number of

states. The “--“ in the tables indicates that the result was not computed within specified time of 2

minutes. All other results were executed within 2 minutes. The following tables show the final

results only. The initial sequences generated by Webster’s method and their corresponding RTV

are tabulated in Appendix A. In the following tables, the first column represents the total demand

i.e. total number of copies of each job. The second column represents the input to the algorithm.

As described earlier, an input to the total response time variability problem is a list of n positive

integers d1<=d2<=……..<=dn (the demand of each job). The third column shows the number of

states generated by naïve dynamic program and the fourth column shows the number of states

generated by improved dynamic program. The fourth column shows the optimal sequence

generated for the corresponding input. The optimal sequence is one with the shortest-weight path

from the initial state to the final state. Finally, the last column shows the value of RTV

14

corresponding to the optimal sequence (i.e. the optimal RTV).

Table 1 shows the results obtained for n =2 i.e. two-job case. This table is shown just to illustrate

the improved algorithm. This case can be efficiently solved by the simple algorithm proposed in

[1], however. So for n = 2 it will be better to use the algorithm proposed in [1]. The efficient

solution given in [1] for n = 2 is described in Appendix B. In table 1, various instances of the

problem are generated randomly by fixing number of jobs n =2. The number of states are

reduced by 54 % on average using improved algorithm.

Table 2 shows the results obtained for n =3. In this case, we observe that the states are reduced

by 89% on average. By naïve algorithm, only the instances upto D = 17 were solved within the

specified time of 2 minutes. But using improved approach, instances with total demand D =30

were easily solved within the same time. The improvement is better than the case with n =2.

Table 3 and table 4 show the results obtained for n = 4 and n = 5 respectively. For n = 4, the

instances upto D = 24 were solved within the given time with improved approach whereas with

naïve approach, only instances upto D = 15 were solved. For n = 5, using naïve approach,

instances upto D = 12 have been solved and using improved approach the instances upto D = 18

were solved within given time of 2 minutes.

15

Table 1: Results obtained for n = 2

Number of jobs (n) = 2

D Input vector
(number of
copies of
each job)

Number of
states
generated by
naïve
algorithm

Number of
states generated
by improved
algorithm

Optimal sequence Optimal

RTV

4

6

6

7

7

8

8

10

10

10

(2,2)

(4,2)

(3,3)

(5,2)

(3,4)

(5,3)

(6,2)

(8,2)

(7,3)

(6,4)

20

56

70

84

126

210

120

220

495

792

16

30

24

39

54

68

49

73

101

137

1,2,1,2

1,1,2,1,1,2

1,2,1,2,1,2

1,1,2,1,1,1,2

1,2,2,1,2,1,2

1,1,2,1,2,1,1,2

1,1,1,2,1,1,1,2

1,1,1,1,2,1,1,1,1,2

1,1,1,2,1,1,2,1,1,2

1,1,2,1,1,2,1,2,1,2

0.00

1.00

0.00

1.70

1.41

1.86

1.33

1.50

2.38

2.33

Table 2: Results obtained for n = 3

Number of jobs (n) = 3

D Input vector
(number of
copies of
each job)

Number of
states
generated
by naïve
algorithm

Number of
states
generated
by
improved
algorithm

Optimal sequence

Optimal

RTV

7

10

10

12

12

12

13

13

13

13

(3,2,2)

(3,3,4)

(5.3.2)

(2,6,4)

(2,7,3)

(2,8,2)

(3,8,2)

(4,7,2)

(5,6,2)

(5,5,3)

651

13300

8295

46552

27951

11452

47125

88803

120835

233729

227

659

785

937

1034

1538

1473

425

1099

1266

1,2,3,1,2,1,3

1,2,3,1,2,3,1,3,2,3

1,1,3,2,1,2,1,3,1,2

1,2,3,2,2,3,1,2,3,2,2,3

1,2,2,2,3,2,1,2,3,2,2,3

1,2,2,2,3,2,1,2,2,2,3,2

1,2,2,1,2,3,2,2,1,2,2,3,2

1,2,2,1,2,3,2,1,2,1,2,3,2

1,2,1,2,1,3,2,1,2,1,2,3,2

1,2,1,2,3,1,2,1,3,2,1,2,3

1.66

2.33

4.66

4.00

5.42

2.00

5.04

4.10

4.53

3.06

14

14

14

14

15

15

15

15

15

16

16

16

16

17

17

18

18

18

18

20

20

20

20

20

20

22

22

22

22

22

22

24

(7,4,3)

(6,5,3)

(6,6,2)

(5,7,2)

(7,4,4)

(6,5,4)

(5,7,3)

(5,8,2)

(4,8,3)

(8,4,4)

(7,5,4)

(6,6,4)

(2,9,5)

(3,9,5)

(4,8,5)

(2,9,7)

(3,10,5)

(4,10,4)

(6,9,3)

(8,9,3)

(7,10,3)

(6,10,4)

(5,10,5)

(2,10,8)

(7,8,5)

(7,8,7)

(7,10,5)

(6,10,6)

(5,11,6)

(2,8,12)

(4,7,11)

(4,10,10)

403326

551838

283712

246246

1490203

2047123

1201409

471835

774775

3039752

4738734

5481632

858858

4720001

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

5567

1180

410

1970

5990

4822

2969

3075

2367

9562

4356

4856

2397

4370

1185

2102

2160

47350

4460

5561

15551

35750

54795

9787

36785

5587

4258

11467

134627

13945

61415

15901

1,2,1,3,1,2,1,1,2,3,1,2,1,3

1,2,1,3,2,1,1,2,3,1,2,1,3,2

1,2,1,2,1,2,3,1,2,1,2,1,2,3

1,2,1,2,2,1,3,2,1,2,2,1,2,3

1,2,1,3,1,2,1,3,1,2,1,3,1,2,3

1,2,1,3,1,2,1,3,2,1,2,3,1,2,3

2,3,1,2,1,2,3,1,2,1,2,3,2,1,2

1,2,1,2,1,2,3,2,1,2,2,1,2,3,2

1,2,2,1,2,3,2,1,2,3,2,1,2,2,3

1,2,1,3,1,2,1,3,1,2,1,3,1,2,1,3

1,2,1,3,2,1,2,3,1,2,1,3,1,2,1,3

1,2,3,1,2,1,3,2,1,2,3,1,2,1,3,2

1,2,2,3,2,2,3,2,1,2,3,2,3,2,2,3

1,2,3,2,2,3,1,2,2,3,2,1,3,2,2,3,2

1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2,3

1,2,3,2,3,2,3,2,3,1,2,3,2,2,3,2,2,3

1,2,3,2,2,3,1,2,2,3,2,1,2,3,2,2,3,2

1,2,2,3,2,1,2,2,3,2,1,2,3,2,1,2,3,2

1,2,1,2,3,1,2,2,1,2,3,1,2,2,1,2,3,2

1,2,1,2,1,3,2,1,2,1,2,1,3,2,1,2,2,1,3,2

1,2,1,2,1,2,3,1,2,2,1,2,3,2,1,2,2,1,2,3

1,2,2,1,2,3,2,1,2,2,3,1,2,1,2,3,2,1,2,3

1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2

1,2,3,2,2,3,2,2,3,2,1,3,2,3,2,3,2,3,2,3

1,2,1,3,2,1,2,3,1,2,1,3,2,1,2,3,2,1,2,3

1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,2,1,3,2

1,2,1,3,2,1,2,3,2,1,2,3,2,1,2,3,1,2,2,1,3,2

1,2,3,1,2,3,1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2

1,2,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2,1,3,2,2,3

1,2,3,2,3,3,2,3,3,2,3,1,3,2,3,3,2,3,2,3,2,3

1,2,3,2,3,1,2,3,3,2,3,1,2,3,3,2,3,1,3,2,3,3

2,3,2,3,1,2,3,2,3,2,1,3,2,3,2,3,1,2,3,2,3,2

5.66

4.80

2.66

4.80

2.35

4.25

6.85

5.37

5.62

0.00

4.22

2.66

6.35

6.75

4.82

5.71

6.79

3.60

6.00

6.22

7.52

9.33

0.00

6.00

4.85

3.21

7.65

4.26

6.53

7.16

9.85

4.80

24

24

24

26

26

26

26

28

28

30

30

(6,8,10)

(9,8,7)

(7,10,7)

(7,12,7)

(5,12,9)

(2,14,10)

(8,11,7)

(10,11,7)

(9,8,11)

(11,8,11)

(7,9,14)

--

--

--

--

--

--

--

--

--

--

139938

19316

422060

1760098

79752

68191

127250

607941

319104

320440

291488

,1,3

1,2,3,2,1,3,2,3,1,3,2,3,1,2,3,2,1,3,2,3,1,3

,2,3

1,3,2,1,2,3,1,2,1,3,1,2,3,1,2,3,1,2,3,1,2,3

,1,2

1,2,3,2,1,2,3,2,1,2,3,1,2,3,1,2,3,1,2,3,2,1

,2,3

1,2,3,1,2,3,1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2

,1,2,3,2

1,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,1,3,2,3,2,1

,2,3,2,3

2,2,3,2,3,2,3,2,3,1,2,3,2,2,3,2,2,3,2,2,3,2

,1,3,2,3

1,2,1,3,2,1,2,3,1,2,3,1,2,3,2,1,2,3,2,1,2,3

,2,1,2,3

1,2,1,3,2,1,2,3,1,2,1,3,2,1,2,3,1,2,1,3,2,1

,2,3,2,1,2,3

1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,3,2,3,1,3,2

,3,1,3,2,1,3

1,3,2,1,3,1,2,3,1,3,2,1,3,1,2,3,1,3,2,1,3,1

,2,3,1,3,2,1,3,2

1,3,2,3,1,3,2,3,1,3,2,3,1,2,3,2,3,1,3,2,3,1

,2,3,3,2,1,3,2,3

6.40

5.71

5.82

4.52

11.35

8.11

7.47

6.32

7.61

5.86

9.14

Table 3: Results obtained for n = 4

Number of jobs (n) = 4

D Input vector
(number of
copies of
each job)

Number
of states
generated
by naïve
algorithm

Number of
states
generated by
improved
algorithm

Optimal sequence Optimal

RTV

10

10

12

12

12

13

13

13

15

15

15

18

18

18

18

20

20

20

20

20

22

22

22

22

24

(3,2,2,3)

(2,2,2,4)

(4,3,3,2)

(5,2,3,2)

(6,2,2,2)

(5,2,3,3)

(6,2,2,3)

(4,4,2,3)

(2,7,4,2)

(3,8,2,2)

(4,5,4,2)

(4,7,2,5)

(5,6,2,5)

(3,7,4,4)

(3,8,2,5)

(4,7,4,5)

(4,8,3,5)

(4,4,8,4)

(3,8,3,6)

(3,8,4,5)

(5,4,6,7)

(3,6,6,7)

(2,7,6,7)

(8,2,6,6)

(7,8,4,5)

38849

57450

839806

515998

268436

2219070

1145852

2744867

8733723

4538239

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

6570

6507

10878

21755

23000

27227

29794

7232

63252

75867

22402

17906

70135

1164608

75977

817258

74308

2830726

1462605

128239

606652

148292

413692

354810

696531

1,2,4,1,3,4,2,1,4,3

1,2,4,3,4,1,2,4,3,4

1,2,1,3,4,1,2,3,1,2,4,3

1,2,1,3,1,4,1,2,3,1,4,3

1,2,1,3,1,4,1,2,1,3,1,4

1,3,1,2,4,1,3,1,4,2,3,1,4

1,1,2,4,1,3,1,4,1,2,1,3,4

1,2,3,1,4,2,1,4,2,3,1,2,4

1,2,3,2,4,2,3,1,2,3,2,4,2,3,2

1,2,2,2,3,1,2,4,2,2,1,2,3,2,1

1,2,3,1,2,3,4,1,2,3,2,1,2,3,4

1,4,2,4,1,2,3,4,2,1,2,4,2,1,2,3,4,2

1,2,4,1,2,3,4,1,2,4,2,1,2,4,3,1,2,4

1,2,3,2,4,2,3,1,2,4,3,2,1,4,2,3,2,4

1,2,4,2,4,3,1,2,4,2,2,1,4,2,3,2,4,2

1,2,3,4,2,1,2,3,4,2,1,2,3,4,2,1,4,3,2,4

1,2,4,2,1,3,2,4,2,1,2,4,3,2,4,1,2,4,2,3

1,2,3,4,3,1,2,3,4,3,1,2,3,4,3,1,2,3,4,3

4,1,2,4,2,3,4,2,1,2,4,3,2,4,1,2,4,2,3,2

2,3,2,4,2,3,1,2,4,2,3,2,4,1,2,4,3,2,4,1

1,2,4,3,1,4,2,3,4,1,3,2,4,3,1,4,3,2,4,1,3,4

1,2,4,3,2,4,3,1,4,2,3,4,2,3,4,1,2,4,3,2,4,3

1,2,3,4,2,3,4,2,3,4,2,1,4,3,2,4,2,3,4,2,3,4

1,3,1,4,2,1,3,4,1,3,4,1,3,4,1,2,3,1,4,1,3,4

1,2,1,3,4,2,1,2,4,3,1,2,1,4,2,3,1,2,4,2,1,3,

2,4

1.33

1.00

4.00

5.20

0.00

5.03

4.50

4.66

2.60

5.87

6.00

7.91

6.40

5.71

10.70

6.85

8.66

2.00

4.66

8.66

8.39

8.19

7.04

8.16

10.51

24

24

24

24

24

(6,9,4,5)

(10,5,4,5)

(9,7,5,3)

(10,6,3,5)

(11,5,4,4)

--

--

--

--

--

5343628

3905563

1491107

196490

--

1,3,2,4,2,1,2,3,4,2,1,2,4,1,3,2,1,4,2,3,1,2,

4,2

1,3,2,1,4,1,2,3,1,4,1,2,1,3,4,1,2,1,4,3,1,2,

1,4

1,2,1,3,4,1,2,1,3,1,2,4,1,3,2,1,2,3,1,4,2,1,

3,2

1,1,2,4,3,1,2,1,4,1,2,1,3,4,1,2,1,4,1,2,3,1,

4,2

--

10.80

4.00

12.51

9.20

Table 4: Results obtained for n = 5

Number of jobs (n) = 5

D Input vector
(number of
copies of
each job)

Number of
states
generated by
naïve
algorithm

Number of
states generated
by improved
algorithm

Optimal sequence Optimal

RTV

12

12

13

13

14

14

14

15

15

15

16

16

16

17

17

18

18

(2,3,3,2,2)

(2,4,2,2,2)

(3,3,3,2,2)

(4,2,3,2,2)

(4,3,3,2,2)

(5,2,3,2,2)

(3,3,3,3,2)

(3,2,3,4,3)

(2,2,3,5,3)

(6,2,2,2,3)

(6,3,2,2,3)

(5,4,2,2,3)

(4,4,3,2,3)

(4,4,4,2,3)

(4,4,3,3,3)

(4,5,4,2,3)

(4,5,3,3,3)

4855966

3680930

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

225354

174458

294574

324069

474747

1173899

123687

596162

1370138

1814285

2994087

1462874

763656

371550

--

1534327

--

1,2,4,3,5,2,1,3,4,2,5,3

1,2,3,4,2,5,1,2,3,4,2,5

1,2,4,3,1,2,5,3,1,4,2,3,5

2,3,1,4,5,1,3,2,1,4,3,5,1

2,4,3,1,2,5,3,1,4,2,1,3,5,1

1,2,1,3,4,1,5,1,3,2,1,4,3,5

1,2,3,4,1,2,5,3,4,1,2,3,4,5

1,2,3,4,5,1,3,4,2,5,1,4,3,5,4

1,3,4,2,5,4,3,1,4,5,2,3,4,5,4

1,2,1,3,5,1,4,1,2,5,1,3,1,4,5

1,2,1,3,5,1,2,4,1,5,1,3,2,1,5,4

1,2,1,3,5,1,2,4,1,5,2,3,1,2,5,4

1,2,3,1,5,2,4,3,1,2,5,1,3,2,4,5

1,2,3,4,1,5,2,3,1,2,5,3,4,1,2,3,5

--

1,2,3,4,1,2,5,3,1,2,3,5,4,2,1,3,2,5

--

0.00

0.00

3.00

2.51

2.33

5.46

2.66

5.25

5.00

3.00

2.66

5.46

5.33

5.41

--

9.20

--

Chapter 5

5.1 Conclusions and future research

The Response Time Variability Problem, recently defined in the literature, is a scheduling

problem with a broad range of real-life applications that is very difficult to solve optimally.

Several approaches have been proposed in the literature for solving the RTVP. One of the

approaches is the dynamic programming approach. We studied the various properties of the

response time variability problem. The dynamic programming approach for solving RTVP was

studied. The dynamic programming approach gives the optimal results but, as the problem is NP-

hard, this approach can not solve the problem instances of large sizes.

The objective of this dissertation work was to increase the size of the instances that can be solved

optimally using dynamic programming. Some heuristics were applied on the naïve dynamic

programming approach to improve it. By doing so, we were able to solve the larger instances of

the problem. Computational results show that we were able to solve the instances which were not

solved by naïve approach. But still, the size of instances that can be solved by our improved

dynamic program is small. Further improvements can be done in this approach to solve larger

instances of the problem.

There are some ways to proceed:

 Better heuristics can be researched to calculate the tighter upper and lower bounds.

 Equivalent states can be identified in the state space. For example, the sequences 1,2,1,2

and 2,1,2,1 are equivalent with equal value of RTV. If such states are identified, more

states can be pruned.

The abovementioned ideas can further improve the dynamic programming approach. Besides

these, another line of research could be the use of hyper-heuristics to solve RTVP. Hyper-

heuristics are an emerging methodology in search and optimization. Hyper-heuristic methods

choose dynamically the most suitable (meta)heuristic among a set of them according to the state

of the search of the solution.

22

References:

[1] A. Corominas et. al., W. Kubiak, N. M. Palli. “Response time variability”. Journal of

Scheduling, Vol. 10, pp. 97-110, Jan. 2007

[2] A. Corominas et. al., “Heuristics for the Response time variability problem”, Tech. Rep.

IOC-DT-P-2009-03, Universitat Politecnica de Calalunya, EOLI, Dec. 2009

[3] A. Corominas et. al., “Solving the Response Time Variability Problem by means of

metaheuristics”, Special Issues of Frontiers in artificial intelligence and applications on

Artificial Intellegence Research and Development. Vol. 146, pp. 187-194, 2006.

[4] A. Corominas et. al., “Mathematical Programming Modeling of the Response Time

Variability Problem”, European Journal of Operational Research, Vol. 200, pp. 347-357,

2010

[5] A. Garcia-Villoria, and R. Pastor , “Solving the Response Time Variability Problem by

Means of a Genetic Algorithm”, European Journal of Operational Research, Vol. 202, pp.

320-327, 2010.

[6] A. Corominas et. al., “Using Tabu Search for the Response Time Variability Problem”, 3rd

International Conference on Industrial Engineering and Industrial Management (CIO 2009),

Barcelona and Terrassa, Spain, 2009.

[7] A. Corominas et. al., “Solving the Response Time Variability Problem by means of a

Variable Neighbourhood Search Algorithm”, 13th IFAC Symposium of Information Control

Problems in Manufacturing (INCOM 2009), Moscow, Russia, 2009

[8] A. Bar-Noy et al, “Minimizing service and operation costs of periodic scheduling”,

Mathematics of Operations Research, Vol. 27, pp. 518-544, 2002.

[9] C. A. Waldspurger and W. E. Weihl, “Lottery Scheduling: Flexible Proportional-Share

Resource Management”, First USENIX Symposium on Operating System Design and

Implementation,1994

[10] C. A. Waldspurger, W. E. Weihl, “Stride Scheduling: Deterministic Proportional-Share

Resource Management”, Tech. Rep. MIT/LCS/TM-528, Massachusetts Institute of

Technology. MIT Laboratory for Computer Science, 1995.

[11] J. Miltenburg, “Level Schedules for Mixed-Model Assembly Lines in Just-In-Time

Production Systems”. Management science, Vol. 35, pp. 192-207, 1989.

23

[12] J. W. Herrmann, “Generating Cyclic Fair Sequences Using Aggregation and Stride

Scheduling”. Tech. Rep. TR 2007-12, university of Maryland, USA, 2007. Available at

http://hdl.handle.net/1903/7082.

[13] J. W. Herrmann, “Using Aggregation to Reduce Response Time Variability in Cyclic Fair

Sequences”, Tech. rep. 2008-29, University of Maryland, USA, 2008.

[14] N. Moreno, “Solving the Product Rate Variation Problem of Large Dimensions as an

Assignment Problem”, Doctoral Thesis, DOE, UPC ,2002.

[15] S. Anily et. al., “The Scheduling of Maintenance Service”, Discrete Applied Mathematics,

Vol 82, pp. 27-42, 1998.

[16] S. Bollapragada et. al., “Scheduling Commercial Videotapes in Broadcast Television”,

Operations Research, Vol. 52, pp. 679-689, 2004.

24

Appendix A

Initial sequences obtained using Webster’s method

n= 2

D Input vector
(number of
copies of
each job)

Sequence generated by Webster’s method

RTV

4

6

6

7

7

8

8

10

10

10

(2,2)

(4,2)

(3,3)

(5,2)

(3,4)

(5,3)

(6,2)

(8,2)

(7,3)

(6,4)

2,1,2,1

1,2,1,1,2,1

2,1,2,1,2,1

1,2,1,1,1,2,1

2,1,2,1,2,1,2

1,2,1,2,1,1,2,1

1,2,1,1,1,2,1,1

1,1,2,1,1,1,1,2,1,1

1,2,1,1,2,1,1,1,2,1

1,2,1,2,1,1,2,1,2,1

0.00

1.00

0.00

1.70

1.41

1.86

1.33

1.50

2.38

2.33

n= 3

D Input vector
(number of
copies of
each job)

Sequence generated by Webster’s method

RTV

7

10

10

12

12

12

13

13

13

13

(3,2,2)

(3,3,4)

(5.3.2)

(2,6,4)

(2,7,3)

(2,8,2)

(3,8,2)

(4,7,2)

(5,6,2)

(5,5,3)

1,3,2,1,3,2,1

3,2,1,3,2,1,3,2,1,3

1,2,3,1,2,1,1,3,2,1

2,3,2,1,3,2,2,3,2,1,3,2

2,3,2,1,2,3,2,2,1,2,3,2

2,2,3,1,2,2,2,2,3,1,2,2

2,1,2,3,2,2,1,2,2,3,2,1,2

2,1,2,3,2,1,2,1,2,3,2,1,2

2,1,3,2,1,2,1,2,1,3,2,1,2

2,1,3,2,1,3,2,1,2,1,3,2,1

3.66

4.33

4.66

4.00

5.42

6.00

5.04

4.10

4.53

5.06

14

14

14

14

15

15

15

15

15

16

16

16

16

17

17

18

18

18

18

20

20

20

20

20

20

22

22

22

22

22

22

24

(7,4,3)

(6,5,3)

(6,6,2)

(5,7,2)

(7,4,4)

(6,5,4)

(5,7,3)

(5,8,2)

(4,8,3)

(8,4,4)

(7,5,4)

(6,6,4)

(2,9,5)

(3,9,5)

(4,8,5)

(2,9,7)

(3,10,5)

(4,10,4)

(6,9,3)

(8,9,3)

(7,10,3)

(6,10,4)

(5,10,5)

(2,10,8)

(7,8,5)

(7,8,7)

(7,10,5)

(6,10,6)

(5,11,6)

(2,8,12)

(4,7,11)

(4,10,10)

1,2,3,1,1,2,3,1,2,1,1,3,2,1

1,2,3,1,2,1,3,2,1,2,1,3,2,1

2,1,3,2,1,2,1,2,1,3,2,1,2,1

2,1,2,3,1,2,2,1,2,1,3,2,1,2

1,3,2,1,1,3,2,1,3,2,1,1,3,2,1

1,2,3,1,2,3,1,2,1,3,2,1,3,2,1

2,1,3,2,1,2,3,2,1,2,1,2,3,1,2

2,1,2,3,1,2,2,1,2,2,1,3,2,1,2

2,1,3,2,2,1,2,3,2,1,2,2,3,1,2

1,3,2,1,1,3,2,1,1,3,2,1,1,3,2,1

1,2,3,1,2,1,3,2,1,3,1,2,1,3,2,1

2,1,3,2,1,3,2,1,2,1,3,2,1,3,2,1

2,3,2,1,2,3,2,3,2,2,3,2,1,2,3,2

2,3,2,1,2,3,2,3,2,1,2,3,2,2,1,3,2

2,3,1,2,3,2,1,2,3,2,1,2,3,2,1,3,2

2,3,2,3,1,2,3,2,3,2,2,3,2,1,3,2,3,2

2,3,2,1,2,3,2,2,3,1,2,2,3,2,1,2,3,2

2,3,1,2,2,2,3,1,2,2,3,1,2,2,2,3,1,2

2,1,3,2,1,2,2,1,3,2,1,2,2,1,3,2,1,2

2,1,3,2,1,2,1,2,1,3,2,1,2,1,2,1,3,2,1,2

2,1,2,3,1,2,2,1,2,3,1,2,1,2,2,1,3,2,1,2

2,1,3,2,2,1,2,3,1,2,2,1,3,2,2,1,2,3,1,2

2,3,1,2,2,3,1,2,2,3,1,2,2,3,1,2,2,3,1,2

2,3,2,3,2,1,3,2,3,2,2,3,2,3,2,1,3,2,3,2

2,1,3,2,1,3,2,1,2,3,1,2,1,2,3,1,2,3,1,2

2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2

2,1,3,2,1,2,3,2,1,2,3,1,2,1,2,3,2,1,2,3,1,2

2,3,1,2,3,2,1,2,3,1,2,2,3,1,2,3,2,1,2,3,1,2

2,3,1,2,2,3,1,2,2,3,2,1,3,2,2,1,3,2,2,1,3,2

3,2,3,2,3,1,3,2,3,2,3,3,2,3,2,3,1,3,2,3,2,3

3,2,1,3,2,3,3,2,1,3,3,2,3,1,2,3,3,2,3,1,2,3

3,2,1,3,2,3,2,3,2,1,3,2,3,2,1,3,2,3,2,3,2,1,3,2

7.66

4.80

2.66

4.80

8.35

6.25

6.85

5.37

5.62

8.00

6.22

6.66

6.35

6.75

4.82

5.71

6.79

11.60

6.00

6.22

7.52

9.33

10.00

6.00

8.85

5.21

7.65

8.26

12.53

7.16

9.85

8.79

24

24

24

26

26

26

26

28

28

30

30

(6,8,10)

(9,8,7)

(7,10,7)

(7,12,7)

(5,12,9)

(2,14,10)

(8,11,7)

(10,11,7)

(9,8,11)

(11,8,11)

(7,9,14)

3,2,1,3,2,3,1,2,3,1,2,3,3,2,1,3,2,3,1,2,3,1,2,3

1,2,3,1,2,3,1,2,3,1,2,3,1,2,1,3,2,1,3,2,1,3,2,1

2,3,1,2,3,1,2,2,3,1,2,3,1,2,3,1,2,2,3,1,2,3,1,2

2,3,1,2,2,3,1,2,3,1,2,2,3,1,2,2,3,1,2,3,1,2,2,3,1,2

2,3,1,2,3,2,3,2,1,2,3,2,3,1,2,3,2,1,2,3,2,3,2,1,3,2

2,3,2,3,2,3,2,1,2,3,2,3,2,2,3,2,3,2,3,2,1,2,3,2,3,2

2,1,3,2,1,3,2,1,2,3,2,1,3,2,1,2,3,2,1,2,3,1,2,3,1,2

2,1,3,2,1,3,2,1,2,1,3,2,1,3,2,1,2,3,1,2,1,2,3,1,2,3,1,2

3,1,2,3,1,2,3,1,2,3,1,3,2,3,1,2,3,1,3,2,1,3,2,1,3,2,1,3

3,1,2,3,1,2,3,1,2,3,1,3,1,2,3,1,2,3,1,3,1,2,3,1,2,3,1,2,3,1

3,2,1,3,2,3,1,3,2,3,1,2,3,3,2,1,3,3,2,1,3,2,3,1,3,2,3,1,2,3

10.40

7.71

11.82

14.52

11.35

8.11

9.47

12.32

9.61

11.86

11.14

n= 4

D Input vector
(number of
copies of
each job)

Sequence generated by Webster’s method

RTV

10

10

12

12

12

13

13

13

15

15

15

18

18

18

(3,2,2,3)

(2,2,2,4)

(4,3,3,2)

(5,2,3,2)

(6,2,2,2)

(5,2,3,3)

(6,2,2,3)

(4,4,2,3)

(2,7,4,2)

(3,8,2,2)

(4,5,4,2)

(4,7,2,5)

(5,6,2,5)

(3,7,4,4)

4,1,3,2,4,1,3,2,4,1

4,3,2,1,4,4,3,2,1,4

1,3,2,4,1,3,2,1,4,3,2,1

1,3,4,2,1,3,1,1,4,2,3,1

1,4,3,2,1,1,1,4,3,2,1,1

1,4,3,2,1,4,3,1,1,2,4,3,1

1,4,3,2,1,1,4,1,3,2,1,4,1

2,1,4,3,2,1,4,2,1,3,4,2,1

2,3,2,4,1,2,3,2,3,2,4,1,2,3,2

2,1,2,4,3,2,2,1,2,2,4,3,2,1,2

2,3,1,4,2,3,1,2,3,1,2,4,3,1,2

2,4,1,2,3,4,2,1,4,2,1,2,4,3,2,1,4,2

2,4,1,3,2,4,1,2,4,1,2,4,1,3,2,4,1,2

2,4,3,1,2,2,4,3,2,1,4,3,2,2,1,4,3,2

9.33

9.00

8.00

11.20

12.00

11.03

10.50

6.66

10.60

11.87

8.00

7.91

10.39

17.71

18

20

20

20

20

20

22

22

22

22

24

24

24

24

24

(3,8,2,5)

(4,7,4,5)

(4,8,3,5)

(4,4,8,4)

(3,8,3,6)

(3,8,4,5)

(5,4,6,7)

(3,6,6,7)

(2,7,6,7)

(8,2,6,6)

(7,8,4,5)

(6,9,4,5)

(10,5,4,5)

(9,7,5,3)

(10,6,3,5)

2,4,1,2,3,4,2,2,4,1,2,2,4,3,2,1,4,2

2,4,3,1,2,4,2,3,1,4,2,3,1,2,4,2,3,1,4,2

2,4,1,3,2,4,2,1,2,4,3,2,1,2,4,2,3,1,4,2

3,4,2,1,3,3,4,2,1,3,3,4,2,1,3,3,4,2,1,3

2,4,3,1,2,4,2,4,2,3,1,2,4,2,4,2,3,1,4,2

2,4,3,1,2,4,2,3,2,4,1,2,3,2,4,2,1,3,4,2

4,3,1,2,4,3,1,4,2,3,4,1,3,2,4,1,3,4,2,1,3,4

4,3,2,1,4,3,2,4,3,2,4,1,3,2,4,3,2,4,1,3,2,4

4,2,3,4,2,3,1,4,2,3,4,2,3,4,2,3,1,4,2,3,4,2

1,4,3,1,4,3,2,1,4,3,1,1,4,3,1,4,3,2,1,4,3,1

2,1,4,3,2,1,4,2,1,3,2,4,1,2,3,1,2,4,1,2,3,4,1,2

2,1,4,3,2,1,2,4,3,2,1,4,2,1,2,3,4,2,1,2,3,4,1,2

1,4,2,3,1,1,4,2,1,3,1,4,2,1,3,1,4,2,1,1,3,4,2,1

1,2,3,4,1,2,1,3,2,1,4,3,2,1,1,2,3,1,2,4,1,3,2,1

1,2,4,1,3,2,1,4,1,2,1,4,3,1,2,1,4,2,1,3,1,4,2,1

10.69

14.85

10.66

18.00

16.66

10.66

12.39

10.19

11.04

12.16

12.51

16.80

16.00

14.51

11.20

n = 5

D Input vector
(number of copies of
each job)

Sequence generated by Webster’s method RTV

12

12

13

13

14

14

14

15

15

15

16

(2,3,3,2,2)

(2,4,2,2,2)

(3,3,3,2,2)

(4,2,3,2,2)

(4,3,3,2,2)

(5,2,3,2,2)

(3,3,3,3,2)

(3,2,3,4,3)

(2,2,3,5,3)

(6,2,2,2,3)

(6,3,2,2,3)

3,2,5,4,1,3,2,5,4,1,3,2

2,5,4,3,1,2,2,5,4,3,1,2

3,2,1,5,4,3,2,1,5,4,3,2,1

1,3,5,4,2,1,3,1,5,4,2,3,1

1,3,2,5,4,1,3,2,1,5,4,3,2,1

1,3,5,4,2,1,3,1,1,5,4,2,3,1

4,3,2,1,5,4,3,2,1,5,4,3,2,1

4,5,3,1,2,4,5,3,1,4,2,5,3,1,4

4,5,3,2,1,4,5,4,3,4,2,1,5,3,4

1,5,4,3,2,1,1,5,1,4,3,2,1,5,1

1,5,2,4,3,1,1,5,2,1,4,3,1,5,2,1

18.00

16.00

17.00

16.91

16.33

21.46

10.66

15.25

19.00

21.00

20.66

16

16

17

17

18

18

(5,4,2,2,3)

(4,4,3,2,3)

(4,4,4,2,3)

(4,4,3,3,3)

(4,5,4,2,3)

(4,5,3,3,3)

1,2,5,4,3,1,2,5,1,2,1,4,3,5,2,1

2,1,5,3,4,2,1,5,3,2,1,4,5,3,2,1

3,2,1,5,4,3,2,1,5,3,2,1,4,5,3,2,1

2,1,5,4,3,2,1,5,4,3,2,1,5,4,3,2,1

2,3,1,5,4,2,3,1,5,2,3,1,2,4,5,3,1,2

2,1,5,4,3,2,1,5,4,3,2,1,2,5,4,3,1,2

17.46

15.33

11.41

21.50

15.20

24.20

29

Appendix B

The solution for n = 2

The problem instance for n = 2 can be solved by a quick procedure described in [1]. The

sequence minimizing the RTV for two jobs is quite easy to obtain as follows: Let d1<d2. We omit

the case d1 = d2 since it is trivial. If we can find a solution with distances and for

job 1, and and for job 2, then this solution will be optimal. Such a solution is

always possible since >= 2 and 2> D/d2 >1. Therefore starting a sequence with job 1 and

then sequencing any consecutive copy of 1 at a distance either or (the number of

times each distance is used are (D mod di) and (di – D mod di) respectively) from the last one

will produce the sequence where empty positions are separated by at most a single copy of job 1.

This allows us to fit in job 2 in the empty positions ensuring the desired distances for job 2. The

resulting sequence will minimize RTV. The details of the algorithm with proofs is given in [1].

30

D/d1

D/d2 D/d2

D/d1 D/d1

D/d1

D/d1

