Antifungal Activities of Some Medicinal Plant Extracts and Trichoderma spp. against Stemphylium vesicarium of Allium sativum

A Dissertation

Submitted for the Partial Fulfillment of the Requirements for the Degree of M.Sc. in Botany.

By:

Sajana Shrestha

Symbol no: 1227

T.U. Regd. No: 5-2-37-715-2000

Batch No: 2005/2007

Central Department of Botany, Institute of Science and Technology

Tribhuvan University, Kirtipur, Kathmandu, Nepal

2010

TRIBHUVAN UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY CENTRAL DEPARTMENT OF BOTANY KIRTIPUR, KATHMANDU **NEPAL**

RECOMMENDATION

This is to certify that Ms. Sajana Shrestha has carried out the dissertation work entitled "Antifungal Activities of Some Medicinal Plant Extracts and Trichoderma spp. Against Stemphylium vesicarium of Allium sativum" under my supervision. The entire work is based on the collection of primary data by student. This result has not been submitted for any other academic degree. I therefore, recommend this dissertation for the partial fulfillment of Master's Degree in Botany from Tribhuvan University, Nepal.

Prof. Dr. Usha Budhathoki

(Supervisor)

Central Department of Botany Tribhuvan University Kathmandu, Nepal

Date of submission: 23 Dec, 2009

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and deep appreciation to my respected Supervisor Prof. Dr. Usha Budhathoki, of Central Department of Botany, T.U. for her valuable instruction, sincere supervision, comments, guidance and encouragement throughout this research work. I am also grateful to Mr. Shiva Devkota, Dr. Chandra P. Pokharel, Dr. Ram Kailash Yadab and Dr. Rosemary Shrestha for their valuable suggestions and instructions.

I am grateful to Head of the Department Dr. Krishna K. Shrestha for his administrative support .

I must thank Mr. Gopal P. Shrestha and Adhrit Regmi for providing lab facilities of Horticulture in Kirtipur. I am also thankful to Mr. Man Bahadur Chhetri for his cooperation in different aspects.

I am also obliged to Dr. Gyanu Manandhar, Mrs. Saradha Joshi and Dr. Ram Devi Timila of NARC for their support and help during my research work. I am also thankful to Mr. Madhav K.C. for helping in media preparation.

I would like to thank my friends Mr. Basant Khatri Chhetri, Ms. Suchitra Shrestha, , Mrs. Sarika vaidhya, Mr. Sunil Maharjan, Mr. E.N. Poudel, Mr. Saugat Shrestha, Ms. Pushpa Sharma, Ms. Bijaya L. Maharjan, Mr. Naresh Dangi and Mr. Krishna Paudel for their constant cooperation through out my work.

Moreover, I am grateful to Mr. Raj K. Maharjan for his kind cooperation and support. Last but not least, I would like to express my deepest appreciation towards my family for their constant inspiration, support and best wishes.

Sajana Shrestha

ABSTRACT

The extracts of eight aromatic plants viz. Cuscuta reflexa, Syzygium aromaticum, Allium cepa, Cinnamomum zeylanicum, Solanum xanthocarpum, Phyllanthus emblica, Cinnamomum camphora and Equisetum diffusum were assessed in-vitro for antifungal activity against Stemphylium vesicarium; the causal organism of leaf blight of garlic. Pathogenicity test was confirmed by inoculating the pathogen into healthy garlic plant. The assessment for fungitoxicity was carried out by poisoned food technique using five different concentrations (20%, 40%, 60%, 80% & 100%) against the test fungus in terms of percentage of mycelial growth inhibition. Among the test plants, the extracts of Cuscuta reflexa, Syzygium aromaticum and Allium cepa were able to inhibit the mycelial growth completely.

Trichoderma spp. was tested to determine its effect on mycelia growth of *S. vesicarium* on PDA medium. The mycelia growth was totally inhibited by *Trichoderma* spp. showing its fungitoxic properties.

TABLE OF CONTENTS

CHAPTER – 1	PAGE NO
1. INTRODUCTION	1-5
1.1 General Introduction	1
1.2 Objectives	4
1.3 Justification of the study	4
1.4 Limitation of the study	5
CHAPTER- 2	
2. RATURE REVIEW	LITE 6-13
2.1 Test fungus	6
2.1.1 Isolation and pathogenicity test of	
Stemphylium vesicarium (Wallr.) Simmon	6
2.2 Antifungal activity of plant extract	7
2.2.1 Test plants	7
2.2.1.1 Phyllanthus emblica L.	7
2.2.1.2 Syzygium aromaticum L.	7
2.2.1.3 Cinnamomum camphora Linn. Presl	7
2.2.1.4 Solanum xanthocarpum Schrad and Wendl	8
2.2.1.5 Cuscuta reflexa Roxb.	8
2.2.1.6 Allium cepa L.	8
2.2.1.7 Equisetum diffusum D.Don	9
2.2.1.8 Cinnamomum zeylanicum B.	9
2.3 Antifungal activity of <i>Trichoderma</i> spn	12

CHAPTER -3

3. ERIALS AND METHOD	MAT 14-19
3.1 Materials	14
3.2 Methods	14
3.2.1 Collection of diseased plants	14
3.2.2 Isolation of test fungus by single spore method	14
3.2.3 PDA media preparation	14
3.2.4 WA media preparation	15
3.2. 5 Identification of test fungus	15
3.2.6 Pathogenicity test	15
3.2.7 Reisolation	15
3.2.8 Maintenance of pure culture	16
3.2.9 Control by using different plant extracts	16
3.2.10 Preparation of plant extracts	16
3.2.11 Preparation of one week old culture	17
3.2.12 Antifungal assay	17
3.2.13 Calculation of mycelia growth inhibition	17
3.2.14 Determination of MIC of plant extracts	18
3.2.15 Biological control	18
3.2.16 Conidial measurement	18
3.2.17 Statistical data analysis	19
3.2.18 Photographs	19

CHAPTER-4

4.	20.21
RESULTS	20-31
4.1 Isolation of test pathogen	20
4.2 Pathogenicity test	21
4.3 Antifungal activity of different plant extracts against test fungus	22
4.4 Minimum inhibitory concentration (MIC) of Plant extracts	30
4.5 Efficacy of <i>Trichoderma</i> spp. to control test fungus	30
4.6 Statistical data analysis	31
CHAPTER – 5	
5. SCUSSION	DI 32-35
CHAPTER – 6	
6.	CO
NCLUSION	36
CHAPTER – 7	
7.	RE
COMMENDATION	37
REFERENCES	38-42
APPENDICES	
I.	Ma
terial used for the study	43
II.	Nut
ritional content of garlic	45

Ш.		
	op Ten Garlic Producers-11 June 2008	46
IV.		Mi
	crometery	47
V.		Ph
	otographs	48

LIST OF TABLES

Table 1: Diseases of garlic	2
Table 2: Medicinal plants used to test fungitoxicity	
Table 3: Measurement of diameter of colony of test fungus after	
7 days	20
Table 4: MIC of plant extract	30
Table 5: Correlation between different concentration of	
plant extracts and mycelial growth	31

LIST OF FIGURES

Figure 1: Antifungal activity of plant extract of Cuscuta reflexa	
against Stemphylium vesicarium (Wallr.)Simmons	22
Figure 2: Antifungal activity of plant extract of Syzygium aromaticum	
against Stemphylium vesicarium (Wallr.)Simmons	23
Figure 3: Antifungal activity of plant extract of Allium cepa	
against Stemphylium vesicarium (Wallr.)Simmons	24
Figure 4: Antifungal activity of plant extract of Cinnamomum zeylanium	
against Stemphylium vesicarium (Wallr.)Simmons	25
Figure 5: Antifungal activity of plant extract of Solanum xanthocarpum	
against Stemphylium vesicarium (Wallr.)Simmons	26
Figure 6: Antifungal activity of plant extract of <i>Phyllanthus emblica</i>	
against Stemphylium vesicarium (Wallr.)Simmons	27
Figure 7: Antifungal activity of plant extract of Cinnamomum camphora	
against Stemphylium vesicarium (Wallr.)Simmons	28
Figure 8: Antifungal activity of plant extract of Equisetum diffusum	
against Stemphylium vesicarium (Wallr.)Simmons	29

ABBERVATIONS

cm - Centimeter

m - Meter

mm - Millimeter

gm - Gram

mg - Milligram

mt - Metric Ton

 μ - Micrometer

⁰C - Degree Celsius

ha - Hectare

GC - Gas chromatography

TLC - Thin layer chromatography

NARC - National Agricultural Research Council

CDB - Central Department of Botany

PDA - Potato Dextrose Agar

WA - Water Agar

MIC - Minimal inhibitory concentration