

Tribhuvan University

## Institute of Science and Technology

## Optimal Coloring of a Plane Using Unit Distance Graphs



## Dissertation <br> Submitted to

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology
by
Harendra Raj Bist
$21^{\text {st }}$ June, 2012 A.D.

Supervisor
Mr. Jagdish Bhatta

# Tribhuvan University <br> Institute of Science and Technology <br> Central Department of Computer Science and Information Technology 

## Student's Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed here have been used in this work.

Name of Student:
Harendra Raj Bist
Date: 21-06-2012 A.D.

## Supervisor's Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Harendra Raj Bist entitled "Optimal Coloring of a Plane using Unit Distance Graphs" in partial fulfillment of the requirements for the degree of M.Sc. in Computer Science and Information Technology be processed for the evaluation.

Name of Supervisor:
Mr. Jagdish Bhatta
Date: 21-06-2012 A.D.

# Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology 

## LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in Computer Science and Information Technology.

## Evaluation Committee

Asst. Prof. Nawaraj Paudel<br>Central Department of Computer Science and Information Technology, Tribhuvan University, Nepal.<br>(Acting Head)

Mr. Jagdish Bhatta<br>Central Department of Computer Science and Information Technology, Tribhuvan University, Nepal.<br>(Supervisor)

Date: $\qquad$

## ACKNOWLEDGEMENTS

I would never have been able to finish my dissertation without the guidance of my supervisor, help from friends, CDCSIT members, and support from my family.

I would like to express my deepest gratitude to my supervisor, Mr. Jagdish Bhatta, for his excellent guidance, caring, patience, and providing me with excellent ideas and encouragement for doing research.

I am also thankful to all the CDCSIT members for creating suitable environment in the completion of my dissertation. I would also like to thank current acting head of department, Asst. Prof. Nawaraj Paudel for advising me in several steps during dissertation. I am also thankful to the all the faculty members of CDCSIT, who have provided me the knowledge during the academic period.

Especially, I would like to thank Mr. Ashok Kumar Pant who helped me by giving ideas about implementation of the problem and patiently checked my code.

I would also like to thank my parents and elder brother and all my family members. They were always supporting and encouraging me with their best wishes.


#### Abstract

Generally, plane coloring is the assignment of different colors to different points of a plane. Plane can be represented via graphs and hence can be colored using graph coloring. So the chromatic number of a plane is equivalent to finding the chromatic number of the equivalent graph of the plane. The unit distance graph can be used to find the chromatic number of a plane. The main application of unit distance graphs is the unit distance wireless networks (UDW), in cellular networks; the geometric regions are partitioned into hexagonal cells. Unit distance graph can represent the hexagonal cells, and coloring the hexagonal regions implies distribution of frequencies among the hexagonal cells. Different heuristic based algorithms viz. contraction based RLF, DSATUR and IDO based graph coloring algorithms are used in this study in order to color the unit distance graphs. And, different simple unit distance graphs used during the study include wheel graph, cycle graph, grid graph, etc. as test cases for these coloring algorithms.

The optimality of plane coloring, nowadays, is no more just confined to the minimal number of colors rather the coloring time makes importance. Since, coloring time is important in the field of cellular networks as the assignments of the frequency in a geometric regions and assignment of data to registers in program execution in minimum time. Since, these problems can be resolved through graph coloring. In this context, this study analyzes on optimal coloring of planes using heuristic based approaches so as to suggest an effective coloring paradigm.


## Table of Contents

## Acknowledgement

i

Abstract ii
List of Figures ..... v
List of Listings ..... vii
List of Tables ..... viii
Abbreviations ..... ix
1 Introduction ..... 1
1.1 Thesis organization ..... 3
2 Problem Formulation and Background ..... 5
2.1 Problem Definition ..... 5
2.2 Background of the study ..... 5
3 Literature Review ..... 8
3.1 Simple Unit Distance Graphs ..... 8
3.2 Four Coloring of a Plane using Moser Graph ..... 9
3.3 Nine Coloring of a Plane ..... 10
3.4 Seven Coloring of a Plane ..... 11
3.5 Three coloring of a plane via Petersen Graphs ..... 12
3.6 Graph Coloring Algorithms ..... 13
3.6.1 Contraction based RLF graph coloring algorithm ..... 13
3.6.2 Ordering based heuristic coloring algorithms ..... 14
3.6.2.1 DSATUR sequential graph coloring algorithm ..... 15
3.6.2.2 Incidence degree ordering heuristic algorithm ..... 16
4 Implementation ..... 17
4.1 Implementation Model ..... 17
4.2 MATLAB ..... 17
4.2.1 Matgraph ..... 17
4.3 Flowchart for the implementation ..... 18
4.4 Implementation of unit distance graphs ..... 19
4.5 Implementation of Simple Unit Distance Graphs ..... 22
4.6 Implementation of Graph Coloring Algorithms ..... 24
4.6.1 Contraction based RLF graph coloring algorithm ..... 24
4.6.2 DSATUR sequential graph coloring algorithm ..... 26
4.6.3 Incidence degree ordering heuristic algorithm ..... 27
5 Analysis ..... 30
6 Conclusion and Future Work ..... 40
6.1 Summary and conclusion ..... 40
6.2 Further Recommendations ..... 40
Appendix
References
Bibliography

## List of Figures

Fig 1.1: Plane coloring is equivalent to graph coloring ..... 1
Fig 3.1: Even nodes Cycle Graph ..... 8
Figure 3.2: Odd nodes Wheel Graph ..... 8
Figure 3.3: Grid Graph ..... 9
Figure 3.4: Star Graph ..... 9
Figure 3.5: Two coloring of a line ..... 9
Figure 3.6: Three coloring of a plane ..... 9
Figure 3.7: Moser Graph ..... 10
Figure 3.8: Unit square-based 9-coloring of the plane ..... 11
Figure 3.9: Hexagon- Based 7-coloring of the plane ..... 12
Figure 3.10(a): The well known Petersen graph of 10 vertices and 15 edges ..... 13
Figure 3.10(b): Symmetrical Petersen graph using rotational symmetry ..... 13
Figure 4.1: Implementation model. ..... 18Figure 5.1: A line chart for time elapsed while coloring UDG formed by random unitdistance points31
Figure 5.2: Line chart for time elapsed while coloring UDG formed by unit distance tree ..... 32
Figure 5.3: Line chart showing detail of time elapsed while coloring wheel graph ..... 34
Figure 5.4: Line chart showing detail of time elapsed while coloring star graph ..... 35
Figure 5.5: Line chart showing detail of time elapsed while coloring cycle graph ..... 36
Figure 5.6: Line chart showing detail of time elapsed while coloring grid graph ..... 37

Figure 5.7: Line chart showing detail of time elapsed while coloring Petersen graph
Figure A.1: Unit distance graphs using random unit distance points colored by DSATUR and RLF algorithm 42 Figure A.2: Unit distance graphs using random unit distance points colored by IDO based algorithm 42
Figure A.3: Unit distance graphs using unit distance tree ..... 43
Figure A.4: Cycle graph for even nodes ..... 43
Figure A.5: Cycle graph for odd nodes ..... 43
Figure A.6: Grid graph by DSATUR and RLF ..... 43
Figure A.7: Grid graph by IDO based algorithm ..... 43
Figure A.8: Petersen graph by DSATUR and RLF ..... 44
Figure A.9: Petersen graph by IDO based algorithm ..... 44
Figure A.10: Wheel graph for even nodes ..... 44
Figure A.11: Wheel graph for odd nodes ..... 44
Figure A.12: Star graph ..... 44

## List of Listings

Listing 4.1: Selection of unit distance points ..... 19
Listing 4.2: Creation of unit distance ..... 20
Listing 4.3: Creation of unit distance graph ..... 21
Listing 4.4: Creation of Petersen graph ..... 22
Listing 4.5: Creation of cycle graph ..... 23
Listing 4.6: Creation of wheel graph ..... 23
Listing 4.7: Creation of grid graph ..... 23
Listing 4.8: Creation of star graph ..... 24
Listing 4.9: The contraction based RLF algorithm ..... 26
Listing 4.10: DSATUR algorithm ..... 27
Listing 4.11: IDO based algorithm ..... 29
Listing 4.12: Index degree finding function ..... 29

## List of Tables

Table 5.1: Coloring time and number of colors used by UDG formed from unit distance
points

Table 5.2: Coloring time and number of colors used by UDG formed using unit distance tree32

Table 5.3: Time factor and number of colors obtained while coloring wheel graph 33
Table 5.4: Time factor and number of colors obtained while coloring star graph 34
Table 5.5: Time factor and number of colors obtained while coloring cycle graph 35
Table 5.6: Time factor and number of colors obtained while coloring grid graph 37
Table 5.7: Time factor and number of colors obtained while coloring Petersen graph 38

## List of Abbreviations

| UDG | Unit Distance Graph |
| :--- | :--- |
| UDW | Unit Distance Wireless Networks |
| RLF | Recursive Largest First |
| SC | Sequential Coloring |
| DSATUR | Degree of Saturation |
| LDO | Largest Degree Ordering |
| SDO | Saturated Degree Ordering |
| IDO | Incidence Degree Ordering |
| MATLAB | MATrix LABoratory |

