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ABSTRACT 

 

Hydrological forecasting in the Hindu Kush Himalayas (HKH) presents special 

challenges because of the complex interplay between climatic and environmental 

factors. The quantitative predictive capabilities of two well-established models, Long 

Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP), chosen for their 

proven performance in previous studies, are meticulously compared in this thesis. The 

analysis uses comprehensive data spanning 2001 to 2013, including discharge records 

from the Department of Hydrology and Meteorology (DHM), precipitation data from 

APHRODITE, temperature data from APHRODITE, and snow cover area information 

from Google Earth Engine with MOD09A1 V6.1. The study employs rigorous 

evaluation metrics, revealing nuanced insights into the hydrological processes. 

Contrary to expectations, the MLP model exhibited slight superiority, showcasing a 

nuanced understanding of the region's complexities. The quantitative assessment, 

including RMSE (LSTM: 0.2396, MLP: 0.1733), MAE (LSTM: 0.1698, MLP: 0.0841), 

R2 Score (LSTM: 0.9976, MLP: 0.9987), and NSE (LSTM: 0.9976, MLP: 0.9987), 

emphasizes the indispensable role of robust predictive models, showcasing the 

necessity of reliable models for enhancing accurate river runoff predictions crucial for 

effective water resource management and flood preparedness in challenging terrains 

like the HKH. 

 

Keywords 

Long Short-Term Memory (LSTM), Multi-Layer Perceptron (MLP), Hindu Kush 

Himalayan region (HKH) 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

The impacts stemming from the escalating global warming and climate change 

phenomenon have ushered in a heightened frequency and severity of both drought and 

flooding events, thereby constituting one of the most formidable challenges confronting 

our aquatic ecosystems ((UNDP), 2013). A corollary of these environmental shifts is 

the notable reduction in runoff during dry periods, an occurrence that bears the potential 

to trigger acute water scarcity, imperiling a spectrum of essential functions 

encompassing domestic, industrial, hydroelectric, and agricultural irrigation demands 

(Jain, Goswami, & Saraf, 2009)This cascading effect exerts substantial stress upon 

existing water infrastructure, straining their capacities beyond designed thresholds. 

Furthermore, the intricate interplay between global warming and water resources 

exacerbates uncertainties afflicting the long-term projections governing urban water 

demand, thereby underscoring the exigency for vigilant planning and management 

(Urich & Rauch, 2014). 

Amidst these unfolding dynamics, the Hindu Kush Himalaya (HKH) region, 

colloquially dubbed as "The third pole," looms prominently, boasting an immense 

stockpile of snow resources rivaling its polar counterparts (S. Singh, Bassignana-

Khadka, Karky, & Sharma, 2011). However, this very region stands ensnared in the 

throes of climate change-induced jeopardy. Simultaneously, the repercussive 

repercussions of reduced dry season runoff engender a palpable crisis, beckoning water 

scarcity at the doorstep of households, industries, hydroelectric enterprises, and 

agricultural endeavors (Jain et al., 2009). While the imprint of climate change is 

discernible across the HKH expanse, the intricate patterns of this transformation evade 

uniformity, ushering in disparities of direction and magnitude (Pandey, Dhaubanjar, 

Bharati, & Thapa, 2020). It is this divergent landscape of uncertainties that often yields 

significant repercussions in domains beyond the immediate purview of the aquatic 

realm, notably affecting supply chains, operational dynamics, and associated costs a 

challenge that conventional planning paradigms are ill-equipped to surmount. 

In light of these exigencies, the imperative emerges for robust hydrological modeling 

and incisive climate change impact assessments, functions that substantiate the bedrock 

of a sustainable watershed management strategy. By unraveling the intricate fabric of 
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hydrological processes and fostering an astute comprehension of climate-induced 

transformations, such modeling endeavors engender a pragmatic foundation for both 

policy formulation and adaptation strategies. It is through these prescient measures that 

the trajectory of future climate-induced impacts upon water resources may be 

anticipated, managed, and ultimately navigated with resilience and efficacy. 

Many of the studies conducted in the realm of hydrological modeling have traditionally 

leaned towards the utilization of conceptual degree-day models or physical energy-

balance models, as evidenced by the works of (Immerzeel, van Beek, Konz, Shrestha, 

& Bierkens, 2012; Shrestha, Shrestha, & Babel, 2015; L. Singh & Saravanan, 2020). 

These established models, while valuable in their own right, operate within the confines 

of well-defined physical processes. However, the emergence of data-driven (DD) 

models, epitomized by Machine Learning (ML) techniques, has opened up new avenues 

for modeling hydrological systems. DD models possess the remarkable ability to 

replicate intricate non-linear systems by discerning patterns between input and output 

variables, bypassing the need for an in-depth comprehension of the underlying physical 

mechanisms (ASCE). This departure from the conventional modeling paradigm 

signifies a shift towards harnessing the power of artificial intelligence to unravel the 

complexities of hydrological behavior. 

Numerous studies have emphatically substantiated the superiority of ML models over 

their conventional hydrological counterparts. Research endeavors such as (Uysal, 

Şensoy, & Şorman, 2016) work on River runoff Model (SRM), (Pradhan, Tingsanchali, 

& Shrestha, 2020) exploration of Soil and Water Assessment Tool (SWAT), and 

investigations into Water Evaluation And Planning System (WEAP) and Gridded 

Reservoir-Runoff Model (GR2M) by (Farfán, Palacios, Ulloa, & Avilés, 2020) have 

collectively underscored the aptitude of Artificial Neural Network (ANN) models as 

viable alternatives to traditional methodologies in the realm of hydrological modeling. 

The culmination of these findings not only solidifies the standing of ANN models 

within the hydrological domain but also positions them as potential transformative 

tools, offering simplicity and untapped potential for advancing our understanding of 

hydrological processes through the integration of artificial intelligence. Consequently, 

this research initiative seeks to pave the way for enhanced insights into the symbiotic 
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relationship between AI and hydrology, propelling the field towards innovative realms 

of predictive accuracy and holistic comprehension.  

Adopting physically-based methods could be intimidating for people who are new to 

hydrological modeling, especially if they do not have access to complex and state-of-

the-art climate models. For many, the intricacy and resource-intensiveness of these 

physical models can be a turnoff. On the other hand, data-driven modeling presents a 

viable substitute that, with proper application, can lessen the drawbacks of conventional 

techniques. This claim is especially relevant when considering nations such as Nepal, 

where the field of hydrology is typified by distinct difficulties and complexities. As a 

result, the current study is grounded in the fluid hydrological landscape of Nepal and 

aims to clarify the influence of artificial intelligence (AI)-driven prediction methods on 

the country's hydrological knowledge. Through utilizing data-driven models, this study 

aims to open up new avenues for a more readable and perceptive understanding of 

hydrological processes in Nepal and elsewhere. 

1.1.1 Primary Objective:  

 To evaluate and compare the performance of Multi-Layer Perceptron 

(MLP) and Long Short-Term Memory (LSTM) models in predicting 

daily river runoff in the Lamgtang basin, Central Himalayas. 

1.1.2 Specific Objectives: 

 To preprocess and transform hydro meteorological data including Snow 

Cover Area (SCA), temperature, precipitation, and discharge for model 

input. 

 To configure and trail LSTM and MLP models for river runoff 

prediction, considering different hyperparameters. 

 To compare the predictive accuracy of the MLP and LSTM models 

using performance metrics such as Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency (NSE). 

 

1.2 Problem Statement 

The Hindu Kush Himalayan (HKH) region presents a formidable challenge for 

hydrological forecasting due to its intricate topography and diverse climatic conditions. 

Because of the numerous interacting factors, traditional models struggle to capture the 
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complexities of river runoff in this region. Inaccurate streamflow predictions during 

snowmelt have serious consequences for water resource management and flood 

preparedness. Recognizing the limitations of traditional approaches, this study aims to 

address the pressing issue of insufficient hydrological forecasting in the HKH region. 

The study compares the performance of two advanced machine learning models in 

predicting river runoff, Long Short-Term Memory (LSTM) and Multi-Layer Perceptron 

(MLP). The study makes use of extensive datasets from 2001 to 2012, including 

discharge, precipitation, temperature, and snow cover area. This research aims to 

contribute practical insights and solutions to improve the accuracy of hydrological 

forecasts by delving into the unique hydrological processes of the HKH region, 

recognizing the critical importance of reliable predictions for effective water resource 

management in complex terrains. 

1.3 Research Questions 

1.3.1 How does the performance of the Multi-Layer Perceptron (MLP) model 

compare to that of the Long Short-Term Memory (LSTM) model in predicting 

daily river runoff in the Lamgtang basin, Central Himalayas? 

1.3.2 How effectively can the MLP model capture the complex non-linear 

relationships between input variables (Snow Cover Area, temperature, 

precipitation, and antecedent discharge) and snowmelt runoff? 

1.3.3 To what extent does the LSTM model excel in capturing temporal dependencies 

and long-term patterns in river runoff prediction, compared to the MLP model? 

1.3.4 Which model, MLP or LSTM, demonstrates superior performance based on key 

evaluation metrics such as Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), and Nash-Sutcliffe Efficiency (NSE)? 

By addressing these research questions, my thesis will delve into the nuanced aspects 

of MLP and LSTM models for river runoff prediction and contribute valuable insights 

to the field of hydrological modeling in challenging mountainous environments. 

 

1.4 Significance of the Study 

This research has important implications for water resource management in snow-

dominated Himalayan basins. Accurate forecasting of river runoff is critical for 

efficient planning and resource management in regions that rely heavily on snowmelt 
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for freshwater supply. In predicting runoff, the comparison of Multi-Layer Perceptron 

(MLP) and Long Short-Term Memory (LSTM) models provides valuable insights into 

selecting the most reliable and accurate forecasting model. Furthermore, given the 

Himalayan region's vulnerability to climate change, the findings of the study help to 

understand and forecast river runoff patterns under changing climate scenarios. This 

knowledge can be used to inform adaptive strategies and policies to address the effects 

of climate change. 

Furthermore, the evaluation of MLP and LSTM models under various hydrological 

conditions, including peak flow events, improves operational forecasting systems, 

allowing for early flood warning and minimizing damage during extreme events. The 

models' ability to alleviate data scarcity issues in remote Himalayan terrain 

demonstrates their practical utility, providing reliable predictions despite limited 

ground observations. Furthermore, the study emphasizes the potential of advanced 

technologies in addressing critical water resource challenges by utilizing cutting-edge 

machine learning techniques. The comparison of MLP and LSTM models adds to the 

existing literature by revealing the advantages and disadvantages of each approach in 

the context of river runoff prediction. 

Finally, the study's findings have practical implications for practitioners, policymakers, 

and water resource managers, guiding them in the selection of the most appropriate 

modeling approach for accurate and reliable river runoff forecasts. As a result, informed 

decision-making is facilitated, and sustainable water resource management practices 

are promoted in the Himalayan region. 

 

1.5 Scope and Limitations 

1.5.1 Scope: 

In the Langtang basin in the Central Himalayas, the study evaluates the Long Short-

Term Memory (LSTM) and Multi-Layer Perceptron (MLP) models for daily river 

runoff prediction. As model inputs, it focuses on important hydrological variables such 

as temperature, precipitation, antecedent discharge, and snow cover area. The study is 

specifically designed to address the unique problems of the Himalayan region, such as 
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the lack of data. The study also looks into how different hyperparameters affect the 

performance of the model, providing information on how to optimize settings for 

precise hydrological forecasting. 

1.5.2 Limitations: 

Several factors temper the study's findings' generalizability and reliability. To begin 

with, the conclusions are limited to the Langtang basin and its specific hydroclimatic 

conditions; extrapolating these findings to other regions or diverse hydrological 

regimes requires cautious validation. The accuracy of the study is dependent on the 

quality and availability of input data, which includes snow cover area, temperature, 

precipitation, and discharge data. Errors or limitations in these data sources can have 

an impact on the MLP and LSTM models' performance. Furthermore, the models' 

reliance on assumed relationships derived from historical data raises concerns about 

their ability to adapt to abrupt changes in climate patterns or land use practices, which 

could affect prediction accuracy. 

Despite MLP and LSTM models' powerful capabilities in capturing complex nonlinear 

relationships, their sensitivity to model complexity and the risk of overfitting highlight 

the importance of careful tuning to avoid unrealistic predictions. These machine 

learning models, unlike physically-based models, lack inherent insights into underlying 

hydrological processes and rely solely on learned patterns, which may limit 

comprehension. The research's investigation of the impact of hyperparameters 

acknowledges the need for tailored configurations, but the lack of an uniform guarantee 

raises concerns about optimal performance under different conditions or datasets. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Hydrological Modeling Approaches 

Hydrological modeling is the process of simulating the behavior of the water cycle in a 

given watershed or catchment area. It involves using mathematical and computational 

methods to represent the movement and distribution of water in various components of 

the hydrological cycle, such as precipitation, runoff, evaporation, and infiltration. There 

are several approaches to hydrological modeling, each with its own strengths, 

limitations, and underlying assumptions. Here, I'll explain three main approaches: 

conceptual models, physically based models, and data-driven models. 

2.1.1 Conceptual Models: Conceptual models are simplified representations of the 

real-world hydrological processes. They are based on empirical relationships and 

simple equations that describe the movement of water through various components of 

the hydrological cycle. These models do not require detailed knowledge of the physical 

characteristics of the watershed. Instead, they rely on calibrated parameters derived 

from historical data to mimic observed hydrological behavior. Conceptual models 

(sometimes called gray-box models) consider physical laws but in highly simplified 

forms. A conceptual model is a descriptive representation of hydrologic system that 

incorporates the modeler’s understanding of the relevant physical, chemical, and 

hydrologic conditions (Liu, Wang, Xu, & Duan, 2017). 

The use of conceptual hydrological models has various advantages in the assessment of 

water resources. Notably, their ease of use and simplicity make them accessible 

instruments for hydrologists and academics. Conceptual models are especially useful 

in settings with restricted data availability since they require fewer data inputs than their 

physically based equivalents. These models are invaluable for short assessments and 

exploratory investigations, giving a realistic option for first hydrological system 

evaluations. It is, nonetheless, critical to recognize their inherent limitations. 

Conceptual models may struggle to adequately convey the intricacies of certain 

physical processes, potentially resulting in forecast inaccuracies. Furthermore, when 

dealing with ungauged basins or changing environmental circumstances, their 

application is limited. Another disadvantage of these models is their spatial variability, 

stressing the importance of carefully considering their scope and applicability in 

specific hydrological environments. 
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2.1.2 Physically Based Models: Models based on physical processes aim to represent 

the underlying physical processes of the hydrological cycle. These models include 

detailed mathematical equations that describe how water moves through various 

components of the watershed while taking terrain, soil properties, vegetation, and 

climate inputs into account. Physically based models frequently necessitate detailed 

input data and are more difficult to set up and calibrate. Physical-based models, on the 

other hand (also known as white-box models or theoretical models), describe 

hydrological processes in detail by solving differential equations describing the 

physical laws of mass, energy, and momentum conservation. These equations are 

typically solved over some kind of grid structure that represents a spatial domain. 

Therefore, physically based models are often called distributed hydrological models 

(Liu et al., 2017). 

Physically based hydrological models have significant advantages since they can 

accurately describe intricate physical processes inside hydrological systems. One major 

advantage is their ability to mimic a wide range of hydrological conditions, making 

them adaptable instruments for in-depth analyses. Because they can represent the 

intricacies involved with changing environmental circumstances, these models are 

particularly well-suited for long-term studies of climate change implications on 

hydrological systems. However, it is critical to acknowledge the difficulties involved 

with physically based models. They are typically data-intensive and computationally 

demanding, necessitating significant resources for implementation. The setup and 

calibration processes are difficult, necessitating careful thought and experience. 

Furthermore, because these models are sensitive to uncertainties in both input data and 

model parameters, stringent validation and calibration methods are essential. 

2.1.3 Data-Driven Models: Machine learning models, also known as data-driven 

models, learn patterns from historical data without explicitly modeling physical 

processes. These models make use of statistical algorithms to establish relationships 

between input variables (like precipitation and temperature) and output variables (like 

runoff). Machine learning models include artificial neural networks (ANN), support 

vector machines (SVM), decision trees, and other techniques. Though conceptual and 

physics-based models provided greater accuracy in hydrograph modeling, many issues 

remained to be addressed by many researchers. Those difficulties include 
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implementation and calibration difficulty, the vast amount of calibration data and the 

need of sophisticated tools etc. (Renji Remesan 2015). 

Machine Learning (ML) models offer particular advantages in hydrological modeling 

due to their ability to capture complicated non-linear interactions. Their strength is their 

ability to manage huge and different datasets, allowing them to accommodate various 

forms of information. ML models rely less on in-depth knowledge of intricate physical 

processes, making them especially beneficial for dealing with complex hydrological 

systems. However, these models are not without limits. The interpretability of their 

outputs is frequently limited, which can make it difficult to derive important insights. 

Overfitting is a potential issue, especially when models are not properly regularized to 

avoid overfitting the training data. Furthermore, the quality and quantity of input data 

have a substantial impact on the performance of ML models, underlining the need of 

data preparation and feature selection for optimal results. 

Each approach has a place in hydrological modeling, and the approach chosen is 

determined by the specific research goals, available data, and level of detail required. 

Many modern studies combine these approaches to capitalize on their respective 

strengths and achieve more accurate predictions of hydrological processes. 
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2.2 Machine Learning Models in Hydrological Forecasting 

2.2.1 Overview of machine learning algorithms 

 

Source: Machine Learning Algorithms - A Review (Mahesh, 2019) 

The overview of machine learning algorithms involves understanding the types of 

algorithms used for various tasks. Machine learning algorithms can be categorized into 

three main types: supervised learning, unsupervised learning, and reinforcement 

learning.  

2.2.1.1 Supervised Learning: In this category, the algorithm learns from labeled 

training data. It is provided with input-output pairs, allowing it to make predictions or 

classify new, unseen data. Common algorithms include: 

 Linear Regression 

 Decision Trees 

 Random Forest 

 Support Vector Machines 

 K-Nearest Neighbors 

 Neural Networks 

2.2.1.2 Unsupervised Learning: Here, the algorithm works with unlabeled data and 

attempts to find patterns, structures, or relationships within the data. It's often used for 

clustering and dimensionality reduction. Common algorithms include: 

 

Figure 1-2.2.1: Overview of machine learning algorithms 
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 K-Means Clustering 

 Hierarchical Clustering 

 Principal Component Analysis (PCA) 

 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

2.2.1.3 Reinforcement Learning: This type of learning involves training an agent to 

interact with an environment and learn by trial and error, receiving rewards or penalties 

for its actions. Common algorithms include: 

 Q-Learning 

 Deep Q Networks (DQN) 

 Policy Gradient Methods 

 Proximal Policy Optimization (PPO) 

These algorithms are further subdivided into techniques and variations, each suited to 

a different type of problem or dataset. Machine learning algorithms are widely used for 

tasks such as classification, regression, clustering, anomaly detection, and others. The 

algorithm chosen is determined by the nature of the data, the problem at hand, and the 

desired outcome. 

 

2.3 Overview of MLP and LSTM architectures 

2.3.1 Multi-Layer Perceptron 

MLPs are a type of artificial neural network with a layered architecture, comprising 

input, hidden, and output layers. Neurons in each layer are interconnected through 

weighted connections, and activation functions introduce non-linearity (Gardner & 

Dorling, 1998). The training process involves forward and backward propagation, 

adjusting weights via gradient descent. Hyperparameters influence performance, 

requiring careful tuning. 
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Figure 2-2.3.1: A Multi Layer Perceptron with Two Hidden Layer 

Source: ARTIFICIAL NEURAL NETWORKS (THE MULTILAYER 

PERCEPTRON)—A REVIEW OF APPLICATIONS IN THEATMOSPHERIC 

SCIENCES (Gardner & Dorling, 1998) 

The multilayer perceptron (MLP) is composed of interconnected nodes that model a 

nonlinear mapping between input and output vectors. The nodes use weights and 

activation functions to process inputs and produce outputs. This composition of 

nonlinear functions allows the MLP to approximate complex functions. The common 

logistic function is often used as the activation function due to its easy-to-compute 

derivative. The MLP's architecture involves feed-forward processing, passing input 

through layers of neurons. The input layer transfers data, while hidden layers process 

information, and the output layer generates the final result. MLPs can be fully 

connected, with each node linked to all nodes in adjacent layers. They can approximate 

any smooth function between input and output vectors. Learning occurs through 

supervised training with training data, adjusting weights to achieve desired input-output 

relationships. Various algorithms can be used for training. Once trained, MLPs can 

generalize to new data (Gardner & Dorling, 1998). 

 

2.3.2 Long Short-Term Memory 

LSTM was first proposed in the 1990s (Sepp Hochreiter, 1997) but it’s true potential 

has recently been recognized. The LSTM addresses traditional RNN weaknesses in 
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learning long-term dependencies. The hydrological community's perspective is 

integrated to align with deep learning research. The LSTM is a specialized recurrent 

neural network (RNN) designed to overcome memory limitations in traditional RNNs. 

Unlike RNNs, LSTMs can remember sequences beyond 10 steps(Kratzert, Klotz, 

Brenner, Schulz, & Herrnegger, 2018). 

In traditional RNNs, a single internal state exists and is recalculated with each step. 

LSTM, however, introduces a cell state for information storage and gates for 

information control. These gates include the forget gate, determining forgotten elements, 

and the input gate, controlling cell state updates. The cell state is updated through 

element-wise operations based on gate outputs. An output gate controls information 

flow into a new hidden state. The cell state enables effective learning of long-term 

dependencies, avoiding gradient issues (Kratzert et al., 2018). 

 

Figure 3-2.3.2: A LSTM Cell 

 Source: Impact of climate change on river runoff in a Himalayan basin, Nepal (S. 

Thapa et al., 2021) 

 

The LSTM layer's pseudocode processes input sequences step by step, with stacked 

layers feeding outputs to the next layer. The final discharge prediction is calculated 

through a dense layer. This section provides an intricate insight into the LSTM's 

operations within the context of the study. 

Using the notations provided by (Samit Thapa et al., 2020), equations related to LSTM 

are given below. 
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Forget gate: 

  

Input gate:  

 

Potential Update Vector:  

 

Cell Update: 

 

Output gate:  

 

Hidden State:  

 

Output Layer: 

 

Sigmoid function:   

 

Tanh function: 

 

2.2.2 Applications of MLP and LSTM in hydrology 

Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) networks, both 

being types of artificial neural networks, find valuable applications in the field of 

hydrology: 

2.2.2.1 Applications of MLP in Hydrology: 

 Rainfall-Runoff Modeling: MLPs are used to simulate the complex 

relationship between rainfall and runoff. They can detect nonlinearities in the 

hydrological process, resulting in improved predictive accuracy. (Senthil 

Kumar, Sudheer, Jain, & Agarwal, 2005). 

 Flood Forecasting: By analyzing historical rainfall and river discharge data, 

MLPs can predict flood events, allowing for timely warnings and disaster 

management. (Widiasari, Nugroho, & Widyawan, 2017). 
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 Water Quality Prediction: Based on various input factors such as land use, 

weather conditions, and water flow rates, MLPs can predict water quality 

parameters such as pollutant concentrations. (Najah Ahmed et al., 2019). 

 Reservoir Management: MLPs assist in optimizing reservoir operations by 

predicting future water levels, inflow rates, and release strategies, considering 

various constraints (Baratti et al., 2003). 

 Drought Prediction: By analyzing climatic and hydrological data, MLPs can 

forecast drought conditions, aiding water resource planning and management 

(Rezaeian-Zadeh & Tabari, 2012). 

2.2.2.2 Applications of LSTM in Hydrology: 

 Time Series Prediction: LSTM networks are well-suited for time-series data, 

making them valuable for predicting hydrological variables like river discharge, 

groundwater levels, and precipitation (Wang & Lou, 2019). 

 River runoff Modeling: LSTM can effectively capture the intricate 

relationship between temperature, snow accumulation, and runoff, crucial for 

snow-dominated regions (S. Thapa et al., 2021). 

 Flood Inundation Mapping: LSTM models can simulate flood events and 

predict their spatial extent, assisting in mapping potential flood-prone areas 

(Zhou, Wu, Nathan, & Wang, 2022). 

 Climate Change Impact Assessment: LSTM can analyze long-term 

hydrological data to project the potential impacts of climate change on water 

availability, flood frequency, and drought severity (Yang et al., 2023). 

 Streamflow Forecasting: LSTM networks enable accurate short-term and 

long-term streamflow forecasting, which aids water resource management and 

decision-making (Lin et al., 2021). 

Both MLP and LSTM can learn complex patterns from historical data, adapt to 

changing conditions, and provide better predictive capabilities than traditional 

hydrological models. Their applications help to improve water resource management, 

disaster preparedness, and long-term hydrological planning. 
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2.2.3 Studies comparing ML models with conventional models 

In this context, the following aspects are typically explored: 

 Model Comparison Methodology: Researchers conduct comprehensive 

comparisons by setting up experiments that involve both ML models (such as 

MLP and LSTM) and conventional hydrological models. They use historical 

hydrological data and environmental variables as inputs to simulate the behavior 

of the watershed or catchment of interest (Baratti et al., 2003; Rezaeian-Zadeh 

& Tabari, 2012; S. Thapa et al., 2021; Samit Thapa et al., 2020). 

 Performance Metrics: Various performance metrics are employed to evaluate 

the accuracy and reliability of model predictions. These metrics include Nash-

Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE), coefficient of 

determination (R²), and others. These metrics quantify how well each model 

reproduces observed hydrological variables like river discharge or groundwater 

levels (S. Thapa et al., 2021; Samit Thapa et al., 2020). 

 Temporal and Spatial Scales: The comparison is carried out across different 

temporal scales (daily, monthly, seasonal) and spatial scales (small catchments 

to larger basins).(Rezaeian-Zadeh & Tabari, 2012; S. Thapa et al., 2021). 

 Data Availability and Quality: Researchers explore how well the ML models 

perform under varying data availability and quality conditions. This includes 

assessing how sensitive the models are to missing or noisy data, which is a 

common scenario in hydrology (S. Thapa et al., 2021). 

 Model Complexity and Simplicity: The comparison considers the complexity 

of each model. ML models are known for their ability to capture complex non-

linear relationships (Robert Abrahart, 2004), while conventional models might 

rely on simpler conceptual or physical representations. Researchers analyze 

whether the added complexity of ML models improves their predictive 

capabilities. 

 Uncertainty Analysis: The studies examine how both ML models and 

conventional models handle uncertainties associated with input data, model 

parameters, and overall model structure (S. Thapa et al., 2021). This helps in 

understanding the robustness and reliability of predictions under uncertain 

conditions. 
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 Operational Applicability: Researchers assess the practical usability of ML 

models compared to conventional models. This includes evaluating factors like 

computational efficiency, ease of model calibration, interpretability of results, 

and the level of expertise required for implementation (S. Thapa et al., 2021; 

Samit Thapa et al., 2020). 

 Generalization: One of the important aspects explored is how well the models 

generalize to unseen data. Generalization is crucial for the models to perform 

well in real-world applications and adapt to changing conditions (S. Thapa et 

al., 2021). 

The outcomes of these studies provide valuable insights into whether ML models can 

offer improvements over conventional models in hydrological modeling. They 

contribute to the understanding of where and how ML models excel, where they might 

have limitations, and how they can complement or replace existing methods. This 

comparison is essential for guiding the adoption of ML techniques in hydrological 

research, informing policy decisions, and enhancing water resource management 

practices. 

 

2.4  River runoff Prediction in Himalayan Basin 

2.3.1 Hydroclimatic characteristics of the Himalayas 

The Himalayas exhibit distinct hydroclimatic characteristics due to their complex 

topography, diverse elevations, and unique geographical location. Some key 

hydroclimatic characteristics of the Himalayas include: 

 Elevation Gradient: The Himalayas encompass a wide range of elevations, 

from subtropical foothills to towering peaks. This elevation gradient leads to 

varying climatic conditions, ranging from warm and humid in the lower regions 

to cold and snow-dominated in higher altitudes (Ragettli et al., 2015). 

 Precipitation Patterns: The Himalayas are a major source of moisture for the 

Indian subcontinent. The region experiences both monsoons and westerlies. 

During the monsoon season (June to September), heavy rainfall occurs, 

replenishing rivers and contributing to snow and glacier melt. The westerlies 
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also bring precipitation in the form of winter snowfall (Kansakar, Hannah, 

Gerrard, & Rees, 2004). 

 Snow and Glacier Accumulation: The high elevations result in extensive snow 

and glacier cover. Snow accumulates during the winter months, while glaciers 

store ice over centuries. This seasonal snow and glacier melt significantly 

contribute to river discharge during warmer months (Ageta & Kadota, 1992). 

 Glacial Retreat and Meltwater: The Himalayan glaciers have been 

experiencing varying rates of retreat due to global warming. The meltwater from 

glaciers plays a crucial role in river flow during dry seasons, providing a buffer 

against water scarcity (Nie et al., 2021). 

 Temperature Variability: Temperature variations are significant across 

elevations. Cold temperatures prevail at high altitudes, leading to the formation 

of glaciers and perennial snow. In lower regions, temperatures are more 

moderate, influencing the timing and rate of snowmelt (Heynen et al., 2016). 

 Monsoons and Runoff: Monsoon rains and subsequent snowmelt contribute to 

the majority of river runoff . The timing and intensity of monsoons impact the 

hydrological cycle (S. Thapa et al., 2021), affecting water availability for 

various uses. 

 Flash Floods and Landslides: Rapid snowmelt and heavy monsoon rains can 

trigger flash floods and landslides, causing significant damage to infrastructure 

and communities downstream (Rezaeian-Zadeh & Tabari, 2012). 

 Climate Change Impact: The Himalayas are highly sensitive to climate 

change. Rising temperatures can affect snow and glacier dynamics, altering 

river flow patterns and impacting water availability (S. Singh et al., 2011). 

Understanding these hydroclimatic characteristics is essential for effective hydrological 

modeling, water resource management, and planning adaptation strategies in the face 

of climate change. 

 

2.3.2 Challenges of snow-dominated hydrology and data scarcity 

2.3.2.1 Challenges of Snow-Dominated Hydrology: 
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 Complex Hydrological Processes: Snow-dominated hydrology involves 

intricate processes like snow accumulation, melting, and runoff, making 

modeling and prediction challenging (Nie et al., 2021). 

 Variable Snowmelt Timing: The timing of snowmelt is influenced by a range 

of factors, including altitude, temperature, and solar radiation, leading to spatial 

and temporal variability (Nie et al., 2021). 

 Glacier Dynamics: Glacier contributions to runoff add complexity, as glacier 

retreat, advance, and melt rates impact downstream water availability (Nie et 

al., 2021). 

 Uncertain Runoff Patterns: The combination of rain and snowmelt can lead 

to unpredictable runoff patterns, causing flooding risks during rapid melt or 

heavy rainfall events (Nie et al., 2021). 

2.3.2.2 Data Scarcity in the Himalayas: 

 Sparse Monitoring Networks: Limited hydrological monitoring stations in 

remote Himalayan areas result in sparse data coverage, hindering accurate 

hydrological assessments (S. Thapa et al., 2021). 

 Inaccessible Terrain: The rugged and challenging terrain makes installation 

and maintenance of monitoring equipment difficult, limiting data collection 

efforts (Samit Thapa et al., 2020). 

 Lack of Long-Term Records: Short historical records impede the 

understanding of long-term trends and variations in hydrological parameters(S. 

Thapa et al., 2021). 

 Seasonal Data Gaps: Harsh winter conditions can disrupt data collection 

efforts, leading to seasonal data gaps that hinder comprehensive analysis(S. 

Thapa et al., 2021). 

2.3.3 Previous research on river runoff modeling in the region 

Previous research on river runoff modeling in the Himalayan region has largely focused 

on understanding the complex hydrological processes driven by the unique climatic 

conditions of the area (Ragettli et al., 2015). These studies have aimed to improve the 

accuracy of predicting snowmelt runoff, which is crucial for effective water resource 

management. Researchers have employed various modeling approaches, including both 

traditional physically-based models and modern data-driven models (Yang et al., 2023). 
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Physically-based models, such as energy balance models and temperature index 

models, have been utilized to simulate river runoff by considering factors like energy 

exchange, temperature variations, and snow accumulation  (Hock, 2003; M. Shrestha 

et al., 2015). While these models provide valuable insights into the physical processes, 

they can be computationally intensive and require extensive input data, making them 

less suitable for data-scarce mountainous regions like the Himalayas. 

Data-driven models, particularly machine learning approaches like artificial neural 

networks (ANNs), have gained attention due to their ability to capture complex 

relationships between inputs and outputs without requiring in-depth understanding of 

underlying processes. ANN-based models have been applied for river runoff prediction, 

and some studies have demonstrated their superiority over traditional models. However, 

the application of ANN models in snowmelt modeling has been relatively limited 

(Rezaeian-Zadeh & Tabari, 2012; S. Thapa et al., 2021; Samit Thapa et al., 2020). 

Research has also highlighted the significance of remotely sensed data, such as snow 

cover area (SCA) obtained from satellite imagery (S. Thapa et al., 2021), in improving 

river runoff modeling accuracy. Studies have shown that SCA, in combination with 

meteorological and discharge data, can enhance the predictive capability of models.  

Despite advancements in modeling techniques, challenges remain, particularly in the 

Himalayan context. Insufficient meteorological stations and underestimated 

precipitation data pose difficulties in accurately simulating snow accumulation and 

melting processes (S. Thapa et al., 2021). Moreover, uncertainties arising from the 

effects of climate change further complicate the modeling process. 

In conclusion, previous research on river runoff modeling in the Himalayan region has 

revealed the complexities of hydrological processes influenced by unique climatic 

conditions. Physically-based and data-driven modeling approaches have been 

investigated, with data-driven methods demonstrating the potential for accurate 

predictions. Incorporating remotely sensed data and leveraging machine learning 

algorithms have emerged as strategies to improve modeling accuracy, but data scarcity 

and changing climate patterns remain challenges. 
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CHAPTER THREE: RESEARCH METHODOLOGY 

3.1 Study Area and Data Sources 

3.3.1 Description of the Langtang basin 

 

Figure 4-3.1.1: Lantang Basin 

Source: Impact of climate change on river runoff in a Himalayan basin, Nepal (S. 

Thapa et al., 2021) 

The Hindu Kush Himalayan (HKH) region, a vast and intricate mountainous 

environment covering Nepal, Bhutan, India, China, and others, is crucial as the source 

of major river systems in South Asia. This vast geographical area, noted for its 

magnificent beauty and ecological richness, acts as an important water tower, supplying 

vital supplies to downstream regions. The Langtang Valley, located in the central Nepal 

Himalayas, emerges as an important subregion within this enormous region. The 

Langtang Valley, known for its alpine majesty, diversified ecosystems, and cultural 

richness, contributes heavily to the Trishuli River, a tributary of the Ganges. Lantang, 

home to the Langtang National Park and a variety of ethnic populations, serves as a 



31  
  

focal point for comprehending the delicate interplay of water resources, climatic 

dynamics, and environmental issues within the framework of the HKH region.  

The Langtang basin (shown in Fig. 1) is strategically located within the Central 

Himalayas, approximately sixty kilometers north of Kathmandu, Nepal. This basin 

exemplifies the essential features of a snow-dominated Himalayan region. The rationale 

for this geographic selection stems from its ease of access, which is critical in 

facilitating comprehensive investigations into Himalayan catchments and their 

associated data. The Langtang basin emerges as a compelling site for rigorous 

examination in the context of snow-related water resource management and the 

exploration of climate change impacts. The basin has a total area of 354.51 square 

kilometers and a significant glacier area spanning 110 square kilometers. This critical 

metric, which represents the extent of glacial coverage, is painstakingly calculated from 

the RGI-GLIMS version 6.0 dataset, meticulously assembled by the (RGI Consortium, 

2017). 

3.3.2 Source of Input Variables:  

3.1.2.1 Snow Cover Area 

The snow-covered area data utilized in this study was obtained from the MODIS 

(Moderate Resolution Imaging Spectroradiometer) dataset, with a specific focus on the 

MOD10A1 product. This dataset plays a crucial role in determining the extent of snow 

cover through satellite observations. The MOD10A1 product serves as a valuable 

resource for deriving accurate snow cover mapping within the study area located in the 

Himalayan region. This dataset is readily accessible through the National Snow and Ice 

Data Center (NSIDC) website, a reputable source known for its comprehensive 

collection of snow and ice-related data. By utilizing the MOD10A1 product, this study 

was able to capture and analyze the temporal and spatial variations in snow-covered 

area, a fundamental parameter in understanding hydroclimatic characteristics in the 

Himalayas (Hall et al, 2016). 

3.1.2.2 Hydrometeorological Data 

The essential climatic and hydrological data utilized for this investigation were 

procured from authoritative sources. The Department of Hydrology and Meteorology 

(DHM) in Nepal facilitated the provision of streamflow data. These datasets were 

specifically attributed to the reference period spanning from 2001 to 2012. In the 

context of streamflow data, the Kyangjing hydrological station emerged as a pivotal 
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data source. This station, positioned at coordinates 28.22° latitude and 85.55° longitude, 

boasts an elevation of 3800 meters above sea level. Due to the absence of data in the 

DHM we obtained temperature and precipitation data from Asian Precipitation-Highly-

Resolved Observational Data Integration Towards Evaluation (APHRODITE)’s water 

resource (APHRODITE, 2016). 

Table 1-3.1.2.2 Showing Types of Data used and their Sources 

S. N Types of Data Sources Resolution Duration 

1 Snow Cover 

Area 

NASA NSIDC DAAC at 

CIRES 

500m*500m 2000-Present 

2 Precipitation APHRODITE - data 0.25 deg 1998-2015 

3 Temperature APHRODITE - data 0.25 deg 1998-2015 

4 Discharge Department of 

Hydrology and 

Meteorology 

Daily 2001-2013 

This study's dataset collection includes a wide variety of hydrological and 

meteorological variables that are critical for understanding the dynamics of the Hindu 

Kush Himalayan (HKH) region, notably the Lantang area. The Snow Cover Area data 

at CIRES is obtained from NASA NSIDC DAAC and provides a detailed perspective 

at a resolution of 500m x 500m from 2000 to the present. Precipitation and temperature 

information provided from APHRODITE span the larger Monsoon Asia Region from 

1998 to 2015 at a resolution of 0.25 degrees, offering insight into the meteorological 

conditions influencing the research area. The Discharge dataset, obtained from the 

Department of Hydrology and Meteorology, focuses on the Lantang region and includes 

daily resolution data from 2001 to 2013. This extensive collection of datasets serves as 

the foundation for comparing machine learning models in snowmelt-driven streamflow 

prediction, providing vital insights to hydrological modeling in difficult terrains. 
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3.2 Framework  

 

Figure 5-3.5: Research Methodology Framework 
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3.3 Data Preprocessing and Model Setup 

3.3.1 Data cleaning and formatting 

The data collection process began by obtaining raw data from various sources, such as 

sensors, databases, and external datasets, while adhering to a strict timeline. Following 

that, a thorough data inspection was carried out, thoroughly examining the raw data to 

identify and correct any errors, missing values, inconsistencies, or outliers. Missing 

values were handled strategically, with affected rows removed and advanced 

imputation methods used when necessary (Robert Abrahart, 2004). Outliers were 

identified using statistical methods and domain knowledge, and decisions were made 

based on the context of the analysis as to whether to remove, replace, or retain outliers. 

The data was transformed and standardized to ensure format consistency, including the 

standardization of dates and the normalization of units and measurement scales for 

improved comparability. Data types, whether numerical, categorical, or datetime, were 

confirmed to be suitable for analysis, and the data was formatted into the required 

structure (e.g., CSV, Excel, database format) for ease of use. To ensure data accuracy, 

quality assurance measures such as basic statistical checks and cross-checking against 

external sources or expert knowledge were implemented. The development of 

visualizations was critical in gaining insights into data distribution, patterns, and 

potential issues, as well as in identifying anomalies and outliers throughout the 

extensive data preparation process. 

Table 2–3.3.1 Data Preprocessing Process 

S.N. Types of Data Logic used for Data Cleaning Data 

Imputation 

using SPSS 

Unit 

1 Snow Cover 

Area 

If, 

NDSI_Snow_Cover<(33),Return 

(33), Else (Original Value) 

Linear 

Interpolation 

Daily 

2 Temperature Minimum Index for Longitude 

and Latitude 

Linear 

Interpolation 

Daily 

3 Precipitation Minimum Index for Longitude 

and Latitude 

Linear 

Interpolation 

Daily 
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4 Discharge None Linear 

Interpolation 

Daily 

The preprocessing of the Hindu Kush Himalayan (HKH) region's climate and 

hydrological datasets required a meticulous approach to address missing values and 

ensure data accuracy. Temperature and precipitation data from APHRODITE's 

Monsoon Asia Region were examined for missing values from 2001 to 2013, and Excel 

and SPSS were used to identify and evaluate these gaps using linear interpolation. 

Similarly, discharge data obtained from the Department of Hydrology and Meteorology 

(DHM) were subjected to the same missing value and date alignment treatment. The 

snow cover area dataset was subjected to a specific criterion after being derived from 

MOD10A1.061 Terra Snow Cover Daily Global 500m via Earth Engine. Areas with 

less than 33% snow cover were excluded, indicating the presence of glaciers. The 

processing steps ensure the datasets reliability and completeness, laying a solid 

foundation for subsequent hydrological modeling and analysis. 

 

3.3.2 Division of data into training and testing sets 

Dividing data into training and testing sets is a critical step in machine learning and 

data analysis to evaluate the performance of models on unseen data (Behboudian et al., 

2014). The dataset is carefully gathered in the first stage of the data preparation 

procedure, with an emphasis on correct formatting and cleanliness to provide a strong 

base for further analysis. After that, an important split ratio decision is made, which 

establishes the percentage of data allotted to training and testing. Interestingly, 80% of 

the data is used for training, 10% is used for validation, and 10% is used for testing. 

When splitting data, the temporal aspect of the data is taken into account to make sure 

that, in the case of time-series data, the testing set covers later periods and the training 

set encompasses earlier periods. Effective division requires implementation of the split, 

whether by manual calculation or programming libraries such as scikit-learn in Python.  

A validation set is optionally added to help with model hyperparameter tuning and 

model selection guidance. Ensuring the representativeness of the training set is crucial 

for thorough model training, and protecting against data leakage is crucial for 

preserving the integrity of model evaluation. Transparency and reproducibility require 
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detailed documentation of the entire data splitting process, including the chosen split 

ratio and any considerations made. In the end, the suitability of the data partitioning 

depends on the particular analysis context, the kind of machine learning task that is 

being performed, and the properties of the dataset itself. 

3.3.3 Hyperparameter selection and model configurations 

Choosing the right hyperparameters and setting up the model entails identifying and 

perfecting the salient features of the Multi-Layer Perceptron (MLP) and Long Short-

Term Memory (LSTM) models for predicting snowmelt runoff. 

An architecture is established for the LSTM model that consists of a single LSTM layer 

with 50 units, followed by a dense layer with one unit. The loss function is mean 

squared error, or MSE, and the Adam optimizer is selected. Each of the 50 epochs in 

the training process has a batch size of 32. 

The MLP model, on the other hand, has two hidden layers that cover 100 and 50 units, 

respectively. There is a maximum of 500 iterations of training, using the Adam 

optimizer and the MSE loss function. 

Together, these hyperparameter selections affect the models' ability to represent 

intricate temporal patterns in the river runoff data. Achieving optimal predictive 

performance and enabling a meaningful comparison between the LSTM and MLP 

architectures within the Model Comparison Framework require careful selection of 

hyperparameters and model configurations. 

3.4 Model Comparison Framework 

3.3.1 Evaluation metrics:  NSE, R2, RMSE, MAE 

The Model Comparison Framework for evaluating machine learning models using the 

metrics NSE (Nash-Sutcliffe Efficiency), R2 (Coefficient of Determination), RMSE 

(Root Mean Squared Error), and MAE (Mean Absolute Error) involves a systematic 

process to quantitatively assess the performance of different models (Lamichhane & 

Shakya, 2019; S. Thapa et al., 2021; Samit Thapa et al., 2020). These metrics are 

commonly used to measure the accuracy and goodness-of-fit of models in various 

fields, including hydrology. The evaluation metrics are computed to assess the models' 

accuracy and generalization abilities after they have been trained. Among the metrics 
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are Nash-Sutcliffe Efficiency (NSE), R2 Score, Mean Absolute Error (MAE), and Root 

Mean Squared Error (RMSE). The average magnitude of prediction errors is quantified 

by RMSE, the average absolute error is provided by MAE, and the percentage of the 

target variable's variance that the model explains is measured by R2 Score. Furthermore, 

NSE, a hydrologically significant metric, evaluates the model's performance in 

comparison to the observed data mean. When compared and the best architecture for 

river runoff prediction in the context of hydrological modeling is chosen, these metrics 

provide a thorough understanding of the predictive power of the models. 

 

 

 

 

3.3.2 Sensitivity analysis of input variables 

A sensitivity analysis could be carried out by methodically changing one input variable 

while keeping the values of the others unchanged, and then monitoring any alterations 

to the model's predictions. This process can help identify significant variables that have 

a significant impact on the model's performance and provide insights into the behavior 

of the model under different conditions. Sensitivity analysis can help understand the 

relative importance of variables like temperature, precipitation, and snow cover in 

predicting melt-related runoff in the context of hydrological modeling. 
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CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1 Results 

4.1.1 Data Correlation: 

Figure 6-4.1.1: Correlation Matrix Heatmap between Precipitation, 
Temperature, Snow Cover Area, and Snowmelt Runoff 

The relationships between important variables derived from monthly data for each year 

are visually captured in the correlation matrix heatmap. The following is a 

representation of the Pearson correlation coefficients: The following graphs show the 

relationship between discharge and snow cover area: discharge vs. temperature (0.69), 

discharge vs. precipitation (0.35), precipitation vs. snow cover area (-0.39), 

precipitation vs. temperature (0.54), and temperature vs. snow cover area (-0.47) 

respectively. The direction and strength of these correlations are clearly shown by the 

heatmap. Notably, a direct relationship is indicated by a strong positive correlation 

between temperature and discharge, whereby higher temperatures are linked to higher 

discharge. On the other hand, it appears that a higher discharge is associated with a 

lower amount of snow cover due to the moderately negative correlation between the 
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two variables. Understanding hydrological patterns and their interdependencies is made 

easier by the visualization, which offers insightful information about how the variables 

interact. 

4.1.2 Individual Variable Visualizations: 

 

Figure 7-4.1.7(a): SmowMelt-Runoff Data Visualization 

The shown Discharge graph depicts the typical flow pattern within the dataset ranging 

from 2001 to 2013, which was sourced and cleaned from the Department of Hydrology 

and Meteorology (DHM). The first graph is a box plot that displays the monthly 

averages for all years, offering a detailed picture of the distribution. Meanwhile, the 

second graph examines the everyday patterns recorded between 2001 and 2013. 

Notably, precipitation remains relatively low throughout the first months before 

steadily increasing until the eighth month, repeating this cyclic pattern over the years. 
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Figure 8-4.1.7(b): Precipitation Data Visualization 

 

Figure 9-4.1.7(c): Temperature Data Visualization 
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The Precipitation graph has a comparable structure; however, the data is more 

unpredictable, with a noteworthy high variance, especially in the 7th and 8th months. 

The observed discharge pattern reflects the obvious trend of low precipitation during 

the first months, followed by a rise up to the eighth month, demonstrating a constant 

link between these variables. 

Similarly, the Temperature graph shows a similar structural trend, with smaller variance 

in the seventh and eighth months but larger variability in the first and last months of the 

year. This similarity in the observed pattern across the discharge, precipitation, and 

temperature graphs emphasizes the hydrological system's linked dynamics of these 

variables. 

 

Figure 10-4.1.7(d): Snow Cover Area Data Visualization 

The visualization of preprocessed data is presented in the form of a comprehensive 

graphical representation, which improves understanding of the dataset's characteristics. 

Each data variable, such as temperature, precipitation, discharge, and snow cover area, 

is represented by one of two plots. The monthly average is the primary focus, as 

illustrated by box plots. Each box plot encapsulates the variable's distribution across 
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different months, revealing seasonal patterns and variations. Individual daily data 

points are also graphically displayed below each corresponding monthly box plot to 

provide a more granular view. This dual visualization strategy not only highlights long-

term trends and tendencies, but also allows for a closer look at the day-to-day 

fluctuations within each month. The use of monthly box plots and daily data graphs 

allows for a more nuanced and detailed analysis of the preprocessed dataset, allowing 

for a more in-depth knowledge of the hydrological and climatic dynamics within the 

researched region. 

Research has demonstrated that the unique box plot pattern seen in the Lantang region 

in the 6th, 7th, and 8th months, which displays a rather concentrated range within the 

30th percentile, is a result of the area's persistent glaciers (RGI Consortium, 2017). 

Throughout these particular months, the dynamics of the river runoff are significantly 

regulated by the continuous glacier cover. Because of their steady and gradual melting, 

glaciers function as a reservoir, affecting the amount and timing of runoff. As a result, 

during these months, runoff values tend to cluster within a narrower range, indicating 

the glacier's stabilizing influence on the hydrological system. 

4.1.3 LSTM Model: 

The Long Short-Term Memory (LSTM) model was configured with the following 

hyperparameters: 

Number of LSTM Units: 50 

Number of LSTM Layers: 1 

Learning Rate: 0.001 

Number of Epochs: 50 

Batch Size: 32 

The model was trained using the training dataset with reshaped input data 

(X_train_reshaped) and target variable (y_train). The validation dataset 

(X_val_reshaped, y_val) was used to monitor the model's performance during training. 

The training process involved iterating over the dataset for 50 epochs with a batch size 

of 32. The Adam optimizer was employed, and the mean squared error (MSE) was used 

as the loss function. 
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Figure 11-4.5.2: LSTM Training and Validation Loss 

The validation loss has a noticeable decreasing trend, indicating effective learning from 

the training data. Around the 15th epoch, a crucial finding is made: the graph reaches a 

point of convergence, indicating that the model's performance has stabilized. After this, 

the validation loss continues to be negligible, indicating that the model has fully 

reflected the underlying patterns in the data. It is implied that additional epochs do not 

significantly contribute to further refinement by the consistent minimal loss after 

convergence. This realization helps determine the ideal training time and makes it easier 

to comprehend that the model reaches its peak performance early in the training phase. 

To avoid overfitting, early stopping after convergence may be advantageous, 

demonstrating a methodical approach to model training and effective use of resources. 

4.1.4 MLP Model: 

The Multi-Layer Perceptron (MLP) model was configured with the following 

hyperparameters: 

Hidden Layer Sizes: (100, 50) 

Activation Function: Rectified Linear Unit (ReLU) 

Learning Rate: 0.001 

Number of Epochs: 500 

Batch Size: 32 
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The model was trained using the scaled training dataset (X_train_scaled, y_train). The 

maximum number of iterations (epochs) was set to 500, and the random seed was fixed 

for reproducibility. 

4.1.4.1 Training and Evaluation: 

Both models were trained on the respective training datasets, and their performance was 

evaluated on the testing dataset. The evaluation metrics used to assess the models' 

performance include: 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared Score (R2), 

Nash-Sutcliffe Efficiency (NSE). 

These metrics provide insights into the accuracy and efficiency of the models in 

predicting snowmelt runoff. 

Table 3-4.1.4.1 Evaluation Metrices Table LSTM vs MLP 

Description LSTM MLP 

RMSE 0.234 0.173 

MAE 0.170 0.084 

R2 0.9976 0.9987 

NSE 0.9976 0.9987 

 

The evaluation metrics offer a thorough analysis of how well the Multi-Layer 

Perceptron (MLP) and Long Short-Term Memory (LSTM) models predict snowmelt 

runoff. The Root Mean Squared Error (RMSE) for the Long Short-Term Memory 

(LSTM) model is 0.234, suggesting a minimal average deviation between the observed 

and predicted values. A moderate magnitude of errors is indicated by the Mean 

Absolute Error (MAE) of 0.170, and an exceptionally high level of explained variance 

is indicated by the R² Score of 0.9976. An additional indication of the model's ability 

to replicate the observed data patterns is the Nash-Sutcliffe Efficiency (NSE) of 0.9976. 

With an RMSE of 0.173, MAE of 0.084, and R2 Score of 0.9987, the MLP model also 

performs admirably. The robustness of MLP in capturing the underlying dynamics of 

river runoff is demonstrated by its NSE of 0.9987. Both models produce highly accurate 

predictions, with the MLP model producing slightly lower RMSE and MAE and 

marginally higher R2 and NSE scores, indicating a subtle but significant performance 

difference between the two architectures. 
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4.1.4.2 Time Series Plots: 

Below are the time series plots illustrating the predicted and actual values of river 

runoff for both the LSTM and MLP models.  

Figure 12-4.1.6(a): River runoff Prediction (Actual Vs MLP Predictions) 

 

Figure 13-4.1.5(b): River runoff Prediction (Actual Vs LSTM Predictions) 
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4.1.4.3 Comparative Analysis Plots: 

Additionally, the following plots provide a comparative analysis of the LSTM and 

MLP models, showcasing the actual vs. predicted values.  

 

Figure 14-4.1.6: River runoff Prediction (Actual Vs MLP Predictions Vs LSTM 
Predictions) 

There is a significant correlation between our Actual Discharge, LSTM, and MLP 

predictions. While accuracy varies slightly between data points, both models' 

predictions roughly match the Actual Discharge. The main predictions made by both 

models are within small error margins from the actual values. 

4.2 Discussion: 

The evaluation's findings and visualizations show that the estimates of river runoff are 

accurate, as evidenced by the relatively low RMSE and MAE values. It is noteworthy, 

nevertheless, that the MLP model outperformed the LSTM model in terms of RMSE 

and MAE values, albeit marginally. This shows that the MLP model performed 

exceptionally well in minimizing the errors between predicted and observed values 

when predicting river runoff thanks to its feedforward architecture. 

High R2 scores for both models indicated a strong correlation between the observed and 

predicted values. Furthermore, the NSE values, which show how effective the models 
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were in simulating variability in river runoff when compared to a simple mean, were 

nearly equal to unity. 

These results imply that the models' ability to effectively capture the underlying 

patterns in the dataset is influenced by the configurations and hyperparameters chosen. 

The models' performance over time and the impact of individual variables are clearly 

depicted by the visualizations. 

It is important to emphasize the original prediction that the LSTM model would 

perform better in river runoff prediction than the MLP model due to its ability to 

capture temporal dependencies. The results, however, point to a more nuanced reality 

in which the MLP model performed marginally better according to some evaluation 

metrics.  
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In conclusion, the comparative analysis of Long Short-Term Memory (LSTM) and 

Multi-Layer Perceptron (MLP) models for river runoff prediction in the Hindu Kush 

Himalayan region has provided valuable insights into the complex interplay of 

hydrological processes. The evaluation metrics and visualizations collectively portray 

the effectiveness of both models in capturing the intricate dynamics of snowmelt, 

leading to accurate predictions of runoff. 

 

While the initial expectation was that LSTM, with its inherent ability to capture 

temporal dependencies, would outperform the MLP model, the results indicated a more 

nuanced scenario. The MLP model exhibited slightly superior performance in certain 

evaluation metrics, challenging our preconceived notions and underscoring the 

importance of empirical evaluation. 

 

The comprehensive analysis of individual variables, including discharge, precipitation, 

temperature, and snow cover area, further enriched our understanding of the factors 

influencing snowmelt runoff. The visualizations provided a clear depiction of how each 

variable contributes to the predictive capabilities of the models. 

 

5.2 Recommendations: 

5.2.1 Refinement of Model Architectures: 

Further exploration of LSTM and MLP architectures, considering variations in the 

number of layers, units, and activation functions, could provide insights into optimal 

configurations for river runoff prediction. 

5.2.2 Incorporation of Additional Data Sources: 

The inclusion of additional relevant data sources, such as soil moisture or land cover, 

may enhance the models' ability to capture the complexity of hydrological processes, 

particularly in the mountainous terrains of the Hindu Kush Himalayan region. 

5.2.3 Ensemble Modeling Approaches: 

Investigating ensemble modeling approaches, where multiple models are combined, 

could potentially yield improved predictive performance by leveraging the strengths of 

different algorithms. 
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5.2.4 Sensitivity Analysis: 

Conducting sensitivity analyses to understand the impact of various hyperparameters 

on model performance would contribute to the refinement of modeling strategies. 

5.2.5 Integration of Climate Change Scenarios: 

As climate change continues to influence hydrological patterns, future research should 

explore the integration of climate change scenarios into predictive models to enhance 

their adaptability and robustness. 

5.2.6 Collaboration with Stakeholders: 

Collaboration with local stakeholders, such as water resource management authorities 

and meteorological agencies, is essential to ensure that predictive models align with 

practical decision-making needs in the region. 
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 APPENDICES 

Appendix A: Data Retrieval for Lantang Region Precipitation  
This script in Python makes it easier to extract precipitation data from the APHRODITE 

dataset for the Lantang region for the year 2012. Using the netCDF4 library, the code 

retrieves the precipitation variable by using the Lantang region's geographic 

coordinates. The script retrieves pertinent information for the given location and time 

period, which extends from the beginning of the dataset to December 31, 2012. To 

complement the script for 2012, the data retrieval procedure for precipitation in the 

Lantang region was also manually modified for every year between 2001 and 2011. 

This customized method guarantees accuracy in obtaining data relevant to the time span 

of every year. Each year's executions were done separately, producing CSV files with 

organized names. I named my files consistently, using, for example, 

'precipitation_lantang_2001.csv' for 2001. Users can also choose to combine annual 

data into a single dataset for a more thorough analysis, highlighting the versatility of 

this manual retrieval process in handling temporal nuances and dataset organization. 
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from netCDF4 import Dataset 
import pandas as pd 
import numpy as np 
 
data = Dataset(r'F:\Data_New\precipitation\APHRO_MA_025deg_V1901.2012.nc') 
 

lon = data.variables['lon'][:] 
lat = data.variables['lat'][:] 
 
lon_lantang = 28.21105 
lat_lantang = 85.56713 
 
sq_diff_lat = (lat-lat_lantang)**2 
sq_diff_lon = (lon-lon_lantang)**2 
 
min_index_lat = sq_diff_lat.argmin() 
min_index_lon = sq_diff_lon.argmin() 
 
precip = data.variables['precip'] 
 
starting_date = data.variables['time'].units[14:24] 
ending_date = data.variables['time'].units[14:18]+'-12-31' 
date_range = pd.date_range(start = starting_date, end = ending_date) 
df = pd.DataFrame(0, columns = ['Precipitation'], index = date_range) 
dt = np.arange(0, data.variables['time'].size) 
 
for time_index in dt: 
    df.iloc[time_index] = precip[time_index, min_index_lat, min_index_lon] 
     
df.to_csv('precipitation lantang 2012.csv') 
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Appendix B: Data Retrieval for Lantang Region Temperature  
As per the data retrieval of precipitation data from netCDF4 file, the same process and 

code is applied to the netCDF4 file for the temperature by only changing the name. 

from netCDF4 import Dataset 
import pandas as pd 
import numpy as np 
 
data = Dataset(r'F:\Data_New\temperature\APHRO_MA_025deg_V1901.2012.nc') 
 

lon = data.variables['lon'][:] 
lat = data.variables['lat'][:] 
 
lon_lantang = 28.21105 
lat_lantang = 85.56713 
 
sq_diff_lat = (lat-lat_lantang)**2 
sq_diff_lon = (lon-lon_lantang)**2 
 
min_index_lat = sq_diff_lat.argmin() 
min_index_lon = sq_diff_lon.argmin() 
 
temp = data.variables['temp'] 
 
starting_date = data.variables['time'].units[14:24] 
ending_date = data.variables['time'].units[14:18]+'-12-31' 
date_range = pd.date_range(start = starting_date, end = ending_date) 
df = pd.DataFrame(0, columns = ['Temperature'], index = date_range) 
dt = np.arange(0, data.variables['time'].size) 
 
for time_index in dt: 
    df.iloc[time_index] = precip[time_index, min_index_lat, min_index_lon] 
     
df.to_csv('temperature lantang 2012.csv') 
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Appendix C: Data Retrieval for Lantang Region Temperature  
This code snippet uses the MODIS satellite imagery to analyze snow cover data through 

the use of a JavaScript script in the Google Earth Engine environment. The shape file 

uploaded to the Google Earth Engine cloud defines the region of interest, which is 

denoted by the variable 'AOI' (Area of Interest). Using 'Map.centerObject(AOI)', the 

script centers the map on the designated area. 'Map.addLayer(AOI)' adds a layer to 

visualize the defined AOI. 

The code then uses the 'filterDate' function to filter the images based on a specified date 

range from January 1, 2001, to December 31, 2012, after gaining access to the MODIS 

snow cover dataset ('MODIS/006/MOD10A1'). The chosen snow cover data is then 

assigned to the variable'modLSTday'. 

The 'ui.Chart.image.series' function is then used by the script to create a time series 

chart ('ts1'). An overview of the mean snow cover over time in the designated region is 

given by this chart. The generated time series chart is output for analysis using the 

'print(ts1)' statement. By accessing the Task and Graph Subsection, where the data will 

be obtained, you can also download the CSV file in this chart form. 

 



59  
  

 
Map.centerObject(AOI); 
Map.addLayer(AOI); 
 
var modis = ee.ImageCollection('MODIS/006/MOD10A1'); 
var mod11a2 = modis.filterDate( '2001-01-01', '2012-12-31');  
 
var modLSTday = mod11a2.select('NDSI_Snow_Cover'); 
 
print(modLSTday); 
 

var snowCoverVis = { 
  min: 0.0, 
  max: 100.0, 
  palette: ['black', '0dffff', '0524ff', 'ffffff'], 
}; 
 

var ts1 = ui.Chart.image.series({ 
  imageCollection: modLSTday, 
  region: AOI, 
  reducer: ee.Reducer.mean(), 
  scale: 1000, 
  xProperty: 'system:time_start'}) 
  .setOptions({ 
  title: 'Snow Cover', 
  vAxis: {title: 'LST Celsius'}}); 
 
print(ts1); 
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Appendix D: River runoff Prediction Comparison 
import numpy as np 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 
from sklearn.neural_network import MLPRegressor 
from keras.models import Sequential 
from keras.layers import LSTM, Dense 
import matplotlib.pyplot as plt 
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 
 
# Load data from the CSV file 
data = pd.read_csv('F:/MSCCD/Semester IV/DATA/climate data allll.csv') 
data['date'] = pd.to_datetime(data['date'])  # Convert the 'date' column to 
datetime format 
 
# Target variable is in the column 'discharge' and other features are in other 
columns 
X = data[['discharge','precipitation', 'temperature', 'snowcoverarea']] 
y = data['discharge'] 
 

# Set the percentage for training and validation data 
train_percent = 0.8 
val_percent = 0.1 
test_percent = 1.0 - train_percent - val_percent 
 
# Calculate the split indices 
train_idx = int(len(data) * train_percent) 
val_idx = int(len(data) * (train_percent + val_percent)) 
 
# Split the data 
X_train, X_val, X_test = np.split(X, [train_idx, val_idx]) 
y_train, y_val, y_test = np.split(y, [train_idx, val_idx]) 
 
# Normalize your data 
scaler = MinMaxScaler() 
X_train_scaled = scaler.fit_transform(X_train) 
X_val_scaled = scaler.transform(X_val) 
X_test_scaled = scaler.transform(X_test) 
 
# Reshape data for LSTM input (samples, time steps, features) 
X_train_reshaped = X_train_scaled.reshape((X_train_scaled.shape[0], 1, 
X_train_scaled.shape[1]))  
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X_val_reshaped = X_val_scaled.reshape((X_val_scaled.shape[0], 1, 
X_val_scaled.shape[1])) 
X_test_reshaped = X_test_scaled.reshape((X_test_scaled.shape[0], 1, 
X_test_scaled.shape[1])) 
 
# Initialize and train LSTM model 
lstm_model = Sequential() 
lstm_model.add(LSTM(50, input_shape=(X_train_reshaped.shape[1], X_train_re-
shaped.shape[2]))) 
lstm_model.add(Dense(1)) 
lstm_model.compile(optimizer='adam', loss='mse') 
 
# Train the model with validation data 
history_lstm = lstm_model.fit(X_train_reshaped, y_train, epochs=50, 
batch_size=32, validation_data=(X_val_reshaped, y_val), verbose=1) 
 
# Make predictions on the test set using LSTM 
lstm_predictions = lstm_model.predict(X_test_reshaped) 
lstm_predictions = lstm_predictions.reshape((lstm_predictions.shape[0],)) 
 
# Evaluate the LSTM model 
lstm_rmse = np.sqrt(mean_squared_error(y_test, lstm_predictions)) 
lstm_mae = mean_absolute_error(y_test, lstm_predictions) 
lstm_r2 = r2_score(y_test, lstm_predictions) 
lstm_nse = 1 - (np.sum((y_test - lstm_predictions)**2) / np.sum((y_test - 
np.mean(y_test))**2)) 
 
print("LSTM Evaluation Metrics:") 
print("RMSE:", lstm_rmse) 
print("MAE:", lstm_mae) 
print("R^2 Score:", lstm_r2) 
print("NSE for LSTM:", lstm_nse) 
 
# Initialize and train MLP model 
mlp_model = MLPRegressor(hidden_layer_sizes=(100, 50), max_iter=500, ran-
dom_state=42) 
mlp_model.fit(X_train_scaled, y_train) 
 
# Make predictions on the test set using MLP 
mlp_predictions = mlp_model.predict(X_test_scaled) 
 
# Evaluate the MLP model 
mlp_rmse = np.sqrt(mean_squared_error(y_test, mlp_predictions)) 
mlp_mae = mean_absolute_error(y_test, mlp_predictions) 
mlp_r2 = r2_score(y_test, mlp_predictions)  
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mlp_nse = 1 - (np.sum((y_test - mlp_predictions)**2) / np.sum((y_test - 
np.mean(y_test))**2)) 
 
print("\nMLP Evaluation Metrics:") 
print("RMSE:", mlp_rmse) 
print("MAE:", mlp_mae) 
print("R^2 Score:", mlp_r2) 
print("NSE for MLP:", mlp_nse) 
 
# Plot training and validation loss for LSTM model 
plt.figure(figsize=(12, 8)) 
plt.subplot(2, 1, 1) 
plt.plot(history_lstm.history['loss'], label='LSTM Training Loss') 
plt.plot(history_lstm.history['val_loss'], label='LSTM Validation Loss') 
plt.title('LSTM Training and Validation Loss') 
plt.xlabel('Epochs') 
plt.ylabel('Mean Squared Error') 
plt.legend() 
 
# Plot the actual vs predicted values for both LSTM and MLP models with dates 
plt.subplot(2, 1, 2) 
plt.plot(data['date'].iloc[-len(y_test):], y_test, label='Actual', linewidth=2) 
plt.plot(data['date'].iloc[-len(lstm_predictions):], lstm_predictions, la-
bel='LSTM Predictions', linestyle='dashed', alpha=0.8, color = 'red') 
plt.plot(data['date'].iloc[-len(mlp_predictions):], mlp_predictions, label='MLP 
Predictions', linestyle='dashed', alpha=0.8, color = 'green') 
plt.title('Snowmelt Runoff Prediction Comparison') 
plt.xlabel('Date') 
plt.ylabel('Snowmelt Runoff') 
plt.legend() 
 
plt.tight_layout() 
plt.show() 
 
 

 

The performance of the MLP and LSTM models for predicting river runoff is compared 

in this Python script. Included are the LSTM model's training and validation loss plots 

as well as a comparison of the actual and predicted values for the MLP and LSTM 

models with dates. Assessment measures, including RMSE, MAE, R2 Score, and NSE, 

are computed for both models, offering valuable perspectives into their forecasting 

abilities. Depending on the configuration of a given dataset, changes to the names and 

indices of columns may be required. 
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Appendix E: Monthly Data Visualization and Correlation Analysis 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
df = pd.read_csv('F:/MSCCD/Semester IV/DATA/climate data allll.csv') 
 

df['date'] = pd.to_datetime(df['date']) 
 
# Extract year and month from the date 
df['year'] = df['date'].dt.year 
df['month'] = df['date'].dt.month 
 
# Create a new column combining year and month for proper grouping 
df['year_month'] = df['date'].dt.to_period('M') 
 
# Aggregate the data for each month across all years for discharge 
monthly_aggregated_discharge = df.groupby('month')['discharge'].agg(list) 
 
# Set a simple color for the plot 
custom_palette = sns.color_palette("pastel")[0] 
 
# Create a boxplot for each month with a line passing through the center 
plt.figure(figsize=(16, 12)) 
plt.subplot(2, 1, 1) 
sns.boxplot(data=monthly_aggregated_discharge.apply(pd.Series).T, color=cus-
tom_palette, showfliers=False, medianprops={'color': 'red'}) 
 
# Set plot labels and title 
plt.title('Monthly Distribution of SnowMelt - Runoff Across 2001-2012', font-
size=16) 
plt.xlabel('Month', fontsize=14) 
plt.ylabel('SnowMelt - Runoff m3/sec', fontsize=14) 
 
# Customize the grid and axes 
plt.grid(axis='y', linestyle='--', alpha=0.7) 
plt.tick_params(axis='both', labelsize=12) 
 
# Discharge Line Plot 
plt.subplot(2, 1, 2) 
sns.lineplot(x='date', y='discharge', data=df, hue='year', palette='Set2', lin-
ewidth=1) 
plt.xlabel('Year', fontsize=14) 
plt.ylabel('SnowMelt - Runoff m3/sec', fontsize=14)  
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plt.title('SnowMelt - Runoff Across 2001-2012 (Line Plot)', fontsize=16) 
 
# Aggregate the data for each month across all years for precipitation 
monthly_aggregated_precipitation = df.groupby('month')['precipitation'].agg(list) 
 
# Set a simple color for the plot 
custom_palette = sns.color_palette("pastel")[0] 
 
# Create a boxplot for each month with a line passing through the center 
plt.figure(figsize=(16, 12)) 
plt.subplot(2, 1, 1) 
sns.boxplot(data=monthly_aggregated_precipitation.apply(pd.Series).T, color=cus-
tom_palette, showfliers=False, medianprops={'color': 'red'}) 
 
# Set plot labels and title 
plt.title('Monthly Distribution of Pecipitation Across 2001-2012', fontsize=16) 
plt.xlabel('Month', fontsize=14) 
plt.ylabel('Pecipitation mm', fontsize=14) 
 
# Customize the grid and axes 
plt.grid(axis='y', linestyle='--', alpha=0.7) 
plt.tick_params(axis='both', labelsize=12) 
 
# Discharge Line Plot 
plt.subplot(2, 1, 2) 
sns.lineplot(x='date', y='precipitation', data=df, hue='year', palette='Set2', 
linewidth=1) 
plt.xlabel('Year', fontsize=14) 
plt.ylabel('Pecipitation mm', fontsize=14) 
plt.title('Pecipitation Across 2001-2012 (Line Plot)', fontsize=16) 
 
# Aggregate the data for each month across all years for temperature 
monthly_aggregated_temperature = df.groupby('month')['temperature'].agg(list) 
 
# Set a simple color for the plot 
custom_palette = sns.color_palette("pastel")[0] 
 
# Create a boxplot for each month with a line passing through the center 
plt.figure(figsize=(16, 12)) 
plt.subplot(2, 1, 1) 
sns.boxplot(data=monthly_aggregated_temperature.apply(pd.Series).T, color=cus-
tom_palette, showfliers=False, medianprops={'color': 'red'}) 
 
# Set plot labels and title 
plt.title('Monthly Distribution of Temperature Across 2001-2012', fontsize=16)  
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plt.xlabel('Month', fontsize=14) 
plt.ylabel('Temperature degree Celcius', fontsize=14) 
 
# Customize the grid and axes 
plt.grid(axis='y', linestyle='--', alpha=0.7) 
plt.tick_params(axis='both', labelsize=12) 
 
# Discharge Line Plot 
plt.subplot(2, 1, 2) 
sns.lineplot(x='date', y='temperature', data=df, hue='year', palette='Set2', lin-
ewidth=1) 
plt.xlabel('Year', fontsize=14) 
plt.ylabel('Temperature degree Celcius', fontsize=14) 
plt.title('Temperature Across 2001-2012 (Line Plot)', fontsize=16) 
 
# Aggregate the data for each month across all years for snowcoverarea 
monthly_aggregated_sca = df.groupby('month')['snowcoverarea'].agg(list) 
 
# Set a simple color for the plot 
custom_palette = sns.color_palette("pastel")[0] 
 
# Create a boxplot for each month with a line passing through the center 
plt.figure(figsize=(16, 12)) 
plt.subplot(2, 1, 1) 
sns.boxplot(data=monthly_aggregated_sca.apply(pd.Series).T, color=custom_palette, 
showfliers=False, medianprops={'color': 'red'}) 
 
# Set plot labels and title 
plt.title('Monthly Distribution of Snow Cover Area Across 2001-2012', font-
size=16) 
plt.xlabel('Month', fontsize=14) 
plt.ylabel('Snow Cover Area % ', fontsize=14) 
 
# Customize the grid and axes 
plt.grid(axis='y', linestyle='--', alpha=0.7) 
plt.tick_params(axis='both', labelsize=12) 
 
# Discharge Line Plot 
plt.subplot(2, 1, 2) 
sns.lineplot(x='date', y='snowcoverarea', data=df, hue='year', palette='Set2', 
linewidth=1) 
plt.xlabel('Year', fontsize=14) 
plt.ylabel('Snow Cover Area %', fontsize=14) 
plt.title('Snow Cover Areae Across 2001-2012 (Line Plot)', fontsize=16) 
 

 

Using monthly data from 2001 to 2012, this Python script creates boxplots, line plots, 

and a correlation matrix heatmap. The distribution and correlations between discharge, 

precipitation, temperature, and snow cover area are revealed by the visualizations.  
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Abstract  
Hydrological forecasting in the Hindu Kush Himalayas (HKH) presents special challenges 
because of the complex interplay between climatic and environmental factors. The quantitative 
predictive capabilities of two well-established models, Long Short-Term Memory (LSTM) and 
Multi-Layer Perceptron (MLP), chosen for their proven performance in previous studies, are 
meticulously compared in this thesis. The analysis uses comprehensive data spanning 2001 to 
2013, including discharge records from the Department of Hydrology and Meteorology (DHM), 
precipitation data from APHRODITE, temperature data from APHRODITE, and snow cover 
area information from Google Earth Engine with MOD09A1 V6.1. The study employs rigorous 
evaluation metrics, revealing nuanced insights into the hydrological processes. Contrary to 
expectations, the MLP model exhibited slight superiority, showcasing a nuanced understanding 
of the region's complexities. The quantitative assessment, including RMSE (LSTM: 0.2396, 
MLP: 0.1733), MAE (LSTM: 0.1698, MLP: 0.0841), R2 Score (LSTM: 0.9976, MLP: 0.9987), and 
NSE (LSTM: 0.9976, MLP: 0.9987), emphasizes the indispensable role of robust predictive 
models, showcasing the necessity of reliable models for enhancing accurate river runoff 
predictions crucial for effective water resource management and flood preparedness in 
challenging terrains like the HKH. 

Keywords: Long Short-Term Memory (LSTM), Multi-Layer Perceptron (MLP), Hindu Kush 
Himalayan region (HKH) 

 
 

1. Introduction  

The impacts stemming from the escalating global warming and climate change phenomenon 

have ushered in a heightened frequency and severity of both drought and flooding events, 

thereby constituting one of the most formidable challenges confronting our aquatic 
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