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ABSTRACT 

 

For thousands of years people have realized the importance of archiving and finding 

information. With the advent of computers, it became possible to store large amounts of 

information; and finding useful information from such collections became a necessity. The 

field of Information Retrieval (IR) was born in the 1950s out of this necessity. Over the last 

fifty years, the field has matured considerably. Several IR systems are used on an everyday 

basis by a wide variety of users. The goal of information retrieval (IR) is to provide users 

with those documents that will satisfy their information need. 

Various Models of Information retrieved have been implemented like Boolean 

Model, Vector Space Model, Probabilistic Model and so on, among these models Vector 

Space Model (VSM) and Latent Semantic Indexing Model (LSI) are also promising models 

being used till date. The main concern of the study is to rank the documents and find out 

whether LSI Model overcomes the problems of VSM when the problems are attached with 

synonyms and polysemys while ranking documents. 

 The implemented features of these models like how to represent documents 

and query as vectors in R
|v| 

, term-document matrix, term-weighting, cosine similarity, SVD 

decomposition, dimensionality reduction and its effect in results of LSI have been presented.  

Precision and recall have been implemented to know the effectiveness of the system. 

Conclusions have been drawn and future recommendation has been provided for better 

improvement. 
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CHAPTER-I 

 INTRODUCTION 

 

1.1 Background Information 

For thousands of years people have realized the importance of archiving and finding 

information. With the advent of computers, it became possible to store large amounts of 

information; and finding useful information from such collections became a necessity. The 

field of Information Retrieval (IR) was born in the 1950s out of this necessity. Over the last 

fifty years, the field has matured considerably. Several IR systems are used on an everyday 

basis by a wide variety of users. The goal of information retrieval (IR) is to provide users 

with those documents that will satisfy their information need. 

“What is information retrieval?” Information retrieval (IR) is the area of study 

concerned with searching any kind of relevant information like web-pages, news events, 

answers, images etc. According to [1], The meaning of the term information retrieval can be 

very broad. However academic field of study, information retrieval might be defined as the 

finding material (usually documents) of an unstructured nature (usually text) that satisfies an 

information need from within large collections, (usually stored on computer). 

The need for the organization of data is a must for a quick and efficient retrieval of 

information. A robust means for organization of data in any organization has been the use of 

databases. Databases like the relational, object-oriented or object-relational databases, all 

have well structured format to keep data. Not all information that an organization generates is 

kept or can be kept in databases. Information are stored in the huge amount in form of 

unstructured or semi-structured documents. Organizing these documents into meaningful 

groups is a typical sub-problem of Information Retrieval, in which there is need to learn 

about the general content of data, Cutting, D. et al. [2]. 

 



17 

 

1.2 IR Models 

What is a model? There are two good reasons for having models of information 

retrieval. The first is that models guide, research and provide the means for academic 

discussion. The second reason is that models can serve as a blueprint to implement an actual 

retrieval system [3]. 

 

 For the information retrieval to be [4] efficient, the documents are typically 

transformed into a suitable representation. There are several representations. The picture on 

the below illustrates the relationship of some common models. In the picture, the models are 

categorized according to two dimensions: the mathematical basis and the properties of the 

model. 

 

 

Figure 1.1: Categorization of IR-Models [4] 

a. First Dimension: Mathematical Basis 

 Set-theoretic models represent documents as sets of words or phrases. Similarities are 

usually derived from set-theoretic operations on those sets. Common models are:  

o Standard Boolean model 

o Extended Boolean model 

o Fuzzy retrieval 
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 Algebraic models represent documents and queries usually as vectors, matrices, or 

tuples. The similarity of the query vector and document vector is represented as a 

scalar value.  

o Vector space model 

o Generalized vector space model 

o (Enhanced) Topic-based Vector Space Model 

o Extended Boolean model 

o Latent semantic indexing  

 Probabilistic models treat the process of document retrieval as a probabilistic 

inference. Similarities are computed as probabilities that a document is relevant for a 

given query. Probabilistic theorems like the Bayes' theorem are often used in these 

models.  

o Binary Independence Model 

o Probabilistic relevance model on which is based the okapi (BM25) relevance 

function 

o Uncertain inference 

o Language models 

o Divergence-from-randomness model 

o Latent Dirichlet allocation 

b. Second Dimension: Properties of the Model 

 Models without term-interdependencies treat different terms/words as independent. This 

fact is usually represented in vector space models by the orthogonality assumption of 

term vectors or in probabilistic models by an independency assumption for term 

variables. 

 Models with immanent term interdependencies allow a representation of 

interdependencies between terms. However the degree of the interdependency between 

two terms is defined by the model itself. It is usually directly or indirectly derived (e.g. 
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by dimensional reduction) from the co-occurrence of those terms in the whole set of 

documents. 

 Models with transcendent term interdependencies allow a representation of 

interdependencies between terms, but they do not allege how the interdependency 

between two terms is defined. They relay an external source for the degree of 

interdependency between two terms. (For example a human or sophisticated algorithms.) 

1.3 Information Retrieval Methods 

Broadly speaking [5], information retrieval methods fall into two categories: They 

generally either view the retrieval problem as a document selection problem or as a document 

ranking problem. 

1.3.1 Document Selection Method 

In document selection methods, the query is regarded as specifying constraints for 

selecting relevant documents. A typical method of this category is the Boolean retrieval 

model, in which a document is represented by a set of keywords and a user provides a 

Boolean expression of keywords, such as “car or repair ships “, “tea or coffee” or “database 

systems but not Oracle”. The retrieval system would take such a Boolean query and return 

documents that satisfy the Boolean expression. Because of the difficulty in prescribing a 

user’s information need exactly with a Boolean query, the Boolean retrieval method 

generally only works well when the user knows a lot about the document collection and can 

formulate a good query in this way.  

1.3.2. Document Ranking Method 

Document ranking methods use the query to rank all documents in the order of 

relevance. For ordinary users and exploratory queries, these methods are more appropriate 

than document selection methods. Most modern information retrieval systems present a 

ranked list of documents in response to a user’s keyword query. There are many different 

ranking methods based on a large spectrum of mathematical foundations, including algebra, 

logic, probability and statistics. The common intuition behind all of these methods is that it 
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may match the keywords in a query with those in the documents and score each document 

based on how well it matches the query. The goal is to approximate the degree of relevance 

of a document with a score computed based on information such as the frequency of words in 

the document and the whole collection. 

1.4 Information Retrieval Process 

There [3] are three basic processes an information retrieval system has to support: the 

representation of the content of the documents, the representation of the user's information 

need, and the comparison of the two representations. The processes are visualized in Figure 

1.2. In the figure, rectangular boxes represent data and rounded boxes represent processes. 

 

 

 

 

 

 

 

Figure 1.2: Information Retrieval Processes [3]. 

Users do not search just for fun; they have a need for information. The process of 

representing their information need is often referred to as the query formulation process. The 

resulting representation is the query. In a broad sense, query formulation might denote the 

complete interactive dialogue between system and user, leading not only to a suitable query 

but possibly also to the user better understanding his/her information need: This is denoted 

by the feedback process in Figure 1.2. 

 

Information need 

          Query 

Ranked Documents 

Query Formulation 

Feedback 

    Matching 
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The comparison of the query against the document representations is called the 

matching process. The matching process usually results in a ranked list of documents. Users 

will walk down this document list in search of the information they need. Ranked retrieval 

will hopefully put the relevant documents towards the top of the ranked list, minimizing the 

time the user has to invest in reading the documents. Simple but effective ranking algorithms 

use the frequency distribution of terms over documents, but also statistics over other 

information, such as the number of hyperlinks that point to the document. Ranking 

algorithms based on statistical approaches easily halve the time the user has to spend on 

reading documents. The theory behind ranking algorithms is a crucial part of information 

retrieval. 

In short, the main points of information retrieval process have been concluded as: 

1. User has some information needs 

2 Information Need          Query using Query Representation 

3 Documents         Document Representation 

4. IR system matches the two representations to determine the documents that satisfy       

user’s information needs. 

 

1.5 Structured and Unstructured Data 

Unstructured data is a generic level for describing any corporate information that is 

not in a database. Unstructured data can be textual or non textual. Textual unstructured data 

is generated in media like email messages, word documents, instant messages. Non-textual 

unstructured data is generated in media like JPEG images, MP3 audio and flash video files 

etc. 

Even data that is unstructured such as free text of an image or a video clip typically 

has some associated information such as timestamp or author information that contributes 

partial structuring [6]. Data with partial structure is referred as semi-structured data. 
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Structured data on the other hand, which is really that, is organized in a structure so 

that it is identifiable. The most universal form of structured data is a database like SQL or 

Access. For example structure query language allows us to select specific piece of 

information based on columns and rows in a field. It might be looked for all the rows 

containing a particular data or zip code or name, this is structured data and it is organized and 

searchable by data type within the actual content.  

1.6 An Overview of VSM & LSI Model 

Various mathematical models have been proposed to represent Information Retrieval 

Systems and procedures as defined in section 1.2; the Boolean model, the probabilistic 

model, the vector space model, the latent semantic indexing model etc. Of the above models, 

this study focuses on the comparative study of the two information retrieval models viz. the 

vector space model and the latent semantic indexing model for ranking unstructured 

documents in IR. So, the brief descriptions of these two models have been presented below. 

1.6.1 Vector Space Model 

A vector space model is proposed by Gerard Salton and his colleagues. A vector 

space model is a mathematical structure formed by a collection of vectors. In the vector space 

model text is represented by a vector of terms.  

The set of all n-tuples (x1, x2,…xn) of n real numbers is known as n-space where n 

being a positive integer. It is denoted by R
n
. Each n-tuples (x1, x2,…xn) belongs to R

n
 is 

called a point or element in n-space. The real number x1,x2………xn corresponding to a given 

point or  element in R
n
 are called it’s first, second, …nth

 coordinate respectively. 

All the documents are represented by point in a space of n dimension formed by n 

term coordinates. Each dimension represents element weight defined by tf-idf for one term. 

Queries are treated like documents. Documents are ranked by closeness to the query. 

Closeness is determined by a similarity score calculation.  

The vector space retrieval model addresses the partial matching, supporting non-

binary weights both for documents and queries and producing continuous similarity 
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measures in [0,1]. The similarity measure is derived from the geometrical relationship of 

vectors in the v-dimensional space of document/query vectors. The vector space retrieval 

model is the standard retrieval technique used both on the Web and for classical text 

retrieval.  

Key idea of Vector Space Retrieval is to represent both the document and the query 

by a weight vector in the supposing n=v, v-dimensional. Keyword space assigning non-

binary weights, determine their distance in the v-dimensional keyword space. It is a today’s 

standard text retrieval technique used by the web search engines [7]. The vector model is 

usually as good as the known ranking alternatives. 

1.6.2 Latent Semantic Indexing Model 

 
Latent Semantic Indexing is a technique that projects queries and documents into a 

space with “latent” semantic dimensions. In the latent semantic space, a query and a 

document can have high cosine similarity even if they do not share any terms- as long as 

their terms are semantically similar in a sense. The latent semantic space that projects into 

has fewer dimensions than the original space (which has as many dimensions as terms). It is 

thus a method for dimensionality reduction. A dimensionality reduction technique takes a set 

of objects that exist in a high-dimensional space and represents them in a low-dimensional 

space, often in a two dimensional or three-dimensional space for the purpose of visualization. 

Latent semantic indexing is the application of a particular mathematical technique, 

called Singular Value Decomposition or SVD, to a word-by-document matrix. SVD (and 

hence LSI) is a least-squares method. The projection into the latent semantic space is chosen 

such that the representations in the original space are changed as little as possible when 

measured by the sum of the squares of the differences. SVD takes a matrix A and represents 

it as  ̂ in a lower dimensional space such that the “distance” between the two matrices as 

measured by the 2-norm is minimized: 

 

    ‖   ̂‖ ........................................................................................................................(i) 
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The 2-norm for matrices is the equivalent of Euclidean distance for vectors. SVD 

project an n-dimensional space onto a k-dimensional space where t >  >  k. In this study 

(word-document matrices), t is the number of word types in the collection. The projection 

transforms a document's vector in n-dimensional word space into a vector in the k-

dimensional reduced space.  

Latent Semantic Indexing chooses the mapping that is optimal in the sense that it 

minimizes the distance Δ [8]. 

 

“LSI tries to overcome the problems of lexical matching by using statistically derived 

conceptual indices instead of individual words for retrieval. LSI assumes that there is some 

underlying or latent structure in word usage that is partially obscured by variability in word 

choice. A truncated Singular Value Decomposition (SVD) is used to estimate the structure in 

word usage across documents. Retrieval is then performed using a database of singular 

values and vectors obtained from the truncated SVD. Performance data shows that these 

statistically derived vectors are more robust indicators of meaning than individual terms.” 

Berry et al. [9] . 

 

LSI incorporates VSM and also poses the negative vectors. Application of Latent 

Semantic Indexing with results can be found in Berry et al. [9] and Landauer et al. [10]. 

 

 

1.7 Focus of the Study 

In the information retrieval, there are several models discussed earlier that assist in 

retrieving relevant information as desired by the users. These models have their own 

advantages and limitations and the desired information may satisfy the user’s need or not 

because sometimes the user’s query may match to the irrelevant documents accidentally and 

sometimes relevant documents may be missed due to no term in the document occurs in the 

query given by the users. The main focus of the study is to compare the two selected 

information retrieval models namely vector space model and latent semantic indexing model, 

find out their advantages and limitations and evaluate their comparative performance. 
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1.8 Statement of the Problem 

As in [9,11], Typically, information is retrieved by literally matching terms in 

documents with those of a query. However, VSM can be inaccurate when they are used to 

match a user's query. Since there are usually many ways to express a given concept 

(synonymy), the literal terms in a user's query may not match those of a relevant document. 

In addition, most words have multiple meanings (polysemy), so terms in a user's query will 

literally match terms in irrelevant documents. A better approach would allow users to retrieve 

information on the basis of a conceptual topic or meaning of a document which is provided 

by LSI.  

VSM would return documents only when documents share one or more terms with 

the query. But LSI can extract additional documents which are relevant to the query yet share 

no common terms because it is based on meaning rather than literal term usage.  

Therefore, there are basically two problems that can be pointed out: 

1. The problem of synonyms. 

2. The problem of polysemys. 

1. Problem of Synonyms 

Example  

Query term: “humor” 

D1: Joke clean humor and humor. 

D2: Comedy circus. 

D3: Comedy song funny. 

D4: Humor story. 

In the above example, humor  has the synonyms (i.e. identical or similar meaning) as joke, 

comedy, funny. Will LSI be able to extra relevant documents D2 and D3 ? Because they contain 

synonyms for humor yet share no common term with the query. 
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2. Problem of Polysemys 

Example  

Query term: “rock” 

D1: The rock marble. 

D2: The rock music. 

D3: Type of loud modern music with music guitars and music drums. 

In the above example, the word rock  means rock marble or rock music. These two documents 

D1 and D2 have used rock  as two different meanings. Also D3 gives the meaning of rock music 

though no rock word found.  Will LSI be able to extra relevant documents D3 ? Because it gives the 

sense of rock music yet share no common term with the query. 

1.9 Objectives of the Study  

The study primarily focuses on the comparative study of two information retrieval 

models viz. Vector Space Model and Latent Semantic Model for retrieving information 

(documents) and ranking those unstructured documents. However, the specific objectives are 

as follows: 

 To do comparative study of the Vector Space Model (VSM) and Latent Semantic 

Indexing (LSI) Model. 

 To exhibit how these models are used for retrieving relevant documents and ranked 

them properly. 

 To examine whether LSI Model overcomes the problems of VSM or not. 

1.10 Limitations of the Study 

 
The present study has some limitations. The study is presented to partial fulfillment of 

the requirements for the degree of Master of Science in Computer Science and Information 

Technology. To do the comparative study of the two information retrieval models viz. Vector 

Space Model and Latent Semantic Indexing Model, few numbers and small size documents 

are taken as samples and only positive scores are taken in LSI to compare with VSM. These 

documents have been tested and comparatively analyzed the results. 
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1.11 Organization of the Study 

The present study has adopted the following organization of the thesis, which is briefly 

described below. 

Chapter-I; Introduction 

This chapter includes the following components: Background Information, IR 

Models, Information Retrieval Methods, Information Retrieval Process, Structured and 

Unstructured Data, Overview of VSM and LSI Models, Focus of the study, Statement of the 

Problem, Objectives of the Study and Limitations of the Study.  

Chapter-II; Review of Literature 

  The main components of this chapter are: VSM Vs. LSI Models, Components of 

VSM, Components of LSI Model, Geometrical Visualization, and Documents Ranking.  

Chapter-III; Research Methodology 

This chapter deals with Research Methodology adopted by the present study. In this 

chapter, the general implementation process in IR has been described and tools for the 

effectiveness measurements of the system (result) has also been described.  

Chapter-IV; Implementation & Evaluation 

The fourth chapter shows the picture of implementation of both the models under 

study. It also consists of the comparative study of the results of both models as well as their 

precision and recall have been evaluated and analyzed.  

Chapter-V; Summary, Conclusion and Future Recommendation 

It states summary, conclusion and future recommendation of the study. This chapter 

consists of the summary of the whole study and points out the conclusion of the analysis. It 

also provides future recommendation for further study which will be the fruitful for the new 

researcher in the field of IR. 
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CHAPTER-II 

REVIEW OF LITERATURE 

 

2.1 Vector Space Model Vs. Latent Semantic Indexing Model 

 
The properties of vector space model are: 

– Ranking of documents according to similarity value. 

– Documents can be retrieved even if they don’t contain some query keyword. 

Despite its success the vector model suffers some problems. Unrelated documents 

may be retrieved simply because terms occur accidentally in it, and on the other hand related 

documents may be missed because no term in the document occurs in the query (consider 

synonyms, there exists a study that different people use the same keywords for expressing the 

same concepts only 20% of the time). Thus it would be an interesting idea to see whether the 

retrieval could be based on concepts rather than on terms, by mapping first terms to a 

"concept space" (and queries as well) and then establish the ranking with respect to similarity 

within the concept space. This idea is explored in the following. 

 

 

Figure 2.1: LSI Model:-Using Concepts for Retrieval [11] 
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This illustrates the approach: rather than directly relating documents and terms as in 

vector retrieval, there exists a middle layer into which both queries and documents map. The 

space of concepts can be of smaller dimension. For example, we could determine that the 

query t3 returns d2, d3, d4 in the answer set based on the observation that they relate to 

concept c2, without requiring that the document contains term d3. The question is, of how to 

obtain such a concept space. Much simpler, it would be to try to use mathematical properties 

of the term-document matrix, i.e. determine the concepts by matrix computation [11]. 

 

The differences between vector space model and Latent semantic indexing model can 

be summarized in the table below as: 

 

 

 

Models  

Partial Match Full Match No Match at all 

 

Vector Space Model 

 

Yes 

 

Yes 

 

No 

 

LSI Model 

 

Yes 

 

Yes  

 

Yes  

 

 

Table 2.1: Comparison Table for Two IR Models [11]. 

 

2.2 Components of Vector Space Model 

The vector space model procedure can be divided in to three stages. The first stage is 

the document indexing where content bearing terms are extracted from the document text. 

The second stage is the weighting of the indexed terms to enhance retrieval of document 

relevant to the user. The last stage ranks the document with respect to the query according to 

a similarity measure. The three stages are described briefly below: 

 

 

IR 
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1. Document Indexing 

It is obvious that many of the words in a document do not describe the content, words 

like the, is. By using automatic document indexing those non significant words (function 

words) are removed from the document vector, so the document will only be represented by 

content bearing words [12]. This indexing can be based on term frequency, where terms that 

have both high and low frequency within a document are considered to be function words 

2. Term-Document Matrix and Term Weighting 

In VSM, a collection of d documents described by t terms can be represented as a t×d 

matrix A, commonly called term-document matrix. The column vectors are called document 

vector representing the documents in the collection and the row vectors are called term 

vectors representing the indexed terms from the documents. Each component of the 

document vector reflects a particular term which may or may not be in the document. The 

value of each component depends on the degree of relationship between its associated term 

and the respective document, commonly called term weighting. As the Vector Space Model 

requires that the relationship be described by a single numerical value, let aij represent the 

degree of relationship between term i and document j [13]. 

The use of various weighting schemes to discriminate one document from the other. 

In general this factor is called collection frequency document. The most used term weighting 

schemes are described briefly below. 

a. Binary Weighting 

This is the simplest term weighting method where if aij=1 means term i occurs in 

document j, aij=0 meaning otherwise. The binary weighting informs about the fact that a term 

is somehow related to a document but carries no information on the strength of the 

relationship. 
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b. Term Frequency Weighting 

The simplest approach is to assign the weight to be equal to the number of 

occurrences of term t in document d. This weighting scheme is referred to as term frequency 

and is denoted tft,d with the subscripts denoting the term and the document in order [1]. 

In this scheme aij = tfij where tfij denotes how many times term i occurs in document j. This 

scheme is more informative than the binary weighting but, nevertheless it suffers from 

shortcoming as it focuses only on the local weight, neglecting the global weight. 

 

c. Term Frequency-Inverse-Document Frequency Weighting (tf-idf) 

This scheme overcomes the drawback of term frequency model by including the 

global weight. Thus have the term frequency tf (t,d), defined in the simplest case as the 

occurrence count of a term in a document. The inverse document frequency is a measure of 

the general importance of the term (obtained by dividing the total number of documents by 

the number of documents containing the term, and then taking the logarithm of that quotient). 

Hence an inverse document frequency factor is incorporated which diminishes the weight of 

terms that occur very frequently in the collection and increases the weight of terms that occur 

rarely.          (     )                            

                                            

where, 

 tfi = term frequency (term counts) or number of times a term i occurs in a document.  

 dfi = document frequency or number of documents containing term i  

 D = number of documents in the database.    

To understand the global weight and the local weight following table can be used. 

 

Table 2.2: Term-document Matrix and Term Weighting. 

 Doc1 Doc2 Doc3 Doc4 

Term 1 2 1  3 

Term 2  2  1 
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The term1 occurs in total of 3 documents while term2 occurs in total of 2 documents. 

Now, the global weight of term1 = number of document(s) with the term1/total documents = 

log (4/3) = 0.124. Similarly, the global weight of term2 = log (4/2) = 0.30. Thus, the global 

weight is the overall importance of the term which decreases as the number of document 

containing the term increases. The tf-idf scheme aims at balancing the local and the global 

term occurrences in the documents.  

 

d. Document Length Normalization 

 

This is also one of the component of weighting scheme is the normalization factor, 

which is used to correct inconsistency in the document lengths. It is useful to normalize the 

document vectors so that documents are retrieved independent of their lengths [14]. The most 

popular normalization factor is Cosine normalization, given by  √∑ (     )                   

Which divides by the magnitude of the weighted document vector, therefore forcing the 

magnitude of the weighted document vectors to be one. 

 

 
 

Figure 2.2: An Inconsistent Vector Space before Normalization [14]. 

RICH 

 

POOR 
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Figure 2.3: A Consistent Vector Space after Normalization [14]. 

3. Similarity Coefficients 

The similarity in vector space models is determined by using associative coefficients 

based on the inner product of the document vector and query vector, where word overlap 

indicates similarity. The inner product is usually normalized. The most popular similarity 

measure is the cosine coefficient, which measures the angle between the document vector 

and the query vector[15].  

Cosine Similarity score measures the similarity between two document vectors. The 

similarity between the two vectors is defined by the angle between them. If the two vectors 

are exactly similar then the angle between the two vectors is zero and thus cosine equal to 1 

representing the perfect match. Similarly, if the two vectors are perfectly dissimilar then the 

angle between the two vectors is perfectly a 90
o
 and thus cosine equal to zero representing 

the perfect dissimilar vectors  [16]. 

 

 

 

 

Where, 

V(Q) = Query Vector. 

 sim(Q,D)   = cosine Ө =   

V(Q) ·  V(D) 

––––––––– 

|V(Q)| |V(D)| 
 

.............................................(3) 
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V(D) = Document Vector 

|V(Q)| = Magnitude of Query Vector. 

|V(D)| = Magnitude of Document Vector. 

 
Or 

 
where the sigma symbol means "the sum of", Q is a query, D is a document relevant to Q and 

w are weights.  

Figure 2.4: The Cosine Similarity (Cosine Angle) between Query and Documents.  

 

2.3 Components of Latent Semantic Indexing Model 

1. SVD (Singular Value Decomposition) 

In 1965 G. Golub and W. Kahan introduced Singular Value Decomposition (SVD) as 

a decomposition technique for calculating the singular values, pseudo-inverse and rank of a 

matrix [17]. In order to implement LSI, the SVD forms the foundation for LSI. The technique 

decomposes a matrix At×d into three new matrices. SVD is performed on the matrix to 

determine patterns in the relationships between the terms and concepts contained in the text. 

It computes the term and document vector spaces by transforming the single term-frequency 

matrix, At×d, into the product of three other matrices— a t by n term-concept vector matrix 

U, an n by n singular values matrix S, and a d by n concept-document vector matrix, V, 

which satisfy the following relations [18]. 

 At×d = Ut×nSn×n(Vnxd)
T   

..............................................................(4) 

Where t is the number of terms, d is the number of documents, n =  min(t,d) , U and V have 

orthonormal columns, i.e. U
T
U = V

T
V = I , rank(A) = r , S=diag (S1,1, S2,2, 

……………..Sr,r) and S1,1≥S2,2≥,……….Sr,r > 0, Si,j = 0 where i≠j.  

  

............................................(iii) 
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Also, 

U = is a matrix whose columns are the eigenvectors of the AA
T
 matrix. These are termed the 

left eigenvectors. 

S = is a matrix whose diagonal elements are the singular values of A. This is a diagonal 

matrix, so its non-diagonal elements are zero by definition.  

V is a matrix whose columns are the eigenvectors of the A
T
A matrix. These are termed the 

right eigenvectors.  

V
T
 is the transpose of V.  

 

 

A  

t×d 

 

  

 

 

  = 

 

U 

t×n 

 

 

Figure 2.5: Mathematical Representation of the Matrix A [18]. 

The decomposition not only provides a direct method for computing the rank of a 

matrix, but exposes other equally interesting properties and features of matrices. 

Decomposing a matrix with Equation 4 is often referred to as computing its "Full SVD".   

Example of Full SVD 

The full SVD of a matrix A can be computed by the following algorithm:  

1. Compute its transpose A
T
 and A

T
A.  

2. Determine the eigenvalues of A
T
A and sort these in descending order, in the absolute 

sense. Square roots these to obtain the singular values of A.  

V
T
 

n×d 

S 

n×n 
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3. Construct diagonal matrix S by placing singular values in descending order along its 

diagonal. Compute its inverse, S
-1

.  

4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of A
T
A. Place 

these eigenvectors along the columns of V and compute its transpose, V
T
.  

5. Compute U as U = AVS
-1

. To complete the proof, compute the full SVD using A = 

USV
T
.  

Let take a matrix A of order m×m and a transpose matrix A
T
 is obtained by converting rows 

into columns and columns into rows. An example is given below.  

 

Figure 2.6: A Matrix and its Transpose. 

Using these matrices to construct two new matrices. This is done by pre-multiplying A by A
T
 

and A
T
 by A. 

 

Figure 2.7:"Left" and "Right" Matrices. 

This matrix is also obtained by making the transformation: 

(A
T
A)

T
 = A

T
(A

T
)
T
 = A

T
A     ............................................(5) 

Now for the sake of consistency, this is to refer to their eigenvectors as the left and 

right eigenvectors. This left-right labeling system is trivial but very convenient. When plotted 

in the same space, these eigenvectors end at the left and right of each other. Examples have 

been provided.  

..............................  (iv) 

..................  (v) 
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|A - c*I| = 0   ............................................................(6) 

Here, c is a scalar matrix, I is an identity matrix and A has been transformed into a 

singular matrix. The problem of transforming a regular matrix into a singular matrix is 

referred to as the eigenvalue problem 

Calculating eigenvalues for AA
T
 and A

T
A 

Note that A
T
A and AA

T
 have the same characteristic equation and eigenvalues, too. 

Below showing eigenvalues are calculated from equation 6. This is not surprising --

considering the transformation given in Equation 5.  

 

 

Figure 2.8: Characteristic Equation and Eigenvalues for AA
T
 and A

T
A. 
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Computing S of SVD 

Algorithm for computing S 

Given a matrix A of order m×n 

1. Compute its transpose A
T
 and A

T
A.  

2. Determine the eigenvalues of A
T
A and sort these in descending order, in the absolute 

sense. Square roots these to obtain the singular values of A.  

3. Construct diagonal matrix S by placing singular values in descending order along its 

diagonal.  

In the SVD technique, once eigenvalues from either the left or right matrix are obtained these 

are ordered in decreasing order (in the absolute sense) like this  

| c1 | > | c2 | > | c3 | ... > | cn |  

Then, taking their square roots yields  

s1 > s2 > s3 ... > sn  

Singular values can be zero or nonzero values. The number of nonzero singular values is 

defined as the Rank of a Matrix.  

Retaking the example at hand, the singular values of A are 

s1 = (c1)
1/2

 = (40)
1/2

 = 6.32... 

s2 = (c2)
1/2

 = (10)
1/2

 = 3.16... 

Thus, by virtue of Figure 2.8 it has been demonstrated that one can safely compute the 

singular values of A with either A
T
A or AA

T
.  

Proceeding with the decomposition, now as it has been computed the singular values and this 

construct matrix S by placing values in descending order along its main diagonal, like this:  
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Figure 2.9: Singular Matrix of A and its Singular Values, Ordered in Descending 

Order. 

‘A’ is a matrix of Rank 2 since only two nonzero singular values are obtained, which 

turned out to be the only singular values of A. Since this is a diagonal matrix, by definition 

its non-diagonal elements are zero.  

Computing "Right" Eigenvectors, V, and V
T
 of SVD 

Eigenvectors for each eigenvalue, c1 = 40 and c2 = 10 are computed and converted 

eigenvectors to unit vectors. This is done by normalizing their lengths. Figure 2.10 illustrates 

these steps.  

To compute the eigenvectors of A
T
A. This is done by solving  

(A - ciI)Xi = 0   ............................................................................(7)                         √                      

 

Note below that it has constructed V by preserving the order in which singular values 

were placed along the diagonal of S. That is, placed the largest eigenvector in the first 

column and the second eigenvector in the second column. These end paired with singular 

values placed along the diagonal of S. Preserving the order in which singular values, 

eigenvalues and eigenvectors are placed in their corresponding matrices is very important. 

Otherwise it would have end with the wrong SVD.  

 

6.3245 

3.1622 
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Figure 2.10: Right Eigenvectors of A
T
A  

 

Now to construct V by placing vectors along its columns and compute V
T
 

 

Figure 2.11: V and its Transpose V
T
 



41 

 

Computing "Left" Eigenvectors and U of SVD 

As equation 4 is post-multiplying by V then equation 9 is arrived. 

AV = USV
T
V = US   .......................................(9) 

To compute U, it can be reused eigenvalues and compute in exactly the same manner 

the eigenvectors of AA
T
. Once these are computed and place these along the columns of U. 

However, with large matrices this is time consuming. In practice, it is common to use the 

following shortcut. Post-multiply Equation 9 by S
-1

 to obtain  

AVS
-1

 = USS
-1

    ..................................................(10) 

U = AVS
-1

   ..........................................................(11) 

and then compute U. Since A and V are known already, it is just need to invert S. Since S is a 

diagonal matrix, it must follow that  

 

Figure 2.12: Inverted Singular Matrix.  

Since s1 = 40
1/2

 = 6.3245 and s2 = 10
1/2

 = 3.1622 (expressed to four decimal places), then  

 

Figure 2.13: "Left" Eigenvectors and U.  
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The orthogonal nature of the V and U matrices is evident by inspecting their 

eigenvectors. This can be demonstrated by computing dot products between column vectors. 

All dot products are equal to zero. A visual inspection is also possible in this case. In Figure 

2.14 eigenvectors have been plotted. Observe that they are all orthogonal and end to the right 

and left of each other, from here the reference to these as "right" and "left" eigenvectors 

 

Figure 2.14: "Right" and "Left" Eigenvectors. 

 

Computing the Full SVD 

So, finally known U,S, V and V
T
. To complete the proof, it is reconstructed A by computing 

its full SVD. 

 

Figure 2.15: Computing the Full SVD.  
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So as it can easily be seen, SVD is a straightforward matrix decomposition and 

reconstruction technique.  

2 Dimensionality Reduction and LSI 

When [18] computing the SVD of a matrix is desirable to reduce its dimensions by 

keeping its first k singular values. Since these are ordered in decreasing order along the 

diagonal of S and this ordering is preserved when constructing U and V
T
, keeping the first k 

singular values is equivalent to keeping the first k rows of V
T
 ( gives documents vectors), 

first k rows and columns of S and the first k columns of U. Equation 4 reduces to  

A*t×d = U* t×k S*k×k (Vk×d) 
T
*  ...............................(12) 

This process is termed dimensionality reduction, and A* is referred to as the Rank 

k Approximation of A or the "Reduced SVD" of A. The top k singular values are selected as 

a mean for developing a "latent semantics" representation of A that is now free from noisy 

dimensions. This "latent semantics" representation is a specific data structure in low-

dimensional space in which documents, terms and queries are embedded and compared. This 

hidden or "latent" data structure is masked by noisy dimensions and becomes evident after 

the SVD.  

 

Figure 2.16: The Reduced SVD or Rank k-Approximation [18]. 

Where,  Uk = term vectors 

  Vk
t 
= document vectors 

  Sk = Singular Values 
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3. Choosing the Number of Factors 

Choosing [9] the number of dimensions (k) for Ak shown in Figure 2.16 is an 

interesting problem. While a reduction in k can remove much of the noise, keeping too few 

dimensions or factors may lose important information. Eventually performance must 

approach the level of performance attained by standard vector methods, since with k = n 

factors Ak will exactly reconstruct the original term by document matrix A. That LSI works 

well with a relatively small (compared to the number of unique terms) number of dimensions 

or factors k shows that these dimensions are, in fact, capturing a major portion of the 

meaningful structure. 

 

4. Queries 

For purposes of information retrieval, a user's query must be represented as a vector 

in k-dimensional space and compared to documents. A query (like a document) is a set of 

words. For example, the user query can be represented by 

  ̂                ................................................(13) 

 

Where q is simply the vector of words in the users query, multiplied by the 

appropriate term weights (aij = L(i; j) ×G(i); where aij denotes the frequency in which term i 

occurs in document j.). The sum of these k-dimensional terms vectors is reflected by the q
T
Uk 

term in Equation 13, and the right multiplication by Sk
-1

 differentially weights the separate 

dimensions. Thus, the query vector is located at the weighted sum of its constituent term 

vectors. The query vector can then be compared to all existing document vectors, and the 

documents ranked by their similarity (nearness) to the query. One common measure of 

similarity is the cosine between the query vector and document vector. Typically, the z 

closest documents or all documents exceeding some cosine threshold are returned to the user 

[9]. 

2.4 A Geometrical Visualization of LSI 

The geometrical interpretation [18] of SVD has been described below. This is to use a 

simple analogy. Depicts an arrow rotating in two dimensions and describing a circle as in 

Figure 2.17.  
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Figure 2.17: A Rotating Arrow of Fixed Length Describing a Circle. 

Now suppose that when rotating this arrow, stretch and squeeze it in a variable 

manner and up to a maximum and minimum length. Instead of a circle the arrow now 

describes a two-dimensional ellipsoid. 

 

Figure 2.18: A Rotating Arrow of Variable Length Describing an Ellipsoid. 

This is exactly what a matrix does to a vector.  

When multiplying a vector X by a matrix A to create a new vector AX = Y, the 

matrix performs two operations on the vector: rotation (the vector changes coordinates) and 

scaling (the length of the vector changes). In terms of SVD, the maximum stretching and 

minimum squeezing is determined by the singular values of the matrix. These are values 

inherent, unique or "singular" to A that can be uncovered by the SVD algorithm. In the figure 

the effect of the two largest singular values, s1 and s2 has been labeled.  

For now, the important thing to remember is this: singular values describe the extent 

by which the matrix distorts the original vector and, thus, can be used to highlight which 

dimension(s) is/are affected the most by the matrix. Evidently, the largest singular value has 
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the greatest influence on the overall dimensionality of the ellipsoid. In geometric terms 

Figure 2.17 and Figure 2.18 show that multiplying a vector by a matrix is equivalent to 

transforming (mapping) a circle into an ellipsoid. 

Now instead of a rotating vector depicts a set of m-dimensional vectors, all 

perpendiculars (orthogonal), with different lengths and defining an m-dimensional ellipsoid. 

The ellipsoid is embedded in an m-dimensional space, where m = k, with k being the number 

of nonzero singular values. If eliminate dimensions by keeping the three largest singular 

values, a three-dimensional ellipsoid is obtained. This is a Rank 3 Approximation.  

Now suppose that compared with the two largest singular values the third one is small 

enough that ignores it. This is equivalent to removing one dimension. Geometrically, the 3-

dimensional ellipsoid collapses into a 2-dimensional ellipsoid, and this obtain a Rank 2 

Approximation. Obviously, if keeping only one singular value the ellipsoid collapses into a 

one-dimensional shape (a line). Figure 2.19 illustrates roughly the reduction.  

 

Figure 2.19: Dimensionality Reduction. 

This is why it says that keeping the top k singular values is a dimensionality reduction 

process. The main idea is this: singular values can be used to highlight which dimensions are 

affected the most when a vector is multiplied by a matrix. Thus, the decomposition allows to 

determine which singular values can be retained, from here the expression "singular value 

decomposition".  
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In the case of LSI, SVD unveils the hidden or "latent" data structure, where terms, 

documents, and queries are embedded in the same low-dimensional and critical space. This is 

a significant departure from term vector models. 

2.5 Documents Ranking 

Both the models under study are used to rank the documents according to their scores. 

Finally sort the documents in descending order according to the similarity values as given 

below: 

Example of ranking the documents 

Rank 1: Doc 2  

Rank 2: Doc 10 

Rank 3: Doc 1 

……………… 

……………… 
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CHAPTER-III 

Research Methodology 

 

3.1 General Implementation Process in IR 

1. Defining Data Storage  

The process flow of implementation of IR models begins with maintaining a folder, 

which holds the documents collection. Each document is in the form of .txt file as new 

document is created the content of the folder increased by one. Each document contains a 

sentence of words that give some sense about some subject or topic. 

2. Counting No. of Documents 

From the document folders the number of the document contained is counted and 

returned value is assigned. 

3. Tokenization  

It is [19] the process of breaking a stream of text up into words, phrases, symbols or 

other meaningful elements called tokens. The list of tokens becomes input for further 

processing such as parsing or text mining. During this phase, all remaining text is parsed, 

lowercased and all punctuation removed.  

Example:  

Input: Friends, Romans, Countrymen, lend me your ears;  

Output:  

Figure 3.1: Tokenization 

 
 

friends romans countrymen lend me your ears 
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4. Filtration  

Filtration refers [19] to the process of deciding which terms should be used to 

represent the documents so that these can be used for  

1. Describing the document's content. 

2. Discriminating the document from the other documents in the collection. 

Frequently used terms cannot be used for this purpose for two reasons. First, the 

number of documents that are relevant to a query is likely to be a small proportion of the 

collection. A term that will be effective in separating the relevant documents from the non-

relevant documents, then, is likely to be a term that appears in a small number of documents. 

This means that high frequency terms are poor discriminators. The second reason is that 

terms appearing in many contexts do not define a topic or sub-topic of a document. As 

Ruthven and Lalmas state that: 

"The more documents in which a term appears (the more contexts in which it is used) 

then the less likely it is to be a content-bearing term. Consequently it is less likely that the 

term is one of those terms that contribute to the user's relevance assessment. Hence, terms 

that appear in many documents are less likely to be the ones used by a searcher to 

discriminate between relevant and non-relevant documents."  

For these reasons, frequently used terms or stopwords are removed from text 

streams. This can be accomplished with a stopword library --a stop-list of terms to be 

removed. These lists can be either generic (applied to all collections) or specific (created for 

a given collection). Stoplist: contain stopwords, not to be used as index like prepositions, 

articles, pronouns, some adverbs and adjectives etc. The removal of stopwords usually 

improves IR effectiveness 

5. Stemming 

Stemming refers [19] to the process of reducing terms to their stems or root variant. 

Thus, "computer", "computing", "compute" is reduced to "comput" and "walks", "walking" 

and "walker" is reduced to "walk". 
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6. Weighting  

Weighting [19] is the final stage in most IR indexing applications. Terms are 

weighted according to a given weighting model which may include local weighting, global 

weighting or both. If local weights are used, then term weights are normally expressed as 

term frequencies, tf. If global weights are used, the weight of a term is given by IDF  values. 

The most common (and basic) weighting scheme is one in which local and global weights are 

used (weight of a term =  tf*IDF). This is commonly referred to as tf*IDF weighting. 

During indexing documents are prepared for use by an IR system. This means 

preparing the raw document collection into an easily accessible representation of documents. 

This transformation from a document text into a representation of text- is known as indexing 

the documents. So, document indexing involves (3) through (6).  

7. Building an Inverted Index 

Inverted index [20] (also referred to as postings file or inverted file) is an index data 

structure storing a mapping from content, such as words or numbers to its locations in a 

database file, or in a document or a set of documents. The purpose of an inverted index is to 

allow fast full text searches at a cost of increased processing when a document is added to the 

database. The inverted file is may be the database file itself, rather than its index. It is the 

most popular data structure used in document retrieval systems, used on a large scale for 

example in search engines. An index always maps back from terms to the parts of a 

document where they occur. The basic idea of an inverted index is shown in fig 3.2. 

A dictionary of terms is kept. Then for each term, a list that records is associated in 

which documents the term occurs in. Each item in the list-which records that a term appeared 

in a document is conventionally called a posting. The list is then called a postings list (or), 

and all the postings lists taken together are referred to as the postings. The dictionary has 

been stored alphabetically and each postings list is sorted by document ID. Example of 

drawing an inverted index is shown below. 

D1: new home sales top forecasts 

D2: home sales rise july 
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D3: increase in home sales july 

D4: july new home sales rise 

 

 

 

 

 

 

.       . 

.       . 

Dictionary  Postings 

 

Figure 3.2: Two Parts of an Inverted Index 

 

 

8. Insertion and Defining Cell Position of a Term-Document Matrix 

 

human Di is 4 

 

human in document 0 

human in document 1 

human in document 2 

human in document 17 

 

Frequency for human in doc is 1  

0 0.  

Frequency for human in doc is 2 

0 1. 

Frequency for human in doc is 1 

0 2. 

Frequency for human in doc is 1 

0 17 

 

 

Figure 3.3: Frequency of Terms in Each document and Cell Position in Term 

Document Matrix. 

 

         For the term “human”, it is contain in 4 documents, in documents ID 0, 1, 2 and 17 

respectively. The term “human” has frequency 1 in document ID 0, frequency 2 in 

document ID 1, frequency 1 in document ID 2 and frequency 1 in document ID 17. For each 

new Doc 1 Doc 4 

home Doc 1 Doc 2 Doc 3 Doc 4 

top Doc 1 
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occurrence of the term in document ID defines the cell position of the term-document matrix 

as 0 0, 0 1, 0 2 and 0 17 as shown in figure 3.3.  

 

3.2 Basic Measures for Text Retrieval: Precision and Recall 

       “Suppose [5] that a text retrieval system has just retrieved a number of documents for 

based on input in the form of a query. How can user asses how accurate or correct the 

system was?” Let the set of documents relevant to a query be denoted as {Relevant}, and the 

set of documents retrieved be denoted as {Retrieved}. The set of documents that are both 

relevant and retrieved is denoted as {Relevant} ∩ {Retrieved}, as shown in the Venn 

diagram of figure 3.4. There are two basic measures for assessing the quality of text retrieval: 

 

 

Figure 3.4: Relationship between Relevant and Retrieved Documents [5] 

3.2.1 Precision 

This is the percentage of retrieved documents that are in fact relevant to the query 

(i.e. “correct” responses). It is formally defined as  

           {         }    {          }{         }                                                       
3.2.2 Recall 

This is the percentage of documents that are relevant to the query and were in fact, 

retrieved. It is formally defined as  
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        {        }  {         }{        }                                                       

CHAPTER-IV 

Implementation & Evaluation 

 

4.1 Algorithms  

To implement both the IR models under study, the following algorithms have been presented 

below. 

4.1.1 Algorithm for VSM 

Basic Algorithm to Implementation the Vector Space Model for Unstructured Documents 

Ranking is as follow. 

1. Construction of a term-document matrix ‘A’. 

2. Defining weight for each element of the term-document matrix using a specific term   

weight scoring system. Mostly preferable weighting system is local and global 

weightings as: 

ai j= Lij×Gij 

where,  

Lij = Local weight of a term i in the document j. 

Gij = Global weight of a term in the entire collection. 

3. Similarly defining query term/s matrix ‘Q’. 

4. Normalized Similarity Cosine is computed between each document vector and a query 

vector for similarity comparison.  

5. Finally sort the documents in descending order according to the similarity values. 
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     End of algorithm. 

4.1.2 Algorithm for LSI Model 

Basic Algorithm to Implementation the Latent Semantic Indexing Model for Unstructured 

Documents Ranking is as follow. 

1. Construction of a term-document matrix ‘A’. 

2. Defining weight for each element of the term-document matrix using a specific term       

weight scoring system. Mostly preferable weighting system is local and global 

weightings as: 

 

aij=Lij×Gij 

where,  

Lij = Local weight of a term i in the document j. 

Gij = Global weight of a term in the entire collection. 

3. Perform Singular Value Decomposition (SVD) on ‘A’. This will result in the product of 

three matrices U, S and V
T
 respectively. 

4. Reduced the matrices obtained from (3) to K-approximation. 

5. Find new coordinates of query and document vectors in the reduced k-dimensional space.  

6. Similarity Cosine is computed between each document vector and query vector in the 

reduced k-dimensional space. 

7. Finally sort the documents in decreasing order of cosine similarity values.  

End of Algorithm. 
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4.2 Implementation of VSM & LSI Model  

4.2.1 A Demonstration of Full Matching to the Query Terms 

List of Input Documents: 

This study has taken altogether nine documents of two groups, five about Human 

Computer Interaction (HCI), and four about Mathematical Graph Theory, these two groups 

are conceptually disjoint. Indexing is done to these input documents as described in section 

3.1 and all the underlined words in Table 4.1 denote keywords which are used as referents to 

the documents. 

 

Doc Id 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

 

Input Documents 

Human machine interface for ABC computer applications. 

A survey of user opinion of computer system response time.  

The EPS user interface management system. 

System and human system engineering testing of EPS. 

Relation of user perceived response time to error measurement. 

The generation of random, binary, ordered trees. 

The intersection graph of paths in trees. 

Graph minors IV: Widths of trees and well-quasi-ordering. 

Graph minors: A survey. 

 

Table 4.1: List of Input Documents with Underlined Keywords. 
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Experiment 1 

Applying VSM 

The term-document matrix with simple term- frequency (tfi) weighting is presented below for 

the input data set mentioned in Table 4.1. 

           Terms Q D1 D2 D3 D4 D5 D6 D7 D8 D9 

human 1 1 0 0 1 0 0 0 0 0 

interface 0 1 0 1 0 0 0 0 0 0 

computer 1 1 1 0 0 0 0 0 0 0 

user 0 0 1 1 0 1 0 0 0 0 

system 0 0 1 1 2 0 0 0 0 0 

response 0 0 1 0 0 1 0 0 0 0 

time 0 0 1 0 0 1 0 0 0 0 

EPS 0 0 0 1 1 0 0 0 0 0 

survey 0 0 1 0 0 0 0 0 0 1 

tree 1 0 0 0 0 0 1 1 1 0 

graph 1 0 0 0 0 0 0 1 1 1 

minor 0 0 0 0 0 0 0 0 1 1 

Table 4.2: Term-Document Matrix and Term Weighting ( tfi ) 

The term-document matrix with term-frequency-inverse-document frequency (tf-idfi) weight- 

ing of the above Table 4.2 is shown below. 

dfi D/dfi 

idfi= 

log(D/dfi) Q D1 D2 D3 D4 D5 D6 D7 D8 D9 

2 9\2 0.6532 0.6532 0.6532 0 0 0.6532 0 0 0 0 0 

2 9\2 0.6532 0 0.6532 0 0.6532 0 0 0 0 0 0 

2 9\2 0.6532 0.6532 0.6532 0.6532 0 0 0 0 0 0 0 

3 9\3 0.4771 0 0 0.4771 0.4771 0 0.4771 0 0 0 0 

3 9\3 0.4771 0 0 0.4771 0.4771 0.9542 0 0 0 0 0 

2 9\2 0.6532 0 0 0.6532 0 0 0.6532 0 0 0 0 

2 9\2 0.6532 0 0 0.6532 0 0 0.6532 0 0 0 0 

2 9\2 0.6532 0 0 0 0.6532 0.6532 0 0 0 0 0 

2 9\2 0.6532 0 0 0.6532 0 0 0 0 0 0 0.6532 

3 9\3 0.4771 0.4771 0 0 0 0 0 0.4771 0.4771 0.4771 0 

3 9\3 0.4771 0.4771 0 0 0 0 0 0 0.4771 0.4771 0.4771 

2 9\2 0.6532 0 0 0 0 0 0 0 0 0.6532 0.6532 
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Table 4.3: Term-Document Matrix and Term Weighting ( wi = tfi ×idfi ) 

Query terms: “human computer tree graph” 

Query vector coordinates:  

0.6532 0 0.6532 0 0 0 0 0 0 0.4771 0.4771 0 

Output Generated 

For the query “human computer tree graph”, following output result is obtained using the 

input data set mentioned in Table 4.1 is presented below.  

Doc. Id Cosine Scores Relevancy 

D1 0.6593 Yes 

D2 0.2537 Yes 

D3 0 Not Retrieved 

D4 0.2808 Yes 

D5 0 Not Retrieved 

D6 0.4171 Yes 

D7 0.5898 Yes 

D8 0.4238 Yes 

D9 0.1914 Yes 

Table 4.4: Computing Cosine Scores and Marking Document Relevancy. 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.4 and non-ranked documents are not presented. 

D1 

D7 

D8 

D6 

D4 

D2 

D9 

Human machine interface for ABC computer applications. 

The intersection graph of paths in trees. 

Graph minors IV: Widths of trees and well-quasi-ordering. 

The generation of random, binary, ordered trees. 

System and human system engineering testing of EPS. 

A survey of user opinion of computer system response time. 

Graph minors: A survey. 
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Table 4.5: Ranked Result of a Query where Non-Ranked Documents are Not Displayed. 

Applying LSI Model 

1. A2 Approximation (i.e. 2D-Representation) 

The LSI model has been applied for the same query as applied in VSM. The term-

document matrix “A” (i.e. 12×9 matrix) is decomposed into the products of three separate 

matrices as defined and given by equation 4. The result is presented below: 

Singular Value Decomposition (SVD) 

Query terms: “human computer tree graph” 

At×d = Ut×nSn×n(Vn×d)
T
 

Input Matrix A = 

D1 D2 D3 D4 D5 D6 D7 D8 D9 

0.6532 0 0 0.6532 0 0 0 0 0 

0.6532 0 0.6532 0 0 0 0 0 0 

0.6532 0.6532 0 0 0 0 0 0 0 

0 0.4771 0.4771 0 0.4771 0 0 0 0 

0 0.4771 0.4771 0.9542 0 0 0 0 0 

0 0.6532 0 0 0.6532 0 0 0 0 

0 0.6532 0 0 0.6532 0 0 0 0 

0 0 0.6532 0.6532 0 0 0 0 0 

0 0.6532 0 0 0 0 0 0 0.6532 

0 0 0 0 0 0.4771 0.4771 0.4771 0 

0 0 0 0 0 0 0.4771 0.4771 0.4771 

0 0 0 0 0 0 0 0.6532 0.6532 

 

Matrix U = 

-0.2510 -0.3574 -0.1232  0.3427 -0.2186 -0.4167  0.4647 -0.1865  0.3517 

-0.2371 -0.2704 -0.0676  0.4696  0.4307  0.4599 -0.0067 -0.0558  0.1256 

-0.3300  0.0906  0.0703  0.5983 -0.1360 -0.1420 -0.3115  0.2201 -0.4556 

-0.3537  0.1413  0.1473 -0.1404  0.3656  0.2708  0.0123  0.0030 -0.0164 

-0.4922 -0.3441 -0.0935 -0.3941 -0.2365 -0.1647 -0.2160  0.1424 -0.2911 

-0.3459  0.3579  0.2404 -0.0886  0.1153 -0.1617  0.2503 -0.0410  0.0449 

-0.3459  0.3579  0.2404 -0.0886  0.1153 -0.1617  0.2503 -0.0410  0.0449 

-0.2905 -0.4161 -0.1330 -0.3342  0.1214  0.1882  0.0046 -0.0404  0.0914 

-0.2750  0.3386 -0.1771  0.0311 -0.4930  0.2932 -0.3881 -0.1733  0.5174 

-0.0132  0.1117 -0.3899 -0.0217  0.4990 -0.5127 -0.3942  0.2336  0.3362 
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-0.0443  0.2038 -0.5418 -0.0127  0.1127 -0.0471  0.0409 -0.6922 -0.4088 

-0.0556  0.2336 -0.5785 -0.0071 -0.1121  0.2355  0.4553  0.5698 -0.0879 

Matrix S = 

1.8798 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 1.4713 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 1.3334 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 1.0247 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.8460 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.7626 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5251 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3069 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2189 

 

Matrix V
T
 = 

-0.2842 -0.6653 -0.3980 -0.4380 -0.3302 -0.0033 -0.0146 -0.0339 -0.1261 

-0.2385  0.4426 -0.3706 -0.5666  0.3636  0.0362  0.1023  0.2060  0.3201 

-0.0591  0.2025 -0.0790 -0.1924  0.2883 -0.1395 -0.3334 -0.6168 -0.5640 

 0.8992  0.0394 -0.1626 -0.3616 -0.1783 -0.0101 -0.0160 -0.0205  0.0094 

 0.0587 -0.2349  0.4991 -0.3418  0.3842  0.2814  0.3450  0.2585 -0.4036 

-0.0846 -0.0812  0.6216 -0.4018 -0.1076 -0.3208 -0.3502 -0.1484  0.4234 

 0.1823 -0.4327 -0.1876  0.1913  0.6338 -0.3581 -0.3210  0.2453  0.1207 

-0.0474  0.1508  0.0212 -0.0402 -0.1701  0.3632 -0.7129  0.4999 -0.2322 

 0.0647 -0.2174 -0.0226  0.0532  0.2324  0.7327 -0.1581 -0.4203  0.3908 

 

Query Vector:  

The query vector for the query terms: “human computer tree graph” is presented below:  

0.6532 0 0.6532 0 0 0 0 0 0 0.4771 0.4771 0 

 

Now the Reduced SVD (with k = 2) has been computed for the 12×9 matrix A to 

obtain the rank-2 approximation or A2 as defined in equation 12. For easy to understand, the 

selected parts have been highlighted in the above U and S matrices. Also the highlighted 

parts of V
T
 give the coordinates of document vectors as defined in section 2.3 (2). So, the 

coordinates of document vectors are presented below: 

    D1       D2     D3      D4      D5      D6     D7 D8 D9  

-0.2842 -0.6653 -0.3980 -0.4380 -0.3302 -0.0033 -0.0146 -0.0339 -0.1261 

-0.2385  0.4426 -0.3706 -0.5666  0.3636  0.0362  0.1023  0.2060  0.3201 
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Query Vector Coordinates: 

The query vector coordinates is obtained from the following equation as:   ̂             

which is defined above and given by Equation 13 and the query vector coordinates is: 

-0.2165 -0.0161 

 

Output Generated 

For the query “human computer tree graph”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.8116 Yes 

D2 0.7892 Yes 

D3 0.7804 Yes 

D4 0.6686 Yes 

D5 0.6155 Yes 

D6 0.0167 Yes 

D7 0.0675 Yes 

D8 0.0888 Yes 

D9 0.2965 Yes 

Table 4.6: Computing Cosine Scores and Marking Document Relevancy. 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.6 and non-ranked documents are not presented. 

 

D1 

D2 

D3 

D4 

 

Human machine interface for ABC computer applications. 

A survey of user opinion of computer system response time. 

The EPS user interface management system. 

System and human system engineering testing of EPS. 
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D5 

D9 

D8 

D7 

D6 

 Relation of user perceived response time to error measurement. 

Graph minors: A survey. 

Graph minors IV: Widths of trees and well-quasi-ordering. 

The intersection graph of paths in trees. 

The generation of random, binary, ordered trees. 

 

Table 4.7: Ranked Result of a Query where Non-Ranked Documents are Not Displayed. 

 

 

Figure 4.1: Documents Projected into 2D Semantic Space 

 

Analysis of the Experiment Result 

Query terms: “human computer tree graph” 

Since the present study has taken altogether nine documents of two groups (i.e. 

conceptually disjoint), five about HCI and four about graph theory documents. The above 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 D9 

Q 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

-0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0

LS
I 

D
im

2
 

LSI Dim 1 

2D-Representation 

Datenreihen1



62 

 

query is formulated considering the whole nine documents but not only considering the 

certain group. 

To find documents relevant to the query: “human computer tree graph”, both the IR 

models i.e. VSM and LSI models have been applied in Experiment 1.  

 

As depicted in Table 4.5, VSM has returned documents D1,D2, D4, D6, D7, D8 and 

D9  since they share one or more terms with the query. But documents D3 and D5 have not 

returned since they share no terms at all with the query given though these documents are 

also relevant to the query in the meaning. 

As depicted in table 4.7, LSI has been applied using two factors, i.e. A2 is used to 

approximate the original 12×9 term-document matrix A. All the 9 documents relevant to the 

query have been returned from D1 to D9. Hence, the LSI approach can extract two additional 

documents (D3 and D5) which are relevant to the query yet share no common terms. This 

ability to retrieve relevant information based on meaning rather than literal term usage is the 

main property of LSI. 

As discussed earlier in section 2.3 (3) that choosing the number of dimensions (k) for 

Ak is an interesting problem and affects the performance of LSI, the present study has made 

various tests on different number of k factors for the same query (i.e. “human computer tree 

graph”). The choosing of different number of k factors and their results are presented below. 

 

2. A4 Approximation (i.e. 4D-Representation) 

Query terms: “human computer tree graph” 

Query Vector:  

0.6532 0 0.6532 0 0 0 0 0 0 0.4771 0.4771 0 

 

Query Vector Coordinates: 

-0.2165 -0.0161 -0.3593  0.5838 
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Output Generated 

For the query “human computer tree graph”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.8727 Yes 

D2 0.1469 Yes 

D3 0.0621 Yes 

D4 -0.064 Yes but not taken 

D5 -0.331 Yes but not taken 

D6 0.4269 Yes 

D7 0.4456 Yes 

D8 0.4561 Yes 

D9 0.4847 Yes 

Table 4.8: Computing Cosine Scores and Marking Document Relevancy. 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.8 and non-ranked documents are not presented. 

 

D1 

D9 

D8 

D7 

D6 

D2 

D3 

 

 

Human machine interface for ABC computer applications. 

Graph minors: A survey. 

Graph minors IV: Widths of trees and well-quasi-ordering. 

The intersection graph of paths in trees. 

The generation of random, binary, ordered trees. 

 A survey of user opinion of computer system response time.  

The EPS user interface management system. 

 

Table 4.9: Ranked Result of a Query where Non-Ranked Documents are Not Displayed. 
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As depicted in Table 4.9, LSI has been applied using four factors, i.e. A4 is used to 

approximate the original 12×9 term-document matrix A. When only positive cosine values 

are considered (so as to compare with VSM ), 7 documents D1, D2, D3, D6, D7, D8 and D9 

have been returned. The LSI approach has missed 2 documents D4 and D5 which are also 

relevant to the query. 

3. A6 Approximation (i.e. 6D-Representation) 

Query terms: “human computer tree graph” 

Query Vector:  

0.6532 0 0.6532 0 0 0 0 0 0 0.4771 0.4771 0 

 

Query Vector Coordinates: 

-0.2165 -0.0161 -0.3593  0.5838  0.0712 -0.8287 

 

Output Generated 

For the query “human computer tree graph”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.6365 Yes 

D2 0.1453 Yes 

D3 -0.421 Yes but not taken 

D4 0.2513 Yes 

D5 -0.032 Yes but not taken 

D6 0.6667 Yes 

D7 0.6435 Yes 

D8 0.4507 Yes 

D9 -0.154 Yes but not taken 

Table 4.10: Computing Cosine Scores and Marking Document Relevancy. 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.10 and non-ranked documents are not presented. 

 



65 

 

 

D6 

D7 

D1 

D8 

D4 

D2 

 

 

The generation of random, binary, ordered trees. 

The intersection graph of paths in trees. 

Human machine interface for ABC computer applications. 

Graph minors IV: Widths of trees and well-quasi-ordering. 

System and human system engineering testing of EPS. 

 A survey of user opinion of computer system response time.  

.  

Table 4.11: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in Table 4.11, LSI has been applied using 6 factors, i.e. A6 is used to 

approximate the original 12×9 term-document matrix A. When only positive cosine values 

are considered (so as to compare with VSM ), 6 documents D1, D2, D4, D6, D7 and D8 have 

been returned. The LSI approach has missed 3 documents D3, D5 and D9 which are also 

relevant to the query. 

4. A8 Approximation (i.e. 8D-Representation) 

Query terms: “human computer tree graph” 

Query Vector: 

0.6532 0 0.6532 0 0 0 0 0 0 0.4771 0.4771 0 

 

Query Vector Coordinates: 

-0.2165 -0.0161 -0.3593  0.5838  0.0712 -0.8287 -0.1305 -0.6416 

 

Output Generated 

For the query “human computer tree graph”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 
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Doc. Id Cosine Scores Relevancy 

D1 0.5423 Yes 

D2 0.078 Yes 

D3 -0.346 Yes but not taken 

D4 0.2124 Yes  

D5 0.0007 * Yes but not taken 

D6 0.1653 Yes 

D7 0.7329 Yes 

D8 0.002 * Yes but not taken 

D9 -0.014 Yes but not taken 

Table 4.12: Computing Cosine Scores and Marking Document Relevancy. 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.12 and non-ranked documents are not presented. 

 

D7 

D1 

D4 

D6 

D2 

 

 

The intersection graph of paths in trees. 

Human machine interface for ABC computer applications. 

System and human system engineering testing of EPS. 

The generation of random, binary, ordered trees. 

A survey of user opinion of computer system response time.  

.  

Table 4.13: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in Table 4.13, LSI has been applied using 8 factors, i.e. A8 is used to 

approximate the original 12×9 term-document matrix A. When only positive cosine values 

are considered (so as to compare with VSM ), 7 documents D1, D2, D4, D6 and D7 have 

been returned. The LSI approach has missed 4 documents D3, D5, D8 and D9 which are also 

relevant to the query. Here, * sign indicates that though D5 and D8 have positive value but 

they are almost equal to zero. So D5 and D8 are ignored. 
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Comparison Table 

Table 4.14 lists the LSI-ranked documents with different numbers of factors (k). The 

documents presented below satisfy a cosine threshold of taking all those values which are 

positive only. The table below clearly demonstrates that its value associated with returned 

documents can significantly vary with changes in the number of factors k. 

Number of Factors 

K = 2 K = 4 K = 6 K = 8 

D1 D1 D6 D7 

D2 D9 D7 D1 

D3 D8 D1 D4 

D4 D7 D8 D6 

D5 D6 D4 D2 

D9 D2 D2  

D8 D3   

D7    

D6    

Table 4.14: Returned Documents Based on Different Numbers of LSI Factors. 

 From the above table, it can be concluded that k =2 is the best approximation for the given 

query terms “human computer tree graph” 

4.2.2 Demonstration of Partial Matching to the Query Terms 

Experiment 2 

Applying VSM 

For the same input data set mentioned in Table 4.1, another query is tested and its result is 

presented below. 

Query terms: “human computer interaction” 

Query Vector:  

0.6532 0 0.6532 0 0 0 0 0 0 0 0 0 

Query vector coordinates: 

0.6532 0 0.6532 0 0 0 0 0 0 0 0 0 
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Output Generated 

For the query “human computer interaction”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.8165 Yes 

D2 0.3141 Yes 

D3 0 Not Retrieved 

D4 0.3478 Yes 

D5 0 Not Retrieved 

D6 0 Not Retrieved 

D7 0 Not Retrieved 

D8 0 Not Retrieved 

D9 0 Not Retrieved 

Table 4.15: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.15 and non-ranked documents are not presented. 

 

D1 

D4 

D2 

 

Human machine interface for ABC computer applications. 

System and human system engineering testing of EPS. 

A survey of user opinion of computer system response time.  

 

Table 4.16: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

 

Applying LSI Model 

1. A2 Approximation (i.e. 2D-Representation) 

Query terms: “human computer interaction” 

Query Vector: 

0.6532 0 0.6532 0 0 0 0 0 0 0 0 0 
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Query Vector Coordinates: 

-0.2019 -0.1184 

 

Output Generated 

For the query “human computer interaction”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.986 Yes 

D2 0.438 Yes 

D3 0.976 Yes 

D4 0.9278 Yes 

D5 0.2054 Yes 

D6 -0.425 No 

D7 -0.379 No 

D8 -0.359 No 

D9 -0.154 No 

Table 4.17: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.17 and non-ranked documents are not presented. 

 

D1 

D3 

D4 

D2 

D5 

 

Human machine interface for ABC computer applications. 

The EPS user interface management system. 

System and human system engineering testing of EPS. 

A survey of user opinion of computer system response time. 

Relation of user perceived response time to error measurement. 

 

Figure 4.18: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 
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Figure 4.2: Documents Projected into 2D Semantic Space 

Analysis of the Experiment Result 

Query terms: “human computer interaction” 

Since the present study has taken altogether nine documents of two groups (i.e. 

conceptually disjoint), five about HCI and four about graph theory documents. The above 

query is formulated considering the first five documents (i.e. HCI group) only. 

To find documents relevant to the query: “human computer interaction”, both the IR 

models i.e. VSM and LSI models have been applied in Experiment 2.  

 

As depicted in Table 4.16, VSM has returned documents D1, D4 and D2 since they 

share one or more terms with the query. But documents D3 and D5 have not returned since 

they share no terms at all with the query given though these documents are also relevant to 

the query in the meaning. 

As depicted in Table 4.18, LSI has been applied using two factors, i.e. A2 is used to 

approximate the original 12×9 term-document matrix A. When only positive cosine values 

are considered (so as to compare with VSM), all the 5 documents relevant to the query have 
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been returned from D1 to D5. Hence, the LSI approach can extract two additional documents 

(D3 and D5) which are relevant to the query yet share no common terms. This ability to 

retrieve relevant information based on meaning rather than literal term usage is the main 

property of LSI. 

As discussed earlier in section 2.3 (3) that choosing the number of dimensions (k) for 

Ak is an interesting problem and affects the performance of LSI, the present study has made 

various test on different number of k factors for the same query (i.e. “human computer 

interaction”). The choosing of different number of k factors and their result are presented 

below. 

2. A4 Approximation (i.e. 4D-Representation) 

Query terms: “human computer interaction” 

Query Vector: 

0.6532 0 0.6532 0 0 0 0 0 0 0 0 0 

 

Query Vector Coordinates: 

-0.2019 -0.1185 -0.0260  0.5999 

 

Output Generated 

For the query “human computer interaction”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.9977 Yes 

D2 0.1885 Yes 

D3 0.0779 Yes 

D4 -0.106 Yes but not taken 

D5 -0.236 Yes but not taken 

D6 -0.065 No 

D7 -0.045 No 

D8 -0.033 No 

D9 0.0184 No 

Table 4.19: Computing Cosine Scores and Marking Document Relevancy 
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Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.19 and non-ranked documents are not presented. 

 

D1 

D2 

D3 

D9 

 

 

Human machine interface for ABC computer applications. 

A survey of user opinion of computer system response time.  

The EPS user interface management system. 

Graph minors: A survey. 

 

Table 4.20: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in Table 4.20, LSI has been applied using 4 factors, i.e. A4 is used to 

approximate the original 12×9 term-document matrix A. When only positive cosine values 

are considered (so as to compare with VSM), 4 documents D1, D2, D3 and D9 have been 

returned. The LSI approach has missed 2 documents D4 and D5 which are also relevant to 

the query and it has also retrieved one document D9 which is not relevant to the query as 

expected. 

3. A6 Approximation (i.e. 6D-Representation) 

Query terms: “human computer interaction” 

Query Vector: 

0.6532 0 0.6532 0 0 0 0 0 0 0 0 0 

 

Query Vector Coordinates: 

-0.2019 -0.1185 -0.0260  0.5999 -0.2738 -0.4785 

 

Output Generated 

For the query “human computer interaction”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 
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Doc. Id Cosine Scores Relevancy 

D1 0.7833 Yes 

D2 0.2783 Yes 

D3 -0.487 Yes but not taken 

D4 0.2763 Yes 

D5 -0.237 Yes but not taken 

D6 0.1842 No 

D7 0.1232 No 

D8 -0.022 No 

D9 -0.113 No 

Table 4.21: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.21 and non-ranked documents are not presented. 

 

D1 

D2 

D4 

D6 

D7 

 

 

Human machine interface for ABC computer applications. 

A survey of user opinion of computer system response time.  

System and human system engineering testing of EPS. 

The generation of random, binary, ordered trees. 

The intersection graph of paths in trees. 

 

Table 4.22: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in Table 4.22, LSI has been applied using 6 factors, i.e. A6 is used to 

approximate the original 12×9 term-document matrix A. When only positive cosine values 

are considered (so as to compare with VSM), 5 documents D1, D2, D4, D6 and D7 have 

been returned. The LSI approach has missed 2 documents D3 and D5 which are also relevant 

to the query and it has also retrieved 2 documents D6 and D7 which are not relevant to the 

query as expected. 
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4. A8 Approximation (i.e. 8D-Representation) 

Query terms: “human computer interaction” 

Query Vector: 

0.6532 0 0.6532 0 0 0 0 0 0 0 0 0 

 

Query Vector Coordinates: 

-0.2019 -0.1185 -0.0260  0.5999 -0.2738 -0.4785  0.1906  0.0714 

 

Output Generated 

For the query “human computer interaction”, following result is obtained using the data set 

mentioned in Table 4.1 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.784 Yes 

D2 0.1547 Yes 

D3 -0.504 Yes but not taken 

D4 0.3021 Yes 

D5 -0.042 Yes but not taken 

D6 0.0473 No 

D7 -0.057 No 

D8 0.087 No 

D9 -0.097 No 

Table 4.23: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.23 and non-ranked documents are not presented. 

Table 4.24: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

D1 

D4 

D2 

D8 

D6 

Human machine interface for ABC computer applications. 

System and human system engineering testing of EPS. 

A survey of user opinion of computer system response time.  

Graph minors IV: Widths of trees and well-quasi-ordering. 

The generation of random, binary, ordered trees. 
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As depicted in Table 4.24, LSI has been applied using 8 factors, i.e. A8 is used to 

approximate the original 12×9 term-document matrix A. When only positive cosine values 

are considered (so as to compare with VSM), 5 documents D1, D2, D4, D6 and D8 have 

been returned. The LSI approach has missed 2 documents D3 and D5 which are also relevant 

to the query and it has also retrieved 2 documents D6 and D8 which are not relevant to the 

query as expected. 

Comparison Table 

Table 4.25 lists the LSI-ranked documents with different numbers of factors (k). The 

documents presented below satisfy a cosine threshold of taking all those values which are 

positive only. The table below clearly demonstrates that its value associated with returned 

documents can significantly vary with changes in the number of factors k. 

Number of Factors 

K = 2 K = 4 K = 6 K = 8 

D1 D1 D1 D1 

D3 D2 D2 D4 

D4 D3 D4 D2 

D2 D9 D6 D8 

D5  D7 D6 

Table 4.25: Returned Documents Based on Different Numbers of LSI Factors. 

 From the above table, it can be concluded that k =2 is the best approximation for the given 

query terms “human computer interaction”. 

4.2.3 Demonstration of Synonyms Test 

Experiment: 3 

List of Input Documents: 

The present study has taken nine documents of two distinct groups. The first group 

i.e. first five documents is related to the “humor” and the second group i.e. last four 

documents is related to the “car”. Here, “humor” has the synonyms (i.e. identical or similar 

meaning) as joke, comedy, funny and “car” has the synonyms as automobile, vehicle. This 
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study has been trying to focus whether these two models under study could really solve the 

problems of synonyms. 

Indexing is done to these input documents as described in section 3.1 and all the 

underlined words in Table 4.26 denote keywords which are used as referents to the 

documents. Also for simplicity, simple term weighting i.e. term-frequency (tfi) is used in this 

experiment. 

 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

 

 

Joke clean humor and humor. 

Funny picture with joke page. 

Comedy circus. 

Comedy song funny. 

Humor story. 

BMW automobile vehicle service. 

Car vehicle. 

Car and car automobile center. 

Vehicle, vehicle and vehicle. 

 

Table 4.26: List of Input Documents with Underlined Keywords. 
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Applying VSM 

The term-document matrix with simple term- frequency (tfi) weighting is presented below for 

the input data set mentioned in Table 4.26. 

Terms Q D1 D2 D3 D4 D5 D6 D7 D8 D9 

Humor 1 2 0 0 0 1 0 0 0 0 

Joke 0 1 1 0 0 0 0 0 0 0 

Funny 0 0 1 0 1 0 0 0 0 0 

Comedy 0 0 0 1 1 0 0 0 0 0 

Automobile 0 0 0 0 0 0 1 0 1 0 

Vehicle 0 0 0 0 0 0 1 1 0 3 

Car 0 0 0 0 0 0 0 1 2 0 

Table 4.27: Term-Document Matrix and Term Weighting ( tfi ) 

Query term: “humor” 

Query Vector Coordinates:  

1 0 0 0 0 0 0   

Output Generated 

For the query “humor”, following output result is obtained using the input data set 

mentioned in Table 4.26 is presented below.  

Doc. Id Cosine Scores Relevancy 

D1 0.8944 Yes 

D2 0 Not Retrieved 

D3 0 Not Retrieved 

D4 0 Not Retrieved 

D5 1 Yes 

D6 0 Not Retrieved 

D7 0 Not Retrieved 

D8 0 Not Retrieved 

D9 0 Not Retrieved 

Table 4.28: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.28 and non-ranked documents are not presented. 
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D5 

D1 

Humor story. 

Joke clean humor and humor. 

Table 4.29: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

 

Applying LSI Model 

At×d = Ut×nSn×n(Vn×d)
T 

Singular Value Decomposition (SVD) 

Input Matrix A = 

Terms D1 D2 D3 D4 D5 D6 D7 D8 D9 

humor 2 0 0 0 1 0 0 0 0 

joke 1 1 0 0 0 0 0 0 0 

funny 0 1 0 1 0 0 0 0 0 

comedy 0 0 1 1 0 0 0 0 0 

automobile 0 0 0 0 0 1 0 1 0 

vehicle 0 0 0 0 0 1 1 0 3 

car 0 0 0 0 0 0 1 2 0 

 

Matrix U = 

 0.0000  0.8776  0.0000 -0.2342 -0.3061  0.0000  0.2852 

 0.0000  0.4628  0.0000  0.2153  0.5346  0.0000 -0.6735 

 0.0000  0.1215  0.0000  0.7183  0.3485  0.0000  0.5897 

 0.0000  0.0300  0.0000  0.6187 -0.7065  0.0000 -0.3424 

-0.1460  0.0000 -0.4130  0.0000  0.0000 -0.8989  0.0000 

-0.9692  0.0000  0.2420  0.0000  0.0000  0.0462  0.0000 

-0.1984  0.0000 -0.8780  0.0000  0.0000  0.4357  0.0000 

Matrix S = 

3.3698 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 2.4606 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 2.3802 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 1.7779 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 1.2275 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.9896 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5267 0.0000 0.0000 
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Matrix V
T
 = 

0.0000  0.0000  0.0000  0.0000  0.0000 -0.3309 -0.3465 -0.1611 -0.8628 

 0.9014  0.2375  0.0122  0.0616  0.3566  0.0000  0.0000  0.0000  0.0000 

 0.0000  0.0000  0.0000  0.0000  0.0000 -0.0719 -0.2672 -0.9113  0.3050 

-0.1423  0.5251  0.3480  0.7520 -0.1317  0.0000  0.0000  0.0000  0.0000 

-0.0632  0.7194 -0.5755 -0.2917 -0.2493  0.0000  0.0000  0.0000  0.0000 

 0.0000  0.0000  0.0000  0.0000  0.0000 -0.8617  0.4869 -0.0279  0.1402 

-0.1957 -0.1591 -0.6500  0.4697  0.5416  0.0000  0.0000  0.0000  0.0000 

 1.6051  1.1612 -0.8069 -0.2377 -0.7767 -0.3407  0.0306 -0.0317  0.4259 

 0.0018 -0.1307 -0.0017  0.0030  0.0662  0.0591 -0.0145  0.0090 -0.0148 

1. A2 Approximation (i.e. 2D-Representation) 

Query term: “humor” 

Query Vector: 

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0000 0.3567 

Output Generated 

For the query “humor”, following result is obtained using the data set mentioned in Table 

4.26 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 1 Yes 

D2 1 Yes 

D3 1 Yes 

D4 1 Yes 

D5 1 Yes 

D6 0 No 

D7 0 No 

D8 0 No 

D9 0 No 

Table 4.30: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.30 and non-ranked documents are not presented. 
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D1 

D2 

D3 

D4 

D5 

 

 

Joke clean humor and humor. 

Funny picture with joke page. 

Comedy circus. 

Comedy song funny. 

Humor story. 

 

Table 4.31: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

 

Figure 4.3: Documents Projected into 2D Semantic Space 

Analysis of the Experiment Result 

Query term: “humor” 

Since the present study has taken altogether nine documents of two groups (i.e. 

conceptually disjoint), five about synonyms or identical meaning to “humor” and four about 

synonyms or identical meaning to “car” documents. The above query is formulated 
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considering the first five documents only because all those documents is somewhat related to 

the synonymous or identical meaning to “humor”. 

To find documents relevant to the query: “humor”, both the IR models i.e. VSM and 

LSI models have been applied in Experiment 3.  

 

From Table 4.29, When VSM is applied; it has returned documents D1 and D5 since 

they share one or more terms with the query. But documents D2, D3 and D4 have not been 

returned since they share no terms at all with the query given but these documents are also 

relevant to the query in the meaning (i.e. synonymous). 

As depicted in Table 4.31, LSI has been applied using two factors, i.e. A2 is used to 

approximate the original 7×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM), all the 5 relevant documents to the query have been 

returned from D1 to D5. Hence, the LSI approach can extract 3 additional documents (D2, 

D3 and D4) which are relevant to the query yet share no common terms. It can also be 

concluded that LSI works very well for the synonyms while observing the cosine scores.  

As discussed earlier in section 2.3 (3) that choosing the number of dimensions (k) for 

Ak is an interesting problem and affects the performance of LSI, the present study has made 

various test on different number of k factors for the same query (i.e.“humor” ). The choosing 

of different number of k factors and their result are presented below. 

2. A4 Approximation (i.e. 4D-Representation) 

Query terms: “humor” 

Query Vector: 

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0000  0.3567  0.0000 -0.1317 
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Output Generated 

For the query “humor”, following result is obtained using the data set mentioned in Table 

4.26 is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.9806 Yes 

D2 0.071 Yes 

D3 -0.313 Yes but not taken 

D4 -0.269 Yes but not taken 

D5 1 Yes 

D6 0 No 

D7 0 No 

D8 0 No 

D9 0 No 

Table 4.32: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.32 and non-ranked documents are not presented. 

 

D5 

D1 

D2 

 

 

Humor story. 

Joke clean humor and humor. 

Funny picture with joke page. 

 

Table 4.33: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in table 4.33, LSI has been applied using 4 factors, i.e. A4 is used to 

approximate the original 7×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM), 3 documents D1, D2, and D5 have been returned. 

The LSI approach has missed 2 documents D3 and D4 which are also relevant to the query in 

meaning (i.e. synonyms). 
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3. A6 Approximation (i.e. 6D-Representation) 

Query term: “humor” 

Query Vector: 

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0000  0.3567  0.0000 -0.1317 -0.2494  0.0000 

 

Output Generated 

For the query “humor”, following result is obtained using the data set mentioned in Table 

4.26 is presented in the below. 

Doc. Id Cosine Scores Relevancy 

D1 0.8559 Yes 

D2 -0.391 Yes but not taken 

D3 0.3336 Yes 

D4 -0.012 Yes but not taken 

D5 1 Yes 

D6 0 No 

D7 0 No 

D8 0 No 

D9 0 No 

Table 4.34: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.34 and non-ranked documents are not presented. 

D5 

D1 

D3 

Humor story. 

Joke clean humor and humor. 

Comedy circus. 

 

Table 4.35: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 
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As depicted in table 4.35, LSI has been applied using 6 factors, i.e. A6 is used to 

approximate the original 7×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 3 documents D1, D3, and D5 have been returned. 

The LSI approach has missed 2 documents D2 and D4 which are also relevant to the query in 

meaning (i.e. synonyms). 

Comparison Table 

Table 4.36 lists the LSI-ranked documents with different numbers of factors (k). The 

documents presented below satisfy a cosine threshold of taking all those values which are 

positive only. The table below clearly demonstrates that its value associated with returned 

documents can significantly vary with changes in the number of factors k. 

Number of Factors. 

K = 2 K = 4 K = 6 

D1 D5 D5 

D2 D1 D1 

D3 D2 D3 

D4   

D5   

Table 4.36: Returned Documents Based on Different Numbers of LSI Factors. 

 From the above table, it can be concluded that k =2 is the best approximation for the given 

query term “humor”. 

 

1. A2 Approximation (i.e. 2D-Representation) 

Applying LSI 

Query term: “car” 

Query Vector: 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

 

 



85 

 

Query Vector Coordinates: 

-0.0589  0.0000 

 

Output Generated 

For the query “car”, following result is obtained using the data set mentioned in Table 4.26 

is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0 No 

D2 0 No 

D3 0 No 

D4 0 No 

D5 0 No 

D6 1 Yes 

D7 1 Yes 

D8 1 Yes 

D9 1 Yes 

Table 4.37: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.37 and non-ranked documents are not presented. 

 

D6 

D7 

D8 

D9 

 

BMW automobile vehicle service. 

Car vehicle. 

Car and car automobile center. 

Vehicle, vehicle and vehicle. 

 

Table 4.38: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 
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Figure 4.4 : Documents Projected into 2D Semantic Space 

Analysis of the Experiment Result 

Query term: “car” 

From experiment 1 and experiment 2, it is clear that VSM would return documents 

only when documents share one or more terms with the query given. So, it is obvious that 

when applying VSM for this query. It would have returned documents D7 and D8 because 

they share the term “car” with the query and missed D6 and D9 which are also relevant in 

meaning (i.e synonyms) 

As depicted in Table 4.38, LSI has been applied using 2 factors, i.e. A2 is used to 

approximate the original 7×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), all 4 documents from D6 to D9 have been 

returned. They all are relevant to the query. It can be concluded that LSI approach works well 

for the synonyms or identical meaning while observing the cosine values. 

As discussed earlier in section 2.3 (3) that choosing the number of dimensions (k) for 

Ak is an interesting problem and affects the performance of LSI, the present study has made 
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various test on different number of k factors for the same query (i.e. “car” ). The choosing of 

different number of k factors and their result are presented below. 

2. A4 Approximation (i.e. 4D-Representation) 

Query term: “car” 

Query Vector: 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

 

Query Vector Coordinates: 

-0.0589  0.0000 -0.3688  0.0000 

Output Generated 

For the query “car” following result is obtained using the data set mentioned in Table 4.26 is 

presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0 No 

D2 0 No 

D3 0 No 

D4 0 No 

D5 0 No 

D6 0.3638 Yes 

D7 0.7279 Yes 

D8 0.9999 Yes 

D9 -0.18 Yes but not taken 

Table 4.39: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.39 and non-ranked documents are not presented. 

D8 

D7 

D6 

Car and car automobile center. 

Car vehicle. 

BMW automobile vehicle service. 

Table 4.40: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 
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As depicted in table 4.40, LSI has been applied using 4 factors, i.e. A4 is used to 

approximate the original 7×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 3 documents D6, D7 and D8 have been returned. 

The LSI approach has missed 1 document D9 which is also relevant to the query in meaning 

(i.e. synonyms). 

3. A6 Approximation (i.e. 6D-Representation) 

Query term: “car” 

Query Vector: 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

 

Query Vector Coordinates: 

-0.0589  0.0000 -0.3688  0.0000  0.0000  0.4403 

 

Output Generated 

For the query “car”, following result is obtained using the data set mentioned in Table 4.26 

is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0 No 

D2 0 No 

D3 0 No 

D4 0 No 

D5 0 No 

D6 -0.624 Yes but not taken 

D7 0.8819 Yes 

D8 0.6235 Yes 

D9 0.0001 * Yes but not taken 

Table 4.41: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.41 and non-ranked documents are not presented. 
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D7 

D8 

 

Car vehicle. 

Car and car automobile center. 

Table 4.42: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in Table 4.42, LSI has been applied using 6 factors, i.e. A6 is used to 

approximate the original 7×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 2 documents D7 and D8 have been returned. The 

LSI approach has missed 2 documents D6 and D9 which are also relevant to the query in 

meaning (i.e. synonyms). Here, * sign indicates that though D9 has positive value but it is 

almost equal to zero. So D9 is ignored. 

Comparison Table 

Table 4.43 lists the LSI-ranked documents with different numbers of factors (k). The 

documents presented below satisfy a cosine threshold of taking all those values which are 

positive only. The table below clearly demonstrates that its value associated with returned 

documents can significantly vary with changes in the number of factors k. 

Number of Factors. 

K = 2 K = 4 K = 6 

D6 D8 D7 

D7 D7 D8 

D8 D6  

D9   

Table 4.43: Returned Documents Based on Different Numbers of LSI Factors 

 From the above table, it can be concluded that k =2 is the best approximation for the given 

query term “car”. 
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4.2.4 Demonstration of Polysemys Test 

List of Input Documents: 

Most words have more than one distinct meaning. These words are known as 

polysemy words. From table 4.44, the word “rock” means rock marble or rock music. The 

two documents D1 and D3 have used “rock” as two different meanings. Also document D4 

gives the meaning of rock as rock music though it doesn’t contain word rock. 

 Again, the word “bank” may be bank finance institute or river bank (i.e D6 and 

D8). So the word “bank” also holds the property of polysemy. Also document D9 gives the 

meaning of bank though it doesn’t contain word bank. This study has been trying to focus 

whether both the models under study would be successful to retrieve the relevant documents 

when the case is about the polysemy.  

The present study has taken nine documents of two distinct groups. The first group 

i.e. first five documents is related to the polysemy word “rock” and the second group i.e. last 

four documents is related to the polysemy word “bank”. 

Doc ID 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

Input Documents 

The rock marble. 

The rock potato. 

The rock music. 

Type of loud modern music with music guitars and music drums. 

The rock music, marble and potato. 

The river bank. 

Short river or long river and tuition institute. 

The bank finance institute. 

Finance institute or sides of a river. 

Table 4.44: List of Input Documents with Underlined Keywords 
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Indexing is done to these input documents as described in section 3.1 and all the 

underlined words in Table 4.44 denote keywords which are used as referents to the 

documents. Also for simplicity, simple term weighting i.e. term-frequency (tfi) is used in this 

experiment. 

Experiment: 4 

 

Applying VSM 

The term-document matrix with simple term- frequency (tfi) weighting is presented below for 

the input data set mentioned in Table 4.44 

Terms Q D1 D2 D3 D4 D5 D6 D7 D8 D9 

rock 1 1 1 1 0 1 0 0 0 0 

marble 0 1 0 0 0 1 0 0 0 0 

potato 0 0 1 0 0 1 0 0 0 0 

music 0 0 0 1 3 1 0 0 0 0 

bank 0 0 0 0 0 0 1 0 1 0 

river 0 0 0 0 0 0 1 2 0 1 

institute 0 0 0 0 0 0 0 1 1 1 

finance 0 0 0 0 0 0 0 0 1 1 

Table 4.45: Term-Document Matrix and Term Weighting ( tfi ) 

Query term: “rock” 

Query vector coordinates:  

1 0 0 0 0 0 0 0   

Output Generated 

For the query “rock”, following output result is obtained using the input data set 

mentioned in Table 4.44 is presented below.  

Doc. Id Cosine Scores Relevancy 

D1 0.7071 Yes 

D2 0.7071 No 

D3 0.7071 Yes 

D4 0 Not Retrieved 

D5 0.5 No 
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D6 0 Not Retrieved 

D7 0 Not Retrieved  

D8 0 Not Retrieved 

D9 0 Not Retrieved 

Table 4.46: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.46 and non-ranked documents are not presented. 

D1 

D2 

D3 

D5 

 

The rock marble. 

The rock potato. 

The rock music. 

The rock music, marble and potato. 

 

Table 4.47: Ranked Result of a Query where Non-ranked Documents are Not Displayed 

 

Applying LSI Model 

At×d = Ut×nSn×n(Vn×d)
T 

Singular Value Decomposition ( SVD ) 

Input Matrix A = 

Terms D1 D2 D3 D4 D5 D6 D7 D8 D9 

rock 1 1 1 0 1 0 0 0 0 

marble 1 0 0 0 1 0 0 0 0 

Potato 0 1 0 0 1 0 0 0 0 

music 0 0 1 3 1 0 0 0 0 

bank 0 0 0 0 0 1 0 1 0 

river 0 0 0 0 0 1 2 0 1 

institute 0 0 0 0 0 0 1 1 1 

finance 0 0 0 0 0 0 0 1 1 
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Matrix U = 

 0.3129  0.0000 -0.6930  0.0000  0.0000  0.0000 -0.6495  0.0000 

 0.1706  0.0000 -0.4267  0.0000  0.0000 -0.7071  0.5375  0.0000 

 0.1706  0.0000 -0.4267  0.0000  0.0000  0.7071  0.5375  0.0000 

 0.9186  0.0000  0.3945  0.0000  0.0000  0.0000  0.0216  0.0000 

 0.0000  0.2330  0.0000  0.4451  0.8556  0.0000  0.0000 -0.1248 

 0.0000  0.7557  0.0000 -0.5851  0.1366  0.0000  0.0000  0.2607 

 0.0000  0.5329  0.0000  0.2884 -0.3958  0.0000  0.0000 -0.6901 

 0.0000  0.3011  0.0000  0.6135 -0.3044  0.0000  0.0000  0.6635 

 

Matrix S = 

3.4717 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 2.9702 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 2.3074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 1.6468 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 1.1581 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7895 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3531 0.0000 

 

Matrix V
T
 = 

0.1393  0.1393  0.3547  0.7938  0.4530  0.0000  0.0000  0.0000  0.0000 

 0.0000  0.0000  0.0000  0.0000  0.0000  0.3329  0.6883  0.3592  0.5352 

-0.4853 -0.4853 -0.1294  0.5130 -0.4992  0.0000  0.0000  0.0000  0.0000 

 0.0000  0.0000  0.0000  0.0000  0.0000 -0.0850 -0.5354  0.8180  0.1924 

 0.0000  0.0000  0.0000  0.0000  0.0000  0.8567 -0.1059  0.1342 -0.4867 

-0.7071  0.7071  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

-0.1419 -0.1419 -0.7953  0.0820  0.5662  0.0000  0.0000  0.0000  0.0000 

 0.0000  0.0000  0.0000  0.0000  0.0000  0.3848 -0.4779 -0.4288  0.6631 

 0.0000  0.0000 -0.0161  0.0441 -0.0044  0.0122  0.0859 -0.1780  0.1780 

 

1. A2 Approximation (i.e. 2D-Representation) 

Query term: “rock” 

Query Vector: 

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Query Vector Coordinates: 

0.0901 0.0000 

 

Output Generated 

For the query “rock”, following result is obtained using the data set mentioned in Table 4.44 

is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 1 Yes 

D2 1 No 

D3 1 Yes 

D4 1 Yes 

D5 1 No 

D6 0 No 

D7 0 No 

D8 0 No 

D9 0 No 

Table 4.48: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.48 and non-ranked documents are not presented. 

 

D1 

D2 

D3 

D4 

D5 

 

The rock marble. 

The rock potato.  

The rock music. 

Type of loud modern music with music guitars and music drums. 

The rock music, marble and potato. 

 

Table 4.49: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 
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Figure 4.5: Documents Projected into 2D Semantic Space 

 

Analysis of the Experiment Result 

Query term: “rock” 

From Table 4.47, When VSM has been applied; it has returned documents D1, D2, 

D3 and D5 since they share “rock” term with the query. It has missed document D4 which is 

also relevant to the query in polysemous meaning. 

As depicted in table 4.49, LSI has been applied using 2 factors, i.e. A2 is used to 

approximate the original 8×9 term-document matrix A. When only positive values are 

considered (so as to compare with VSM ),  then 5 documents have been returned from D1 to 

D5. But out of these, only D1, D3 and D4 are relevant which shows true polysemy meaning 

to the query. But documents D2 and D5 are irrelevant to the query in polysemy sense though 

posses the well cosine scores. Hence, it can be concluded that LSI approach does not work 

well for the polysemy or partial works for polysemy.  
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As discussed earlier in section 2.3 (3) that choosing the number of dimensions (k) for 

Ak is an interesting problem and affects the performance of LSI, the present study has made 

various test on different number of k factors for the same query (i.e. “rock” ). The choosing 

of different number of k factors and their result are presented below. 

2. A4 Approximation (i.e. 4D-Representation) 

Query term: “rock” 

Query Vector: 

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0901  0.0000 -0.3003  0.0000 

 

Output Generated 

For the query “rock”, following result is obtained using the data set mentioned in Table 4.44 

is presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0.9999 Yes 

D2 0.9999 No 

D3 0.5982 Yes 

D4 -0.279 Yes but not taken 

D5 0.9024 No 

D6 0 No 

D7 0 No 

D8 0 No 

D9 0 No 

Table 4.50: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.50 and non-ranked documents are not presented. 
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D1 

D2 

D5 

D3 

The rock marble. 

The rock potato. 

The rock music, marble and potato. 

The rock music. 

 

Table 4.51: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in table 4.51, LSI has been applied using 4 factors, i.e. A4 is used to 

approximate the original 8×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 4 documents D1, D2, D5, and D3 have been 

returned. Out of these, only D1 and D3 are relevant which shows true polysemy meaning to 

the query. But documents D2 and D5 are irrelevant to the query in polysemy sense though 

posses the well cosine scores. Also it has missed document D4 which shows polysemy 

meaning. Hence, it can be concluded that LSI approach does not work well for the polysemy 

or partial works for polysemy.  

 

.3. A6 Approximation (i.e. 6D-Representation) 

Query term: “rock” 

Query Vector 

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0901  0.0000 -0.3003  0.0000  0.0000  0.0000 

Output Generated 

For the query “rock”, following result is obtained using the data set mentioned in 4.44 is 

presented below. 
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Doc. Id Cosine Scores Relevancy 

D1 0.5811 Yes 

D2 0.5811 No 

D3 0.5982 Yes 

D4 -0.279 Yes but not taken 

D5 0.9024 No 

D6 0 No 

D7 0 No 

D8 0 No 

D9 0 No 

Table 4.52: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.52 and non-ranked documents are not presented. 

 

D5 

D3 

D1 

D2 

 

 

The rock music, marble and potato. 

The rock music. 

The rock marble. 

The rock potato. 

 

Table 4.53: Ranked Result of a Query where Non-ranked Documents are Not Displayed 

As depicted in table 4.53, LSI has been applied using 6 factors, i.e. A6 is used to 

approximate the original 8×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 4 documents D1, D2, D3 and D5 have been 

returned. Out of these, only D1 and D3 are relevant which shows true polysemy meaning to 

the query. But other documents D2 and D5 are irrelevant to the query in polysemy sense 

though posses the well cosine scores. Also it has missed document D4 which shows 

polysemy meaning. Hence, it can be concluded that LSI approach does not work well for the 

polysemy or partial works for polysemy.  
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Comparison Table 

Table 4.50, lists the LSI-ranked documents with different numbers of factors (k). The 

documents represented below satisfy a cosine threshold of taking all those values which are 

positive only. The table below clearly demonstrates that its value associated with returned 

documents can significantly vary with changes in the number of factors k. 

Number of Factors. 

K = 2 K = 4 K = 6 

D1 D1 D5 

D2 D2 D3 

D3 D5 D1 

D4 D3 D2 

D5   

Table 4.54: Returned Documents Based on Different Numbers of LSI Factors. 

From the above table, it can be concluded that non of the above approximation is best but 

while considering, k = 2 is quite better approximation for the given query term “rock”. 

Therefore, LSI model only partially supports for the polysemy can be concluded from 

observing the above table. 

1. A2 Approximation (i.e. 2D-Representation) 

Applying LSI 

Query term: “bank” 

Query Vector: 

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0000 0.0785 

 

Output Generated 

For the query “bank”, following result is obtained using the data set mentioned in 4.44 is 

presented below. 
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Doc. Id Cosine Scores Relevancy 

D1 0 No 

D2 0 No 

D3 0 No 

D4 0 No 

D5 0 No 

D6 1 Yes 

D7 1 No 

D8 1 Yes 

D9 1 Yes 

Table 4.55: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.55 and non-ranked documents are not presented. 

 

D6 

D7 

D8 

D9 

 

The river bank. 

Short river or long river and tuition institute. 

The bank finance institute. 

Finance institute or sides of a river. 

 

Table 4.56: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

 

Figure 4.6: Documents Projected into 2D Semantic Space 
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Analysis of the Experiment Result 

Query term: “bank” 

From experiment 1 and experiment 2, it is clear that VSM would return documents 

only when documents share one or more terms with the query given. So, it is obvious that 

when applying VSM for this query. It would have returned documents D6 and D8 because 

they share the term “bank” with the query and missed D7 and D9 which are also relevant in 

meaning (i.e polysemy) 

As depicted in table 4.56, LSI has been applied using 2 factors, i.e. A2 is used to 

approximate the original 8×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 4 documents from D6 to D9 have been returned. 

But out of these, only D6, D8 and D9 are relevant which shows true polysemy meaning to 

the query. But other document D7 is irrelevant to the query in polysemy sense though posses 

the well cosine scores. Hence, it can be concluded that LSI approach does not work well for 

the polysemy or partial works for polysemy.  

As discussed earlier in section 2.3 (3) that choosing the number of dimensions (k) for 

Ak is an interesting problem and affects the performance of LSI, the present study has made 

various test on different number of k factors for the same query (i.e. “bank” ). The choosing 

of different number of k factors and their result are presented below. 

2. A4 Approximation (i.e. 4D-Representation) 

Query term: “bank” 

Query Vector: 

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0000 0.0785 0.0000 0.2703 
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Output Generated 

For the query “bank”, following result is obtained using the data set mentioned in 4.42 is 

presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0 No 

D2 0 No 

D3 0 No 

D4 0 No 

D5 0 No 

D6 0.0326 Yes 

D7 -0.369 No 

D8 0.9914 Yes 

D9 0.5873 Yes 

Table 4.57: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.57 and non-ranked documents are not presented. 

 

D8 

D9 

D6 

 

 

The bank finance institute. 

Finance institute or sides of a river. 

The river bank. 

 

Table 4.58: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 

As depicted in table 4.58, LSI has been applied using 4 factors, i.e. A4 is used to 

approximate the original 8×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 3 documents D6, D8 and D9 have been returned. 

All of them are relevant which shows true polysemy meaning to the query. So, A4 is the best 

approximation for this query. 
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3. A6 Approximation (i.e. 6D-Representation) 

Query term: “bank” 

Query Vector: 

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

 

Query Vector Coordinates: 

0.0000 0.0785 0.0000 0.2703 0.7388 0.0000 

 

Output Generated 

For the query “bank”, following result is obtained using the data set mentioned in 4.44 is 

presented below. 

Doc. Id Cosine Scores Relevancy 

D1 0 No 

D2 0 No 

D3 0 No 

D4 0 No 

D5 0 No 

D6 0.8717 Yes 

D7 -0.243 No 

D8 0.4879 Yes 

D9 -0.449 Yes but not taken 

Table 4.59: Computing Cosine Scores and Marking Document Relevancy 

Final retrieved documents with sorted are presented below according to the cosine scores 

ordered in descending order from Table 4.59 and non-ranked documents are not presented 

 

D6 

D8 

 

 

The river bank. 

The bank finance institute. 

 

Table 4.60: Ranked Result of a Query where Non-Ranked Documents are Not Displayed 
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As depicted in table 4.60, LSI has been applied using 6 factors, i.e. A6 is used to 

approximate the original 8×9 term-document matrix A. When only positive cosine values are 

considered (so as to compare with VSM ), 2 documents D6 and D8 have been returned which 

are relevant and shows true polysemy meaning to the query. Also it has missed document D9 

which is also relevant in polysemous meaning.  

Comparison Table 

Table 4.61 lists the LSI-ranked documents with different numbers of factors (k). The 

documents represented below satisfy a cosine threshold of taking all those values which are 

positive only. The table below clearly demonstrates that its value associated with returned 

documents can significantly vary with changes in the number of factors k. 

Number of Factors. 

K = 2 K = 4 K = 6 

D6 D8 D6 

D7 D9 D8 

D8 D6  

D9   

Table 4.61: Returned Documents Based on Different Numbers of LSI Factors. 

From the above table, it can be concluded that k=4 is best approximation for the given query 

term “bank”.  

4.3 Precision and Recall Calculation & Analysis 

This study has calculated precision/recall and analyzed for both VSM and LSI model 

for different queries.  

Since the result from the above analysis (i.e. section 4.2) shows that A2 is the best 

approximation for most of the queries for LSI model, precision and recall is calculated for it.  

For VSM: 

Query terms: “human computer tree graph” 
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Doc. Id. Cosine Values Relevancy Precision Recall 

1 0.6593 Yes 1/1 1/7 

7 0.5898 Yes 2/2 2/7 

8 0.4238 Yes 3/3 3/7 

6 0.4171 Yes 4/4 4/7 

4 0.2808 Yes 5/5 5/7 

2 0.2537 Yes 6/6 6/7 

9 0.1914 Yes 7/7 7/7 

3 0 No   

5 0 No   

Table 4.3.1: Precision Recall  

 

Figure 4.3.1: Graph for Precision Recall 

For LSI Model:  

Query terms : “human computer tree graph” (at k =2) 

Doc. Id Cosine Scores Relevancy Precision Recall 

D1 0.8116 Yes 1/1 1/9 

D2 0.7892 Yes 2/2 2.9 

D3 0.7804 Yes 3/3 3/9 

D4 0.6686 Yes 4/4 4/9 

D5 0.6155 Yes 5/5 5/9 

D9 0.2965 Yes 6/6 6/9 

D8 0.0888 Yes 7/7 7/9 

D7 0.0675 Yes 8/8 8/9 

D6 0.0167 Yes 9/9 9/9 

Table 4.3.2: Precision Recall  
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Figure 4.3.2: Graph for Precision Recall 

The Figures 4.3.1 and 4.3.2 depict the precision/recall for the query “human 

computer tree graph” for VSM and LSI respectively. The graphs show that the precision is 

100% at each level of recall which implies that there are no non-relevant documents. At the 

end, at 100% recall it has 100% precision which is the best state of precision/recall but it 

happens only in few cases. From these graphs both models seem well but carefully observing 

the graphs of these two models, LSI has the slightly higher recall than VSM. 

For VSM: 

Query terms: “human computer interaction” 

Doc. Id Cosine Scores Relevancy Precision Recall 

D1 0.8165 Yes 1/1 1/3 

D4 0.3478 Yes 2/2 2/3 

D2 0.3141 Yes 3/3 3/3 

D3 0 No   

D5 0 No   

D6 0 No   

D7 0 No   

D8 0 No   

D9 0 No   

Table 4.3.3: Precision Recall  
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Figure 4.3.3: Graph for Precision Recall 

For LSI Model: 

Query terms: “human computer interaction” (at k=2) 

Doc. Id Cosine Scores Relevancy Precision Recall 

D1 0.986 Yes 1/1 1/5 

D3 0.976 Yes 2/2 2/5 

D4 0.9278 Yes 3/3 3/5 

D2 0.438 Yes 4/4 4/5 

D5 0.2054 Yes 5/5 5/5 

D9 -0.154 Not taken   

D8 -0.359 Not taken   

D7 -0.379 Not taken   

D6 -0.425 Not taken   

Table 4.3.4: Precision Recall  
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Figure 4.3.4: Graph for Precision Recall 

The Figures 4.3.3 and 4.3.4 depict the precision/recall for the query “human 

computer interaction” for VSM and LSI respectively. The graphs show that the precision is 

100% at each level of recall which implies that there are no non-relevant documents. At the 

end, at 100% recall it has 100% precision which is the best state of precision/recall but it 

happens only in few cases. From these graphs both models seem well but carefully observing 

the graphs of these two models, LSI has the slightly higher recall than VSM. 

For VSM:   

Query term: “humor” 

Doc. Id Cosine Values Relevancy Precision Recall 

D5 1 Yes 1/1 1/2 

D1 0.8944 Yes 2/2 2/2 

D2 0 No   

D3 0 No   

D4 0 No   

D6 0 No   

D7 0 No   

D8 0 No   

D9 0 No   

Table 4.3.5: Precision Recall  
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Figure 4.3.5: Graph for Precision Recall 

For LSI Model: 

Query term: “humor” (at k=2)  

Doc. Id Cosine Scores Relevancy Precision Recall 

D1 1 Yes 1/1 1/5 

D2 1 Yes 2/2 2/5 

D3 1 Yes 3/3 3/5 

D4 1 Yes 4/4 4/5 

D5 1 Yes 5/5 5/5 

D6 0 No   

D7 0 No   

D8 0 No   

D9 0 No   

Table 4.3.6: Precision Recall  
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Figure 4.3.6: Graph for Precision Recall 

The Figures 4.3.5 and 4.3.6 depict the precision/recall for the query “humor” for 

VSM and LSI respectively. The graphs show that the precision is 100% at each level of recall 

which implies that there are no non-relevant documents. At the end, at 100% recall it has 

100% precision which is the best state of precision/recall but it happens only in few cases. 

From these graphs both models seem well but carefully observing the two graphs it can 

easily be concluded that the recall is reduced for VSM than LSI for synonyms. 

Similarly, precision/recall graph would be obtained for the query term: “car” for both 

models. 

For VSM: 

Query term: “rock” 

Doc. Id Cosine Values Relevancy Precision Recall 

D1 0.7071 Yes 1/1 1/2 

D2 0.7071 No 1/2 1/2 

D3 0.7071 Yes 2/3 2/2 

D5 0.5 No 2/4 2/2 

D4 0 No   

D6 0 No   

D7 0 No   

D8 0 No   

D9 0 No   

Table 4.3.7: Precision Recall  
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Figure 4.3.7: Graph for Precision Recall 

 

For LSI Model: 

Query term: “rock” (at k = 2) 

Doc. Id Cosine Scores Relevancy Precision Recall 

D1 1 Yes 1/1 1/3 

D2 1 No 1/2 1/3 

D3 1 Yes 2/3 2/3 

D4 1 Yes 3/4 3/3 

D5 1 No 3/5 3/3  

D6 0 No   

D7 0 No   

D8 0 No   

D9 0 No   

Table 4.3.8: Precision Recall  
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Figure 4.3.8: Graph for Precision Recall 

The Figures 4.3.7 and 4.3.8 depict the precision/recall for the query “rock” for VSM 

and LSI respectively. The graphs show that at 50% recall, there is a 100% precision then 

precision decrease but recall remains constant. At 100% recall, there is 66.67% precision but 

precision % begins to fall and reaches to 50% while recall remains constant in VSM. In LSI, 

similar case can be seen but at last precision falls to 60% while recall remains constant at 

100%. But carefully observing the two graphs it can easily be concluded that the precision is 

reduced for VSM than LSI for polysemy. 

Similarly, precision/recall graph would be obtained for the query term: “bank” for both 

models. 
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CHAPTER-V 

SUMMARY, CONCLUSIONS & FUTURE 

RECOMMENDATION 

 

This chapter focuses on summarizing the study held with the researcher’s conclusion. 

The next attempt in this chapter will be made for the future recommendation on the basis of 

the whole study. For this whole purpose, the chapter is sub divided into Summary, 

Conclusions and Future Recommendation as following. 

5.1 Summary 

Beginning with defining of IR, IR is the process of finding information materials of 

an unstructured nature that satisfies an information need from the large collection of 

documents. Supporting with this definition, IR is not only the process of retrieving 

information but at the same time the relevancy of the information that satisfies the user’s 

need is equally concerned and also the main problem of IR.  

So, for the purpose of relevant information retrieval that satisfies the user’s need, 

several models have been developed. Some are based on set theory concept, some are based 

on linear algebra concept and some are based on probability concept. All models have their 

own pros and cons. 

The present study has studied the comparative study of two information retrieval 

models viz. VSM and LSI Model. These models are based on linear algebra concept and 

have their own advantages and limitations. Those advantages and limitations have been 

analyzed by implementing these two models and experimenting with several examples. At 

last, precision/recall have been calculated and analyzed to measure the effectiveness of the 

two models.  
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5.2 Conclusions 

From the above study, it can be concluded that VSM would return documents only 

when documents share one or more terms with the query term/s. But LSI creates concepts 

between query term/s and documents and returned the documents even there is no sharing of 

term/s with the query term/s. LSI supports well for the synonyms but partially supports for 

the polysemy but VSM supports only when documents share one or more terms with the 

query term/s.  

When effectiveness of these two models is considered, it can be concluded that recall 

reduces for synonyms and precision reduces for polysemy when applying the VSM which are 

the benefits of LSI.  

 

Therefore, from comparative study of these two models, it can be concluded that 

these two models have their own importance in the information retrieval field but LSI 

overcomes the problems of VSM and it is better than VSM when observing in overall 

performance.  

 

5.3 Future Recommendation 

This study has concluded that though these two models under study have very vital 

role in information retrieval field. But LSI seems substantial performance gains over VSM. It 

well supports for synonyms but only partially supports for the polysemy. This study further 

recommends for Probabilistic Latent Semantic Indexing (PLSI) Model which is evolved from 

LSI and adding a sounder probabilistic model. 

PLSI [21] is a novel approach to automated document indexing and has a solid 

statistical foundation, since it is based on the likelihood principle and defines a proper 

generative model of the data and directly minimizes word perplexity. It is a better model for 

capturing polysemy and synonymy than Latent Semantic Indexing (LSI). It has substantial 

performance gains over direct term matching methods as well as over LSI. The benefits of 

PLSI which achieves significant gains in precision over both, standard term matching and 

LSI. 
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Coding for VSM  

long int nout=100;       /* print informations every nout tokens processed */ 

long int nsave=5000;     /* save every nsave tokens processed */ 

int nocase=1;            

 /* ignore case */ 

int precision=2;         

 /* no. of digits for printing matrix */ 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

#define BUFLEN 4096 

#define WLEN 30 

double totall=0.; 

struct st_node { 

  char wrd[WLEN]; 

long int  lbl; 

  int tf; /* term freq (n occurrences in a doc) */ 

int df; /* document freq (n docs with occurrence) */ 

 int cf; /* collection freq (total occurrences in coll) */ 

  

 struct st_node *l, *r; 

int isfirst; 

}; 

long int ucnt, rdcnt, wcnt; 

long int ix; 
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double entr; 

FILE *ftp; 

char fln[BUFLEN]; 

char fdn[]="dict.a";  

FILE *fdp; 

char fmn[]="tdm.dat";  

FILE *fmp; 

char w[WLEN]; 

char **dcv; 

long int dc=1; 

long int dcn=0; 

double *v; 

struct st_node * newnode(void); 

struct st_node * deltree(struct st_node *); 

void printtree(FILE *,struct st_node *); 

void addcode(const char *, struct st_node **); 

long int encode(const char *, struct st_node **); 

double entropy(struct st_node*); 

long int words(struct st_node*); 

 

void docstart(struct st_node*); 

char** getdocnames(char*fln); 

void dict2vect(struct st_node *,double *); 

double *vect(int); 

char *string(int); 
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main(int argc, char *argv[]) 

{ 

  struct st_node *dicttree=NULL; 

long int code; 

/* start command line */ 

if (argc>2) 

    fprintf(stderr,"WARNING - extra strings on command line\n"); 

 else if (argc==1) 

    fprintf(stderr,"ERROR - no filename given on command line\n"),exit(-3); 

 strcpy(fln,argv[1]); 

/* end command line */ 

/* start initializing algorithm */ 

 rdcnt=0; 

  ucnt=0; 

  dcv=getdocnames(fln); 

/* end initializing algorithm */ 

 for(dc=1;dc<=dcn;dc++) { 

/* start read file into binary tree */ 

    docstart(dicttree); 

  

   if ((ftp=fopen(dcv[dc],"r"))==NULL) 

      fprintf(stderr,"ERROR #1 - system reports:\n"),perror(dcv[dc]), exit(-4); 

    while (getword(&w,ftp)) { 

      rdcnt++; 

      addcode(w,&dicttree); 
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   if (rdcnt%nout==0) 

 { 

        fprintf(stderr,"\r        %12li read - %12li unique      MEM %.1lf KB ", 

          rdcnt,ucnt,totall); 

/*DEBUG*/ 

fprintf(stderr,""); 

    } 

      if (rdcnt%nsave==0) { 

        fprintf(stderr,"\r(saving...)"); 

      if ((fdp=fopen(fdn,"w"))==NULL) 

          fprintf(stderr,"ERROR #2 - system reports:\n"),perror(fdn), exit(-4); 

   printtree(fdp,dicttree); 

        fclose(fdp); 

  

     } 

     

} 

    

 fclose(ftp); 

    

 

 fprintf(stderr,"\n"); 

/* end read file into binary tree */ 

} 

/* start write tree on file */ 
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if (rdcnt<=0) 

    fprintf(stderr,"ERROR - no words found\n"), exit(-5); 

 else 

    fprintf(stderr,"\rTotal %li tokens read - %li unique words\n",rdcnt,ucnt); 

 fprintf(stderr,"Total memory allocated:  %.0lf kilobytes\n",totall); 

 if ((fdp=fopen(fdn,"w"))==NULL) 

    fprintf(stderr,"ERROR #3 - system reports:\n"),perror(fdn), exit(-4); 

 wcnt=words(dicttree); 

 entr=entropy(dicttree); 

  fprintf(fdp,"STORED   %10li\n",wcnt); 

 fprintf(fdp,"UNIQUE   %10li\n",ucnt); 

  fprintf(fdp,"ENTROPY  %.2lf BITS \n",entr); 

  fprintf(fdp,"Term-------------------------- -----Label ---df ---cf\n"); 

printtree(fdp,dicttree); 

 fclose(fdp); 

/* end write tree on file */ 

/* start initialize term-document matrix file */ 

  v=vect(ucnt); 

 fprintf(stderr,"\nAllocated document vector - Total memory now %.0lf KB\n\n", 

    totall); 

  if ((fmp=fopen(fmn,"w"))==NULL) 

    fprintf(stderr,"ERROR #5 - system reports:\n"), perror(fmn), exit(-4); 

  fprintf(stderr,"\nPrinting term-document matrix..."); 

  fprintf(fmp,"%li\n", dcn); 

  fprintf(fmp,"%li\n", ucnt); 
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/* end initialize term-document matrix file */ 

 for(dc=1;dc<=dcn;dc++) { 

/* start convert file into document vector */ 

    docstart(dicttree); 

   fprintf(stderr,"\rReading document %6i...",dc); 

  if ((ftp=fopen(dcv[dc],"r"))==NULL) 

      fprintf(stderr,"ERROR #4 - system reports:\n"),perror(dcv[dc]), exit(-4); 

    wcnt=0; 

    while (getword(&w,ftp)) 

      encode(w,&dicttree),wcnt++; 

   fclose(ftp); 

    fprintf(stderr,"converting to vector..."); 

    ix=1; 

    dict2vect(dicttree,v); 

  fprintf(stderr,"done\n"); 

/* end convert file into document vector */ 

/* start print vector into term-document matrix */ 

  for(ix=1;ix<=ucnt;ix++) { 

      fprintf(fmp,"%.*lg%c",precision,v[ix],ix==ucnt?'\n':' '); 

  

   } 

    fflush(fmp); 

/* end print vector into term-document matrix */ 

 } 

  fclose(fmp); 
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  fprintf(stderr,"...done\n"); 

  deltree(dicttree); 

  fprintf(stderr,"END OF RUN\n"); 

} 

 

void docstart(struct st_node *t) 

{ 

  if (t==NULL) return; 

 docstart(t->l); 

  t->tf=0; 

  t->isfirst=1; 

  docstart(t->r); 

} 

 

void dict2vect(struct st_node *t, double *v) 

{ 

  if (t==NULL) return; 

 dict2vect(t->l,v); 

 v[ix++]= 

    0?0.:(double)t->tf*log((double)dcn/(double)t->df)/(double)wcnt; 

  dict2vect(t->r,v); 

 

} 

 

struct st_node * newnode(void) 



125 

 

{ 

  struct st_node *tmp; 

 const int memsize=1;//100; 

  static int imem=0; 

  static struct st_node *mem=NULL; 

  if (imem==0) { 

    mem=(struct st_node *)malloc(memsize*sizeof(struct st_node)); 

  imem=memsize; 

    if (mem==NULL) 

      fprintf(stderr,"ERROR - memory allocation\n"),exit(-1); 

   totall+=memsize*(double)sizeof(struct st_node)/1000.;  

 } 

  tmp=mem+(--imem); 

  tmp->l=tmp->r=NULL; 

  ucnt++; 

  tmp->lbl=ucnt; 

  return tmp; 

 

} 

 

struct st_node *deltree(struct st_node *t) 

{ 

  if (t->l!=NULL) deltree(t->l); 

  if (t->r!=NULL) deltree(t->r); 

free(t); 
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  ucnt--; 

 return NULL; 

} 

 

void addcode(const char *s, struct st_node **t) 

{ 

  int cmp; 

  if ((*t)==NULL) { 

    *t=newnode(); 

    strcpy((*t)->wrd,s); 

    (*t)->cf=1; 

    (*t)->df=1; 

    return; 

  } 

  cmp=strcmp(s,(*t)->wrd); 

 if (cmp==0) { 

    (*t)->cf++; 

    if((*t)->isfirst){ 

      (*t)->df++; 

      (*t)->isfirst=0; 

    } 

   

  return; 

  

 } 
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  if (cmp>0) 

    return addcode(s,&((*t)->r)); 

  

 if (cmp<0) 

    return addcode(s,&((*t)->l)); 

 

} 

 

long int encode(const char *s, struct st_node **t) 

{ 

  int cmp; 

 

 

 if ((*t)==NULL) { 

    fprintf(stderr,"ERROR: Trying to encode but dict tree is empty\n"); 

   

  exit(-10); 

  } 

  cmp=strcmp(s,(*t)->wrd); 

  if (cmp==0) { 

    (*t)->tf++; 

    return (*t)->lbl; 

 

  } 

  if (cmp>0) 
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    return encode(s,&((*t)->r)); 

  

 if (cmp<0) 

    return encode(s,&((*t)->l)); 

} 

 

void printtree(FILE *fp, struct st_node *t) 

 

{ 

  if (t==NULL) 

   return; 

  

 else { 

    printtree(fdp,t->l); 

   fprintf(fp,"%-30s %10li %5i %5i\n",t->wrd, t->lbl, t->df, t->cf); 

   printtree(fdp,t->r); 

  

 } 

} 

 

int getword(char *wbuf,FILE *fp) 

{ 

  char c; 

  int i; 

/* start leggi token */ 
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START: 

  i=0; 

  do { 

    c=fgetc(fp); 

  } while(!isalpha(c) && !feof(fp)); 

   

if (feof(fp)) 

    return 0; 

  

 do { 

    wbuf[i++]=c; 

  if (i>BUFLEN) 

      fprintf(stderr,"ERROR: buffer overflow\n"),exit(-2); 

   c=fgetc(fp); 

  

 } while(isalpha(c) && !feof(fp)); 

  wbuf[i]='\0'; 

/* end leggi token */ 

  if(nocase)strlwr(wbuf); 

/* start stoplisting */ 

  

 if (i<=2) 

    goto START; 

/* end stoplisting */ 

/* start stemming */ 
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  stripsuffix("ing",w); 

  stripsuffix("ities",w); 

 stripsuffix("ity",w); 

  stripsuffix("ly",w); 

  stripsuffix("ed",w); 

  stripsuffix("s",w); 

 stripsuffix("e",w); 

/* end stemming */ 

 return 1; 

} 

int stripsuffix(const char *s, char *w) 

{ 

  int i,j; 

 

 

  i=strlen(w); 

  j=strlen(s); 

  while (i>0 && j>0 && w[i]==s[j]) { 

    i--, j--; 

  

 } 

  if (i>0 && j==0 && w[i]==s[j]) 

    w[i]='\0'; 

  return 1; 

} 
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long int words(struct st_node *t) 

{ 

  long int val; 

  if (t==NULL) 

    return 0.; 

  val = t->cf; 

  val=val+words(t->l); 

  val=val+words(t->r); 

  return val; 

} 

 

double entropy(struct st_node *t) 

{ 

  double val=0; 

 

  if (t==NULL) 

    return 0.; 

val=(double)(t->cf)/(double)wcnt; 

  val=-val*log2(val); 

  val=val+entropy(t->l); 

  val=val+entropy(t->r); 

  return val; 

} 

char** getdocnames(char*fln) 

{ 
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  char **dcv; 

  char nbuf[BUFLEN]; 

  FILE *flp; 

 if ((flp=fopen(fln,"r"))==NULL) 

    fprintf(stderr,"ERROR #6 - system reports:\n"), perror(fln), exit(-4); 

  if(fgets(nbuf,BUFLEN,flp)==NULL) 

 { 

    fprintf(stderr,"ERROR - While scanning the list of document names:\n"); 

   fprintf(stderr,"Document name list ended prematurely\n"); 

  exit(-9); 

 } 

  if(sscanf(nbuf,"%li",&dcn)==0)  

{ 

    fprintf(stderr,"ERROR - While scanning the list of document names:\n"); 

   fprintf(stderr,"The list should start with the number of documents\n"); 

 exit(-7); 

 } 

  if(dcn==0) { 

    fprintf(stderr,"ERROR - While scanning the list of document names:\n"); 

  fprintf(stderr,"The number of documents should be > 0\n"); 

 exit(-8); 

  } 

  dcv=(char**)malloc((1+dcn)*sizeof(char*)); 

 totall+=(double)((1+dcn)*sizeof(char*))/1000.; 

  for(dc=1;dc<=dcn;dc++)  
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{ 

    if(fgets(nbuf,BUFLEN,flp)==NULL) 

 { 

      fprintf(stderr,"ERROR - While scanning the list of document names:\n"); 

  

     fprintf(stderr,"Document name list ended prematurely\n"); 

      exit(-9); 

   } 

    dcv[dc]=string(BUFLEN); 

   totall+=(strlen(nbuf)*sizeof(char))/1000.; 

 

    if(dcv[dc]==NULL) 

      fprintf(stderr,"ERROR - Out of memory for document name list\n"),exit(-1); 

   strcpy(dcv[dc],nbuf); 

    dcv[dc][strlen(nbuf)-1]='\0'; 

 } 

  return dcv; 

} 

char *string(int len) 

{ 

  char *s; 

  s = (char *) 

      malloc((size_t)(len * sizeof(char))); 

 if(!s) 

    fprintf(stderr,"allocazione non riuscita in string()"),exit(-1); 
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else 

    totall+=(double)(len * sizeof(char))/1000.; 

  return s; 

} 

double *vect(int len) 

{ 

  double *v; 

  v = (double *) 

      malloc((size_t) ((len + 1) * sizeof(double))); 

  if(!v) 

    fprintf(stderr,"allocazione non riuscita in vect()"),exit(-1); 

  else 

    totall+=(double)((len + 1) * sizeof(double))/1000.; 

 return v; 

} 
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Coding for LSI  
 

/*  

 * svdcomp - SVD decomposition routine.  

 * Takes an mxn matrix a and decomposes it into udv, where u,v are 

 * left and right orthogonal transformation matrices, and d is a  

 * diagonal matrix of singular values. 

 * 

  

 * Input to dsvd is as follows: 

 *   a = mxn matrix to be decomposed, gets overwritten with u 

 *   m = row dimension of a 

 *   n = column dimension of a 

 *   w = returns the vector of singular values of a 

 *   v = returns the right orthogonal transformation matrix 

*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "defs_and_types.h" 

  

static double PYTHAG(double a, double b) 

{ 

    double at = fabs(a), bt = fabs(b), ct, result; 

 

    if (at > bt)       { ct = bt / at; result = at * sqrt(1.0 + ct * ct); } 

    else if (bt > 0.0) { ct = at / bt; result = bt * sqrt(1.0 + ct * ct); } 

    else result = 0.0; 

    return(result); 

} 

 

 

int dsvd(float **a, int m, int n, float *w, float **v) 

{ 

    int flag, i, its, j, jj, k, l, nm; 

    double c, f, h, s, x, y, z; 

    double anorm = 0.0, g = 0.0, scale = 0.0; 

    double *rv1; 

   

    if (m < n)  

    { 

        fprintf(stderr, "#rows must be > #cols \n"); 

        return(0); 

    } 
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    rv1 = (double *)malloc((unsigned int) n*sizeof(double)); 

 

    for (i = 0; i < n; i++)  

    { 

        /* left-hand reduction */ 

        l = i + 1; 

        rv1[i] = scale * g; 

        g = s = scale = 0.0; 

        if (i < m)  

        { 

            for (k = i; k < m; k++)  

                scale += fabs((double)a[k][i]); 

            if (scale)  

            { 

                for (k = i; k < m; k++)  

                { 

                    a[k][i] = (float)((double)a[k][i]/scale); 

                    s += ((double)a[k][i] * (double)a[k][i]); 

                } 

                f = (double)a[i][i]; 

                g = -SIGN(sqrt(s), f); 

                h = f * g - s; 

                a[i][i] = (float)(f - g); 

                if (i != n - 1)  

                { 

                    for (j = l; j < n; j++)  

                    { 

                        for (s = 0.0, k = i; k < m; k++)  

                            s += ((double)a[k][i] * (double)a[k][j]); 

                        f = s / h; 

                        for (k = i; k < m; k++)  

                            a[k][j] += (float)(f * (double)a[k][i]); 

                    } 

                } 

                for (k = i; k < m; k++)  

                    a[k][i] = (float)((double)a[k][i]*scale); 

            } 

        } 

        w[i] = (float)(scale * g); 

     

        /* right-hand reduction */ 

        g = s = scale = 0.0; 

        if (i < m && i != n - 1)  

        { 

            for (k = l; k < n; k++)  

                scale += fabs((double)a[i][k]); 
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            if (scale)  

            { 

                for (k = l; k < n; k++)  

                { 

                    a[i][k] = (float)((double)a[i][k]/scale); 

                    s += ((double)a[i][k] * (double)a[i][k]); 

                } 

                f = (double)a[i][l]; 

                g = -SIGN(sqrt(s), f); 

                h = f * g - s; 

                a[i][l] = (float)(f - g); 

                for (k = l; k < n; k++)  

                    rv1[k] = (double)a[i][k] / h; 

                if (i != m - 1)  

                { 

                    for (j = l; j < m; j++)  

                    { 

                        for (s = 0.0, k = l; k < n; k++)  

                            s += ((double)a[j][k] * (double)a[i][k]); 

                        for (k = l; k < n; k++)  

                            a[j][k] += (float)(s * rv1[k]); 

                    } 

                } 

                for (k = l; k < n; k++)  

                    a[i][k] = (float)((double)a[i][k]*scale); 

            } 

        } 

        anorm = MAX(anorm, (fabs((double)w[i]) + fabs(rv1[i]))); 

    } 

   

    /* accumulate the right-hand transformation */ 

    for (i = n - 1; i >= 0; i--)  

    { 

        if (i < n - 1)  

        { 

            if (g)  

            { 

                for (j = l; j < n; j++) 

                v[j][i] = (float)(((double)a[i][j] / (double)a[i][l]) /g)); 

                    /* double division to avoid underflow */ 

                for (j = l; j < n; j++)  

                { 

                    for (s = 0.0, k = l; k < n; k++)  

                        s += ((double)a[i][k] * (double)v[k][j]); 

                    for (k = l; k < n; k++)  

                        v[k][j] += (float)(s * (double)v[k][i]); 
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                } 

            } 

            for (j = l; j < n; j++)  

                v[i][j] = v[j][i] = 0.0; 

        } 

        v[i][i] = 1.0; 

        g = rv1[i]; 

        l = i; 

    } 

   

    /* accumulate the left-hand transformation */ 

    for (i = n - 1; i >= 0; i--)  

    { 

        l = i + 1; 

        g = (double)w[i]; 

        if (i < n - 1)  

            for (j = l; j < n; j++)  

                a[i][j] = 0.0; 

        if (g)  

        { 

            g = 1.0 / g; 

            if (i != n - 1)  

            { 

                for (j = l; j < n; j++)  

                { 

                    for (s = 0.0, k = l; k < m; k++)  

                        s += ((double)a[k][i] * (double)a[k][j]); 

                    f = (s / (double)a[i][i]) * g; 

                    for (k = i; k < m; k++)  

                        a[k][j] += (float)(f * (double)a[k][i]); 

                } 

            } 

            for (j = i; j < m; j++)  

                a[j][i] = (float)((double)a[j][i]*g); 

        } 

        else  

        { 

            for (j = i; j < m; j++)  

                a[j][i] = 0.0; 

        } 

        ++a[i][i]; 

    } 

 

    for (k = n - 1; k >= 0; k--)  

    {                             /* loop over singular values */ 

        for (its = 0; its < 30; its++)  
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        {                         /* loop over allowed iterations */ 

            flag = 1; 

            for (l = k; l >= 0; l--)  

            {                     /* test for splitting */ 

                nm = l - 1; 

                if (fabs(rv1[l]) + anorm == anorm)  

                { 

                    flag = 0; 

                    break; 

                } 

                if (fabs((double)w[nm]) + anorm == anorm)  

                    break; 

            } 

            if (flag)  

            { 

                c = 0.0; 

                s = 1.0; 

                for (i = l; i <= k; i++)  

                { 

                    f = s * rv1[i]; 

                    if (fabs(f) + anorm != anorm)  

                    { 

                        g = (double)w[i]; 

                        h = PYTHAG(f, g); 

                        w[i] = (float)h;  

                        h = 1.0 / h; 

                        c = g * h; 

                        s = (- f * h); 

                        for (j = 0; j < m; j++)  

                        { 

                            y = (double)a[j][nm]; 

                            z = (double)a[j][i]; 

                            a[j][nm] = (float)(y * c + z * s); 

                            a[j][i] = (float)(z * c - y * s); 

                        } 

                    } 

                } 

            } 

            z = (double)w[k]; 

            if (l == k)  

            {                  /* convergence */ 

                if (z < 0.0)  

                {              /* make singular value nonnegative */ 

                    w[k] = (float)(-z); 

                    for (j = 0; j < n; j++)  

                        v[j][k] = (-v[j][k]); 
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                } 

                break; 

            } 

            if (its >= 30) { 

                free((void*) rv1); 

                fprintf(stderr,"No convergence after 30,000! iterations \n"); 

                return(0); 

            } 

     

            /* shift from bottom 2 x 2 minor */ 

            x = (double)w[l]; 

            nm = k - 1; 

            y = (double)w[nm]; 

            g = rv1[nm]; 

            h = rv1[k]; 

            f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y); 

            g = PYTHAG(f, 1.0); 

            f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x; 

           

            /* next QR transformation */ 

            c = s = 1.0; 

            for (j = l; j <= nm; j++)  

            { 

                i = j + 1; 

                g = rv1[i]; 

                y = (double)w[i]; 

                h = s * g; 

                g = c * g; 

                z = PYTHAG(f, h); 

                rv1[j] = z; 

                c = f / z; 

                s = h / z; 

                f = x * c + g * s; 

                g = g * c - x * s; 

                h = y * s; 

                y = y * c; 

                for (jj = 0; jj < n; jj++)  

                { 

                    x = (double)v[jj][j]; 

                    z = (double)v[jj][i]; 

                    v[jj][j] = (float)(x * c + z * s); 

                    v[jj][i] = (float)(z * c - x * s); 

                } 

                z = PYTHAG(f, h); 

                w[j] = (float)z; 

                if (z)  
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                { 

                    z = 1.0 / z; 

                    c = f * z; 

                    s = h * z; 

                } 

                f = (c * g) + (s * y); 

                x = (c * y) - (s * g); 

                for (jj = 0; jj < m; jj++)  

                { 

                    y = (double)a[jj][j]; 

                    z = (double)a[jj][i]; 

                    a[jj][j] = (float)(y * c + z * s); 

                    a[jj][i] = (float)(z * c - y * s); 

                } 

            } 

            rv1[l] = 0.0; 

            rv1[k] = f; 

            w[k] = (float)x; 

        } 

    } 

    free((void*) rv1); 

    return(1); 

} 

 

transpose of matrix 

 

#include<stdio.h> 

  

main() 

{ 

   int m, n, c, d, matrix[10][10], transpose[10][10]; 

  

   printf("Enter the number of rows and columns of matrix "); 

   scanf("%d%d",&m,&n); 

   printf("Enter the elements of matrix \n"); 

  

   for( c = 0 ; c < m ; c++ ) 
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   { 

      for( d = 0 ; d < n ; d++ ) 

      { 

         scanf("%d",&matrix[c][d]); 

      } 

   } 

  

   for( c = 0 ; c < m ; c++ ) 

   { 

      for( d = 0 ; d < n ; d++ ) 

      { 

         transpose[d][c] = matrix[c][d]; 

      } 

   } 

  

   printf("Transpose of entered matrix :-\n"); 

  

   for( c = 0 ; c < n ; c++ ) 

   { 

      for( d = 0 ; d < m ; d++ ) 

      { 

         printf("%d\t",transpose[c][d]); 

      }   

      printf("\n"); 

   } 
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   return 0; 

} 

 

float mat mult 

#include <stdio.h> 

#include <stdlib.h> 

  

/* Make the data structure self-contained.  Element at row i and col j 

   is x[i * w + j].  More often than not, though,  you might want 

   to represent a matrix some other way */ 

typedef struct { int h, w; double *x;} matrix_t, *matrix; 

  

inline double dot(double *a, double *b, int len, int step) 

{ 

 double r = 0; 

 while (len--) { 

  r += *a++ * *b; 

  b += step; 

 } 

 return r; 

} 

  

matrix mat_new(int h, int w) 

{ 

 matrix r = malloc(sizeof(matrix) + sizeof(double) * w * h); 

 r->h = h, r->w = w; 

 r->x = (double*)(r + 1); 

 return r; 

} 

  

matrix mat_mul(matrix a, matrix b) 

{ 

 matrix r; 

 double *p, *pa; 

 int i, j; 

 if (a->w != b->h) return 0; 

  

 r = mat_new(a->h, b->w); 

 p = r->x; 

 for (pa = a->x, i = 0; i < a->h; i++, pa += a->w) 

  for (j = 0; j < b->w; j++) 
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   *p++ = dot(pa, b->x + j, a->w, b->w); 

 return r; 

} 

  

void mat_show(matrix a) 

{ 

 int i, j; 

 double *p = a->x; 

 for (i = 0; i < a->h; i++, putchar('\n')) 

  for (j = 0; j < a->w; j++) 

   printf ("\t%7.3f", *p++); 

 putchar('\n'); 

} 

  

int main() 

{ 

 double da[] = { 1, 1,  1,   1, 

   2, 4,  8,  16, 

   3, 9, 27,  81, 

   4,16, 64, 256 }; 

 double db[] = {     4.0,   -3.0,  4.0/3, 

   -13.0/3, 19.0/4, -7.0/3, 

     3.0/2,   -2.0,  7.0/6, 

    -1.0/6,  1.0/4, -1.0/6}; 

  

 matrix_t a = { 4, 4, da }, b = { 4, 3, db }; 

 matrix c = mat_mul(&a, &b); 

  

 /* mat_show(&a), mat_show(&b); */ 

 mat_show(c); 

 /* free(c) */ 

 return 0; 

} 

 

 


