

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS

THESIS NO.: M-369-MSREE-2019-2023

Cross Border Electricity Trade Opportunities for Nepal: Development of Strategy for Deregulated Electricity Markets

By

Suman Aryal

A THESIS

SUBMITTED TO THE DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN RENEWABLE ENERGY ENGINEERING

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING LALITPUR, NEPAL

OCTOBER, 2023

COPYRIGHT

The author has agreed that the library, Department of Mechanical and Aerospace Engineering, Pulchowk Campus, Institute of Engineering may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purpose may be granted by the professor(s) who supervised the work recorded herein or, in their absence, by the Head of the Department wherein the thesis was done. It is understood that the recognition will be given to the author of this thesis and to the Department of Mechanical and Aerospace Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this thesis. Copying or publication or the other use of this thesis for financial gain without approval of the Department of Mechanical and Aerospace Engineering, Pulchowk Campus, Institute of Engineering and author's written permission is prohibited.

Request for permission to copy or to make any other use of the material in this thesis in whole or in part should be addressed to:

Head

Department of Mechanical and Aerospace Engineering Pulchowk Campus, Institute of Engineering Lalitpur, Kathmandu Nepal

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS, LALITPUR DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of Engineering for acceptance, a thesis entitled "Cross Border Electricity Trade Opportunities for Nepal: Development of Strategy for Deregulated Electricity Markets" submitted by Suman Aryal in partial fulfilment of the requirements for the degree of Master of Science in Repewable Energy Engineering.

Prof. Dr. Laxman Poudel Supervisor,

(

Department of Mechanical and Aerospace Engineering, Pulchowk Campus

Asst. Prof. Yubraj Adhikari Supervisor,

Department of Electrical Engineering, Pulchowk Campus

Er. Pashupati Raj Gautam External Examiner, Deputy Manager, Napal Electricity Authority

Asst. Prof. Dr. Sudio Bhatrai Committee Chairperson, Head of Department, Department of Mechanical and Aerospace Engineering, Pulchowk Campus.

Date: October 5, 2023

hi of Mechanical and Acrospace E Pulchowk Campus

DECLARATION

I declare that the work hereby submitted for Master of Science in Renewable Energy Engineering (MSREE) at IOE, Pulchowk Campus entitled "**Cross Border Electricity Trade Opportunities for Nepal: Development of Strategy for Deregulated Electricity Markets**" is my own work and has not been previously submitted by me at any university for any academic award.

I authorize IOE, Pulchowk Campus to lend this thesis to other institution or individuals for the purpose of scholarly research.

Suman Aryal 075MSREE017 October, 2023

ABSTRACT

With an increase in energy generation energy but a lower growth rate in energy consumption, Nepal has a tremendous opportunity for cross-border electricity trading. This trading helps energy management between the two countries, addressing energy scarcity in both.

The future generations of energy and consumptions of energy are forecasted and compared. The results obtained from the analysis of generations and consumption of energy, surplus energy and deficit energy are observed. There is mix of surplus and deficit energy will occur with reference to the different scenario. In this study, the cross border trading opportunities for Nepal is analyzed by evaluating the future energy generations and future energy demand. And also reviewed the electricity market model adopted in different regions. During this study, the required data is taken from the reports published by the Nepal Electricity Authority, Water and Energy Commission Secretariat, Department of Electricity Development and other energy related institutions.

In the present situations, consumptions growth of energy is slightly increased but there are many under construction hydropower are in the pipeline for commissioning. This study covers the surplus deficit energy for the years 2023 to 2031. It has been observed that the surplus energy is predominant with compare to the deficit energy. The policy intervention scenarios introduce deficits in some years while still maintaining surpluses in others. In BAU 4.5%, reference scenario 7.2%, high scenario 9.2% and weighted average method forecast surplus energy is obtained with no deficit energy. However, in policy interventions there are mix of surplus and deficit energy in the studied years. Furthermore, the cross border transmission line is essential to export the surplus energy. Due to insufficient cross-border transmission line power transfer capacity, it is crucial to timely commission the planned and under-construction transmission lines.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my thesis supervisors Professor Dr. Laxman Poudel and Assistant Professor Yubraj Adhikari for their invaluable support guidance and contributions to the completion of my thesis entitled "Cross Border Electricity Trade Opportunities for Nepal: Development of Strategy for Deregulated Electricity Markets". I would like to thank Er. Pashupati Raj Gautam, Deputy Manager, Nepal Electricity Authoriy as an external examiner for his invaluable suggestions and feedback, which has helped a lot in improving the quality of this thesis work.

I would also like to thank Dr. Hari Bahadur Darlami, Program Coordinator of Msc in Renewable Energy Engineering, Department of Mechanical and Aerospace Engineering and all the faculty members for their suggestions to complete my work.

My heartfelt appreciation goes to my parents, my family for encouragements, supports and understanding during the research period. I am also grateful to my friends Er. Pravin Shrestha, Er. Sudarshan Acharya, Er. Dhiraj Bohora, Er. Hari Krishna Kandel, Er. Subash Adhikari, Prem KC for their supports throughout my thesis.

COPYRIGHT	2
APPROVAL CERTIFICATE	3
DECLARATION	4
ABSTRACT	5
ACKNOWLEDGEMENT	6
TABLE OF CONTENTS	7
LIST OF TABLES	11
LIST OF ABBREVIATIONS	12
CHAPTER 1 : INTRODUCTION	13
1.1 Background	13
1.2 Problem Statement	14
1.3 Objectives	14
1.4 Scope	14
CHAPTER 2 : LITEERATURE REVIEW	16
2.1 Institution Related to the Electricity Sector of Nepal	16
2.1.1 Ministry of Energy, Water Resources and Irrigation	16
2.1.2 Water and Energy Commission Secretariat (WECS)	17
2.1.3 Department of Electricity Development	17
2.1.4 National Planning Commission	18
2.1.5 Electricity Deculatory Commission	10
2.1.5 Electricity Regulatory Commission	18
2.2 Structure of Power System	
 2.1.5 Electricity Regulatory Commission 2.2 Structure of Power System 2.3 Regulated Electricity Market 	
 2.1.5 Electricity Regulatory Commission 2.2 Structure of Power System 2.3 Regulated Electricity Market 2.4 Deregulated Electricity market model 	
 2.1.5 Electricity Regulatory Commission 2.2 Structure of Power System. 2.3 Regulated Electricity Market	

TABLE OF CONTENTS

2.5.2 Single Buyer Model	23
2.5.3 Wholesale Competition Model	23
2.5.4 Retail Competition Market Model	24
2.6 Examples of Deregulated Electricity market	26
2.6.1 USA Electricity market model	26
2.6.2 Nord Pool Market	
2.6.3 India Electricity Market	29
2.7 TSDP (Transmission System Development Plan) forecast	30
2.8 Proposed Cross-border Transmission line	31
2.8.1 Current status of Transmission Line	32
2.9 MCA Nepal	34
2.10 NEA Demand forecast	34
2.11 Power Trading Through IEX Market	36
CHAPTER 3 : METHODOLOGY	37
3.1 Research Flow Chart	
3.2 Data collection	
3.2.1 WECS forecast	
3.2.2 Plant Capacity Factor of Hydropower Plants	40
3.2.3 Generation Forecast	41
3.2.4 Supply and Demand Pattern of Nepal	42
3.2.5 Energy Demand Forecast	42
3.2.6 India Power Supply and Demand Scenario	43
CHAPTER 4 : RESULTS AND DISCUSSION	45
4.1 Average Yearly Plant Capacity Factor (APCF) for Groups of Projects	45
4.2 Percentage Consumption Growth Scenario with Import and Export	45
4.3 Total Energy Generation Forecast	46

4.4 Comparison of Future Electricity Demand forecasted by Weighted Average
Method (EC _n) and WECS47
4.5 Analysis of forecasted energy generation and demand forecast scenario49
4.5.1 Result on Generation forecast and WECS forecast
4.5.2 Result on Generation forecast and Weighted Average Method of Electricity
Demand Forecast
4.6 Result on Maximum Cross Border Power Flow Condition
CHAPTER 5 : CONCLUSIONS AND RECOMMENDATION
5.1 Conclusions
5.1.1 Conclusions on cross border electricity trade opportunities
5.2 Recommendation
REFERENCES
APPENDIX

LIST OF FIGURES

Figure 2.1 : Block Diagram of Institutions Related to the Electricity Sector of Nepal17
Figure 2.2 : Structure of regulated market
Figure 2.3 : Structure of regulated market
Figure 2.4 : Monopoly Model
Figure 2.5 : Single buyer model
Figure 2.6 : Block Diagram of wholesale electricity market model24
Figure 2.7 : Block Diagram of Retail Electricity Market Model25
Figure 2.8 : Wholesale electricity market
Figure 2.9 : Retail electricity market
Figure 3.1 : Research Flow Chart
Figure 3.2 : Total Installed Capacity of India
Figure 4.1 : Average Yearly Plant Capacity Factor of Three Different year for NEA
operated Projects
Figure 4.2 : Comparison of Electricity Demand Forecast by Weighted Average Method
and WECS48
Figure 4.3 : Energy requirement forecasted by WECS and Total Energy Generation
(GWh) forecast
Figure 4.4 : Future energy generation and electricity demand forecast

LIST OF TABLES

Table 2.1 : Zone wise generation and load demand (TSDP, 2018)
Table 2.2 : Proposed Cross Border Line with India (TSDP, 2018) 32
Table 2.3 : Proposed Cross Border Line with China (TSDP, 2018)
Table 2.4 : Import/Export links with India (operation and Planned/Under construction)
Table 2.5 : System Energy Requirement (GWh) forecasted by NEA for fiscal year
2019-20 to 2039/40
Table 3.1 : WECS Electricity Demand forecast
Table 3.2 : WECS electricity capacity requirement
Table 3.3 : Supply and Demand of Nepal 42
Table 3.4 : India Power Supply and Demand Scenario for past years (CEA, 2023)43
Table 3.5 : Energy Sources of India (CEA, 2023)44
Table 4.1 : Percentage Growth Rate of Consumption, Import, and Export energy46
Table 4.2 : Forecasted Power Generation and Future Energy Generation(GWh)47
Table 4.3 : Surplus/Deficit Energy for BAU and Reference Scenarios
Table 4.4 : Surplus/Deficit Energy for BAU and Policy Interventions50
Table 4.5 : Surplus/Deficit energy for Weighted Average Method of Electricity
Demand forecast
Table 4.6 : Capacity Requirement of Cross Border Transmission Line. 53

LIST OF ABBREVIATIONS

APCF	Average Yearly Plant Capacity Factor
BAU	Business as Usual
CEA	Central Electricity Authority
CBET	Cross Border Electricity Trade
DAM	Day Ahead Market
DOED	Department of Electricity Development
GDP	Gross Domestic Product
GoN	Government of Nepal
GWh	Giga Watt Hour
IEX	Indian Energy Exchange
IPP	Independent Power Producer
ISO	Independent system operator
KWh	Kilowatt Hour
MCA	Millennium Challenge Account
MoEWRI	Ministry of Energy, Water Resources and Irrigation
MW	Mega Watt
MU	Million Unit
NEA	Nepal Electricity Authority
NVVN	NTPC Vidhyut Vyapar Nigam
PPA	Power Purchase Agreement
ROR	Run of River
RE	Renewable Energy
REC	Renewable Energy Certificate
SARI/EI	South Asia Regional Initiative for Energy Integration
SAARC	South Asian Association for Regional Corporation
TSDP	Transmission System Development Plan
WAGR	Weighted Average Growth Rate
WECS	Water and Energy Commission Secretariat

CHAPTER 1 : INTRODUCTION

1.1 Background

The restructuring of power markets has created many opportunities for customers to reduce their electricity expenses. In a liberal power market, the buying and selling of energy is now becoming similar to that of other commodities. The introduction of private players and various companies in the energy market has created more competition, assuring the reliability and quality of energy supplied to consumers and ending the monopolistic behavior of vertically integrated utilities. In such a liberal market, consumers have various options, and their bargaining power has increased. There is a continuous flow and exchange of information between energy buyers, suppliers, and the market. The various participants in the market can make independent decisions. Energy consumers receive timely information from the market and develop strategies to maximize their benefits. Consumer groups can adjust their loads based on price signals in the market (J. Zhao, 2016).

Rich in hydropower potential and situated in a geopolitically important place, Nepal has the great opportunity for cross-border electricity trade. This thesis attempts to explore the major opportunities and challenges of cross-border trade of electricity for Nepal. Presenting the current status of bilateral and multilateral agreements and institutional arrangements, this thesis reinforces the fact that cross-border electricity trade is not an easy task. For fulfilling internal demands, it is high time for Nepal to address the existing challenges and grab the opportunities offered by cross-border electricity trade. In South Asia, India and Nepal have established transmission links through different regions where electricity is being traded. The opportunities for Cross Border Electricity Trade (CBET) in the south Asian regions has amplified particularly that energy security has become a political priority for all the South Asian governments. Rich in hydro resources, Nepal has the development potential of 83,000 megawatts (MW) and commercially feasible hydropower generating potential of about 42,000 MW. In Nepal, there are huge resource for development of hydropower projects, some projects are in construction phase after signing the PPA documents with legal parties and some are in pipeline for PPA (Adhikari, 2018). These all projects after completing, electricity will be spill and government bodies will face the financial problems due to the lack of electricity markets in Nepal. Therefore, Nepal should be planned for future electricity markets in Nepal and neighboring countries.

1.2 Problem Statement

After the end of load shedding and the gradual resolution of its scars, the possibility of achieving independence in electricity is increasing and consumer aspirations for improved quality and reliability of power supply in the country. However, independence of electricity can be achieved if all the projects will have completed in few years which are in construction phase and planning phase. The hydropower projects above 5600 MW being under construction from the private sector after signing power purchase agreements with Nepal Electricity Authority. The PPAs with regard to hydropower projects in different river basins have already crossed 5600 MW and many developers are awaiting PPAs to be signed (Adhikari, 2018).

In present situation, Nepal has been imported 1,833 GWh from India and exported 1,346 GWh to India in fiscal year 2022/23. We have agreed lots of hydropower doing power purchase agreement. After completing these all hydropower plants, there will be chanced of surplus energy. Due to the legal frameworks and practices, Nepal Electricity Authority will face the huge financial loss regarding power purchase agreements rate. To overcome this financial loss, all concerning government bodies should develop the strategies to consume more electricity and cross border transmissions throughout the Asian countries.

1.3 Objectives

Main objective of this thesis is to analyze the cross border electricity trade opportunities for Nepal after commissioning of upcoming hydropower projects.

Specific objective of this thesis are

- To determine the expected generations and expected consumption scenario of Nepalese electricity trends.
- To determine the challenges for cross border electricity trade in a deregulated electricity market.

1.4 Scope

In this study, most of the hydropower projects are of the runoff river type, while the remaining few projects are peaking runoff river projects. The future energy generation is calculated, excluding the planned storage projects. The energy generation from the storage power projects, peaking runoff river projects, and runoff river projects is not

separated; therefore, future energy generation could be different if we were to study them separately. There are numerous storage hydropower projects in different phases of construction, and the government of Nepal has announced several projects for the development of electricity, incorporating them into the periodic plans. After the completion of all these hydropower projects, future energy generation could be different.

This research will also help to build the energy exchange mechanisms between the Nepal and neighboring countries. In the present situation, Nepal faces the seasonal power shortage during the dry months because of most of the operated hydropower project is run off river type due to the decrease of water flow in the river. However, during the wet seasons, all run-of-the-river hydropower plants can run at full capacity. In these situations, Nepal can export all surplus energy to India by balancing the seasonal power generation fluctuations.

CHAPTER 2 : LITEERATURE REVIEW

The South Asia region is gifted with limited fossil fuels but sufficient hydro resources. However, the distribution of these resources varies across the south Asian region. The Electricity generation mainly depends on available domestic resources. Nepal and Bhutan are widely dependent on hydro resources. Bangladesh, Maldives, and Sri Lanka are mainly dependent on fossil fuels. Afghanistan is struggling to rebuild its hydroelectric capacity, but investments for new capacity are yet to catch up with its requirements (SARI/EI, 2023). India and Pakistan depend on a mix of hydro based and fossil fuel based generation, though they are more depends on fossil fuels as compare to the hydro based generations. Bhutan and Nepal are almost completely dependent upon hydroelectricity to meet their energy requirements. It is observed that excessive dependence on one energy resource raises concerns related to energy security. Electricity sector integration in South Asia is in an initial stage and waiting for the regional power market for better energy security (SARI/EI, 2023). There are no any official market-based multilateral trading arrangements supported with a regulator and legal framework in south Asian countries. However successful cross border trading arrangements is done with India by Bangladesh, Bhutan and Nepall (Sharan, 2016). The existing and the proposed cross border transmission line in the South Asian region are the beneficial for the bilateral electricity trading among the Asian countries. With gradual harmonization of electricity codes and balancing mechanisms, and the strengthening of institutional cooperation, short-term transactions through bilateral and energy exchanges would become increasingly feasible.

2.1 Institution Related to the Electricity Sector of Nepal

2.1.1 Ministry of Energy, Water Resources and Irrigation

The Ministry of Energy, Water Resources and Irrigation (MoEWRI) is a government institution that manages and develops the overall energy, water resources and irrigation sectors throughout the country. It also formulates policies and plans related to these sectors in Nepal. The MoEWRI plays important roles in promoting and facilitating the participation of Private parties to develop overall economy of the nation.

2.1.2 Water and Energy Commission Secretariat (WECS)

The main objective of the Water and Energy Commission Secretariat which was established by the Government of Nepal, assisting different ministries in formulating policies and developing projects related to water resources in Nepal.

Figure 2.1 : Block Diagram of Institutions Related to the Electricity Sector of Nepal

2.1.3 Department of Electricity Development

The Department of Electricity Development was established by the Government of Nepal and is responsible for implementing policies related to the energy sector. Its main functions are ensuring transparency in the regulatory framework, promoting and facilitating private sector involvement in the power sector, and provide licenses to power producers.

2.1.4 National Planning Commission

The National Planning Commission was formed by the Government of Nepal. The main functions of this institution are to prepare periodic development plans, formulate development policies, and recommend to the Government of Nepal, different ministries, and departments for accelerating the pace of development.

2.1.5 Electricity Regulatory Commission

The Electricity Regulatory Commission was established by the Government of Nepal. It is the regulatory body responsible for regulating the generation, transmission, distribution, and business of electricity. It also maintains the balance of demand and supply of electricity generation, regulates the tariff, and protects the rights and interests of consumers by ensuring reliable, secure, and high-quality service.

2.2 Structure of Power System

The structure of the electricity market in the world has undergone changes in recent times. The activities of power generation, transmission, and distribution are owned and operated differently in various countries, according to their functions. In earlier days, all these activities, such as generation, transmission, and distribution, were carried out by a single institution known as a vertically integrated market. However, the market structure has now evolved, and competition is involved in generation, transmission, and distribution, resulting in a deregulated electricity market.

2.3 Regulated Electricity Market

In a regulated electricity market model, all activities such as generation, transmission, and distribution may be owned by government authorities or private utilities. In this market model, the rules are set by the government, and the operations of utilities are limited by certain rules and regulations. The regulatory framework aims to ensure fair competition, reliable supply, and affordable prices for consumers.

Figure 2.2 : Structure of regulated market

Symbols:

The above-mentioned figure illustrates the structure of a regulated electricity market, indicating the direction of energy flow, information flow, and money flow using arrowheads corresponding to their functions. The figure clarifies that the information flow is bidirectional between generation and transmission, whereas the money flow is unidirectional from the distribution side to the generation side. The remaining energy flow is unidirectional, starting from generation, passing through transmission, and reaching distribution.

Features of regulated electricity market

• Vertically integrated

In a regulated electricity market, all aspects of power generation, transmission, and distribution are handled by a single entity that is fully owned and operated by itself.

• No competitions

Having full control over all aspects of generation, transmission, and distribution can lead to a monopoly in electricity markets. As a result, the lack of competition may lead to higher electricity prices and limited choices for consumers.

2.4 Deregulated Electricity market model

A deregulated electricity market refers to a system in which the government removes or reduces its control and regulations over the generation, transmission, and distribution of electricity, allowing for competition and market forces to determine prices and supply. In this model, multiple electricity suppliers can enter the market and offer their services to consumers. Deregulation of the electricity market occurs after the unbundling of the electricity market and is also known as reform, restructuring, or reregulation of the electricity market. In this market model, the functions of generation, transmission, and distribution are carried out by different companies, transforming the industry from the regulated electricity market model. There is open access in the generation, transmission, and distribution businesses, and competition is introduced among private companies, leading to competition in the electricity market. The transmission of energy incurs a wheeling charge set by an independent system operator. Customers in a deregulated market have different choices as they can purchase energy directly from generating companies or through distribution companies at competitive prices through negotiations with the authorities. Due to the variation in electricity prices over time, consumers can strategically plan their purchases to obtain competitive electricity prices.

Figure 2.3 : Structure of regulated market

Symbols:

The figure above illustrates the structure of a regulated electricity market, showing the direction of energy flow, information flow, and money flow through arrowheads corresponding to their respective functions. Various market models exist where consumers are aware of the instantaneous price of electricity and strategically plan their purchases to obtain an economical price while ensuring a reliable supply that meets their needs.

Components of Deregulated Electricity Market

Genco (Generation companies)

These are the companies which are responsible for generating the electrical energy using different energy resources. The primary function of a Genco is to generate electricity and supply it to the electricity grid or other entities within the electricity market. The generated electricity is then transmitted and distributed to end consumers by transmission and distribution companies. These company might be either government utility or private entities (called as independent power producers). These private or government companies (Genco) can sell the energy directly to the consumers or Distribution company or Retailed company through transmission lines.

Transco (Transmission Company)

These are the companies which are responsible for transmitting the electrical energy from generating companies to the distribution companies. These companies have large infrastructures to transmit the large amount of electrical energy to the distribution location. The wheeling charge of the transmission company is regulated and fixed by regulating company which is independent entities related to the electrical sectors.

Disco (Distribution Company)

These companies are responsible for the distribution of electricity from the transmission grid to end consumers. Their basic function is to deliver electricity to homes, businesses, and other entities within their designated distribution area. These companies own, maintain and operate the distribution infrastructure, including power lines, transformers, meters, and other equipment, to ensure the efficient and reliable distribution of electricity.

ISO (Independent system operator)

It is an independent regulatory authority that takes the responsibility to ensure the reliability, quality, and security of power quantities. It establishes various rules and regulations regarding power system operation and also advises the government to issue acts for proper monitoring of power markets. Additionally, it sets the electricity tariff rate, wheeling charge for electricity, and has the right to collect service charges from electricity market participants.

Customers

In a deregulated electricity market, customers have different choices to buy electricity at a competitive price, just like in other commodity markets. The sellers in the electricity market change their behavior and offer different rates and varying energy charges from time to time, giving customers options to purchase electricity at an economical price. Customers can buy electricity directly from generating companies, distribution companies, or locally available retail energy companies or wholesale companies wherever possible.

2.5 Market Model

The market model of electricity markets is mainly characterized by two approaches: the electricity market before deregulation and the electricity market after deregulation. The main objectives of the electricity market model are to enhance the electricity market by creating opportunities for generating companies and customers, similar to other commodity markets. The classification of market models provides insights and helps formulate strategies for deregulating the electricity market.

2.5.1 Monopoly market Model

The monopoly market model is a type of model in which the generation, transmission, and distribution of electricity are owned and operated by a single authority. The monopoly market model is shown in following block diagram.

Figure 2.4 : Monopoly Model

In the context of Nepal, there is only one electricity authority company named Nepal Electricity Authority, which is fully owned by the government of Nepal and operates in the electricity market. However, a few private companies are involved only in the generation side.

2.5.2 Single Buyer Model

In this market model, competition is involved only in the generation side, while competition in distribution is not present. It mainly focuses on the involvement of the private sector in investing in generation, which ultimately leads to competition on the generation side. In this market model, consumers have no choices regarding electricity providers, but independent power producers (IPPs) can participate in generation. The main objectives of this market model are to introduce competition in generation and attract investment in electricity generation to meet the growing demand for electricity. The block diagram of single buyer model is shown in following diagram.

Figure 2.5 : Single buyer model

2.5.3 Wholesale Competition Model

In the wholesale competition market model, multiple participants are involved in generation and distribution.

The following block diagram illustrates the wholesale competition model of the electricity market.

Figure 2.6 : Block Diagram of wholesale electricity market model

Generation companies sell their energy in the wholesale electricity marketplace, and distribution companies can buy electricity from the wholesale marketplace, creating a competitive choice for them. Retailers can also purchase electricity from the wholesale electricity market and sell it to consumers. However, it is important to note that small consumers in a specific area will not have choices to buy electricity at competitive prices.

2.5.4 Retail Competition Market Model

In this market model, we could say full of deregulation in electricity market. Competition is involved in generation as well as distribution side. The consumers have choices through retailed market. There is an open access in transmission line as well as distribution lines so that the consumers can buy energy directly from wholesale market place or from generation companies through retailed market or without retailed market. In this model the consumers can buy energy at competitive market at economy price.

The block diagram of retailed electricity market model is shown in following figure.

Figure 2.7 : Block Diagram of Retail Electricity Market Model

The advantages of this type of electricity market models are as follows.

- Fully deregulation
- Reliable and quality of electricity supply is available.
- Consumers choices is broad.

The disadvantages of this type of electricity market models are as follows

- Complex
- Huge infrastructures requirement.

2.6 Examples of Deregulated Electricity market

2.6.1 USA Electricity market model

In the United States, the electricity market is primarily classified into two models: the wholesale electricity market and the retail electricity market.

Wholesale electricity market model: The electricity markets in the United States consist of distinct wholesale and retail components. Wholesale markets facilitate the trade of electricity among electric utilities and traders, forming an intermediary step before it reaches consumers. On the other hand, retail markets directly provide to consumers by offering electricity for sale. It's worth noting that both wholesale and retail markets can function under either traditional regulatory frameworks or in competitive market settings.

Wholesale Electric Power Markets

Figure 2.8 : Wholesale electricity market

Source: https://www.epa.gov/green-power-markets/us-electricity-grid-markets

The figure above illustrates certain segments of the U.S. wholesale electricity market, which are traditionally regulated (shown gray areas). In this context, vertically integrated utilities bear the responsibility for the generation, transmission, and distribution systems to supply electricity consumers. The wholesale market in Northeast, Midwest, Texas, and California, operates under a restructured and

competitive model. These markets are overseen by independent system operators (ISOs), which include both regional transmission organizations (RTOs) and ISOs. ISOs employ competitive market mechanisms that facilitate the trading of power among independent power producers and non-utility generators. In these restructured competitive markets, the role of "utilities" primarily revolves around providing retail electricity services to customers, while their ownership of generation and transmission resources is less common (EPA, 2023).

Retail Electricity Market: Retail electricity markets in the United States can be categorized as either traditionally regulated or competitive. In traditionally regulated retail electricity markets (shown gray), consumers do not have the freedom to choose their power generators and are compelled to purchase electricity from the utility operating in their area.

Figure 2.9 : Retail electricity market

Source: https://www.epa.gov/green-power-markets/us-electricity-grid-markets

This traditional regulatory model observes in most Southeastern, Northwestern, and a significant portion of Western states, excluding California. On the other hand, competitive retail electricity markets (represented as blue) provide electricity

consumers with the ability to choose among various competitive retail suppliers. These markets have introduced competition in electricity generation in 24 states, including California, Texas, and the majority of Northeastern states. Additionally, eighteen states along with Washington, D.C., have implemented retail choice, granting residential and/or industrial consumers the freedom to select their electricity provider and opt for specific generation options, including renewable energy sources. This competitive market framework offers greater flexibility regarding the structure of retail supply contracts, project location, and the scale of renewable energy sources chosen (EPA, 2023).

2.6.2 Nord Pool Market

Nord Pool is the largest power market in Europe and operates as a power exchange for the Nordic and Baltic regions. It is an independent marketplace where electricity producers, consumers, and traders can buy and sell electricity contracts. Nord Pool facilitates both physical and financial trading of electricity, allowing participants to engage in spot trading, forward contracts, and derivatives. In physical power market, power market deals with the physical delivery of electricity. It involves the buying and selling of actual electricity, where market participants trade in kilowatt-hours (kWh) or megawatt-hours (MWh) of electricity. The physical power market focuses on the physical generation, transmission, and distribution of electricity from power plants to end consumers. However, in financial power market involves trading financial instruments based on electricity prices and market conditions. Instead of trading physical electricity, participants trade financial contracts or derivatives that are linked to the price of electricity. These derivatives include futures contracts, options, swaps, and other financial instruments. The financial power market allows participants to hedge against price fluctuations, speculate on future electricity prices, and manage their exposure to market risks. Nord Pool operates in several countries, including Norway, Sweden, Denmark, Finland, Estonia, Latvia, and Lithuania. It provides a transparent market for electricity, enabling market participants to trade electricity based on supply and demand. The exchange sets hourly electricity prices through an auction system, known as the day-ahead market. Participants submit their bids and offers, and the system determines the clearing price at which electricity is traded for each hour of the following day. Nord Pool also offers intraday trading, which allows market participants to adjust their positions closer to real-time delivery (Nord Pool, 2023). Nord Pool also plays a vital role in promoting competition, price transparency, and efficient electricity trading in the Nordic regions (N. Flatabo, 2003). It contributes to the integration of renewable energy sources, cross-border trading, and overall market efficiency in the European power sector.

2.6.3 India Electricity Market

India has a mix of power generation sources, including thermal (coal, gas, and oil), hydroelectric, nuclear, and renewable energy (solar, wind, biomass, and small hydropower). However, thermal power dominates the country's electricity generation, accounting for a major share of the total installed capacity. There are five regional grids are existing namely as Northern, Western, Southern, Eastern, and North-Eastern in India (CEA, 2023). The Power Grid Corporation of India Limited works on the field of development and maintenance of the transmission infrastructure. The grid infrastructure has been continuously expanding to accommodate the growing power generation capacity India has undertaken several market reforms to enhance competition, attract investments, and improve the overall efficiency of the electricity sector. These reforms include the introduction of open access, the establishment of power exchanges, and the implementation of a competitive bidding process for procurement of power from generators. Power trading has gained prominence in India with the establishment of power exchanges like Indian Energy Exchange (IEX) and Power Exchange India Limited (PXIL). These exchanges facilitate the trading of electricity among buyers and sellers, providing a platform for price discovery and optimizing power procurement (India Energy Exchange, 2023).

Features of India Energy Exchange market

Spot Market: The spot market on the IEX allows participants to buy and sell electricity for immediate delivery. Prices in the spot market are determined through a bidding process, where buyers and sellers submit their bids and offers. The matching process determines the clearing price and quantities for each trading interval.

Day-Ahead Market: The day-ahead market enables participants to trade electricity contracts for the next day's delivery. Market participants can submit their bids and offers based on their anticipated electricity requirements or generation capacities. The clearing price and quantities are determined through the auction process, ensuring efficient allocation of electricity resources.

Term-Ahead Market: The term-ahead market provides participants with the flexibility to trade electricity contracts for multiple days in advance. This allows market participants to manage their electricity procurement and supply requirements more effectively.

Renewable Energy Certificate (REC) Market: The IEX also facilitates the trading of Renewable Energy Certificates, which represent the environmental attributes of renewable energy generation. Market participants can buy and sell RECs to meet their renewable energy obligations or to demonstrate their support for clean energy.

2.7 TSDP (Transmission System Development Plan) forecast

The transmission system development plan presents an overview of the transmission network designed to accommodate the updated generation and load scenario projected for the year 2040. The computer model used for this plan incorporates data from existing, under construction, and planned/proposed hydroelectric projects and transmission lines, as well as load forecasts for the target year 2040 (TSDP, 2018). The proposed transmission network includes six cross-border connection points between Nepal and India in the Terai region, as well as two cross-border connection points between Nepal and China in the Himalayan region. Nepal's power grid is divided into five zones, spanning from West to East, with each zone having at least one interconnection point with India and China. To determine the trading capacity for the year 2040, the total load demand and total generation are derived from two reports; the Transmission System Development Plan (TSDP) of Nepal and the Electricity Demand Forecast Report (2015-2040). These reports provide forecasts for the zone-wise load profile and zone-wise power generation. The Table 3.1 below presents the zone-wise power generation and load demand.

zones	Zone -1	Zone-2	Zone-3	Zone-4	Zone-5
Districts	Kanchanp	Banke,	Kapilvastu,	Parsa, Bara,	Jhapa, Illam,
	ur, Kailali,	Bardiya,	Rupandehi,	Rautahat,	Panchthar,
	Doti,	Dang,	Nawalparasi,	Makwanpur,	Tapejung,
	Achham,	Surkhet,	Chitwan,	Dhading,	Morang,
	Dadeldhur	Salyan,	Arghakhanchi	Kathmandu,	Dhankuta,

Table 2.1 : Zone wise generation and load demand (TSDP, 2018)

	a, Baitadi,	Rolpa,	, Palpa,	Lalitpur,	Sankhuwasabh
	Darchula,	Pyuthan,	Tanahu,	Bhaktapur,	a, Sunsari,
	Bajhang,	Dailekh,	Syangja,	Kavrepalanch	Bhojpur
	Bajura,	Jajarkot,	Gulmi,	ok, Nuwakot,	Tehrathum
	Kalikot,	Rukum	Baglung,	Sindhupalcho	Solukhumbu,
	Jumla,	and	Parbat,	k, Rasuwa,	Udayapur,
	Mugu,	Dolpa	Gorkha,	Dhanusa,	Khotang,
	Humla		Lamjung,	Mahottari,	Okhaldhunga,
			Kaski,	Sarlahi,	Siraha, and
			Myagdi,	Sindhuli,	Saptari
			Mustang and	Ramechhap	
			Manag	and Dolakha	
Total	9.92	4.47	7.4	8.03	7.78
generation					
(GW)					
Total load	2.360	2.300	4.095	6.480	2.8505
demand					
(MW)					

From the above table shows the total load demand and total generation for the year 2040 are 18.0855 GW and 37.6 GW, respectively (TSDP, 2018).

2.8 Proposed Cross-border Transmission line

In order to address the current power deficit and facilitate future power export, the establishment of cross-border transmission lines becomes essential. The transmission system development plan addressed six strategic locations for cross-border power lines with India, and two locations for cross-border transmission lines to facilitate power exchange with China. The selection of these cross-border locations has been carefully determined to ensure the proximity between load centers and generation hubs, optimizing the efficiency of power transmission (TSDP, 2018).

Transmission	Nos. of circuit	Power	%	Connected zones for
line		flow(MW)	loading	power evacuation
Attariya -	single line of double	700	16.3	Mahakali, Karnali and
Bareily	circuit 400kV			Seti corridors in Zone-1
Dododhara -	Two numbers of	3000	34.6	Mahakali, Karnali and
Bareily	double circuit 400kV			Seti corridors in Zone-1
Phulbari -	Two numbers of	2600	29.9	Nalsyau Gad, Bheri
Lucknow	double circuit 400kV			Corridor in Zone-2
New Butwal	Two numbers of	2500	28.8	Marsyandi,
- Gorakhpur	double circuit 400kV			Kaligandaki and
				Gandaki Corridor in
				Zone-3
Dhalkebar -	Two numbers of	3100	35.7	Khimti, Tamakoshi and
Muzzafarpur	double circuit 400kV			Dudhkoshi Corridor in
				Zone-4
Inaurwa -	Two numbers of	1800	20.9	Arun and Koshi in
Purnea	double circuit 400kV			Zone-5

Table 2.2 : Proposed Cross Border Line with India (TSDP, 2018)

Table 2.3 : Proposed Cross Border Line with China (TSDP, 2018)

Transmission	Nos. of circuit	Power	%	Connected zones for
line		flow(MW)	loading	power evacuation
Chilime -	Two numbers of	1500	34.3	Trishuli river corridor
Keyrung	double circuit			in Zone-4
	400kV			
Kimanthanka	Two numbers of	700	15.9	Arun and Koshi
-Latse	double circuit			Corriodor in Zone-5
	400kV			

2.8.1 Current status of Transmission Line

The Nepal Electricity Authority (NEA) mainly focuses on the planning, construction, expansion, and upgrading of cross-border lines for energy security and bulk electricity

trade in the near future. Currently, the existing cross-border transmission line is insufficient to evacuate the power generated from hydropower projects. Furthermore, the Integrated Nepal Power System should operate in synchronous mode with the Indian grid for enhanced reliability and security. The first operational 400KV transmission line, the Dhalkebar-Muzaffarpur cross-border transmission line, is limited in its power supply capacity, allowing only 1000 MW to be transmitted through this line (Subedi, 2079). Additionally, a Joint Venture company consisting of Nepal and the Power Grid Corporation of India has been established to construct the Butwal-Gorakhpur 400 KV transmission line on the Indian side. The Millennium Challenge Corporation takes the responsibility of constructing the transmission line and substation on the Nepalese side. Furthermore, a Joint Steering Committee meeting has planned the construction of two more 400KV cross-border transmission lines: one connecting New Inaruwa to Purnia and another linking Dodhdhara to Bareli, with completion targeted for the fiscal years 2027/28 and 2028/29, respectively (NEA, 2023). Moreover, the feasibility study on the Nepalese side for the cross-border transmission line from Ratamate (Nepal) to Kerung (China) has been completed. After all these transmission lines are completed, the power transmission network will connect China with South Asian countries, facilitating regional energy connectivity.

S.N.	Transmission Line	Expected Completion Date	Approximate Maximum Power flow(MW)	Status
	400K	V Cross Border	Transmission line	
1.	Dhalkebar - Muzzaffarpur	-	1000	Operation
2.	New Butwal - Gorakhpur	2025	2000	Under construction
3.	New Inaruwa - Purnia	2028	1800	Planned
4.	Dodhdhara to Bareli	2029	3000	Planned
5.	132 KV Cross Border Transmission Lines	-	500	Operation/ Under construction
		Total	8300	

Table 2.4 : Import/Export links with India (operation and Planned/Under construction)

2.9 MCA Nepal

The Government of Nepal and the Millennium Challenge Corporation signed the Nepal Compact Agreement in September 2017. The main objectives following this agreement are to accelerate economic growth and reduce poverty by enhancing the availability and quality of electricity. This agreement mainly focuses on electricity transmission lines and road maintenance. In this agreement, the electricity transmission project is designed to enhance the reliability of the national grid and promote economic growth by exporting surplus energy. The MCA-Nepal signed a Project Cooperation Agreement (PCA) for the Electricity Transmission Project (ETP) with Nepal Electricity Authority (NEA) in May 2023. The Government of Nepal has designated the ETP as a National Pride project, aimed at constructing essential infrastructure in Nepal to facilitate the planned India interconnection from New Butwal, Nepal to Gorakhpur, India (MCA Nepal, 2023). The project involves designing and constructing approximately 315 km of a double-circuit 400 kV transmission line, bridging gaps across various river basins. This agreement also holds the potential to support Nepal's domestic and cross-border transmission investment plans. Also in this agreement, three new 400 kV indoor gasinsulated substations (GIS) will be established Ratmate substation in Nuwakot District, the New Damauli substation in Tanahun District, and the New Butwal substation in Nawalparasi West District. Additionally, the transmission lines will be interconnected with the existing Nepal Electricity Authority substations at Lapsiphedi, Kathmandu District, and New Hetauda, Makawanpur District. By conducting power sector technical assistance activities, the project aims to support the Electricity Regulatory Commission (ERC) and NEA to enhance transparency, efficiency and competition within the Nepalese power sector.

2.10 NEA Demand forecast

The Nepal Electricity Authority (NEA) published the demand forecast in the 'A Year in Review Fiscal Year 2018/19' for the fiscal years 2019/20 to 2039/40, which is depicted in the following table. As per the load forecasted by Nepal electricity authority, the generation requirement in 2020, 2025, 2030, 2035 and 2040 is about 10,138.28 GWh, 18,579.53 GWh, 31,196.38 GWh, 50,887.42 GWh and 82,620.73 GWh respectively.

Table 2.5 : System Energy Requirement (GWh) forecasted by NEA for fiscal year2019-20 to 2039/40

S.N.	Fiscal Year	Generation Requirement (GWh)
1.	2019/20	10,138.28
2.	2020/21	12,017.96
3.	2021/22	13,952.00
4.	2022/23	15,332.65
5.	2023/24	16,869.13
6.	2024/25	18,579.53
7.	2025/26	20,585.22
8.	2026/27	22,826.63
9.	2027/28	25,332.50
10.	2028/29	28,111.30
11.	2029/30	31,196.38
12.	2030/31	34,355.49
13.	2031/32	37,861.08
14.	2032/33	41,754.21
15.	2033/34	46,079.83
16.	2034/35	50,887.42
17.	2035/36	56,007.87
18.	2036/37	61,677.62
19.	2037/38	67,957.59
20.	2038/39	74,913.54
21.	2039/40	82,620.73

2.11 Power Trading Through IEX Market

Nepal has been fulfilling the power shortage by importing and spills energy by exporting from india electricity market. Nepal became the first south Asian country to join Indian Energy Exchange market started operation from May 1, 2021 after Nepal Electricity Authority (NEA) gained approval from Central Electricity Authority for trading from Day-Ahead Market of IEX. NEA is currently exporting up to 452 MW of power from 10 hydropower projects and it is anticipated that the quantum will increase in the near future following the approval of more hydropower projects from the Designated Authority of India (NEA, 2023). The Power Trading Unit in load dispatch center has been provided the responsibility to bid daily on IEX-DAM for selling and purchasing the power from India to balance the power generation. In the fiscal year 2022/23 1.3 Billion Units of energy has been sold to India from IEX, which helps to generate revenue of Nepal Electricity Authority (NEA, 2023). For power trade in the neighboring countries like india and Bangladesh, various arrangements were done in Fiscal year 2022/23. An agreement was signed between NEA and NTPC Vidhyut Vyapar Nigam (NVVN) On May 23, 2023 for supply of 200 MW of power to NVVN from five different hydropower projects. Also an agreement was signed between NEA and PTC India Ltd. on June 28, 2023 to import and export power up to 300 MW in the Indian market using Bihar's transmission infrastructure. There is also discussions made between NEA, NVVN and Bangladesh Power Development Board (BPDB) for the export of power from NEA to Bangladesh via India (NEA, 2023).
CHAPTER 3 : METHODOLOGY

3.1 Research Flow Chart

This chapter presents fundamental information and applications of the proposed methods for analyzing opportunities in cross-border electricity trade within deregulated electricity markets. The analysis includes supply and demand assessments of the electricity markets in Nepal and neighboring countries. After conducting the literature review, the flowchart depicting the detailed study and analysis of the cross-border electricity trade opportunities in Nepal is presented Figure 3.1.

In the beginning, data on Nepal's energy consumption and generation from various sources in the recent previous year is collected through NEA annual publication reports and WECS. This data includes information on consumption, NEA generation, IPP generation, and energy imports and exports from India, all of which are assessed for their contributions to meeting the country's energy demand. Additionally, data on energy imports and exports with India in the recent year is gathered and studied.

The forecast for future energy requirements is obtained from various sources such as WECS, and NEA publications. WECS forecast presents three different scenarios based on GDP growth: Business as Usual (4.5% GDP growth), Reference Scenario (7.2% GDP growth), and High Scenario (9.2% GDP Growth). The energy generation from installed capacity is calculated by multiplying it with the plant factor, derived from the past year's energy generation data of various hydropower plants.

The expected energy consumption is calculated by using the weighted average method. By analyzing the expected energy generation and consumption data for future years, the balance between generation and demand is studied. Furthermore, the trading potential of energy through cross border is explored, investigating how it can be beneficial for Nepal to enhance the economy of Nepal.

Figure 3.1 : Research Flow Chart

3.2 Data collection

Data collections regarding the cross border electricity transmission trade for extend of electricity markets from Nepal and neighboring concerned electricity utility.

3.2.1 WECS forecast

In January 2017, the Water and Energy Commission Secretariat published the Electricity Demand Forecast Report (2015-2040), projecting the twenty-five-year energy demand. The forecast considered three scenarios of economic development are Business as usual (4.5% GDP growth rate), Reference (7.2% GDP growth rate) and High growth (9.2% GDP growth rate).

Furthermore, an additional analysis was conducted, incorporating various policy interventions, such as achieving 100% cooking with electricity and 75% water heating with electricity in urban areas by 2020, and introducing metros in cities by 2025, at 7.2% and 9.2% GDP growth rates. The Model for Analysis of Energy Demand (MAED) was employed in this generation forecast report. The WECS electricity demand forecast between from 2015 to 2040 is depicted as shown in following table.

Year	Final Electricity Demand (GWh)						
	BAU	Reference	High	Policy	Policy Intervention		
		Scenario	Scenario	Intervention	@ 9.2%		
				@ 7.2%			
2015	3866.36	3866.36	3866.36	3866.36	3866.36		
2020	7600.76	8110.66	8522.97	14870.92	15304.29		
2025	12998.25	14863.67	16545.84	22431.68	24265.05		
2030	20073.83	24956.79	29864.09	35334.66	41264.82		
2035	29744.69	40709.77	52983.16	51771.84	65657.50		
2040	43016.69	66096.60	94851.06	81958.97	115294.44		

Table 3.1 : WECS Electricity Demand forecast

The WECS electricity capacity requirement from 2015 to 2040 is depicted in the below table.

	Total Installed Capacity Requirement (MW)						
Year	BAU 4.5%Reference Scenario 7.2%High Scenario 9.2% growth		Policy intervention @ 7.2% growth	Policy intervention @ 9.2% growth			
2015	1721	1721	1721	1721	1721		
2020	3384	3611	3794	6621	6814		
2025	5787	6617	7366	9987	10803		
2030	8937	11111	13296	15731	18371		
2035	13242	18124	23588	23049	29231		
2040	19151	29427	42228	36489	51330		

Table 3.2 : WECS electricity capacity requirement

3.2.2 Plant Capacity Factor of Hydropower Plants

The capacity factor of a hydropower plant refers to the ratio of the actual energy output of the plant to its maximum possible output if it operated at its rated capacity continuously over a specific period. In other words, it represents the efficiency and utilization of the plant.

For hydropower plants, the capacity factor is typically quite high because they can produce electricity consistently as long as there is a reliable supply of water. The plant capacity factor of hydropower plant is calculated using following equation.

Plant capacity factor (PCF) = Actual Energy generation(AEG)/ (Install Capacity x Time Interval)

The plan capacity factor can vary based on the water availability, reservoir storage, seasonal variations, maintenance work etc.

The actual plant capacity factors of NEA-operated hydropower projects, and IPPoperated hydropower projects are determined based on past data of energy generation from Nepal Electricity Authority. The actual plant capacity factors for past years of NEA-operated ROR hydropower projects and IPP-operated ROR hydropower projects, based on yearly data collected from NEA, are presented in the annex. Hence, the average plant factors of projects are used to calculate the expected energy generation from hydropower projects in the coming years. The average plant capacity factor is calculated using data from the last three years and is determined using the following formula;

 $APCF = \frac{\text{YEARLY RECENT THREE YEAR PCF}}{3}$

Where,

APCF= Average plant capacity factor

3.2.3 Generation Forecast

For the determination of future energy generation, only the projects under construction are considered. In Nepal, there are several hydropower projects based on natural flow river systems, including Run-of-River (ROR), Peaking Run-off- River (PROR), and Storage types. However, these projects face significant challenges, such as issues with environmental impact assessments, land acquisition problems, lack of inter-agency coordination, delays in construction work in forest areas, increased project costs due to delayed completions, and a lack of construction-friendly infrastructure for hydropower projects. Timely completion of hydropower projects is delayed by these major issues. The construction of hydropower is undertaken by two main bodies in Nepal: Independent Power Producers (IPP) and NEA (Nepal Electricity Authority) and its subsidiary companies.

To obtain the future generation scenario, the expected time of completion of hydropower projects is calculated by averaging the past completion periods of hydropower projects with the Power Purchase Agreement (PPA) date. The completion dates of NEA's subsidiary companies and IPP operated projects are obtained from NEA publications. The average time of completion for hydropower projects is estimated about eight years. Hence we can calculate the additional installed capacity and expected energy generation in coming years by considering the average completion date along with the Power Purchase Agreement (PPA) date of under construction projects.

3.2.4 Supply and Demand Pattern of Nepal

The supply and demand pattern of Nepal is obtained from different fiscal year reports published by Nepal Electricity Authority and is depicted in the table. The total energy imported from India increased from the year 2015, but in the year 2020, the total imported energy decreased to 1729 GWh due to the outbreak of the Covid pandemic. In the year 2022, the total energy imported from India to Nepal decreased, while the export to India increased due to the operation of Upper Tamakoshi Hydropower Limited and other Independent Power Producer (IPP) projects.

Year	Import(GWh)	Total Internal Energy Consumption (GWh)	Peak Demand (MW)	Export (GWh)
2015	1370	3741	1291	3
2016	1,778	3,716	1,385	3
2017	2,175	4,774	1,444	3
2018	2,582	5,557	1,508	3
2019	2,813	6,303	1,320	35
2020	1,729	6,418	1,408	107
2021	2,806	7,275	1,482	38
2022	1,543	8,842	1,964	494

Table 3.3 : Supply and Demand of Nepal

3.2.5 Energy Demand Forecast

For the determination of future electricity demand forecast past year's consumption data is taken. In this study, the expected energy demand or consumption is forecasted by weighted average method. In this method, the quantities which are needed to be averaged are assigned weight first as per their importance and then their average is determined. The weighted average is calculated using following formulae.

Weighted Average Growth Rate (%) = \sum (Annual Growth Rate X Weight)/ \sum Weights.

To determine the weighted average growth rate, we consider energy consumption spanning from the year 2015 to the year 2022. The calculated average growth rate is found to be 16.05%. After the weighted average growth rate calculation, we proceed to calculate the expected energy consumption using the following formula:

 $EC_n = EC_{base} \times (1 + WAGR/100)^n$

Where,

ECn = Expected Energy Consumption for nth year from base year

EC_{base} = Energy Consumption of base year

WAGR = Weighted Average Growth Rate.

The expected energy consumption in each year are presented in the tabular form in appendix.

3.2.6 India Power Supply and Demand Scenario

The energy requirements and energy supplied in India from 2015-16 to 2021-2022 were taken from the Central Electricity Authority (CEA) and are depicted in the following figure. From this table, it can be observed that India's energy deficiency has been on a decreasing trend. In the fiscal year 2015-16, the energy deficiency was 23,558 million units, and in 2021-2022, the energy deficiency reduced to 5,787 million units.

Table 3.4 : India Power Supply and Demand Scenario for past years (CEA, 2023)

	Energy	Energy	Energy l	Deficit
Year	Requirement	Supplied		
	(MU)	(MU)	(MU)	(%)
2015-16	1,114,408	1,090,850	23,558	2.1
2016-17	1,142,928	1,135,332	7,596	0.7
2017-18	1,213,326	1,204,697	8,629	0.7
2018-19	1,274,595	1,267,526	7,070	0.6
2019-20	1,291,010	1,284,444	6,566	0.5
2020-21	1,275,534	1,270,663	4,871	0.4
2021-22	1,379,812	1,374,024	5,787	0.4

The installed capacity of India from different energy sources to meet the power demand is shown in following table (Central Electricity Authority India, June 2023).

Types of Sources	Installed Capacity(MW)
Thermal	
Total Thermal	237928.91
Nuclear	
Nuclear	7480
Renewable Energy Sources including La	rge Hydro
Total Renewable Energy sources	
including Hydro	176492.72
Total Installed Capacity	421901.63

Table 3.5 : Energy Sources of India (CEA, 2023)

The total Installed capacity of India as shown in the following pie char figure 3.2.

Figure 3.2 : Total Installed Capacity of India

The total contribution of thermal energy accounts for about 56% of the total installed capacity, while renewable energy sources, including hydro, constitute 42%. The remaining 2% is from nuclear energy.

CHAPTER 4 : RESULTS AND DISCUSSION

4.1 Average Yearly Plant Capacity Factor (APCF) for Groups of Projects

The average yearly plant capacity factor for three years is calculated by considering the average yearly plant capacity factor of eleven projects with a total capacity of 458.05 MW. The weighted average yearly plant capacity factor for NEA-operated projects is found to be highest for the fiscal year 2078/79, with a value of 0.66. Similarly, the lowest value is found for the fiscal year 2077/78, with a value of 0.56. The estimated average yearly plant capacity factor (APCF) for the three-year period of projects operated by NEA, presented in the appendix, is found to be 0.61. The graphical representation of the obtained weighted average yearly plant capacity factor is depicted in Figure 4.1 following.

Figure 4.1 : Average Yearly Plant Capacity Factor of Three Different year for NEA operated Projects

4.2 Percentage Consumption Growth Scenario with Import and Export

The percentage growth of consumption, imported energy, and exported energy from India is analyzed. It has been observed that the percentage growth of consumption has increased slightly. However, in the year 2020, total consumption was 6418 GWh due

to the outbreak of the Covid-19 pandemic. As a result, the percentage growth of consumption was only 1.82% compared to the previous year.

Imports from India have decreased, but exports to India have significantly increased since the fiscal year 2019. In the year 2022, imported energy was 1543 GWh, representing a decrease compared to the previous year. On the other hand, exported energy was 494 GWh, indicating a rapid increase compared to the previous year.

		Growth Rate				
Year	Import Rate (%)	Consumption (%)	Export (%)			
2015	-	-	-			
2016	29.78	-0.67	0.00			
2017	22.33	28.47	0.00			
2018	18.71	16.40	0.00			
2019	8.95	13.42	1066.67			
2020	-38.54	1.82	205.71			
2021	62.29	13.35	-64.49			
2022	-45.01	21.54	1200.00			

Table 4.1 : Percentage Growth Rate of Consumption, Import, and Export energy

4.3 Total Energy Generation Forecast

The generation forecast scenario provides the total additional installed capacity, total installed capacity, total additional energy, and the future generation of energy for the different years between 2023 and 2031. To determine all these, the upcoming hydropower projects that have already secured power purchase agreements between Nepal Electricity Authority and Independent Power Producers are considered.

The forecasted additional installed capacity (MW), forecasted total installed capacity (MW), forecasted total additional energy (MW), and future energy (GWh) are obtained and depicted in the following Table 4.2

Year	Total Additional Installed Capacity (MW)	Total Installed Capacity (MW)	Total Additional Energy (GWh)	Total Energy Generation (GWh)
2022	-	2384.891	-	12743.90
2023	1173.43	3558.33	6270.36	19014.27
2024	416.96	3975.29	2228.07	21242.33
2025	917.42	4892.71	4902.34	26144.67
2026	1761.71	6654.42	9413.87	35558.55
2027	47.98	6702.39	256.36	35814.91
2028	157.14	6859.53	839.69	36654.60
2029	142.50	7002.04	761.48	37416.08
2030	726.24	7728.28	3880.73	41296.81
2031	546.815	8275.09	2921.96	44218.77

Table 4.2 : Forecasted Power Generation and Future Energy Generation(GWh)

From the table above, we observe that the least energy, 256.36 GWh, is achieved in 2027 due to the low rate of power purchase agreement between the Nepal Electricity Authority (NEA) and Independent Power Producers (IPP) in 2019. Similarly, in the years 2028 and 2029, the forecasted generation is 839.69 GWh and 761.48 GWh, respectively. However, the highest energy, about 9413.87 GWh, is achieved in 2026 because of the high rate of Power Purchase Agreement (PPA) between the Nepal Electricity Authority and Independent Power Producers (IPP) in 2018. According to the PPA in different year, the total energy generation is forecasted up to the year 2031 is about 44,218.77 GWh on the national grid of Nepal.

4.4 Comparison of Future Electricity Demand forecasted by Weighted Average Method (EC_n) and WECS.

The comparison of future electricity demand forecasted by WECS and weighted average method are presented in following Figure 4.2.

Figure 4.2 : Comparison of Electricity Demand Forecast by Weighted Average Method and WECS.

The future energy generation forecast by Weighted Average Method and Forecasted by the WECS is analyzed. It seems future demand forecasted by Weighted Average method is almost similar to the WECS forecast BAU 4.5% during the year 2015 to 2024. Then for the year 2024 to 2027, the electricity demand forecast by weighted average method follows WECS forecast Reference scenario 7.2%. After that in the year between 2027 to 2031 the electricity demand forecast by weighted average method follows WECS forecast High Scenario 9.2%.

4.5 Analysis of forecasted energy generation and demand forecast scenario

The forecasted energy generation and WECS demand forecast scenario are analyzed. In the WECS demand forecast, energy requirements under different scenarios are considered with varying GDP growth rates. The completion time of additional hydropower projects is taken as the average completion year mentioned in the PPA date. The figure below represents the forecasted energy generation and energy requirements forecasted by WECS under different scenarios.

4.5.1 Result on Generation forecast and WECS forecast

The figure 4.3 below provides the energy requirement forecasted by WECS and total energy generation.

Figure 4.3 : Energy requirement forecasted by WECS and Total Energy Generation (GWh) forecast

The above chart shows the results of different scenarios for the years 2023 to 2031, focusing on energy surplus and deficit values. In the BAU 4.5% scenario, Reference scenario 7.2% and High scenario 9.2% there will be only surplus energy and no deficit energy. However, Policy Intervention @ 7.2% and Policy Intervention @ 9.2%, there will be mix of surplus and deficit energy. The details of surplus and deficit energy of different scenario for a different year is shown in following Table 4.3 and Table 4.4.

Year	BAU 4	1.5%	Reference Sco	enario 7.2 %	High Scen:	ario 9.2%
	Surplus	Deficit	Surplus	Deficit	Surplus	Deficit
	(GWh)	(GWh)	(GWh)	(GWh)	(GWh)	(GWh)
2023	8175.01	-	6851.80	-	5677.57	-
2024	9323.58	-	7729.26	-	6301.07	-
2025	13146.42	-	11281.00	-	9598.83	-
2026	21145.18	-	18676.25	-	16349.06	-
2027	19986.42	-	16913.99	-	13941.77	-
2028	19411.00	-	15735.06	-	12117.81	-
2029	18757.37	-	14477.92	-	10215.64	-
2030	21222.98	-	16340.02	-	11432.72	-
2031	22210.77	-	16111.38	-	9730.87	-

Table 4.3 : Surplus/Deficit Energy for BAU and Reference Scenarios

Table 4.4 : Surplus/Deficit Energy for BAU and Policy Interventions.

Year	Policy Interver	ntion @ 7.2%	Policy Intervention @ 9.2%		
	Surplus (GWh)	Deficit (GWh)	Surplus (GWh)	Deficit (GWh)	
2023	-	393.11	-	1666.48	
2024	322.80	-	-	1230.57	
2025	3712.99	-	1879.62	-	
2026	10546.27	-	7893.54	-	
2027	8222.04	-	4749.95	-	
2028	6481.13	-	2189.69	-	
2029	4662.02	-	-	448.78	
2030	5962.15	-	31.99	-	
2031	5596.67	-	-	1924.59	

4.5.2 Result on Generation forecast and Weighted Average Method of Electricity

Demand Forecast

The generation forecast and weighted average method of electricity demand forecast is compared and shown in following bar chart figure 4.4.

Figure 4.4 : Future energy generation and electricity demand forecast

Figure 4.4 shows the future energy generation and electricity demand forecast from 2023 to 2031. From this bar chart, it seems there will be surplus energy throughout the year and no deficit energy. The details of surplus and deficit energy for the different year is as shown in following Table 4.5.

Year	Weighted Average Method			
	Surplus Energy(GWh)	Deficit Energy(GWh)		
2023	8752.73	-		
2024	9333.36	-		
2025	12323.78	-		
2026	19518.78	-		
2027	17200.04	-		
2028	15051.21	-		
2029	12344.38	-		
2030	12199.98	-		
2031	10450.59	-		

Table 4.5 : Surplus/Deficit energy for Weighted Average Method of Electricity Demand forecast.

4.6 Result on Maximum Cross Border Power Flow Condition

After the analysis of demand forecast and future year energy generation, the maximum surplus energy is observed at BAU 4.5% scenario. The optimum power flow is obtained in the month of Aswin. The capacity requirement of transmission line for different year is depicted in the following Table 4.6. To determine capacity of present transmission line is considered all the cross border transmission line above 132 KV. If all the plan, proposed and under construction transmission line operate within the scheduled date, transmission lines will enough to transmit surplus energy. However, due to the delay in construction, present transmission line is not enough to transmit surplus energy in coming futures. Therefore, all the transmission lines should be commissioned in time.

Year	Total Installed Capacity (MW)	Maximum Energy Flow in Ashwin	Total Capacity (MW)	Transmission line Requirement (MW)
2023	3558.33	846.22	1500	1305.89
2024	3975.29	965.11	1500	1489.37
2025	4892.71	1360.82	3500	2100.03
2026	6654.42	2188.79	3500	3377.77
2027	6702.39	2068.85	3500	3192.67
2028	6859.53	2009.28	5300	3100.75
2029	7002.04	1941.63	8300	2996.34
2030	7728.28	2196.85	8300	3390.20
2031	8275.09	2299.10	8300	3547.99

 Table 4.6 : Capacity Requirement of Cross Border Transmission Line.

From the above table, we can observe that the power transfer capacity of the transmission line requirement is greater than the available power transfer capacity of the transmission line. Between 2023 and 2024, the transmission line capacity is 1500 MW; between 2025 and 2028, the transmission capacity is 3500 MW, and between 2029 and 2031, the transmission line capacity is 8300 MW. However, the transmission line capacity requirement is less than the total available capacity (MW).

CHAPTER 5 : CONCLUSIONS AND RECOMMENDATION

5.1 Conclusions

This thesis studied the energy cross border electricity trade opportunities for different scenarios. It's concluded that the scenarios have varying impacts on the energy balance, with surpluses being predominant.

5.1.1 Conclusions on cross border electricity trade opportunities

To determine the cross border electricity trade opportunities, surplus and deficit energy for different scenario of energy consumptions is being compared with the generation forecast. The conclusions arrived from the studied are follows.

Surplus and Deficit energy for WECS demand forecast: The surplus energy is predominant with compare to the deficit energy. The policy intervention scenarios introduce deficits in some years while still maintaining surpluses in others. In BAU 4.5%, throughout the years, surplus energy is consistently present but there is no deficit energy. Similarly, in reference scenario 7.2% and high scenario 9.2% surplus energy is decreased with the increase in consumer demand although there is no deficit energy is observed. However, in policy intervention 7.2% scenario; there are mix of surplus and deficit energy in the studied years. In this scenario, deficit energy is observed only in initial year 2023 except this year surplus energy is obtained. In the policy intervention 9.2% there is mix of surplus and deficit energy is observed.

Surplus and Deficit energy for Weighted Average Method demand forecast: The percentage increase in generation energy are 11.72%, 23.08%, 36.01%, 0.72%, 2.34%, 2.08%, 10.37% and 7.08% for the year 2023, 2024, 2025, 2026, 2027, 2028, 2029,2030, 2031 respectively. However, the demand growth is only 16.05%. Hence we can conclude that there is sufficient of surplus energy for all the years.

In this thesis, only the PPA-signed projects are considered for the analysis of crossborder opportunities. However, numerous projects are undergoing the PPA process, and ongoing planned projects are in various stages of construction. Upon the completion of all projects currently under construction and those in progress, surplus energy will increase. Additionally, for the determination of future energy generation forecast, the average completion time of all under-construction hydropower projects is taken based on past project completion time. By reducing the completion time of all under-construction and planned hydropower projects, the future energy generation can be shifted to earlier years. This shift would result in increased energy generation, ultimately leading to higher surplus energy and enhance the cross border electricity trade.

5.2 Recommendation

- More than 56% of the total installed capacity in India is from thermal power, and nuclear power accounts for about 2% of this capacity. If we can lower the per unit cost of generation from hydropower projects, it would be possible to collect extra revenue through cross-border electricity trading.
- In the present situation, the existing transmission line is not sufficient to evacuate the power for cross-border trading. Only one 400 KV Dhalkebar-Muzaffarpur transmission line is currently in operation, resulting in limited power transmission capacity. Therefore, in order to evacuate the power generated from different parts of Nepal, the proposed 400 KV transmission lines need to be commissioned on schedule.
- The power sector structure of Nepal is vertically integrated. Nepal Electricity Authority owns and operates the entire transmission line infrastructure. It is necessary to involve private companies in transmission and distribution for cross border trading and to encourage internal market competition. The new electricity act, which has been pending in parliament for a long time, also includes provisions for cross-border trading and the deregulation of the electricity market in Nepal.
- In this research, the possibility of future additions of solar energy is not studied. However, the government of Nepal has identified some projects and some of IPPs solar projects that has been already signed power purchase agreement with the Nepal Electricity Authority. The future addition of solar energy will ultimately increase future energy generation. As a result, surplus energy will also increase.

REFERENCES

- Adhikari, P. (2018). Fostering Joint Initiative in Energy Cooperation between Nepal. Retrieved from https://nea.org.np/
- CEA. (2023). Central Electricity Aauthority, Government of India, ANNUAL REPORT 2021-22. Retrieved from https://cea.nic.in/?lang=en
- EPA. (2023). U.S. Electricity Grid & Markets. Retrieved from www.epa.gov/greenpower-markets/us-electricity-grid-markets
- Gaudel, P. (2018). Cross-Border Electricity Trade Opportunities and Challenges for Nepal. *NEA annual Reports*.
- Government of Nepal, Water and Energy Commission secretariat. (2017). Electricity Demand Forecast Report (2015-2040).
- India Energy Exchange. (2023). *India Energy Exchange*. Retrieved from www.iexindia.com.
- J. Zhao, K. L. (2016). "Variously worldwide types of deregulated electricity markets and their respective transmission congestion management schemes," 2016 51st International Universities Power Engineering Conference (UPEC), Coimbra, Portugal.
- Kurihara. (2006). Restructuring of the electric power industry and the current state of the power market in Japan. *Power Engineering Society General Meeting*, 2006. *IEEE, doi: 10.1109/PES.2006.1708896*.
- MCA Nepal. (2023). *Millennim Challenge Account Nepal*. Retrieved from https://mcanp.org/en/
- N. Flatabo, G. D. (2003). Experience with the Nord Pool design and implementation," in IEEE Transactions on Power Systems.
- NEA. (2023). A year in review fiscal year 2022/2023. Nepal Electricity Authority.
- NEA. (2023). Nepal Electricity Authority. Retrieved from https://nea.org.np/
- Nepal Electricity Authority. (2020). A year in review: Fiscal Year 2019/20. Annual Report. Retrieved from https://nea.org.np/
- Nepal Electricity Authority. (2021). A year in review: Fiscal Year 2020/21. Annual Report. Retrieved from https://nea.org.np/
- Nepal Electricity Authority. (2022). A year in review: Fiscal Year 2021/22. Annual *Reports*. Retrieved from https://nea.org.np/
- Nord Pool. (2023). Retrieved from https://www.nordpoolgroup.com/en/trading/intraday-trading/
- Pandey, R., & Adhikari, M. (2079). *Power Sale and Purchase Through Indian Energy Exhange : An Experience Sharing of Nepal.* Nepal Electricity Authority.

- S.N. Singh, S. S. (2004). Electric power industry restructuring in India: present scenario and future prospect. ", in Proc. of IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT 2004).
- SARI/EI. (2023). Retrieved 2023, from https://sari-energy.org/program-activities/regional-power-market/
- Sharan, H. (2016). A Presentation on Role of Power Traders in India and Opportunities for Cross Border Power Market. *PTC India Limited, New Delhi*.
- Subedi, S. (2079). Energy Banking/Trading Opportunities Between India and Nepal. *Vidhyut*, 66-69.
- TSDP. (2018). Transmission System Development Plan of Nepal. Retrieved from https://nepalindata.com/

APPENDIX

Power	Total Installed	Actual Generation(MWh)			Plant Factor		
Stations	Capacity (MW)	F/Y 2076/77	F/Y 2077/78	F/Y 2078/79	F/Y 2076/77	F/Y 2077/78	F/Y 2078/79
Kaligandaki 'A'	144	871,466.00	817,712.86	974,831.97	0.69	0.65	0.77
Mid-							
Marsyangdi	70	446,624.75	398,846.30	468,270.00	0.73	0.65	0.76
Marsyandi	69	443,852.10	398,920.10	464,271.50	0.73	0.66	0.77
Upper							
Trishuli 3A	60	407,551.15	314,767.50	432,832.50	0.78	0.60	0.82
Chameliya	30	160,811.64	151,247.41	153,981.04	0.61	0.58	0.59
Trishuli	24	128,973.11	121,211.30	137,113.27	0.61	0.58	0.65
Gandak	15	10,337.60	12,123.40	15,181.70	0.08	0.09	0.12
Modi	14.8	66,913.20	60,470.50	79,601.90	0.52	0.47	0.61
Devighat	15	92,053.14	85,429.11	98,389.60	0.70	0.65	0.75
Sunkoshi	10.05	62,245.94	55,916.73	63,524.08	0.71	0.64	0.72
Puwa	6.2	34,914.55	34,477.31	37,715.20	0.64	0.63	0.69
Tatal	159.05		Avg I	Plant Factor	0.62	0.56	0.66
Iotai	458.05		Three	vear APCF		0.61	

Appendix A Average Plant Capacity Factor

Developer	Projects	District	Installed	PPA	Expected
			Capacity (kWh)	Date Nepali	Completi on Date
Lohore Khola	Lohore Khola	Dailekh	4200	2069	2023
Hydropower	Lonore Ithola	Duriekii	1200	2007	2023
Co. Pvt. Ltd					
Abiral	Upper Khadam	Morang	990	2070	2023
Hydropoer co.		C			
Pvt. ltd.					
Alliance	Upper Sit	Argakhanchi	905	2075	2026
Energy	Khola				
Solutions					
Pvt.Ltd.		<u> </u>	1.70.4		
Amar Jyoti	Istul Khola	Gorkha	1506	2075	2026
Hydro Power					
Ambo	Uppor	Darbat	3750	2075	2026
Hydronower	Bhurundi	Faibat	3730	2075	2020
Pvt Ltd	Diaranai				
Ankhu	Ankhu Khola	Dhading	34000	2073	2024
Hydropower		Dinading	21000	2075	2021
(P.) Ltd.					
Annapurna	Landruk Modi	Kaski	86590	2075	2026
Bidhyut Bikas					
Co. Pvt. Ltd.					
Apex Makalu	Middle Hongu	Solukhumbu	22000	2075	2026
Hydro Power	Khola A				
Pvt. Ltd.			40000		
Api Power	Upper	Darchula	40000	2075	2026
Company Ltd.	Chameliya				
Apolo	Buku Khola	Solukhumbu	6000	2070	2023
Hydropower					
Pvt Ltd	TT T 1 1	D1	14500	2075	2026
Arati Power	Upper Irknuwa	Bnojpur	14500	2075	2026
Company Ltd.	D 1 1 1	<u> </u>	22520	20 67	0.000
Balephi	Balephi	Sindhupalch	23520	2067	2023
Jalbidnyut Co.		OWK			
Liu. Baraha	Irkhuwa Khola	Phoipur	15524	2075	2026
Dalalla Multipower	R	ыюјри	13324	2075	2020
Pvt Ltd	D				
Barpak Daruadi	Middle Super	Gorkha	10000	2075	2026
Hydropower	Daraudi				
Pvt. Ltd.					
Beni	Upper Solu	Solukhumbu	18236	2069	2023
Hydropower					

Appendix B Under Construction Projects

Project Pvt. Ltd.					
Betrawati Hydropower Company Pvt. Ltd.	Phalanku Khola	Rasuwa	13700	2069	2023
Bhalaudi Khola Hydropower Pvt. Ltd.	Bhalaudi Khola	Kaski	2645	2076	2027
Bhujung Hydropower Pvt. Ltd.	Upper Midim	Lamjung	7500	2074	2025
Bigu Hydro Venture Pvt. Ltd.	Pegu Khola	Dolakha	3000	2079	2030
Bikash Hydropower Company Pvt Ltd.	Upgen Mashés Khole -	Gorkha	4550	2075	2026
Blue Energy Pvt. Ltd.	Super Trishuli	Gorkha and Chitwan	70000	2075	2026
Budhi Gandaki Hydropower Pvt. Ltd.	Super Machha Khola Sana	Gorkha	4600	2080	2031
Bungal Hydro Pvt. Ltd (Previously Sanigad Hydro Pvt. Ltd.)	Upper Sanigad	Bajhang	10700	2072	2023
Champawati Hydropower Pvt. Ltd	Chepe khola A	Lamjung	7000	2075	2026
Chandeshwori Mahadev Khola MH. Co. Pvt. Ltd.	Chulepu Khola	Ramechhap	8520	2071	2023
Chauri Hydropower (P.) Ltd.	Chauri Khola	Kavrepalanc howk, Ramechap, sindu, Dolakha	6000	2076	2027
Chilime Hydro Power Company Ltd.	Rasuwagadhi	Rasuwa	111000	2068	2023
Chirkhwa Hydropower Pvt. Ltd.	Upper Chirkhwa	Bhojpur	4700	2073	2024
Consortium Power	Khare Khola	Dolakha	24100	2070	2023

Developers Pvt.					
Ltd.					
Daram Khola	Daram Khola	Baglung and	9600	2073	2024
Hydro Energy		Gulmi			
Ltd.					
Dariyal Small	Upper Belkhu	Dhading	996	2068	2023
Hydropower					
Pvt.Ltd					
Dhading Ankhu	Upper Ankhu	Dhading	38000	2075	2026
Khola Hydro					
Pvt. Ltd.					
Dhaulagiri	Madhya Daram	Baglung	3000	2075	2026
Civil Electrical	Khola A				
and Mechanical					
Engineering					
Pvt. Ltd.					
Dhaulagiri	Madhya Daram	Baglung	4500	2075	2026
Civil Electrical	Khola B				
and Mechanical					
Engineering					
Pvt. Ltd.					
Dhaulagiri	Darbang	Myagdi	25000	2072	2023
Kalika Hydro	Myagdi				
Pvt. Ltd					
Diamond	Upper Daraudi-	Gorkha	10000	2072	2023
Hydropower	1				
Pvt. Ltd.		T ·	50000	2075	2026
Dibyajyoti	Marsyangdi	Lamjung	50000	2075	2026
Hydropower	Besi				
Pvt. Ltd.	Via and Via alla	D-1-1-1-	550	2079	2020
Dipjyoti	Knani Knola	Dolakna	550	2078	2029
Hydropower Dut I td					
PVI. Lld.	Cabba Khala A	Contributions	0000	2071	2022
Dipsabna	Saona Knola A	Sanknuwasa	9990	2071	2023
Dut I td		Ulla			
Pvi. Liu.	Janua Kholo	Sonkhuwaga	07200	2075	2026
Dolakila	Isuwa Kilola	bha	97200	2073	2020
Company Dyt		Ulla			
Ltd					
Dovan	Junbesi Khola	Solukhumbu	5200	2069	2023
Hydronower	Junoesi Knora	Solukiluillou	5200	2007	2025
Company Pyt					
Ltd.					
Dudh koshi	Dudhkoshi ?	Solokhumbh	70000	2078	2029
Hydropower	Jaleshwor	u		_0,0	
Private Ltd					
Dudhlagh	Down Vhala	Vhotor ~	6500	2060	2022
Duankosni	Kawa Knola	Knotang	0000	2009	2023
rower					

Company Pvt. Ltd.					
Dudhpokhari Chepe Hydropower Pvt. Ltd.	Dudhpokhari Chepe	Gorkha	8800	2075	2026
Dynamic Hydro Energy Pvt. Ltd.	Chepe Khola Cascade	Lamjung and Gorkha	2000	2079	2030
Dynamic Hydro Energy Pvt. Ltd.	Lapche Tamakoshi	Dolakha	40000	2079	2030
Dynamic Power Pvt. Ltd.	Manahari Khola	Makwanpur	4444	2079	2030
Ekikrit Byapar Company Pvt. Ltd.	Brahamayani	Sindhupalch owk	35470	2075	2026
Energy Engineering Pvt. Ltd.	Upper Mailung A	Rasuwa	6420	2067	2023
Energy Venture Pvt. Ltd.	Upper Lapche	Dolakha	52000	2073	2024
Essel-Clean Solu Hydropower Pvt. Ltd.	Lower Solu	Solukhumbu	82000	2070	2023
Expert Hydro Investment Pvt. Ltd.	Sani Bheri	Rukum (East)	44520	2080	2031
Gaughar Ujjyalo Sana Hydropower Co. Pvt. Ltd.	Ghatte Khola Small	Sindhupalch owk	970	2074	2025
Gaurishankar Power Development Pvt. Ltd.	Middle Hyongu Khola B	Solukhumbu	22900	2074	2025
Gelun Hydropower Co.Pvt.Ltd	Gelun	Sindhupakch owk	3200	2068	2023
Global Hydropower Associate Pvt. Ltd.	Likhu-2	Solukhumbu / Ranechap	33400	2071	2023
Gorakshya Hydropower Pvt. Ltd.	Super Ankhu Khola	Dhading	23500	2074	2025

Greenlife	Khani khola-1	Dolakha	40000	2074	2025
Energy Pvt.					
Ltd.					
Gumu Khola	Gumu Khola	Dolakha	950	2075	2026
Bhyakure					
Hydropower					
Pvt. Ltd.					
Gurkhas	Upper Junbesi	Solukhumbu	4700	2080	2031
Himalayan					
Hydro Ltd.					
Habitat Power	Hewa Khola	Panchthar	5000	2075	2026
Company Pvt.	"A"				
Ltd					
Halesi Urja Pvt.	Madhya Rawa	Khotang	2000	2079	2030
Ltd.	5	U			
Happy Energy	Mathilllo	Sankhuwasa	40000	2080	2031
Pvt. Ltd.	Sankhuwa	bha			
Holombu	Kaumti kholo	Sindhunalah	683	2075	2026
Construction	KSuilli Kliola	owk	085	2075	2020
Dut Ltd		OWK			
FVI. LIU	Suman Vahali	Toplainna	12000	2075	2026
Energy Dyt	Super Kabeli	rapiejung	12000	2075	2020
Ellergy PVI.					
Llu.	D -1 - 1 - 1 -	M1'	(000	2074	2025
HIM CONSUL	Rele Khola	Myagui	6000	2074	2025
PVI. LIU.	Com Kholo 1	Delaha	5500	2075	2026
Him Parbai	Sagu Knola-1	Dolakna	5500	2075	2026
Hydropower Dut Ltd					
PVI. LIG.	Cara Khala	D - 1 - 1 - 1	20000	2075	2026
Him Parbat	Sagu Khola	Dolakha	20000	2075	2026
Hydropower Det Ltd					
PVt. Ltd.	T'' TZ1 1	0' 11 1 1	1(2(0	2072	2024
Him River	Liping Khola	Sindhupalch	16260	2073	2024
Power Pvt. Ltd.		owk			
Him Star Urja	Buku Kapati	Okhaldhung	5000	2074	2025
Co. Pvt. Ltd.		a and			
Himalayan	Arun Khola-2	Nawalpur	2000	2080	2031
Engineering		1 I			
and Energy Pvt.					
Ltd.					
Himalayan	Upper Chauri	Kavrepalanc	6000	2074	2025
Water	11	howk			
Resources and					
Energy					
Development					
Co. Pvt. Ltd.					
Himali Hvdro	Sona Khola	Taplejung	9000	2075	2026
Fund Pvt. Ltd.					

Himali Rural Electric Co- operative Ltd	Leguwa Khola Small	Dhankuta	640	2074	2025
Hira Ratna Hydropower P.itd	Tadi Khola	Nuwakot	5000	2067	2023
Hydro Connection Pvt. Ltd.	Rauje Khola	Solukhumbu	17712	2075	2026
Hydro Empire Pvt. Ltd.	Upper Myagdi	Myagdi	20000	2071	2023
Hydro Innovation Pvt. Ltd.	Tinekhu Khola	Dolakha	990	2069	2023
Hydro Support Pvt. Ltd.	Middle Kaligandaki	Myagdi	53539	2080	2031
Hydro Venture Private Limited	Solu Khola (Dudhkoshi)	Solukhumbu	86000	2071	2023
Hydro Village Pvt. Ltd	Myagdi Khola	Myagdi	57300	2075	2026
Ichowk Hydropower Pvt. Ltd.	Gohare Khola	Sindhupalch owk	950	2075	2026
Idi Hydropower Co. P. Ltd.	Idi Khola	Kaski	975	2070	2023
IDS Energy Pvt. Ltd.	Lower Khorunga	Terhathum	5500	2074	2025
Ingwa Hydro Power Pvt Ltd	Upper Ingwa khola	Taplejung	9700	2068	2023
Integrated Hydro Fund Nepal Pvt. Ltd.	Upper Brahamayani	Sindhupalch owk	15150	2075	2026
Isuwa Energy Pvt. Ltd	Lower Isuwa Cascade	Sankhuwasa bha	40100	2075	2026
Jagadulla Hydropower Co. Ltd.	Jagadulla	Dolpa	106000	2080	2031
Jal Urja Pvt. Ltd.	Nuagad	Darchula	1000	2075	2026
Jalshakti Hydro Company Pvt. Ltd.	llep (Tatopani)	Dhading	23675	2075	2026
Jhilimili Hydropower Co. Pvt. Ltd.	Gulangdi Khola	Gulmi	980	2075	2026

Jhyamolongma Hydropower Development Company Pvt. Ltd.	Karuwa Seti	Solukhumbu	32000	2074	2025
Jumdi Hydropower Pvt. Ltd.	Jumdi Khola	Gulmi	1750	2056	2023
Jurimba Hydropower Co. Pvt. Ltd.	Jurimba Khola	Sindhupalch owk	7630	2079	2030
Kabeli Energy Limited	Kabeli- A	Panchthar and Taplejung	37600	2072	2023
Kabeli Hydropower Company Pvt.Ltd.	Kabeli-3	Taplejung	21930	2075	2026
Kalanga Hydro Pvt. Ltd.	Kalangagad	Bajhang	15330	2072	2023
Kali Gandaki Gorge Hydropower Co. Pvt. Ltd	Kaligandaki Gorge	Myagdi	180000	2079	2030
Kalika Construction Pvt. Ltd.	Upper Daraudi B	Gorkha	8300	2076	2027
Kalika Construction Pvt. Ltd.	Upper Daraudi C	Gorkha	9820	2076	2027
Kalika Energy Ltd.	Bhotekoshi-5	Sindhupalch owk	62000	2075	2026
Kalinchowk Hydropower Ltd.	Sangu (Sorun)	Dolakha	5000	2075	2026
Kasuwa Khola Hydropower Ltd.	Kasuwa Khola	Sankhuwasa bha	45000	2075	2026
Khechereswor Jal Vidhyut Pvt. Ltd.	Salubyani Gad Small	Bajhang	233	2074	2025
Khechereswor Jal Vidhyut Pvt. Ltd.	Jadari Gad Small	Bajhang	1000	2074	2025
Langtang Bhotekoshi Hydropower Company Pvt. Ltd.	Rasuwa Bhotekoshi	Rasuwa	120000	2074	2025

LC Energy Pvt. Ltd. (Prv. Chirkhwa Hydropower Pvt	Lower Chirkhwa	Bhojpur	4060	2074	2025
Lower Irkhuwa Hydropower Co. Pvt. Ltd.	Lower Irkhuwa	Shojpur	13040	2075	2026
Lower Mid Rawa Khola Hydropower Project Pvt. Ltd.	Lower Mid Rawa	Khotang	4000	2080	2031
Mabilung Energy (P) Ltd	Upper Piluwa Khola -3	Sankhuwasa bha	4950	2075	2026
Madame Khola Hydropower Pvt. Ltd.	Madame Khola	Kaski	24000	2075	2026
Madhya Midim Jalbidhyut Company P. Ltd.	Middle Midim	Lamjung	4800	2079	2030
Madhya Tara Khola Hydropower P. Ltd. (Prv. Pahadi Hydro Power Company (P.) Ltd.)	Madhya Tara Khola Small	Baglung	2200	2073	2024
Makar Jitumaya Hydropower Pvt. Ltd.	Upper Suri	Dolakha	7000	2075	2026
Makari Gad Hydropower Pvt. Ltd.	Makarigad	Darchula	10000	2072	2023
Manang Marsyangdi Hydropower Company Pvt. Ltd.	Manang Marsyangdi	Manang	135000	2077	2028
Masina Paryatan Sahakari Sanstha Ltd.	Masina	Kaski and Tanahu	891	2075	2026
Mathillo Mailung Khola Jalbidhyut Ltd.	Upper Mailun	Rasuwa	14300	2068	2023

Maulakalika Hydropower Company Pvt. Ltd.	Kalika Kaligandaki	Tanahu	38160	2079	2030
Maya Khola Hydropower Co Pvt. Ltd.	Maya Khola	Sankhuwasa bha	14900	2070	2023
Melamchi Hydro Pvt.Ltd.	Ribal khola	Sindhupalch owk	998	2078	2029
Menchhiyam Hydropower Co.Ltd.	Upper Piluwa Khola 2	Sankhuwasa bha	4720	2075	2026
Mewa Developers Pvt. Ltd	Siwa Khola	Taplejung	9300	2079	2030
Mewa Developers Pvt. Ltd.	Middle Mewa	Taplejung	73500	2075	2026
Middle Bhotekoshi Jalbidhyut Company Ltd.	Middle Bhotekoshi	Sindhupalch owk	102000	2068	2023
Milarepa Energy Pvt. Ltd.	Super Melamchi khola	Sindhupalch owk	23600	2080	2031
Milke Jaljale Hydropower Pvt.Ltd	Upper Piluwa Hills	Sankhuwasa bha	4990	2075	2026
Modi Jalvidhyut Company Ltd.	Upper Modi 'A'	Kaski	42000	2080	2031
Moonlight Hydropower Pvt. Ltd.	Balephi A	Sindhupalch owk	22140	2077	2028
Mount Everest Power Development Pvt. Ltd.	Dudhkunda Khola	Solukhumbu	12000	2075	2026
Mount Nilgiri Hydropower Company Pvt. Ltd.	Rurubanchu-1	Kalikot	13500	2074	2025
Mount Rasuwa Hydropower Pvt. Ltd.	Midim 1 Khola	Lamjung	13424	2075	2026
Multi Energy Development Pvt. Ltd.	Langtang Khola	Rasuwa	20000	2072	2023

Myagdi	Ghan Khola	Myagdi	14000	2073	2024
Hydropower					
Pvt. Ltd.					
Nama Buddha	Tinau Khola	Palpa	1665	2065	2023
Hydropower	Small				
Pvt. Ltd.		N 1 1 1		A A A A	
Nasa	Lapche Khola	Dolakha	99400	2074	2025
Hydropower					
PVt. Ltd.	Talla Industria	C'	4152	2070	2020
National hydro	Tallo Indrawati	Sindnupaich	4155	2079	2030
Power Co. Ltd.		OWK		A A A	
Nepal Water	Upper Trishuli	Rasuwa	216000	2074	2025
and Energy	1				
Component Development					
Ltd					
Nilgiri Khola	Nilgiri Khola	Myagdi	38000	2073	2024
Hydropower	T thight Rhold	wiyugui	50000	2075	2021
Co. Ltd.					
Nilgiri Khola	Nilgiri Khola 2	Myagdi	71000	2074	2025
Hydropower	Cascade	, 6			
Co. Ltd.					
North Summit	Nyadi Phidi	Lamjung	21400	2075	2026
Hydro Pvt. Ltd.					
Nyam Nyam	Nyam Nyam	Rasuwa	6000	2074	2025
Hydropower	Khola				
Company Pvt.					
Ltd.					
Omega Energy	Sunigad	Bajhang	11050	2074	2025
Developer Pvt.					
Ltd.	Cabba Khala C	Carlaharraga	4106	2075	2026
Drut I td	Saona Khala C	bha	4190	2073	2020
Orbit Energy	Sabha Khola B	Sankhuwasa	15100	2074	2025
Pvt Ltd		bha	13100	2074	2023
(Previously		ciiu			
Pokhari					
Hydropower					
Company Pvt.					
Ltd.)					
Paan Himalaya	Likhu-1	Solukhumbu	51400	2071	2023
Energy Private		/ Ranechap			
Limited	D 1	— 1 ·	01000	0075	000 -
Palum Khola	Palum Khola	Taplejung	21000	2075	2026
Hydropower					
PVI LIG.	Sat Vhele	Darbat	2500	2074	2025
Khola	Set MIOIA	rarbat	3300	2074	2023
Hydronower					
inguiopower					

Company Pvt					
Ltd.					
Peoples Energy	Khimti-2	Dolakha and	48800	2072	2023
Ltd.		Ramechhap		_0/_	
(Previously		rumeennap			
Peoples Hydro					
Co-operative					
Ltd)					
Peoples	Super Dordi	Lamiung	54000	2071	2023
Hydronower	"Kha"	Langung	5 1000	2071	2023
Company Pyt	itila				
Ltd					
Perfect Energy	Middle Trisbuli	Nuwakot	19/10	2075	2026
Development	Ganga	Nuwaku	19410	2075	2020
Development Dut I td	Galiga				
Pvi. Liu Dhadi - Khala	Dhadi Khala	Dhaimur	2520	2075	2026
Phedi Khola	Theorem Theorem	Bnojpur	3520	2075	2026
Hydropower Common Port	(Inumiung)				
Company Pvt.					
Ltd.	T '1 1 TZ1 1	D 11	20000	2075	2026
Pike	Likhu Khola	Ramechhap	30000	2075	2026
Hydropower		and			
Pvt. Ltd.		Okhaldunga	21000	2070	2020
Puwa Khola-I	Aayu Malun	Okhaldhung	21000	2078	2029
Hydropower	khola	a			
Pvt. Ltd.					
Raghuganga	Rahughat	Myagdi	40000	2075	2024
Hydropower					
Ltd.					
Rapti Hydro	Rukumgad	Rukum	5000	2073	2024
and General					
Construction					
Pvt. Ltd					
Rara	Upper Parajuli	Dailekh	2150	2069	2023
Hydropower	Khola				
Development					
Co. Pvt. Ltd.					
Rasuwa	Phalanku	Rasuwa	7290	2071	2023
Hydropower	Khola				
Pvt. Ltd					
Reliable	Khorunga	Terhathum	4800	2069	2023
Hydropower	Khola				
Co. Pvt. Ltd.					
Research and	Rupse Khola	Myagdi	4000	2071	2023
Development	_				
Group Pvt. Ltd.					
Ridge Ling	Super Chang	Gorkha	9050	2075	2026
Energy Dyt I to	Super Chepe	Lomiung	9030	2013	2020
Linergy FVI. LIG		Lamjung			

Rising	Selang Khola	Sindhupalch	990	2069	2023
Hydropower		owk			
Compnay Ltd.					
River Falls	Down Piluwa	Sankhuwasa	10300	2071	2023
Hydropower		bha			
Development					
Pvt. Ltd.					
River Side	Tamor Khola-5	Taplejung	37520	2075	2026
Hydro Energy					
Pvt Ltd.					
Ruby Valley	Menchet Khola	Dhading	7000	2075	2026
Hydropower					
Company Ltd					
Ruru	Rurubanchu	Kalikot	12000	2075	2026
Hydroelectric	Khola-2		12000	2070	2020
Company Pvt.					
Ltd.					
S.K Energy	Shyam Khola	Bhojpur	7200	2079	2030
Development	5	51			
Pvt. Ltd.					
Sabha Pokhari	Lankhuwa	Sankhuwasa	5000	2074	2025
Hydro Power	Khola	bha			
(P.) Ltd.					
Sailung Power	Bhotekoshi-1	Sindhupalch	40000	2075	2026
Company Pvt.		owk			
Ltd.					
Sajha Power	Lower Balephi	Sindhupalch	20000	2075	2026
Development		owk			
Pvt Ltd.					
Salankhu Khola	Salankhu	Nuwakot	2500	2069	2023
Hydropower	Khola				
Pvt. Ltd.					
Salasungi	Sanjen Khola	Rasuwa	78000	2072	2023
Power Limited					
Samyukta Urja	Thulo Khola	Myagdi	21300	2075	2026
Pvt. Ltd.					
Sangrila Uria	Chhuiung	Sankhuwasa	63000	2079	2030
Pvt. Ltd.	Khola	bha			
Sani Phori	Sani Phori 2	Dukum	46720	2078	2020
Hydronower	Sam Dheff 5	NUKUIII	40720	2078	2029
Co Pyt I td					
			00155	0.77	0.000
Sanigad Hydro	Upper	Bajhang	38460	2072	2023
Pvt. Ltd.	Kalangagad				
Sanima	Jum Khola	Dolakha	56000	2080	2031
Hydropower					
Ltd.					

Sanima Middle	Middle Tamor	Taplejung	73000	2073	2024
Tamor		1 0 0			
Hydropower					
Ltd. (Prv.					
Tamor Sanima					
Energy Pvt.					
Ltd.)Sanima					
Energy Pvt.					
Ltd.)					
Sanien	Upper Sanien	Rasuwa	14800	2068	2023
Hydropower	- FF ~				
Co Limited					
Sanien	Sanien	Rasuwa		2068	2023
Hydronower	Suijen	Rubuwu	42 500	2000	2023
Co Limited			42,300		
Sonkhuweeebb	Super Sebbe	Sonkhuwaga	4100	2075	2026
	Khola	bha	4100	2075	2020
a Tower Development	KIIOIa	Ulla			
Development					
PVI. LIU.	Cana Milti	Domoshhor	2000	2072	2024
Sano Ivinu Vhala	Sano Minu	Ramechnap	3000	2075	2024
Knola		and Dolakna			
Hydropower					
Ltd.	т. ·	711	(000	2075	2026
Sanvi Energy	Jogmai	Illam	6000	2075	2026
Pvt. Ltd.	Cascade			a a a t	
Saptang Hydro	Saptang Khola	Nuwakot	2500	2074	2025
Power Pvt. Ltd.					
Sasha	Khani	Dolakha	30000	2069	2023
Engingeering	Khola(Dolakha				
Hydropower)				
(P). Ltd					
Seti Khola	Seti Khola	Kaski	22000	2074	2025
Hydropower					
Pvt. Ltd.					
Sewa Hvdro	Lower Selang	0.11 1.1			2025
Ltd.		Sindhupalch	1500	2074	2025
	Lower belang	Sindnupaich	1500	2074	2025
Shaileshwari	Upper	Sindnupaicn owk Doti	1500	2074	2025
Shaileshwari Power Nepal	Upper Gaddigad	owk Doti	1500 1550	2074 2075	2025
Shaileshwari Power Nepal Pyt Ltd	Upper Gaddigad	owk Doti	1500 1550	2074 2075	2025
Shaileshwari Power Nepal Pvt. Ltd.	Upper Gaddigad	Sindnupaich owk Doti Baglung	1500 1550 4960	2074 2075 2075	2025 2026 2026
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power	Upper Gaddigad Bhim Khola	Doti Baglung	1500 1550 4960	2074 2075 2075	2025 2026 2026
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd	Upper Gaddigad Bhim Khola	Sindnupaich owk Doti Baglung	1500 1550 4960	2074 2075 2075	2025 2026 2026
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd. Siddbi	Upper Gaddigad Bhim Khola	Sindnupaich owk Doti Baglung	1500 1550 4960	2074 2075 2075	2025 2026 2026
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd. Siddhi	Upper Gaddigad Bhim Khola Siddhi Khola	Sindnupaich owk Doti Baglung Illam	1500 1550 4960 10000	2074 2075 2075 2075 2074	2025 2026 2026 2025
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd. Siddhi Hydropower	Upper Gaddigad Bhim Khola Siddhi Khola	Sindnupaich owk Doti Baglung Illam	1500 1550 4960 10000	2074 2075 2075 2074	2025 2026 2026 2025
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd. Siddhi Hydropower Company Pvt.	Upper Gaddigad Bhim Khola Siddhi Khola	Sindnupaich owk Doti Baglung Illam	1500 1550 4960 10000	2074 2075 2075 2074	2025 2026 2026 2025
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd. Siddhi Hydropower Company Pvt. Ltd.	Upper Gaddigad Bhim Khola Siddhi Khola	Sindnupaich owk Doti Baglung Illam	1500 1550 4960 10000	2074 2075 2075 2074	2025 2026 2026 2025
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd. Siddhi Hydropower Company Pvt. Ltd. Silk Power	Upper Gaddigad Bhim Khola Siddhi Khola Luja Khola	Sindnupaich owk Doti Baglung Illam Solukhumbu	1500 1550 4960 10000 24824	2074 2075 2075 2074 2075	2025 2026 2026 2025 2026
Shaileshwari Power Nepal Pvt. Ltd. Shikhar Power Development Pvt. Ltd. Siddhi Hydropower Company Pvt. Ltd. Silk Power (Prv. Maa	Upper Gaddigad Bhim Khola Siddhi Khola Luja Khola	Sindnupaich owk Doti Baglung Illam Solukhumbu	1500 1550 4960 10000 24824	2074 2075 2075 2074 2075	2025 2026 2026 2025 2025
Engineering &					
-----------------	------------------	-------------	-------	------	------
hydropower					
Simkosh	Simkosh Khola	Mvagdi	3450	2079	2030
Hydropower	211110311 111014	111) 0801	0.00	_0//	2000
Pvt. Ltd.					
Sindhuiwala	Upper Nyasem	Sindhunalch	41400	2073	2024
Hydropower		owk			
Ltd.					
Sindhuiwala	Upper Nyasem	Sindhupalch	21000	2075	2026
Hydropower	Khola A	owk			
Ltd.					
Sisa Hvdro	Sisa Khola A	Solukhumbu	2800	2073	2024
Electric					-
Company Pvt.					
Ltd.					
Sita Hydro	Nyasim Khola	Sindupalcho	35000	2075	2026
Power Co. Pvt.		wk			
Ltd.					
Sita	Dudh Khola	Manang	65000	2075	2026
Hydropower		U			
Co. Pvt. Ltd.					
Siuri Nyadi	Super Nyadi	Lamjung	40270	2074	2025
Power Pvt. Ltd.	1 2	3 0			
Snow Rivers	Super Kabeli A	Tapleiung	13500	2075	2026
Pvt. Ltd.		rupiojung	12200	2010	2020
Summit Energy	Bakan Khola	Sankhuwasa	44000	2079	2030
Solution Pvt.		bha			
Ltd					
Super Bagmati	Super Tallo	Lalitpur	41314	2080	2031
Hydropower	Bagmati	1			
Pvt. Ltd.	0				
Super	Super	Myagdi	9140	2075	2026
Ghalemdi	Ghalemdi				
Hydropower					
Pvt. Ltd.					
Super Hewa	Super Hewa	Sankhuwasa	6000	2074	2025
Power		bha			
Company Pvt.					
Ltd.					
Super Khudi	Upper Khudi	Lamjung	21210	2076	2027
Hydropower					
Pvt. Ltd.					
Super Madi	Super Madi	Kaski	44000	2073	2024
Hydropower					
Ltd.					
(Previously					
Himal Hydro					
and General					

Construction					
Ltd.)					
Sumelando	Linnar Tadi	Nuwakot	11000	2068	2023
Hydroelectric Pvt. Ltd.	Opper Tadi	INUWAKOU	11000	2008	2025
Sushmit Energy Pvt. Ltd.	Kunaban Khola	Myagdi	20000	2075	2026
Syarpu Power Company Limited	Syarpu Khola	Rukum	3236	2078	2029
Tallo Midim Jalbidhut Company Pvt. Ltd.	Lower Midim	Lamjung	996	2070	2023
Tamor Sanima Energy Pvt. Ltd.	Upper Tamor	Taplejung	255281	2079	2030
Tanahun Hydropower Ltd.	Tanahun	Tanahun	140000	2075	2026
Tangchhar Hydro Pvt. Ltd	Tangchhahara	Mustang	2200	2070	2023
Terhathum Power Company Ltd.	Khorunga- Tangmaya	Terhathum	2000	2079	2030
Thulo Khola Hydropower Pvt. Ltd.	Upper thulo Khola-A	Myagdi	22500	2075	2026
Trishuli Jal Vidhyut Company Ltd.	Upper Trishuli 3B	Rasuwa	37000	2074	2024
Tundi Power Pvt.Ltd	Rahughat Mangale	Myagdi	35500	2075	2026
Tundi Power Pvt.Ltd	Upper Rahughat	Myagdi	48500	2075	2026
Union Mewa Hydro Ltd.	Mewa Khola	Taplejung	23000	2075	2026
Unitech Hydropower Co. Pvt. Ltd.	Upper Phawa	Taplejung	5800	2074	2025
United Mewa Khola Hydropower Pvt. Ltd.	Mewa Khola	Taplejung	50000	2074	2025

United Modi	Lower Modi 2	Parbat	10500	2072	2023
Hydropwer					
Ltd.					
Upper Lohore	Upper Lohore	Dailekh	4000	2074	2025
Khola					
Hydronower					
Co Pyt Ltd					
Upper Myagdi	Upper Myagdi	Myagdi	53500	2080	2031
Hydronower		iviyagai	33300	2000	2031
Dyt I td (Dry	-1				
Himalayan					
Illinaiayali Linnor Diahat	Upper Dishet	Corleho	2000	2074	2025
Upper Kichet	Opper Kichet	GOIKIIA	2000	2074	2023
PVI. LIU.	D	C a shih a	24500	2000	2021
Upper Syange	Dovan knola	Gorkna	24500	2080	2031
Hydropower					
Limited		D 11	57500	2074	2025
Vision Energy	Nupche Likhu	Ramechhap	57500	2074	2025
and Power Pvt.					
Ltd.	~				
Vision Lumbini	Seti Nadi	Kaski	25000	2075	2026
Ltd.					
Vokano	Teliya Khola	Dhankuta	996	2069	2023
Hydropower					
Pvt. Ltd.					
Water and	Bad Gad	Baglung	6600	2068	2023
Energy Nepal					
Pvt. Ltd.					
Water Energy	Machha Khola	Gorkha	16000	2080	2031
Development					
Pvt. Ltd.					
Water Energy	Upper Deumai	Ilam	8300	2079	2030
Solution Pvt.					
Ltd.					
White Flower	Upper	Sankhuwasa	40700	2079	2030
Energy	Chhujung	bha			
Company Pvt.					
Ltd.					
White Lotus	Hidi Khola	Lamjung	6820	2079	2030
Power Pvt.Ltd.		5 6			
Vambling	Vambling	Sindhunalah	7270	2072	2023
Hydronower	Khola	owk	1210	2012	2023
Dyt I td	KIIOIa	UWK			
I VI. LIU. Voru	Voru Vholo	Gorleha	20542	2000	2021
1 alu Uudronomer	i alu Niiola	Guikila	30342	2080	2031
Dyt I td					
Source: Nepal Electricity Authority					

Year	Total Additional Installed Capacity (MW)	Total Additional Energy (GWh)	Total Additional Installed Capacity (KW)
2023	1173.434	6270.36	1173434
2024	416.96	2228.07	416960
2025	917.423	4902.34	917423
2026	1761.71	9413.87	1761710
2027	47.975	256.36	47975
2028	157.14	839.69	157140
2029	142.504	761.48	142504
2030	726.238	3880.73	726238
2031	546.815	2921.96	546815

Appendix C Expected Future Installed Capacity

Appendix D Weighted Average Method Electricity Demand Forecast and WECS forecast

	Final Electricity Demand (GWh)						
Year	Forecasted Generation (GWh)	BAU 4.5%	Reference Scenario 7.2 %	High Scenario 9.2%	Policy Intervention @ 7.2%	Policy Intervention @ 9.2%	Weighted Average Method Demand (GWh)
2023	19014.27	10839.25	12162.47	13336.69	19407.38	20680.75	10261.54
2024	21242.33	11918.75	13513.07	14941.27	20919.53	22472.90	11908.97
2025	26144.67	12998.25	14863.67	16545.84	22431.68	24265.05	13820.90
2026	35558.55	14413.37	16882.29	19209.49	25012.28	27665.00	16039.77
2027	35814.91	15828.48	18900.92	21873.14	27592.87	31064.96	18614.87
2028	36654.60	17243.60	20919.54	24536.79	30173.47	34464.91	21603.39
2029	37416.08	18658.72	22938.17	27200.44	32754.06	37864.87	25071.70
2030	41296.81	20073.83	24956.79	29864.09	35334.66	41264.82	29096.83
2031	44218.77	22008.01	28107.39	34487.90	38622.10	46143.36	33768.18

Cross Border Electricity Trade Opportunities for Nepal: Development of Strategy for Deregulated Electricity Markets

ORIGINALITY REPORT

	7% ARITY INDEX					
PRIM	PRIMARY SOURCES					
1	www.moen.gov.np	151 words — 1%				
2	doed.gov.np Internet	129 words — 1%				
3	sari-energy.org	129 words — 1%				
4	mcanp.org Internet	111 words — 1%				
5	journals.pan.pl	85 words — 1%				
6	www.epa.gov	84 words — 1%				
7	www.researchgate.net	80 words — 1%				
8	www.nea.org.np	79 words — 1%				
9	irade.org	70 words — 1%				