APPENDICES

Appendix - I

Trend analysis of Housing Loan of past period for EBL

Year (X)	Housing Loan (y)	$\mathrm{x}=\mathrm{X}-2062 / 3 / 31$	x^{2}	xy	Trend Value Yc
2059/3/32	165	- 3	9	- 495	182.89
2060/3/32	421.4	- 2	4	- 842.8	479.23
2061/3/31	795.5	- 1	1	- 795.5	775.57
2062/3/31	1121.5	0	0	0	1071.91
2063/3/32	1445.1	1	1	1445.1	1368.25
2064/3/32	1679	2	4	3358	1664.59
2065/3/31	1875.9	3	9	5627.7	1960.93
	$\Sigma y=7503.4$	$\Sigma x=0$	$\Sigma x^{2}=28$	$\Sigma x y=8297.5$	

Period 2062/3/31 assumed base year

Since, $\Sigma y=7503.4, \quad \Sigma x=0, \quad \Sigma x^{2}=28, \quad \Sigma x y=8297.5, \quad \mathrm{n}=7$
$\because \mathrm{a}=\frac{\Sigma y}{n}=\frac{7503.4}{7}=1071.91$

$$
\mathrm{b}=\frac{\Sigma x y}{\Sigma x^{2}}=\frac{8297.5}{28}=296.34
$$

Now, Equation of Trend line $\mathrm{Yc}=\mathrm{a}+\mathrm{bx}$

$$
=1071.91+296.34 \mathrm{x}
$$

Trend value for period 2066/3/31 $=1071.91+296.34 \times 4=2257.27$
Trend value for period $2067 / 3 / 30=1071.91+296.34 \times 5=2553.61$
Trend value for period $2068 / 3 / 30=1071.91+296.34 \times 6=2849.95$

Appendix - II

Trend analysis of Housing Loan of past period for KBL

Year (X)	Housing Loan (y)	$\mathbf{x = X}-\mathbf{2 0 6 2} / \mathbf{3 / 3 1}$	\mathbf{x}^{2}	$\mathbf{x y}$	Trend Value Yc
$2059 / 3 / 32$	10.65	-3	9	-31.95	3.59
$2060 / 3 / 32$	42.32	-2	4	-84.64	26.31
$2061 / 3 / 31$	48.62	-1	1	-48.62	49.03
$2062 / 3 / 31$	40.94	0	0	0	71.75
$2063 / 3 / 32$	83.79	1	1	83.79	94.47
$2064 / 3 / 32$	110.39	2	4	220.78	117.19
$2065 / 3 / 31$	165.58	3	9	496.74	139.91
	$\Sigma y=502.29$	$\Sigma x=0$	$\Sigma x^{2}=28$	$\Sigma x y=636.1$	

Period 2062/3/31 assumed base year

Since, $\Sigma y=502.29, \quad \Sigma x=0, \quad \Sigma x^{2}=28, \quad \Sigma x y=636.1, \mathrm{n}=7$
$\because \mathrm{a}=\frac{\Sigma y}{n}=\frac{502.29}{7}=71.75$
$\mathrm{b}=\frac{\Sigma x y}{\Sigma x^{2}}=\frac{636.1}{28}=22.72$

Now, Equation of Trend line $\mathrm{Yc}=\mathrm{a}+\mathrm{bx}$

$$
=71.75+22.72 x
$$

Trend value for period 2066/3/31 $=71.75+22.72 \times 4=162.63$
Trend value for period $2067 / 3 / 30=71.75+22.72 \times 5=185.35$
Trend value for period $2068 / 3 / 30=71.75+22.72 \times 6=208.07$

Appendix - III

Trend analysis of Total Loan and Advance of past period for EBL

Year (X)	Total Loan \& Advance (\mathbf{y})	$\mathbf{x = X}-\mathbf{2 0 6 2 / 3 / 3 1}$	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{x y}$	Trend Value Yc
$2059 / 3 / 32$	8361.6	-3	9	-25084.8	7875.07
$2060 / 3 / 32$	9025.1	-2	4	-18050.2	9282.98
$2061 / 3 / 31$	10576.2	-1	1	-10576.2	10690.89
$2062 / 3 / 31$	11908.9	0	0	0	12098.8
$2063 / 3 / 32$	12768.6	1	1	11908.9	13506.71
$2064 / 3 / 32$	14929.7	2	4	29859.4	14914.62
$2065 / 3 / 31$	17121.5	3	9	51364.5	16322.53
	$\Sigma y=84691.6$	$\Sigma x=0$	$\Sigma x^{2}=28$	$\Sigma x y=39421.6$	

Period 2062/3/31 assumed base year

Since, $\Sigma y=84691.6, \quad \Sigma x=0, \quad \Sigma x^{2}=28, \quad \Sigma x y=39421.6, \quad \mathrm{n}=7$
$\because \mathrm{a}=\frac{\Sigma y}{n}=\frac{84691.6}{7}=12098.8$

$$
\mathrm{b}=\frac{\Sigma x y}{\Sigma x^{2}}=\frac{39421.6}{28}=1407.91
$$

Now, Equation of Trend line $\mathrm{Yc}=\mathrm{a}+\mathrm{bx}$

$$
=12098.8+1407.91 \mathrm{x}
$$

Trend value for period $2066 / 3 / 31=12098.8+1407.91 \times 4=17730.44$
Trend value for period 2067/3/30 $=12098.8+1407.91 \times 5=19138.35$
Trend value for period 2068/3/30 $=12098.8+1407.91 \times 6=20546.26$

Appendix - IV

Trend analysis of Total Loan and Advance of past period for KBL

Year (X)	 Advance (y)	$\mathbf{x = X}-\mathbf{2 0 6 2 / 3 / 3 1}$	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{x y}$	Trend Value Yc
$2059 / 3 / 32$	578.01	-3	9	-1734.03	505.54
$2060 / 3 / 32$	947.58	-2	4	-1895.16	904.82
$2061 / 3 / 31$	1158.15	-1	1	-1158.15	1304.1
$2062 / 3 / 31$	1715.03	0	0	0	1703.38
$2063 / 3 / 32$	1933.97	1	1	1933.97	2102.66
$2064 / 3 / 32$	2739.55	2	4	5479.1	2501.94
$2065 / 3 / 31$	2851.37	3	9	8554.11	2901.22
	$\Sigma y=11923.66$	$\Sigma x=0$	$\Sigma x^{2}=28$	$\Sigma x y=11179.84$	

Period 2062/3/31assumed base year

Since, $\Sigma y=11923.66, \Sigma x=0, \quad \Sigma x^{2}=28, \quad \Sigma x y=11179.84, \quad \mathrm{n}=7$
$\because \mathrm{a}=\frac{\Sigma y}{n}=\frac{11923.66}{7}=1703.38$

$$
\mathrm{b}=\frac{\Sigma x y}{\Sigma x^{2}}=\frac{11179.84}{28}=399.28
$$

Now, Equation of Trend line $\mathrm{Yc}=\mathrm{a}+\mathrm{bx}$

$$
=1703.38+399.28 \mathrm{x}
$$

Trend value for period 2066/3/31 $=1703.38+399.28 \times 4=3300.5$
Trend value for period 2067/3/30 $=1703.38+399.28 \times 5=3699.78$
Trend value for period 2068/3/30 $=1703.38+399.28 \times 6=4099.06$

Appendix V (a)

Correlation between Housing loan and Total loan for EBL

(Rs in million)

Year	Housing Loan (\mathbf{X})	Total Loan (\mathbf{Y})	$\mathbf{X . Y}$	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{Y}^{\mathbf{2}}$
$2059 / 3 / 32$	165	8361.6	1379664	27225	69916354.56
$2060 / 3 / 32$	421.4	9025.1	3803177.14	177577.96	81452430.01
$2061 / 3 / 31$	795.5	10576.2	8413367.1	632820.25	111856006.4
$2062 / 3 / 31$	1121.5	11908.9	13355831.35	1257762.25	141821899.2
$2063 / 3 / 32$	1445.1	12768.6	18451903.86	2088314.01	163037146
$2064 / 3 / 32$	1679	14929.7	25066966.3	2819041	222895942.1
$2065 / 3 / 31$	1875.9	17121.5	32118221.85	3519000.81	293145762.3
	$\Sigma X=7503.4$	$\Sigma Y=84691.6$	$\Sigma X Y=102589131.6$	$\Sigma X=10521741.28$	$\Sigma Y=1084125541$

$$
\mathrm{r}_{\mathrm{xy}}=\frac{n \Sigma X Y-(\Sigma X)(\Sigma Y)}{\sqrt{n \Sigma X^{2}-(\Sigma X)^{2}} \sqrt{n \Sigma Y^{2}-(\Sigma Y)^{2}}}
$$

Where,
$r=$ Karl person's coefficient of correlation
$\mathrm{n}=$ number of observation in series X and series Y
$\Sigma X=$ Sum of the observations in series X
$\Sigma Y=$ Sum of the observations in series Y
$\Sigma X^{2}=$ Sum of the square of observation in series in X
$\Sigma Y^{2}=$ Sum of the square of observation in series in Y
$\Sigma X Y=$ Sum of the product of the observations in series X and series Y

$$
\begin{aligned}
\mathrm{r}_{\mathrm{xy}} & =\frac{7 \times 102589131.6-(7503.4)(84691.6)}{\sqrt{7 \times 10521741.28-(7503.4)^{2}} \sqrt{7 \times 1084125541-(84691.6)^{2}}} \\
& =0.972
\end{aligned}
$$

Probable Error (P.E) of Correlation coefficient

P.E. $(\mathrm{r})=0.6745 \times \frac{1-r^{2}}{\sqrt{n}}$
$=0.014$

Correlation between Housing Loan and Total Loan for KBL

Appendix V (b)

Correlation between Housing loan and Total loan for KBL (Rs. In million)

Year	Housing Loan (X)	Total Loan (\mathbf{Y})	$\mathbf{X Y}$	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{Y}^{\mathbf{2}}$
$2059 / 3 / 32$	10.65	578.01	6155.81	113.42	334095.56
$2060 / 3 / 32$	42.32	947.58	40101.59	1790.98	897907.86
$2061 / 3 / 31$	48.62	1158.15	56309.25	2363.90	1341311.42
$2062 / 3 / 31$	40.94	1715.03	70213.33	1676.08	2941327.90
$2063 / 3 / 32$	83.79	1933.97	162047.35	7020.76	3740239.96
$2064 / 3 / 32$	110.39	2739.55	302418.92	12185.95	7505134.20
$2065 / 3 / 31$	165.58	2851.37	472129.84	27416.74	8130310.88
	$\boldsymbol{\Sigma X}=502.29$	$\Sigma \mathbf{Y}=11923.66$	$\boldsymbol{\Sigma X Y}=1109376.09$	$\boldsymbol{\Sigma X =}=52567.85$	$\boldsymbol{\Sigma Y}=24890327.78$

Now, $\mathrm{r}_{\mathrm{xy}}=\frac{n \Sigma X Y-(\Sigma X)(\Sigma Y)}{\sqrt{n \Sigma X^{2}-(\Sigma X)^{2}} \sqrt{n \Sigma Y^{2}-(\Sigma Y)^{2}}}$

Where,
$r=$ Karl person's coefficient of correlation
$\mathrm{n}=$ number of observation in series X and series Y
$\Sigma X=$ Sum of the observations in series X
$\Sigma Y=$ Sum of the observations in series Y
$\Sigma X^{2}=$ Sum of the square of observation in series in X
$\Sigma Y^{2}=$ Sum of the square of observation in series in Y
$\Sigma X Y=$ Sum of the product of the observations in series X and series Y
$r_{x y}=\frac{7 \times 1109376.09-(502.29)(11923.66)}{\sqrt{7 \times 52567.85-(502.29)^{2}} \sqrt{7 \times 24890327.78-(11923.66)^{2}}}$

$$
=0.922
$$

Probable Error (P.E) of Correlation coefficient

P.E. $(\mathrm{r})=0.6745 \times \frac{1-r^{2}}{\sqrt{n}}$

$$
=0.038
$$

