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Abstract

Cryptographic hash functions are considered as workhorses of cryptography. NIST published

the first Secure Hash Standard SHA-0 in 1993 as Federal Information Processing Standerd

publication (FIPS PUBS) which two years later was replaced by SHA-1 to improve the original

design and added SHA-2 family by subsequent revisions of the FIPS. Most of the widely used

cryptographic hash functions are under attack today. With the need to maintain a certain level

of security, NIST is in the process of selecting new cryptographic hash function through public

competition. The winning algorithm will not only have to establish a strong security, but also

exhibit good performance and capability to run. Here in this work, analyses are focused on

the performance of SHA-3 finalists along with the current standard SHA-2. As specified by

the submission proposal by those five finalists, the Java implementations have been done. The

results of empirical performance comparison show that two SHA-3 finalists namely Skein and

BLAKE perform better which is nearly same as the performance of SHA-2. There is vast gap

in the performance of the candidates as the best performer gives 3-4 times better result than

the least performer. The results show that, when considering only on the performance aspect,

by assuming all the candidates are equally secure, the alternative to SHA-2 can be Skein or

BLAKE.
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Chapter 1

Introduction

Security is omnipresent. The major goal of security can be classified into three parts: confiden-

tiality, integrity, and availability. Confidentiality refers to the secrecy of the message that can be

achieved by means of encryption/decryption technique. Integrity refers to the correctness of the

message in which the changes need to be done only through authorized mechanism, detected

otherwise. And availability is the challenge to make available the data to authorized entity at

any time [16].

One way of achieving integrity is creating message digest using hash functions. Nowadays,

cryptographic hash functions are considered as workhorses of cryptography. They are origi-

nally created for improving the efficiency of digital signature, and now used to secure the very

fundamentals of our information infrastructure like password logins secure web connection,

encryption key management virus-and malware-scanning, hash-based message authentication

codes pseudo random number generator, key derivation function etc. [15]. A series of related

hash functions have been developed, such as MD4, MD5, SHA-0, SHA-1 and the SHA-2 fam-

ily, all of these follow the Merkle-Damgard construct. NIST published the first Secure Hash

Standard SHA-0 in 1993 as Federal Information Processing Standerd publication (FIPS PUBS)

which two years later was replaced by SHA-1 to improve the original design and added SHA-2

family by subsequent revisions of the FIPS [1, 48].

1.1 Motivation

Most of the widely used cryptographic hash functions are under attack today. With the need to

maintain a certain level of security, NIST is in the process of selecting new cryptographic hash

1



function through public competition [40]. NIST received sixty-four submissions in October

2008, and selected fifty-one candidate algorithms as the first-round candidates on December 10,

2008, and fourteen as the second-round candidates on July 24, 2009. One year was allocated for

the public review of the second-round candidates. On December 9, 2010, NIST announced five

SHA-3 finalists to advance to the third (and final) round of the competition. The five finalists

are - BLAKE, Grøstl , JH, Keccak and Skein [40].

As specified by [48] the selection is performed in three round, in each round the algorithm is

judged by internal selection panel composed by NIST on the basis of pertient paper presentation

and discussion made by cryptographic research conference and workshop.

1.2 Problem Definition

Cryptographic hash algorithms have a wide range of applications, and the SHA-3 winner will

have to perform well in various platforms and application areas. The winning algorithm will

not only have to establish a strong security, but also exhibit good performance and capability

to run [24].

As [48] says, NIST does not currently plan to withdraw SHA-2 or remove it from the revised

Secure Hash Standard; however, it is intended that SHA-3 can be directly substituted for SHA-

2 in current applications, and will significantly improve the robustness of NISTs overall hash

algorithm toolkit. It is therefore, worthwhile to compare the performance between the currently

used SHA-2 along with the SHA-3 finalists. The submitted algorithms for SHA-3 are supposed

to provide message digests of 224, 256, 384 and 512 bits to allow substitution for the SHA-2

family. Since SHA-3 is expected to provide a simple substitute for the SHA-2 family of hash

functions, certain properties of the SHA-2 hash functions must be preserved, including the input

parameters; the output sizes; the collision resistance; pre-image resistance and second pre-

image resistance properties along with the one- pass streaming mode of execution [48]. Being

a public completion, various analyses have been performed focusing on the comparison of the

competitor. Here in this work, analyses are focused on the performance of SHA-3 finalists

along with the current standard SHA-2.
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Chapter 2

Literature Review

2.1 Background

It was in fact believed that by preserving the secrecy of information one would also automat-

ically protect its integrity. However it is not always necessary to break the encryption scheme

in order to alter messages [38]. In the data transmission, we may have a condition where the

originality of the data is ensured. At the same time authentication of the message can be done

through MAC (Message Authentication Code). We can use the Message Digest (MD) to ensure

the integrity as the fingerprint. One way of doing so is to make use of secure hash functions,

where idea is to generate one-way hash value of the message and then to send the message

together with the hash value. At the recipient end, to ensure correctness of data, it consists

computing the new hash value of the received message and comparing it with the old one. If it

matches, then we are sure that message has not been tempered in between.

The problem of the protection of the authenticity of information has two aspects: data integrity

and data origin authentication. They can be defined as: [24]

Definition 2.1 Data integrity is the property whereby data has not been altered in an unautho-

rised manner since the time it was created, transmitted, or stored by an authorised source.

Definition 2.2 Data origin authentication is a type of authentication whereby a party is corrob-

orated as the (original) source of specified data created at some (typically unspecified) time in

the past.

3



The different types of function that may be used for authentication are: hash function, message

authentication code (MAC) and message encryption. They can be formally defined in the fol-

lowing manner.

Definition 2.3 A hash function is a function h : D → R where the domain D = (0, 1)∗ and the

range R = (0, 1)n for some n ≥ 1.

Definition 2.4 A MAC is a function h : K ×M → R where the key space K = (0, 1)k the

message space M = (0, 1)∗ and the range R = (0, 1)n for some k, n ≥ 1.

Definition 2.5 An encryption algorithm is a function h : K ×M → R where the key space

K = (0, 1)k the message space M = (0, 1)m and the range R = (0, 1)n for some k,m, n ≥ 1

and m may or may not be equal with n.

2.1.1 Hash Function

A hash function compresses an arbitrarily length message into a fixed size ’message digest’

(MD). Formally, A hash value h is generated by a function H of the form

h = H(M),

where M is a variable-length message and H(M) is the fixed-length hash value. It contracts

an input of arbitrary length into a fixed number of output bits, the hash result. An illustration

of the use of a hash function is shown in Figure 2.1.

Figure 2.1: Compression with a cryptographic hash function.

The essential properties that cryptographic hash function H needs to satisfy are:[38, 16]

• Variable input size: H can be applied to a block of data of any size.

• Fixed output size: H produces a fixed-length output.

4



• Effciency: H(x) is relatively easy to compute for any given x, making both hardware

and software implementations practical.

• Pre-image resistance: Given the value of y = h(x), for some x it is difficult to compute

any x′ such that h(x
′
) = y, but the definition of pre-image resistance does not exclude

the condition that x = x
′ . [16]

• Second pre-image resistance: Given the value of x and is asked to compute the value

of x′ 6= x, such that h(x) = h(x
′
). If it is difficult to perform this computation we claim

that the hash function is second pre-image resistant. The pair (x
′
, h(x

′
)) is called a valid

pair.

• Collision resistance: Collision of a hash function is the event when two values x and x′ ,

such that x 6= x
′ hash to the same value, i.e., h(x) = h(x

′
) [16]. A given hash function is

said to have the property of collision resistance when it is difficult to find the collisions.

It may be noted that since the domain of a hash function is much larger compared to the

range, collisions are bound to occur for any hash function. What the criterion of collision

resistance guarantees is that these collisions are hard to compute or find out.

Related to hash functions are message authentication codes (MACs). These are also functions

that compress an input of arbitrary length into a fixed number of output bits, but the computa-

tion depends on a secondary input of fixed length, the key. Therefore MACs are also referred to

as keyed hash functions. In practical applications the key on which the computation of a MAC

depends is kept secret between two communicating parties. Symmetric and asymmetric both

ways can be used in MAC. Figure 2.2 shows the illustration of MAC.

Figure 2.2: Keyed hash function as MAC.

5



2.1.2 Hash Function Constructions

There are various methods of constructing hash functions. Most unkeyed hash functions are

designed using an iterative process which hashes the arbitrary length inputs by processing suc-

cessive fixed size blocks of the inputs. These are also known as iterative hash functions because

of the underlying iterative structure. Figure 2.3 illustrates the iterative structure based on which

the unkeyed hash functions can be generated.

Figure 2.3: General model of iterative hash function construction [13]

Some of the common method of hash functions construction that are used in SHA-3 finalists

algorithms are discussed here.

2.1.2.1 Iterated Hash Function

All cryptographic hash functions need to create a fixed-size digest of a variable-size message.

Creating such a function is best accomplished using iteration [16]. Instead of using a hash

function with variable-size input, a function with fixed-size input is created and is used a nec-

essary number of times. The fixed-size input function is referred to as a compression function.

It compresses an n-input string to create an m-bit string where n is normally greater than m.

The scheme is referred to as an iterated cryptographic hash function.

Most of the hash functions in use today are designed as an iterative process, known as Merkle-

Damgard construction. There exist a wide range of designs, however most of them have been

broken [24].

6



2.1.2.2 Merkle-Damgard Scheme

The Markle-Damgard scheme is an iterated hash function that is collision resistant if the com-

pression function is collision resistant [16]. The scheme is shown in Figure 2.4.

Figure 2.4: An Iterative Cryptographic Hash Function [16]

[16] describes the steps used in Markle-Damgard as:

• The message length and padding are appended to the message to create an augmented

message that can be evenly divided into blocks of n bits, where n is the size of the block

to be processed by the compression function.

• The message is then cnsidered as t blocks, each of n bits. Each block are represented as

M1,M2, ...,Mt. The digest created at t iterations are H1, H2, ..., Ht.

• Before starting the iteration, the digest H0 is set to a fixed value, normally called IV

(Initial Value or Initial Vector).

• The compression function at each iteration operates on Hi−1 and Mi to create a new Hi.

In other words, we have Hi = f(Hi−1,Mi), where f is the compression function.

• Hi is the cryptographic hash function of the original message, that is, h(M).

2.1.2.3 The HAsh Iterative FrAmework

The main ideas behind HAIFA are the introduction of number of bits that were hashed so far

and a salt value into the compression functions [10]. Formally, instead of using a compression

function CMD : {0, 1}mc × {0, 1}n → {0, 1}mc , [10] has proposed to use C : {0, 1}mc ×

{0, 1}n × {0, 1}b × {0, 1}s → {0, 1}mc , i.e., in HAIFA the chaining value hi is computed as:

hi = C(hi−1,Mi,#bits, salt),

where #bits is the number of bits hashed so far and salt is a salt value. Figure 2.5 illustrates

the construction principle of HAIFA.
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Figure 2.5: The HAIFA Construction [10]

Number of Bits Hashed so Far: The inclusion of the number of bits hashed so far was sug-

gested (with small variants ) in order to prevent the easy exploitation of fix-points. The attacker

is forced to work harder in order to find fix-points. Even if the compression function does not

mix the #bits parameter well, once an attacker finds a fix-point of the form (h,M, bits, salt)

such that h = C(h,M, bits, salt), it cannot be concatenated to itself as many times as the wish

of attacker because the number of bits hashed so far has changed [14, 21].

Salt: The salt parameter can be considered as defining a family of hash functions as needed

by the formal definitions of [36] in order to ensure the security of the family of hash functions

. This parameter can be viewed as an instance of the randomized hashing concept, as claimed

by [36], such concept provides increasing security of digital signature and transformation of all

attacks can be found to only on-line part.

Variable Hash Size: Different digest sizes are needed for different applications. HAIFA

supports truncation that allows arbitrary digest sizes (up to the output size of the compression

function), while securing the construction against attacks that try to find two messages that

have similar digest values. This problem eliminates the easy solution of just taking the number

of output bits from the output of the compression function [10]

This HAIFA padding ensures that even if two messages M1 and M2 are found, such that under

IVl1 and IVl2 (M1 hashed to obtain l1 bits and M2 hashed to a digest of l2 bits ) their chaining

values collide, then the last block changes this behavior. In cases where there is no need to add

salt (e .g., message authentication codes ) it is possible to set its value to 0. [10] claims that it

increases the computational effort of hashing long messages by a factor of about 4/3 than that

of Markle-Damgard scheme, at the same time provides security against various attacks.
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2.1.2.4 Sponge Construction

Sponge constructions operate on states with b = r + c bits. Here r is the bitrate, b is width and

c represents the capacity [8]. Figure 2.6 depicts the sponge construction.

Figure 2.6: The Sponge Construction [8]

The sponge construction starts with initializing all the bits in the state to zero. Then the input

message is padded and split into blocks of r-bit length. After this the construction goes through

two phases: the absorbing phase and the squeezing phase [8].

The absorbing phase xors the r-bit input message blocks into the first r-bits of the state, sup-

plied with applications of f . After all message blocks are processed, the absorb phase is ended

and the construction switches to squeezing phase [8]. Figure 2.6 depicts the absorbing phase

on the left-hand side, while the squeezing is on the right-hand side of the figure.

In the squeezing phase, the r first bits of the state are used as output blocks, interleaved with

the function f . Since the value of b is greater than the value of c, the last c bits of the state are

never used for the output during the squeezing phase [8].

2.1.2.5 Wide-pipe and Double-pipe Construction

To make a hash function resistant against certain multi-collision-type attacks, a proposal to

make the intermediate chaining values of Merkle-Damgard mode twice as long as the final

hash value, and is known as the wide-pipe mode [32]. In wide-pipe constructions the size of

the internal state of an n-bit hash function is increased to w > n bit. While in the double-pipe

design an internal state with size twice the hash size is maintained. In designs with a larger

internal state, the idea is to improve protection against internal collision [13].

In the wide-pipe design, two compression functions are used, f and f ′ . f ′ is invoked at the end
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of the computation. The compression functions are:

• f : {0, 1}w × {0, 1}m → {0, 1}w

• f ′
: {0, 1}w → {0, 1}n

The input message M is divided into r-blocks, M = m1,m2, ...,mr. Figure 2.7 depicts the

process with the two compression functions. In the figure IV0 is an initial value.

Figure 2.7: Wide-pipe Hash Constructions [13]

2.1.3 The Hash function competition

After the successful attack by [42] on SHA-1, NIST feel the necessity to develop a new cryp-

tographic hash algorithm through public competition. The winner(s) of the competition will be

named SHA-3, and will complement the SHA-2 hash algorithms currently specified in Federal

Information Processing Standard (FIPS) 180-3, Secure Hash Standard [51]. The competition

was opened November 7, 2007 and submissions to the competition were to be received by Oc-

tober 31, 2008. NIST further specified that the winning algorithm will be a publicly disclosed

algorithm, available worldwide without royalties and intellectual properties. After submission

deadline all submissions were made publicly available for review and comment [46].

NIST proposed three categories of evaluation criteria that will be used to measure the submitted

candidate algorithms against each other. The criterias are security, cost and performance, and

implementation characteristics of algorithm [48].

Security of the algorithm was identified as the most important factor when evaluating the can-

didates. In [48] NIST identifies a number of well-defined security properties that is expected

of the winning candidate. This thesis will not go into further details of the security of the

remaining SHA-3 candidates, as that is not within the scope of our research.

In [48] cost and performance were identified as the second-most important criterion upon eval-

uating the various candidates. Within the context of this competition, cost includes computa-

tional efficiency and memory requirements [48]. Computational efficiency refers to the speed
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of an algorithm. And as NIST states in [51] that ’NIST expects SHA-3 to offer improved per-

formance over the SHA-2 family of hash algorithms at a given security strength’. In the case

of memory requirements, both code size and Random-Access Memory (RAM) are of interest.

2.2 The SHA-3 finalists

A brief introduction and specification of remaining five SHA-3 finalists are discussed here:

2.2.1 BLAKE

BLAKE has not recreated wheel; BLAKE is built on previously studied components, chosen

for their complementarity [1]. The inheritance of BLAKE is threefold:

• BLAKE’s iteration mode is HAIFA, an improved version of the Merkle-Damgard paradigm

that provides resistance to long-message second preimage attacks, and explicitly handles

hashing with a salt.

• BLAKE’s internal structure is the local wide-pipe. It makes local collisions impossible

in the BLAKE hash functions, a result that doesn’t rely on any intractability assumption.

• BLAKE’s compression algorithm is a modified version of Bernstein’s stream cipher

ChaCha, whose security has been intensively analyzed and performance is excellent,

and which is strongly parallelizable.

[1] claims that, the iteration mode HAIFA would significantly benefit to the new hash standard,

for it provides randomized hashing and structural resistance to second-preimage attacks. The

BLAKE local wide-pipe structure is a straightforward way to give strong security guarantees

against collision attacks. The choice of borrowing from the stream cipher ChaCha comes from

the fact behind the cryptanalysis of Salsa20 and ChaCha [2].

2.2.1.1 BLAKE Specification

The BLAKE proposal submitter [1] has proposed four variants of BLAKE hash functions

BLAKE-256, BLAKE-512, BLAKE-224, and BLAKE-384. Here, the specification of BLAKE-

256 is given and other variants are designed according with some modification. The hash func-

tion BLAKE-256 operates on 32-bit words and returns a 32-byte hash value. This section
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defines BLAKE-256, going from its constant parameters to its compression function, then to

its iteration mode.

Constants : BLAKE-256 starts hashing from the same initial value as SHA-256 and 16

constants viz c0 to c15 , where c0 = 243F6A88 and other assignments for constant is done

accordingly as proposed by [1]. BLAKE uses the permutation table to permute the message bit

for each round.

Compression function The compression function of BLAKE-256 takes as input four values

[1].

1. a chain value h = h0, ..., h7

2. a message block m = m0, ...,m15

3. a salt s = s0, ..., s3

4. a counter t = t0, t1

These four inputs represent 30 words in total (i.e., 120 bytes = 960 bits). The output of the

function is a new chain value h′
= h

′
0, ..., h

′
7 of eight words (i.e., 32 bytes = 256 bits). The

compression of h,m, s, t to h′ is written as

h
′ = compress (h,m, s, t)

Initialization : A 16-word state v0, ..., v15 is initialized such that different inputs produce

different initial states. The state is represented as a 4× 4 matrix, and filled as follows:


v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

←


h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 s0 ⊕ c5 s1 ⊕ c6 s1 ⊕ c7



Round function : Once the state v is initialized, the compression function iterates a series

of 14 rounds. A round is a transformation of the state v that computes

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15),

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4, v9, v14)
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where, at round r, Gi(a, b, c, d) sets

a← a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d← (d⊕ a) ≫ 16

c← c+ d

b← (b⊕ c) ≫ 12

a← a+ b+ (mσr(2i+1) ⊕ cσr(2i))

d← (d⊕ a) ≫ 8

c← c+ d

b← (b⊕ c) ≫ 7

The first four calls G0, ..., G3 can be computed in parallel, because each of them updates a

distinct column of the matrix. [1] has given the name for procedure of computing G0, ..., G3

as column step. Similarly, the last four calls G4, ..., G7 update distinct diagonals thus can be

parallelized as well, which is called a diagonal step. At round r > 9 , the permutation used is

σr mod 10. The Figures 2.8 and 2.9 illustrate the Gi function, column steps and diagonal steps.

The petmutation is defined in [1].

Figure 2.8: The Gi function [1].

Finalization : After the rounds sequence, the new chain value h′
0, ..., h

′
7 is extracted from

the state v0, ..., v15 with input of the initial chain value h0, ..., h7 and the salt s0, ..., s3 :

h
′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h
′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h
′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h
′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h
′
4 ← h4 ⊕ s4 ⊕ v4 ⊕ v12

h
′
5 ← h5 ⊕ s5 ⊕ v5 ⊕ v13
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Figure 2.9: Column step and diagonal step [1].

h
′
6 ← h6 ⊕ s6 ⊕ v6 ⊕ v14

h
′
7 ← h7 ⊕ s7 ⊕ v7 ⊕ v15

Padding: For hashing a message m of bit length l < 264 . As it is usual for iterated hash

functions, the message is first padded, then it is processed block per block by the compres-

sion function. First the message is extended so that its length is congruent to 447 modulo 512.

Length extension is performed by appending a bit 1 followed by a sufficient number of 0 bits.

At least one bit and at most 512 are appended. Then a bit 1 is added, followed by a 64-bit

unsigned big-endian representation of l. Padding can be represented as

m← m||1000...0001 < l >64

This guarantees that the bit length of the padded message is a multiple of 512.

Iterated hash: As given by [1] the hashing is proceeded iteratively by splitting the padded

message into 16-word blocks m0, ...,mN−1. li be the number of message bits in m0, ...,mi,

that is, excluding the bits added by the padding. For example, if the original (non-padded)

message is 600-bit long, then the padded message has two blocks, and l0 = 512, l1 = 600.

A particular case occurs when the last block contains no original message bit; for example a

1020-bit message leads to a padded message with three blocks (which contain respectively 512,

508, and 0 message bits), and we set l0 = 512, l1 = 1020, l2 = 0. The general rule is: if the last

block contains no bit from the original message, then the counter is set to zero; this guarantees

that if i 6= j, then li 6= lj .
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The salt s is chosen by the user, and set to the null value when no salt is required (i.e., s0 =

s1 = s2 = s3 = 0 ). The hash of the padded message m is then computed as follows:

h0 ← IV

for i = 0, ..., N − 1

hi+1 ← compress(hi,mi, s, li )

return hN

The procedure of hashing m with BLAKE-256 is aliased BLAKE-256(m, s) = hN , where m

is the (non-padded) message, and s is the salt. The notation BLAKE-256(m) denotes the hash

of m when no salt is used (i.e., s = 0).

BLAKE-512 operates on 64-bit words and returns a 64-byte hash value. All lengths of variables

are doubled compared to BLAKE-256: chain values are 512-bit, message blocks are 1024-bit,

salt is 256-bit, counter is 128-bit. BLAKE-224 and BLAKE-384 are similar to BLAKE-256

and BLAKE-512 but the output is truncated to its first 224 bits and 384 bits respectively [1].

2.2.1.2 Security Analysis

Submitters defined four toy version for analysis purposes, namely BLOKE (with identity per-

mutations), FLAKE (with no feed-forward), BLAZE (with zero constants), and BRAKE (with

all the changes above).

In [25] Li and Xu claimed that exploiting properties of message permutation, reduced round

attacks are relevant which shows BLAKE has no enough diffusion in 2.5 rounds. The results

do not threat the security claimed in the specification.

Aumasson et al.. [3] presented an algorithm that finds preimages faster than in previous at-

tacks For 1.5 rounds. Also proved that, discovered properties lead us to describe large classes

of impossible differentials for two rounds of BLAKE’s internal permutation, and particular

impossible differentials for five and six rounds, respectively for BLAKE-32 and BLAKE-64.

Vidali et al. [41] presented a very efficient method for producing an arbitrary number of colli-

sions for full-round BLOKE, a weakened version of BLAKE in which the message words and

constants are not permuted in each round of the compression function, as well as an internal

collision attack on the further weakened version BRAKE.

Based on linear differentials of the modular additions, Su et al. [39] proposed improved near-

collision attacks on the reduced-round compression functions of a variant of BLAKE on a

4-round compression function of BLAKE-32, 4-round and 5-round compression functions of
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BLAKE-64 with computational complexities 221 , 216 and 2216 respectively.

2.2.2 Grøstl

Grøstl is a collection of hash functions, capable of returning message digests of any number of

bytes from 1 to 64, i.e., from 8 to 512 bits in 8-bit steps. The variant returning n bits is called

Grøstl -n. In [17], the submitter has explicitly stated the message digest sizes 224, 256, 384,

and 512 bits. The specification of Grøstl hash functions is discussed below.

2.2.2.1 Grøstl Specification

The hash function construction: The Grøstl hash functions iterate the compression function

f . The message M is padded and split into l-bit message blocks m1, ...,mt , and each message

block is processed sequentially. An initial l-bit value h0 = iv is defined, and subsequently the

message blocks mi are processed as

hi ← f(hi−1,mi) for i = 1, ..., t.

Here, f maps two inputs of l bits each to an output of l bits. The first input is called the chaining

input, and the second input is called the message block. For Grøstl variants returning up to 256

bits, l is defined to be 512. For larger variants, l is 1024. After the last message block has been

processed, the output H(M) of the hash function is computed as

H(M) = Ω(ht),, where Ω is output transformation.

The output size of is n bits, and holds the condition l ≥ 2n. The Grøstl hash function is shown

in Figure 2.10.

Figure 2.10: The Grøstl hash function [17].

The compression function construction: The compression function f is composed of two

l-bit permutations P and Q. It is defined as follows:
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f(h,m) = P (h⊕m)⊕Q(m)⊕ h.

The construction of f is illustrated in Figure 2.11.

Figure 2.11: The compression function f . P and Q are l-bit permutations [17].

The design of P and Q [17] has proposed the compression function f in two variants; for

short and for long message digests. Each variant uses its own pair of permutations P and

Q. Hence, there are four permutations in total. The design of P and Q was inspired by the

Rijndael block cipher algorithm. The transformations are redefined due to larger state size than

the 128-bit of Rijndael, most round transformations have been redefined. In Grøstl , a total of

four round transformations are defined for each permutation. These are

• AddRoundConstant

• SubBytes

• ShiftBytesWide

• MixBytes.

The third transformation ShiftBytes will be called ShiftBytesWide when used in the large per-

mutations P1024 and Q1024 . While AddRoundConstant and ShiftBytes are different for each

permutation, SubBytes and MixBytes are identical in all four permutations. A roundR consists

of these four round transformations applied in the above order. Hence,

R =MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.
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The transformations operate on a state, which is represented as a matrix A of bytes (of 8-bits

each). For the short variants the matrix has 8 rows and 8 columns, and for the large variants,

the matrix has 8 rows and 16 columns.

Mapping from a byte sequence to a state matrix and vice versa : Grøstl follows the same

mapping strategy as in Rijndael. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an

8× 8 matrix as: 

00 08 10 18 20 28 30 38

01 09 11 19 21 29 31 39

02 0a 12 1a 22 2a 32 3a

03 0b 13 1b 23 2b 33 3b

04 0c 14 1c 24 2c 34 3c

05 0d 15 1d 25 2d 35 3d

06 0e 16 1e 26 2e 36 3e

07 0f 17 1f 27 2f 37 3f


For an 8 × 16 matrix, this method is extended in the natural way. Mapping from a matrix to a

byte sequence is simply the reverse operation.

The above four round transformations are applied in sequential order as given in [17] each

maps a 8 × 8 matrix with predefined constant key in addroundconstant, substitute each byte

using s-box, cyclially shift bytes within a row to the left by a number of position as given

by permutation table (shown in Figure 2.12) and transformation using matrix multiplication

respectively.

Initial values : The initial value ivn of Grøstl -n is the l-bit representation of n and assigned

different values for output sizes of 224, 256, 384, and 512 bits [17].

Number of rounds: The number r of rounds is a tunable security parameter. For short variant

the value of r is recommended as 10 and 14 for the long variant.

Padding : Padding is performed to get the message block of equal length. It appends the bit

‘1’ to initial message. Then, it appends w = −N − 65 mod l ’0’ bits, and finally, it appends a

64-bit representation of (N +w+ 65)/l. This number is an integer due to the choice of w, and

it represents the number of message blocks in the final, padded message.
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Figure 2.12: The ShiftBytes transformation of permutation P512 (top) and Q512 (bottom) [17].

Finalization : The hash function iterates a compression function for the padded message

l-bit block at a time as : {0, 1}l × {0, 1}l → {0, 1}l, which is based on two permutations P

and Q. If the output size n of the hash function is at most 256 bits, l = 512. For the longer

variants, l = 1024. Hence, it ensures that l ≥ 2n for all cases. The initial value of Grøstl -n

is the l-bit representation of n. At the end, the output of the last call to f is processed by the

output transformation, which reduces the output size from l to n bits.

The output transformation: The output transformation Ω is a type of function that makes

use of truncation illustrated in Figure 2.13 is then defined by

Ω(x) = truncn(P (x)⊕ x).

Figure 2.13: Transformation computes P (x) ⊕ x and then truncates the output by returning

only the last n bits [17].
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2.2.2.2 Security Analysis

Grøstl faced the great deal of cryptanalysis. [29] described the improved result of rebound

attack on 7 rounds for the Grøstl -256 output transformation and improve the semi-free-start

collision attack on 6 rounds that initially showed by Mendel et al. [30] attack on 6 rounds of

the Grøstl -256 compression function with a complexity of 2120 and memory requirements of

about 264.

Gilbert et al. [18] provided the improved cryptanalytic results using Super-Sbox cryptanalysis,

which very often improves upon the classical rebound or start-from-the-middle attacks. Peyrin

[33] introduced a new cryptanalysis technique: the internal differential attack also derive a

distinguisher for the full (10 rounds) 256-bit version of the Grøstl compression function or

internal permutations.

Ideguchi et al. [20] showed collision attacks on the Grøstl -256 hash function reduced to 5

and 6 out of 10 rounds with time complexities 248 and 2112, respectively. attacks are based on

differential paths between the two permutations P and Q of Grøstl , a strategy introduced by

Peyrin [33] to construct distinguishers for the compression function.

2.2.3 JH

JH family specifies four hash algorithms - JH-224, JH-256, JH-384, and JH-512. In the design

of JH, a new compression function structure is proposed to construct a compression function

from a large block cipher with constant key. The AES design methodology is generalized to

high dimensions so that a large block cipher can be constructed from small components easily

[43]

2.2.3.1 JH Specification

Hash function JH consists of five steps: padding the message M , parsing the padded message

into message blocks, setting the initial hash value H(0), computing the final hash value H(N),

and generating the message digest by truncating H(N) defined more detail in [43]. Here a brief

discussion is done below.

Padding the message : The message M is padded to be a multiple of 512 bits. Suppose that

the length of the message M is l bits. Append the bit ’1’ to the end of the message, followed

20



by 384 - 1 + ( -l mod 512) zero bits, then append the 128-bit block that is equal to the number

l expressed using a binary representation in big-endian form.

Parsing the padded message : After a message has been padded, it is parsed into N 512-bit

blocks, M (1),M (2), ...,M (N). The 512-bit message block is expressed as four 128-bit words.

The first 128 bits of message block i are denoted as M (i)
0 , the next 128 bits are M (i)

1 , and so on

up to M (i)
3 .

Setting the initial hash value H(0) : The initial hash value H(0) is set depending on the

message digest size. The first two bytes of H(−1) are set as the message digest size, and the rest

bytes of H(−1) are set as 0. Set M (0) as 0. Then H(0) = F8(H(−1),M (0)).

More specifically, the value ofH(−1),0
0 ||H(−1),1

0 ||...||H(−1),15
0 is 0x00E0, 0x0100, 0x0180, 0x0200

for JH-224, JH-256, JH-384 and JH-512, respectively. Let H(−1),j = 0 for 16 ≤ j ≤ 1023. Set

the 512-bit M (0) as 0. The 1024-bit initial hash value H(0) is computed as

H(0) = F8(H(−1),M (0)).

Computing the final hash value H(N) : The compression function F8 is applied to generate

H(N) by compressing M (1),M (2), ...,M (N) iteratively. The 1024-bit final hash value H(N) is

computed as follows:

for i = 1 to N ,

H(i) = F8(H(i−1),M (i));

Generating the message digest : The message digest is generated by truncating H(N).

JH-224 : The last 224 bits of H(N) are given as the message digest of JH-224:

H(N),800||H(N),801||...||H(N),1023.

JH-256 : The last 256 bits of H(N) are given as the message digest of JH-256:

H(N),678||H(N),679||...||H(N),1023.

JH-384 : The last 384 bits of H(N) are given as the message digest of JH-384:

H(N),640||H(N),641||...||H(N),1023.
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JH-512 : The last 512 bits of H(N) are given as the message digest of JH-512:

H(N),512||H(N),513||...||H(N),1023.

2.2.3.2 Compression Function Fd

Compression function Fd is constructed from the function Ed, which is round constant [43].

Fd compresses the 2d+1-bit message block M (i) and 2d+2-bit H(i−1) into the 2d+2-bit H(i) per-

forming linear transformation and various permutation [43] operations.

H(i) = Fd(H
(i−1),M (i)).

The construction of Fd is shown in Figure 2.14. According to the definition of Ed , the input

to every first-layer S box would be affected by two message bits; and the output from every

last-layer S box would be XORed with two message bits. Particularly for 512-bit message

block, initial hash value is of length 1024-bit and the compression function becomes F8.

Figure 2.14: The compression function Fd [43]

The F8 : F8 is the compression function used in hash function JH for 512-bit input message

block. F8 compresses the 512-bit message block M (i) and 1024-bit H(i−1) into the 1024-bit

H(i). Let A,B denote two 1024-bit words. The computation of H(i) = F8(H(i−1),M(i)) is

given as in [17]:

1. Aj = H(i−1),j ⊕M (i,j) for 0 ≤ j ≤ 511;

Aj = H(i−1),j for 512 ≤ j ≤ 1023;

2. B = E8(A);
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3. H(i),j = Bj for 0 ≤ j ≤ 511;

H(i),j = Bj ⊕M (i),j−512 for 512 ≤ j ≤ 1023;

2.2.3.3 Security Analysis

Thomsen [28] presented a generic preimage attack on JH-512. [44] shows that their attack

requires at least 2510.3 compression function computations, 2510.6 memory (2516.6 bytes), 2524

memory accesses and 2524 comparisons.

[35] obtained a semi-free-start collision for 16 rounds (out of 35.5) of JH for all hash sizes

with 2179.24 compression function calls. It has extended the attack to 19 rounds and presented a

1008-bit semi-free-start near-collision on the JH compression function with 2156.77 compression

function calls, 2152.28 memory access and 2143.70 -bytes of memory.

2.2.4 Keccak

Keccak is a family of sponge functions [47] that use as a building block a permutation from a

set of 7 permutations. Here the specification of Keccak under sponge construction is described

as proposed by [7].

2.2.4.1 Keccak Specification

In Kaccak hashing, a bitstring M can be considered as a sequence of blocks of some fixed

length, where the last block may be shorter need padding. Keccak uses of the multi-rate

padding, denoted by pad10*1, appends a single bit 1 followed by the minimum number of

bits 0 followed by a single bit 1 such that the length of the result is a multiple of the block

length [7].

The Keccak sponge functions : The sponge function denoted by Keccak[ r, c ] applies the

sponge construction as specified in Algorithm 1 with Keccak-f [ r + c ] , multi-rate padding

and the bitrate r [7].

Keccak[ r , c ] ∆
= SPONGE[ Keccak-f [ r + c ] , pad10 *1, r ].
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Algorthm 1: The sponge construction Keccak[ f , pad, r ]

Require: r < b

Interface: Z = sponge (M, l) with MεZ∗
2 , integer l > 0 and ZεZl2

P = M || pad [r](|M |)

s = 0b

for i = 0 to |P |r − 1 do

s = s⊕ (Pi||0b−r)

s = f(s)

end for

Z = [s]r

while |Z|rr < l do

s = f(s)

Z = Z||[s]r
end while

return [Z]l

This specifies Keccak[r, c] for any combination of r > 0 and c such that r + c is a width

supported by the Keccak-f permutations.

The default value for r is 1600 -c and the default value for c is 576:

Keccak[ c ] ∆
= Keccak[ r = 1600 -c , c ],

Keccak[ c ] ∆
= Keccak[ c = 576].

The Keccak-f permutations : There are 7 Keccak-f permutations, indicated by Keccak-f

[b] , where b = 25× 2l and l ranges from 0 to 6. Keccak-f [b] is a permutation over Zb
2, where

the bits of s are numbered from 0 to b− 1. b is the width of the permutation.

The permutation Keccak-f [b] is described as a sequence of operations on a state a that is

a three-dimensional array of elements of GF ( 2 ) , namely a[5][5][w], with w = 2l. The

expression a[x][y][z] with x, yεZ5 and zεZw, denotes the bit in position (x, y, z). It follows that

indexing starts from zero. The mapping between the bits of s and those of a is s[w(5y+x)+z] =

a[x][y][z]. Expressions in the x and y coordinates should be taken modulo 5 and expressions in

the z coordinate modulo w . We may sometimes omit the [z] index, both the [y][z] indices or

all three indices, implying that the statement is valid for all values of the omitted indices.

Keccak-f [b] is an iterated permutation, consisting of a sequence of nr rounds R, indexed with
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ir from 0 to nr − 1. A round consists of five steps:

R = τ.χ.π.ρ.θ, with

θ : a[x][y][z]← a[x][y][z] +
4∑

y′=0

a[x− 1][y
′
][z] +

4∑
y′=0

a[x+ 1][y
′
][z − 1],

ρ : a[x][y][z]← a[x][y][z − (t+ 1)(t+ 2)/2] ,

with t satisfying 0 ≤ t < 24 and (0123)t(10) = (xy) in GF (5)2×2,

or t = −1 if x = y = 0,

π : a[x][y]← a[x
′
][y

′
], with(xy) = (0123)(x

′
y

′
),

χ : a[x]← a[x] + (a[x+ 1] + 1)a[x+ 2],

τ : a← a+RC[ir].

The additions and multiplications between the terms are in GF ( 2 ) . With the exception of

the value of the round constants RC [ ir ] , these rounds are identical. The round constants are

given by (with the first index denoting the round number)

RC[ir][0][0][2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ l ,

and all other values of RC[ir][x][y][z] are zero. The values rc[t]εGF ( 2 ) are defined as the

output of a binary linear feedback shift register (LFSR):

rc[t] = (xt mod x8 + x6 + x5 + x4 + 1) mod x in GF ( 2 ) [x].

The number of rounds nr is determined by the width of the permutation, namely,

nr = 12 + 2l.

2.2.4.2 Security Analysis

Keccak has received a fair amount of attention from cryptanalysts [40]. Morawiecki and Sre-

brny [31] presented preimage attack on reduced versions of Keccak hash functions. Bertoni et

al. [9] applied the secret sharing method for protecting Keccak software and hardware imple-

mentations against power analysis. Aumasson and Meier [4] presented zero-sum distinguisher,

and applied to the inner permutation of the hash function Keccak and led to a distinguishing

property for the Keccak-f permutation up to 16 rounds, out of 24 in total. Boura and Canteaut

[11] extended the zero-sum property to 18 rounds of the Keccak-f permutation.

2.2.5 Skein

Skein is a family of hash functions with three different internal state sizes: 256, 512, and 1024

bits. Skein-512 is presented as primary proposal by its designer. Skein-1024 is proposed as
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ultra-conservative variant. Because it has twice the internal-state size of Skein-512, it is failure

friendly and Skein-256 is our low-memory variant as claimed by [15].

2.2.5.1 Skein Specification

Each of state sizes of Skein can support any output size. The configuration in Skein’s novel

idea is to build a hash function out of a tweakable block cipher [15]. More specifically, Skein

is built from these three new components:

The Threefish Block Cipher: Threefish is the large, tweakable block cipher at the core of

Skein, defined with a 256-, 512-, and 1024-bit block size [26]. It is defined for three different

block sizes: 256 bits, 512 bits, and 1024 bits. The core design principle of Threefish is that a

larger number of simple rounds is more secure than fewer complex rounds. Threefish uses only

three mathematical operations-exclusive-or (XOR), addition, and constant rotations on 64-bit

words. A simple non-linear mixing function, called MIX, that operates on two 64-bit words.

Each MIX function consists of a single addition, a rotation by a constant, and an XOR.

Figure 2.15: Four of the 72 rounds of the Threefish-512 block cipher [15].

Figure 2.15 shows how MIX functions are used to build Threefish-512. Each of Skein-512’s

72 rounds consists of four MIX functions followed by a permutation of the eight 64-bit words.

The word permutation ’Permute’ is same for every round. A subkey is injected every four

rounds, that is generated from extended key words, two extended tweak words and the subkey

number(counter value) as shown in Figure 2.16.
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Figure 2.16: Constructing a Threefish subkey [15].

The key schedule generates the subkeys from the key and the tweak. Each subkey consists of

three contributions: key words, tweak words, and a counter value. To create the key schedule,

the key and tweak are each extended with one extra parity word that is the XOR of all the other

words. Each subkey is a combination of all but one of the extended key words, two of the three

extended tweak words, and the subkey number as shown in Figure 2.16. Between subkeys,

both the extended key and extended tweak are rotated by one word position. The entire key

schedule can be computed in just a few CPU cycles, which minimizes the cost of using a new

key-a critical consideration when using a block cipher in a hash function [15].

Unique Block Iteration (UBI) : UBI is a chaining mode that uses Threefish to build a

compression function that maps an arbitrary input size to a fixed output size. Figure 2.17

shows a UBI computation for Skein-512 on a 166-byte (three-block) input, which uses three

calls to Threefish-512 [15].

Figure 2.17: Hashing a three-block message using UBI mode [15].

Message blocks M0 and M1 contain 64 bytes of data each, and M2 is the padded final block

containing 38 bytes of data. The tweak value for each block encodes how many bytes have been

processed so far, and whether this is the first and/or last block of the UBI computation. The

tweak also encodes a ’type’ field (not shown in the figure) that is used to distinguish different

uses of the UBI mode from each other.
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The output transform is required to achieve hashing-appropriate randomness. It also allows

Skein to produce any size output up to 264 bits. If a single output block is not enough, run

the output transform several times, as shown in Figure 2.18. The chaining input to all output

transforms is the same, and the data field consists of an 8-byte counter [15].

Figure 2.18: Skein with larger output size [15].

Optional Arguments: Skein support a variety of optional features without imposing any

overhead on implementations and applications that do not use the features. They are Key,

Configuration, Personalization, Public Key, Key Derivation Identifier, Nonce, Message, Out-

put. Among above arguments Configuration and Output are required and other can be used as

optional in Skein hashing.

2.2.5.2 Skein Hashing :

Skein has many possible parameters. Each parameter, whether optional or mandatory, has its

own unique type identifier and value. [15] described two type of hashing: Simple and Full

according to the number of input parameter.

Simple Hashing : A simple Skein hash computation has the following inputs:

Nb The internal state size, in bytes. Must be 32, 64, or 128.

No The output size, in bits.
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M The message to be hashed, a string of up to 299 − 8 bits (296 − 1 bytes).

Let C be the configuration string with Yl = Yf = Ym = 0

Now:

K
′
:= 0Nb a string of Nb zero bytes

G0 := UBI(K ′
, C, Tcfg2

120)

G1 := UBI(G′
,M, Tmsg2

120)

H := Output(G1, No)

where H is the result of the hash.

Full Hashing : In its full general form, a Skein computation has the following inputs:

Nb The internal state size, in bytes. Must be 32, 64, or 128.

No The output size, in bits.

K A key of Nk bytes. Set to the empty string (Nk = 0) if no key is desired.

Yl Tree hash leaf size encoding.

Yf Tree hash fan-out encoding.

Ym Maximum tree height.

L List of t tuples (Ti,Mi) where Ti is a type value and Mi is a string of bits encoded in a

string of bytes.

We have:

L := (T0,M0), ..., (Tt−1,Mt−1)

We require that Tcfg < T0, Ti < Ti+1 for all i, and Tt−1 < Tout . An empty list L is allowed.

Each Mi can be at most 299 − 8 bits (= 296 − 1 bytes) long.

The first step is to process the key. If Nk = 0, the starting value consists of all zeroes.

K
′
:= 0Nb

If Nk 6= 0 compressed the key using UBI to get our starting value:

K
′
:= UBI(0Nb , K, Tkey2

120)

Let C be the configuration string. Then

G0 := UBI(K ′
, C, Tcfg2

120)

The parameters are then processed in order:

Gi+1 := UBI(Gi,Mi, Ti2
120) for i = 0, ..., t− 1

with one exception: if the tree parameters Yl, Yf , and Ym are not all zero, then an input tuple

with Ti = Tmsg
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And the final Skein result is given by:

H := Output(Gt, No)

2.2.5.3 Security Analysis

Khovratovich and Nikolic [22] analysed rotational cryptanalysis, that is universal for the ARX

systems and is quite efficient. Khovratovich et al. [23] combined the rotational cryptanalysis

with the rebound attack, results in the best cryptanalysis of Skein leading to rotational colli-

sions for about 53/57 out of the 72 rounds of the Skein-256/512 compression function and the

Threefish cipher.

McKay and Vora [27] proposed pseudo-linear approximations can be used to distinguish an

ARX function from a random permutation. Chen and Jia [12] presented modular differen-

tial method that perform boomerang key recovery attacks on Threefish-512 reduced to 32, 33

and 34 rounds. The attack on 32-round Threefish-512 has time complexity 2195 with mem-

ory of 212 bytes. Later near collisions on up to 17 rounds, an impossible differential on 21

rounds, a related-key boomerang distinguisher on 34 rounds, a known-related-key boomerang

distinguisher on 35 rounds, and key recovery attacks on up to 32 rounds, out of 72 in total for

Threefish-512 by Aumasson et al. [5].
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Chapter 3

Java Implementation

The submitted candidates are written in the C programming language. To enable them to run

on a Java platform, they have to be implemented in the Java language based on their current

implementation. Unlike a low-level language, like C, the memory management in Java is not

handled by the programmer. This makes it difficult to translate an optimized C-version of the

candidates, as the two languages can differ in many ways.

Java compiles the code into byte code which can be run on several architectures. This is due

to the fact that the code executes on a virtual machine. This makes software written in Java

platform independent, and hard to optimize for a given platform.

3.1 Choice of Programming Language: Java

Java is a programming language and computing platform first released by Sun Microsystems in

1995. It is the underlying technology that powers state-of-the-art programs including utilities,

games, and business applications. Nowadays it is difficult to find the electronic appliances that

does not support Java including mobile and TV devices.

A Java virtual machine (JVM) is a virtual machine that can execute Java bytecode. It is the

code execution component of the Java software platform. [53] The Java Virtual Machine pro-

vides a platform-independent way of executing code; programmers can concentrate on writing

software, without having to be concerned with how or where it will run. It is responsible for all

the things like garbage collection, array bounds checking, etc. JVM is platform dependent.

Oracle Corporation is the current owner of the official implementation of the Java SE platform.

This implementation is based on the original implementation of Java by Sun. The Oracle imple-
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mentation are packaged into two different distributions. The Java Runtime Environment (JRE)

which contains the parts of the Java SE platform required to run Java programs. This package is

intended for end-users. The Java Development Kit (JDK), is intended for software developers

and includes development tools such as the Java compiler, Javadoc, Jar, and a debugger.

3.2 Netbeans

Netbeans is an open-source IDE which supports development of all Java application types, as

well as a wide range of other languages [49]. It is written in Java and may be used everywhere

a Java VM is running.

Netbeans was started as a Java IDE student project at Charles University in Prague. In June

2000, NetBeans was made open source by Sun Microsystems, which remained the project

sponsor until January 2010 when Sun Microsystems became a subsidiary of Oracle. [45]. The

current version of Netbeans used for this thesis work is 7.0 on Ubuntu and 7.1 on Windows.

3.3 Design Alternatives

The Java implementations of the candidates are based on the reference implementation repre-

senting the candidate in the third round. The codes which are designed on the reference of c

code given with the submission of algorithm may not be optimal one. Therefore, here some

modules are imported from the available implementation benchmark [50], that are claimed as

optimal one.

As the goal of this work is to measure the performance of SHA-3 finalists along with the

currently used SHA-2, the implementation is done for two variants of each family that are 256

and 512. The extra functionality like salting and keyed hashing are also implemented but set

as zero. We may have the condition to hash various types of data on different platform having

sufficient resources and having limited one, therefore the different input message is taken very

small to large size. To have the optimized code, some of the module are directly taken form

previously implemented standard in which all the implementation follows same pattern. The

implementation concept is borrowed form [?].

32



3.4 Implementation Detail of Candidate algorithms

The two variant 256 and 512 of each hash family of the SHA-3 finalists are implemented along

with the SHA-2. The calling procedure of all the algorithm is same. Various size of input file

is fed to algorithm. For creating large file of message string following code is used:

1 i m p o r t j a v a . i o . RandomAccessFi le ;

2 i m p o r t j a v a . n i o . MappedByteBuffer ;

3 i m p o r t j a v a . n i o . c h a n n e l s . F i l e C h a n n e l ;

4

5 p u b l i c c l a s s Main {

6 s t a t i c i n t l e n g t h = 1024∗1024∗256; / / 2 5 6MB s i z e

7

8 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h ro ws E x c e p t i o n {

9 MappedByteBuffer o u t = new RandomAccessFi le

10 ( ” t e s t . t x t ” , ” rw ” ) . g e t C h a n n e l ( ) . map ( F i l e C h a n n e l

11 . MapMode . READ WRITE , 0 , l e n g t h ) ;

12 f o r ( i n t i = 0 ; i < l e n g t h ; i ++)

13 o u t . p u t ( ( b y t e ) ’x ’ ) ;

14 System . o u t . p r i n t l n ( ” F i n i s h e d w r i t i n g ” ) ;

15 f o r ( i n t i = l e n g t h / 2 ; i < l e n g t h / 2 + 6 ; i ++)

16 System . o u t . p r i n t ( ( c h a r ) o u t . g e t ( i ) ) ;

17 }

18 }

Here in above code, a file is created and is written byte ’x’ through out the file of size 256MB.

The file is supplied as input to every hash function as string, which is converted into byte form

using the following code:

byte[] byteForm=s.getBytes();

There are to ways of bit representation, little-endian and big-endian. Some of the algorithm

use little-endian format where the other uses big-endian. The encodeBig() converts the n-bit

word in to the array of byte in big-endian convention format (most significant byte first) and

decodeBig() converts n-bit big-endian word from the array. Where as encodeLittle() converts
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the n-bit word in to the array of byte in little-endian convention format (least significant byte

first) and decodeLittle() converts n-bit little-endian word from the array.

A digest object maintains a running state for a hash function computation. Data is inserted

with feedByte() function that creates number of block according to algorithm and its variant

(eg, 1024-bit block size for BLAKE-512) and is supplied for further processing to compression

function. The last block is padded as necessary and number of size of the message bit is ap-

pended at last. The sample module for feedByte() is listed here:

1 p u b l i c vo id f e e d B y t e ( b y t e [ ] i n p u t , i n t o f f s e t , i n t l e n )

2 {

3 w h i l e ( l e n > 0) {

4 i n t copyLen = blockLen − i n p u t L e n ;

5 / / i n p u t L e n i s o f f s e t o f i n p u t b u f f e r

6 i f ( copyLen > l e n )

7 copyLen = l e n ;

8 System . a r r a y c o p y ( i n p u t , o f f s e t , i npu tBuf ,

9 inpu tLen , copyLen ) ;

10 o f f s e t += copyLen ;

11 i n p u t L e n += copyLen ;

12 l e n −= copyLen ;

13 i f ( i n p u t L e n == blockLen ) {

14 compressBlock ( i n p u t B u f ) ;

15 b lockCoun t ++;

16 i n p u t L e n = 0 ;

17 }

18 }

19 }

The result is obtained form md() method in byte form which is then converted into hex string

form. Each algorithm has its own padding mechanism. Usually, bit ’1’ is appended followed

by number of zeros such that the message will be the multiple of block size after concatenation

of bit value of length of message that can be of 64-bit or 128-bit.
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The byte string returned after padding and splitting into blocks are then subjected for the cre-

ation of message digest. All the constants and required arguments are issued as suggested by

respective algorithms. Inside the compression function, and complex round operation is carried

out for better avalanche effect and greater security.

The implementation detail of each algorithms are provided in this section. Each of the algo-

rithm possess common type of operation like padding message into the multiple of fixed block

size after appending the bit length of message, initializing the constants or initial vector (IV),

passing through the compression function for diffusion, and generation of the final message

digest of fixed size. In the following subsection the description of padding mechanism and the

round function are described briefly.

3.4.1 BLAKE

BLAKE starts hashing from the same initial value as SHA-2. All the BLAKE constant values

are assigned to respective temporary data variables. When the array of byte is fed to function

using feedByte(), then necessary padding is performed. The padding module of BLAKE can

be simulated by using padding() function. There are two ways of BLAKE padding, one for

short variant and another for long one. The padding code for multiple of 512 bit looks like:

1 p r o t e c t e d vo id padd ing ( b y t e [ ] out , i n t o u t O f f )

2 {

3 i n t p t r = f l u s h ( ) ; / / r e t u r n s i n p u t l e n g t h

4 i n t b i t L e n = p t r << 3 ; / / l e n g t h e n c r e a s e d 8 t i m e s

5 i n t t h = t 1 ;

6 i n t t l = t 0 + b i t L e n ;

7 tempBuff [ p t r ] = ( b y t e )0 x80 ;

8 / / b y t e a r r a y o f s i z e p t r i n which 128 i s

9 s t o r e d a t l a s t b y t e i . e . 10000000

10 i f ( p t r == 0) {

11 t 0 = ( i n t )0 xFFFFFE00 ; / /−512

12 t 1 = ( i n t )0 xFFFFFFFF ; / /−1

13 } e l s e i f ( t 0 == 0) {

14 t 0 = ( i n t )0 xFFFFFE00 + b i t L e n ; / / t 0 =−512+ b i t L e n
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15 t 1 −−;

16 } e l s e {

17 t 0 −= 512 − b i t L e n ;

18 }

19 i f ( p t r < 56) {

20 f o r ( i n t i = p t r + 1 ; i < 5 6 ; i ++)

21 tempBuff [ i ] = 0x00 ;

22 i f ( d i g e s t L e n == 32)

23 tempBuff [ 5 5 ] |= 0x01 ;

24 / / appeded l a s t a s 00000001

25 encodeBig ( th , tempBuff , 5 6 ) ;

26 encodeBig ( t l , tempBuff , 6 0 ) ;

27 f e e d B y t e ( tempBuff , p t r , 64 − p t r ) ;

28 } e l s e {

29 f o r ( i n t i = p t r + 1 ; i < 6 4 ; i ++)

30 tempBuff [ i ] = 0 ;

31 f e e d B y t e ( tempBuff , p t r , 64 − p t r ) ;

32 t 0 = ( i n t )0 xFFFFFE00 ;

33 t 1 = ( i n t )0 xFFFFFFFF ;

34 f o r ( i n t i = 0 ; i < 5 6 ; i ++)

35 tempBuff [ i ] = 0x00 ;

36 i f ( d i g e s t L e n == 32)

37 tempBuff [ 5 5 ] = 0x01 ;

38 encodeBig ( th , tempBuff , 5 6 ) ;

39 encodeBig ( t l , tempBuff , 6 0 ) ;

40 f e e d B y t e ( tempBuff , 0 , 6 4 ) ;

41 }

42 encodeBig ( h0 , out , o u t O f f + 0 ) ;

43 encodeBig ( h1 , out , o u t O f f + 4 ) ;

44 encodeBig ( h2 , out , o u t O f f + 8 ) ;

45 encodeBig ( h3 , out , o u t O f f + 1 2 ) ;

46 encodeBig ( h4 , out , o u t O f f + 1 6 ) ;
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47 encodeBig ( h5 , out , o u t O f f + 2 0 ) ;

48 encodeBig ( h6 , out , o u t O f f + 2 4 ) ;

49 i f ( d i g e s t L e n == 32)

50 encodeBig ( h7 , out , o u t O f f + 2 8 ) ;

51 }

To achieve the better performance, the code has been optimized by unrolling loop and removing

the extra temporary variables. After, completion of padding the message, each block is passed

through the compression function. The intermediate value generated from one round is again

fed with another block along with salt and counter, and final digest is created.

3.4.2 Grøstl

The padding process of Grøstl is nearly same as BLAKE. This padding function takes a se-

quence of byte returns a padded string length which is a multiple of 512 or 1024. First, it

appends the bit ’1’ then number of ’0’ bits such that the final appends of 64 bit representation

of message makes it exact multiple of block size. The sample code for Grøstl padding is:

1 p r o t e c t e d vo id padd ing ( b y t e [ ] out , i n t o u t O f f )

2 {

3 b y t e [ ] buf = g e t B l o c k B u f f e r ( ) ;

4 i n t p t r = s e t ( ) ;

5 buf [ p t r ++] = ( b y t e )0 x80 ;

6 long c o u n t = noOfBlock ;

7 i f ( p t r <= 56) {

8 f o r ( i n t i = p t r ; i < 5 6 ; i ++)

9 buf [ i ] = 0 ;

10 c o u n t ++;

11 } e l s e {

12 f o r ( i n t i = p t r ; i < 6 4 ; i ++)

13 buf [ i ] = 0 ;

14 p r o c e s s B l o c k ( buf ) ;

15 f o r ( i n t i = 0 ; i < 5 6 ; i ++)

16 buf [ i ] = 0 ;
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17 c o u n t += 2 ;

18 }

19 encodeBig ( count , buf , 5 6 ) ;

20 p r o c e s s B l o c k ( buf ) ;

21 System . a r r a y c o p y (H, 0 , G, 0 , H. l e n g t h ) ;

22 p e r m u t a t i o n (G, CP ) ;

23 f o r ( i n t i = 0 ; i < 4 ; i ++)

24 encodeBig (H[ i + 4] ˆ G[ i + 4 ] , buf , 8 ∗ i ) ;

25 i n t outLen = d i g e s t L e n ;

26 System . a r r a y c o p y ( buf , 32 − outLen ,

27 out , ou tOf f , outLen ) ;

28 }

The processBlock() is invoked for each block of message and permutation P and Q is per-

formed through permutation() function. The processing module call the permutation() to per-

form both P and Q permutation can be shown as:

1 p r o t e c t e d vo id p r o c e s s B l o c k ( b y t e [ ] d a t a )

2 {

3 f o r ( i n t i = 0 ; i < 8 ; i ++) {

4 M[ i ] = decodeBig ( da t a , i ∗ 8 ) ;

5 G[ i ] = M[ i ] ˆ H[ i ] ;

6 }

7 p e r m u t a t i o n (G, CP ) ;

8 p e r m u t a t i o n (M, CQ ) ;

9 f o r ( i n t i = 0 ; i < 8 ; i ++)

10 H[ i ] ˆ= G[ i ] ˆ M[ i ] ;

11 }

3.4.3 JH

JH hashing starts form padding the message that appends ’1’ to the end of the message followed

by ’0’ bits then append the 128-bit block that is equal to the number l expressed using a binary

representation in big-endian form. The padding module is same for all variant of JH as:
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1 p r o t e c t e d vo id padd ing ( b y t e [ ] buf , i n t o f f )

2 {

3 i n t rem = i n p u t L e n ;

4 long bc = noOfBlock ;

5 i n t numz = ( rem == 0) ? 47 : 111 − rem ;

6 tempBuff [ 0 ] = ( b y t e )0 x80 ;

7 f o r ( i n t i = 1 ; i <= numz ; i ++)

8 tempBuff [ i ] = 0x00 ;

9 encodeBig ( bc >>> 55 , tempBuff , numz + 1 ) ;

10 encodeBig ( ( bc << 9) + ( rem << 3 ) , tempBuff , numz + 9 ) ;

11 f e e d B y t e ( tempBuff , 0 , numz + 1 7 ) ;

12 f o r ( i n t i = 0 ; i < 8 ; i ++)

13 encodeBig ( h [ i + 8 ] , tempBuff , i << 3 ) ;

14 i n t d l e n = d i g e s t L e n ;

15 System . a r r a y c o p y ( tempBuff , 64 − dlen , buf , o f f , d l e n ) ;

16 }

The padded message is subjected to processing through compression function, that perform

different transformation, shift operation and swapping and generate the final hash value. The

processBlock() module can be shown as:

1 p r o t e c t e d vo id p r o c e s s B l o c k ( b y t e [ ] d a t a )

2 {

3 long m0h = decodeBig ( da t a , 0 ) ;

4 long m0l = decodeBig ( da t a , 8 ) ;

5 long m1h = decodeBig ( da t a , 1 6 ) ;

6 long m1l = decodeBig ( da t a , 2 4 ) ;

7 long m2h = decodeBig ( da t a , 3 2 ) ;

8 long m2l = decodeBig ( da t a , 4 0 ) ;

9 long m3h = decodeBig ( da t a , 4 8 ) ;

10 long m3l = decodeBig ( da t a , 5 6 ) ;

11 h [ 0 ] ˆ= m0h ;

12 h [ 1 ] ˆ= m0l ;
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13 h [ 2 ] ˆ= m1h ;

14 h [ 3 ] ˆ= m1l ;

15 h [ 4 ] ˆ= m2h ;

16 h [ 5 ] ˆ= m2l ;

17 h [ 6 ] ˆ= m3h ;

18 h [ 7 ] ˆ= m3l ;

19 f o r ( i n t r = 0 ; r < 3 5 ; r += 7) {

20 s T r a n s f o r m ( r + 0 ) ;

21 l T r a n s f o r m ( ) ;

22 wGenera te (0 x5555555555555555L , 1 ) ;

23 s T r a n s f o r m ( r + 1 ) ;

24 l T r a n s f o r m ( ) ;

25 wGenera te (0 x3333333333333333L , 2 ) ;

26 s T r a n s f o r m ( r + 2 ) ;

27 l T r a n s f o r m ( ) ;

28 wGenera te (0 x0F0F0F0F0F0F0F0FL , 4 ) ;

29 s T r a n s f o r m ( r + 3 ) ;

30 l T r a n s f o r m ( ) ;

31 wGenera te (0 x00FF00FF00FF00FFL , 8 ) ;

32 s T r a n s f o r m ( r + 4 ) ;

33 l T r a n s f o r m ( ) ;

34 wGenera te (0 x0000FFFF0000FFFFL , 1 6 ) ;

35 s T r a n s f o r m ( r + 5 ) ;

36 l T r a n s f o r m ( ) ;

37 wGenera te (0 x00000000FFFFFFFFL , 3 2 ) ;

38 s T r a n s f o r m ( r + 6 ) ;

39 l T r a n s f o r m ( ) ;

40 wSwap ( ) ;

41 }

42 s T r a n s f o r m ( 3 5 ) ;

43 h [ 8 ] ˆ= m0h ;

44 h [ 9 ] ˆ= m0l ;
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45 h [ 1 0 ] ˆ= m1h ;

46 h [ 1 1 ] ˆ= m1l ;

47 h [ 1 2 ] ˆ= m2h ;

48 h [ 1 3 ] ˆ= m2l ;

49 h [ 1 4 ] ˆ= m3h ;

50 h [ 1 5 ] ˆ= m3l ;

51 }

The sTransform() perform the S-box operation, lTransform() perform linear transformation,

wGenerate() perform bitwise shift and addition between 2, 3, 6, 7, 10, 11, 14, 15 byte of hash

value and constant, and wSwap() perform the required swapping between 2, 3, 6, 7, 10, 11, 14,

15 with each other. Finally the digest is created by truncating the final hash value into required

number of bit according to JH variant.

3.4.4 Keccak

Keccak perform multi-rate padding that appends a single bit ’1’ followed by the minimum

number of bits ’0’ followed by a single bit ’1’ such that the length of the result is a multiple of

the block length [7]. The padding can be shown as:

1 p r o t e c t e d vo id padd ing ( b y t e [ ] out , i n t o f f )

2 {

3 i n t d l e n = d i g e s t L e n ;

4 f e e d B y t e ( ( b y t e )0 x01 ) ;

5 f e e d B y t e ( ( b y t e ) d l e n ) ;

6 f e e d B y t e ( ( b y t e ) b lockLen ) ;

7 f e e d B y t e ( ( b y t e )0 x01 ) ;

8 i n t p t r = ge tLen ( ) ; / / i n p u t l e n g t h

9 i f ( p t r != 0 ) {

10 b y t e [ ] buf = g e t B l o c k B u f f e r ( ) ;

11 f o r ( i n t i = p t r ; i < buf . l e n g t h ; i ++)

12 buf [ i ] = 0 ;

13 p r o c e s s B l o c k ( buf ) ;

14 }
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15 A[ 1] = ˜A[ 1 ] ;

16 A[ 2] = ˜A[ 2 ] ;

17 A[ 8] = ˜A[ 8 ] ;

18 A[ 1 2 ] = ˜A[ 1 2 ] ;

19 A[ 1 7 ] = ˜A[ 1 7 ] ;

20 A[ 2 0 ] = ˜A[ 2 0 ] ;

21 f o r ( i n t i = 0 ; i < d l e n ; i += 8)

22 e n c o d e L i t t l e (A[ i >>> 3 ] , tempOut , i ) ;

23 System . a r r a y c o p y ( tempOut , 0 , out , o f f , d l e n ) ;

24 }

The processing of block is performed by processBlock() and the code is written in loop un-

rolling form for better parallelisation that runs 12 + 2l times, where l ranges from 0 to 6.

3.4.5 Skein

There is no bit padding to apply in UBI which is core part of Skein hashing and hence Skein

also has no padding to apply. It uses the little-endian bit encoding. Skein has different imple-

mentation for feeding byte array as:

1 p u b l i c vo id f e e d B y t e ( b y t e i n )

2 {

3 i f ( p t r == blockLen ) {

4 i n t t y p e = ( b lockCoun t == 0) ? 224 : 9 6 ;

5 b lockCoun t ++;

6 processBlockUBI ( type , 0 ) ;

7 b u f f [ 0 ] = i n ;

8 p t r = 1 ;

9 } e l s e {

10 b u f f [ p t r ++] = i n ;

11 }

12 }

The processBlockUBI() perform all the permutation, mix operation by using the arguments

supplied to the function. All the rounds 72 (80 for Skein with 1024 key/block size) are applied
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without using loop. The sample code for first four round is:

1 p r i v a t e f i n a l vo id processBlockUBI ( i n t type , i n t e x t r a )

2 {

3 long m0 = d e c o d e L i t t l e ( buf , 0 ) ;

4 long m1 = d e c o d e L i t t l e ( buf , 8 ) ;

5 long m2 = d e c o d e L i t t l e ( buf , 1 6 ) ;

6 long m3 = d e c o d e L i t t l e ( buf , 2 4 ) ;

7 long p0 = m0 ;

8 long p1 = m1 ;

9 long p2 = m2 ;

10 long p3 = m3 ;

11 long h4 = ( h0 ˆ h1 ) ˆ ( h2 ˆ h3 ) ˆ 0 x5555555555555555L ;

12 long t 0 = ( b lockCoun t << 5) + ( long ) e x t r a ;

13 long t 1 = ( b lockCoun t >>> 59) + ( ( l ong ) t y p e << 5 5 ) ;

14 long t 2 = t 0 ˆ t 1 ;

15 p0 += h0 ;

16 p1 += h1 + t 0 ;

17 p2 += h2 + t 1 ;

18 p3 += h3 + 0L ;

19 p0 += p1 ;

20 p1 = ( p1 << 14) ˆ ( p1 >>> (64 − 1 4 ) ) ˆ p0 ;

21 p2 += p3 ;

22 p3 = ( p3 << 16) ˆ ( p3 >>> (64 − 1 6 ) ) ˆ p2 ;

23 p0 += p3 ;

24 p3 = ( p3 << 52) ˆ ( p3 >>> (64 − 5 2 ) ) ˆ p0 ;

25 p2 += p1 ;

26 p1 = ( p1 << 57) ˆ ( p1 >>> (64 − 5 7 ) ) ˆ p2 ;

27 p0 += p1 ;

28 p1 = ( p1 << 23) ˆ ( p1 >>> (64 − 2 3 ) ) ˆ p0 ;

29 p2 += p3 ;

30 p3 = ( p3 << 40) ˆ ( p3 >>> (64 − 4 0 ) ) ˆ p2 ;

31 p0 += p3 ;
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32 p3 = ( p3 << 5) ˆ ( p3 >>> (64 − 5 ) ) ˆ p0 ;

33 p2 += p1 ;

34 p1 = ( p1 << 37) ˆ ( p1 >>> (64 − 3 7 ) ) ˆ p2 ;

35 p0 += h1 ;

36 p1 += h2 + t 1 ;

37 p2 += h3 + t 2 ;

38 p3 += h4 + 1L ;

39 p0 += p1 ;

40 .

41 .

42 .

43 / / 1 8 t i m e s each composed of 4 round t o have 72 ro un ds

44 h0 = m0 ˆ p0 ;

45 h1 = m1 ˆ p1 ;

46 h2 = m2 ˆ p2 ;

47 h3 = m3 ˆ p3 ;

48 }

Here, decodeLeLong() decodes a 64-bit little-endian word from the array of byte to long inte-

ger.

The whole implementation of each algorithm is submitted with this thesis.
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Chapter 4

Measurements and Results

This chapter presents an overview of comparison of the SHA-3 finalists candidates, in terms of

performance and cost. Here is the description of the target architectures and their specifications.

Execution time for candidate algorithm implemented in Java, are measured using system nano

time in the target architecture, and performance is measured accordingly.

4.1 Target Architectures

The primary work of this thesis is to measure the performance of the candidates on a desktop

system. The following systems are used:

• A PC with an Intel Core i5-2410M Processor 2.30Ghz. The OS is Ubuntu 11.10, running

in 64-bit mode. The system is running the Java VM 21.0-b17, OpenJDK 64-Bit Server

version 1.7.0 147-icedtea with Netbeans IDE 7.0.1.

• A PC with an Intel Core i5-2410M Processor 2.30Ghz. The OS is Windows 7, running

in 64-bit mode. The system is running the Java VM 19.0-b09, Java HotSpot(TM) Client

version 1.6.0 23 with Netbeans IDE 7.1.2.

4.2 Measuring Cost

There is some extra cost for measuring the performance of algorithm but it does not effect on

the execution of algorithm. The system time is taken just before the execution of particular

code and after the completion of the execution the previous time is subtracted form the current
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time. In this way the interval of the time is taken while executing the function. Since, various

processes are running in the background, that may affect the absolute execution time of the

particular function, which is maintained same for all the algorithm.

long startTime = System.nanoTime();

//hash function call;

long estimatedTime = System.nanoTime() - startTime;

4.3 Measuring Performance

When timing cryptographic primitives, then the subject is how many cycles it takes to process

a byte, on average. Measuring bytes per second is a useful thing when comparing the perfor-

mance of multiple algorithms on a single box, but it gives no real indication of performance

on other machines. Therefore, cryptographers prefer to measure how many processor clock

cycles it takes to process each byte, because doing so allows for comparisons that are more

widely applicable. For example, such comparisons will generally hold fast on the same line of

processors running at different speeds.

For evaluating the cycle per byte of cryptographic hash function, the number of bytes processed

is divided by the number of cycles it takes to process. One important thing to note about timing

cryptographic code is that some types of algorithms have different performance characteristics

as they process more data. That is, they can be dominated by per-message overhead costs for

small message sizes. For example, most hash functions such as SHA-2 are significantly slower

(per byte) for sm all messages than they are for large messages. Another important aspect is

that performance is for best case or average-case, in most cases it will be the latter i.e. what

range of message sizes is expected to see and test for valued sampled throughout that range.

Direct comparing the speed of an algorithm on a 2GHz Pentium 4 against the published speed

of the same algorithm run on a 800 MHz Pentium 3, the first one will always be faster when

measured in bytes per second. However, when bytes per second is converted to cycles per byte,

and the implementation of algorithm is executed on a P3 and a P4, the P3 will generally be

faster by 25% or so, just because instructions on a P4 take longer to execute on average than

they do on a P3 [52].

In this thesis Cycles/byte calculation is performed with the following parameters: Time in sec-

onds spent performing hash (Ts), frequency of the CPU in Hz(F) and message input length in
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bytes (L). The formula for calculating Cycles/byte suggested by [24, 52] is:

Cycles/byte=Ts∗F
L

4.4 Analysis

This section will present the results of the performance tests, on different platform for various

input sizes of each candidates. Each candidate will be presented in alphabetical order. A simple

graph for each platform will be presented, depicting the cycles/byte for each of the given inputs

explained in the preceding sections. Finally this section will present an analytical summary to

each of the platform for all candidates.

Following tables and corresponding charts show the overall performance in the two different

architecture. Figures 4.1, 4.2 and 4.3 depict the performance of candidates for 1KB, 1MB and

256MB on Ubuntu system and 4.4, 4.5 and 4.6 show the performance of candidates for 1KB,

1MB and 64MB input sizes on Windows system respectively.
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Candidate Algorithms Cycles/byte

256 512

SHA-2 4292 3830

BLAKE 2960 2366

Grøstl 4658 6777

JH 13139 13285

Keccak 6593 11763

Skein 1473 1751

Table 4.1: Performance of SHA-3 finalists and SHA-2 on Java/64-Bit Server (Ubuntu

11.10/amd64 Intel(R) Core(TM) i5-2410M) for 1KB input size

Figure 4.1: Performance of SHA-3 finalists and SHA-2 on Java/64-Bit Server (Ubuntu

11.10/amd64 Intel(R) Core(TM) i5-2410M) for 1KB input size
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Candidate Algorithms Cycles/byte

256 512

SHA-2 226 194

BLAKE 316 312

Grøstl 481 648

JH 637 663

Keccak 866 1051

Skein 546 281

Table 4.2: Performance of SHA-3 finalists and SHA-2 on Java/64-Bit Server (Ubuntu

11.10/amd64 Intel(R) Core(TM) i5-2410M) for 1MB input size

Figure 4.2: Performance of SHA-3 finalists and SHA-2 on Java/64-Bit Server (Ubuntu

11.10/amd64 Intel(R) Core(TM) i5-2410M) for 1MB input size
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Candidate Algorithms Cycles/byte

256 512

SHA-2 102 66

BLAKE 94 83

Grøstl 117 164

JH 181 215

Keccak 119 206

Skein 67 62

Table 4.3: Performance of SHA-3 finalists and SHA-2 on Java/64-Bit Server (Ubuntu

11.10/amd64 Intel(R) Core(TM) i5-2410M) for 256MB input size

Figure 4.3: Performance of SHA-3 finalists and SHA-2 on Java/64-Bit Server (Ubuntu

11.10/amd64 Intel(R) Core(TM) i5-2410M) for 256MB input size

50



Candidate Algorithms Cycles/byte

256 512

SHA-2 4582 3672

BLAKE 3005 2449

Grøstl 4638 6427

JH 11932 11928

Keccak 8256 14582

Skein 1864 2045

Table 4.4: Performance of SHA-3 finalists and SHA-2 on Java/x86 (Windows 7 64-bit/Intel(R)

Core(TM) i5-2410M) for 1KB input size

Figure 4.4: Performance of SHA-3 finalists and SHA-2 on Java/x86 (Windows 7 64-bit/Intel(R)

Core(TM) i5-2410M) for 1KB input size
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Candidate Algorithms Cycles/byte

256 512

SHA-2 162 251

BLAKE 153 215

Grøstl 366 466

JH 585 578

Keccak 505 786

Skein 261 230

Table 4.5: Performance of SHA-3 finalists and SHA-2 on Java/x86 (Windows 7 64-bit/Intel(R)

Core(TM) i5-2410M) for 1MB input size

Figure 4.5: Performance of SHA-3 finalists and SHA-2 on Java/x86 (Windows 7 64-bit/Intel(R)

Core(TM) i5-2410M) for 1MB input size
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Candidate Algorithms Cycles/byte

256 512

SHA-2 109 207

BLAKE 93 159

Grøstl 279 383

JH 485 485

Keccak 341 601

Skein 164 175

Table 4.6: Performance of SHA-3 finalists and SHA-2 on Java/x86 (Windows 7 64-bit/Intel(R)

Core(TM) i5-2410M) for 64MB input size

Figure 4.6: Performance of SHA-3 finalists and SHA-2 on Java/x86 (Windows 7 64-bit/Intel(R)

Core(TM) i5-2410M) for 64MB input size

4.5 Results

The short size input message takes large number of clock cycle. The performance result shows

that, the value of Cycles/byte decreases as the size of input message increases. On Windows

platform the Figure 4.4 shows the result of SHA-3 candidates with input size 1KB. For very

short message Skein leads and is followed by Blake and Grøstl . In case of large input message
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size, Blake beats other, Skein and Grøstl , Keccak and JH comes in order. It is noticed that,

on Windows system, the shorter variant(i.e. 256 bit output) has better performance then that

of the larger variant(i.e. 512 bit output) where as Ubuntu yields the mix result. Blake, Skein

and SHA perform better in long variant and the other are good in short variant. The results of

performance comparison of SHA-3 finalists performed in this work are relatively close to [34]

and [19], which indicates that the relative performance of the candidate algorithms are nearly

same for all platforms.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, the specification of SHA-3 finalists are discussed along with their Java imple-

mentation. The result of empirical performance comparison shows that two SHA-3 finalists

namely Skein and BLAKE perform better which is nearly same as the performance of SHA-2.

Depending on the digest length and block size Grøstl , Keccak and JH comes in order. By

assuming, all finalists are equally secure, only performance is the major factor, then the best

candidate for replacement of SHA-2 is Skein. Regarding to plain function to be used for the

replacement of SHA-2, BLAKE is the way to go, since it is closest in terms of performance in

the tested architecture.

5.2 Future Works

The priority of this work has been to analyse the five SHA-3 finalists along with the SHA-

2. Hence, no special effort could be given for analysing the security of the candidates. The

hardware based optimization can be performed to get better performance. Future work can be

done to consist of giving each candidate’s Java implementation a closer look, as to how one can

optimize for both speed and size without reducing the security margin. A possibility here can

be to create three implementations of each candidate, one optimized for size, one optimized for

speed and one for providing better security.

55



References

[1] J. P. Aumasson, et al., SHA-3 proposal BLAKE, version 1.3, December 16, 2010

http://people.rit.edu/rmt7715/files/BLAKE.pdf

[2] J. P. Aumasson, et al., New features of Latin dances: analysis of Salsa, ChaCha, and

Rumba. In FSE, 2008.

[3] J.P. Aumasson, et al., Differential and Invertibility Properties of BLAKE, Cryptology

ePrint Archive, report 2010/043, http://eprint.iacr.org/2010/043.pdf

[4] J.P. Aumasson, W. Meier, Zero-sum Distinguishers for Reduced Keccak-f and

for the Core Functions of Luffa and Hamsi, NIST mailing list, 2009-09-09,

http://www.131002.net/data/papers/AM09.pdf

[5] J.P. Aumasson, et al., Improved Cryptanalysis of Skein, Cryptology ePrint Archive, Report

2009/438, http://eprint.iacr.org/2009/438.pdf

[6] M. Bellare, et al., Provable Security Support for the Skein Hash Family, 2009

http://www.schneier.com/skein-proofs.pdf

[7] G. Bertoni, et al., The Keccak reference, Version 3.0, January 14, 2011

http://keccak.noekeon.org/Keccak-reference-3.0.pdf

[8] G. Bertoni, et al., Assche. sponge functions, 2007.

[9] G. Bertoni, et al., Building Power Analysis Resistant Implementations of Keccak, the Sec-

ond SHA-3 Candidate Conference, UCSB, CA, 2010,

http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010

/documents/papers/BERTONI KeccakAntiDPA.pdf

56



[10] E. Biham, O. Dunkelman, A Framework for Iterative Hash Functions - HAIFA, Computer

Science Department, Technion, Haifa 32000, Israel.

http://csrc.nist.gov/groups/ST/hash/documents/DUNKELMAN NIST3.pdf

[11] C. Boura, A. Canteaut, A Zero-Sum Property for the Keccak-f Permutation with 18

Rounds, NIST mailing list, 2010-01-14,

http://www-rocq.inria.fr/secret/Anne.Canteaut/Publications/zero sum.pdf

[12] J. Chen, K. Jia, Improved Related-Key Boomerang Attacks on Round-Reduced Threefish-

512, Cryptology ePrint Archive, Report 2009/526,

http://eprint.iacr.org/2009/526.pdf

[13] M. K. R. Danda, DESIGN AND ANALYSIS OF HASH FUNCTIONS, A thesis submitted

to the School of Computer Science and Mathematics, Victoria University, 2007.

http://vuir.vu.edu.au/1514/1/Danda.pdf

[14] R. D. Dean, Formal Aspects of Mobile Code Security., Ph.D. dissertation, Princeton Uni-

versity, 1999.

[15] N. Ferguson, et al., The Skein Hash Function Family, Version 1.3, 1 Oct 2010

http://www.skein-hash.info/sites/default/files/skein1.1.pdf

[16] B. A. Forouzan and D. Mukhopadhyay, Cryptography and Network Security, 2nd Edition,

Tata McGraw-Hill, 2010.

[17] P. Gauravaram, et al., Grøstl - a SHA-3 candidate , March 2, 2011

http://www.groestl.info/Groestl.pdf

[18] H. Gilbert, T. Peyrin, Super-Sbox Cryptanalysis: Improved Attacks for AES-like permuta-

tions, Cryptology ePrint Archive, Report 2009/531,

http://eprint.iacr.org/2009/531.pdf

[19] C. Hanser, Performance of the SHA-3 Candidates in Java, Institute for Applied Informa-

tion Processing and Communications Graz, University of Technology, March 19, 2012

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012

/documents/papers/HANSER paper.pdf

57



[20] K. Ideguchi, et al., Improved Collision Attacks on the Reduced-Round Grøstl Hash Func-

tion, Cryptology ePrint Archive, Report 2010/375,

http://eprint.iacr.org/2010/375.pdf

[21] J. Kelsey, B. Schneier, Second Preimageson n-Bit Hash Functions for Much Less than 2n,

Advances in Cryptology, proceedings of EURO-CRYPT 2005, Lecture Notes in Com-

puter Science 3494, Springer-Verlag, 2005.

[22] D. Khovratovich, I. Nikolic, Rotational Cryptanalysis of ARX, proceedings of FSE2010,

2010

http://www.skein-hash.info/sites/default/files/axr.pdf

[23] D. Khovratovich, et al., Rotational Rebound Attacks on Reduced Skein, Cryptology ePrint

Archive, Report 2010/538

http://eprint.iacr.org/2010/538.pdf

[24] M. Knutsen, K. A. Martinsen, Java Implementation and Performance Analysis of 14 SHA-

3 Hash Functions on a Constrained Device, Norwegian University of Science and Tech-

nology, Department of Telematics, June 2010

http://ntnu.diva-portal.org/smash/get/diva2:347979/FULLTEXT01

[25] J. Li, L. Xu, Attacks on Round-reduced BLAKE, Cryptology ePrint Archive, Report

2009/238,

http://eprint.iacr.org/2009/238.pdf

[26] M. Liskov, et al., Tweakable Block Ciphers, Advances in Cryptology-CRYPTO 2002 Pro-

ceedings, Springer-Verlag, 2002.

[27] K. McKay, P. Vora, Pseudo-Linear Approximations for ARX Ciphers: With Application to

Threefish, Cryptology ePrint Archive, Report 2010/282

http://eprint.iacr.org/2010/282.pdf

[28] F. Mendel, S. S. Thomsen, An Observation on JH-512, 2008,

http://ehash.iaik.tugraz.at/uploads/d/da/Jh preimage.pdf

[29] F. Mendel, et al., Improved Cryptanalysis of the Reduced Grøstl Compression Function,

ECHO Permutation and AES Block Cipher, Proceedings of SAC, 5867, 2009,

https://online.tugraz.at/tug online/voe main2.getvolltext-pCurrPk=44420

58



[30] F. Mendel, et al., The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl ,

Proceedings of FSE, LNCS 5665, Springer, 2009,

http://www2.mat.dtu.dk/people/S.Thomsen/MendelRST-fse09.pdf

[31] P. Morawiecki, M. Srebrny, A SAT-based Preimage Analysis of Reduced KECCAK Hash

Functions, Cryptology ePrint Archive, Report 2010/285,

http://eprint.iacr.org/2010/285.pdf

[32] M. Nandi, S. Paul, Speeding up the widepipe: Secure and fast hashing, June 2010.

http://www.cosic.esat.kuleuven.be/publications/article- 1449.pdf.

[33] T. Peyrin, Improved Differential Attacks for ECHO and Grøstl , Cryptology ePrint

Archive, Report 2010/223,

http://eprint.iacr.org/2010/223.pdf

[34] T. Pornin, sphlib Update for the SHA-3 Third-Round Candidates, July 20, 2011

http://www.bolet.org/sphlib-report-round3.pdf

[35] V. Rijmen, et al., Rebound Attack on Reduced-Round Versions of JH, FSE 2010, LNCS

6147, 2010,

https://www.cosic.esat.kuleuven.be/publications/article-1431.pdf

[36] P. Rogaway, T. Shrimpton, Cryptographic Hash-Function Basics: Definitions, Implica-

tions, and Separations for Preimage Resistance, Second-Preimage Resistance, and Colli-

sion Resistance, proceedings of Fast Software Encryption 2004, Lecture Notes in Com-

puter Science 3017, Springer-Verlag, 2004.

[37] B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons, 1996.

[38] W. Stallings, Cryptography and Network Security Principles and Practices, Fourth Edi-

tion, Prentice Hall, 2005

[39] B. Su, et al., Near-Collisions on the Reduced-Round Compression Functions of Skein and

BLAKE, Cryptology ePrint Archive, Report 2010/355,

http://eprint.iacr.org/2010/355.pdf

[40] M. S. Turan, et al., Status Report on the Second Round of the SHA-3 Cryptographic Hash

Algorithm Competition, NIST Interagency Report 7764, National Institute of Standards

59



and Technology, U.S. Department of Commerce

http://csrc.nist.gov/publications/nistir/ir7764/nistir-7764.pdf

[41] J. Vidali, et al., Collisions for Variants of the BLAKE Hash Function, Proceedings of

Information Processing Letters, vol. 110, Issue 14-15, 2010,

http://lkrv.fri.uni-lj.si/ janos/blake/collisions.pdf

[42] X. Wang, et al., Finding collisions in the full sha-1., In ”In Proceedings of Crypto”,

Springer, 2005.

[43] H. J. Wu, The Hash Function JH, 16 January, 2011

http://www.aceparadis.horizon-host.com/pubs/jh20110116.pdf

[44] H. Wu, The Complexity of Mendel and Thomsen’s Preimage Attack on JH-512, 2009,

http://ehash.iaik.tugraz.at/uploads/6/6f/Jh mt complexity.pdf

[45] A brief history of netbeans, June 2010.

http://netbeans.org/about/history.html.

[46] Cryptographic hash algorithm competition, April 2010.

http://csrc.nist.gov/groups/ST/hash/sha- 3/index.html.

[47] Cryptographic sponge functions, January 2011

http://sponge.noekeon.org/.

[48] Federal Register / Vol. 72, No. 212 / Friday, November 2, 2007 / Notices

http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf

[49] Netbeans ide 7.1 features, May 2010.

http://netbeans.org/features/index.html.

[50] http://www.saphir2.com/sphlib/files/sphlib-3.0.zip

[51] Status report on the first round of the SHA-3 cryptographic hash algorithm competition,

September 2009.

[52] Timing Cryptographic Primitives, http://etutorials.org

[53] Wikipedia, the free encyclopedia, www.wikipedia.org/

60



Chapter 6

Appendix

6.1 National Institute of Standards and Technology (NIST)

The NIST is the National Institute of Standards and Technology, a division of the U.S. Depart-

ment of Commerce. Formerly the NBS (National Bureau of Standards), it changed its name

in 1988. Through its Computer Systems Laboratory (CSL), NIST promotes open standards

and interoperability that it hopes will spur the economic development of computer-based in-

dustries. To this end, NIST issues standards and guidelines that it hopes will be adopted by all

computer systems in the United States [37]. Official standards are published as FIPS (Federal

Information Processing Standards) publications.

NIST issues standards for cryptographic functions. U.S. government agencies are required to

use them for sensitive but unclassified information. NIST issued DES, DSS, SHS, and EES

[37].
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