ADSORPTIVE REMOVAL OF Fe(II) FROM AQUEOUS SOLUTION BY FUNCTIONALIZED SUGARCANE BAGASSE

A Dissertation Submitted to the Central Department of Chemistry Tribhuvan University, Kirtipur Kathmandu, Nepal

In Partial Fulfillment of Requirements for the Master's Degree in Chemistry

By

Mahendra Acharya Symbol No: 2012/2010 T.U. Regd. No: 5-2-33-646-2003

Central Department of Chemistry Institute of Science and Technology Tribhuvan University Kirtipur, Kathmandu Nepal April, 2010 Tribhuvan University Institute of Science and Technology Central Department of Chemistry Kirtipur, Kathmandu Nepal

The dissertation *entitled* ADSORPTIVE REMOVAL OF Fe(II) FROM AQUEOUS SOLUTION BY FUNCTIONALIZED SUGARCANE BAGASSE

Submitted by Mahendra Acharya T.U. Regd. No. 5-2-33-646-2003

has been accepted as a partial fulfillment of the requirements for the Master's Degree in Chemistry

> Associate Prof. Dr. Kedar Nath Ghimire Head, Central Department of Chemistry Tribhuvan University

External Examiner Dr. Prem Ratna Sthapit Supervisor Dr. Kedar NathGhimire Associate Professor Head, Central Department of Chemistry Tribhuvan University

FOREWORD

The dissertation entitled "ADSORPTIVE REMOVAL OF Fe(II) FROM AQUEOUS SOLUTION BY FUNCTIONALIZED SUGARCANE BAGASSE" submitted by Mr. Mahendra Acharya for the M. Sc. degree in Chemistry of Tribhuvan University is carried out under my supervision in the academic year 2007-2009.

During the research period (April, 2009-Janurary, 2010), he has worked sincerely and satisfactorily to complete this dissertation. No part of this thesis has been submitted for any other degree.

> Dr. Kedar Nath Ghimire Associate Professor Head,Central Department of Chemistry Tribhuvan University Kirtipur, Kathmandu Nepal

ACKNOWLEDGMENT

I express my sincere gratitude towards respected supervisor Associate Professor Dr. Kedar Nath Ghimire, Head of Central Department of Chemistry for his constant guidance, encouragement, and inspiration without which completion of this dissertation work would have been impossible.

I am indebted to Central Department of Chemistry for providing me equipment and laboratory facilities for research work.

In this occasion, I would like to express my regards and gratitude towards my parents Mr. Sita Ram Acharya and Mrs. Hasana Acharya for their continuous support and encouragement in my study.

I express my special thanks to my senior brother Mr. Binod Nepal for his invaluable co-operation and suggestions.

I would like to express my heart-felt thanks to Mrs. Rumi Chand and Mr. Jay Kishan Bhattarai for providing me necessary journals during literature survey. Similarly, I am thankful to Mr. Puspa Lak Homagai, Ms. Chandani Shrestha, Mr. Deepak Wagle, Mr. Upendra Adhikari, Mr. Sitaram Bhattrai and Mr. Agni Prasad Mishra for their help and suggestions during research work.

At last but not the least, I am thankful to all teaching and nonteaching staffs of CDC, my seniors, my colleagues, and all those persons who have helped me directly or indirectly for the completion of this dissertation.

ABSTRACT

In the present study, adsorption of Fe(II) onto different biosorbents prepared from sugarcane bagasse, i.e, raw sugarcane bagasse, charred sugarcane bagasse and phosphoric acid modified charred sugarcane bagasse has been studied by batch equilibration method under different experimental conditions. Effects of pH, Fe(II) concentration, and contact time on the adsorption of divalent iron ion were investigated. The concentration of Fe(II) ion in the test solution was determined spectrophotometrically. Maximum adsorption was observed at pH 2.5 for all the adsorbents at the optimum contact time of 9 hour, 7 hour, and 4 hour respectively for RSB, CSB and PCSB. Maximum adsorption capacity (q_{max}) value for the RSB, CSB and PCSB was found to be 50.5, 111.4 and 175 mg/g respectively. Adsorption of the Fe(II) ion on all the adsorbents followed Langmuir isotherm more strictly than Freundlich isotherm. The results shows that studied adsorbents may be attractive low cost alternative for the treatment of wastewater in lower concentration of iron.

TABLE OF CONTENTS

For	eword				
Ack	nowled	lgement			
Abs	tract				
Abbreviations					
1	T 4	a da attan	1 1(
1.		oduction	1-16		
1.1	Gene	eral Introduction of Adsorption			
1.2	Defi	nition of heavy metals			
1.3	Guid	eline value and harmful effects of Iron			
1.4	Low	cost adsorbent and importance of bio-adsorption			
1.5	Struc	ture of lignin and cellulose			
1.6	Determination of surface functional group: Boehm's titration				
1.7	Adsor	rption Isotherm			
1.8	Adsorption Kinetics				
1.9	Spectrophotometric Determination of Fe(II)				
1.10) Interf	erence			
2.	Literature Review 17-24		17-24		
3.	Objectives of the Study 25-20		25-26		
4.	. Experimental section		27-40		
	4.1	Instruments used:			
	4.2	Preparation of reagents:			
		4.2.1 1000 ppm stock Mohr's salt solution			
		4.2.2 10% Hydroxyl Amine Hydrochloride solution			
		4.2.3 0.2% 1,10-Phenanthroline Hydrochloride solution	on		
		4.2.4 Ammonium Acetate buffer solution			

- 4.2.5 0.1 M Nitric acid
- 4.2.6 0.02 N Na₂CO₃ solution
- 4.2.7 0.02 N NaHCO3 solution
- 4.2.8 0.02 N NaOH solution
- 4.2.9 0.02 N HCl solution
- 4.2.10 0.04 N Oxalic acid solution
- 4.2.11 5 M NaOH solution
- 4.2.12 5 M HNO₃ solution
- 4.3 Preparation of Adsorbents from Sugarcane Bagasse
 - 4.2.1. Preparation of raw sugarcane bagasse
 - 4.2.2. Acid modification
 - 4.2.3. Phosphoric Acid modification
- 4.4 Effects of chemical modification
- 4.5 Mechanism of the adsorption
- 4.6 Determination of λ_{max} and Construction of Calibration Curve
- 4.7 Characterization of adsorbents
 - 4.7.1 Boehm's titration
 - 4.7.2 FTIR Spectroscopy
- 4.8 Batch Adsorption Studies
 - 4.8.1 Batch pH study
 - 4.8.2 Batch Isotherm Study
 - 4.8.3 Batch Equilibrium Time Study
 - 4.8.4 Batch Kinetic Study

5. Results and Discussion

5.1 Determination of surface functional group

41-63

- 5.2 FTIR Spectroscopy
- 5.3 Batch pH study
- 5.4 Batch equilibrium time study
- 5.5 Batch kinetic study
- 5.6 Batch Isotherm study

6.	Conclusion	64
7.	Limitations of the Study	65
8.	Suggestion for Further Work	66
Ref	ferences	67-70

ABBREVIATIONS

SB	Sugarcane Bagasse
RSB	Raw Sugarcane Bagasse
CSB	Charred Sugarcane Bagasse
PCSB	Phosphoric Acid Modified Sugarcane Bagasse
CDC	Central Department of Chemistry
q _{max}	Maximum adsorption capacity in mg/g
Fe(II)	Ferrous ion
ppm	Parts per million
λ_{max}	Maximum wavelength for absorption
AAS	Atomic Absorption Spectroscopy
et al.	And others
USEPA	United States Environmental Protection Agency
EPA	Environment Protection Agency
ηm	Nanometer
μm	Micrometer
R%	Removal percentage
meq/g	Milliequivalents per gram
HEPES	2-[4-(2-hydroxyethyl)-1-piperazinyl]
	ethane sulphonic acid
FTIR	Fourier Transform Infrared Spectroscopy
hr	Hour
g	Gram
mmol	Milimole
mg/L	Milligram per liter

V.F.	Volumetric Flask
g/L	Gram per liter
mg/g	Milligram per gram
ml	Milliliter
C _i	Initial concentration of metal ion in mg/L
C _t	Concentration of metal ion at time't' in mg/L
q_t	Amount of metal ion adsorbed at time 't'
q _e	Amount of metal ion adsorbed at equilibrium
	time
b	Affinity of binding sites with metal ions
Κ	Adsorption capacity in L/g
n	Adsorption intensity
\mathbf{k}_1	Pseudo first-order rate constant in L/mg
\mathbf{k}_2	Pseudo second-order rate constant in g/mg min
k ₂ '	Second-order rate constant in g/mg min
0	Initial adsorption rate in mg/g min
\mathbf{R}^2	Correlation Coefficient