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Chapter 1 

 

1. Introduction  

 

Generally, plane coloring is the process of assigning different colors to different points of the 

plane. It is becoming popular day by day, as it is used in many fields, such as map coloring 

(e.g. ATLAS), art gallery problem using cameras, allocations of frequencies in cell phone 

networks, etc. Coloring theory was started with the coloring  the map of different countries in 

such a way that no two countries that have the common border receive the same coloring, 

different colors are used to color the neighboring states or countries or regions [10]. If we 

denote the countries by points in the plane, and connect each pair of points that correspond to 

the countries with the same border by a curve, we obtain a planar graph [1, 8]. Similarly, in 

the case of art gallery problem, cameras are used instead of guards for the security purpose, so 

model for art gallery problem can be created by assigning different colors to different regions, 

visible from different cameras. It is also used in the distribution of different radio frequencies, 

and frequency assignments in cellular networks [7] by coloring geometric regions. The 

regions of a plane are considered as nodes of a graph, and coloring the nodes is equivalent to 

coloring of the regions of a plane. 

 

 

         

 

 

 

                               

 

Figure 1.1: Plane coloring is equivalent to Graph coloring. 

 

Figure 1.1 shows plane can be represented using graphs and can be colored subsequently 

using graph coloring. Here, assigning color to region A is equivalent to assigning color to 

B D 

C 

E 

A                  

 

     

C   C 

 

 

 
B 

C 

D 

A 

C 

E 

D 

B 



2 

 

node A, and similarly, other planes B, C, D and E can be colored with the same color 

corresponding to the nodes of a graph B, C, D and E. 

Basically, unit distance graph can be drawn on a plane by taking any two points as adjacent 

vertices, such that the distance between these two points must be a unit. The unit distance 

graph can be colored likely as simple graph, and the adjacent nodes which are unit apart, are 

colored by distinct colors. The concept of unit distance graphs can be used in plane coloring 

in such a way that the points on a plane are taken as nodes of unit distance graph. Since, the 

technology is developing rapidly in the field of networks. Such as, various types of wireless 

networks, including cellular networks in which the nodes represent broadcast stations with a 

uniform broadcast range. A network that divides a geographic area into cells such that the 

same frequency can be reused in two cells that are a certain distance apart is known as cellular 

networks. The networks that can be modeled using unit distance graphs as unit distance 

wireless networks (UDW) [7], in which every station for these networks are equidistance 

from each other, and the frequency is distributed uniformly, such that neighboring cells have 

different frequencies. The distribution of a frequency is modeled by coloring the regions such 

that no two adjacent regions are monochromatic. A model of cellular networks can be drawn 

using unit distance graph, assuming stations as nodes. Coloring the nodes is equivalent to 

coloring the frequency region. Conventionally, hexagonal regions are used as a model for the 

frequency regions [7]. One broadcast station is kept in one hexagonal region, and the 

frequency is broadcasted within the hexagonal region. For example, in the case of mobile 

networks, the frequency stations are of the same network, and it shows the name of particular 

network station if a cell phone comes under the coverage of its frequency. The frequency 

allocation problem in wireless networks is equivalent to the problem of multicoloring the 

nodes of a graph. In particular, given the interference graph of a wireless cellular network, if 

we imagine frequencies as colors, then allocating frequencies to users of the network is 

equivalent to multicoloring the nodes of the graph. And, seven different colors used in the 

model of hexagonal cells [1] indicate the number of different frequency stations. Colors 

indicate the frequencies, so minimum number of colors used in the plane coloring for cellular 

networks implies number of frequencies used in different cells. Frequency reuse is the main 

idea behind cellular networks; similar colored hexagons show the use of same frequency but 

some distance apart, to avoid the use of same frequency in adjacent regions.  
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As we have mentioned that the plane coloring can be equivalent to graph coloring, hence, 

finding the chromatic number of any graph can be the chromatic number of the plane for 

which the graph is configured. There are many heuristic based algorithms, which are used in 

the field of graph coloring. Since, heuristic algorithms are used to find the chromatic number 

of any graph, so they can be used in the field of graph coloring and unit distance graph 

coloring. Graph coloring is an assignment problem [2, 4] i.e. the assignments of colors to the 

vertices. The simple heuristic for the graph coloring is the selection of vertex and assignment 

of color to particular vertex. For example, heuristic might be the ordering of vertices in certain 

order before the assignment of the colors in graph coloring process. Heuristic gives the good 

and fast coloring of a graph. Such as, in register allocation, heuristic algorithms are used to 

find the minimum number of registers used in the program execution.  

 

1.1  Thesis Organization:  

After the brief discussion on introduction and applications of plane coloring problem, and 

different graph coloring algorithms, we organize the thesis through following chapters; 

 

In Chapter 2, we give a brief description of the chromatic number of a plane, and various 

heuristic based graph coloring algorithms. Further it consists of the background used in 

finding the result.   

 

In Chapter 3, we describe some of the researches which have been done in the field of plane 

coloring, and various graph coloring algorithms. The chapter covers the detail literature 

review. 

 

In Chapter 4, we describe the implementation model of this research work. All the algorithms 

used in this study are implemented in MATLAB. In this chapter, we describe the creation of 

unit distance graphs, specific unit distance graphs as test cases, and coloring them using the 

graph coloring algorithms. 

 

In Chapter 5, we analyze different coloring algorithms on the basis of elapsed time and 

number of colors, by showing the results through tables and line charts. 
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In Chapter 6, we summarize the thesis and briefly describe the future scope of this research 

work in the field of cellular networks and register allocation problem. 
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Chapter 2 

 

2. Problem Formulation and Background 

 

2.1 Problem Definition 

The chromatic number of the plane is the minimum number of colors that are needed to paint 

all points in the plane, so that no two points adjacent to each other are colored alike. This 

number is called the chromatic number of the plane and is denoted by χ. To color the plane 

means to assign one color to every point of the plane. In general, even though there has been 

lots of researches done in chromatic number of planes, but still finding the optimal chromatic 

number is an open problem. Besides this, the time in the coloring of a plane has its 

significance in many applications. In this context, this study will include implementation and 

analysis of coloring different unit distance graphs using different heuristic based algorithms 

viz. Contraction based Recursive Largest First [8], Sequential (DSATUR) algorithms [9], and 

Indexed Degree Ordering (IDO) based algorithm [2, 4], so as to result the optimal coloring 

unit distance graphs. And the comparison will be done between these heuristic algorithms, 

and they will be analyzed on the basis of elapsed time, and the number of colors required, in 

the coloring of unit distance graphs. Coloring the unit distance graph is equivalent to 

hexagonal plane coloring used in cellular networks, and different coloring indicates 

distribution of different frequencies over hexagonal regions. So, fast coloring of a hexagonal 

planes, determines the fast assignment of frequency in hexagonal cells. Similarly, minimum 

use of colors and fast coloring has the equal importance in the register allocation problem. 

Minimum colors show less use of registers, and which improves the performance of a 

program. Thus, coloring algorithms are compared in terms of chromatic numbers and elapsed 

time. Hence, this study is also dealt with the time required to color the plane. 

 

2.2 Background of the study 

For this study, it requires some basic terminologies. The Euclidean plane is parameterized by 

coordinates; so that each point is located on a plane is based on its position with respect to 

two perpendicular lines, called coordinate axes. The points located on a Euclidean plane are in 

the pair of x and y co-ordinates (i.e. (x, y)) and the positions of particular points in a plane are 

indicated by xy co-ordinates. Let 
2 

be an Euclidean plane and the minimum number of 
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colors used in coloring of an Euclidean plane, is called the chromatic number of a plane and is 

denoted by χ(
2
). Let G = (V, E) be the graph generated from the plane by taking the points 

of the plane as vertices V, and E be the edges between these vertices. Two vertices are said to 

be adjacent, if they are connected by an edge e ∈ E.  

 

A graph is a pair (V, E) of a set of vertices V and set of edges E. The elements of V are called 

vertices and the elements of E are called edges. Each edge is identified with a pair of vertices. 

Our discussions, in this thesis are concerned only with undirected graphs. We use the symbols 

v1, v2, v3, … to represent the vertices and the symbols e1, e2, e3, ... to represent the edges of a 

graph. The vertices vi and vj associated with an edge el are called the end vertices of el. The 

edge el is then denoted as el = vivj. A graph is called a simple graph if it has no parallel edges 

or self-loops. In this thesis, we are working with the simple graphs only. A graph G is planar 

if there exists a drawing of G in the plane in which no two edges intersect in a point other than 

a vertex of G. A degree of a vertex v is the number of vertices adjacent to v, and is denoted by 

deg(v), saturation degree of a particular vertex is defined as the number of differently colored 

vertices in the neighborhood, and the incidence degree of any vertex is the number of colored 

vertices in the neighborhood.   

 

A graph G is a unit distance graph if the length of each edge is one unit (i.e. the adjacent 

nodes must be unit distance apart). Let G be a unit distance graph, and χ(G) be the minimum 

number of chromatic number used in the coloring of the G, such that adjacent vertices are unit 

distance apart, bearing distinct color. The unit distance is defined as the Euclidean distance 

between two points (x1, y1) and (x2, y2) must be a unit, in co-ordinate system.  

 

The coloring of a unit distance graph G = (V, E) is a mapping C: v→ s, where “s” is a finite 

set of colors, such that if vw ∈ E then C(v) ≠ C(w). In other words, adjacent vertices unit 

distance apart, are not assigned the same color. The problem that arises is the coloring of a 

graph provided that no adjacent vertices have the same color. The chromatic number χ(G) is 

the minimum number of colors needed for a coloring of G. A graph G is k-chromatic, if χ(G) 

= k, and G is k-colorable, if χ(G) ≤ k [4, 7]. 
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Basically, graph coloring is the process of coloring the nodes of a certain graph such that, 

adjacent nodes must be of different colors, it is also known as vertex coloring. Applications of 

graph coloring are as follows; 

 

- It has been used in the frequency assignments in cellular networks and radio stations 

[2].  

 

- In register allocation process, the variables are the nodes of a graph and the registers 

used are the number of colors used in graph coloring. Two variables needed at the same 

time cannot be kept in the same register, and these two variables are adjacent, which are 

colored differently. So, finding the minimum number of colors helps the use of minimum 

number of registers in any computation of a program. [5] 

  

- Many applications such as map coloring (assuming countries as nodes in a map and 

assigning color to each node such that the adjacent nodes or countries are colored 

uniquely), art gallery problem where the cameras are assumed as nodes and coloring them 

such that the adjacent regions or cameras are colored differently.  

 

- Many other applications such as; distribution of items: e.g. set of animals which can 

and cannot live together can be assumed as vertices of a graph which are colored by 

different colors. Similarly, set of plants that can and cannot kept together, set of food 

items which can and cannot consumed together, set of people who can and cannot stay 

together, are distinguished using different colors. 
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Chapter 3 

 

3. Literature Review  

 
Lots of researches have been done in the field of plane coloring. There have been many 

researches done for finding the chromatic number of planes using unit distance graphs. And, 

so many heuristic algorithms based on the ordering of vertices were developed in order to 

color the graph.  

 

3.1 Simple Unit Distance Graphs 

Lots of researches has been done in unit distance graphs for plane coloring among which 

some of the specific and simple unit distance graphs are; Grid graph, Cycle graph, Wheel 

graph, Star graph, which are determined in [1, 6]. The chromatic number for a wheel graph 

(Wn) containing odd number of nodes is determined to be three, and four for even number of 

nodes. Similarly, a cycle graph contains a cycle through all nodes where the chromatic 

number is determined to be 3 for odd nodes and 2 for even nodes. For star graph the 

chromatic number is determined to be two, no matters whether n are odd or even. Similarly, 

the chromatic number of a grid graph is found to be two. 

 

                

 

 

 

 

 

 

Figure 3.1: Even nodes Cycle graph.     Figure 3.2: Odd nodes Wheel graph. 
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Figure 3.3: Grid graph.                                           Figure 3.4: Star graph. 

 

3.2 Four coloring of a plane using Moser graph 

The basic coloring of a plane is originated from the two coloring the nodes as end points of 

line segment of length one unit, but it was not possible to color the plane with just two colors 

[6]. Then, three coloring of a plane is found with the help of equilateral triangle of each side 

length one unit, shown in figures below; 

 

 

 

 

Figure 3.5: Two coloring of a line. 

 

 

 

 

 

 

 

Figure 3.6: Three coloring of a plane using equilateral triangle. 

 

In figure 3.5, the endpoints R and B of a line segment are colored by two different colors Red 

R and Blue B. Similarly, in figure 3.6, the vertices R, B and G formed an equilateral triangle, 
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so all three vertices have different colors Red R, blue B and green G, respectively as they are 

unit distance apart. The base for the four coloring problem is developed from the three 

coloring of a plane i.e. equilateral triangle. 

 

The authors in [1] have shown that plane can be four colored. The four coloring for the plane 

coloring is given by Moser graph. Leo Moser and William Moser [1, 6] found a graph called 

Moser graph, which is a unit distance graph which strictly requires four colors.  

 

 

 

                                   

 

 

                                                              

       

Figure 3.7: Moser graph. 

Hugo Hadwiger [1] in 1961, proposed that Moser graph can be made up of four equilateral 

triangles or two rhombuses with each side of length one. Each equilateral triangle needs three 

colors; let these colors be red r, blue b, and green g. Let r, b, r’ and g be one rhombus. If the 

rhombus is rotated around the point r through some angle, a newly formed rhombus be r, b’, 

g’ and r”, and the point r is rotated in such a way that r’ is unit distance away from r” so that 

there must be an edge of length one unit. It needs three colors as it is formed by equilateral 

triangle but at point r” all three colors red, blue and green are not possible so there must be 

another color say yellow.  

                                                                                  

3.3 Nine coloring of a plane 

The authors of [1] had shown that the plane can be colored by 9 different colors. It is proved 

by tiling the plane with unit squares and coloring one square by one color and its eight 

neighbors in colors 2, 3… 8, 9. Obviously, from figure 3.7, every adjacent unit squares have a 
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distinct color. It is realized that the unit distance between any two points in the plane in figure 

3.8, must be in the range √2 < d < 2 to be colored uniquely. The length of diagonal of each 

unit square is √2 unit, which can be derived with the help of Pythagoras Theorem, and same 

colored unit squares are 2 units apart. 

 

8 9 7 8 9 7 8 9 

1 2 6 1 2 6 1 2 

4 3 5 4 3 5 4 3 

8 9 7 8 9 7 8 9 

1 2 6 1 2 6 1 2 

4 3 5 4 3 5 4 3 

8 9 7 8 9 7 8 9 

1 2 6 1 2 6 1 2 

4 3 5 4 3 5 4 3 

 

Figure 3.8: Unit square-based 9-coloring of a plane. 

 

3.4 Seven coloring of a plane 

Hadwiger [1] improved nine coloring of a plane by using hexagon tiling rather than unit 

square tiling. The solution for this problem is given by tiling the hexagons of side 1 unit. 

Hexagon first colored with red color and six neighbors colored with blue, green, yellow, 

brown, pink, and violet colors, so that no two adjacent hexagons had same color. In the case 

of hexagonal plane coloring, it is realized that the distance between any two adjacent points in 

the plane formed by tiling the hexagonal planes, is in the range 2 < d < √7, to be colored 

distinctly, where 2 unit is the length of a largest diagonal of a hexagon and √7 units is the 

distance between two similar colored hexagons. Obviously, the length of largest diagonal of a 

hexagon is 2, so the distance between any two adjacent points must be greater than 2, to be 

colored distinctly. And, in the case d < √7, we can find it by assuming the isosceles triangle as 

shown in the figure 3.7, and eventually, by using Pythagoras Theorem we find the minimum 

distance between two same colored hexagonal planes is √7. If we assume d=2.1unit, then two 

points distance d unit apart are definitely adjacent points and colored uniquely. This type of 

plane coloring restricts the same colors between neighbors. In cellular networks, hexagonal 
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planes are used as a unit distance wireless networks (UDW) [7].  In UDW, each hexagon is 

taken as a region of particular broadcast station, and different frequencies are distributed 

among different hexagons. The group of frequencies can be reused in other cells, provided 

that the same frequencies are not reused in adjacent neighboring. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Hexagon-based seven coloring of the plane. 

 

3.5 Three coloring of a plane via Petersen graph 

Erdos, Hararay and Tutte [3], had shown that all generalized Petersen graphs are planar unit 

distance graphs (i.e. the length of each edge is a unit), which are three colorable. It is also 

shown that the  Petersen graph of Figure 3.10 (a) can be drawn in the Euclidean plane in such 

a way that the vertices are mapped to distinct points in the plane and edges to line segments of 

length one. They proposed unit-distance representation of the Petersen graph with rotational 

symmetry in the Euclidean plane that can be seen in Figure 3.10 (b). The special kind of unit 

distance graph was proposed which requires three colors, which shows that the plane can be 

three colorable, since the plane can be denoted by the graphs and colored via graph. The 

drawing can be obtained from the standard drawing of the Petersen graph by suitably scaling 

the inner pentagram and rotating it against the outer pentagon, in such a way that the edges 

connecting the pentagram with the pentagon become of length one. This procedure is known 

as twist. So, we can represent the plane as Petersen graph resulting three colors for the plane. 
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Figure 3.10(a): Petersen Graph.    Figure 3.10 (b): Symmetrical Petersen graph 

using rotational symmetry. 

                                                        

3.6 Graph Coloring Algorithms 

Number of algorithms on graph coloring can be found in [2, 4, 8]. Author of [8] has given the 

idea of contraction for graph coloring in heuristic greedy approach. And, also in [2, 4], there 

are   some heuristics used in order to color the graph. 

 

3.6.1 Contraction based RLF graph coloring algorithm 

In graph theory, contraction is defined as the process of merging one vertex into another and 

all the links to the merged vertex are forwarded to that vertex where it is merged. Formal 

definition of vertex contraction is;  for any non-adjacent vertices x and y we denote 

contraction by G/x,y i.e. graph after contracting y into x, y is deleted, and the neighbor set of x 

say NG(x) becomes NG(x)UNG(y), where NG(y) is the neighbor set of y. The widely used 

contraction based algorithm is the Recursive Largest First (RLF) [8]. RLF is a heuristic based 

greedy algorithm; heuristic preference is the degree of vertex. Ordering of vertices in non-

increasing order makes it heuristic and selection of maximal degree vertex at every step 

makes it greedy. It colors the graph by coloring as many vertices with one color as possible, 

then moving on to the next color. The steps for RLF algorithm are as follows;  

 

Given a graph G = (V, E), with vertex list V and edge list E. 
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- Determine a vertex x of maximal degree in G. 

- Color x with the first available color. 

- Find the non-neighbor vertices of x. 

- Contract the non-neighbor vertices into vertex x, and the contracted non-

neighbors are given the same color as x. 

- If any two non-neighbor vertices are adjacent, then any one of them is 

contracted. 

Contraction removes the contracted vertex and all the edges associated with it, 

but the neighbors of the contracted vertex become the neighbor of x. 

- Remove the vertex x from G. 

- Vertex x and all vertices contracted into x constitute a color class. 

Continue the process until all the vertices of G are colored. 

 

3.6.2 Ordering based heuristic graph coloring algorithms 

The heuristic is one of the methods of problem solving, which selects one solution among 

many alternative solutions, it is used to boost the performance of any algorithm, and find a 

good solution quickly. Simply, heuristic is the change in any algorithm for better 

performance. And, the greedy heuristic makes the choice that seems best at the moment. 

Greedy algorithms are free of backtracking, e.g. in graph coloring, greedy means once the 

vertex is assigned a color; it never changed. Some of the heuristics which can be used in 

graph coloring algorithms in [2, 4] are as follows; 

 

Largest Degree Ordering (LDO): In this heuristic, the vertices are ordered in non-increasing 

order. Let vertices v1, v2… vi-1 have been chosen and colored, vertex vi is chosen to be the next 

vertex with maximum degree among the set of uncolored vertices. Maximum degree means, 

the vertex having highest number of neighbors. E.g. if the vertex v has four neighbor vertices, 

then the degree of v is 4, and if it is the highest degree among other vertices then v is the 

largest degree vertex.  

 

Saturation Degree Ordering (SDO): The famous heuristic which can be used in the graph 

coloring algorithm is the SDO. Let the vertices of a graph be v1, v2… vi-1 have been chosen 

and colored. Then at step i, vertex vi with the maximum saturated degree is selected. The 
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saturation degree of a vertex is defined as the number of colors adjacent to the vertex, in the 

neighboring vertices. E.G. if a vertex v has degree equal to four where one of its neighbors is 

uncolored, two of them are colored with color equal to 1, while the last one is colored with 

color equal to 3 then v has saturation degree equal to two. 

 

Incidence Degree Ordering (IDO): Another heuristic is the IDO. Let v1, v2… vi-1 are the 

vertices have been chosen and colored. Vertex vi with the maximum incidence degree is 

chosen at step i. The incidence degree of a vertex is defined as the number of its adjacent 

colored vertices rather than the number of differently colored vertices. For example, if a 

vertex v has degree equal to 6, where one of its neighbor is uncolored, two of its neighbors are 

colored with color 1, and three are colored with color 2 then v has an incidence degree equal 

to five. 

 

3.6.2.1  DSATUR sequential graph coloring algorithm 

Sequential Coloring (SC) [8] performs the coloring of a graph, according to the degree of the 

vertices. Let a0, a1…, an-1 are the vertices of a graph, and then the ordering of these vertices 

should be in non-increasing order; 

- d(a0) > d(a1) >…>d(an-1), where d denotes the degree of a vertex. 

One of the widely used SC algorithms is the DSATUR (Degree of saturation) algorithm [8, 

9]. Since, it uses a heuristic SDO; heuristic preference is the degree of saturation of a vertex, 

which changes the ordering of vertices and then uses the greedy method to color these 

vertices. The saturation degree of any vertex x, degs(x), is the number of different colors at 

vertices adjacent to x. DSATUR  starts by assigning color 1 to a vertex with the maximal 

degree. The vertex to be colored next in the sequential coloring procedure of DSATUR is a 

vertex with maximal degs(x). The steps for DSATUR algorithm, when the set of vertices of a 

graph G are given, are as follows; 

 

- Arrange the vertices by non-increasing order of degrees and keep the colors in the 

array. 

  d(a0)> d(a1)> d(a2)>……….. > d(an),  

- Color a vertex of maximal degree with color 1. 

- Find the set of uncolored vertices, which includes; 
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o Choose a vertex with maximal saturation degree. This means that we have to 

choose the vertex that has most number of unique neighboring colors.  

o If there is equality in saturation degree, choose a vertex of maximal degree in 

the uncolored sub-graph. 

- Color the chosen vertex with the least possible color from the array of colors. 

If all the vertices are colored, stop. Otherwise, return to 3
rd

 step.   

 

3.6.2.2  Incidence Degree Ordering heuristic algorithm 

The authors of [2, 4] have given the heuristic incidence degree ordering (IDO) graph coloring 

algorithm working with Largest Degree Ordering (LDO); heuristic preference is the degree of 

incidence of a vertex. There are two criteria for choosing the vertex to be colored:  

- The number of vertices connected to the vertex LDO, and 

- The number of colored vertices connected to the vertex IDO.  

 

The steps which are used in this algorithm are given as;  

 

- Initialization of NoOfColoredNodes = 0. 

- While NoOfColoredNodes < NoOfNodes 

- Initialize max = -1. 

- For every vertex x in the vertex set; 

o If the vertex x is not colored. 

 Find the degree, deg(x).  

 If deg(x) is greater than max; 

  Max = deg(x) and index is the index(x). 

 If deg(x) = max; 

 If incidence degree of i
th

 vertex in vertex set is greater than incidence 

degree of x, then index is the index of i
th

 vertex. 

- Color the vertex which is on the ‘index’ position of vertex set. 

- NoOfColoredNodes is increased by one. 

Repeat the steps until all the nodes are colored. 
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Chapter 4 

 

4. Implementation  

 

4.1 Implementation model 

The graph coloring algorithms are implemented so as to color Euclidean planes (plane 

coloring-graph coloring). The algorithms are simulated for various flavors of unit distance 

graphs such as Petersen graph, wheel graph, cycle graph, grid graph and star graph. The 

contraction based recursive largest first (RLF) heuristic algorithm, heuristic based sequential 

(DSATUR), and incidence degree ordering (IDO) heuristic algorithms are implemented and 

tested in Matlab R2011b. The configuration of the test machine  is on Intel® core™ i5-

2410M CPU @ 2.30 GHz, with 2Gb RAM in Windows 7 Professional 64 bit Operating 

System. 

 

4.2 MATLAB 

Among many programming languages, MATLAB is one, which is a powerful language for 

technical computing. It is developed by Mathworks (Multi-national Corporation that 

specializes in mathematical computing software). The name MATLAB stands for MATrix 

LABoratory, because its basic data element is a matrix (array). Matlab can be used for math 

computations, modeling and algorithm development. It can also display information 

graphically. It can allow interfacing with programs written in other languages, including C, 

C++, JAVA, and FORTRAN. The standard MATLAB program has functions or tools that can 

be used to solve problems. In addition, it has optional toolboxes that are the collections of 

specialized programs designed to solve the specific types of problems. In this study, we have 

used MATGRAPH toolbox. 

 

4.2.2 Matgraph  

Matgraph is a toolbox for working with simple graphs in MATLAB. To create unit distance 

graphs, Matgraph provides some important ideas such as, joining vertices by edges, checking 

whether two vertices has any edge or not, deletion or addition of vertices or edges etc. All 

graphs handled by Matgraph are simple and undirected. And the vertex set of all graphs in 

Matgraph is always in the form {1, 2, 3… n}, where, n ≥ 0 is the number of vertices.   
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4.3 Implementation model 
 

The flowchart of the implementation model is given as; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Implementation model. 
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4.4 Implementation of Unit Distance Graph 

Unit distance graph is created by taking the points on a plane in such a way that the distance 

between adjacent vertices must be one unit. In general, it is not easy to draw these types of 

graphs with the random points. So, there are some ideas which give the way of drawing unit 

distance graphs. The procedures which have been used in the creation of UDG are as follows; 

 

 By choosing the unit distance points from the random points with the help of distance 

formula, i.e.  √(x1- x2)
2 

+ (y1-y2)
2
) = 1. Code sample for selecting the random unit distance 

points is mentioned below; 

 

Code sample 1: 

 

Function [xy] = Unit_Distance_Points (100) 

  XY=rand(100, 2); 

     for i=1:100 

        for j=i+1:100 

              X1=XY(i,:); 

              X1=XY(j,:);  

              Distance = Sqrt(((X2(1,1) – X1(1,1))^2 + X2(1,2) – X1(1,2))^2); 

              if Distance == 1 

              xy = [xy; XY(i,:) ; XY(j,:)]; 

          End 

       End 

End     

 

Listing 4.1: Selection of unit distance points. 
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 By using the unit distance tree, which is created by choosing some random points on the 

circumference of a unit circle (a circle of unit radius), and then taking these points as centers 

of new circles. New circles are drawn, and same process is repeated for these new circles. 

Then, the centers and intersection points of corresponding circles are joined in order to get a 

unit distance tree. 

 

Code sample 2: 

 

 Function [t] = unit_distance_tree(g, v_list, e_list) 

  vertex = v_list(end,1); 

  g=graph(vertex); 

  embed(g, vertex); 

   for i=1:size(e_list,1)   

    add(g, e_list(i,1), e_list(i,2)); 

  End 

     ndraw(g); 

 End (function) 

 

Listing 4.2: Creation of unit distance tree. 

 

Now, unit distance graph can be created, by using random points, making each vertex as a 

center of a circle, drawing the circles with radii of one unit. After that, the intersection points 

of all circles are determined and lines are drawn from the centers of intersecting circles to the 

corresponding intersecting points. Similarly, UDG can be drawn by using Circle Intersection 

method to draw a unit distance graph from the unit distance tree, by taking each tree node as a 

center of circle. 
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Code sample 3: 

 

Function [g] = Unit_Distance_Graph(vertex) 

V_coords = xy; 

No_of_circles = size(v_coords,1); 

Centers = v_coords; 

For i = 1: no_of_circles 

    For j = i+1: no_of_circles 

    Center1=centers(i,:); 

    Radius1=1; 

    Center2=centers(i,:); 

    Radius2=2; 

    Line(Center1, Center2); 

    [intersect_1, intersect_2] = my_circle_intersection(center1, radius1, center2,   

radius2); 

    Line(Center1,intersect1); Line(Center2,intersect1);  

    Line(Center1,intersect2); Line(Center2,intersect2); 

     End (for j) 

 End (for i) 

 v_list={Center1, Center2, intersect1, intersect2}; 

 g=graph(size(v_list));       % creating graph of size v_list . 

 End (function) 

 

Listing 4.3: Creation of unit distance graph. 
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4.5 Implementation of Simple Unit Distance Graphs 

 

Simple unit distance graphs include Petersen graph, Wheel graph, Cycle graph, Grid graph, 

and Star graph. We have taken these unit distance graphs as test cases in this study, and the 

modules of these test cases in MATLAB are given below. 

 

 Petersen graph: The Petersen graph is a unit distance graph of 10 vertices and 15 edges. 

Following is the code sample for the creation of Petersen graph; 

 

Code sample 4: 

Function [P] = Petersen_graph(e_list) 

     g = graph(10); 

    e_list = [1 6; 2 7; 3 8; 4 9; 5 10;1 2; 2 3; 3 4; 4 5; 5 1; 6 8; 7 9; 8 10; 9 6; 10 7]; 

    add(g,e_list); 

    ndraw(g); 

End 

 

Listing 4.4: Creation of Petersen graph. 

 
 

 Cycle Graph: A cycle graph or circular unit distance graph is a graph that consists of some 

number of vertices connected in a closed chain. Code sample for creating cycle graph is given 

as; 

 

Code sample 5: 

 

 Function [C ] = cycle_graph(no_of_vertices) 

      g = cycle_graph(11); 

      ndraw(g); 
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 End  

 

Listing 4.5: Creation of cycle graph. 

 

 Wheel Graph: Wheel graph is a graph with n vertices, formed by connecting a single 

vertex to all vertices of (n-1) cycles. The code sample for the creation of a wheel graph is; 

 

Code sample 6: 

 

 Function [W ] = wheel_graph(no_of_vertices) 

   g = wheel_graph(20); 

  ndraw(g) ; 

 End 

 

Listing 4.6: Creation of wheel graph 

. 

 Grid Graph: A grid graph is a unit distance graph whose vertices correspond to the points 

in the plane with integer coordinates, X-coordinates being in the range 1, …., n, y-coordinates 

being in the range 1, …, m, and two vertices are connected by an edge whenever the 

corresponding points are at distance 1. Module for grid graph is as follows; 

 

Code sample 7: 

 

 Function [ G] = grid_graph(no_of_vertices) 

  g = grid_graph(5, 5); 

  ndraw(g); 

 End       

 

Listing 4.7: Creation of grid graph. 
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 Star Graph: It is a graph of n vertices formed by connecting a single vertex to all other 

vertices, and distance between single vertex and others is a unit. The module for star graph is 

shown as; 

 

Code sample 8: 

 

 Function [ S] = star_graph(no_of_vertices) 

      g = star_graph(26); 

      ndraw(g); 

 End  

 

Listing 4.8: Creation of star graph. 

 

4.6 Implementation of Graph Coloring Algorithms 

During this study, we have implemented four coloring algorithms in order to color different 

unit distance graphs. The purpose for the implementation of these heuristic based coloring 

algorithms is to color different unit distance graphs with minimum chromatic number. 

 

4.5.1 RLF Graph Coloring Algorithm 

Since, contraction is based on the merging of vertex into another vertex, and is used in 

coloring the graph and finding the chromatic number of any graph. Here, we have used the 

Recursive Largest First algorithm (RLF), which is contraction based heuristic algorithm for 

the graph coloring purpose. The code sample used in RLF algorithm is as follows; 

 

Code sample 9: 

 

Function [coloring ] = my_rlf(v_list, e_list) 

   n = numel(v_list) 

   colors = 0; 
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   Degree = calculate_degree(v_list, e_list); 

   While n>0 

        temp = max(degree(v_list)); 

        colors = colors + 1; 

        coloring (temp) = 1; 

         nn = non-neighbors(temp) ; 

       nb = numel(nn); 

        While(nb>0) 

           maxcn = -1; 

           y_degree = -1;  

            for i = 1:numel(nn) 

                 cn = numel(common neighbor(temp, nn(i) )); 

                  if cn>maxcn || (cn=maxcn && deg(nn(i)>y_degree) 

                       y = nn(i); 

                       y_degree = deg(nn(i)); 

                        maxcn = cn; 

                   End  

              End (for)  

               If maxcn == 0 

                   y = max(deg(nn)); 

               End  

               coloring(y) = colors; 
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               contract(v_list, E_list, temp, y); 

         End (while nn) 

         v_list = setdiff(v_list, temp); 

     End (while n) 

  End (function) 

 

Listing 4.9: The contraction based RLF algorithm. 

 

The contraction based RLF algorithm is used to color the vertices of unit distance graph such 

that the adjacent vertices must be colored differently. This is a code for coloring the vertices 

by choosing non-neighbors of a particular vertex and it assigns the same color to the vertex 

and its non-neighbors under some condition. This piece of code works on contraction i.e. let v 

vertex is contracted into u, then, the edges incident on v becomes the incident edges of u and 

the vertex v is deleted.  

 

4.5.2 DSATUR sequential graph coloring algorithm 

This is a heuristic based greedy graph coloring algorithms, which manage the vertices in 

decreasing order using LDO heuristic, and choosing the next vertex on the basis of SDO 

heuristic. The code sample for DSATUR algorithm is given as; 

 

Code sample 10: 

 

 Function [ coloring ] = DSATUR(v_list, e_list) 

      available_colors = 1; 

     for i = 1:numel(v_list)       

            Degree(i, 1) = size([E(find(E(:,1)==v),2 ; E(find(E(:,2)==v,1)],1);  

       End 

       for i=1:numel(v_list) 
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              if i==1  

              [ value index ] = max(Degree); 

              v = index(1); 

              coloring(v) = 1; 

              else 

                Uncolored = find(coloring==0); 

                Temp=   find(sat_degree(Uncolored)=max(sat_degree(Uncolored)); 

                 [ v index1 ] = max(Degree(Uncolored)); 

                 Neighbors = neighbor(v); 

             for j = 1: colors 

                  If coloring(neighbors)==j,1)==0 

                      coloring(v) = j; 

                 End 

             End  

       End 

End (Function) 

 

Listing 4.10: DSATUR algorithm. 

 

This code colors the first vertex on the basis of maximal degree and colors the next vertex of a 

graph on the basis of maximal saturation degree, and in the case of equal saturation degree of 

two or more vertices in uncolored set of vertices, the code go for the largest degree vertex 

from the set and colors it the next available color. 

 

4.5.3 IDO based algorithm 

The incidence degree ordering (IDO) heuristic is the ordering of vertices according to the 

degree of incidence. Incidence degree of any vertex is the total number of colored vertices 

adjacent to it. The code sample used in the implementation of this algorithm; 
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Code sample 11: 

 

 Function [ ] my_ido(v_list, e_list) 

       Coloring(:, 2) = 0; 

       NoOfColoredNodes = 0; 

       While(NoOfColoredNodes<numel(v_list)) 

          Max = -1; 

          For i = 1:numel(e_list) 

               If coloring(v_list(:, 2) = 0) 

                  D = degree(V(i), 2); 

                  If D>Max 

                    Max = D; index = i; 

               End  

               If D = Max 

                         If my_id(v_list, e_list, coloring(v_list(i)) > my_id(v_list, e_list,      

coloring(v_list(index)); 

                      index = i; 

                   End  

           End (if) 

       End (for) 

       Coloring = my_color(e_list, coloring, v_list(index)); 

      End (while) 

End (function) 
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Listing 4.11: IDO based algorithm. 

 

This code is used to color the vertices of a graph on the basis of incidence degree. Incidence 

degree can be obtained from the following sample of code; 

 

Code sample 12: 

 

 Function [id] = my_id(v_list, e_list, v)  

  Nbr =  neighbor(e_list, v); 

       Id = numel(find(coloring(nbr))); 

 End  

 

Listing 4.12: Index degree finding function. 

 

This piece of a code is very useful as it finds the incidence degree (number of colored nodes 

in the neighbor) of a particular vertex. 
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Chapter 5 

 

5. Analysis  

 
In this chapter, we will analyze different unit distance graphs on the basis of number of colors 

and the time elapsed in coloring procedure using different graph coloring algorithms. After 

the implementation of coloring algorithms, the observed data are the number of colors and the 

elapsed time in milliseconds according to the increment in the number of vertices. The 

corresponding values of number of vertices for coloring different unit distance graphs using 

RLF, IDO based and DSATUR algorithms are obtained and are analyzed using tables and line 

charts. 

 

Following are the analysis tables for different unit distance graphs colored by RLF, IDO 

based and DSATUR coloring algorithms. The table below shows the details of elapsed time 

and number of colors for different coloring algorithms which are used to color the unit 

distance graphs formed from random unit distance points. 

 

Number 

of 

vertices 

RLF IDO based DSATUR 

 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

172 3 462 3 690 3 15 

499 3 2133 3 5231 3 24 

957 3 7281 4 17208 3 56 

1357 3 12154 4 34044 3 76 

1554 3 20276 4 53264 3 104 

Table 5.1: Coloring time and number of colors used by UDG formed from random unit 

distance points. 

 

From the table 5.1, DSATUR is found to be good as for the parameters; chromatic number 

and the elapsed time, than the other two, RLF and IDO based algorithms. In the comparison 

of RLF and IDO based heuristic algorithms, RLF seemed good than the IDO based algorithm 

in terms of time as well as the number of colors. IDO based algorithm gives more number of 
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colors in comparison to RLF and DSATUR algorithms. Both DSATUR and RLF give the 

same number of colors, but in the case of time, DSATUR is very fast than RLF. Here, the 

number of colors obtained, are almost same for all the coloring algorithms, so the chart shown 

below is on the basis of elapsed time. 

 

 

Figure 5.1:  A line chart for time elapsed while coloring UDG formed by random unit 

distance points.  

 

The table 5.2 shows the comparison of different coloring algorithms viz. RLF, IDO based and 

DSATUR, on the basis of number of colors and elapsed time, which are used to color the unit 

distance graphs formed by unit distance tree. 
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Number 

of 

vertices 

RLF IDO based DSATUR 

 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

100 3 220 3 528 3 3 

400 3 2618 3 5326 3 27 

580 3 4956 3 8404 3 31 

900 3 10183 3 24850 3 43 

1600 3 38519 3 66545 3 113 

Table 5.2: Coloring time and number of colors used by UDG formed by unit distance tree. 

 

Similarly, coloring of unit distance graph created by unit distance tree, the chromatic number 

is found same for all the algorithms but according to the elapsed time RLF is better over IDO 

based and DSATUR is better over RLF. Since there is no variation found in number of colors, 

the following chart shows the variation in time elapsed to color the graph. 

 

 

Figure 5.2: Line chart for time elapsed while coloring UDG formed by unit distance tree. 

 

We have discussed about some test cases including simple unit distance graphs such as wheel, 

cycle, star, grid and Petersen graphs. Followings are the analysis tables for these test cases; 
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In table 5.3, the different coloring algorithms are compared on the basis of number of colors 

and the elapsed time in the coloring of a wheel graph. Since, the chromatic number for a 

wheel graph is 3 for odd number of vertices and 4 for even number of vertices, and in the 

analysis of wheel graph we found that the chromatic number of a wheel graph is 3 for any odd 

number of vertices and the chromatic number of a wheel graph is 4 for any even number of 

vertices, which shows that the graph coloring algorithms have worked properly.   

 

Number 

of 

vertices 

RLF IDO based DSATUR 

 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

10 4 4 4 16 4 0.33 

25 3 20 3 38 3 0.82 

50 4 66 4 147 4 1 

100 4 233 4 594 4 3 

201 3 800 3 1785 3 7 

Table 5.3: Time factor and number of colors obtained while coloring wheel graph. 

 

In the following figure 5.3, the analysis for the wheel graph is given by using line chart on the 

basis of elapsed time as we can see in the above table 5.3, that the number of colors obtained 

by coloring the wheel graph using RLF, DSATUR and IDO based algorithms are same. And 

it is found that DSATUR takes less time than RLF and IDO, and in the comparison of RLF 

and IDO based algorithms, the RLF takes less time to color the wheel graph. 
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Figure 5.3: Line chart showing detail of time elapsed while coloring wheel graph. 

 

In table 5.4, the resulting parameter for coloring algorithms RLF, IDO based and DSATUR 

are shown on the basis of chromatic number and elapsed time while coloring star graph. From 

the following analysis, the chromatic number of star graph is found to be 2. 

 

Number 

of 

vertices 

RLF IDO based DSATUR 

 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

10 2 4 2 9 2 0.5 

25 2 26 2 45 2 1 

50 2 93 2 113 2 2 

100 2 399 2 580 2 4 

201 2 1137 2 1976 2 8 

Table 5.4: Time factor and number of colors obtained while coloring star graph. 

 

In the following figure 5.4, the analysis for star graph is shown on the basis of elapsed time in 

coloring by using coloring algorithms. After the analysis, the RLF is found superior to IDO 

based algorithms, and DSATUR is found superior to both RLF and IDO based algorithms. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 25 50 100 201

Ti
m

e
 in

 m
s

No. of vertices

RLF

IDO

DSATUR



35 

 

 

Figure 5.4: Line chart showing detail of time elapsed while coloring star graph. 

 

In table 5.5, cycle graph is analyzed on the basis of chromatic number and the elapsed time to 

color the cycle graph using RLF, IDO based and DSATUR algorithms. It is found that the 

chromatic number of a cycle graph is 2 for the even number of vertices and 3 for the odd 

number of vertices. 

 

Number 

of 

vertices 

RLF IDO based DSATUR 

 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

10 2 5 2 6 2 0.3 

25 3 21 3 37 3 0.5 

50 2 84 2 155 2 1 

100 2 306 2 496 2 2 

201 3 1066 3 1830 3 5 

Table 5.5: Time factor and number of colors obtained while coloring cycle graph. 
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In the following figure, it is found, while coloring the cycle graph, DSATUR algorithm works 

better than RLF and IDO based algorithms. Since, number of colors obtained while coloring 

cycle graph are same using different coloring algorithms, so the following chart analysis is 

only based on the elapsed time.  

 

 

Figure 5.5: Line chart showing detail of time elapsed while coloring cycle graph. 

 

In table 5.6, different graph coloring algorithms are compared on the basis of chromatic 

number and the elapsed time while coloring grid graph using RLF, DSATUR and IDO based 

algorithms. And the minimum number of colors found to color the grid graph is 2, which is 

given by RLF and DSATUR but IDO based algorithm colors the grid graph using 3 or 4 

colors. So, RLF and DSATUR algorithms are better than IDO based in the case chromatic 

number. 
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Number 

of 

vertices 

RLF IDO based DSATUR 

 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

9 2 4 3 34 2 0.3 

25 2 30 4 26 2 0.8 

64 2 53 4 46 2 2 

100 2 332 4 463 2 4 

225 2 1110 4 1931 2 10 

Table 5.6: Time factor and number of colors obtained while coloring grid graph. 

 

In the following figure 5.6, the comparison is based on the time elapsed while coloring the 

grid graph. DSATUR again found to be superior to IDO based and RLF algorithms. 

 

 

Figure 5.6: Line chart showing detail of time elapsed while coloring grid graph. 

 

In table 5.7, the various coloring algorithms are compared on the basis of number of colors 

and the elapsed time while coloring Petersen graph. So, it has been found that the Petersen 

graph is three colorable. In the case of chromatic number, all the algorithms have given the 

same number of colors. 
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Number 

of 

vertices 

RLF IDO based DSATUR 

 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

No. of 

colors 

Elapsed time 

in ms 

10 3 2 3 4 3 0.2 

Table 5.7: Time factor and number of colors obtained while coloring Petersen graph. 

 

Since, Petersen graph is a unit distance graph of ten vertices and 15 edges, so we cannot 

analyze it by taking more or less than 10 vertices. In the following figure 5.7, the analysis is 

done on the basis of elapsed time using line chart. Here, again, DSATUR is seemed to be 

superior to RLF and IDO based algorithms. 

 

 

Figure 5.7: Line chart showing detail of time elapsed while coloring Petersen graph. 
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Result: 

After the analysis of different unit distance graphs colored using RLF, IDO based and 

DSATUR graph coloring algorithms, it is found that the heuristic based DSATUR algorithm 

is the better graph coloring algorithm than RLF and IDO based algorithms, on the basis of 

coloring time (i.e. elapsed time) and number of colors required. In this analysis, it is found 

that not all the heuristic based algorithms give the same results, some heuristic based 

algorithms perform better and some do not. In this analysis, we found that among three graph 

coloring algorithms RLF is superior to IDO based and DSATUR is superior to RLF. 
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Chapter 6 

 

6. Conclusion and Future Work   

 

6.1 Summary and Conclusion  

As we have mentioned that the plane coloring can be done via unit distance graph coloring. 

So in this study we have created different unit distance graphs, and colored them using three 

heuristic based graph coloring algorithms. Heuristics include LDO, SDO and IDO on the 

basis of ordering of vertices. The contraction based RLF algorithm uses the LDO heuristic to 

select the maximal degree vertex every time when next color is to be used. DSATUR 

algorithm uses SDO heuristic, which select the next vertex on the basis of maximal saturation 

degree. Similarly, IDO based selects the next vertex on the basis of incidence degree. 

 

After the comparison of different heuristic graph coloring algorithms used to color different 

unit distance graphs on the basis of elapsed time and the number of colors, it is found that not 

every heuristic based algorithm give good results. RLF and DSATUR algorithms have given 

the same chromatic number, but the elapsed time is different. It is found that the elapsed time 

for DSATUR is very small comparing with RLF and IDO based algorithms. As analyzed in 

the tables and the line charts, the IDO based algorithm has taken the maximum time to 

execute and given extra colors. So, in terms of chromatic number and time, RLF seemed 

better than IDO based, and DSATUR seemed better than RLF and IDO based graph coloring 

algorithms. 

  

And using RLF, IDO based and DSATUR heuristic algorithms, we have colored the unit 

distance graphs created from unit distance points and unit distance tree, and found the optimal 

chromatic number. 

 

6.2 Further Recommendations 

This study is limited to different flavors of unit distance graphs. There are various types of 

graphs, such as bipartite graph, complete graph, etc. and the study may be continued on the 

applications of different graphs rather than unit distance graphs.  
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We can extend this work in various problems like register allocation problem via graph 

coloring [6] and unit distance frequency distribution (UDW) [7], which are not discussed 

vastly in this study. 
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Appendix   

Some of the figures obtained by implementing the unit distance graphs and coloring them by 

using RLF, DSATUR and IDO based algorithms in MATLAB, are shown in figures below. 

 

 

 

Figure A.1: Unit distance graph using random unit distance points colored by DSATUR 

and RLF algorithm (three colors are needed). 

 

 

 

Figure A.2: Unit distance graph using random unit distance points colored by IDO based 

algorithm (four colors needed). 
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Figure A.3: Unit distance graphs using unit distance tree (three colors needed). 

 

 

 

Figure A.4: Cycle graph for even nodes.  Figure A.5: Cycle graph for odd nodes. 

 

 

 

Figure A.6: Grid graph by DSATUR and RLF.  Figure A.7: Grid graph by IDO based. 
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Figure A.8: Petersen graph by DSATUR & RLF.   Figure A.9: Petersen graph by IDO            

based. 

 

  

 

Figure A.10: Wheel graph for even nodes.  Figure A.11: Wheel graph for odd nodes. 

 

 

 

Figure A.12: Star graph. 
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