CHAPTER ONE

INTRODUCTION

1.1 General Background

Nepal is a small country sandwiched between two densely populated countries India and China. The level of economic development they have attained over the years and the current pace of their economic growth indicate that they have potential to compete in the international market. But the pace of the economic development of Nepal is still in its infant stage. For the economic growth and development, government has now initiated various economic policies with a hope that these policies will significantly change the industrial and business environment of the country in future. To accelerate economic development various policies like industrial policy, foreign investment policy and trade policy have been formulated and are being implement slowly.

The above-mentioned policies have about liberalization in Nepalese economy. With its impact various public sector industries are being privatized slowly and various multinational companies, joint venture banks and financial companies have emerged which aim in aiding economic development of the country. Banks and Finance companies are the heart of financial system operating in the economy. At present there are various banking and non-banking institutions operating in the country even with their branches outside the valley. It is hoped that these financial institutions would help economic development of the country and even help to compete in the international markets.

Banking from the beginning was not in this form as it is now. Banking has come to its present advanced form through various stages. In Nepal goldsmiths and moneylenders known as "sahu mahajans" were the ancestors of the bank. During the
tenure of the prime minister of Ranodip Singh in 1993 B.S. "Tejrath Adda" was established. That was the first step towards the development of the banking system in Nepal. Tejarath Adda did not collect deposit from the public but disbursed loans against bullion. Banking in a true sense started with an inspection of Nepal Bank Limited on 1994 B.S. It was the first government bank in Nepal. Then Nepal Rastra Bank was established (2013 B.S.) to formulate monetary policies and make rules and regulations regarding banking sector and to implement it.

Financial institution collects funds mainly from deposits (time and saving deposits), which are ultimately used as a part of capital investment in the country. Thus the problem of inadequate of capital formulation is somehow wiping out by collecting more deposits from the savers (households, business and government.) More precisely personal saving is the part of disposable income, which is not consumed. Saving equals income minus expenditure. For business sector saving include current earning retained inside business firms after payment of taxes, stockholder's dividend and other expenses. Government saving arises where there is a surplus of current revenue over expenditure. To induce more saving, financial institution can play a vital role by providing attractive interest rate and offer a different scheme. The people of the least developed countries are not much consumption. Even if some people are able to save their money, they show their interest to invest such surplus funds on nonproductive sectors like gold, land, vehicles and so on. Banks and Financial companies as intermediaries can attract savers to save more by providing them attractive interest and accept the deposit. Banks provide loan to borrowers who are in need of money from the money accumulated in the form of deposit and capital of bank while granting loan. Bank charges a certain percentage of interest to the borrower and borrower has to pay the interest for using banks money. Interest on loan also varies according to the nature of loan, whether loan is of short term or long term. An appropriate interest rate structure greatly affects the collection of deposits. Mobilization, which in turn, affects the economic uplift of the whole country.

1.1.1 Interest Rate

Interest rate is one of the major tools for shaping economy. It plays important role in borrowing and lending. Simply, interest rate is defined as the price of borrower that must be paid to secure scarce loanable funds from lender for an agreed-upon period. Interest is usually paid only on the principal that is, on the sum of money loaned, and is called simple interest. In some cases, interest is paid not only on the principal but also on the cumulative total of past interest payment. This procedure is known as compounding the interest, and the amount so paid is called compound interest. The rate of interest is expressed as percentage for use of fund is an annual basis. Thus, a loan of Rs 100 at 10 percent per annum earns interest of Rs 10 a year. The current, or market, rate of interest is determined primarily by the relation between the supply of money and demands of borrowers (see Supply and Demand.) When the supply of money available for investment increases faster than the requirements of borrowers, interest rates tend to fall. Conversely, interest rates generally rise when the demand for investment funds grows faster than the available supply of funds to meet that demand. Business executives will not borrow money at an interest rate that exceeds the return they expect the use of the money to yield.

It is price of credit. But unlike other prices in the economy, the rate of interest is really a ration or two quantities: the money cost borrowing divided by the amount of money actually borrowed, usually expressed on an annual percentage basis. The cost of borrowing money, measured in rupee per year per rupee borrowed, is the interest rate. When we examine how many money affects economic activity, we will focus on the interest rate, which is often called "The price of money". Interest is rent paid for the use of money. In other words, people must pay for opportunity to borrow money. Financial institutions, as financial intermediaries, collect borrow money. Financial institutions, as financial intermediaries, collect money from savers in the form of deposit and provide that for business sector in the form of loan.

These institution pay the interest to the depositors for the money borrowed from them and charge interest form the borrower for money lend to them. As any price is determined theoretically, by the interplay of demand and supply in a market economy, the price of money-the interest rate- plays a vital role in the allocation of resources and in the decision making of consumers and businesses. For example, an increase in the interest rate provides additional incentives to individuals and others to postpone current consumption (save) and thereby free resources for investment. Interest rates send price signals to borrowers, lenders, and savers. Higher interests rates generally bring forth a greater volume of savings and stimulate the lending of fund i.e. Substitution effect. Lower rate of interest, on the other hand, tends to reduce the volume of borrowing and capital investment, and lower rates stimulate borrowing and investment spending. Investment is the function of interest rate. The quality impact of interest rate is on both the saving and investment in the economy. Further the borrowings and savings are always influenced by the interest rates. The cost of production, which depends upon the production function, is influenced by the interest rate, since the credit is also one of the components of production process. The saving in investment in the economy, which are influenced by the interest rates, are the real economic variables. The incomes and expenditures of the variable sectors of the economy result in excess saving or excess investment in each of the sectors.

1.1.2 Interest Rate Structure in Nepal

Before studying the relationship of interest and other factors, it is better to know average structure of interest rate that were prevailed in the country during the past four years. Though the detail about this analysis are analyzed in chapter four but the table no. 1-1 below tries to give the glimpse of the lending rate and deposit rate of different financial institutions.

Table 1-1 Structure of Interest Rates (Percentage per Annum)

	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$
Nepal Rastra Bank				
Bank Rate	5.5	5.5	5.5	6.25
Refinance	$2.0-4.5$	$2.0-3.2$	$2.0-3.5$	$2.0-3.5$
Government Securities				
Treasury Bill (91 days)	2.98	1.47	3.94	3.25
National Saving Certificates	$7.0-13.0$	$6.5-13.0$	$6.5-13.0$	$6.5-8.5$
Development Bonds	$3.0-8.0$	$3.0-8.0$	$3.0-8.0$	$3.0-8.0$
Interbank Rate	4.5	0.71	4.71	2.13
Commercial Banks				
Deposit Rate				
Saving Deposits	$2.5-6.0$	$2.0-5.0$	$1.75-5.0$	$2.0-5.0$
Time Deposits				
\quad 1 Month	--	$2.0-3.5$	$1.75-3.5$	$1.5-3.5$
3 Months	$2.0-5.0$	$2.0-4.0$	$1.5-4.0$	$1.5-4.0$
6 Months	$2.5-6.0$	$2.0-4.5$	$2.5-4.5$	$1.75-4.5$
1 Year	$3.0-7.0$	$2.75-5.75$	$2.25-5.0$	$2.25-5.0$
2 Years and Above	$3.25-7.5$	$3.0-6.0$	$2.5-6.05$	$2.5-6.4$
Lending Rate				
Industry	$8.5-14.0$	$8.5-13.5$	$8.25-13.5$	$8.0-13.5$
Agriculture	$10.5-14.5$	$10.5-13.0$	$10.0-13.0$	$9.5-13.0$
Export Bills	$4.0-12.5$	$4.0-11.5$	$4.0-12.0$	$5.0-11.5$
Commercial Loans	$7.5-16.0$	$9.0-14.5$	$8.0-14.0$	$8.0-14.0$
Overdrafts	$10.0-17.0$	$10.0-16.0$	$5.0-14.5$	$6.5-14.5$
Cash Reserve Ratio (CRR)				
With NRB	6.0	6.0	5.0	5.0
Cash in Vault	2.0	--	--	--

Source: Macroeconomics Indicators of Nepal, NRB, Research Department, 'Statistics Division, June 2008
(Note: The average lending rate of any sector is calculated by adding the two rates and divided it by 2 i.e. for example for industrial sector average lending rate it is calculated as $(8.5+14 \%) \div 2$ $=11.25$ for the year 2004.)

According to the structure of interest rate in presented in table 1-1 both lending and deposit rates are declining (except the National Saving Certificates) during the period of

2004-2007 mid-July. This may be due to the decline in the interest rate on government securities i.e. Treasury bills. According to table, the interest rate of TBills has been drastically decreased from 2.98% per annum to 1.47% on 2004 and again increased to 3.25% on 2007. As per principle, interest rates T-bills are the bases for all kinds of interest rate, so decline in interest rate may leads to decline in interest rate others. The interest rate of National Saving Certificates remains less volatile than other during the four year periods. Similarly the interest rate of development bond remains almost same for the four periods.

The inter bank interest was 4.5% on 2004 mid July but it decreased 2.13 on 2007. It seems that Nepalese commercial banks don't have fixed liquidity as their rate are fluctuating. The most of the commercial banks classified their deposit into two sections-Saving Deposit and Time Deposits and offered the different interest on them. Talking about saving deposits, the interest rate ranges from $2.5 \%-6.0 \%$ in the year of 2004 but this rate slidely decreased to $2.5 \%-5.0 \%$ in the year 2007. If the mean is taken, then the average interest rate on 2004 is $4.25 \%, 3.625 \%$ in $2005,3.375 \%$ in 2006 and 3.5% in 2007. This shows that the interest rate on saving deposit has decreasing tendency. In the same way, the interest rate on time deposit also shows the decreasing tendency. In Nepalese economy, time deposits are classified in five categories: 1 month, 3 months, 6 months, 1 year and 2 years and above. In 1 month time deposits interest rate remains almost same. For 3 months time deposit rate, the maximum interest rate range was $2.0 \%-5.0 \%$ in the year 2004 but later on it decreased to $1.5 \%-4.0 \%$ in the year 2007. Similarly 6 months time deposit rates also shows the decreasing trend. The highest interest rate was 6.0% in the year 2004 and when it reached 2007 the highest rate is 4.5%. In case of 1 year's rate the highest range rate fluctuates more than the lowest range rate. From the figure it is clear that, in 2004 the highest range rate was 7.0% in 2004 and it decreased by 2% when it reached 2007 i.e. 5%. But there was less fluctuation in the minimum range i.e. it fell to 2.25% from 3.0%. At last, for 2 years and above interest rate, maximum range fell by 1.1% where as the minimum range fell just by 0.75% during 4 years period.

For lending also, the table shows that average interest also fell during the 4 years period. But in case of lending there was wide range in maximum and minimum range. The range or spread of maximum rate and minimum rate was low in case of deposit. The lending rate is categorized in five parts: Industry, Agriculture, Export Bills, Commercial Loans and Overdrafts. Among all, the highest rate was for overdraft. It was up to 17% per annum similarly the lowest lending rate was on export bills. If the average off is taken then industrial sector lending rate will be $11.25 \%, 11 \%$, 10.875% and 10.75% respectively. It shows that, on the past four year the interest rate of industry was around 11% on average. Similarly for Agriculture sector the average interest rate is $12.5 \%, 11.75 \%, 11.5 \%$ and 11.25% respectively. This shows that the industrial lending rate was cheaper when it reaches to 2007. For Export bills the average rate is $8.25 \%, 7.75 \%, 8 \%$ and 8.25%. For Commercial loans this average lending rate was $11.75 \%, 11.75 \%, 11 \%$ and 11% respectively. For Overdraft it is $13.55 \%, 13 \%, 9.75 \%$ and 10.5% respectively. The above all the average interest rate of lending shows the decreasing trend.

1.2 Introduction of Sample Organization Under Study

Nepal Bangladesh Bank (NBB)

Nepal Bangladesh Bank Ltd. was established in June 1994 with an authorized capital of Rs. 240 million and paid up capital of Rs. 60 million as a joint venture bank with IFIC of Bangladesh. Currently the bank has an authorized capital of Rs. 359.9 millions. Its head office is situated at New Baneshwor, Bijulibazar, Kathmandu. The prime objective of this bank is to render banking services to the different sectors like industries, traders, businessmen, priority sector, small entrepreneurs and weaker section of the society and every other people who need banking services. During the period of 10 years of its operation it has been able to provide excellent service to its clients. The bank has introduced its first ATM facility at Kathmandu plaza, putalisadak branch to give 24 hours 365 days banking services to their valuable
customers. The bank has earned the glory of providing the services to almost all the top business houses of the country and it occupies one of the leading positions among the joint venture banks in Nepal. The bank is still pursuing to accommodate as many clients as possible.

Himalayan Bank Limited (HBL)

Himalayan Bank Limited was established in 1992 by tile distinguished business personalities of Nepal in partnership with Habib Bank Limited, on of the largest commercial bank of Pakistan. Banks operations were commenced form January 1993. It is the first commercial bank of Nepal with maximum shareholding by Nepalese Private Sector. Besides commercial activities, the bank also offers industrial and merchant banking facilities. The bank at present has the five branches in Kathmandu valley and seven branches outside the valley. The bank is also operating a counter in the premise of the Royal Palace. The bank has a very aggressive plan of establishing more branches in different pats of the kingdom in near future. The bank's policy is to extend quality and personalized service to its customers as promptly as possible. The bank, as far as possible, offers tailor made facilities to its clients, based on the unique needs and requirements, to extend more efficient services to its customers. Himalayan Bank has been adopting innovative and latest banking technology. This has not only helped tile bank to constantly improve its service level but has also kept it prepared for future adoption of new technology. I-IBL has listed on Nepal stock exchange in July 5, 1993. The share participation of the bank is 51% Nepalese Promoters, 14\% employment provident fund, 15% general public and 20% Habib Bank of Pakistan.

Agricultural Development Bank (ADB/N)

ADB/N was established in 1968 under the Agricultural Development Bank Act 1967. The bank inherited the assents and liabilities of the cooperative bank, which was established in 1963. In 1973 the Land Reform and saving Corporation, a similar
institution established in 1966 was merged with the bank. ADB/N is an autonomous organization under the supervision of the ministry of Finance of His Majesty's Government of Nepal. The bank has been working as a premier rural credit institution since last three decades contributing more than 80% shares in meeting institutional, credit in Nepal.

Under The $\mathrm{ADB} / \mathrm{N}$ act, the bank is entrusted with the responsibilities of initiating effective approaches for the development of agriculture. The Bank is committed to raise the economic condition of farmers by availing credits and capital inputs in easy and smooth manner. The subsequent amendments of the Act empowered the bank to finance small farmers on group liability and expand its scope of financing to promote cottage industries. The amendments of the Act also permitted tile bank to engage in commercial banking activities for the mobilization of domestic resources.

The main functions of the Bank are to:

* Provide short, medium and long-term agricultural loans to individual farmers, group of farmers, corporate bodies and village committees.
* Provide loans and technical services for the purchase of inputs and capital items such as fertilizers, insecticides, feed, farm, machinery, irrigation equipment, canal construction, boring of pump-sets and sprinklers.
* Provide loans for the purchase of livestock
* Finance for cottage small-scale industries.
* Finance for cold store, warehousing and other marketing facilities.
* Finance for the capital goods necessary for the development of alternative sources of energy.
* Supervise small farmers' development programs to uplift the socioeconomic status of small farmers.
* Undertake commercial banking functions to generate resources.
* Provide training to the beneficiaries and the bank staff.

The $\mathrm{ADB} / \mathrm{N}$ is only development Bank in Nepal which has been adopting a "Three
window system" to operate its activities in the following areas. 1) Development Financing Sector 2) Target group sector through Small Farmers Development Program and 3) Commercial banking sector.

Nepal Bank Limited (NBL)

Nepal Bank Limited is the first bank to commence its business in Nepalese economy. After the enactment of "Nepal Bank Law" in B.S. 1994, this bank was established in 30 kartik, 1994 B.S. Most of the banking functions in Nepalese market are on track after the establishment of this bank. At the time of establishment, beside commercial functions, this bank performed all tile other functions that should be done by Central bank of the country except issuing notes (money). But after the establishment of central bank, Nepal Rastra Bank, this bank transformed itself as a pure commercial bank. The government of Nepal, HMG, has 41% share and general public have 59% shares on this batik. Now this bank is passing with many twists and turns in present competition market. This bank is also one of the governments owned bank having 116 branches (NRB Bulletin 2004, Mid-July) all over the country. With the foreign management team, this bank is now in the process of recovery.

Rastriya Banijya Bank

Another government owned bank in Nepalese market is Rastriya Banijya Bank. During this dissertation, this bank is also running by outsider foreign management. This bank was established in 10 Magh, 2022 B.S. on the on the ground of "Commercial Bank Act" 2021 B.S. This bank played a great role to uplift the agricultural, industrial and commercial sector of ${ }^{\prime}$ its country since its establishment. This is the largest commercial batik among all seventeen commercial bank in Nepal. It has 117 branches scattered all over the countryside.

This bank has highest amount of deposit as well as granted highest amount of loan
till this study. So this bank is important sample for this study.

1.3 Statement of the Problems

There is a direct relationship of interest with economic growth and development. The economic theory says that low interest rate is advantageous for high investments (other things remains constant). High investments always bring high production, high employment, more income and ultimately the growth in economy. By the help of this study we are going to find out: does decline in interest rate increases the lending activities? Or what is the actual condition on this regard in Nepalese financial market place? If the condition is not as per theory then what are the possible causes for such effects? Focusing on the Nepalese context, the investment is low in productive sectors due to unavailability of sufficient finance, security and other factors. Nepal's main export is basically raw materials. It means that Nepal is exporting raw materials instead of producing goods and services from these. If cheap financing is available, many factories could be established to reap benefits from utilization of resources, which would increase employment, standard of living and status of country economy.

In same manner, market interest is the sum of real rate plus inflation premium. But this may or may not occur in real practice. So this study is going to identify: Is there any positive relation of interest rate and inflation as per theory? Similarly, high interest rate is stimulus for high savings (deposits) but this may not the case in real world as people use to deposit more even in less interest rate due to security, convenience and other reasons. Thus through this thesis, it is going to discover: what is the relation of deposit and interest rate? Or does substitution effect is truly applicable in Nepalese context?

More specifically, this study seeks to solve the answer for following research question.

* Does substitution effect is practical in the context of Nepal or not? In other words what is the effect of high interest rate on savings (deposits)?
* Are borrowers of Nepalese market sensitive to the interest rate of credit? Alternatively, what is the relationship between interest rate and borrowing amount?
* What is the magnitude of correlation between interest rate and inflation? In other words, does inflation has high positive or negative relation with interest rate in Nepalese context?

1.4 Objectives of the study

The major objective of the study is to investigate the relation of interest rate with other three variables viz, Deposit, Inflation and Credit (Lending) that are currently prevailing in Nepalese market. Similarly this study also aims to identify whether the theories that are taught in universities courses are applicable or not in Nepalese financial sector. To fulfill these main objectives following sub-objectives have been formulated.

* To show the relation of interest rate with deposit amounts.
* To identify the sensitivity of interest rate to the investment (borrowing).
* To analyze the relationship of interest rate with inflation in Nepalese market.
* To provide suggestions and recommendations for the improvement on the basis of findings of the study.

1.5 Significance of the study

Interest rates send price signals to borrowers, lenders, savers and investors. For example, higher interest rates generally bring forth a greater volume of savings and stimulate the lending of funds. Lower rates of interest on the other hand, tend to dampen the flow of savings and reduce lending activity but increase the demand for
loan. Higher interest rates tend to reduce the volume of borrowing and capital investment and lower rates stimulate borrowing and investment spending. Hence economic growth depends upon circulation of money and financial system facilitates it.

Similarly inflation is also another important factor in the financial market. All countries in the world have some magnitude of inflation. While this study is being conducted, the existing inflation rate in our country is around 5%. According to Irving Fisher, inflation rate is added to real rate of return to determine the market interest rate. So higher the inflation, higher will be the interest rate.

But in real world, the aforementioned theory may not come true, especially for developing country like Nepal because, most of the theories of financial markets are determined by the studies which had been conducted on developed countries like USA, Great Britain and so on. So it is quite necessary to develop some ideas about the interest rate and its impact upon deposits, credit and inflation in the Nepalese context. By doing so, more knowledge can be achieved about the true pictures of Nepalese market. This study is also considered to be useful to various parties such as further researchers, students, teachers, financial institutions, general individuals.

1.6 Limitation of the study

As a master degree thesis this study certainly has limitation. This study is limited by followings:

* Only one factors interest rate is taken for the study. Impact of other aspects (factors) besides interest has not been studied.
* Stipulated time and resources also may have existed as limitation of this study.
* Reliability of this study depends upon the accuracy of published data and the genuineness of respondent.
* The samples have been drawn at random for convenience, so there may exit some sampling error. And the sample size may not be sufficient to generalize the findings.
* This study covers only seven fiscal years.
* The sample are taken only from commercial banks, other financial intermediaries are not included in the study.

1.7 Organization of the study

The study will be organized into five chapters:

Chapter I: Introduction

It is an introductory chapter, which includes general background of bank. It also discusses about focus and significance of study, statement of problem, objective and limitation of the study and research methodology.

Chapter II: Review of literature

This chapter deals with review of the different literature of the study field. Therefore it includes conceptual frame work along with the review of major books, journal, research works and thesis etc.

Chapter III: Research Methodology

It is concerned with research methodology. It includes Research Design, Population and Samples, Sources of Data and Collection Procedure, Data Processing and Presentation and Data Analysis Tools.

Chapter IV: Data presentation and analysis

This chapter deals with analysis and interpretation of the data using financial and statistical tools. Thus, this chapter is concerned with the findings of the study.

Chapter V: Summary, conclusion and recommendations

This chapter deals with summary of the study held, the conclusion made ultimately and the possible suggestion.

CHAPTER TWO

REVIEW OF LITERATURE

2.1 Conceptual Framework

The next step is to develop concepts and ideas about the selected topic by reviewing all the relevant materials regarding the study. In fact, review of literature begins with a search for a suitable topic and continues throughout the duration of the research work. It deals with a literature survey of the existing volumes of similar related subjects. Review of literature means reviewing research studies or other relevant propositions in the related area of the study so that all the past studies, their conclusions and deficiencies may be known and further research can be conducted. It is an integral and a mandatory process in research works the main reason for a full review of research in past is to know the outcomes of those investigations in areas where similar concepts and methodologies had been used successfully. It is also a way to avoid investigation problems that have already been definitely answered. Thus a literature review is the process of locating, obtaining, reading and evaluating the research literature in the area of the student's interest. The purpose of literature review is to find out what research studies have been conducted in one's chosen field of study and what remains to do. The primary purpose of literature review is to learn not to accumulate. It enables the researcher to know the following aspects.

* What research has been done in the subject?
* What others have been done in the study?
* What theories have been advanced?
* The approach taken by the other researchers
* Area of agreement or disagreement
* Whether there are gaps that can fill through the proposed research?

2.2 Theoretical Review

2.2.1 Meaning of Interest

Interest rate is one of the important variables in economics and financial system of the country. In common sense interest is a payment made by borrower to the lender for the money borrowed and is expressed as a rate percentage per year. But in economics widely different views have been put forth from the time of Aristotle to the present day. Aristotle recognized only animal husbandry and stock rising as two legitimate industries whose products could be lent and interest earned on them. Interest is regarded as the payment for the use or service of capital. As Carver said, "Interest is one income which goes to the owner of capital." The interest rate is the price of money; the price of renting the use of the resources that money commends for a specified by the free interplay of supply and demand in a market economy. The price of the money, the interest rate, plays a vital role in the allocation of resources and in the decision making of consumers and business. For example, an increase in the interest rate provides additional incentives to individuals and others to postpone current consumption (save) and thereby free resources for investment. Government policies intended to expand the volume of saving should aim at increasing the attractiveness of saving by increasing the return to saving - the interest rate.

2.2.2 Theories of Interest

Various interest rate theories have been propounded by various economists, which describe how interest rate is determined in various situations. There are numerous interest rates in financial market. Such type of differences exists due to the risk premium associated with the issuer. Even securities issued by the same borrowers often carry a variety of interest rates. In this section, we focus upon those basic forces that influence the level of different interest rates.

To uncover these basic rate-determination forces, however, we must make a simplifying assumption. We assume in this chapter that there is one fundamental interest rate in the economy known as the pure or real rate of interest, which is the component of all interest rates. The closest approximation to this pure rate in the real world is the market yield on the government bonds minus inflation. The rate of interest on Treasury bond is called risk free rate of interest, which consists of real rate of interest plus premium for inflation. It is a rate of return presenting no risk of financial loss to the investor and representing the opportunity cost of holding idle cash, because the investor can always invest in no risk bonds and earn this minimum rate of return. Once pure rate of interest is determined, all other interest rates may be determined from it by examining the expected future inflation and special characteristics of the securities issued by individual borrowers. For example, only the government can borrow at risk-free interest rate; other borrowers pay higher rates that due to the greater risk of loss attached to their securities. Difference in liquidity, marketability and maturities are other important factors causing interest rate to differ from the pure or risk free rates. In this study mainly four theories of interest are reviewed. They are:

THE CLASSICAL THEORIES OF INTEREST RATES

One of the oldest theories concerning the determinants of pure or risk-free interest rate is the classical theory of interest rates, propounded during the $18{ }^{\prime \prime \prime}$ and 19111 century by a number of British economists and elaborated by Irving Fisher in 1930. The classical theory argues that the rate of interest is determined by two forces: 1) the supply of savings, derived mainly from households and 2) the demand for investments capital coming mainly from the business sector.

Saving by Households

Generally most of the savings in modem industrialized economies are carried out by individual and families. For these households, saving is simply abstinence from consumption spending. Current savings, therefore, are equal to the difference between current income and current consumption expenditures in making the decision on the timing and amount of saving to be done, households typically consider several factors the size of current and long-term income, the desired savings target, and the desired proportion of income to be set aside in the form of savings (i.e. the propensity to save). Generally, the volume of househ
old savings rises with income. Higher-income families and individuals tend to save more and consume less relative to their total income than families with lower incomes.

Although income levels probably dominate saving decisions, interest rate also plays an important role. Interest rates affect an individual's choice between saving and current consumption. The classical theory of interest assumes that individual have a definite time preference for current over future consumption. A rational individual, it is assumed, will always prefer current enjoyment of goods and services over future enjoyment. Therefore, the only way to encourage an individual or family to consume less now and save more is to offer a higher rate of interest on current savings. If more were saving in the current period at a higher rate of return, future consumption and future enjoyment would be increased. The classical theory considers the payment of interest as a reward for waiting the postponement of current consumption in favor of greater future consumption. Higher interest rate increase the attractiveness of saving (and future consumption) for some quantity of current consumption. This so-called substitution effect calls for a positive relationship between interest rates and the volume of savings. Higher interest rates bring forth a greater current volume of savings. If the rate of interest in the financial markets rises from 5 to 10 percent, the volume of current savings by households is assumed to increase from \$ 100 to $\$ 200$ billion.

Saving by Business Firms

Not only households, but also businesses save and direct a portion of their savings into the financial markets to purchase securities and make loans. Most businesses hold savings balances in the form of retained earnings (as reflected in their equity or net worth accounts). In fact, the increase in retained earnings reported by business each year is a key measure of the volume of current business saving. And these retained earnings supply most of the money for annual investment spending by business firms. The volume of business saving depends on two key factors: the level of business profits and the dividend policies of corporations. These two factors are summarized in the retention ratio, the ratio of retained earnings to net income after taxes. This ratio indicates the proportion of business profits retained in the business for investment purposes rather than paid out as dividends to the owners. The critical element in determining the amount of business savings is then the level of business profits.

If profits are expected to rise, business will be able to draw more heavily on earnings retained in the firm and less heavily on the money and capital markets for funds. The result is a reduction in the demand or credit and a tendency toward lower interest rates. On the other hand, when profits falls but firms do not cut back on their investment plans, they are forced to make heavier use of the money and capital markets for investment funds. The demand for credit rises and interest rates may rise as well. Although the principal determinant of business saving is profits, interest rates also play a role in the decision of what proportion of current operating costs and long-term investment expenditures should be financed internally and what proportion externally. Higher interest rates in the money and capital markets typically encourage firms to use internally generated funds more heavily in financing projects. Conversely, lower interest rates encourage greater use of external funds by raising it from the money and capital markets.

Saving by Government

Governments also save, though less frequently than households and businesses. In fact, most government saving (i.e. a budget surplus) appears to be unintended saving that arises when government receipts unexpectedly exceed the actual amount of expenditures. Income flows in the economy (out of which government tax revenues arise) and the pacing of government spending programs are the dominant factors affecting government savings. The total supply of fund is sum of above three elements as SS on figure no 2-1.

Fig No 2-1 The substitution effect relating saving and interest rates

The demand for investment funds

The savings made by business, government and households are important determinants of interest rate but they are only one side. The other side is investment spending, made by business firms, government and in some cases households. Business requires huge amounts of funds each year to purchase equipment, machinery and inventories and to support the construction of new buildings and other physical facilities. The majority of business expenditures for these purposes consist of what economists call replacement investment. But according to the classical economist, interest rate and invest able fund have inverse relationship. At low rates of interest,
more investment projects become economically viable. On the other hand, if the rate of interest rises to high levels, fewer investment projects will be pursued and fewer funds will be required from the financial markets as figure no. 2-2

Fig No 2-2: The Investment Demand Schedule

The Equilibrium Rate of Interest in the Classical Theory of Interest

According to the classical economists, the interest rates in the financial markets were determined by the interplay of the supply of saving and the demand for investment. Specifically, the equilibrium rate of interest is determined at the point where the quantity of savings supplied to the market is exactly equal to the quantity of funds demanded for investment. To support this in figure no 2-3 this occurs at point E where the equilibrium rate of interest is i_{E} and the equilibrium quantity of capital funds traded in the financial markets is Qe_{E}.

The market rate of interest moves towards its equilibrium level. However, supply and demand forces change so fast that the interest rate rarely has an opportunity to settle in at a specific equilibrium level. At any given time, the rate is probably above or below its true equilibrium level but moving towards that equilibrium. If the market rate is temporarily above equilibrium, the volume of savings exceeds' the demand for investment capital creating an excess supply of savings. Savers will offer their fund at lower and lower rates until the market interest rate approaches to equilibrium.

Similarly, if the market rate is temporarily below equilibrium, investment demand exceeds the quantity of savings available. Business firm will bid up interest rate until it approaches the level at which the quantity saved equals to quantity of funds demanded for investment purpose.

Fig No 2- 3: The Equilibrium rate of interest in the classical Theory

THE LOANABLE FUND THEORY

In this theory, the main theme is the supply and demand for loanable funds (i.e. lending \& borrowing) determines the interest rate. This explanation emphasizes the flow of funds by suppliers of loanable funds (lenders) and the flow of funds by the demanders of loanable funds (borrowers). It is a monetary theory of interest since it focuses on the financial factors that influence interest rates (i.e. borrowing and lending). In addition, the loanable fund theory is a short-run, partial equilibrium explanation in which some factors produce a change in the interest rate, but there is no analysis of the long-run impact of this change in the interest rate and on the level of employment, income, and production of the resulting impact of changes in employment, income and production on the interest rate. Rather, the loanable fund
theory focuses on the factors that underlay the supply and demand schedules for loanable funds and on their interaction.

Supply of Loanable Funds

The major sources of supply of loanable fund are from two sources: 1) The amount of saving by households, business, governments and 2) The amount of new money created by the commercial banking system.

Saving

Saving refers to the postponement of current consumption. The decision to save is the decision to forgo current consumption in order to have a larger quantity of consumption in the future ${ }^{5}$. Individual or household save for a variety of reasons but there is little evidence to suggest that the quantity of loanable funds supplied through saving is clearly influenced by the level of the interest rate. A higher interest rate represents a greater reward to the saver for postponing current consumption and thus-, might be expected to produce a higher quantity of saving for some individuals. In, general case, the quantity of savings supplied by individuals is principally determined by the level of income and it is influenced to a lesser degree by the level of interest rates.

Business saving refers to the net income after taxes of the firm, less any cash dividends i.e. retained earnings. There is little reason to believe that the volume of saving at business firm is strongly influenced by the level of interest rates.

For governments, the volume of saving is defined as the difference between revenues and expenditures such that saving exists when revenues exceed expenditures (a budget surplus).

To summarize, saving (the postponement of current consumption) may be done by households, business, and governments. The volume of saving of each of these units is influenced by a variety of factors of which the interest rate is one. As a result, we might expect that the relationship between the interest rate and the volume of saving. For example, at an interest rate of r, the volume of saving would be Q , where as the higher interest rate of r^{\prime}, the volume of saving would be only a slightly higher Q^{\prime}. The responsiveness of saving to change in interest rates is quite small.

Fig No 2-4: The interest rate and volume of savings

New Money

Although the volume of saving is the principal source of loanable funds in financial markets, the supply of the loanable funds may be increased through the, creation of new money beyond the amount made possible by current saving. The amount of new money created is determined jointly by the actions of the commercial banking system and the central bank. Commercial banks use any excess reserves to make loans and purchase securities and create money (demand deposits) through the credit creation process. However, the ability of commercial bank to create money is limited by the central bank through the use of its monetary policy tools like open-market operations, reserve requirement changes, and discount rate changes.

There is little evidence that either the central bank or commercial banks are substantially influenced in the money creation process by the level of interest rates. The principal factor that determines the volume of new money created by the banking system is the amount of reserves, and the principal factors that determines the amount of reserve is central bank monetary policy. Neither of these factors could be directly influenced by the level of interest rates. We may therefore draw the relationship between the amount of new money created and interest rate as showing figure 2-4. The
volume of new money supplied is Q and at the higher interest rate r^{\prime}, the amount of new money created is the same Q . Essentially, change in the money supply is determined by factors other than the interest rate.

Fig No 2-5: The Supply of Loanable Funds

In summary, the supply of loanable fund is the sum of the supply of savings and the amount of new money created. This supply schedule of loanable fund may be increased by either an increase in the desire to save by business, households and governments or by the creation of more new money by commercial banking system. Conversely, the supply of loanable funds may fall because of a reduction in the desire to save.

Fig No 2-6 Total Supply of Loanable Fund

The Demand for Loanable Fund

The demand for loanable fund is composed of the demand by individual, business and governments.

Consumer Demand

Domestic consumers demand loanable funds to purchase a wide variety of goods and service on credit. Recent research indicates that consumers are not particularly responsive to the rate of interest when they seek credit but focus instead principally on the non price terms of a loan, such as the down payment, maturity and size or installment payments. This implies that consumer demand for credit is relatively inelastic with respect to the rate of interest. Certainly a rise in interest rate leads to some reduction in the quantity of consumer demand for loanable fund (particularly when home mortgage credit is involved) whereas a decline in interest rates stimulates some additional consumer borrowing. However, along the consumer's relatively inelastic demand schedule, a substantial change in the rate of interest must occur before the quantity of consumer demand for funds changes significantly.

Domestic Business Demand

The credit demands of domestic business generally are more responsive to changes in the rate of interest than in consumer borrowing. Most business credit is for such investment purposes as the purchase of inventories and new plant and equipment. As noted earlier our discussion of the classical theory of interest, a high interest rate eliminates some business investment projects from consideration because their expected rate of return is lower than the cost of funds. On the other hand, at lower rates of interest, many investment projects look profitable with their expected returns exceeding the cost of funds. Therefore the quantity of loanable funds demanded by the business sector increases as the rate of interest falls.

Government Demand

Government demand for loanable funds is a growing factor in the financial markets but doesn't depend significantly on the level of interest rates. Government decision on spending and borrowing depend s in response to social needs and the public welfare, not the rate of interest. Moreover in case of central government, it has the power both to tax and to create money to pay its debts. State and local government demand on the other hand, is slightly interest elastic because many local governments are limited in their borrowing activities by legal interest rate ceilings. When open market rates rises above these ceilings, sorne state and local governments are prevented from offering their securities to the public.

Total Demand for Loanable Fund

The total demand for the loanable fund is the sum of domestic consumer, business and government credit demands. These demand curve slopes downward an to te right with respect to the rate of interest. Higher rate of interest lead some businesses, consumers and governments to curtail their borrowing plans; lower rates bring forth more credit demand.

Fig No 2-7: The Supply of Loanable Funds

The Equilibrium Rate of Interest in the Loanable Funds Theory

Two forces of supply and demand for loanable funds determine not only the volume of lending and borrowing in the economy but also the rate of interest. The interest rate tends towards the equilibrium point at which the supply of loanable funds equals the demand for loanable funds. If the interest rate is temporarily above equilibrium, the quantity of loanable funds supplied by domestic savers and foreign lenders, by banking system, and from the dis-hoarding of money exceeds the total demand for loanable funds and the rate of interest will be bid down. On the other hand, if the interest rate is temporarily below equilibrium, loanable funds demand will exceed the supply. The interest rate will be bid Lip by borrowers until it settles at equilibrium once again.

Fig No 2-8: Equilibrium rate of Interest in loanable funds theory

The Liquidity Preference Theory of Interest Rate

The loanable funds approach to interest rate determination focuses on supply and demand for loanable fund. An alternative approach the liquidity preference view focuses on the liquidity preference instead of the supply and demand for money. It is assumed that individuals inherently prefer money among all financial assets since money can be used to make payments and is thus the most liquid assets. Wealth holders are persuaded to hold financial assets other than money only because these non-money assets offer interest returns which do not exist in the holding of idle money. Further, the greater the spread between the yields on non money financial assets and money, less the demand for money holdings and greater the demand for other financial assets and vice versa. The demand schedule for money can thus be depicted as a function of the rate of interest as shown in figure 2-9.

Fig No 2-9. The demand for money (MD) as a function of the rate of interest

Fig 2-10: Quantity of Money Demand
Fig 2-11: Quantity of Money Demanded

Thus the greater the income, the greater will be the quantity of money demanded at a given rate of interest and vice versa. The relationship is depicted in figure number 2-10 where MA, MDY25 MDY3 represent the demand for money at the successively higher income level Y1, Y2 and Y3. Thus for a given income level, say Y2 and a
given money supply the rate of interest $\left(\mathrm{r}_{\mathrm{E}}\right)$ is viewed as determined by the supply-demand equilibrium depicted in fig 2-11 where Ms is the supply of money. The equilibrium interest rate r_{E} is obtained by action of individuals seeking to maintain desired levels of cash balances. Since the amount of desired money holdings is a function of the rate of interest, there is only one rate of interest at which the demand for money balances is the same as the amount of the money supply. At a rate of interest higher than r_{E}, say r_{H} in fig no 2-11 individual in the aggregate will be holding more money (Ms) than they desire MD1-1 at that rate of interest (the total supply of money must be held by the public.) To rid themselves of "excess" cash, individual purchase interest-bearing financial assets, driving their prices up and their interest rate down. This occurs until the rate of interest falls to r_{E} at which $M_{D E}=M_{S}$.

Fig 2-12: Effect of an increase in the money Supply on the rate of interest.

Fig 2-13: Effect of a decrease in money Supply on the rate of interest.

The outcome, of course is that public still holds, in the aggregate, the same amount of money but at the lower rate of interest, this is now the desired amount. On the other hand, if the interest rate is lower than r_{E} say r_{L} in figure no 2-11 the public will be holding smaller money balance (Ms) that they desire $\left(\mathrm{M}_{\mathrm{DL}}\right)$ at that rate of interest. As a
result, in order to obtain more cash in this situation individuals sell interest-bearing securities, the aggregate effect of which is lower security prices and higher interest rates. The interest rate will thus rise to r_{E} at which point desired cash holdings equal the supply of cash.

A principal aspect of the liquidity preference model is that changes in the money supply affect the rate of interest. In the liquidity preference framework, with income -and the price level assumed to be constant, an increase in the money supply will lower r_{E} the equilibrium rate of interest (fig 2-12) and a decrease in the money supply will raise r_{E} (fig 2-13).

In summary, when the money supply is MS, the rate of interest is ri. As the money supply expands to MS_{2} and MS_{3} the rate of interest falls to r_{2} and r_{3} respectively. The process by which interest rates falls as M3 expands can again be interpreted in terms of public preference for money holding relative to other financial assets such as interest bearing securities. For example, as in figure 2-14, when the money supply expands from MS_{1} to MS_{2} individual find themselves holding larger cash balance than they desire at interest rate r_{1}. As they seek to reduce money holdings by purchase of security, security price rise and interest y rate fall until a new equilibrium is established at interest rate r_{2} where $\mathrm{MD}=\mathrm{Ms}$.

Fig-2-14: Money supply and interest rate

THE RATIONAL EXPECTATION THEORY

This theory is new to the financial market so it is in still development stage. The main theme of this theory is that "money and capital markets are highly efficient institutions in digesting new; information affecting interest rates and security prices". This theory assumes that equilibrium interest rate depends upon the change in investor's expectation regarding future security prices and return. Investor's decision towards the borrowing and lending funds come from the availability of new information. When new information appears about investment, saving or the money supply, investors begin immediately to translate that new information into decision to borrow and lend funds. So rapid is the process of the market digesting new information that security prices and interest rates presumably impound the new data from virtually the moment they appear. In the absence of new information, next period's interest rate will be equal to current periods interest rate. In other words, the knowledge of past interest rate will not be a reliable forecast of future interest rate. In a perfect efficient market it is impossible to win excess returns continuously by trading on publicly available information.

The important assumptions and conclusions of the rational expectation theory are that 1) the price of securities and interest rates should reflect all available information and the market uses all this information to establish a probability distribution of expected future prices and interest rates 2) change in rates and security prices are correlated only with unanticipated information 3) the correlation between rates of return in successive time periods is zero 4) no unexploited opportunities for profit can be found in the securities' markets 5) transaction and storage costs for securities are negligible and information costs are small relative to the value of securities traded and 6) expectation concerning future security prices and interest rates are formed rationally and efficiently.

If the money and capital markets are highly efficient in the way we have described, this implies that interest rates will always be at or very near their equilibrium levels. Any deviation from equilibrium rate dictated by demand and supply forces will almost instantly eliminate security trader who hope to consistently earn windfall profits from correctly guessing whether interest rate are "too high" (and therefore will probably rise) are unlikely to be successful in the long run. Interest rates fluctuations around equilibrium are likely to be random and momentary. If market participants were expecting increased demand for credit (with supply unchanged), an unexpected announcement of reduced credit demand implies lower in I interest rates in the future. Similarly, a market expectation of less credit demand in the future (with supply unchanged) when confronted with an unexpected announcement of higher credit demand, implies that interest rate will rise.

We can illustrate the foregoing points about the rational expectation theory of interest by modifying the loanable funds theory of interest so that its demand and supply schedules reflect not just actual demand and supply but also the expected demand for and supply of loanable funds. The figure no 2-15 depicts the equilibrium rate of interest under rational expectation theory. ' D_{O} ' and ' S_{O} ' reflect the actual demand and supply of loanable funds for current period, while ' D_{f} ' reflects the actual demand for loanable funds that will prevail in the next future time period. The supply of loanable funds is assumed to be the same in both time periods, $\left(\mathrm{S}_{\mathrm{O}}=\mathrm{S}_{\mathrm{f}}\right)$.

Now imagine that during the current period, the government makes an unexpected announcement of its increased need to borrow more money in future period ' F ' but as viewed by borrowers and lenders today in time period V . In this case, the equilibrium interest rate in the current period will not be ' I_{O} ', but rather ' I_{e} ', where the expected demand curve ' D_{e} ' intersects the actual supply curve ' S_{O} '. The equilibrium quantity of loanable funds traded in the current period then will be ' C_{e} ' not ' C_{o} '. This is because,
according to the rational expectation theory, borrowers and lenders will act as rational agents, using all the information they posses (including expected events) to price financial assets today. When the future period arrives, the equilibrium interest rate will rise to rate ' I_{f} ' then quantity of loanable funds traded will be ' D_{f} '. The equilibrium rate moves upward because the demand for loanable funds in period 'f is more than the expected future loanable-funds in period ' F ' is more than the expected further loanable-funds demanded as seen by market participants in period 'o'. Suppose, on the other hand, the actual loanable-funds demanded in period ' F ' increases upward and beyond ' D_{O} ' but by a smaller amount than was anticipated by investors in the market in period ' o '.

Figure 2-15: Equilibrium interest rates under rational expectation theory

Demand schedule ' D_{f} ' would then fall somewhere between ' D_{o} ' and ' D_{e} '. The equilibrium interest (with supply curve unchanged) would be lower than i.e. laying somewhere between 'Io' and 'Ie'

2.2.3 Functions of Interest rate in the economy

The interest rate has opposite relation with the value of financial assets. It means that if the interest rate increases, the value of assets decreases and vice versa. This concept is very useful for the valuation of the invest able securities. Besides this there are some important functions that interest plays in the economy ${ }^{8}$.

* It helps to guarantee that current savings will flow into investment to promote economic growth.
* It rations the available supply of credit, generally providing loanable funds to the investment projects with highest expected returns.
* It brings into to balance the supply of money with the public's demand for money.
* It is also important tool of government policy to stimulate or discourage saving and investment through its influence on the volume of saving and investment. If the economy is growing too slowly and unemployment is rising, the government can use its policy tools to lower interest rates in order to stimulate borrowing and investment. On the other hand, an economy experiencing rapid inflation has traditionally called for a government policy of higher interest rates to slow both borrowing and spending.

2.2.4 Change in interest \& its effect upon value of an asset

The price of the security and interest rate has inverse relationship. It means that a rise in interest rate implies a decline in price; conversely, a fall in interest rate is associated with a rise in the security's price.

The investing funds in financing assets can be viewed from two different perspectives, the borrowing and lending of money or the buying and selling of securities. Similarly the equilibrium rate of interest from the lending of funds can be
determined by the interaction of the supply of loanable funds and the demand for loanable funds.

Demanders of loanable funds (borrowers) supply securities in the financial marketplace and suppliers of loanable funds (lenders) demand securities for investment. Therefore, the equilibrium rate of return or yield on a security and the equilibrium price of that security are determined at one and the same instant 'and are simply different aspects of the same phenomenon, the borrowing and lending of loanable funds.

This can be cleared with the help of figure. The figure 2-16 and 2-17 show the demand and supply curves for both the rate of interest and the price of Securities. The supply of loanable funds curve (representing lending) in the interest rate diagram 2-16 is analogous, to the demand for securities curve (also representing lending) in the price of securities diagram 2-17. Similarly the demand for loanable funds curve (representing borrowing) in the interest diagram is analogous to the supply of securities curve (also representing borrowing) in the price of securities diagram.

We note in figure 2-17 the borrowers are assumed to issue a larger volume of securities at a higher price and that lenders will demand more securities at a lower price. In figure 2-16, on the other hand, borrowers demand a smaller quantity of loanable funds at a higher interest rate, while the lenders supply fewer loanable funds at a lower interest rate. The equilibrium interest rate in where the demand for loanable funds equals the supply of loanable funds. Similarly, in figure 2-17, the equilibrium price for securities lies at point PE where the demand for and supply of securities are equal. Only at the equilibrium interest rate and equilibrium security price will both borrowers and lenders be content with the volume of lending and borrowing taking place in the financial system.

Figure number 2-16 \&2-17: Interest rate and Security price determination

The inverse relationship between interest rates and security prices can be seen quite clearly when we allow the supply and demand curves of figure 2-16 and 2-17 to change. For example, suppose that in the face of continuing inflation, consumers and business firms accelerate their borrowings, increasing the demand for loanable funds. The demand for loanable curve slides upward and to the right with the supply of loanable funds unchanged. This increasing demand for loanable funds also means that the supply of securities must expand by a shift in the supply curve. Both a new loanable equilibrium price for securities and a higher equilibrium interest rate for loanable funds result.

Conversely, suppose that consumers decide to save more, expanding the supply of loanable funds. Then the supply of loanable funds curve slide downward. But with more savings, the demand for securities curve must rise, sliding upward as those added savings are invested in securities. The result is a rise in the equilibrium price of securities and a decline in the equilibrium interest rate.

2.2.5 Factors influencing the difference in interest rates

Though it is assumed that deposit increases as interest increases but interest rate is affected by numerous factors. In real world, different financial institutions quote different interest rate. It means that the same types of instrument carries different interest rate at the same time, so there is presence of interest spread. For this, there are numbers of factors influencing the difference in interest rates.

1) Credit or default risk
2) Marketability or liquidity risk
3) Call or prepayment risk
4) Servicing costs
5) Exchange rate risk
6) Taxability

1) Credit or Default Risk

Credit or default risk involves the potential that a saver will receive less principal and interest on the financial claim that the contract specifies. Default risk is related with the probability that some or all of the initial investment will not be returned. The degree of default risk is closely related to the financial condition of the company. Credit risk requires making estimates of the possibility of loss loss due to this reason. This probability is then converted into an interest rate premium, the credit or default risk premium and added to the savers required nominal yield. Typically, the securities issued by the government, (esp. T-bills), are considered to be credit risk free.

2) Marketability Risk

Marketability is the capability of being sold quickly at low transaction cost. Marketability risk deals with the degree of difficulty in being able to convert a financial claim into cash at its most recent transaction price or very close to it. Savers
who purchase poorly marketable investments expect to be compensated for the lack of marketability. This represents an additional interest spread and is referred to as the marketability or liquidity risk premium.

3) Call or prepayment Risk

Some financial claims offer the borrower the right to repay the principal debt prior to maturity, on financial claims like bond, these provision are referred to as call provision. On financial claims such as home mortgage and installment auto loans, they are called pre-payment provisions. These provisions are options. The borrower has the option to call or repay the debt before the maturity date. The investor in such callable financial claim must accept repayment risk. The repayment risk is that if interest rates fall, the borrower will call the bond or prepay the mortgage. The investor receiving cash cannot reinvest it at an interest rate as high as the rate on the previous investment. This risk is called a call or prepayment risk. The compensation that investors demand to accept this risk is an additional interest spread offered as the call premium.

4) Servicing Cost

Some financial claims are difficult to service. This means that the process of collecting interest and principal payments providing accurate records or monitoring the ongoing credit position of the borrowing involves considerable operating costs. Lenders must be compensated for the servicing costs. This cost is included in the interest rate charged and is referred to as the servicing Cost.

5) Exchange Rate Risk

As our financial market has become more global, there has been a significant growth in the borrowing and investing in foreign denominated financial claims. A Nepalese, company establishing a manufacturing facility in Belgium might be inclined to issue
bonds denominated in Belgium francs rather than Nepali Rupees. Investors also have many, investment alternatives that are denominated in foreign currencies are available. This transaction involves exchange rate risk. This risk refers to the potentiality that the rate of exchange between the domestic currency and foreign denominated currency will change as a result of any factors. The primary risk for the borrower is the possibility of the devaluation of the domestic currency. This results loss on the international loan. Since the loan would have to be repaid in the foreign currency that has risen in value relative to the domestic currency. This potential change in currency values must be reflected in computing the cost of borrowing.

6) Taxability

The final factor influencing the change in interest rate is taxability. Financial claim income is typically subject to taxation. Since the value of a financial claim is based on its anticipated cash flow, taxation acts to reduce those cash flows. Not all incomes are taxable equally. Thus higher the tax lower will be the cash flow and higher the interest rate and vice versa.

2.3 Concept of Deposit

Deposit is the sum of money lodged with a bank, discount house or other financial institution. Deposit is nothing more than the assets of an individual which is given to the bank for safe-keeping with an obligation to get something (interest) from it. To a bank these deposits are liabilities. Commercial bank Act 2031 (1974) defines "Deposits" as the amount deposited in a current, savings or fixed accounts of a bank or financial institution. The deposits are subject to withdrawals by means of cheque on a short notice by customers. There are several restrictions on these deposits, regarding the amount of deposit, number of withdrawal etc. These are considered more as investments and hence they earn some interest. The rate of interest varies depending on the nature of the deposits. The bank attracts deposits from customers by
offering different rates of interest and different kinds of facilities. Though the bank plays an important role in influencing the customer to save and open deposit accounts with it, it is ultimately the customer who decides whether s/he should deposit his surplus funds in current deposit a/c, saving deposits or fixed/time deposit a/c. Bank deposits arise in two ways. When tile banker receives cash, it credits the customer's account, it is known as a primary or a simple deposit. People deposit cash in the banking system and thereby convert one form of money, cash, into another form, bank money. They prefer to keep their money in deposit accounts and issue cheques against them to their creditors. Deposits also arise when customers are granted accommodation in the form of loans. When a bank grants a loan to a customer it doesn't usually pay cash but simply credits the customers account with the amount of loan. Of course, there is nothing that prevents the borrower from withdrawing the entire amount of borrowing in cash but quite often $s /$ he retains the amount with the bank as deposit.

2.3.1 Types of Deposit

There are different types of deposits. But for this study, major three types of deposit are taken. They are:

Current Deposit

A current deposit is a running account with amounts being paid into and drawn out of the account continuously. These accounts are also called demand deposits or demand liabilities since the banker is under an obligation to pay money in such deposits on demand. The account never becomes time barred, because the limitation does not run until a demand is made by the customer on the bank for the payment of deposit. These accounts are generally opened by business houses, public institutions, corporate bodies and other organization whose banking transactions are numerous and frequent. As these deposits are payable on demand, banker is obliged to keep larger cash
reserves than tire needed in the case or fixed and savings deposits. This type of account is just a facility offered by the bank to its customers. So such deposit doesn't yield any interest return.

The deposit in which an amount is immediately paid at the time of any account holder's demand is called demand deposit. Its transaction is continual \& a very small portion of such deposit can be invested in the productive sector. Though the bank cannot gain significant profit by investing it in new sector, this is one of the facilities given to the customer. Therefore, the bank doesn't give interest oil this account. For this study this types of deposit is not suitable.

Saving Deposit

According to Commercial Bank Act 2031 (1974) saving account means "An account of amounts deposited in a bank for savings purposes." The saving deposit bears the features of both of the current and fixed period's deposits. Saving accounts are mainly meant for non-trading customers who have some potential for saving and who don't have numerous transactions entering their account. While opening the account the minimum compensating balance differ according to the banks rule. Similarly there is also divergence as to how much amount of money can be withdrawn. But if the customers want to withdraw more money from the bank which is not allowed by it but if s/he gives pre-information to the banks, s/he can withdraw more money. The bank fixes the minimum and maximum amount of withdraw able through a cheque from this deposit. If the bank goes into liquidation, priority is given to the saving deposit than current and fixed deposits while repaying the liabilities.

Fixed Deposit

Fixed deposits constitute a very important resource banks as bank need not keep greater reserve in respect of such deposits. Under the commercial Bank Act 2031 (1974), "Fixed account means as account of amounts deposited in a bank for certain
period of time." The customers opening such account deposit their money in the account for a fixed period. Usually, only the person or institution who wants to gain more interest opens such type of account. High interest rate is paid to this deposit as compare, to saving deposits. The bank and the customer can take benefit from this deposit. The bank invests this money on the productive sector and gains profit and the customer too can be made his financial transaction stronger by getting more interest from this deposit. The principal amount with interest must be returned to the customer after expiry of fixed time.

In England these deposits are repayable subject to a period of notice and hence known as time deposit or time liabilities means that these are withdraw able subject to a period of notice and not on demand. Fixed deposit receipt is not transferable by endorsement and certainly not negotiable. However the debt covered by the fixed deposit receipts can be assigned. Bank generally gives loans tip to 90% of the deposit against the security of the deposit. For this bank charge some interest higher than the interest allowed on the deposit.

2.3.2 Importance of Deposit

Deposit arises from saving. An individual's income equals consumption plus saving. S/he deposits the saved part of income in the bank and gets interest from it. Banks in turn lend this money and earn profit by charging high interest rates. The borrowers from banks, invests this fund in productive sectors yielding more return than the interest on borrowed fund. This investment leads to create new employment opportunity in the economy. Ultimately due to new employment the purchasing power of the economy increases and finally GDP and growth of the economy occurs. It means that the deposit has very important role in the economy. There is a direct relationship between deposit of banks and the investment in the economy. If the volume of deposit is low, the investment in the economy also lags behind due to lack of resources. The deposit of banks is the accumulated capital which can directly be invested. There is a great need of such deposit in the developing countries. Deposit
includes the idle money of the public, bank being the inter-mediator to accept this sort of money and help to channelize this in productive sector. So the importance of banks and financial intermediaries is larger in present context.

2.4 Concept of Lending (Credit)

Another important function of commercial bank is to provide different types of loans or credit. The word 'credit' means 'trusting'. In credit transaction the lender (or banks) must have confidence in the borrower that s/he will be able to repay the money. In credit transactions, the creditor turns over to the debtor to repay an equivalent amount usually money in future plus an added sum called interest. In other words the commercial bank earns profit by lending the amount in terms of loan or credit and in return it gets interests. Bank loans are classified as: A) Loans and advances, b) Overdrafts c) cash credit d) discounting of bills and so on. But besides this, the other forms of credit are: Bills of Exchange, cheques, Drafts, Promissory Note, Letter of Credit (LC), Travellers' cheque, Treasury Bills (TBills), Book Credit etc.

If credit is made to the government the credit is known as public credit and if credit is transacted by the private for his own purposes the credit becomes private. There are certain distinctions between public and private credit. Bank is tile major source of credit to both private and public debtor. Sometimes bank also take credit. There is another type of credit know as investment credit and commercial credit which can be divided according to the purposes of using credit. The former refers to the credit which is used for investment and the latter for trade purposes. Similarly, another classification is consumer's credit and producers' credit. The latter type of credit is the advances made to individuals firms, companies and governments, which are used to facilitate the production of goods and services.

2.4.1 Factors affecting the volume of Lending

The volume of credit within a country depends upon different factors. For this study only the effect of interest rate is taken into consideration and other factors are not
considered. Some of the factors affecting the volume of credit are as follows:

1) Credit (Lending) Rate

If the bank credit rate is very high then, the volume of credit expansion is less and vice versa. It means that volume of credit and interest rate of credit has inverse relation. People invest very little in productive sectors when the interest rate is high in the market economy.

2) Rate of Return

If the rate of return is high people inclined to invest more. People earn more profit and they become able to afford higher rate of interest along with timely repayment of loan.

3) Investment Opportunity

If the investment opportunity within the country is high, the volume of credit becomes high. The basic thing for investment stimulation is easy and cheap credit. More investment opportunity will be available when the interest rate is low.

4) Pace of Financial Development

If there are enough banking facilities to provide loans in easy terms, the volume of credit may be high. It is due to the lack of cheap money lenders that rural people are deprived from cheaper loan. If the banking facilities within the nation is expanded, the volume of credit rises.

5) Basic Infrastructure

Like transportation, marketability, availability of raw materials also plays all important role in raising the volume of credit in the country.

6) Political Condition

Political condition, especially political in-stability, is also one of the major
causes of low volume of credit. In such a case none would like to risk his capital in new ventures. The present condition of the country is the glaring example of this.

In addition to aforementioned point, other factors like trade condition, currency condition are also the factors affecting the volume of credit.

2.5 Concept of Inflation

Inflation in common sense is increment in general or average price level in the whole economy. It means that it is the increase in general price level, not the increase in individual prices. Inflation is not a temporary fluctuation in price but it is a sustained and appreciable increase in price". Due to the increase in general level in price, the value of purchasing power of money declines as there is an inverse relationship between the general level of price and value of money. According to economist Crowther "Inflation means a state in which the value of money is falling i.e. prices are increasing." Inflation is a general rise in prices across the economy. This is distinct from a rise in the price of a particular good or service. Individual prices rise and fall all the time in a market economy, reflecting consumer choices and preferences, and changing costs. If the price of one item say a particular model of car - increases because demand for it is high, we do not think of this as inflation. Inflation occurs when most prices are rising by some degree across the whole economy.

During inflation, the cost of living increases rapidly, so inflation severely hurts tile people who depend on the income from fixed income securities like bonds, and referred stock. Similarly as purchasing power of money falls as well as tile debtors gain, and the creditor loses. Inflation has severe social, political and economic effects. Hence, some like to call it 'worst than taxes' and 'legal robbery.' During last 30- 40 years, almost all countries of the world have experienced some degree of inflation. For example, Germany, Russia, Austria in 1920s and Hungary, Romania,

China and again Germany in 1940s had experienced the strain of hyperinflation. Inflation brings political instability. According to Milton Friedman the rise of Hitler was due to hyper- inflation. Today each and every nation of the world is suffering from tile economic evil of inflation. The trend of rising prices has the general phenomenon of every country. The most developed and industrialized countries have adopted various method like credit control via bank interest rate, checking money supply and various other price control policies yet they have not been able to remain aloof from this disease. On the other hand the developing nations who have much less sufficient type of economy are suffering severely from both domestic as well as imported inflation.

If the rate of increase in money income overcomes the rate of increase in production, there is excess purchasing power in the hands of Public. Inflation is reflected in high prices and increased imports.

There are many theories regarding how inflation occurs in an economy. Some of these theories are demand-pull inflation, cost-push inflation, wage-push inflation etc. similarly there are various methods of checking inflation, such as, government spending, taxes which lie under fiscal tool of checking inflation and higher reserve requirements, open market operation etc. which lie under the monetary method of checking inflation. BLit these are not going to be discussed here because these are not the concern of our present study.

2.5.1 Inflation and Interest Rates

Inflation occurs when the average price level in the economy rises. Interest rate represents the "price" of credit. Interest rate is affected by the inflation. There is positive correlation between interest rates and inflation. In other words, increase in inflation increases the interest rates. But the exact effect of inflation oil interest rate is yet to be identified. On this regards, there are many theories. Here in this case, mainly
two theories are discussed.

The Nominal and Real Interest rates

Before exploring the relationship between inflation and interest rates, several key terms must be understood. In this connection one should be familiar with nominal rate and real rate of interest. The nominal rate is published or quoted interest rate on a security or loan. These rates are the actual rates that are used to transact with the customers. In other words, "nominal rate of return are money rates of return that are not adjusted for the effect of inflation' For example an announcement in the financial press that major commercial banks have raised their prime lending rate to 10 percent per annum indicates what nominal interest rate is now being quoted by banks to their best customers. Similarly, the real interest rate is the return to the lender or investor measured in terms of its actual purchasing power. In a period of inflation, of course, the real rate will be lower than the nominal rate. An investment's real rate of interest during some period is calculated by removing the rate of inflation from the nominal return i.e. by using following equation:

$$
(1+\mathrm{rr})=\frac{(1+r)}{(1+q)}
$$

Where,

$$
\begin{aligned}
& \mathrm{rr}=\text { real rate of return } \\
& \mathrm{r}=\text { nominal rate of return } \\
& \mathrm{q}=\text { inflation rate }
\end{aligned}
$$

The Fisher Effect

Economic theory tells us that interest rates reflect expectations about likely future inflation rates. In countries where inflation is expected to be high, interest rate also will be high, because investors want compensation for the decline in the value of
money. This relationship was first formalized by economist Irvin Fisher and is referred to as the Fisher's effect. According to Fisher effect, nominal interest rate is related to the real rate by the following equation:

Nominal interest rate $=$ Expected real rate + Inflation Premium $+($ Expected real x Inflation Premium)

According to Fisher, the cross-product term in the above equation (i.e. Expected real rate x Inflation Premium) is often eliminated because it is usually quite small except in countries experiencing severe inflation. So the fisher's equation can be written as:

$$
\text { Nominal Interest rate }=\text { Expected real rate }+ \text { Inflation premium }
$$

Clearly, if the expected real interest rate is held fixed, changes in, nominal rate will reflect shifting inflation premium, It means that if inflation premium increases then nominal rate also increases. But this does not necessarily means that an increase in expected inflation automatically increase nominal interest rates. There are several different views on this matter but according to Fisher expected rate of return tends to be relatively stable over time because it depends on such long term factors as the productivity of capital and the volume of savings in the economy. Therefore, a change in the inflation premium is likely to influence only the nominal interest rate, at least in the short run. The nominal rate will rise by the full amount of the expected increase in the rate of inflation,

If this view, known today as the Fisher effect, is correct, it suggests a method of judging the direction of future interest rate changes. To the extent that a rise in the actual rate of inflation causes investors to expect greater inflation in the future, higher nominal interest rates will soon result. Conversely, a decline in the actual rate of inflation may cause investors to revise downward their expectations of future inflation, leading to lower nominal rates. This will happen because, in an efficient market, investors will be compensated for the risk of expected changes in the
purchasing power of their money.

The Harrod-Keynes Effect of Inflation

There is another view about inflation-interest rate relationship propounded originally by British economist Sir Roy Harrod. This view conflict with that of Fisher's effect. It is based upon the Keynesian liquidity preference theory of interest rate. Harrod argues that the real rate will be affected by inflation but the nominal rate need not be. Following the liquidity preference theory, the nominal interest rate is determined by the demand for and supply of money. Therefore unless inflation affects either the demand for and supply of money, the nominal rate must remain unchanged regardless of what happens to inflationary expectations. According to this principle, Harrod argues that a rise in inflationary expectations will lower the real rate of interest. In liquidity preference theory, the real rate measures the inflation-adjusted return on bonds. However, conventional bonds, like money, are not a hedge against inflation, because their rate of return is fixed by contract. Therefore, a rise in the expected rate of inflation lowers investors' expected real return from holding bonds. If the nominal rate of return on bonds remains unchanged, the expected real rate must be squeezed by expectations of rising prices.

2.5.2 Tools to measure Inflation

There is no completely satisfactory way to summarize the price changes that have occurred over a given time period for the large number of goods and services available in the country. Nevertheless, the government has attempted to do so by measuring the cost of specific mix of major item (a basket of goods, consisting of specified quantities and qualities of various items of food, clothing, housing and health care products bought by the average urban household.) at various point of time. The "overall" price level computed for this representative combination of items is termed as cost-of-living index. The percentage change in this index over a given time period can be viewed as a measure of the inflation that took place from the beginning of the period to the end of the period.

Similarly most governments compute a number of alternative price indices in order provide a wider choice for analysis. Nevertheless, many people tend to focus on one index as an indicator of the price level. Generally, in most of the countries, Consumer price Index, CPI, is used as this tools to calculate the inflation rate. The percentage change in the CPI over time measures the rate of inflation, as shown below in equation. The inflation rate is denoted by q.

$$
\mathrm{q}=\frac{C P I_{1}-C P I_{0}}{C P I_{0}}
$$

Where,
$\mathrm{CPI}_{1}=$ Consumer price index of period I
$\mathrm{CPI}_{0}=$ Consumer price index of period 0

Nepal Rastra Bank too, uses CPI as the tools to measure inflation in the country taking 1995/96 fiscal year as base index.

2.6 Review of Previous Thesis

Prior to this study, there are very few thesis and research papers submitted to the libraries of Tribhuvan University and its wing colleges on the same topics. But beside this, there are some other theses which are related to this study to some extents. The review and the extract from them are presented in this section.

Pandey (1979) conducted a research on "An analytical study of money supply, level of prices and interest rate structure-A case study of Nepal' with the objectives as follows:

* To study the trend of money supply in Nepal and thereby to find out the factors responsible for it.
* To study the price level of Nepal.
* To analyse the interest rate structure of NRB.
* To see the relationship among money supply prices and interest rate
* Structure of Nepal.

With the above- mentioned objectives lie concluded that the time deposits are positively and significantly correlated with the interest rates. There is significant correlation between the savings deposits and the rate of interest and particularly between the fixed deposits and the rate of interest is most significant. The relation between the interest rates and the loans and advances has come significant. Among all sectors the private sectors seems most sensitive to interest rate revision. The net interest earning depends upon interest coverage. The total interest received and the total interest paid is significantly correlated in the case of both the banks i.e. Nepal Bank Limited and Rastriya Banijaya Bank. By manipulating the rate of interest Nepal Rastra Bank can well monitor the credit flow and profits of the commercial banks in Nepal. It can manipulate demand for and supply of funds by manipulating interest rates and by contracting or expanding money supply.

Chettri (1980) conducted a research on "Interest rate structure and its relation with deposits, inflation and credits in Nepal', tried to identify the relationship of interest rate with three other factors, deposit, credit and inflation. Though this study has similar topic as of Mr. Pandey but some of his objectives were different than this study. According that thesis, tile objectives were:

* To present a concrete picture of the interest rate structure in Nepal.
* To predict the relationship between interest rate and other economic variables like deposit, inflation and credit flow in Nepal.
* To analyze the impact and implementation of the policy of interest rate of Nepal Rastra Bank.
* To provide suggestions and recommendations for improvement in the rate structure in Nepal.

Keeping above mentioned objectives, Mr. Chettri found that interest rate is the important explanatory variables to influence the volume of real deposits and the variables like inflation and the real income are not significant variable to influence the volume of real deposits.

Similarly, lie found that rate of interest is directly affected by tile rate inflation. For loan rate of interest and loan amount he found that loan rate of interest also affects the credit flows. It means that they have inverse relationship but rate of interest doesn't have so much influence upon credit flows like that of deposit rates on deposits.

Finally in his conclusion, he found that deposit depends upon numerous factors besides income, inflation and interest rates. If other variables are kept constant, the institutional interest rate is the important explanatory variable to influence the volume of deposit in Nepal. It means that, at the time of disseminators study, i.e. during 1980s, increase in the deposit interest rates increases the volume of deposit. Similarly the relationship with income and inflation could not come significant. According to
him, the fixation of attractive interest rates oil deposits has been responsible for the substantial growth in the volume of deposits in recent years. In the same manner for inflation, he has concluded:
"Tile inflation within the Country is very high since few years. In fact the prices in Nepal are affected by tile movement in Indian price level than by domestic monetary expansion. Prices in Nepal are linked with Indian because of tile 500 miles open boarder and the availability of Indian goods and currency. There is no consolidated type of money and capital markets it Nepal. Commercial batik branches are concentrated in the urban areas. Regarding deposit mobilization in the present context the urban area has occupied more than 80% and the flow of credit is also centralized only in urban areas. On tile other hand, the volume of deposits have overcome the volume of credit which means to say that banks are not getting new investment opportunities."

Finally the relationship between credit flow and loan rates was found out to be negative. If the loan rate of interest is confessional there is tile possibility of raising investment and thus the volume of credit.

Bhatta(2004) conducted a research on "Interest Rate and its effect on Deposit and Lending' In this study, the disseminator tries to portrait the relation of interest rate with deposit and lending amount. Her findings and the findings made by Mr chettri are seems to be different. According to Mr. chettri's finding, all the relation matches with the theory but Mrs. Bhatta's finding on deposit was not as per theory. But other matters are sarne as Mr. Chettri's. The conclusions drawn by Mrs. Bhatta are:

* Deposit rates of all sample banks under study are in decreasing trend; meaning that every year deposit rates of sample banks under study have decreased.
* Lending rates of all sample banks under study are also in decreasing trend means that every year lending rates of sample banks under study have decreased.
* Analysis shows that interest rates on lending are far higher than deposit rates of sample banks. The correlation coefficient between these two variables, (deposit rate and lending rate) of sample banks comes highly positive.
* The simple correlation coefficient between deposit rate and deposit amount of sample banks were highly negative. But out of them, correlation coefficient analysis of one sample bank is found to be negative. It means that in that case the theory doesn't match the analysis. So writer conclude that the result appears in that study was different than the theory.
* The correlation analysis between lending rate and lending amount of all sample banks under study comes highly negative. This relation between two variables (lending rate and lending amount) of sample banks matches with the theory which says with the increase in lending rate, lending amount increases and vice-versa. So she concluded that lending rate is the most important determinant of loan and advances of all commercial banks.

This makes clear that borrower's seem more interest conscious.

Finally her conclusion about her study, in her own words, as follow:
"There is significant relationship between deposit rate and deposit amount and lending rate and lending amount of almost all commercial banks except one. Test of significance for correlation coefficient between inflation rate and deposit and lending rate shows that these variables are not correlated."

Pokharel (2004) conducted a research on "Determinants of Interest Rates in Nepalese Financial Markets" has given some ideas about tile interest rates in Nepalese markets. Though, this thesis tried to identify the factors that shape the interest rates, in Nepalese markets, it also tried to explore the relationship between the interest rate, deposits, credit rates and inflation. Among different objectives, some objectives that match to this study are:

* To show the relationship between the liquidity position and interest rate oil deposit and lending.
* To identify the effect of inflation on interest rate charged and offered by various Nepalese financial institutions.
* To identify the different methods used by Nepalese financial institutions to calculate interest on lending.

During the study, Mr. Pokharel found similar result as discovered by the Mrs. Bhatta. According to Mr. Pokharel, the major findings of the study are:

The correlation coefficient between interest rate on deposit and amount of deposit collected by all sample organizations were highly negative. It means that, deposit amount of all sample banks are found to increase even if the interest rate of deposit, the attracting factors for deposit, is decreasing. This is against the theory. According to theory, there must be positive relationship. Similarly in case of lending rate and lending amount, Mr. Pokharel found the result as suggested by the theory. It means, the correlation coefficient between amount loaned and interest rate on lending of 10 , sample bank is found to be highly negative. In other words, negative coefficient of other organizations means that more amounts is demanded at lower interest which means that when demand increases, price (interest rate on lending) also increases.

Similarly considering about the relationship between interest rate on deposit and on lending for all sample banks, disseminator found it to be highly positive correlated. In his own words, it is "Variation in one rate also brings variation in another rate in same direction." Therefore it is concluded both interest rate are determining factor of each other.

In same manner, the researcher explored that the relation between interest rate on deposit and inflation rate is little positive. Theoretically there should be positive correlation between these two variables. Due to little positive correlation, it is
concluded that the interest rate in Nepalese Financial market is affected by inflation rate to some extent. Similarly the same result is obtained when it is tried to explore the relationship between lending rate and inflation rate. It means, theoretically there should be a positive and perfect relationship between them. Practically, the researcher found it but the degree of positive correlation is somewhat less. So on this the researcher concluded that Interest rate on lending in Nepalese Financial Market is affected by inflation only to some extent." Finally, the relationship of interest rate on lending with risk-free rate is both positive and negative. It means that interest rate on lending in Nepalese Financial Markets in not affected by risk-free rate of interest.

Rajbhandari (1978) conducted a research on "The Interest Rate Structure of Commercial Banks in Nepal.' The objective of his study was to see the relation of interest rate with saving and fixed deposits; with loans and advances and with interest earning (i.e. interest received on loan minus interest paid on deposits.)

His analysis concludes that the time deposits are positively and significantly correlated with the interest rates. There is significant correlation between the saving deposits and the rate of interest. Fixed deposit is more sensitive to tile interest rate revision done by NRB. The correlation between the growth of fixed deposits and the interest rate particularly from 1974 to 1977 is most significant. But the relation between the interest rates and the loan and advances is less significant. Among all the sectors, the private sector seems most sensitive to interest rate change. Most of the loans too correlated positively if absolute cumulative figures are taken. But the growth rate of total loans and advances except investment on HMG securities is negatively correlated more with the weighted average rate of interest since 1973. The growth of loans to private sector is also negatively correlated with interest rate since 1971. Negative correlation between loans and interest rate meant that loans decrease at higher interest rate and vice-versa.

The net interest earning is depended upon interest coverage. The total interest
received and the total interest paid significantly correlated in the case of both of the banks i.e. Nepal Bank Limited and Rastriya Banijya Bank, the sample organizations of the study. He is in view that NRB can well monitor the credit flow and profits of the commercial banks in Nepal by manipulating the rates of interest. It can also manipulate the demand for and supply of money another research conducted by Shrestha(1979) upon tile title of "Interest Rate and its Impact upon Resource Mobilization and Utilization' is also seems to be relevant to review here. Since his study is too old, interest rate at that time was purely the central bank's phenomenon. In this study, it is concluded that the frequent change in interest rates was disliked by customers except changing the interest rates as directed by NRB. Shrestha suggested the commercial banks to quote stable rates as far as possible. He also recommended that the method of calculating interest should be used in such a way that the previous customers and depositors who are already involved in banking transaction should not be affected adversely. He also suggested charging high interest rate on loan to luxurious goods as in unproductive sectors and a lower rate on productive and small scale industries.

Rajbhandari (1998) conducted a research on "The Impact of Interest Rate Structure on Investment Portfolio of Commercial Banks of Nepal, has concluded followings:
i. Rates of commercial banks have been fluctuating. Deposits and lending rates were increased immediately after liberalization of the interest rate oil August 31, 1989 but however, started to decline which have helped in increasing the credit flow.
ii. Interest rate structure has direct influence on profitability of commercial banks. Decreasing lending rate helps to increase the profitability through increasing the credit.
iii. Deposits are more interest rate conscious and positively co-related.
iv. Loans and advances of commercial banks have been found to be continuously increasing with the decline in interest rates.
v. Effective interest rate structure helps in proper utilization of resources as measured by loan to deposit ratio.
vi. Most of the banks are having similar interest rate structure which lessens the importance of liberalization of interest rate.

Dangol (2003) conducted a research on the "Impact of Interest Rate on Financial Performance of Commercial Banks" concludes:

* Most of the commercial banks contradict the general financial theories.
* The relation between amount of deposits and interest rae on deposit, in general concept, must be positive. But deposits are increasing despite the decrease in the general level of interest. The result of such phenomenon is that there are fewer investment opportunities for the banking sectors as well as general investors.
* The relation between total amount of loan and the lending rate is negative and significant. However, the change in the total amount of loan flow is not proportionate with the change in the lending rate.
* Correlation between interest rate and inflation is not significant.
* Not only interest rate is responsible to shape the profitability of banks but also the operating efficiency also has major influence on it.

Bhoosal (1995) conducted a research on "An Analysis of Causes of Inflation in Nepal". He has shown the relationship of inflation with various factors like growth rate, Indian Inflation and price level, income level, cost of holding money, deficit financing. But all of these, lie didn't mentioned ally relationship of inflation with interest rate.

2.7 International Articles Related to this Subject

Inflation: Inflation and Interest Rates

Whenever it is heard that the latest inflation update on the news, chances are that interest rates are mentioned in the same breath. In the United States, interest rates are decided by the Federal Reserve. The Fed meets eight times a year to set shortterm interest rate targets. During these meetings, the CPI is one of the significant factor discussed while making the Fed's decision. Interest rates directly affect the credit market (loans) because higher interest rates make borrowing more costly. By changing interest rates, the Fed tries to achieve maximum employment, stable prices, and a good level growth. As interest rates drop, consumer spending increases and this in turn stimulates economic growth. Contrary to popular belief, excessive economic growth can in fact be very detrimental. At one extreme, an economy that is growing too fast can experience hyperinflation, resulting in the problems already mentioned earlier. At tile other extreme, an economy with no inflation has essentially stagnated. The right level of economic growth, and thus inflation, is somewhere in the middle. It's the Fed's Job to maintain that delicate balance. A tightening, or rate increase, attempts to head off future inflation. An easing, or rate decrease, aims to spur on economic growth. While inflation is a major issue, it is not the only factor informing the Fed's decisions on interest rates. For example, the Fed might ease interest rates during a financial crisis to provide liquidity (flexibility to get out of investments) to U.S. financial markets, thus preventing a market meltdown.

Inflation and Investment: When it comes to inflation, the question on many investors' minds is: "How will it affect my investments?" This is an especially important issue for people living on a fixed income, such as retirees. The impact of inflation on your portfolio depends on the type of securities you hold. If you invest only in stocks, worrying about inflation shouldn't keep you tip at night. Over the long run, a company's revenue and earnings should increase at the same pace as inflation.

The exception to this is stagflation. The combination of a bad economy with an increase in costs is bad for stocks. Also, a company is in the same situation as a normal consumer the more cash it carries, the more its purchasing power decreases with increases in inflation. The main problem with stocks and inflation is that a company's returns tend to be overstated. In times of high inflation, a company may look like it's prospering, but in reality inflation is the reason behind the growth. When analyzing financial statements, it is also important to remember that inflation can wreak havoc on earnings depending on what technique the company is using to value inventory. We discuss this in detail in our article, "Inventory Valuation for Investors: FIFO and LIFO." Fixed-income investors are the hardest hit by inflation. Suppose that a year ago you invested $\$ 1,000$ in a T-bill-that yielded 10%. You are about to collect the $\$ 1,100$ owed to you. Is your $\$ 100(10 \%)$ return real? Of course not! Assuming inflation was positive for the year; your purchasing power has fallen, and thus so has your real return. We have to take into account the chunk inflation has taken out of your return. If inflation was 4%, then your return is really 6%. This example highlights the difference between nominal interest rates and real interest rates. The nominal interest rate is the growth rate of your money, while the real interest rate is the growth of your purchasing power. In other words, the real rate of interest is the nominal rate reduced by the rate of inflation. In our example, the nominal rate is 10% and the real rate is $6 \%(10 \%-4 \%=6 \%)$. As an investor, you must look at your real rate of return. Unfortunately, investors often look only at the nominal return and forget about their purchasing power altogether.

Real Interest Rates and the Fisher Equation

A common use of this measure of inflation is to add an inflation premium to interest rates to allow for expectations about future inflation. As stated above inflation erodes the purchasing power of money over time. Individual lending money in an inflationary environment will be repaid in dollars which possess less purchasing power upon maturity of the debt contract. An inflation premium is often built in to
nominal interest rates to protect against this loss of purchasing power. However, at the time the debt contract is developed the inflation premium is based on expected rates of future inflation. If these expectations differ from actual inflation rates during the life of the debt contract either the lender or borrower can be adversely affected.

The inflation premium represents the difference between nominal market interest rates market (i.e., those interest rates published in the paper or posted on tile wall at a bank) and the desired real rate of interest Y^{*} ' which usually reflects the rate of real economic growth (the amount of reward that should accrue to the lender for lending to a productive economy). Thus the nominal rate of interest (holding risk constant) on a short-term debt contract (one year or less) is developed as follows:

$$
\begin{equation*}
\mathbf{i}_{\text {market }}=\mathrm{r}^{*}+\mathbf{E}\left[\pi_{1}\right] \tag{5}
\end{equation*}
$$

Where,
' $\mathbf{E}\left[\pi_{t}\right]$ ' represents the expected rate of inflation.
At the termination of the debt contract an ex-post real rate of interest ' r ' can be developed as follows:

$$
\mathrm{r}=\mathrm{i}_{\text {market }}-\pi
$$

Thus the Real Interest Rate represents the real return to lenders measured ill terms of the purchasing power of interest earned.

If $\mathrm{E}[\pi(t)]$ is greater than π_{t} then ' r ' will exceed ' r '' to the benefit of lenders (real returns to lending greater than desired and perhaps greater than the rate of real economic growth) as shown by the following operation -- substituting (5) Into (6) we have:

$$
\mathrm{r}=\mathrm{r}^{*}+\mathrm{E}[\pi]-\pi
$$

If the opposite is true, then benefits will accrue to the borrower.
During the 1980's, many economists have felt that the real rate oil' interest was abnormally high (i.e., in excess of $2.5-3 \%$). This may be explained in part due to the inflationary expectations that built Lip In the late 1970's and early 1980's. Nominal
interest rates have taken these expectations into account. The effects of these inflationary expectations differing from the actual rate of inflation can be seen in the table no 2-2 where the annualized 6-month T-bill rate is used as a measure of the market interest rate:

Over time, changes in market interest rates may be attributed to changes either in the real desired rate ' r ' or due to changes in inflationary expectations. Changes in the desired real rate reflect the behavior in the market for loanable funds. If tile supply of these funds (public and private savings) exceeds the demand for these funds (public and private borrowing) then the desired rate should fall in reaction to a surplus of these funds. In periods of economic growth the opposite is true. The growing economy is sustained in part by increased borrowing activity for inventory investment and investment in new capital stock to allow for increased production to meet growth in aggregate demand.

Table 2-1: Relationship between T-bill rate, real rate and CPI

Year	T-Bill Rate	$\mathbf{r}^{*}($ desired $)$	$\boldsymbol{E}\left[\boldsymbol{\pi}_{t}\right]$	$\boldsymbol{\%} \boldsymbol{\Delta}(\mathbf{C P I})$	\mathbf{r} (actual)
1978	7.57	4.5	3.07	9	-1.43
1980	11.37	2	11.7	12.5	-1.13
1982	11.08	1.5	9.58	3.8	7.28
1984	9.8	4	5.8	3.9	5.9
1986	6.03	3.5	2.53	1.1	4.93
1988	6.92	3.5	3.42	4.4	2.52
1990	7.47	1.2	6.27	6.1	1.37
1992	3.57	2.7	0.87	2.9	0.67
1994	4.66	3.5	1.16	2.7	1.96
1996	5.09	2.8	2.29	3.3	1.79
1998	4.85	4.4	0.45	1.6	3.25
2000	5.92	4.3	1.62	3.4	2.52

Source: Economic Report of the President 2002
Note the anticipated real rate of interest $\left(r^{*}\right)$ is based on an average of the actual rate of real economic growth over the previous three years.

Changes in inflationary expectations tend to be a more complicated matter. One may hypothesize that current inflationary expectations are based oil tile history of past actual rates of inflation. A formal model that may help in understanding tile development of these expectations is that of the Adaptive Expectations model. This model is based on the notion that economic agents slowly adapt to a changing inflationary environment. This may have been the case in the late 1960's and early 1970's. During the 1960's, the inflation rate was relatively low in the 24% range. Basically, during this period time inflation was not considered to be a major economic problem. Thus in the next decade when actual inflation began to creep up towards the double-digits, many individuals and institutions were surprised. Forecasts of future inflation (based on recent historical experience) consistently lagged behind an accelerating actual rate of inflation.

In the early to mid-1980 the actual rate oil' inflation was de-accelerating, a phenomenon known as disinflation. During this period, economic agent's expected rates of inflation were greater than what actually occurred. These agents were slow to adapt thus putting upward pressure on ex-post real interest rates.

2.8 NRB Directives and Interest Rate in Nepal

Taking the reference of history on interest rates, we observe different changes in interest rate. The sole controller for regulating interest rate in Nepal is central bank, Nepal Rastra Bank. In the beginning, the interest rate charged and offered by banks and financial institutions was mentioned at a lower level with a view to stimulate real income and employment. However, dramatic change had been made time to time. Regulation of interest rate by Nepal Rastra Bank is made in the early stage of financial market development taking the period from 1955 to 1965. But NRB gradually began to liberalize the determination of interest rate oil a phase wise basis according to compatibility of the banks and the financial institutions that have developed in the country. In the early mid 1980's Nepal has adapted liberal economic
policy. Number of finance companies and commercial banks began to develop and government made the liberal policy in maintaining the interest rate were encouraged for commercial banks, established tinder joint venture in association with foreign banks in private sectors. Similarly, deregulated of interest rate was applied to tinder financial companies established finance company acts. Likewise other financial institutions like development banks, micro financial institutions. NGOs and licensed cooperative Linder, NRB were also made competitive in the determination of interest. The central bank, the sole institution authorized to determine the interest rate as per NRB act. There are full discretions to NRB in determining interest rate structure of banks and financial institutions taking from the period 1960 to 1975.

On 16 November 1984 government had provided autonomy in offering the interest rate on saving and time deposit to the extent of 1.5% and 1% points respectively above the prevailing rates. In 1986 financial institutions got freedom in fixing their interest rates in their deposits and loans. In addition, there was also limitation on the interest rate on different loans provided for the productive and priority and full deprived sector. However there was limitation imposed on certain sectors of lending such as the rate of maximum of 15% on tile priority sectors loan. And for other kinds of loans financial institutions were given freedom to maintain the interest rate structure. In this way government provided freedom as well as limitation on the determination of interest rate.

On August 22, 1992, Nepal Rastra Bank issued some directives to commercial banks and financial institutions to clearly spell out the interest rate on deposits. Nepal Rastra Bank also instructed the bank and financial institutions to limit their interest rate spread on deposit and credit at 6 percent within the mid-December 1993. A further instruction to banks and financial institutions was issued in 2002, and now the interest rate spread required to be maintained by commercial banks and financial institutions has also been removed.

The interest rate regime in Nepalese perspective change from rigid control and monopoly of NRB from 1960-1980 to that of ultimate deregulation of interest rate and removal of spread from 1986 to 2002. At present there is complete freedom to have competitive system an important part of government's financial liberalization policy. In this way, the interest rate became a market determined phenomena rather than a regulated phenomena. The process of interest rate deregulation became a major indicative factor of the financial sector reform in the country.

The following table no 2-3 shows the development of interest rate in the Nepalese Financial Markets:

Table No. 2-2: Phase-wise development of Interest rate.

1960	Sole monopoly of NRB to fix interest rate on deposit and loans.
1976	NRB empowered to determine interest rate.
1980	Process continued for NRB to fix interest rate and banks and financial institution to follow it.
1986	Freedom to commercial banks to offer higher interest rates from the minimum level of interest rate fixed by NRB
1989	Interest rate fully deregulated.
1992	Issue directive to commercial banks to spell out interest rate policy encouraging competition in interest rate.
1993	Spread not to exceed 6 percent.
1999	Decrease spread to 5 percent.
2002	Removal of spread restriction.

Source: Financial Markets and Institutions, Dr. Manohar K. Shrestha and Dipak B.

Bhandari

2.9 Research Gap

From the above study, it can be concluded that this analysis is not a totally new concept. Many researchers have done research related to this topic and there are some other thesis which are related to this study to some extents. The review and the extract from them are presented in this section. Previous researches were not able to show the real picture about the interest structure and their performance analysis. Because of the time period the previous researches have been obsolete.

There is a direct relationship of interest with economic growth and development. The economic theory says that low interest rate is advantageous for high investments. High investments always bring high production, high employment, more income and ultimately the growth in economy. The study has been found to be necessary to give the concept: does decline in interest rate increases the lending activities? Or what is the actual condition on this regard in Nepalese financial market place? If the condition is not as per theory then what are the possible causes for such effects? Focusing on the Nepalese context, the investment is low in productive sectors due to unavailability of sufficient finance, security and other factors.

Market interest is the sum of real rate plus inflation premium. But this may or may not occur in real practice. So this study is going to identify: Is there any positive relation of interest rate and inflation as per theory? Similarly, high interest rate is stimulus for high savings (deposits) but this may not the case in real world as people use to deposit more even in less interest rate due to security, convenience and other reasons. Thus through this thesis, it is going to discover: what is the relation of deposit and interest rate? Or does substitution effect is truly applicable in Nepalese context?

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

A research methodology helps to solve the research problem in a systematic way. This chapter has been designed and developed as a guideline or a plan for the achievement of objectives set and hypothesis developed as a guideline or a plan for the achievement of objectives: and hypothesis developed for the purpose of this study in the first chapter. Reliability and validity of research work is facilitated by research methodology and the basic objective of this chapter is to guide chapter four for data presentation, descriptive and empirical analysis of interest rate in its effect on deposits, lending and inflation. So, suitable research methodology as demanded by the study has been followed. It is intended to use simple and lucid research methodology.

3.2 Research Design

Research design is a plan, structure and strategy of investigation. It is a blue print for the collection, measurement and analysis of data. A research design is the arrangement of conditions and analysis of data in a manner that aims to combine relevance to the research purpose with economy in procedure. A research design is the specification of methods and procedures for acquiring the information needed. It is the overall operational pattern of framework for the project that stipulates what information is to be collected, form which sources and by what procedures. Thus a research design is a
plan for the collection an analysis of data. For research there exits different types of
research design like; Historical research, Descriptive research, Case study research, Field study research, analytical research, True experimental research and so on. This study mainly concerned with historical research. If applicable, sometime descriptive and analytical approach may also be used. But generally, to show the relationship of interest rate with deposit amount, lending (credit) amount and inflation rate, past historical data are used. The relevant and needed data has been collected from various publications of different commercial banks and Nepal Rastra Bank.

3.3 Population and Samples

The term "population" or universe for research means the universe of research study in which the research is based. Since the research topic is about interest rate, all the lending and depository institution of Nepal are included in the population of the study. The population for the study comprises 17 commercial banks, 17 development banks, 57 finance companies, 34 saving and credit cooperatives, one employee provident fund and other 40 non-government financial organizations. Due to unavailability of data from all sectors, only commercial banks are chosen for this study. Among the total population only some selected institutions are taken as sample on random basis. Similarly, due to unavailability of data from all sectors, only commercial banks are chosen for this Study. So precisely saying, all 17 commercial banks are the population of this study and among them, only 5 commercial banks are chosen as samples from total population. For selecting the samples, simple random sampling method is used here among different methods. Organization under study are as follows, whose general introduction and major objectives are presented in chapter one.

* Nepal Bank Limited
* Rastriya Banijya Bank
* Agriculture Development Bank/Nepal
* Himalayan Bank limited
* Nepal Bangladesh Bank

3.4 Sources of Data and Collection Procedure

Basically this study is based on published source of information. These published sources of information are called secondary data. These secondary data are collected mainly from sources like annual report, prospectus, balance sheet, newspaper, journal, Internet and other sources. Besides this in some case, if needed, primary data can also be used. They can be collected through direct interview and observation.

Secondary data published on annual reports of concerning organizations, like interest rate as Well as amount and their organizational profiles are collected through personal visit of respective organization as well as from their web sites. Some secondary data like source and use of funds of respective bank, comparative study, and inflation rates are collected from Nepal Rastra Batik.

3.5 Data Processing and Presentation

The information or data obtained from the different sources are in raw form. From that information, direct presentation is not possible. So it is necessary to process data and converts it into required form. After then only, the data are presented for this study. This process is called data processing. For this study, only required data are taken from the secondary source (bank's publication) and presented in this study. For presentation, different tables are used. Similarly, in some case graphical presentation is also made, for reference, the photocopies of raw data are attached in the last portion of this thesis. So far as the computation is concerned, it has been done with the help of scientific calculator and computer software program.

3.6 Data Analysis Tools

As this study requires more statistical tools rather than financial tools to attain the objectives set above various statistical tools have been used. In order to get the
concrete results from this research, data are analyzed by using different types of tools. As per topic requirements, emphasis is given on statistical tools rather than financial tools. So for this study following statistical tools are going to use.

Arithmetic Mean

It is the sum of all the observations divided by the number of observations. In such a case all the items are equally important. As arithmetic mean is most common and popular tools for data analysis, here in this study also, arithmetic mean is used. It is computed by using following formula:

$$
\operatorname{Mean}(\bar{X})=\frac{\sum X}{n}
$$

Where,

$$
\begin{aligned}
& (\bar{X})=\text { Mean } \\
& \sum X=\text { Sum of all the Variable } \mathrm{X} \\
& \mathrm{n}=\text { Variables involved }
\end{aligned}
$$

Standard Deviation

The standard deviation is the best tools to study fluctuation in any data. It is usually denoted by the letter sigma (δ). Karl Pearson suggested it as a widely used measure of dispersion and is defined as the positive square root of their arithmetic mean of squares of the deviation of the given observations from their arithmetic mean of a set of value. It can be computed by using following formula.

$$
\text { S.D }(\delta)=\sqrt{\frac{1}{n} \sum(x-\bar{X})_{2}}
$$

Greater the magnitude of standard deviation, higher will be the fluctuation and vice versa.

Coefficient of Correlation

By this statistical tool, the degree of relationship between to variables is identified. In other words, this tool is used to describe the degree to which one variable is linearly related to other variables. Two or more variables are said to be correlated if change in the value of one variable appears to be linked with tile change in the other variables. The correlation analysis refers the closeness of the relationship between the variables. Correlation may be positive or negative and ranges from -1 to +1 . Simple correlation between interest rate and deposit amount, interest rate and credit or lending amount and interest rate (both deposit rate and lending rate) and inflation is computed in this thesis. For example, let's say that the correlation between interest rate and inflation is positive. It indicates that when inflation increases, interest rate also increases in same direction and vice versa. For our study following reference is used

* Correlation may be positive or negative and ranges from -1 to +1 . When $\mathrm{r}=$ +1 , there is positive perfect correlation; when $\mathrm{r}=-1$, there is perfect negative correlation; when $r=0$, there is no correlation and when $r<0.5$ then there is low degree of correlation.
* When 'r' lies between 0.7 to 0.999 (or -0.7 to -0.999), there is high degree of positive (or negative) correlation.
* When 'r' lies between 0.5 to 0.699 , there is a moderate degree of correlation.

The simple correlation coefficient, r, is calculated by using following formula:

$$
\text { Simple Correlation Coefficient } r=\frac{N \Sigma x y-\Sigma y \Sigma x}{\sqrt{N\left(\Sigma x^{2}\right)-(\Sigma x)^{2}} \sqrt{N\left(\Sigma y^{2}\right)-(\Sigma y)^{2}}}
$$

Alternately,

$$
\mathrm{r}=\frac{\operatorname{Cov}(X Y)}{\operatorname{Var} X, \operatorname{Var} Y}
$$

Where,

$$
\operatorname{Covariance}(\mathrm{X}, \mathrm{Y})=\frac{1}{n} \sum(X-\bar{X})(Y-\bar{Y})
$$

$\mathrm{n}=$ Total number of observations

X and $\mathrm{Y}=$ two variables, correlation between them are calculated.

Multiple Correlation Coefficient $\left(\mathrm{R}_{1.23}\right)=\sqrt{\frac{r_{122}+r_{132}-2 r_{12} r_{13} r_{23}}{1-r_{232}}}$

Where,
$\mathrm{r}_{12}=$ correlation coefficient between variables one and two.
$\mathrm{r}_{23}=$ correlation coefficient between variables two and three.
$\mathrm{r}_{13}=$ correlation coefficient between variables one and three.

Multiple correlation is used for the measure of degree of association between one variable and a group of other variables taken as the independent variable. It lies between 0 and 1 . The close it is to 'I', the better the linear relationship between the variables. The closer it is to ' 0 ', the worse is the linear relationship.

Coefficient of Multiple Determinations

The square of the multiple correlation coefficients is called coefficient of multiple determination. It is very useful tools to interpreter the value of multiple correlation coefficients. The main significance of the coefficient of multiple determinations nations is to represent the portion of total variation sin the dependent variable which is explained by the variations in the two independent variables.

Coefficient of multiple determination $=\mathrm{R}_{1.23}{ }^{2}$
t-test for significance of sample correlation coefficient:

If ' r ' is the observed sample correlation coefficient of ' n ' pairs of observations from divaricated normal population, the test statistics for significance of correlation under null hypothesis is given by i.e. t follows t -distribution with $\mathrm{n}-2$ degree of freedom (d.f.), ' n ' being the sample. The ($1-\alpha$) \% confidence limits for estimating population correlation coefficient (ρ) are given by;

$$
\mathrm{t}=\frac{r}{\sqrt{1-r 2}} \times \sqrt{n-2} \quad \sim t_{n}-2
$$

i.e. t follows t-distribution with $n-2$ degree of freedom (d.f), ' n ' being the sample. The (1- α)\% confidence limits for estimating population correlation coefficient (ρ) are given by;

$$
\mathrm{r} \pm t_{\alpha}(\mathrm{n}-2) \times \text { S.E. }(\mathrm{r}) \quad=\mathrm{r} \pm t_{\alpha}(\mathrm{n}-2) \times \frac{1-r 2}{\sqrt{n}}
$$

Standard Error

When an average of variability of the observation of a sampling distribution is computed, it is known as standard error. In the strict sense the standard deviation of sampling distribution of sample statistics is known as its standard error (S.E) of the statistic. The standard error indicates the size of chance error that has been made and accuracy of sample statistic to estimate a population parameter. A distribution of sample means with a smaller standard error is a better estimator of the population mean than a distribution of sample mean with larger standard error.

$$
\text { Standard Error }=\frac{\delta}{\sqrt{n}}
$$

Where,

$$
\begin{aligned}
& \mathrm{n}=\text { the sample size } \\
& \delta=\text { standard deviation }
\end{aligned}
$$

CHAPTER FOUR

DATA PRESENTATION AND ANALYSIS

4.1 Introduction

This is the section where, the filtered data are presented and analyzed. This is the one of the major chapter of this study because it includes detail analysis and interpretation of data from which concrete result of Nepalese market can be obtained. In this chapter, the relevant data and information necessary for the study are presented and analyzed keeping the objectives set in mind. This chapter consists of various calculation made for the analysis of interest rate and its effects on deposit amount, lending amount and inflation rate for the sample banks. To make our study effective and precise as well as easily understandable, this chapter is categorized in three parts: presentation, analysis and interpretation. The analysis is fully based on secondary data available. In presentation section data are presented in terms of table, graph chart of figures, according to the need. The presented data are analysed using different statistical tools mentioned in chapter three. At last the results of analysis are presented. Though there is no distinct line of demarcation for each section (like presentation section, analysis section \& interpretation section) but the arrangement of writing is made by aforementioned way. Similarly it is also noted that almost all data used for the analysis are of secondary type.

For our simplicity, in this thesis, presentation analysis and interpretation of data are made according to the nature. In other words, at first relationship of deposit and interest rate of all 5 sample banks are analyzed. After then, the relationship between interest rate and credit (lending) amount is made. Lastly the relationship between interest rate and inflation is presented. While analyzing, different statistical tools like
correlation coefficient, coefficient of determination, t-statistics for the significance are employed.

4.2 Analysis of Deposits and Interest Rate

In this section, detail study is made about deposit amount and interest rate of various banks. For this study only saving and fixed deposits are considered because current deposit doesn't earn any interest.

4.2.1 Interest rate structure on deposit of RBB

Prior to entering into the main topics, it is preferable to take a glance on the interest rate structure on different types of deposit. This is essential because the interest rates are generally different in magnitude for every sample banks. These differences are due to the numerous factors like maturity period, policy of bank, goodwill of organisation and so on. In real world government owned bank and banks with high reputation and goodwill have lower deposit rates. Similarly, finance companies, cooperative \& development bank quotes higher interest rate on deposits than commercial banks do.

Table no 4-1: Interest rate structure on deposit of RBB as on Mid-July

| Deposit | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Saving | 6.0% | 6.0% | 5.0% | 4.75% | 2.25% | 2.0% | 2.0% |
| Fixed | | | | | | | |
| 7 Days | - | - | - | - | - | - | - |
| 14 Days | - | - | - | - | - | - | - |
| 1 Month | - | - | - | - | - | - | - |
| 3 Months | 4.0 | 5.0 | 4.0 | 3.75 | 3.0 | 2.25 | 2.25 |
| 6 Months | 5.5 | 5.5 | 4.75 | 4.25 | 3.0 | 2.5 | 2.5 |
| 1 Year | 7.0 | 7.0 | 6.0 | 5.75 | 3.75 | 3.25 | 3.5 |
| Above 2 Yrs | 7.5 | 7.5 | 6.25 | 6.0 | - | - | - |
| Whole Mean
 including saving | $\mathbf{6}$ | $\mathbf{6 . 2}$ | $\mathbf{5 . 2}$ | $\mathbf{4 . 9}$ | $\mathbf{3 . 0}$ | $\mathbf{2 . 5}$ | $\mathbf{2 . 5 6}$ |
| Fixed Dep. Mean | $\mathbf{6 . 0}$ | $\mathbf{6 . 2 5}$ | $\mathbf{5 . 2 5}$ | $\mathbf{4 . 9 4}$ | $\mathbf{3 . 2 5}$ | $\mathbf{2 . 6 7}$ | $\mathbf{2 . 7 5}$ |
| Std. Deviation | | | | $\mathbf{1 . 4 9}$ | | | |

Source: Banking and Financial Statistics, Research Dept. NRB
Table no 4-1 shows the deposit interest rate of RBB in 7 different FY. For this study 2001 is taken as initial year and 2007 as final year. The table shows the interest rates that were prevailed in the Nepalese financial markets during last past 7 FYs. The data shows the decreasing tendency of interest rate. The interest rate on saving deposit in the beginning year was 6.0% and decreased 2.0% in 2007. This is 66.67% reduction during the 7 year period. In the same manner bank used to quote the interest of fixed deposit in different short terms period like 7 days, 14 days, 1 month, 2 months, 3 months and so on. For the graph purpose, in this study the average of 7 days to 3 months is taken to make figure clearer. For other period also the fixed deposit rate was in decreasing trend. During the 7 -year period the decline percentage is $43.75 \%, 54.54 \%$ and 50.0% respectively for 3 months, 6 months and 1 year. The decreasing tendency is longer for longer period interest rate. If the mean is taken of all (both fixed and saving) then average interest on deposit was 6% for 2001, 6.2% for $2002,5.2 \%$ for $2003,4.9 \%$ for $2004,3.0 \%$ for $2005,2.5 \%$ for 2006 and 2.56%
for 2007. Similarly if average of fixed deposits of different period is taken, then the result is almost similar with "whole average". It means the average interest rate for fixed deposit only were $6 \%, 6.25 \%, 5.25 \%, 4.94 \%, 3.25 \%, 2.67 \%$ and 2.75% respectively for the year 2001, 2002, 2003, 2004, 2005, 2006 and 2007. The average figures also show the decreasing tendency in interest rate expect in the year 2002. At that period, the interest was slightly higher than year 2001 but ultimately felled to the 5.20% in the 2003. All the above described matters can be shown on figure $4-1$ as follows.

The graph 4-1 reveals that during the study period interest rates were on declining trend. Saving interest rate falls every year but for fixed deposit, interest rate remains constant from the period 2001 to 2002 and 2006 to 2007 for 6 months, 1 year and Above 2 years. But in the year 2002 to 2006, the fixed interest rate declined by some percentage.

Figure No 4-1: Interest Rates of RBB on Deposits During Different FYs

Correlation Coefficient, Coefficient of Determination and t-statistics of RBB

Table No 4-2: Relationship between Interest Rate and Deposit amount of RBB

Year (1)	Saving Deposit Interest Rate (2)	Saving Deposits Amt (3)	Fixed R	posit Int. e (4)	Fixed Deposit Amt (5)
2001	6.0	15904.8		. 0	17836.4
2002	6.0	18822.1		25	16473.2
2003	5.0	18997.2		25	15166.6
2004	4.75	20861.2		94	13579.5
2005	2.25	23288.9		25	11572.8
2006	2.0	26848.2		67	9001.5
2007	2.0	29494.9		75	8103.8
Correlation	-0.9219		0.9660		
Coefficient of determination	0.8499		0.9331		
t-statistic	t -cal=5.32	Significant	t -cal= $=8.35$	t-tab=2.447	Significant
	t -tab=2.447				

Source: Banking and Financial Statistics, Research Dept. NRB
The table 4-2 shows the total amount of fixed deposit and saving deposits and the interest rate offered on such deposits by RBB on seven fiscal years starting from FY 2001 to FY 2007. The table portrays that the both interest rate has been decreased by greater magnitude. Deposit amount has been increased by more than 1.85 times during the study period. It means that they move in opposite direction i.e. decrease in interest rate increases the amount of deposit and vice versa. Therefore they should have negative relationship. It can be quantified by calculating correlation coefficient between them. This relationship can also be shown in graph as shown in figure 4-2 and 4-3.

Figure No 4-2: Deposit Amount of RBB During Different FYs

According to table no 4-2, the interest rate on saving deposit has been decreased from 6.0% to 2.0% during seven FYs. The declining tendency is little. In the same period the deposit amount was Rs. 15904.8 million but this amount increases to 29494.9 million. It means interest rates fell by 66.66%, where as deposit amount rises by 85.54% within the period of seven years.

Figure No 4-3: Interest Rates of RBB on Saving and Fixed Deposit

- - Fixed Interest $-_$Saving Interes t

Similarly, for fixed deposit the table 4-2 shows that the total amount of deposit and interest rate on fixed deposit offered by RBB on seven consequent FY started from 2001 to 2007. The table reveals that average fixed interest rate was 6.0% on fixed deposit, later on this interest rate increased by 0.25% on 2002 and then began to decrease by 1% per annum and at 2007 it remained at 2.83% per annum on average. On effect of this decline, the amount of fixed deposit also declined, the amount of fixed deposit also started to decrease in some respect. The table shows that decrease in interest rate also decreases the fixed deposit amount. In this regards, the substitution effect holds true in the case of fixed deposit.

To verify the above trend, it is necessary to calculate the correlation coefficient and t -statistics. If correlation coefficient is calculated for saving deposit and deposit amount, then it is $\left(r_{23}\right)=-0.9219$. This high negative correlation coefficient indicates that they have inverse relationship among each other. Decrease in interest rate is followed by an increase in saving deposit amount and vice-versa. This shows that the substitution effect in case of RBB for saving account is not applicable. The coefficient of determination between these two variables is $\mathrm{r}_{23}{ }^{2}=0.8499$, which means that total variation in dependent variable (saving deposit amount) has been explained by independent variable (interest rate) to extend of 84.99% and remaining is the effect of other factors. The t-value for testing the significance of the correlation coefficient between variables is $5.32(t=5.32)$. Since the tabulated t-value at 5% level of significance for 6 degree of freedom ($t-\operatorname{tab}=2.447$) is less than calculated value ($\mathrm{t}-\mathrm{cal}=5.32$), the correlation coefficient is significant. This means the variables mentioned (interest rate on saving deposit and amount of saving deposit) for RBB are significantly correlated and an increase (Decrease) in the amount of deposit brings a decrement (increment) in interest rate on saving deposit.

In the same manner, the correlation coefficient between interest rate on fixed deposit and fixed deposit amount $\left(\mathrm{r}_{45}\right)$ is 0.9660 . This means that these two variables are moderately co-correlated when interest rate on fixed deposit decrease (increase) the deposit amount also decrease (increase). This exactly the matter what the theory (substitution effect) says. The coefficient of determination between these two variables is $\mathrm{r}_{45}{ }^{2}=0.9331$, which means that 93.31% of total variables in dependent variables (deposit unit) is explained by the independent variables (deposit rate) and remaining is due to the effect of other factors. Similarly test of significance of correlation coefficient between deposit rate and deposit amount gives the value $\mathrm{t}=8.35$. The tabulated value at 5% significant level with d.f. 6 is 2.447 (i.e. t $t a b=2.447$). Here $t_{c a l}>\mathrm{t}_{\mathrm{tab}}$ so H_{o} is not accepted i.e. there is significant relation between two variables. The correlation coefficient also indicates that the both variables have moderate level of relationship.

4.2.2 Interest rate structure on deposit of NBL

The general structure of deposit interest rate of Nepal Bank Limited (NBL) is shown below on table no 4-3.

Table no 4-3: Interest rate structure on deposit of NBL as on Mid-July

| Deposit | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Saving | 5.50 | 5.50 | 5.00 | 4.75 | 2.50 | 2.50 | 2.5 |
| Fixed | 2.00 | 2.00 | 2.00 | 2.00 | - | - | - |
| 7 Days | 2.50 | 2.50 | - | - | - | - | - |
| 14 Days | 3.50 | 3.50 | 3.50 | 3.25 | 2.50 | 2.50 | 2.75 |
| 1 Month | - | - | - | 3.50 | 2.75 | - | - |
| 2 Months | 4.00 | 4.00 | 4.00 | 3.75 | 3.00 | 2.75 | 3.0 |
| 3 Months | 5.00 | 5.00 | 4.50 | 4.25 | 3.50 | 3.00 | 3.25 |
| 6 Months | 6.75 | 6.75 | 6.00 | 5.75 | 4.00 | 3.5 | 3.75 |
| 1 Year | 7.00 | 7.00 | 6.25 | 6.00 | - | - | - |
| Above 2 yrs | $\mathbf{4 . 5 4}$ | $\mathbf{4 . 5 4}$ | $\mathbf{4 . 4 6}$ | $\mathbf{4 . 1 6}$ | $\mathbf{3 . 0 5}$ | $\mathbf{2 . 8 5}$ | $\mathbf{3 . 0 5}$ |
| Whole Mean
 including saving | | | | | | | |
| Fixed Deposit
 Mean | $\mathbf{4 . 3 9}$ | $\mathbf{4 . 3 9}$ | $\mathbf{4 . 3 8}$ | $\mathbf{4 . 0 7}$ | $\mathbf{3 . 1 5}$ | $\mathbf{2 . 9 4}$ | $\mathbf{2 . 4 4}$ |
| Std Deviation | | | | | | | |

Source: Banking and Financial Statistics, Research Dept. NRB

The table shows the interest rate of NBL during the last seven FYs. The trend of interest rate shows that it is in decreasing trend. It is similar with that of RBB. The interest rate on saving deposit shows that it was 5.5% during the period of 2001 and 2002 and decrease by 0.5% on average every year up to 2002. After 2003 there was some stagnancy in interest rate because it fell to 4.75% in 2004. After that there was
sharp fall on interest rate as the interest rate of 2005 was 2.5% which was 2.25% less than the previous year. Similarly the interest rate on fixed deposit also declined during the seven fiscal years. The interest rate remain same in first few years but on later years, the falling spread was little as compared to previous years. It is also clear that the falling gap for long term fixed deposit is large where as for short term deposit the falling gap is little. In other words, both long term and short term interest rates falling rate is similar in later year but in previous year the falling rate is fast for long term fixed deposit where as falling rate was slow for short term fixed deposit. These tendencies can also be shown in graph no 4-4 as follows:

Figure No 4-4: Interest Rates of NBL on Deposits During Different FY

By graph 4-4, it is clear that declining tendency is high during former period than in later in later periods. Similarly, lower periodic rate remain almost constant in later years.

Correlation Coefficient, Coefficient of Determination and t-statistics of NBL

Table No 4-4: Relationship between Interest Rate and Deposit amount of NBL

Year (1)	Saving Deposit Interest Rate (2)	Saving Deposits Amt (3)	Fixed Deposit Int. Rate (4)	Fixed Deposit Amt (5)
2001	5.50	17888.4	4.39	12275.8
2002	5.50	20281.6	4.39	9921.8
2003	5.00	19851.5	4.38	9731.8
2004	4.75	21534.5	4.07	8396.9
2005	2.50	22063.0	3.15	7481.0
2006	2.50	22671.8	2.94	6269.26
2007	2.50	23547.9	3.19	5790.9
Correlation	-0.8584		0.8816	
Coefficient of determination	0.7385		07777	
t-statistic	t-cal $=3.74 \quad \mathrm{t}$-tab=2.447	Significant	t -cal=4.17 $\quad \mathrm{t}$-tab=2.447	Significant

Source: Banking and Financial Statistics, Research Dept. NRB

In table no 4-4 saving amount and deposit rates are arranged in systematic order. The outlook of table shows that the interest rate remains same in 2001 and 2002 both on saving and fixed deposits. But the amount of saving deposit has not been in decreasing trend. It is increasing every year. This indicates that the condition for NBL is opposite to the substitution theory. The case is same for fixed deposit too. But the pictures for fixed deposit are somewhat different. From 2001 the deposit amount has been decreasing trend. It indicates that the decrease in interest rate decreases the fixed deposit too which is against the theory. But the declining speed of interest rate is quite higher than that of declining speed of deposit amount. This suggests that there is a positive relationship but to determine the magnitude of relation, correlation coefficient should be calculated and to identify the strength or weakness of relationship, it is necessary to calculate the t-test. But prior to all it is clear if we show these relations on graph 4-5 and 4-6.

Figure No 4-5: Deposit Amount of NBL During Different FYs

Figure No 4-6: Interest Rates of NBL on Saving and Fixed Deposit

\longrightarrow Saving Rate - Fixed Rate

The correlation coefficient for saving interest rate and deposit amount, r_{23}, is found to be negative of $=-0.8584$. This value indicates that they two have very high negative or inverse relationship. Increase in one variables lead to decrease in other variables. This is extremely against the theory suggested by the "Substitution effect". Similarly, the coefficient of determination between two variables, $\mathrm{r}_{23}{ }^{2}$, is 0.7385 , which means that total variation in interest rate on deposit has been explained by supply of deposits to the extend of 73.85% percent and remaining is the effect of other factors. The t -value for testing the significance of the correlation coefficient between two variables is 3.74 ($\mathrm{t}-\mathrm{cal}=3.74$), which is significantly greater than the tabulated t value $(\mathrm{t}-\mathrm{tab}=2.447)$ at 5% level of significance with 6 degree of freedom. Since the calculated value is significantly greater than table value, the conclusion is drawn that the correlation coefficient between variables is significant. This means that the interest rate on saving deposit and deposit amount of NBL are significantly correlated and increase in the supply of fund (deposit) brings the decrease in interest rate on deposit.

That is the substitution theory is not applicable for the saving deposit of NBL. Similarly, correlation coefficient for fixed deposit interest rate and fixed deposit amount, r_{45}, is found to be 0.8816 . This shows that they positive correlation. It means that the increase in deposit interest rate stimulates the saving on fixed deposit. This relation can be clearly explained by the coefficient of determination, which is 0.7777 , means that the total variation in interest rate on fixed deposit has been explained by supply of deposits to the extend of 77.77% and remaining 22.23% percent is effect of other variables. The t -value for testing the significance of the correlation coefficient between variables is $4.176(\mathrm{t}$-cal=4.176) which is significantly lesser than tabulated t value $(t-t a b=2.447)$ at 5 percent level of significance with 6 degree of freedom. Since the calculated value is significantly less than tabulated value, the conclusion can be drawn that correlation coefficient between variables is insignificant. This means that though the correlation between interest rate on saving deposit and fixed deposit amount of NBL shows the very less positive correlation, the t-test indicates that there
is no significant correlation between them.

4.2.3 Interest rate structure on deposit of ADB/N

The general interest rate structure of $\mathrm{ADB} / \mathrm{N}$ for last fiscal years is given on the table 4-5. Though the $\mathrm{ADB} / \mathrm{N}$ has transaction on both agriculture sector and nonagriculture (commercial) sectors, here for this study only the interest rate of commercial sector is taken in consideration.

Table no 4-5: Interest rate structure on deposit of ADB/N as on Mid-July

Deposit	2001	2002	2003	2004	2005	2006	2007
Saving	6.25	6.25	5.25	5.25	4.00	3.00	3.00
Fixed							
7 Days	-	-	-	-	-	-	-
14 Days	-	-	-	-	-	-	-
1 Month	-	-	-	-	2.50	2.00	2.25
2 Months	-	-	-	-	-	-	-
3 Months	-	-	-	-	3.00	2.50	2.75
6 Months	-	-	-	-	3.50	3.00	3.25
1 Year	7.75	7.75	6.50	6.50	4.75	3.50	4.25
Above 2 yrs	8.00	8.00	6.75	6.75	5.75	4.50	5
Whole Mean including saving	7.33	7.33	6.17	6.17	3.92	3.08	3.42
Fixed Deposit Mean	7.88	7.88	6.63	6.63	3.90	3.10	3.50
Std Deviation	1.69\%						

Source: Banking and Financial Statistics, Research Dept. NRB

The table $4-5$ shows the interest rate structure of $\mathrm{ADB} / \mathrm{N}$ on saving deposit and fixed
deposits. The deposit rates are also in decreasing trends. For saving deposit, it is found that the interest rate has been declined by more than 50% during the last seven FYs. Each year there was around 1 percent declination but in constant rate. This can be illustrated on graph as figure no 4-7:

Figure No 4-7: Interest Rates of ABD/N on Deposits During Different FYs

$\rightarrow-$ Saving -7 Days-3 Months $\simeq-6$ Months $-x-1$ Year - *-Above 2 Yrs
The figure no 4-7 shows that all interest rates are in declining condition, but one uniqueness is seen in the graph. That is, the interest rate remained constant for at least one year before it started to fall. Saving interest rate and 1 year fixed deposit interest rate remains less volatile than other categories interest.

Correlation Coefficient, Coefficient of Determination and t-statistics of ADB/N

Table No 4-6: Relationship between Interest Rate and Deposit amount of ADB/N

Year (1)	Saving Deposit Interest Rate (2)		Saving Deposits Amt (3)	Fixed Deposit Int. Rate (4)		Fixed Deposit Amt (5)
2001	6.25		8016.9		88	5498.4
2002	6.25		10257.3		.88	5182.3
2003	5.25		11002.9		63	7754.3
2004	5.25		12732.2		63	8756.2
2005	4.00		14632.6		. 9	9846.8
2006	3.00		15121.7		. 1	10087
2007	3.00		16087.9		. 5	11443.4
Correlation	-0.9431					-0.9242
Coefficient of determination	0.8894					0.8541
t-statistic	$\mathrm{t} \text {-cal=6.342 }$	t-tab=2.447	Significant	t-cal=5.411	t -tab=2.447	Significant

Source: Banking and Financial Statistics, Research Dept. NRB

Table no 4-6 shows that interest rate and deposit amount are moving in opposite direction. To get the exact relation it is necessary to calculate the correlation coefficient and t-test. Here the data shows that both saving and fixed deposits are out of substitution effect. To verify it, the value or correlation and t-statistics is necessary. But prior to this it is effective if tabular value can be shown on graph as figure 4-8.

Figure No 4-8: Deposit Amount of ADB/N During Different FYs

Similarly the relationship between interest rate of saving and fixed deposit can be shown in figure no 4-9 as:

The figure no $4-8$ shows that the deposit amount of $\mathrm{ADB} / \mathrm{N}$ is not in increasing trend. The increasing tendency is high for saving deposit but low for fixed deposit. Similarly figure 4-9 shows that the both interest rate of fixed and saving deposits are in decreasing tendency. Their declining patterns are almost similar which can be seen clearly on the graph no 4-9.

Figure No 4-9: Interest Rates of ADB/N on Saving and Fixed Deposit

The correlation coefficient for saving deposit and its interest rate is found to be $r_{23}=-$ 0.9431 , which means that deposit amount and its interest rate, have higher degree of negative correlation. It means increase in one variable result the decrease in other variables. Similarly the coefficient of determination, $\mathrm{r}_{23}{ }^{2}=0.8894$ which means that the value of dependent variables is dependent on independent variables to the extend of 88.94 percent. Similarly the t-test for same shows that the calculated value of t is $6.342(\mathrm{t}-\mathrm{cal}=6.342)$. This value is greater than the t -tabulated value $(\mathrm{t}-\mathrm{tab}=2.447)$ at 6 degree of freedom and 5% level of significance. Therefore when t-cal >t-tab, then H1 or alternative hypothesis is accepted i.e. the variables are significantly correlated and their relationship is significant.

Similarly for fixed deposit, the coefficient of correlation $\left(r_{45}\right)$ is -0.9242 which is negative with high degree of inverse relationship. This is the extremely opposite case as compare to the correlation coefficient of RBB and NBL. The t-statistics for fixed deposit shows that its calculated value for t is 5.411 , which is higher than the tabulated value of t i.e. t-cal $>t$-tab. In such case alternative hypothesis is accepted and null hypothesis is rejected. This indicates that the two variables are correlated or their relationship is significantly correlated.

The analysis of $\mathrm{ADB} / \mathrm{N}$ also shows that substitution effect is not applicable for bank. That is the case is similar for all three government owned banks, meaning that there is no substitution effect for all three banks-RBB, NBL and ADB/N.

4.2.4 Interest rate structure on deposit of HBL

The general interest rate structure for HBL for saving deposit and fixed deposits during past seven fiscal years is as follows:

Table no 4-7: Interest rate structure on deposit of HBL as on Mid-July

Deposit	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	
Saving	5.00	4.25	4.00	3.75	3.75	3.75	2.00	
Fixed								
7 Days	-	-	-	-	-	-	-	
14 Days	3.00	2.50	2.30	2.30	2.30	2.30	1.75	
1 Month	4.50	3.50	3.30	3.30	3.30	3.30	2.00	
2 Months	-	-	-	-	-	-	-	
3 Months	5.00	4.25	4.00	3.75	3.75	3.75	2.50	
6 Months	6.00	4.50	4.25	4.00	4.00	4.00	3.00	
1 Year	6.75	5.75	5.50	5.25	5.25	5.25	3.75	
Above 2 yrs	7.75	5.75	6.00	5.75	5.75	5.75	3.75	
Whole Mean including saving	$\mathbf{5 . 4 3}$	$\mathbf{4 . 3 6}$	$\mathbf{4 . 1 9}$	$\mathbf{4 . 0 1}$	$\mathbf{4 . 0 1}$	$\mathbf{4 . 0 1}$	$\mathbf{2 . 6 7}$	
Fixed Deposit Mean	$\mathbf{5 . 5}$	$\mathbf{4 . 3 8}$	$\mathbf{4 . 2 3}$	$\mathbf{4 . 0 6}$	$\mathbf{4 . 0 6}$	$\mathbf{4 . 0 6}$	$\mathbf{2 . 7 9}$	
Std Deviation			$\mathbf{1 . 6 9}$					

Source: Banking and Financial Statistics, Research Dept. NRB

From table 4-7 it is clear that the interest rate on deposit of HBL is also in decreasing trend. But during last fiscal year the declining rate shows the unique features. During the first period out of seven FYs, the declining rate of average interest rate is fast, around one percentage point every year, but after 2002 the declining speed is very slow i.e. decline in decimal only. The whole average interest rate is 4.36 in 2002 but it was $4.19 \%, 4.01 \%, 4.01 \%, 4.01 \%$, and 2.67% in FY 2003, 2004, 2005, 2006, 2007 respectively. Similarly the average fixed deposit rate is $5.5 \%, 4.38 \%, 4.23 \%, 4.06 \%$, 4.06%, 4.06% and 2.79% in FY 2001, 2002, 2003, 2004, 2005, 2006 and 2007 respectively. It means that decline speed of deposit interest rate of HBL slowed down after FY 2002 because it declined by only decimal each yea up to 2006. And it sharply decreased to 2.79% from 4.06%. This phenomenon can be portrayed in the
graph as figure no 4-10.

Figure No 4-10: Interest Rates of HBL on Deposits During Different FYs

The graph no 4-10 also shows that up to FY 2001 the declining rate is high but after FY 2001 the decline speed is very slow.

Correlation Coefficient, Coefficient of Determination and t-statistics of HBL

Table No 4-8: Relationship between Interest Rate and Deposit amount of HBL

Year (1)	Saving Interes	Deposit Rate (2)	Saving Deposits Amt (3)	Fixed D $\mathbf{R a}$	eposit Int. (4)	Fixed Deposit Amt (5)
2001		. 00	6844.3		5.5	5109.4
2002		25	9164.1		38	5668.1
2003		00	9102.8		23	6044.9
2004		. 75	10840.8		06	5880.7
2005		. 75	11719.7		06	6043.7
2006		75	12852.4		06	6364.3
2007		00	14582.8		97	6350.2
Correlation	-0.9048			-0.8596		
Coefficient of determination	0.8187			0.7389		
t-statistic	t -cal=4.75	t-tab=2.447	Significant	t -cal $=3.76$	t-tab=2.447	Significant

Source: Banking and Financial Statistics, Research Dept. NRB

The table $4-8$ shows the amount of saving deposit and its interest rate as well as amount of fixed deposit and its interest rate for seven fiscal years. The table indicates that, in one hand deposit rates are declining where as in other hand deposit amount is increasing every fiscal year covered by the study. This suggest that interest rate and deposit amount rate may have negative relationship, i.e. when one variable is found to be decreased, other variable is found to be increased and vice versa. This situation can be revealed in graph as figure no 4-11 in the following ways:

Figure No 4-11: Deposit Amount of HBL During Different FYs

The graph 4-11 show saving deposit amount is continuously rising every year but the fixed deposit seems to grow with some fluctuation. Its means that there is rise and fall for fixed deposit amount. Similarly the interest rate of fixed deposit and saving deposit can also be shown on figure 4-12 as:

Figure No 4-12: Interest Rates of HBL on Saving and Fixed Deposit

To quantify the exact relationship between interest rate and deposit amount, it is necessary to calculate the correlation coefficient. The correlation coefficient of saving deposit amount and its interest rate is -0.9048 . It means that these two variables have very high negative relationship. Though the two variables don't have direct relationship but correlation coefficient tell us that increase in one variable decreases another variables. This case is similar to fixed deposit also. The correlation coefficient for fixed deposit amount and rate is $-0.8596\left(\mathrm{r}_{45}=-0.8596\right)$, which is also very high negative correlated. Therefore for both saving and fixed deposit, the case is against the substitution effect. The coefficient of determination of correlation coefficient of saving deposit is $0.8187\left(\mathrm{r}_{23}{ }^{2}=0.8187\right)$ which indicates that the relation ship between deposit and interest rate is tied up to the level of 81.87 percent and remaining other percentage due to other factors. In same manner for fixed deposit the value of coefficient of determination is 0.7389 .

The value of t-statistics for saving deposit and saving interest is found to be $4.750(t-$ $\mathrm{cal}=4.750$). The tabulated value for this condition at 5% level of significance wit 6 degree of freedom is 2.447. It means that in this case t-calculated is greater than t tabulated. So alternative hypothesis is accepted, which means that there is significant correlation between saving deposit and interest rate. Similarly for fixed deposit, the calculated value for t is $3.76(\mathrm{t}-\mathrm{cal}=3.76)$. This value is also greater than t -tabulated. So in this case also the magnitude of correlation coefficient is highly significant.

Thus from both case (saving and fixed deposit) it is clear that there is no substitution effect in the context of HBL.

4.2.5 Interest rate structure on deposit of NBB

As similar to previous part, it is better to present the general interest rate structure before entering to the main analysis. The interest rate structure for NBB on saving and fixed deposits for past seven FYs are as presented on table 4-9.

Table no 4-9: Interest rate structure on deposit of NBB as on Mid-July

| Deposit | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Saving | 6.00 | 6.00 | 5.50 | 5.50 | 4.50 | 4.50 | 4.5 |
| Fixed | | | | | | | |
| 7 Days | - | - | - | - | - | - | - |
| 14 Days | - | - | - | - | - | - | - |
| 1 Month | 4.00 | 4.00 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 |
| 2 Months | - | - | - | - | - | - | - |
| 3 Months | 5.50 | 5.00 | 4.50 | 4.50 | 4.00 | 4.00 | 4.00 |
| 6 Months | 6.00 | 5.50 | 5.50 | 5.50 | 4.50 | 4.50 | 4.50 |
| 1 Year | 7.50 | 7.00 | 7.00 | 6.50 | 4.75 | 4.75 | 4.75 |
| Above 2 yrs | 8.00 | 7.75 | 7.50 | 7.00 | 5.00 | 5.00 | 5.00 |
| Whole Mean
 including saving | $\mathbf{6 . 1 7}$ | $\mathbf{5 . 8 7}$ | $\mathbf{5 . 5 8}$ | $\mathbf{5 . 4 2}$ | $\mathbf{4 . 3 7}$ | $\mathbf{4 . 3 7}$ | $\mathbf{4 . 3 7}$ |
| Fixed Deposit
 Mean | $\mathbf{6 . 2 0}$ | $\mathbf{5 . 8 5}$ | $\mathbf{5 . 6 0}$ | $\mathbf{5 . 4 0}$ | $\mathbf{4 . 3 5}$ | $\mathbf{4 . 3 5}$ | $\mathbf{4 . 3 5}$ |
| Std Deviation | | | | | | | |

Source: Banking and Financial Statistics, Research Dept. NRB

The table 4-9 portrays the interest rate of NBB on saving deposit and fixed deposits. All the interest rate on deposit is on decreasing trend. But the tendency towards decrement
is similar to HBL because interest rates on first few FY were decreasing on large gap. But after 2002 the falling pace was very slow as they fell on gap of decimal. But this case doesn't match with the government owned bank: RBB, NBL and ADB/N. On these three banks, the declination rate was almost similar for all periods.

In the seven years fiscal periods, the interest rate is decline in slow pace. This can be
shown clearly if average of all interest rate is taken. THE average interest rate for whole (both fixed and saving) account are $6.17 \%, 5.88 \%, 5.59 \%, 5.42 \%, 4.37 \%$, 4.37% and 4.37% for the year 2001, 2002, 2003, 2004, 2005, 2006 and 2007 respectively. This tendency can be exhibited in the pictorial form as figures no. 4-13 as follows

Figure No 4-13: Interest Rates of NBB on Deposits During Different FYs

$\rightarrow-$ Saving -7 Days-3 Months $-\boxed{-} 6$ Months $-x-1$ Year $-*-$ Above 2 Yrs

The figure 4-13 shows that during 2001 the spread between interest rate on different term period is in uniform pattern. The interest rate lied in between 6% to 8%. This uniformity of spread is maintained up to the FY 2004 but after the FY 2004 the range of all interest lied in between 4 percent point to 5 percent point. The overall figure shows that the interest rate is on decreasing trend.

Correlation Coefficient, Coefficient of Determination and t-statistics of NBB

Table No 4-10: Relationship between Interest Rate and Deposit amount of NBB

Year (1)	Saving Deposit Interest Rate (2)	Saving Deposits Amt (3)	Fixed Deposit Int. Rate (4)	Fixed Deposit Amt (5)
2001	6.00	1101.9	6.2	4356.5
2002	6.00	1694.9	5.85	5236.8
2003	5.50	2086.9	5.6	5453.6
2004	5.50	2913.6	5.4	5031.6
2005	4.50	4225.9	4.35	4875.7
2006	4.50	5475.2	4.35	3536.6
2007	4.50	7414.8	4.35	2867
Correlation	-0.9013		0.5940	
Coefficient of determination	0.8122		0.3528	
t-statistic	t-cal $=4.652$ t t-ab=2.447	Significant	t-cal 1.650 t t-ab=2.447	Insignificant

Source: Banking and Financial Statistics, Research Dept. NRB

The table 4-10 also shows both deposits amount are in increasing trend though the interest rate of both saving and deposit is in declining trend. It means interest rate and deposit amount have inverse relationship. But to find exact quantity of inverse relationship it is necessary to compute the correlation coefficient. Prior to this it is helpful if the data are presented on graph no 4-14.

Figure No 4-14: Deposit Amount of NBB During Different FYs

The graph shows that NBB collected more funds on fixed deposit than saving deposits in last seven FYs. But this case was opposite in other banks. Similarly the relationship of saving interest rate and deposit interest rate can be shown on figure no 4-15 as follow:

Figure No 4-15: Interest Rates on Saving and Fixed Deposit of NBB

The value for correlation between saving deposit and interest rate is $-0.9013\left(\mathrm{r}_{23}=-\right.$ 0.9013). This is high degree of negative correlation. It means that during the last seven fiscal years, there was sharp increase in saving deposit amount even though there was sharp decline in saving interest rates. The coefficient of determination $\mathrm{r}_{23}{ }^{2}=0.8122$. Similarly the calculated value for t is 4.652 for saving account. The value of tabulated t at 6 degree of freedom and 5\% level of significance is only 2.447. So for saving account t-cal $>t$ ttab, and hence alternative hypothesis is accepted. It means that there is significant relationship between two variables (deposit amount and interest rate).

In same manner for fixed deposit, the value of correlation coefficient is $\mathrm{r}_{45}=0.5940$, which indicates that the two variables have positive relationship. In other words, increment in one variable increases another variable and vice versa. To identify the significance of this correlation, it is necessary to calculate the value of t -statistics. The calculated value of t is 1.6510 . Similarly the tabulated value for t is 2.447 , which is greater than calculated t . as a result null hypothesis is accepted and alternative hypothesis is rejected. It means that the correlation coefficient is insignificant. Thus from both study it reveals that substitution effect is applicable for NBB.

4.3 Analysis of Lending and Interest Rate

This is second area of the analysis where mainly the relationship between lending and interest rate and its effect upon lending amount is attempted to study. Generally, when there is higher interest rate (esp. lending and credit rate) in the economy, people normally borrows lesser amount the period when the lending interest rate is low. According to theory, when there is lower lending rate, then there should be higher amount of borrowing by the user of fund. Higher amount of borrowing indicates higher investment in the country or higher transaction in trade. This is necessary for the growth of the economy. So this study tries to explore the relationship between lending rate and lending amount in the Nepalese economy.

4.3.1 Lending Rate of RBB on different sectors

This sector, where RBB supplied credit during last seven FYs and their corresponding interest rate, average interest rate and lending amount are presented in the table 4-11 below:

Table 4-11: Lending Rate of RBB on Different Sectors During Seven FYs.

Sector	2001	2002	2003	2004	2005	2006	2007
Overdraft	16.50	13.50	11.75	11.25	12.2	12.25	11.00
Export Credit	15.00	12.00	11.50	10.00	9.50	9.50	8.00
Import LC	12.00	13.00	12.00	10.00	10.00	10.00	9.00
HMG Bond	11.00	14.00	10.50	10.00	7.00	7.00	7.00
BG/CG	-	10.50	10.00	9.25	9.25	9.25	8.50
Other Guarantee	15.00	10.50	-	-	-	-	-
Industrial Loan	15.50	15.00	14.50	11.75	12.00	12.00	-
Commercial Loan	16.50	15.50	15.00	-	-	-	-
Priority Sector Loan	14.00	14.00	13.00	12.00	12.00	13.00	11.50
Working Capital	14.00	14.50	13.75	12.50	11.00	11.00	-
Hire Purchase	16.00	14.00	13.50	12.00	12.00	12.00	11.00
Others	16.50	15.50	15.00	12.00	12.00	12.00	11
Average Int. Rate (1)	14.73	13.50	12.78	11.08	10.70	10.80	9.63
Lending Amount (2)	29140.6	28424.7	28576	28258.9	26781.7	28614	26864
Correlation (r_{12})		0.8384					
Coefficient of determination ($\mathrm{r}_{12}{ }^{2}$)		0.7029					
t-statistics	t- $\mathrm{cal}=3.43$	$\begin{gathered} \mathrm{t}- \\ \mathrm{tab}=2.447 \end{gathered}$	Signific ant				
Std Deviation	1.68	Std Error	0.63				

Source: Banking and Financial Statistics, Research Dept. NRB

Lending activity of commercial bank can be diversified into different sectors. But according to the publication of Nepal Rastra Bank- Banking \& Financial statistics-
the loan of commercial banks are classified in different sub sectors like overdraft, export credit, import LC, commercial loan and so on. Besides this, there are other section (area) when bank provides loan and these areas are placed in the topic of "others". For this study, lending area are categorised as classified by NRB.

According to table 4-11 it shows that interest rate on lending on different area are in declining trend. The table shows that the maximum interest rate is 16.50% in FY 2001 and minimum rate is 7.00% in FY 2005, FY 2006 and FY 2007. This shows that the interest rate declined drastically during seven FYs period. Generally the productive sector loan rate (like commercial loan, industrial loan, priority sector loan, working capital rate and so on) decline less in magnitude than non-productive sector loan like overdraft, loan against government bond, BG/CG rate and so on. For example during the last seven FYs declination of BG/CG rate was by 1.25%. In same manner, the declining magnitudes were $5.25 \%, 5.5 \%$ and 5% for overdraft, hire purchase and others. The declining percentage for productive sectors were 2.5\%, 3.5%, 2% and 3.5% in commercial loan, working capital, priority sector loan, and industrial loan rate respectively. According to theory, in order to induce the investment in the country or expansion of trade, the productive sector loan should be available at cheaper rate. But the figure shows that these sectors loan were some what costlier than other non productive loan.

If the average of each fiscal year is taken, then it shows that average lending interest rate were $14.73 \%(2001), 13.5 \%(2002), 12.77 \%(2003), 11.08 \%(2004), 10.7 \%(2005)$, 10.8% (2006) and $9.63 \%(2007)$. The standard deviation for average interest rate is 1.68, which shows the deviation from mean return and its standard error for this bank is 0.63 which shows the deviation between the means. The average rate is also in decreasing trend. The decreasing tendency was not smooth. It means that the rate declined each year with different rate. In preceding year the declination was quite fast where as the declining tendency was little small in later year. This concludes that interest rate on lending is also in decreasing tendency for past few years. With
harmony to interest rate, the lending amount of RBB is also seen to be in decreasing tendency but with some fluctuation. These can also to present in figure no 4-16 and 4-17.

Figure No. 4-16: Lending Amount of RBB During Different FYs

Figure No. 4-17: Average Lending Rate of RBB During Different FYs

Correlation Coefficient, Coefficient of Determination and t-Statistics of RBB

From table 4-11 the correlation coefficient (simple correlation) between lending rate and lending amount $\left(\mathrm{r}_{12}\right)$ is 0.8384 . According to our classification, this correlation is of moderate degree. In this case it is clear that interest rate on lending and lending amount has positive relationship. It means that they move in the same direction i.e. increase in lending rate result to increase in total lending amount. This situation doesn't matches with actual theory. According to the theoretical concept of lending rate and lending amount, people prefer or use more money when the market rate is low in market. So this case is not true for RBB. The simple determination of correlation coefficient $\left(\mathrm{r}_{12}{ }^{2}\right)$ is 0.7029 . When the total lending amount is taken as dependent variable and lending rate as independent variables, then 70.29% of total variation in dependent variable is explained by lending rate and remaining is due to the effect of other variables in the economy. Test of significance of correlation coefficient between lending rate and lending amount also verify the fact. The calculated value of t -statistics is 3.43 (t -cal=3.43). This value is greater than tabulated value. In this condition H_{O} is not accepted. It means that there is significant correlation between the two variables. In other words their relation is significant. It is also shown by the correlation coefficient that these two variables have moderate level of correlation.

4.3.2 Lending Rate of NBL on different sectors

The sector where NBL granted its credit during last seven FYs and their corresponding interest rate, average interest rate and lending amount are presented in the table 4-12 below:

Table 4-12: Lending Rate of NBL on Different Sectors During Seven FYs.

Sector	2001	2002	2003	2004	2005	2006	2007
Overdraft	15.0	15.00	14.00	10.00	10.00	10.00	10.00
Export Credit	11.00	11.00	11.00	8.50	8.50	8.50	8.00
Import LC	11.00	11.00	11.00	8.50	-	8.50	-
HMG Bond	8.00	8.00	7.00	7.00	7.00	7.00	6.5
BG/CG	10.00	10.00	10.00	8.75	8.75	8.75	7.00
Industrial Loan	14.00	14.00	13.00	13.00	-	13.00	-
Commercial Loan	14.50	14.50	13.50	13.50	-	14.00	-
Priority Sector Loan	14.00	14.00	13.50	10.50	10.50	11.00	10.00
Poorer Sector Loan	10.50	10.50	10.00	8.00	8.00	8.00	7.50
Working Capital	14.00	14.00	13.00	10.00	10.00	10.00	10.00
Hire Purchase	14.00	14.00	14.00	11.00	11.00	11.00	10.50
Others	16.00	16.00	14.00	11.00	12.00	11.00	11.00
Average Int. Rate (1)	12.67	12.67	12.	9.98	9.53	10.06	8.94
Lending Amount (2)	22863.7	22062.3	20997.5	19266.1	19141.7	17456	12180
Correlation (r_{12})			0.8530				
Coefficient of determination ($\mathbf{r}_{12}{ }^{2}$)			0.7276				
t-statistics	t-cal=3.654	$\begin{gathered} \mathrm{t}- \\ \mathrm{tab}=2.447 \end{gathered}$	Significan t				
Std Deviation	1.45	Std Error	0.55				

Source: Banking and Financial Statistics, Research Dept. NRB

Table 4-12 shows the lending interest rate structure of NBL on different sectors. This interest rate is somewhat lower value as compared to interest rate of RBB (Table 411). It means that there was some difference between the two government banks. For example in overdraft the RBB quoted the interest rate 16.50% per annum on FY 2001 where as in the same period the NBL quoted the interest rate of 16% per annum for overdraft. In the same manner the figure 4-18 and 4-19 indicates that the lending interest rate of NBL was lesser than the lending interest rate of RBB. According to table, it is also clear that all the lending interest rate fell by 2.5% to 5% within the seven FYs. During first phase of seven FYs, the average interest rate declined quite
faster with greater magnitude but in the middle of the FY it remains stagnant. Again after middle year the momentum of speed rises up. During the period especially hire purchase rate, against government bond rate, BG/CG rate, import L/C rate and the overdraft lending rate fell drastically. Whereas other sector lending rate of NBL also fell but their magnitude is less. It means that commercial sector loan rate, industrial loan rate were not decreased by large percentage. So it can be said that only nonproductive sector loan rates were not declined drastically during the seven FYs as compared to productive sector loan. The case is similar with the RBB. With rhythm to lending interest rate, the study of lending amount shows that, it is also in decreasing trend. The average lending rate of each FY and their corresponding lending is exhibited in figures 4-18 and figure 4-19 as follows:

Figure No. 4-18: Lending Amount of NBL During Different FYs

Figure No. 4-19: Average Lending Rate of NBL During Different FYs

- Average Int. Rate

Correlation Coefficient, Coefficient of Determination and t-Statistics of NBL

To find the exact relationship between the lending interest rate and lending amount, it is necessary to use some of the statistical tools like correlation coefficient, coefficient of determination. Similarly, to verify the correlation coefficient, t-statistics is applied. For this case, the correlation coefficient between average interest rate and lending amount is $0.8530\left(\mathrm{r}_{12}=0.8530\right)$. It means that, according to our classification, this is high degree of positive correlation. Increase in one variables result the increase in other variables. In other words, if one variable increase by one percentage, then other variable increases by 0.85%. The result of correlation is against the theory. Because according to theory there should be negative correlation. In other word, decrease in interest rate should be followed by increase in lending amount. But this case doesn't happen for NBL. The coefficient of determination $r_{12}{ }^{2}=0.7276$, which means that the relationship between two variables (lending rate and amount) is defined up to 72.76% only. Similarly, the calculation of t statistics gives the value to t as 3.654 i.e. t -cal $=3.654$. The tabulated value for t at 6 d.f. and 5% level of significance is 2.447. Therefore, in this case t-calculated is more than t-tabulated. Hence, null hypothesis is rejected. It indicates that the relationship shown by correlation coefficient is
significant. In conclusion, it can be said that the lending interest rate and lending amount have some relationship. This is as per theory suggests.

4.3.3 Lending Rate of ADB/N on different sectors

As previously mentioned $\mathrm{ADB} / \mathrm{N}$ grants the loan broadly in two sectors; agricultural and non agricultural (commercial) sectors. But for this study only the lending of commercial sector is focused. The general lending interest rate, lending area, average lending rate and lending amount during the seven fiscal years are presented in figure 4-13.

Table 4-13: Lending Rate of ADB/N on Different Sectors During Seven FYs.

Sector	2001	2002	2003	2004	2005	2006	2007
Overdraft	18.00	18.00	17.00	17.00	16.00	15.50	12.50
Export Credit	-	-	-	-	-	-	-
Import LC	-	-	-	-	-	-	-
HMG Bond	-	-	-	-	-	-	6.50
BG/CG	-	-	-	-	-	-	-
Other Guarantee							
Industrial Loan	15.00	15.00	14.00	14.00	13.00	13.00	10.00
Commercial Loan	16.00	16.00	15.50	15.50	14.00	14.00	11.00
Priority Sector Loan	-	-	-	-	-	-	-
Poorer Sector Loan	-	-	-	-	-	-	-
Term Loan							
Working Capital	-	-	-	-	-	-	-
Hire Purchase	16.00	16.00	15.00	15.00	13.00	13.00	10.00
Others	16.00	16.00	15.00	15.00	13.50	15.50	12.50
Average Int. Rate (1)	16.2	16.2	15.3	15.3	13.9	14.2	10.42
Lending Amount (2)	4590.4	5700.5	6847.8	8794.7	9221.2	10746	11041
Correlation (r_{12})		-0.8011					
Coefficient of determination ($\mathbf{r}_{12}{ }^{2}$)		0.6417					
t-statistics	t-cal=2.99	t-tab=2.447	Significant				
Std Deviation	1.86	Std Error	0.70				

Source: Banking and Financial Statistics, Research Dept. NRB

The table $4-13$ shows the lending interest rate of $\mathrm{ADB} / \mathrm{N}$ in different sectors in different FYs. It is also notable that for commercial purpose, ADB/N has granted credit only on certain sectors in past FY. They are shown on the table 4-13. Comparing the lending arte of three banks RBB, NBL and $\mathrm{ADB} / \mathrm{N}$, it is found that that $\mathrm{ADB} / \mathrm{N}$ had the highest interest lending rate among all. After this RBB had second highest interest rate and NBL had the least interest rate. Even though the interest rate on lending of $\mathrm{ADB} / \mathrm{N}$ is high in first period of second FY s, on later years interest rate gradually starts to decrease. Every year interest rate has declined by almost one percentage point. For the case of $\mathrm{ADB} / \mathrm{N}$ in all sectors declining rate was similar. It means that there was equal fall in interest rate on each loan sectors. But this is not same for RBB and NBL because in those banks, there was rapid fall on non productive sectors and less fall on non-productive sectors. IN past seven FYs the highest interest rate was 18% on overdraft. This is the maximum rate among all. Later on this interest rate fell to 12.5% when it reaches to FY 2007. In the same manner most of the rate fell by on average 5% from the previous lending rate. Too see the position; it is better to give glance on average lending rate during last seven FYs. The average interest rate was $16.2 \%, 16.2 \%, 15.3 \%, 15.3 \%, 13.9 \%, 14.2 \%$ and 10.42% in FY 2001, 2002, 2003, 2004, 2005, 2006 and 2007 respectively.In effect of decline in interest rate, the lending amount of $\mathrm{ADB} / \mathrm{N}$ is also found to be increasing drastically during the seven fiscal years. During the period of seven years, the lending amount was tripled. This is what the theory says. But to know the exact relationship it is necessary to compute the correlation coefficient. Prior to all it is rational if the data on the table 4-13 are present on the graph no 4-20 and 4-21

Figure No. 4-20: Lending Amount of ADB/N During Different FYs

Figure No. 4-21: Average Lending Rate of ADB/N During Different FYs

Correlation Coefficient, Coefficient of Determination and t-Statistics of ADB/N

The correlation coefficient between lending rate and lending amount for $\mathrm{ADB} / \mathrm{N}$ is
-0.8011 . This is negatively correlated relation. The negative sign indicates that the two variables have opposite or inverse relationship which means decrease in one variables leads to increase in other variables. For this case, decrease in interest rate
stimulates the lending amount and vice versa. The coefficient of determination for correlation coefficient is 0.6417 . In other words, the relationship between one variable is defined by another is up to the level of 64.17%.

To verify the correlation coefficient statistically, it is better if t-statistics is used. The calculated value for t is 2.99 i.e. t-cal $=2.99$. Similarly the tabulated value for t at 6 degree of freedom with 5% level of significance is 2.447 i.e. $t-t a b=2.447$. Comparing t -cal and t -tab, it is found that t -cal>t-tab so in such case alternate hypothesis is accepted which means that the relation shown by the correlation coefficient is highly significant. In other words, two variables are significantly correlated or the increase in lending amount is due to decrease in lending rate. Lending rate is significant factor for that. From this analysis, it is verify that theory matches with the lending case of ADB/N.

4.3.4 Lending Rate of HBL on different sectors

HBL also grant credit on different area like commercial loan, industrial loan, overdraft, working capital and so on. These rates on the different fiscal years are as follows.

Table 4-14: Lending Rate of HBL on Different Sectors During Seven FYs.

Sector	2001	2002	2003	2004	2005	2006	2007
Overdraft	14.50	13.00	13.75	13.25	13.25	13.25	12.00
Export Credit	11.00	9.50	9.50	9.50	9.50	9.50	8.75
Import LC	13.50	13.00	12.75	12.25	12.25	12.25	11.75
HMG Bond	10.00	8.50	8.00	8.00	8.00	8.00	6.00
BG/CG	11.00	9.50	10.50	10.50	10.50	10.50	9.25
Other Guarantee							
Industrial Loan	15.50	14.00	13.50	13.00	13.00	13.00	12.75
Commercial Loan	15.50	14.00	13.75	13.25	13.25	13.25	12.50
Priority Sector Loan	14.50	14.00	13.00	13.00	13.00	13.00	12.25
Poorer Sector Loan	9.00	8.50	8.50	8.50	8.50	8.50	8.25
Term Loan	15.00	13.50	13.50	13.00	13.00	13.00	11.75
Working Capital	14.00	13.20	13.25	13.00	13.00	13.00	-
Hire Purchase	15.50	13.00	13.00	13.00	13.00	13.00	11.50
Others	17.50	16.25	16.25	15.75	15.75	15.75	13.50
Average Int. Rate (1)	13.58	12.30	12.25	12	12	12.	10.85
Lending Amount (2)	7423.2	9176.9	9673.5	11074.2	13081.7	13245	15516
Correlation ($\mathbf{r a x}_{12}$)			-0.8964				
Coefficient of determination ($\mathbf{r}_{12}{ }^{2}$)			0.8035				
t-statistics	$\mathrm{cal}=4.52$	$\begin{gathered} \mathrm{t}- \\ \mathrm{tab}=2.447 \end{gathered}$	Significant				
Std Deviation	0.74	$\begin{gathered} \text { Std } \\ \text { Error } \end{gathered}$	0.28				

Source: Banking and Financial Statistics, Research Dept. NRB

The table $4-14$ shows the interest rate of HBL on lending on seven fiscal years granted in different sectors. With comparison to above aforementioned banks, HBL lending rate was somewhat lower than quoted by other banks. This may be due to the competition because those aforementioned banks are owned by the government where as HBL is private sector leading commercial bank. The maximum interest (17.5\%) was quote on "others" sector in 2001. The interest rate of HBL is also in decreasing trend. But the decreasing magnitude is low as compare to other banks. It means that at 2001 the average interest rate of HBL was 13.58 where as other bank's average lending rate was much higher than that. During seven year period the interest rate falls to 10.85 on average. Conversely, the lending amount of HBL seems to be in increasing trend. In comparison to 2001 lending, lending amount of 2007 is two times more. So it can be said that lending of HBL was expanded rapidly within that seven fiscal periods. These phenomenon shows that lending interest rate and lending amount have inverse relationship.

To quantify this relationship, it is necessary to calculate correlation coefficient and tstatistics but prior to this it is fruitful if the trend of lending interest rate and lending amount is shown in the figure as in figure no 4-22 and figure no 4-23.

Figure No. 4-22: Lending Amount of HBL During Different FYs

Figure No. 4-23: Average Lending Rate of HBL During Different

$$
\rightarrow \text { Average Int. R ate }
$$

Correlation Coefficient, Coefficient of determination and t-Statistics of HBL

The correlation coefficient of HBL between lending amount and lending rate is 0.8939. It is degree negative correlation. It indicates that increment in one variable result the decrement in other variables or vice versa. In this case decrease in lending interest rate increases the lending amount. People preferred more credit from the HBL bank reduced the lending interest rate. This is similar with the saying of the theory. Similarly the coefficient of determination between two variables $\left(\mathrm{r}_{12}{ }^{2}\right)=0.8035$. It means that the relation between dependent variable and independent variable is defined up to extend of 80.35%. In other words, the increase in lending amount by decrease in interest rate is defined up to extend of 80.35 where as remaining percentage is due to other factors.

Similarly the t -statistics for HBL is 4.52 (i.e. t -cal $=4.52$). The tabulated value at 5% level of significance with 6 d.f is 2.447 . Comparing the t -tab and t -cal, it is clear that
t -cal $>\mathrm{t}$-tab, so alternative hypothesis is accepted and null hypothesis is rejected. It means that the relation shown by correlation coefficient is highly significant. That is, the inverse relation shown by two variables- lending rate and lending amount-is strong. The increase in demand of lending amount is due to the decrease in lending rate. Therefore, according to t-statistics, the lending rate is also another strong factor as well as important factor that shape the lending amount. In conclusion the inverse relation of HBL on two variables is in accordance with theory.

4.3.5 Lending Rate of NBB on different sectors

At last, another bank foe analysis is Nepal Bangladesh Bank. This bank also grants the credit to its customers in different sectors. But according to the NRB bulletin "Banking and Financial Statistics" the bank provided the loan to its customers on following sectors.

Table 4-15: Lending Rate of NBB on Different Sectors During Seven FYs.

Sector	2001	2002	2003	2004	2005	2006	2007
Overdraft	15.50	15.00	14.50	14.00	13.00	13.00	-
Export Credit	12.50	12.00	11.75	11.75	10.50	10.50	9.50
Import LC	13.50	-	-	-	10.50	10.50	-
HMG Bond	11.00	9.00	9.00	9.00	8.50	8.50	7.50
BG/CG	15.00	13.00	13.00	13.00	12.00	12.00	8.0
Other Guarantee							
Industrial Loan	15.00	14.50	14.00	14.00	-	-	12.00
Commercial Loan	15.50	15.00	14.50	14.00	-	-	9.50
Priority Sector Loan	13.00	13.00	13.00	13.00	11.00	11.00	10.00
Poorer Sector Loan	12.00	12.00	12.00	12.00	10.00	10.00	9.50
Term Loan	15.00	14.00	14.00	13.50	12.00	12.00	-
Working Capital	-	-	-	-	-	-	-
Hire Purchase	15.00	14.50	14.50	14.00	12.50	12.50	9.50
Others	16.50	15.00	14.50	14.00	13.00	13.00	10.50
Average Int. Rate (1)	14.13	13.36	13.16	12.93	11.3	11.3	9.56
Lending Amount (2)	4611.8	7347.4	8222.1	8491.9	10253.6	8740	9011
Correlation (r_{12})			-0.719				
Coefficient of determination ($\mathrm{r}_{12}{ }^{2}$)			0.5181				
t-statistics	$\begin{gathered} \mathrm{t}- \\ \mathrm{cal}=2.318 \end{gathered}$	$\begin{gathered} \mathrm{t}- \\ \mathrm{tab}=2.447 \end{gathered}$	Insignificant				
Std Deviation	1.47	$\begin{gathered} \text { Std } \\ \text { Error } \end{gathered}$	0.56				

Source: Banking and Financial Statistics, Research Dept. NRB

The table 4-15 shows the lending interest rate structure of NBB on seven FYs on different sectors. From table it is clear that the interest rates of NBB are in falling stage. During the first phase and last phase of FY the interest rate fell by large gap. But in middle year of the FYs the falling speed was slow. This phenomenon can clearly be seen through its average interest rate's study. The average interest rate for FY 2001, 2002, 2003, 2004, 2005, 2006 and 2007 are $14.13 \%, 13.36 \%, 13.16 \%$, $12.93 \%, 11.30 \%, 11.30 \%$ and 9.56%. The average interest rate shows that the interest
jumps by high percentage gap in the last FY comparing other FY. In this bank too the lending interest of non-productive loan falls more than lending interest rate on productive sector loan. In the same manner, for lending amount, the lending amount of NBB increased each year. During the last FY the lending amount rises by around 3 times. This is very significant figure among these 5 aforementioned sample banks. This shows that the lending amount and lending interest rate have negative relationship. But to get the exact numerical result of relationship correlation should be necessary to calculate. The figure for changing trend of interest rate and lending amount is given on figure no 2-24 and figure no 4-25.

Figure No. 4-24: Lending Amount of NBB During Different FYs

Lending Amount

Figure No. 4-25: Average Lending Rate of NBB During Different FYs

Correlation Coefficient, Coefficient of Determination and t-Statistics of NBB

The correlation coefficient of NBB between lending amount and lending rate is 0.7198

It is high degree of negative correlation. It indicates that increment in one variable result the decrement in other variables or vice versa. Decrease in lending interest rate increases the lending amount because people preferred more credit from the NBB when bank reduced the lending interest rate. This condition matches with the theory. Similarly the coefficient of determination two variables $\left(\mathrm{r}_{12}{ }^{2}\right)=0.5181$. It means that
the relationship between dependent variable and independent variable is defined up to extend of 51.81%. The remaining percentage is due to other factors.

Similarly the calculated value for NBB is 2.318 (i.e. t-cal=2.318). The tabulated value of t-statistics at 5% level of significance with 6 d.f is 2.447 . Comparing the t-tab and t -cal, it is clear that t -cal<t-tab. So null hypothesis is accepted and alternative hypothesis is rejected. It means that the relation shown by correlation coefficient is insignificant. That is the relation shown by two variables- lending rate and lending amount-is strong. In conclusion the inverse relation of NBB on two variables is not accordance with theory.

4.4 Analysis of Inflation and Interest Rate (Deposit and Lending Rate)

Another variable that affects the interest rate in the economy is the inflation. In general condition, inflation and interest rate have positive effect. It means that, when inflation increases in the economy, the interest rate also increases. On this ground, different theory has been propounded like fisher effect, Harrod-Keynes effect and so on. This all phenomenon have been already explained in the chapter two. To measure the actual relationship, the prevailing situation of each bank is going to observe.

4.4.1 Inflation Rate and Interest Rate of RBB

The interest rate on deposit, interest rate on lending of RBB and inflation of the country during the seven FYs were tabulated on table 4-16.

Table No. 4-16: Inflation Rate and Interest Rate of RBB

Fiscal Year	CPI (1)	Inflation Rate (2)	Deposit Rate(3)	Lending Rate(4)
2001	134.9	3.5	6.0	14.73
2002	138.1	2.4	6.2	13.50
2003	142.1	2.9	5.2	12.77
2004	148.9	4.8	4.9	11.08
2005	154.8	4.0	3.0	10.70
2006	161.8	4.5	2.5	10.80
2007	174.7	8.0	2.56	9.63
Correlation coefficient r_{23}	-0.6932	Coefficient of Determination	0.4806	
Correlation coefficient r_{24}	-0.7580	Coefficient of Determination	0.5746	
t-statistics	$\mathrm{tcal}($ Deposit $)=\mathbf{2 . 4 5}$	\mathbf{t}-tab $=\mathbf{2 . 4 4 7}$	Significant	
	$\mathrm{t} \mathbf{\operatorname { c a l }}$ (Lending) $=\mathbf{2 . 5 9}$	t-tab $=2.447$	Significant	

Source: Banking and Financial Statistics, Research Dept. NRB

From table $4-16$ it is clear that the inflation rate during the last seven FYs was in fluctuating trend. Though it seems to decreasing but it has some variation. With similar to declining inflation, the interest rate of both lending and deposit are seems to be declining. The relationship among these three elements can be portrayed in the figure no 4-26 as follows.

Figure No 4-26: Inflation Rate, Deposit Rate and Lending Rate of RBB

From figure no 4-26, it is clear that during the FY 2001 the inflation rate (3.5\%) was higher than deposit interest rate (6.0%). This inflation rate decreases to 2.4% during 2002. In the middle of 2001 the inflation decreases below the deposit rate. In the same manner, during the FY 2004 inflation rate and deposit rate was almost same. But after 2004 the inflation rate started to rise and at FY 2005 inflation remains slightly above the deposit rate. At FY 2006 inflation rate was higher than deposit rate. In FY 2007 inflation rate increases to 8%, whereas deposit remain almost same. These all indicates that the actual earning or real rate or return for the deposit holder was negative. In those periods, when inflation rate exceeds the deposit rate, deposit holder lost their income rather than earn. But in the case of lending rate, it was very much higher than the inflation rate. So, bankers don't lose their income as compared to deposit holder. Due to this the interest spread between the deposit and lending was very high during the first part of the seven FYs.

If correlation coefficient of between deposit and inflation is taken, the value of r is 0.6932 . i.e $\mathrm{r}_{23}=-0.6932$. This negative correlation indicates that the deposit rate and inflation have negative relationship. Increase in inflation decreases the deposit rate.

In order to verify the strength or weakness of relation, calculation of t-statistics is necessary. The calculated value of t for given correlation coefficient is 2.45 . The tabulated value for it with 5% level of significance with 6 d.f. is 2.447 . Here in this case tabulated value of t is less than calculated value of t. In such case, null hypothesis is accepted which means that the correlation coefficient between deposit and lending is significance. In other words, the deposit rate of RBB is correlated with the inflation rate and movement in inflation does affect the interest rate on deposit significantly.

In same manner, the correlation between lending rate and inflation is found to be $0.7580 . i . e . r 24=-0.7580$. This is negative correlation. It means that the two variables move indifferent direction. In order to verify the significance of correlation coefficient, t-statistics is calculated. The calculated value of t is 2.59 and tabulated value is 2.447 . Here the case is not similar with deposit. It means that, whatever the correlation coefficient reveals for the relation of two variables, but the two variables are significantly correlated.

4.4.2 Inflation Rate and Interest Rate of NBL

The interest rate on deposit, interest rate on lending of NBL and inflation of the country during the seven FYs are tabulated on table no 4-17.

Table No. 4-17: Inflation Rate and Interest Rate of NBL

Fiscal Year	CPI (1)	Inflation Rate (2)	Deposit Rate(3)	Lending Rate(4)
2001	134.9	3.5	4.53	12.67
2002	138.1	2.4	4.53	12.67
2003	142.1	2.9	4.46	12.00
2004	148.9	4.8	4.16	9.98
2005	154.8	4.0	3.04	9.53
2006	161.8	4.5	2.85	10.06
2007	174.7	8.0	3.05	8.94
Correlation coefficient r_{23}	-0.6316	Coefficient of Determination	0.3989	
Correlation coefficient r_{24}	-0.7980	Coefficient of Determination	0.6368	
}{}	\mathbf{t} cal (Deposit) $=\mathbf{1 . 8 2}$	\mathbf{t} t-tab =2.447	Insignificant	
	\mathbf{t} cal (Lending)			
	\mathbf{t}-tab =2.447	Significant		

Source: Banking and Financial Statistics, Research Dept. NRB

The relationship that is shown on table can be presented on the graph no 4-27. According to graph it is clear that, during the beginning of the period, the inflation rate was less than the deposit rate and but at the middle of 2004 the inflation of the country increases than that of deposit rate and remain above the deposit rate till date. But the rate of lending was higher than inflation during the seven FYs. In both case it is similar with RBB.

Figure No 4-27: Inflation Rate, Deposit Rate and Lending Rate of NBL

Similarly, the correlation coefficient between deposit rate and inflation, r_{23}, is found to be -0.6316 and correlation coefficient between lending rate and inflation, r_{24} is 0.798. It indicates that these variables have negative correlation between inflation rates. In other words, when inflation increases, both the rates decreases. To find the strength and weakness of relationship, t-statistics is necessary.

The calculated value of t is 1.821 for deposit and 2.961 for lending. Here the tabulated value for deposit is higher than calculated value but the tabulated value for lending is less than calculated value. $(\mathrm{t}-\mathrm{tab}=2.447)$. In such condition null hypothesis is rejected and alternative hypothesis is accepted in the case of deposit and alternative hypothesis is rejected and null hypothesis is accepted in the case of lending.

4.4.3 Inflation Rate and Interest of ADB/N

The inflation rate during the last seven fiscal years, deposit rate of $\mathrm{ADB} / \mathrm{N}$ and lending rate of $\mathrm{ADB} / \mathrm{N}$ are tabulated in table no 4-18.

Table No. 4-18: Inflation Rate and Interest Rate of ADB/N

Fiscal Year	CPI (1)	Inflation Rate (2)	Deposit Rate(3)	Lending Rate(4)
2001	134.9	3.5	7.33	16.2
2002	138.1	2.4	7.33	16.2
2003	142.1	2.9	6.17	15.3
2004	148.9	4.8	6.17	15.3
2005	154.8	4.0	3.92	13.9
2006	161.8	4.5	3.08	14.2
2007	174.7	8.0	3.42	10.42
Correlation coefficient r_{23}	-0.6561	Coefficient of Determination	0.4305	
Correlation coefficient r_{24}	-0.9162 t-statistics	Coefficient of Determination	0.8399	
$\mathbf{y} \mathbf{= 1 . 9 4}$	\mathbf{t}-al(Deposit)	$\mathbf{2 . 4 4 7}$	Insignificant	
\mathbf{t} cal(Lending) $=\mathbf{5 . 1 2}$	\mathbf{t}-tab =2.447	Significant		

Source: Banking and Financial Statistics, Research Dept. NRB

According to table 4-18 the average interest rate (average of both fixed and saving deposit) was 7.33 in 2001. On comparing the deposit rate and inflation, deposit remained above or higher than inflation rate from 2001 to 2004. This situation increases the deposit holders earning position. As similar with other banks, the lending rate of last seven FYs was higher than inflation rate. To make more precise, the above table is plotted on the graph as figure no 4-28.

Figure No 4-28: Inflation Rate, Deposit Rate and Lending Rate of ADB/N

The correlation coefficient between deposit interest rate and inflation for the case of $\mathrm{ADB} / \mathrm{N}$ is found to be negative i.e. $\mathrm{r} 23=-0.6561$. This indicates that whenever inflation rise in the country the $\mathrm{ADB} / \mathrm{N}$ is not able to raise its deposit rate and vice versa. In this manner, the deposit holder of this bank net negative real return during the last seven fiscal years. To verify this, if the value of t-statistics is calculated then it is 1.944 . The tabulated value for the same at 5% level of significance at 6 d.f. is 2.447. So in this case the tabulated value is higher than calculated value. This indicates that the relationship between these two variables is insignificant.

For lending rate and inflation rate, the correlated coefficient is -0.9165 . This is highly negative correlation. Similarly the value of t -calculated is 5.122 . Since the calculated value is much higher than the tabulated value, the relation between the lending rate and inflation rate is significant.

4.4.4 Inflation Rate and Interest Rate of HBL

The interest rate on deposit, interest rate on lending of HBL and inflation rate of the country of last seven FYs are tabulated in table 4-19.

The table 4-19 shows that the interest rates of deposit had fallen below the inflation rate on FY 2004, 2006 and 2007. In FY 2005, the depositors get the interest rate equal to the inflation rate but in FY 2007, inflation rate was much higher than deposit rate. The depositor's real return was negative in FYs 2004, 2006 and 2007 because the inflation rate was higher than deposit rate. Similarly, it is also seen that the lending rate was higher than inflation rate in these seven FYs.

Table No. 4-19: Inflation Rate and Interest Rate of HBL

Fiscal Year	CPI (1)	Inflation Rate (2)	Deposit Rate(3)	Lending Rate(4)
2001	134.9	3.5	5.43	13.58
2002	138.1	2.4	4.36	12.30
2003	142.1	2.9	4.19	12.25
2004	148.9	4.8	4.01	12
2005	154.8	4.0	4.01	12
2006	161.8	4.5	4.01	12
2007	174.7	8.0	2.67	10.85
Correlation coefficient r_{23}	-0.7869	Coefficient Determination	0.6192	
Correlation coefficient \mathbf{r}_{24}	-0.0864	Coefficient Determination	0.0074	
\mathbf{t}-statistics	\mathbf{t} cal(Deposit) $=\mathbf{2 . 8 5}$	t-tab =2.447	Significant	
	$\mathbf{t ~ c a l (L e n d i n g) ~ = \mathbf { 0 . 1 9 }}$	t-tab =2.447	Insignificant	

Source: Banking and Financial Statistics, Research Dept. NRB

The same phenomenon can be expressed by the help of graph 4-29.

Figure No 4-29: Inflation Rate, Deposit Rate and Lending Rate of HBL

The correlation coefficient between interest rate on deposit and inflation rate r_{23} is 0.7869. This means that these two variables have negative correlation. An increase in inflation rate decreases the deposit rate and vice versa. In general concept also there is negative correlation between these two variables. The coefficient of determination $\mathrm{r}_{23}{ }^{2}=0.6192$. This means that of the total variation in dependent variable (deposit interest rate); only 61.92% has been explained by the variation in dependent variable (inflation rate). Similarly the t-value for testing the significance of correlation coefficient is 2.851 which is more than the tabulated value at 5% level of significance and 6 d.f. Since the tabulated value is less than the calculated value the correlation coefficient is significant which means that interest rate in deposit of HBL is correlated
with the inflation rate of the country and the movement in inflation does affect the interest rate on deposit significantly.

Similarly the relationship of interest rate on lending with inflation has also been examined. The coefficient of correlation between inflation and interest rate on lending r_{24} is -0.0864 which shows that the variables are negatively correlated. Movement in inflation rate leads movement in interest rate n lending but in opposite direction. The t-value for testing the significance of correlation coefficient is 0.1939 . Since the calculated value is less than the tabulated value for 6 degree of freedom at 5% level of significance 2.447 , the variables are not correlated significantly. This means that the lending rate of HBL is not significantly correlated with the inflation rate.

4.4.5 Inflation Rate and Interest Rate of NBB

The inflation rate during the last seven fiscal years, deposit rate of NBB and lending rate of NBB are tabulated in table no 4-20.

The table shows the structure of inflation, deposit rate and lending rate. During the seven FYs inflation rate exceed the deposit rate only on FY 2007 where inflation rate was 8.0% and the deposit rate was 4.37%. Besides this, in other FY the deposit rate of NBB exceeded the inflation rate. Similarly for lending rate, in all years, interest rate of lending exceeds the inflation rate. The entire four rates were in decreasing trend but the inflation was in increasing trend with little bit fluctuation. If the value of the table 4-20 is plotted in the graph then it will be seen like figure no 4-30.

Table No. 4-20: Inflation Rate and Interest Rate of NBB

Fiscal Year	CPI (1)	Inflation Rate (2)	Deposit Rate(3)	Lending Rate(4)
2001	134.9	3.5	6.17	14.13
2002	138.1	2.4	5.87	13.36
2003	142.1	2.9	5.58	13.16
2004	148.9	4.8	5.42	12.93
2005	154.8	4.0	4.37	11.3
2006	161.8	4.5	4.37	11.3
2007	174.7	8.0	4.37	9.56
Correlation coefficient r_{23}	-0.6645	Coefficient of Determination	0.4416	
Correlation coefficient r_{24}	-0.8232	Coefficient of Determination	0.6776	
t-statistics	$\mathrm{t} \mathbf{\operatorname { c a l } (\text { Deposit }) = \mathbf { 1 . 9 9 }}$	t-tab $=\mathbf{2 . 4 4 7}$	Insignificant	
	t $\mathbf{~ c a l (L e n d i n g) ~}=3.24$	t-tab $=\mathbf{2 . 4 4 7}$	Significant	

Source: Banking and Financial Statistics, Research Dept. NRB

Figure No 4-30: Inflation Rate, Deposit Rate and Lending Rate of NBB

The correlation coefficient between interest rate on deposit and inflation rate, r_{23} is - 0.6645 which shows that there is negative relation between these two variables. When the inflation increase, the interest rate on deposit offered by NBB decreases. The coefficient of determination is 0.4416 which means that, of total variation in dependent variables (interest on deposit) is explained by the variation in independent variable (inflation rate) to extend of 44.16% and other variables are responsible for remaining variation. The value of t for testing the significance of correlation coefficient is 1.988 which is smaller than the table value. Since the calculated value is smaller than the tabulated value at 6 d.f. and 5% level of significance, 2.447 , the variables are not significantly correlated. So we can say that change in inflation has not any significant impact on the interest rate on deposit of NBB.

In the same manner the correlation coefficient between inflation and interest rate on lending r_{24} shows that the variables are correlated and relationship is negative. Increase in inflation causes decrease in interest rate on lending. In the similar manner the t-value for testing significance of correlation coefficient $(t-c a l=3.242)$ is more than the tabulated value of 6 d.f. and 5% level of significance ($\mathrm{t}-\mathrm{tab}=2.447$). As the calculated value is greater than the tabulated value, the correlation coefficient is significant which means that the variables, interest rate on lending and interest rate are correlated.

4.5 Findings of this study

This study is conducted to identify the practical applicability of some of the theories in the context of Nepal that are taught in the Universities and Colleges. With this motive, this study focuses on mainly on three objectives. First on is to determine the actual situation of substitution effect in the context of Nepalese financial markets. Secondly is to determine the relationship between lending rate and corresponding lending amount. And lastly, the third objective is to explore the actual relationship of
inflation rate and interest rate.

From the study the following three major findings are obtained.

1. The analysis of substitution effect for the both fixed and saving deposits shows that the substitution effect do not exist for all sample banks. This means that, people are oriented to deposit more amounts even if the interest rates on deposit are falling every year. The increasing deposit amount clarifies this fact.
2. According to theory, lending interest rate and lending amount should have inverse relationship. From this study, it is found that all sample banks expect NBL have inverse relationship. But among them, three banks have strong relationship as required by theory. The increment in demand of loan able fund for $\mathrm{NBB}, \mathrm{HBL}$ and $\mathrm{ADB} / \mathrm{N}$ is due to the decline in lending rate because relationship is proved statistically significant. But for RBB , increase in lending amount is not due to the decrease in lending rate but may be due to other factors, as it has lower t-calculated value than tabulated value. This indicates insignificant relationship between variables under study.
3. For fixed and saving deposits, it is found that all sample banks except $A D B / N$ have moderate correlation with inflation rate. Similarly, all t-test values are insignificant. This shows that deposit rate and inflation rate are not related significantly though the Fisher theory suggest that there should be positive relationship. The case is same for lending rate and inflation rate.

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

This chapter mainly consists of three parts: Summary, Conclusion and Recommendation. In summary part, revision or summary of all four chapters is made. In conclusion part, the result from the research is summed tip and in recommendation part, suggestion and recommendation is made based on the result or the study. Recommendation is made for improving the present situation to tile concerned sector as well as for further research.

5.1 Summary

Nepal is orienting towards the development. Natural resources of the country remain unused and unutilized due to the lack of financing and technical know how. In order to mobilize the limited capital, the government of Nepal adopted the liberalization policy. As result up to now 17 commercial banks, 14 development banks, 5 rural development banks, 6 micro credit development banks, 58 finance companies, 34 saving and co-operatives and 44 financial NG0s are established within the financial system of Nepal. Financial system is hoped to develop the economy and help to raise the living standard of the people. Financial intermediaries mobilize the fund by collecting the scattered resources from the savers and provide the collected funds to the users. The intermediaries of financial systems sustain by lending the fund on higher interest rate and paying the deposit holder a little interest. It means that such organization survive by making profit through an interest spread on deposit and lending. The decision made to charge and provide interest on lending and deposit affects the profit position of the organization. Depositors are generally attracted by offering the higher interest rates. Similarly high credit rates de-motivate the investors
as a result investment in the country shrinks down. Though there are various factors in the economy that affects the deposit amount and lending amount; interest rate is one of the major factor that affect deposit and lending amount. With the major objective of showing relationship between deposit rate and deposit amount i.e. substitution effect, lending rate and lending amount, inflation and interest rate, this study is undertaken.

After the liberal policy adopted by the government, NRB slowly loosen the rigid ness to fix the interest rate that financial intermediaries charge and offer. But time to time, NR13 issues directives regarding overall performance of the financial institutions. Therefore, in past few years back, banks and other financial institutions get freedom to quote the interest rate on lending and deposit. This creates the competition in the Nepalese economy. In this sense, this study is conducted to identify whether some of the theories of finance and economics are applicable or not in the Nepalese financial markets. These major theories are like substitution effect, fisher effect and inverse relationship between interest rate and lending amount. For this purpose brief introduction about Nepalese economy, interest rate, sample organizations, statement of problem, significance of the study, research hypothesis, and so on are made in the first chapter of this dissertation.

In second chapter, theoretical review as well as review of previous research has been made. Different views about interest, function of interest, theories of interest, factors affecting interest rate and so on are reviewed on that chapter. Oil tile theories of interest, mainly four theories The Classical Theory, Liquidity Preference Theory, Loanable Fund Theory and Rational Expectancies Theory are reviewed. Similarly, the factor affecting interest rate like default risk, marketability risk, exchange rate risk and so on are explained. Similarly, the in order to identity the relationship of interest rate and inflation, Fisher effect, Harrod-Keynes effect are also studied on the second chapter.

Research design used is mainly analytical. Out of the total financial system, five commercial banks are chosen for sample purpose; mainly secondary data are used for the analysis. These all are made on third chapter. Lastly on fourth chapter, collected data are presented in tabular and graphic form and analyzed using various statistical tools like mean, standard deviation, correlation coefficient and t -statistics.

5.2 Conclusion

From the presentation and analysis of data; using different financial tools the major findings can be tabulated as follows:

* The interest rates on both deposit and lending of all sample banks are found to be in decreasing trend. But, on the contrary to this, deposit amount and lending amount is increasing every year except on fixed deposit of RBB and NBL. The government run bank's fixed deposit is found to be decreasing every year.

[^0]* To clarify the aforementioned conclusion, the t-statistic of negative correlation between saving deposit amount and saving interest rate is significant. It means that they have strong negative relationship. Therefore it is concluded that for saving deposit, there is no substitution effect.
* Analysis of fixed deposit amount and fixed interest rate shows negative relationship except RBB and NBL. The correlation coefficient for RBB and NBL is 0.964 and 0.9298 . The RBB has moderate level of correlation where as NBL has high degree of correlation. According to correlation coefficient, the substitution effects occur for both RBB and NBL in case of fixed deposit. But for other three banks - $\mathrm{ADB} / \mathrm{N}, \mathrm{HBL}$ and NBB - the correlation coefficient is negative meaning people deposit more money even if the bank offer the lower yield rate on fixed deposit. The magnitude of correlation is very high negative value for three banks.
* Even though, the correlation coefficient of RBB and NBL for fixed deposit amount and fixed deposit interest rate is positive, the t-statistics clarify that their relationship is not strong. The calculated value of t is found to be less than the tabulated value of t, so t-test indicates that there is no significant relationship between those two variables. Thus the decrease in deposit is not due to the decrease in interest rate but due to other reasons. Therefore it is concluded that for fixed deposit also, there is no substitution effect at all.

One of the variables that affect the demand of fund (lending activity) is lending interest rate. Theoretically, there is negative relationship between lending interest rate and lending amount. In this study for tile 5 sample bank, it is found that all sample banks except NBL have negative correlation between these two variables. By using correlation tools, it can be inferred that all the sample banks except NBL have inverse relationship as suggested by theory.

* The Test for correlation coefficient of each sample banks for relative relationship between lending interest rate and lending amount shows that tile t value for RBB is insignificant which means that though the correlation coefficient shows the moderate relationship but their relationship is not strong i.e. not significant relationship. So Increase in lending amount is not due to tile decrease in lending interest rate but due to the other reason. But for other banks except NBL the t value is significant meaning that the one of the factor to increase the lending amount is decline in interest rates. So it can be concluded that lending interest is also an important factor for expansion or contraction of lending amount.
* The relationship between interest rate on deposit and inflation rate is positive. It ranges from 0.2651 to 0.7077 . The correlation coefficient for $A D 13 / \mathrm{N}$ is statistically significant but correlation coefficient of other sample organization is statistically insignificant. According to Fisher effect, there should be positive correlation between these two variables but the interest rate in Nepalese financial market is affected by inflation rate to some extent only. In conclusion it can be said that, the Fisher effect is not properly applicable in Nepalese financial market.
* The correlation between interest rate on lending and inflation rate is found to be moderately positive. The correlation coefficient among sample banks lies between -0.922 to 0.8017 . For all samples, the correlation coefficients are insignificant because their value lies below the tabulated value of t. So it can be said that lending interest rate in Nepalese financial market is affected by inflation only to some extent even though the theory says to exist a positive relationship.
* The real rate of return is found to be negative in some years. The negative real return indicates that depositor, instead of earning money, they loose their money in real sense, if they deposit in the bank paying certain percentage of interest. This is due to deposit interest rate lower than inflation rate. This condition hurts the depositors.
* During the study period, it is found that, there exist the high spread between deposit interest rate and lending interest rate. In the beginning of the seven FY this spreads was large but on later years, the spread declined to some extent.
* It is also found that, lending interest rate of the productive sector loan such as commercial loan, industrial loan, trade credit, working capital loan were decreased lesser in magnitude in comparison to the non productive sector loan.

5.3 Recommendation

Based on the above findings and conclusions, certain recommendation can be made here so that the concerned authorities, future researchers, academicians, bankers can get some insights on the present conditions on above topics. It is considered that this research will be fruitful for them to improve the present condition as well as for further research. The major recommendations of this study are as under.

* Quote higher deposit rate:

In order to generate more capital for the development of the economy, more deposits are needed to be collected by the financial institutions. For this the financial institutions are suggested to quote higher deposit interest rate as far as possible. Though this situation reduces their profit opportunities, but it will enhance the economic condition of the country in the long run.

* Reduce the interest spread :

The high spread between deposit interest rate and lending interest rate is another factor to be considered. Higher spread merely increases the profit figures of the banks but at the same time it reduces the deposit collection and investment in the country. So the financial institutions are suggested to reduce the interest spread as minimum as possible.

* Specified by NRB:

As the central bank of the country, Nepal Rastra Bank has power to specify the range or spread between lending rate and deposit rate. So NRB is suggested to specify the spread when ever there is higher gap between two interest rates in the country.

* Consider the inflation rate:

Though the interest rate in free market is determined by the interplay of demand and supply, the concerned parties who fixed the interest rates are suggested to include the inflation premium as far as possible while fixing the interest rates. If the rate of inflation is not considered and real rate collies out to be negative then depositors may withdraw their money and utilize it oil non-productive sectors.

* Reduce rate in productive sectors:

While reducing the lending rate, it is suggested to reduce more on productive sectors than non-productive sectors. If not possible then bankers can reduce the rate of all sectors proportionately.

* Quote consistent rate in one sector:

The lending rates of same bank on same sector are found to be different i.e. quoted on range. These types of inconsistency may bring misconception about that organization. So banks are suggested to quote one consistent rate than on range.

* Invest in new areas:

Lending institutions are suggested to invest on new areas as well as to introduce competitive customer oriented schemes oil lending and borrowing so that more lending and borrowing can be promoted and overall liquidity problem may be solved.

* Provide timely data:

From the experience of collecting the secondary data, it is suggested that NRB should pay special attention to publish detail information on timely manner. The untimely publication of such information may cause negative impact on the efficiency of those whose workings are based on this information

* Co-operate with researchers:

Sample institutions are also suggested to include their interest rate structure in their annual report as well as kindly requested for the co-operation and sincere support to the research students.

* Need further study:

As this research is made by highlighting only one variable- interest rate, it is suggested for further research.

BIBLIOGRAPHY

Bhandari, D. Raj (2003). Principles and Practices of Banking and Insurance. Kathmandu: Asia Publications.

Bhandari, Deepak Raj (1978). The Impact of Interest Rate Structure on Investment Portfolio of Commercial Banks in Nepal. Kathmandu: Submitted to Faculty of Management, T.U.

Bhatta, Sashi, (2004). Interest Rate and its effect on Deposit and Lending. Kathmandu: Submitted to Faculty of Management, T.U.

Bhoosal, Yam Lal (1995). An Analysis of Causes of Inflation in Nepal. Kathmandu: Submitted to Faculty of Management, T.U.

Cheney, John M \& Moses, Edward A. (1979). Fundamental of Investment. New York : West publishing company.

Cooper, S. Kerry and Fraser, R. Donald (1983). The Financial Marketplace. California: Addison-Wesley Publishing Company.

Dangol, Neeta (2003). The Impact of Interest Rate on Financial Performance of Commercial Banks. Kathmandu: Submitted to Faculty of Management, T.U.

Famma and Miller. The Theory of Finance. New York: The Dryden Press.

Francis, J. Clark, (2003). Investment Analysis and Management. Eleventh Edition: Post Graduate Publications.

Gupta, S.C. (2002). Fundamental of Statistics. Bombay: Himalayan Publishing House.

Gupta, S.P. (2002). Statistical Methods. New Delhi: Educational Publisher, Sultan Chand and Son's.

Howard K. Wolff and P.R. Pant (2005). Social Science research and Thesis writing. Kathmandu: Buddha Academic publishing and distributors.

Joshi, P.R. (2001). Research Methodology. Kathmandu: Buddha Academic Publishers and Distributors Pvt. Ltd.

Joshi, Shyam (2056). Micro \& Macro Economic Analysis. Kathmandu: Taleju Prakashan.

Kohn, M. (1999). Financial Institutions \& Markets. New York: Tata McGraw Hill Publishing Co. Ltd.

Kothari, C.R., (1994). Research Methodology, Methods and Techniques. New Delhi : Vikash Publication House Pvt. Ltd.

Khatri, Kishor Chettri (1980). Interest Rate Structure and Its Relation with Deposits Inflation and Credit in Nepal. Kathmandu: Submitted to Faculty of Management, T.U.

Pant, G.D. \& Chaudhary, A.K. (1999). Business Statistics and Mathematics. Kathmandu : Bhandupuran Prakashan.

Pant, P. Raj (2003). Business Environment in Nepal. Kathmandu: Buddha Academic Publishers and Distributors Pvt. Ltd.

Paul, E. Green and Donald. S. Till. Research for Marketing Decisions.

Pokharel, Jhabindra (2004). Determinants of Interest Rates in Nepalese Financial Markets. Kathmandu: Submitted to Faculty of Management, T.U.

Radhaswamy, M. and Vasu Devan S.V. (1979). Text Book of Banking. New Delhi: S.Chand \& Company Ltd.

Rose, Peter S. (2003). Money and Capital Markets. Chicago: Financial Institution and Instruments in a Global Marketplace.

Rajbhandari, Narendra B. (1978). The Interest Rate Structure of Commercial Banks in Nepal. Kathmandu: Submitted to Faculty of Management, T.U.

Samuelson, Paul A. \& Nordhus, William D. Economics. Sixteen edition. New Delhi: Tata Mc Graw Hill Publishing Company Limited.

Sharma, P. K. and Chaudhary, A.K (2058). Statistical Methods. Kathmandu: Khanal Books Prakashan.

Sharma, P. Kumar and Silwal D. Prasad (2058). Text Book of Business Mathematics and Statistics. Kathmandu: Taleju Prakashan.

Sharpe, W.F, Alexander, G. J., Bailey, J.V. (2003). Investments. New Delhi: Prentice Hall of India Private Limited.

Shrestha, M Krishna and Bhandari D. Bahadur (2004). Financial Markets and Institutions. Kathmandu: Asmita Books Publishers and Distributors.

Shrestha, Sunity and Silwal, D. Prasad (2059). Statistical Methods in Management, Kathmandu: Taleju Prakashan.

Shrestha Shree Krishan(1979). Interest Rate and its Impact upon Resource Mobilization and Utilization. Kathmandu: Submitted to Faculty of Management, T.U.

Thygerson, Kennith J. (1992). Financial Institutions and Capital Markets. New York : Harper Collings College Publisher.

Vaidhya, S. Financial Market and Institutions. Kathmandu: Taleju Prakashan.

Van Horne, J.C. (1998). Financial Management and Policy. New Delhi: Prentice Hall of India Pvt. Ltd.

Weston, J. F. and Copeland, J.E. (1992). Managerial Finance. Chicago: The Dryden Press.

Weston, J. Fred and Engene, F. Brigham. Managerial Finance. Florida: University of California.

Wolff, H.K. and Pant, P.R. (2005). Social Science Research \& Thesis Writing. Kathmandu: Buddha Academy \& Distributors.

JOURNALS, REPORTS AND ARTICLES

Annual Reports of Sample Banks;

Nepal Rastra Bank, 2001 to 2007. "Banking and Financial Statistics", No. 37 to 47, Mid-July, Kathmandu

Nepal Rastra Bank, 2003 to 2004. "Economic Report ", Kathmandu

Nepal Rastra Bank. 2004. "Asian Development Bank and Nepal", Kathmandu

Nepal Rastra Bank. 2004. "Report of Fiscal Year 2002/03", Kathmandu

Nepal Rastra Bank. 2005. "Main Economic Indicators", February-April, May- July, Kathmandu

Nepal Rastra Bank. 2007. "Quarterly Economic Bulletin", Volume XXXVIII, Mid April-Mid-July, Kathmandu

Nepal Rastra Bank. 2007. "Economic Review", Number 18, Kathmandu

Websites

www. digital economist. com/in f 4020.hti-ni
www.investopedia.com
www.mof.gov.np
www.nbbank.com
www.nrb.org.np

ANNEX

Calculation of Average Interest Rate on

Deposit of RBB

Deposit	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	
Saving	6.0%	6.0%	5.0%	4.75%	2.25%	2.0%	2.0%	
Fixed								
7 Days	-	-	-	-	-	-	-	
14 Days	-	-	-	-	-	-	-	
1 Month	-	-	-	-	-	-	-	
3 Months	4.0	5.0	4.0	3.75	3.0	2.25	2.25	
6 Months	5.5	5.5	4.75	4.25	3.0	2.5	2.5	
1 Year	7.0	7.0	6.0	5.75	3.75	3.25	3.5	
Above 2 Yrs	7.5	7.5	6.25	6.0	-	-	-	
Whole Mean	$\mathbf{6}$	$\mathbf{6 . 2}$	$\mathbf{5 . 2}$	$\mathbf{4 . 9}$	$\mathbf{3 . 0}$	$\mathbf{2 . 5}$	$\mathbf{2 . 5 6}$	
Fixed Dep. Mean	$\mathbf{6 . 0}$	$\mathbf{6 . 2 5}$	$\mathbf{5 . 2 5}$	$\mathbf{4 . 9 4}$	$\mathbf{3 . 2 5}$	$\mathbf{2 . 6 7}$	$\mathbf{2 . 7 5}$	
Std. Deviation	$\mathbf{1 . 4 9}$							

Mean $(\bar{X})=\frac{\sum X}{n}$
Whole Mean $=\underline{\sum(6+4+5.5+7+7.5)}=6 \%$

$$
7
$$

Fixed Deposit Mean $=\underline{\sum(4+5.5+7+7.5)}=6 \%$

Calculation of Standard Deviation;

S.D $(\delta)=\sqrt{\frac{1}{n} \sum(x-\bar{X})_{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{1}{7} \times 15.618} \\
& =1.49
\end{aligned}
$$

Year	Average Interest (X)	$(X-\bar{X})$	$(X-\bar{X})^{2}$
2001	6	1.66	2.7556
2002	6.2	1.86	3.4596
2003	5.2	0.86	0.7396
2004	4.9	0.56	0.3136
2005	3.0	-1.34	1.7956
2006	2.5	-1.84	3.3856
2007	2.56	-1.78	3.1684
	$\sum \bar{X}=30.36 \%$		$\Sigma(X-\bar{X})^{2}=15.618$

Calculation of Standard Error;

$$
\begin{aligned}
\text { S.E } & =\frac{\delta}{\sqrt{n}} \\
& =\frac{1.68}{\sqrt{7}} \\
& =0.63
\end{aligned}
$$

Credit of RBB;

Sector	2001	2002	2003	2004	2005	2006	2007
Overdraft	16.50	13.50	11.75	11.25	12.2	12.25	11.00
Export Credit	15.00	12.00	11.50	10.00	9.50	9.50	8.00
Import LC	12.00	13.00	12.00	10.00	10.00	10.00	9.00
HMG Bond	11.00	14.00	10.50	10.00	7.00	7.00	7.00
BG/CG	-	10.50	10.00	9.25	9.25	9.25	8.50
Other Guarantee	15.00	10.50	-	-	-	-	-
Industrial Loan	15.50	15.00	14.50	11.75	12.00	12.00	-
Commercial Loan	16.50	15.50	15.00	-	-	-	-
Priority Sector Loan	14.00	14.00	13.00	12.00	12.00	13.00	11.50
Working Capital	14.00	14.50	13.75	12.50	11.00	11.00	-
Hire Purchase	16.00	14.00	13.50	12.00	12.00	12.00	11.00
Others	16.50	15.50	15.00	12.00	12.00	12.00	11
Average Int. Rate (x)	14.73	13.50	12.78	11.08	10.70	10.80	9.63
Lending Amount (y)	29140.6	28424.7	28576	28258.9	26781.7	28614	26864
Correlation (r_{12})		0.8384					
Coefficient of determination ($\mathrm{r}_{12}{ }^{2}$)		0.7029					
t-statistics		3.43					
Std Deviation		1.68	S.E=0.63				

$$
\text { Simple Correlation Coefficient } r=\frac{N \Sigma x y-\Sigma y \Sigma x}{\sqrt{N\left(\Sigma x^{2}\right)-(\Sigma x)^{2}} \sqrt{N\left(\Sigma y^{2}\right)-(\Sigma y)^{2}}}
$$

Year	Lending Rate (x)	Lending Amount (y)	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{y}^{\mathbf{2}}$
2001	14.73	29140.6	429241.038	216.997	849174568.4
2002	13.50	28424.7	383733.45	182.25	807963570.1
2003	12.78	28576	365201.28	163.328	816587776
2004	11.08	28258.9	313108.612	122.766	798565429.2
2005	10.70	26781.7	286564.19	114.49	717259454.9
2006	10.80	28614	309031.2	116.64	818760996

2007	9.63	26864	258700.32	92.736	721674496
	$\mathbf{8 3 . 2 1}$	$\mathbf{1 9 6 6 5 9 . 9}$	$\mathbf{2 3 4 5 5 8 0 . 0 9}$	$\mathbf{1 0 0 9 . 1 8 4 6}$	$\mathbf{5 5 2 9 9 8 6 2 9 1}$

$$
\begin{aligned}
r & =\frac{7 \times 2345580.09-(83.21)(196659.9)}{\sqrt{7 \times 1009.1846-(83.31) 2} \sqrt{7 \times 5529986291-(196659.9) 2}} \\
& =\frac{54990.351}{11.12 \times 5898.11} \\
& =0.8384
\end{aligned}
$$

Student t-statistics for hypothesis test;
$\mathrm{t}=\frac{r}{\sqrt{1-r 2}} \times \sqrt{n-2}$

For RBB t -calculation for lending rate and lending amount is
$\mathrm{t}=\frac{0.8384}{\sqrt{1-(0.8384)_{2}}} \times \sqrt{7-2}=3.43$

Note: In this dissertation calculation are made by using both calculator (formula) and excel worksheet. So, for all case, every calculation is not shown here.

[^0]: * The saving deposit amount and saving interest rate have negative relationship ranging from -0.766 to -0.969 . It means that they have highly inverse relationship, if one variable increases, other variable decreases and vice-versa. This case is against the theory of substitution effect. This may be due to the fact that, in last seven FYs, people accumulated most of their funds on saving accounts though they don't get appropriate interest on it. It may be just because of unavailability of other acceptable investment opportunity, in which a separate study can be made. Similarly, the convenience of using saving accounts provokes the investor to deposit more on saving account. Similarly the excess supply of loanable fund (saving deposit) reduces tile cost of fund (interest rate of saving account.)

