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ABSTRACT 

 

 

Most developing countries consists of unsignalized intersections carrying 

heterogeneous traffic conditions. Microsimulation models and their environment are 

widely being used for the evaluation of such traffic conditions and development of road 

networks worldwide. Due to the difficulties in analyzing the complexities of 

heterogeneous traffic and calibrating the microsimulation, their use in Nepalese context 

is limited to research studies. This study proposes a procedure to determine the range 

of values of sensitive calibration parameters tailored to local conditions. Additionally, 

it suggests a methodology for the automated calibration of microscopic simulation 

models based on these sensitive parameters at unsignalized intersections with 

heterogeneous traffic. VISSIM, a microscopic, time step oriented, and behavior-based 

simulation tool was used to model the intersection which consists of a large number of 

input parameters making model calibration rather difficult. Sensitivity analysis was 

performed to identify the sensitive calibration parameters using Latin Hypercube 

Sampling (LHS) and one way ANOVA testing. Based on the findings of the literature 

review, 12 calibration parameters were identified. Using traffic flow as a measure of 

effectiveness, the parameters were reduced to 9 sensitive calibration parameters. The 

optimum value for these sensitive parameters were obtained by minimizing the error 

between the simulated and field traffic flow/queue length using genetic algorithm. The 

calibrated models were then validated based on traffic flow and maximum queue length 

obtained by performing video graphic survey at the study areas. The simulation models 

were considered to be validated as the average MAPE values were within the acceptable 

limits of 15% and GEH values were less than 5. It is expected that the use of these 

sensitive calibration parameters and their ranges would significantly reduce the time 

and effort consumed during calibration of the VISSIM models. 

 

Keywords: VISSIM, Simulation, Unsignalized Intersection, Heterogeneous Traffic, 

Sensitivity Analysis, Automated Calibration, Latin Hypercube Sampling, ANOVA, 

Genetic Algorithm. 
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CHAPTER 1. INTRODUCTION 

 

 

1.1 Background 

 

Traffic microsimulation models and their environment are widely used in the evaluation 

and development of road networks worldwide. “VISSIM is a microscopic, time step 

oriented, and behavior-based simulation tool for modeling urban and rural traffic as 

well as pedestrian flows” (PTV AG 2022). Developing simulation models using such 

tools requires several steps which include data collection, model formulation, 

calibration, and validation of the model. Due to the difficulties in analyzing the 

complexities of heterogeneous traffic and calibrating the microsimulation, their use in 

Nepalese context is limited to research studies and they are rarely used for assessment 

of road networks to aid real-life planning and decision making. Thus, the need for a 

reliable calibration process of the models and parameters is necessary. 

 

VISSIM models are only successful if the model can accurately represent the field 

conditions and for such accuracy, the model needs to be calibrated. Calibration is the 

process of fine-tuning the different parameters in the model such that the error between 

the actual and simulated measures is less than the acceptable value. Calibration and 

validation are the two most important steps to ensure that the VISSIM models 

accurately represent real-world conditions. A calibration process is an iterative process 

that typically involves parameter adjustment to the developed model. Various 

calibration parameters significantly affect the traffic flow like Wiedemann-74 car 

following parameters, lane change parameters, lateral behavior parameters, and 

Wiedemann-99 car following parameters. Calibrating all these parameters is very time-

consuming and ineffective for model calibration since all these factors may not affect 

the model in a significant way depending on local traffic condition. To reduce the 

computational time and effort, sensitivity analysis is a useful process to identify the 

sensitive calibration parameters that have a relevant impact on the results of the 

simulation model. 
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If calibration is not performed in a model, the outputs generated will be highly 

erroneous and this process is often carried out with less care as it requires a great deal 

of time and data. In context of Nepal, calibration in general is performed through 

manual method using verbal description and trial and error of the default parameters. 

Manual calibration consumes a lot of time and effort to find the best parameter set as it 

involves a large combination of parameter sets. In this context, calibration of VISSIM 

parameters for the local traffic condition in Nepal through parameter optimization 

becomes vital. Additionally, development of a platform for automated calibration of 

our intersection models can enhance the accuracy of the analyses and expand their 

application in real-world planning and management. Parameter optimization can be 

carried out using various algorithms to obtain optimal values for the parameter sets. 

Among the various algorithms, Genetic Algorithm (GA) is widely used to solve 

optimization problems. There is no recorded use of automated calibration currently in 

our intersections hence proper procedures have not been developed for the automated 

calibration of the simulation model in our intersections which is observed to be an 

urgent task. 

 

1.2 Problem Statement 

 

Majority of the Asian countries have heterogeneous traffic conditions which results in 

a very complex behavior of traffic which is also the case in the majority of our urban 

intersections. VISSIM software has been highly effective in modeling traffic simulation 

problems because “simulation is safer, less expensive, and faster than field 

implementation and testing” (Park and Schneeberger 2003). “Earlier, researchers 

informally calibrated simulation models and often used default parameters resulting in 

large errors” (Park and Schneeberger 2003). Most of the earlier studies have focused 

on homogeneous traffic conditions having good lane discipline. But heterogeneous 

traffic consists of both motorized and non-motorized vehicles whose static and dynamic 

characteristics are mixed. Other distinguishing factors include traffic composition 

where motorcycles are abundant in the context of Nepal as opposed to other countries, 

side-by-side stacking of vehicles, variable lane widths, and the absence of lane marking 

and lane discipline across the road. “Motorcycle alone contributed to 75 percent of total 

volume followed by car with 16 percent during a study performed in New Baneshwor 
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intersection” (Acharya and Marsani 2020). “In an another study at New Baneshwor 

intersection, we can see that the majority of modal share is for motorcycles (75.33%), 

followed by car/van (9.4%), minibus/mini truck (5.91%), pickup/SUV (5.72%), tempo 

(1.98%), microbus (1.29%), bus (0.21%) and then truck (0.16%)” (Shrestha 2022). 

“The majority of the fleet in the Kathmandu Valley is made up of motorbikes, which 

account for 79.1% of the total share. Private vehicles (cars, vans, and jeeps) are next at 

12.42%, followed by heavy-duty vehicles at 4%, and public transportation at 2.67%” 

(Department of Transport Management 2019). 

 

Most of the intersections in Kathmandu are unsignalized resulting in the continuous 

usage of traffic police for the channelization and effective movement of the traffic 

which results in unstable and dynamic behavior of the system. Most recently, many 

major intersections have been signalized with pre-timed traffic signal devices but traffic 

control is still being done manually by the traffic police officers especially during peak 

hours. These unsignalized intersections function based on relative priorities of the 

minor and major roads as seen fit by the traffic police while some are controlled using 

stop signs on the minor roads. 

 

The analysis of homogeneous traffic conditions with good lane discipline is much easier 

than analyzing the complexities of heterogeneous traffic. Furthermore, the task of 

calibrating and validating the microsimulation model for such intersections requires a 

great deal of time and data. To accurately simulate such systems, the default behavioral 

parameters should be studied to find out the sensitive behavioral parameters which 

require modification for calibration and validation of the system model. The informal 

practice of calibration in our simulation models has wasted a significant amount of time 

and effort during research. Calibration and identification of range of optimized VISSIM 

parameters suitable for our local traffic characteristics and the use of automated 

calibration in VISSIM models to reduce the time and effort of research is negligible in 

our country. Therefore, a methodology to represent such behaviors in the intersections 

of Kathmandu is highly necessary. Hence, this study will develop a general procedure 

for the automated calibration process of microscopic simulation models and suggest a 

range of parametric values suitable for our traffic condition. 
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1.3 Objective of Study 

 

The main objective of the study is to establish the range of calibration parameters for 

VISSIM models applicable to intersections in Kathmandu under heterogeneous traffic 

conditions, using genetic algorithm. The specific objectives are enlisted as below: 

1) To identify the sensitive calibration parameters for VISSIM models. 

2) To formulate an automated calibration procedure for determining optimized 

local calibration parameters tailored to individual intersections. 

3) To determine the range of calibration parameters applicable at intersections in 

Kathmandu. 

 

1.4 Scope of Study 

 

The following scope of the study has been planned: 

1) To extract and analyze the data from traffic surveys for the determination of traffic 

characteristics like volume, directional movement, traffic composition, signal 

timing, and phase. 

2) To collect geometric and vehicle characteristics data of the study areas. 

3) To make a VISSIM simulation model based on the collected data of the 

intersections. 

4) To evaluate the model using default parameter values. 

5) To identify sensitive parameters based on reviewed literature before performing 

sensitivity analysis. 

6) To perform sensitivity analysis for the selection of the parameters to be used in 

calibration. 

7) To perform automated calibration of the simulation models by fine-tuning the 

sensitive parameters based on genetic algorithm. 

8) To validate the simulation model based on actual field data extracted from video 

graphic survey and field observations. 

9) To determine the local calibration parameters of the individual study area 

intersections. 

10) To determine the range of calibration parameters applicable to intersections in 

Kathmandu. 
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1.5 Limitation of Study 

 

The project report was prepared under the following limitations: 

1) This study will be performed on a selected number of intersections in Kathmandu. 

2) This study uses traffic volume and queue length as Measures of Effectiveness 

(MOEs) for calibration and validation so further research is recommended using 

additional MOEs for the study. 

3) This study uses only 12 calibration parameters so further research is recommended 

using additional calibration parameters such as Wiedemann 99 parameters. 

4) Vehicle characteristics such as axle configuration and turning radius were not 

incorporated in the study as it requires extensive amount of data. 

5) The study doesn’t take into consideration the daily variations and seasonal 

variations of traffic. 

 

1.6 Organization of Report 

 

The project report consists of the following chapters: 

CHAPTER 1: Introduction describes shortly about the practices of calibration of 

VISSIM models at our urban intersections with heterogeneous traffic conditions. It also 

pinpoints the problem, objectives, scope, and limitations of the study. 

CHAPTER 2: Literature Review discusses the available literature in the practices of 

sensitivity analysis and calibration process of VISSIM models. 

CHAPTER 3: Methodology discusses the various process involved to complete the 

study. 

CHAPTER 4: Results and Discussion includes the analysis of the data collected, 

sensitivity analysis, automated calibration and validation of the various models using 

volume and queue length. 

CHAPTER 5: Conclusion and Recommendation provides the summary of the results 

of the research and recommends suggestions for any future works on similar topics. 
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CHAPTER 2. LITERATURE REVIEW 

 

 

2.1 Microscopic Simulation Model 

 

Traffic simulation is useful to accurately recreate traffic as observed and measured in 

real-time. Microscopic simulation models detail the individual vehicle movements and 

their interactions within a system and are suitable for the evaluation of complex traffic. 

Such models become valuable tools to assess the performance of a transportation 

system because the model can trace the movements of every vehicle. Computer 

software packages provide the ability to simulate such behaviors and one widely used 

microsimulation software in Nepal is VISSIM. Consequently, this study focuses on 

calibrating VISSIM parameters to local traffic conditions in Kathmandu. The following 

subsections provides more details of the modeling parameters and process to provide 

further insights of the study. 

 

2.2 VISSIM Software 

 

“VISSIM is a microscopic, time step-oriented, and behavior-based simulation tool for 

modeling urban and rural traffic as well as pedestrian flows. It can also model rail and 

road-based public transportation besides private transportation. It is capable of 

simulating traffic operations on urban streets and freeways, with a special emphasis on 

public transportation and multimodal transportation. VISSIM uses the psycho-physical 

perception model developed by Wiedemann (1974) to model driving behavior close to 

that of the field” (PTV AG 2022). It was developed by PTV Planung Transport Verkehr 

AG in Karlsruhe, Germany. Traffic microsimulation models and their environment are 

widely used in the evaluation and development of road networks worldwide but are 

rarely used in our context. “This may have been caused due to the skepticism which 

usually results from unrealistic expectations of the capabilities of simulation models 

and use of poorly calibrated models” (Manjunatha, Vortisch et al. 2013). Due to the 

difficulties in analyzing the complexities of heterogeneous traffic and calibrating the 

microsimulation, the need for a reliable, calibrated model is necessary. Figure 2-1 

shows the graphical user interface of VISSIM. 
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Figure 2-1 VISSIM Graphical User Interface 

 

2.3 Suitability of VISSIM 

 

“Majority of the Asian countries experience mixed heterogeneous traffic conditions, 

opposed to homogeneous traffic situations with good lane discipline behaviors” 

(Jayasooriya and Bandara 2018). The majority of the intersections inside Kathmandu 

are uncontrolled or regulated by traffic police while some of the intersections are 

signalized. These unsignalized intersections function based on relative priorities of the 

minor and major roads as seen fit by the traffic police while some are controlled using 

stop signs on the minor roads. This system can function smoothly if the volume is low 

but a high volume of vehicles can generate highly complex behavior especially due to 

the heterogeneous traffic conditions inside Kathmandu. 

 

The traffic composition and behavior characteristics in Nepal are fundamentally 

different than those in the developed countries where traffic is homogeneous with good 

lane discipline behaviors. The heterogeneous traffic in our context consists of both 

motorized and non-motorized vehicles whose static and dynamic characteristics are 

mixed. The static characteristics include the length, width, etc. of the vehicles while the 

dynamic ones include speed, acceleration/deceleration, etc. of the vehicles. 
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While SIDRA’s operation is easier, various literatures have shown that the accuracy of 

VISSIM is higher than SIDRA. Based on vehicle average delay,  Tianzi, Shaochen et 

al. (2013) showed that VISSIM's output was more accurate than SIDRA. Similarly, 

Montsi (2020) illustrated that the VISSIM model more accurately replicated field 

performance than the SIDRA model based on the evaluation of performance 

improvement variations at two signalized intersections. 

 

Sun, Zhang et al. (2013) showed that CORSIM is comparatively more convenient in 

terms of software usability while VISSIM provides versatile indices for direct output 

and is found to be more appropriate for beginners. VISSIM is better suited for modeling 

large intersections with high throughput traffic when considering the intersection 

average control delay. On the other hand, CORSIM is good at modeling unsaturated 

intersections. However, neither software package perform well in predicting average 

queue length, possibly due to large fluctuations in the field situation. Comparably, 

VISSIM has closer simulation results to the real situation. When evaluating cross-

sectional traffic volume, both simulation outputs closely align with field data, with 

CORSIM showing a slight superiority. This shows that each simulator has its particular 

advantage in replicating real traffic. 

 

Between the several traffic simulation software, VISSIM was chosen in this study 

because the study area represents complex operational components such as 

heterogeneous traffic, abundant motorcycle traffic composition, oversaturated flow, 

side-by-side stacking of vehicles, variable lane widths, and the absence of lane marking 

and lane discipline across the road. CORSIM employs a command-line interface, which 

can be less user-friendly, particularly for individuals not well-versed in command-line 

operations. In contrast, VISSIM offers a user-friendly graphical user interface (GUI), 

expanding its accessibility to a broader audience. Furthermore, while CORSIM's 

graphical visualization features are somewhat limited, VISSIM excels in this regard, 

presenting intricate visual depictions of traffic flow, including lane-specific animations 

and 3D modeling. These advanced visualizations can greatly improve comprehension 

and facilitate effective communication of simulation findings. “VISSIM is also able to 

model overtaking on same lane, which is not possible in software like CORSIM, 

AIMSUN and PARAMICS” (Shrestha 2022). However, the simulation needs proper 

calibration and validation to get a precise result (Mondal and Gupta 2020). 
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2.4 Driving Behavior and Car Following Model in VISSIM 

 

“VISSIM uses the psycho-physical perception model developed by Wiedemann (1974) 

to model driving behavior close to that of the field” (PTV AG 2022). Figure 2-2 shows 

the graphical representation of Wiedemann 1974 car-following model. 

 

Figure 2-2 Wiedemann 1974 Car following model (Source: PTV AG, 2022) 

In the car following model, the primary objective of the following vehicle is to prevent 

an accident with the leading vehicle while trying to keep up with the desired speed. The 

figure above shows the classification of the driving process into five main stages, 

starting with the free flow stage, where the vehicle moves at the desired speed without 

any interference from nearby vehicles. As the trailing vehicle approaches the leading 

vehicle and the distance between them decreases, the driver enters the reaction phase, 

where they observe the leading vehicle and then react accordingly. At this point, the 

driver of the trailing vehicle realizes that their speed is greater than that of the leading 

vehicle and enters the perception threshold. The follower starts to decrease their speed 

upon reaching this threshold, and if the distance between the vehicles is still too small, 

the vehicle enters the braking state and comes to a stop to maintain a safe distance and 

prevent a collision state. 
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2.5 Model Development 

 

The methodology of this study involves the process of site selection, field data 

collection, determination of the Measures of Effectiveness (MOEs), and the 

formulation of the simulation model. VISSIM is a powerful tool that offers multiple 

features to model diverse network systems and has a 3D mode of display that can be 

used to represent the vehicles, traffic, traffic movements, and the geometry of the study 

area using the collected field data. 

 

2.6 Sensitivity Analysis 

 

VISSIM consists of multiple parameters that can be adjusted to calibrate and customize 

the simulation. These parameters can be related to vehicle behavior, traffic control 

devices, driver behavior, lane-changing behavior, network properties, and other 

simulation settings. It also includes a range of pre-defined parameter sets that can be 

used for different types of traffic scenarios. “The users may know the physical meaning 

of every single parameter in VISSIM, but they will not be able to understand how the 

simulator calculates the results according to their inputs. Due to the limitation of time 

and other resources, most calibration procedures cannot afford to calibrate all the 

parameters in the model. Thus, calibration is carried out only for a limited number of 

input parameters. However, there is usually no formal procedure for selecting these 

parameters, other than choosing the ones that appear to the model user as most likely 

to have a significant effect on the result” (Ge and Menendez 2012). 

 

Sensitivity analysis is an important method used to assess the impact of changes due to 

the calibration parameters on the model's performance. Sensitivity analysis is a 

statistical technique that studies the effects of varying one or more variables on a given 

outcome to identify the most impactful parameters, which inform the calibration 

process. Multiple methods are available and have been used to conduct sensitivity 

analysis in VISSIM models which include Pearson correlation coefficient, one-way 

ANOVA, two-way ANOVA, elementary effects method, quasi-optimized trajectory in 

elementary effects, Latin Hypercube Sampling (LHS), multiparameter sensitivity 

analysis, etc. 
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LHS is a statistical sampling technique that ensures that the sampled values are 

representative of the full range of parameter values and that they are evenly distributed 

across the parameter space. So, it reduces the number of samples required to perform 

computation while covering the entire representative space which makes it a powerful 

tool for exploring multi-dimensional parameter spaces. Performing sensitivity analysis 

helps in identifying the most impactful parameters on the model's performance, which 

informs the calibration process and enhances the accuracy and reliability of the model 

saving a considerable amount of computational time and effort. 

 

2.7 Calibration and Validation 
 

Calibration and validation are two crucial steps in the development process, as they 

ensure that the VISSIM model accurately represents real-world traffic conditions. 

Calibration is the process of fine-tuning the different parameters in the model such that 

the error between the actual and simulated measures is less than the acceptable value. 

Calibration typically involves several steps, including field data collection, model 

creation, adjustment of the sensitive parameters, and iteration. The calibration process 

is an iterative process, with the parameters being adjusted and the model being re-run 

until a satisfactory match between the simulated and actual traffic flow data is achieved. 

 

In a survey carried out within the European COST Action TU0903, Punzo (2011) shows 

that “a great portion of VISSIM users adopt manual trial and error as the standard 

method for calibration of the model instead of an automatic optimization by computers, 

a far more efficient and accurate method” as shown in Figure 2-3. The case in our 

context is even worse with no use of computational techniques for the automatic 

optimization of calibration parameters of the VISSIM model. 

 

The various techniques used in the optimization of calibration parameters include 

genetic algorithm, evolutionary algorithm, neural networks, Nelder-Mead (NMA) 

algorithm, simulated annealing, Quasi-Optimized Trajectories based Elementary Effect 

(Quasi-OTEE) method, Particle Swarm Optimization (PSO), Downhill Simplex 

Method, Pareto Archived Dynamically Dimensioned Search (PA-DDS) algorithm, etc. 

“While various soft computing techniques such as genetic algorithm, neural networks 
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and, tabu search are generally applicable when a large number of parameters needs to 

be calibrated, manual methods such as trial and error approach are suitable when the 

number of parameters is small” (Dutta and Ahmed 2019). 

 

 

Figure 2-3 Survey results: Methods applied for calibrating VISSIM (Source: 

Punzo, 2011) 

Calibration alone does not guarantee that the model is accurate. Validation of the 

calibrated model is a critical step to confirm the accuracy and reliability of the model. 

The goal of validation is to ensure that the calibrated VISSIM model accurately 

represents real-world traffic conditions under a wide range of scenarios. Validation 

typically involves several steps, including field data collection, calibration of the 

formulated model, execution of the model, evaluation and, analysis of the outputs with 

the field data, adjustment of the sensitive parameters if necessary, and further iteration. 

 

2.8 Genetic Algorithm 

 

Genetic Algorithm (GA) is a heuristic optimization technique based on the concepts of 

natural selection and natural genetics, a process that operates on chromosomes. It can 

be used to solve complex optimization problems. “The major steps involved are the 

generation of a population of solutions, finding the objective function and fitness 
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function, and the application of genetic operators such as mutation and crossover to 

produce new solutions” (Pattnaik, Mohan et al. 1998). These new solutions are 

evaluated and selected based on their fitness, which is a measure of how well they 

satisfy the optimization criteria. 

 

GA can be used to find the optimal values for the calibration parameters in VISSIM. 

The calibration parameters become the variables that are adjusted through GA to 

improve the accuracy of the model. An objective function is defined to express the 

relationship between the calibration parameters and the performance of the VISSIM 

model which can be a simple function that measures the difference between the 

simulated traffic flow and the observed traffic flow, or it can be a more complex 

function that takes into account multiple performance measures. 

 

Each generation consists of three basic steps: selection, reproduction, and mutation. 

The GA continues to iterate through generations until a stopping criterion is met. This 

can be a specified number of generations, or it can be a convergence criterion based on 

the change in the fitness of the population over time. Once the algorithm has converged, 

the best solution can be selected as the optimal value for the calibration parameters. 

 

One of the key benefits of using GA for VISSIM calibration is that it can provide a 

more efficient and effective way to explore the large parameter space of the VISSIM 

model. Traditional methods such as trial-and-error can be time-consuming and may not 

find the optimal solution. GA, on the other hand, can quickly search through a large 

number of potential solutions to find the best fit between the simulated and observed 

traffic flow. Since this study involves a large parameter space, GA is preferred over the 

manual trial-and-error method. 

 

A large number of researches have been carried out to develop new techniques of 

chromosome representation, selection, crossover (recombination), and mutation. 

Pattnaik, Mohan et al. (1998) used GA in the design of an urban bus transit route 

network using two coding schemes, namely fixed string length coding and variable 

string length coding. Park and Qi (2005), Zhizhou, Jian et al. (2005), Mathew and 

Radhakrishnan (2010), Manjunatha, Vortisch et al. (2013), Siddharth and Ramadurai 

(2013), Tettamanti, Csikós et al. (2015) are some of the researchers who have 
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incorporated GA for the optimization of the calibration parameters in their VISSIM 

models. Rrecaj and MBombol (2015) gave a summary of the differences and 

similarities of the different practices for VISSIM calibration based on the optimization 

methodology, the Measure of Performance (MOP) of the fitness function, analysis of 

parameter consistency, and network types. The study showed that GA was used as an 

optimization methodology in 6 of the 14 summarized studies. “Genetic algorithm is 

mostly used and enriched as a heuristic optimization methodology for calibration that 

underlies on the principle of best individual survival form the population through many 

iterations” (Rrecaj and MBombol 2015). 

 

The feeding of GA populations can be done using the COM interface of VISSIM which 

can also send output to the GA as feedback. The VISSIM COM interface allows access 

to network elements and parameters used in the calibration. 

 

2.9 Sensitivity Analysis and VISSIM Parameter Calibration Practices under 

Heterogeneous Traffic Conditions 

 

Jayasooriya and Bandara (2018) identified and performed sensitivity analysis on 8 

calibration parameters referring to studies on similar countries which resulted in 5 

sensitive parameters based on the results of Pearson correlation coefficient and 10% 

significant level. The model was calibrated at the Katubedda junction and validated at 

23 intersections based on queue length by GEH statistics and Mean Absolute 

Percentage Error. Lownes and Machemehl (2006) used the One-At-a-Time (OAT) 

method to determine the parameters influencing capacity during congestions. 

 

Mathew and Radhakrishnan (2010) simulated intersections in VISSIM by changing 

each parameter value by a fixed amount (10%) while keeping the default value for other 

parameters, and evaluated the sensitivity of the output for each change. This resulted in 

the identification of 13 sensitive parameters and calibration was performed using the 

integration of a genetic algorithm in VISSIM through an automation program. The 

study was performed in 3 similar signalized intersections for non-lane-based mixed 

traffic conditions in India which used the absolute error in the stopped delay to perform 

calibration and validation. Cunto and Saccomanno (2008) applied sensitivity analysis 
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based on variance to identify the sensitive parameters during the calibration and 

validation of VISSIM in a safety performance study. 

 

Siddharth and Ramadurai (2013) compared the Analysis of Variance (ANOVA) and 

elementary effects method and found that both methods are effective in finding the 

sensitive parameters. During the first level sensitivity analysis, the same 5 calibration 

parameters were found to be sensitive among the 11 parameters chosen for testing from 

both methods. Second-level sensitivity analysis was performed on the remaining 6 

parameters which resulted in further 4 sensitive calibration parameters using the same 

methods in the first-level sensitivity analysis. The study was performed at a part of an 

IT corridor and calibration was done using the Visual C++ COM interface of VISSIM 

and genetic algorithm optimization of sensitive parameters. Comparison of validated 

flow with the actual field flow to perform calibration and validation using mean 

absolute percentage error (MAPE). 

 

Dutta and Ahmed (2019) performed sensitivity analysis using the same method as 

Mathew and Radhakrishnan and one-way ANOVA at three unsignalized three-legged 

intersections which resulted in the identification of 8 sensitive calibration parameters 

out of 10 considered parameters for analysis. Calibration of the model was done by 

minimizing the mean absolute percentage error (MAPE) between the simulated and 

input traffic flows using the trial and error approach. The model was then validated 

using input traffic flows and occupancy time as the measure of effectiveness. 

Manjunatha, Vortisch et al. (2013) performed multi-parameter sensitivity analysis and 

two-way ANOVA for a check using link capacity as the measure of sensitivity which 

resulted in the identification of 5 sensitive parameters among the 13 tested parameters. 

The study was performed at two signalized intersections in Mumbai and calibrated with 

a genetic algorithm for solving the optimization formulation using field delay as the 

measure of effectiveness. 

 

In (Park and Qi 2005), ANOVA was used to find the sensitive parameters at an actuated 

signalized intersection from a set of eight parameters that were to be calibrated. A Latin 

hypercube experimental design was used to generate 200 sample sets for the eight 

parameters. The VISSIM model was simulated for the 200 sample sets and one-way 

ANOVA was performed using average travel time as the measure of effectiveness. 
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Similar to other literature, a genetic algorithm was performed in this study for the 

optimization of the calibration parameters. The Elementary Effects (EE) method was 

improved upon by performing a Quasi-optimized trajectory in elementary effects 

resulting in higher performance and lower computational time for sensitivity analysis. 

By using this approach in a case study involving a network in the City of Zurich the 

computation time for sensitivity analysis was greatly reduced (Ge and Menendez 2012). 

 

Rrecaj and MBombol (2015) gave a summary of the differences and similarities of the 

different practices for VISSIM calibration based on the optimization methodology, the 

Measure of Performance (MOP) of the fitness function, analysis of parameter 

consistency, and network types. “Genetic algorithm is mostly used and enriched as a 

heuristic optimization methodology for calibration that underlies on the principle of 

best individual survival form the population through many iterations” (Rrecaj and 

MBombol 2015). The summary showed that different studies considered different 

measures of performances like volume, travel time, queue length, OD matrix, delay 

measurement, maximum flow rate, speed-flow, capacity, etc. tested on different 

statistical tests like F-test, non-parametric Moses, Wilkoxon test, T-test, ANOVA, Chi-

square test, Root Mean Square Prediction Error (RMSPE), etc. 

 

In the case of the Nepalese context, Acharya and Marsani (2020) altered 7 calibration 

parameters at the New Baneshwor intersection simulation model and performed 

calibration and validation of the model for traffic volume and travel time using GEH 

statistics and regression analysis. Sharma (2016) used VISSIM microsimulation and 

recommended the application of U-turn below the Bagmati and Dhobi Khola bridges 

for the performance improvement of New Baneshwor intersection. Sensitivity analysis 

were not performed and optimization was done based on a trial and error approach on 

these studies. Shrestha (2022) performed sensitivity analysis and optimization on 9 

selected calibration parameters by varying the values of the parameters adopted from 

different literature similar to a trial and error approach. The simulation run was 

conducted by changing one parameter value while keeping the other parameters 

unchanged from the VISSIM default values. Calibration was done by reducing the 

cumulative percentage difference between the simulated and actual traffic volume and 

maximum queue length further validated by GEH statistics and Root Mean Squared 
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Normalized Error (RMNSE). Table 2-1 and Table 2-2 summarizes the methodology 

and findings of literatures discussed in this section.
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Table 2-1 Summary of the Literature Review 

S.N. Authors of the 

literature 

Study Area Sensitivity Analysis and 

Statistical Tests 

Number of 

Calibration 

Parameters Tested 

Number of Sensitive 

Parameters 

Optimization 

Methodology 

Measures of 

Effectiveness (MOEs) 

1 Jayasooriya and 

Bandara, 2018 

Calibration at 

Katubedda junction. 

Validation in 23 

intersections 

Pearson correlation coefficient 

and 10% significant level 

8 5 Best parameter 

set from trial and 

error 

Queue length by GEH 

statistics and MAPE 

(Mean Absolute 

Percentage Error) 

2 Acharya and 

Marsani, 2020 

New Baneshwor 

signalized intersection 

- 7 - Best parameter 

set from trial and 

error 

Traffic volume and 

travel time using GEH 

statistics and 

regression analysis 

3 Shrestha, 2022 New Baneshwor 

signalized intersection 

Changing one parameter value 

while keeping the default 

value for other parameters 

9 9 Best parameter 

set from trial and 

error 

Traffic volume and 

maximum queue 

length by GEH 

statistics and RMNSE 

4 Lownes and 

Machemehl, 2006 

Freeway ANOVA 6 parameter 

combinations 

2 parameter 

combinations 

Simulated 

Annealing 

Capacity 

5 Mathew and 

Radhakrishnan, 

2010 

3 similar signalized 

intersections for non-

lane-based mixed traffic 

conditions in India 

Changing each parameter 

value by a fixed amount 

(10%) while keeping the 

default value for other 

parameters 

19 13 Genetic 

Algorithm 

Stopped delay 

6 Siddharth and 

Ramadurai, 2013 

IT Corridor Analysis of Variance 

(ANOVA) and elementary 

effects method 

First Level 

Sensitivity Analysis – 

11, Second Level - 6 

First Level 

Sensitivity Analysis – 

5, Second Level – 4 

Genetic 

Algorithm 

Traffic flow using 

MAPE (Mean 

Absolute Percentage 

Error) 
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Table 2-2 Summary of the Literature Review (Contd.) 

S.N. Authors of the 

literature 

Study Area Sensitivity Analysis and 

Statistical Tests 

Number of 

Calibration 

Parameters Tested 

Number of 

Sensitive 

Parameters 

Optimization 

Methodology 

Measures of 

Effectiveness (MOEs) 

7 Dutta and 

Ahmed, 2019 

Three unsignalized 

three-legged 

intersections 

Changing each parameter value 

by a fixed amount (10%) while 

keeping the default value for other 

parameters and one-way ANOVA 

10 8 Trial and error 

approach 

Traffic flow and 

occupancy time using 

MAPE (Mean Absolute 

Percentage Error) 

8 Manjunatha, 

Vortisch et al., 

2013 

Two signalized 

intersections in Mumbai 

Multi-parameter sensitivity 

analysis and two-way ANOVA 

13 5 Genetic Algorithm Link capacity and field 

delay 

9 Park and Qi, 2005 Actuated signalized 

intersection 

One-way ANOVA and Latin 

Hypercube Sampling (LHS) 

8 8 Genetic Algorithm Average travel time 

10 Ge and 

Menendez, 2012 

A network in the City 

of Zurich 

Quasi-optimized trajectory in 

elementary effects 

14 5 Only a process of 

sensitivity analysis 

Only a process of 

sensitivity analysis 

11 Zhizhou, Jian et 

al., 2005 

N-S elevated Shanghai 

Expressway 

- 5 - Genetic Algorithm Speeds using RMSE 

(Root Mean Square 

Error) 

12 Tettamanti, 

Csikós et al., 

2015 

A test link in Budapest 

at Oktogon square 

- - - Genetic Algorithm Traffic flow and 

floating car speed data 

13 Pattnaik, Mohan 

et al., 1998 

Urban bus transit route 

network design 

Genetic Algorithm (Description, Procedure, and Parameters) 

14 Rrecaj and 

MBombol, 2015 

Summary of the differences and similarities of the different practices for VISSIM calibration based on the optimization methodology, the measure of 

performance (MOP) of the fitness function, analysis of parameter consistency, and network types. 
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2.10 Findings from Reviewed Pieces of Literature 

 

There have been decades of research dedicated towards microsimulation studies as 

advancements in computational techniques and automation have flourished. The 

dynamics of traffic flow especially under heterogeneous traffic conditions is highly 

complex and its analysis through theoretical models are time consuming and lack 

accuracy. Microsimulation models such as VISSIM can accurately represent the real 

world traffic flow dynamics through its flexibility of coding and variability in driving 

behavior parameters. “As far as the Nepalese context is concerned, numerous research 

works have been performed in VISSIM” (Shrestha and Marsani 2017, Acharya and 

Marsani 2020, Shrestha 2022) but they have also implemented the traditional 

calibration method of trial and error. 

 

Most of the studies involved in calibrating VISSIM have performed sensitivity analysis 

and automated calibration of VISSIM driving behavior parameters using Analysis of 

Variance (ANOVA) statistical tests and Genetic Algorithm (GA) optimization 

methodology respectively under different local settings. These popular methods have 

been used to model the real world conditions with high accuracy. To the knowledge of 

the author, studies based on automated calibration of VISSIM parameters for modeling 

heterogeneous traffic conditions have not been performed in the context of Nepal. 

Therefore, this study aims to contribute the existing literature by developing an 

automated calibration procedure and determining the range of values of sensitive 

calibration parameters applicable at intersections in Kathmandu. The sensitivity 

analysis involves Latin Hypercube Sampling (LHS) and ANOVA tests, while the 

automated calibration procedure for VISSIM parameters uses Genetic Algorithm (GA). 

Both of the procedure employs the use of Python programming language through COM 

interface of VISSIM to reduce time and effort. The developed procedure will be useful 

to future researchers to accurately perform manual as well as automated calibration of 

VISSIM models quickly.
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CHAPTER 3. METHODOLOGY 

 

 

3.1 Research Design 

 

The research methodology is guided as per the framework shown in Figure 3-1. The 

study area are selected considering the locations where such studies have not been 

performed and traffic is regulated manually by the traffic police officers during peak 

hour. 

 

Figure 3-1 Framework of Research 
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3.2 Study Area 

 

Several pieces of literature have been reviewed regarding the calibration of VISSIM 

models at intersections. Multiple studies have been done on major intersections of 

Kathmandu like the New Baneshwor intersection, Balkhu intersection, etc. The study 

area are selected considering the locations where such studies have not been performed 

and traffic is regulated manually by the traffic police officers during peak hour. 

Putalisadak intersection, Padmodaya intersection, and Singhadurbar intersection are 

found to be suitable for the study. To the knowledge of the author, studies using 

VISSIM for modeling heterogeneous traffic conditions have not been performed in 

these intersections. More recently, a study is being carried out by the Road Safety and 

Traffic Unit, Department of Roads for the implementation of Intelligent Traffic Signal 

System (ITS) in Kathmandu Valley and these selected intersections are being 

considered for the signalized improvement under the ITS study. 

 

3.2.1 Putalisadak Intersection 

 

Putalisadak intersection is a major cross intersection lying in the central business 

district of Kathmandu. Padmodaya followed by Singhadurbar lies to the south, Hattisar 

to the north, Dillibazar to the east and Bagbazar lies to the west of the cross intersection. 

The approaches at Hattisar and Padmodaya have a width of 12m with central and lane 

markings. The east Dillibazar approach has a width of 7m and has central marking. The 

approach is a one way road with restriction of movement towards Dillibazar from other 

approaches. This study also considers the east approach as a one way road neglecting 

the exceptions of traffic moving towards Dillibazar in the data. The west Bagbazar 

approach also has a width of 7m and has central marking. Pre-timed traffic signal 

devices have been installed at the intersection but traffic control is done manually by 

the traffic police officers especially during peak hours. Figure 3-2 and Figure 3-3 shows 

the general layout and geometry of the Putalisadak intersection. 
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Figure 3-2 Putalisadak Intersection (Source: Google Earth) 

 

Figure 3-3 Geometrical Layout of Putalisadak Intersection (Source: Department 

of Roads) 
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3.2.2 Padmodaya Intersection 

 

Padmodaya intersection is a T intersection but it is better represented as a major 

staggered intersection as there are two T junctions in its vicinity. This study considers 

the southern T junction which connects Putalisadak to the north, Singhadurbar to the 

south and Anamnagar to the east of the intersection. The Putalisadak and Singhadurbar 

approaches have a width of 12m with central and lane markings. The Anamnagar 

approach has a width of 9m with central marking. Similar to Putalisadak intersection, 

pre-timed traffic signal devices have been installed at the intersection but traffic control 

is done manually by the traffic police officers especially during peak hours. Figure 3-4 

and Figure 3-5 shows the general layout and geometry of the Padmodaya intersection. 

 

 

Figure 3-4 Padmodaya Intersection (Source: Google Earth) 
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Figure 3-5 Geometrical Layout of Padmodaya Intersection (Source: Department 

of Roads) 

3.2.3 Singhadurbar Intersection 

 

Singhadurbar intersection houses important buildings of Nepal Government and is one 

of the major intersections of Kathmandu. It has a cross configuration connecting 

Padmodaya followed by Putalisadak to the north, Sahidgate to the west and Maitighar 

to the south. There is a small central island at this intersection which makes the junction 

appear like a mini-roundabout but the right turning traffic from Putalisadak are not 

enforced to comply with the rotary movement through the central island. The Maitighar 

and Padmodaya approach have a width of 12m with central and lane markings. The 

west Sahidgate approach also has a width of 12m with central and lane markings but 

the lane housing the traffic towards Sahidgate only has a width of 3 m. This study 

excludes the traffic going towards the Singhadurbar access way as it is comparatively 

low to the other approaches. Similar to the above intersections, pre-timed traffic signal 

devices have been installed at the intersection but traffic control is done manually by 

the traffic police officers especially during peak hours. Figure 3-6 and Figure 3-7 shows 

the general layout and geometry of the Singhadurbar intersection. 
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Figure 3-6 Singhadurbar Intersection (Source: Google Earth) 

 

Figure 3-7 Geometrical Layout of Singhadurbar Intersection (Source: 

Department of Roads) 
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3.3 Data Collection and Model Development 

 

3.3.1 Video Graphic Recordings 

 

A microscopic simulation model gives intricate details about the individual vehicle 

movements and their interactions within the system and such models require an 

abundant amount of input data. Congestion is relevant in almost all of the intersections 

within Kathmandu which can often extend beyond one hour peak in heavily congested 

areas. To analyze such behavior detailed data is required. “A study was carried out by 

the Department of Roads to collect 72 hours traffic volume count of major 20 

intersections inside Kathmandu Valley for signal time design at peak hour volume 

based on the collected data” (Road Safety and Traffic Unit November, 2021). This 

study uses the collected data of the 72 hour video graphic recordings of the study area 

intersections for the model formulation and calibration purposes. A video graphic 

survey is also carried out for a total duration of two sub intervals (30 minutes) within 

the peak hour at each intersection for the purpose of model validation. 

 

3.3.2 Data Extraction 

 

VISSIM requires input of following traffic information for model development. 

 Vehicle Types 

 Classified Vehicle Counts 

 Vehicle Compositions 

 Directional Movement of Vehicles 

 Signal Timing 

 

Different vehicle types are considered in the context of Nepal. “Different types of 

vehicles take up differing amounts of road space and have different speeds and impose 

differing loads on the road structure. It is, therefore, necessary to adopt a standard traffic 

unit to which other types of vehicles may be related. For the geometric design of roads, 

this standard is the 'Passenger Car Unit (PCU)' which is that of a normal car (passenger 

car), light van, or pick-up. Other types of vehicles are taken into account by multiplying 

by the following equivalency factors” (Department of Roads 2013). 
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Table 3-1 Vehicle Types, Equivalency Factors (Source: Department of Roads, 

2013) 

S.N. Vehicle Type Equivalency Factor 

1 Bicycle, Motorcycle 0.5 

2 Car, Auto Rickshaw, SUV, Light Van, and 

Pick Up 

1.0 

3 Light (Mini) Truck, Tractor, Rickshaw 1.5 

4 Truck, Bus, Minibus, Tractor with trailer 3.0 

5 Non-motorized carts 6.0 

 

The vehicle types (multi axle truck, tractor, power trailer, non-motorized cart, rickshaw, 

and auto rickshaw) have not been considered for the vehicle count as they have 

negligible volume compared to the other vehicle types. 

 

Vietnamese standards recommends the PCU for motorcycles and bicycles as 0.3 and 

0.2, respectively for Vietnam, having similar mixed traffic conditions like in 

Kathmandu. There is no PCU for tempos and microbuses in the Nepal Road Standard. 

The JICA Survey Team adopted 1.0 as the PCU of tempos, and 1.5 as the PCU of 

microbuses based on the size of each vehicle (JICA 2012). The PCU values in the 

Kathmandu Sustainable Urban Transport Project (KSUTP) and Kathmandu Valley 

Intelligent Traffic Signal Project (KVITSP) reports were adopted as 0.75 for tempos, 

1.5 for microbuses, and 0.25 for motorcycles (ADB 2016, Road Safety and Traffic Unit 

2023). The PCU values applied by the JICA Survey Team is shown in Table 3-2. 

 

Table 3-2 Passenger Car Unit (Source: JICA, 2012) 

Vehicle 

Type 

Bicycle Motor

cycle 

Car Taxi Light 

Truck 

Tempo Micro

bus 

Mini

bus 

Large 

Bus 

Heavy 

Truck 

Ratio 0.2 0.3 1.0 1.0 1.5 1.0 1.5 3.0 4.0 4.0 

 

Based on the combination of the study reports and Nepal Road Standard, the following 

PCU values are adopted in this study as shown in Table 3-3. 
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Table 3-3 Adopted Passenger Car Unit 

S.N. Vehicle Type Equivalency Factor 

(PCU) 

1 Heavy Truck 3.0 

2 Light Truck 1.5 

3 Big Bus 3.0 

4 Mini Bus 3.0 

5 Micro Bus 1.5 

6 Car 1.0 

7 Motorcycle 0.3 

8 Utility Vehicles 1.0 

9 4 Wheel Drive 1.0 

10 3 Wheeler (Tempo) 1.0 

11 Bicycle 0.2 

 
 
3.3.3 Peak Hour Sample Selection and Data Collection 

 

The input to the microsimulation model should be fed in such a way that the model 

incorporates all of the traffic congestion present in the study area. The congestion in 

almost all of the intersections within Kathmandu can often extend beyond one hour 

peak in heavily congested areas. “Traffic analyses typically focus on the peak-hour 

traffic volume because it represents the most critical period for operations and has the 

highest capacity requirements” (Shrestha 2022). The study carried out by the 

Department of Roads is a large scale study which collects 24 hours traffic volume count 

for 3 days. The traffic volume was counted at 15 minutes intervals for the different 

types of vehicles mentioned in Table 3-3. The data is analyzed to identify the peak hour 

time and traffic volume for this study. So secondary volume data is used for the model 

formulation of this study. 

 

After the identification of the peak hour period, field data is collected for queue length 

and signal timing at the study areas during the peak hour. Video graphic survey is also 

carried out with the help of video cameras at the studied intersections for two sub 
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intervals (30 minutes) within the peak hour. Traffic data is extracted by manual 

counting using the video recordings. The survey was conducted at normal weekdays 

with fair weather conditions on the 21st, 22nd and 23rd of August, 2023. There were no 

specific disruptions like rally, road crashes or interruptions during the field data 

collection. There were also no side friction elements such as on-street parking and bus 

stops present during the field data collection. The volume counts observed in the 

primary data collection are similar to the secondary data. Therefore, the primary field 

source data of signal timing and geometric data are used for the model formulation 

whereas queue length and traffic flow are used for the validation of the model of the 

study areas. 

 

3.3.4 Development of VISSIM Model 

 

The latest version of PTV VISSIM 2023 (SP 06) “Academic License (PTV AG 2023)” 

has been used for the development of the model which was provided for six months for 

this research study. During this research, all simulation work was carried out on a HP 

Elite Book 830 G8 Notebook PC with an 11th Gen Intel (R) Core i7-1165G7 @ 2.80 

GHz processor and 16.00 GB of RAM. The data obtained act as inputs for VISSIM to 

represent the field conditions. The model development involves the following process. 

 

3.3.4.1 Geometric Data Representation 

 

The first step in the model development involves representing the intersection 

accurately which is done by using the primary source field observation data and satellite 

imagery data from Google Earth. The intersection layout includes the number of 

approaches, width of each approach, length of each approach, turning space and so on. 

A satellite image is saved using Google Earth Pro and is imported as a background 

image in VISSIM. The scale is adjusted in the image and the intersection geometry is 

constructed using links and connectors. The road widths are given as per the field data 

and the background image is used to ensure that the intersection layout is precisely 

drawn. 
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3.3.4.2 Vehicle Representation 

 

Standard vehicle types such as car, bus, truck, motorcycle, bicycles, etc. are available 

in the software but these models may not perform well under heterogeneous traffic 

conditions. Nonstandard vehicle types such as tempo and microbus also exist in our 

intersections. VISSIM has the ability to define vehicle types and change its static and 

dynamic characteristics. Therefore the next step in the model development involves 

defining the characteristics of the vehicles in terms of length, width, and speed ranges. 

Other characteristics include axle configuration and turning radius but require extensive 

amount of data which is not performed in this study. The adopted size of the different 

vehicle types used in this study are obtained from websites of vehicle manufacturers 

(Veerkamp 2015, Indiamart 2023) and different literatures (Mathew and Radhakrishnan 

2010, Manjunatha, Vortisch et al. 2013, Dutta and Ahmed 2019, Shrestha 2022) 

reviewed during the study which are shown in Table 3-4. 

 
Table 3-4 Adopted Average Vehicular Dimensions 

S.N. Vehicle Type Average Dimensions of Vehicles (m) 

Length (m) Width (m) 

1 Heavy Truck 8.6 2.5 

2 Light Truck 7.5 2.35 

3 Big Bus 11 2.5 

4 Mini Bus 6.1 2.2 

5 Micro Bus 5 1.9 

6 Car 3.44 1.45 

7 Motorcycle 1.85 0.74 

8 Utility Vehicles 4.4 1.5 

9 4 Wheel Drive 4.4 1.5 

10 3 Wheeler (Tempo) 3.4 1.4 

11 Bicycle 1.9 0.45 
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3.3.4.3 Traffic Representation 

 

The next step involves achieving the actual heterogeneous traffic movement and 

behavior such as lane changes, overtaking, seepage of smaller vehicles like motorcycles 

and bicycles to reach the front of a queue, etc. in VISSIM. “The available parameters 

in the simulation model may not be sufficient to replicate certain special movements by 

the vehicles in mixed traffic, but depending on the flexibility of the network modeling, 

one can try to bring the behavior in the simulation as close as possible to reality” 

(Manjunatha, Vortisch et al. 2013). To emulate the unique behavior in mixed traffic 

such as aggressive driving, lack of lane discipline, maneuverability of smaller vehicles, 

etc. the following features can be incorporated in VISSIM. 

i. Vehicle behavior is set to “left hand traffic” regulations. 

ii. General behavior is set to “free lane selection” in lane change driving behavior 

to allow the vehicles to overtake on each lane. 

iii. Desired position at free flow is set to “Any” in lateral driving behavior to place 

vehicle anywhere within its lane while it is in free traffic flow. 

iv. Diamond queuing takes into account a realistic shape of the vehicles with 

vehicles positioned offset, such as bikes. Vehicles are internally represented not 

as a rectangle, but as a rhombus. 

v. Overtaking is allowed from both left and right side in lateral driving behavior. 

According to traffic rules, right side overtaking of vehicles must be done but in 

actual field conditions of heterogeneous traffic movement, vehicles 

approaching a queue uses both left and right side to overtake depending upon 

the available front gaps. 

vi. The simulation resolution is set to 10 time steps per simulation second similar 

to (Manjunatha, Vortisch et al. 2013). It specifies how often vehicles and 

pedestrian move in a simulation second and has an impact on the behavior of 

vehicles, pedestrians, and the way they interact. “Values between 5 and 10 lead 

to a more realistic demonstration. This value range is suitable for the production 

of the final simulation results” (PTV AG 2022). “To adequately model the 

complex movements in mixed traffic, the calculations have to be at smaller time 

steps” (Manjunatha, Vortisch et al. 2013). Hence, the simulation resolution is 

adopted as 10 time steps per simulation second to model the mixed traffic 

complex movements even though it requires more computational effort. 
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To further emulate the mixed traffic behavior, multiple driving parameters are selected 

to be further studied. 

 

3.3.4.4 Vehicle Inputs, Compositions and Vehicle Routing 

 

The data from the study carried out by the Department of Roads also differentiated 

directional movements at the studied intersections. The volume data is input in terms 

of vehicle numbers per hour in each approach link of the VISSIM model. The vehicle 

type classifications and volume are analyzed to get the vehicle compositions which is 

also input in the VISSIM model. Vehicle proportions of different types of vehicles as 

per each route is also calculated from the available data and is assigned in VISSIM 

using static routing decisions. The routes are also fixed in the model from the 

combination of links and connectors to multiple destinations and are assigned 

individual vehicle inputs. Peak hour traffic volume data is fed into the simulation model 

in 15 minutes intervals relative to the simulation period of 1 hour. A warm up period of 

5 minutes is provided at the beginning of each simulation run so that the initial empty 

network is filled with vehicles to allow the simulation model to reach equilibrium. 

 

3.3.4.5 Signal Control 

 

Signal control systems are similar and comparatively easier in homogeneous traffic. 

Pre-timed traffic signal devices have been installed in all of the studied intersections 

but traffic control is being done manually by the traffic police officers especially during 

peak hours. So, primary source of data collection for signal timing during the peak hour 

is performed at the studied intersections using a stopwatch. The collected signal phase 

and timing data is divided into 15 minute interval data and classified as red time, amber 

time and green time. The through and turning movements are also noted during the field 

observations. Amber time was difficult to pinpoint during the field observations so it 

was averaged as three seconds preceded by green time. The phase sequence and timings 

are then input into the signal program and signal heads are inserted at the stop line of 

each approach. 
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3.3.4.6 Desired Speed Distribution 

 

The speed of vehicles is obtained by marking a 50 m strip. The time taken by the vehicle 

to cross the 50 m marked segment is noted in the field. Speed is calculated as the ratio 

of distance travelled (50 m) by the vehicle to the time taken to travel that distance. 20 

samples in each approach leg was performed for random vehicle categories. Since the 

amount of data samples was small, it was also verified with the speed distribution in 

similar literatures (Mathew and Radhakrishnan 2010, Dutta and Ahmed 2019, Shrestha 

2022). The collected data is found to be in the average speed range provided by 

(Shrestha 2022). The desired speed range used in this study is as shown in Table 3-5. 

 

Table 3-5 Adopted Minimum and Maximum Speed of Different Vehicle 

Categories 

S.N. Vehicle 

Category 

Vehicle Types Average Speed Range (km/h) 

Minimum Maximum 

1 Two - 

Wheeler 

Motorcycle 15 60 

2 Three - 

Wheeler 

Tempo 15 35 

3 Four - 

Wheeler 

Car, Micro Bus, Utility 

Vehicles and 4 Wheel Drive 

30 50 

4 Buses and 

Truck 

Heavy Truck, Light Truck, 

Big Bus and Mini Bus 

30 45 

5 Bicycle Bicycle 5 15 

 
 
3.4 Driving Behavior Parameters 

 

VISSIM uses the psycho-physical car following model based on the continued work of 

Wiedemann and offers different parameter settings to simulate actual field behavior. 

VISSIM implements two variants of this model, namely Wiedemann-74 and 

Wiedemann-99 models. The differences in these driving behavior parameters can lead 

to significant changes on the output of the simulation, so these parameters should be 



35 
 

changed with care. VISSIM models were not originally designed to model 

heterogeneous and non-lane based traffic as seen in developing countries like Nepal 

and India. So, different values of different parameters can describe the traffic behavior 

in different countries with different traffic conditions. Therefore calibration of these 

parameters is a must to represent the actual field driving conditions. “Wiedemann 74 

car following model is used for arterial links while the Wiedemann 99 car following 

model is used for freeway links” (VDOT 2020). Hence, this study utilizes the 

Wiedemann-74 car following model which consists of three car following parameters. 

Based on studied literatures and VISSIM documentation, the parameters that can affect 

the model are identified below. 

i. Wiedemann 74 car following model parameters 

a. Average standstill distance (ax): It is the average desired distance 

between two cars. The tolerance lies within a range of –1.0 m to +1.0 m 

which is normally distributed at around 0.0 m, with a standard deviation 

of 0.3 m. The default value of this parameter in VISSIM is 2.0 m. 

b. Additive part of safety distance (bxAdd): It is the value used for the 

computation of the desired safety distance. The default value of this 

parameter in VISSIM is 2.0. 

c. Multiplicative part of safety distance (bxMult): It is also another value 

used for the computation of the desired safety distance. Greater value of 

this parameter leads to greater distribution (standard deviation) of safety 

distance. The default value of this parameter in VISSIM is 3.0. 

The desired distance d is calculated as given in Equations (3.1) and (3.2) 

below: 

 𝒅 = 𝒂𝒙 + 𝒃𝒙 (3.1) 

Where, 

ax = standstill distance 

 𝒃𝒙 = (𝒃𝒙𝑨𝒅𝒅 + 𝒃𝒙𝑴𝒖𝒍𝒕 ∗ 𝒛) ∗  √𝒗 (3.2) 

v = vehicle speed (m/s) and z is a value of range [0, 1], which is normally 

distributed around 0.5 with a standard deviation of 0.15. 

Both the additive and multiplicative parts of the desired safety distance 

determine the saturation flow rate for VISSIM. 
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ii. Following behavior parameters 

a. Minimum look ahead distance: It is the minimum distance that a vehicle 

can see forward in order to react to other vehicles either in front or to 

the side of it (within the same link). It is important when modelling the 

lateral behavior of vehicles. If several vehicles can overtake within a 

lane, this value needs to be greater than 0.00 m. For e.g., in urban areas, 

depending on the speed, the look ahead distance might be approximately 

20-30 m, with correspondingly larger values for outside of the city. The 

default value of this parameter in VISSIM is 0.00 m (PTV AG 2022). 

b. Maximum look ahead distance: It is the maximum distance that a vehicle 

can see forward in order to react to other vehicles either in front or to 

the side of it (within the same link). The default value of this parameter 

in VISSIM is 250.00 m. 

c. Number of interaction objects: It is the number of preceding vehicles 

and/or number of network objects such as signal heads, reduced speed 

areas, public transport stops, etc. which the vehicle perceives along its 

route or path in order to react to them. The default value of this 

parameter in VISSIM is 4. 

d. Number of interaction vehicles: It is the number of preceding vehicles 

that the vehicle perceives along its route or path in order to react to them. 

The number of interaction vehicles is included in the number of 

interaction objects. The default value of this parameter in VISSIM is 99. 

e. Minimum look back distance: It is the minimum distance that a vehicle 

can see backwards in order to react to other vehicles behind (within the 

same link). The minimum look-back distance is important when 

modeling lateral vehicle behavior. If several vehicles can overtake 

within a lane, this value needs to be greater than 0.00 m. For e.g., in 

urban areas it could be 20-30 m, with correspondingly larger values in 

other places. The default value of this parameter in VISSIM is 0.00 m 

(PTV AG 2022). 

f.  Maximum look back distance: It is the maximum distance that a vehicle 

can see backwards in order to react to other vehicles behind (within the 

same link). The default value of this parameter in VISSIM is 150.00 m. 
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g. Standstill distance for static obstacles: It is the standstill distance (ax) 

upstream of static obstacles like signal heads, stop signs, PT stops, 

priority rules, conflict areas. If this option is selected, the vehicles will 

use the given default value of 0.50 m. 

iii. Lane change behavior parameters 

a. Waiting time before diffusion: It is the maximum amount of time a 

vehicle can wait at the emergency stop distance for a necessary change 

of lanes. When this time is reached the vehicle is removed from the 

network. The default value of this parameter in VISSIM is 60.00 s. 

b. Minimum clearance (front/rear): It is the minimum distance between 

two vehicles that must be available after a lane change, so that the 

change can take place. A lane change during normal traffic flow might 

require a greater minimum distance between vehicles in order to 

maintain the speed-dependent safety distance. The default value of this 

parameter in VISSIM is 0.50 m. 

c. Safety distance reduction factor: During the lane change, VISSIM 

reduces the safety distance to the value that results from the 

multiplication of original safety distance and safety distance reduction 

factor. The default value of this parameter in VISSIM is 0.6 which 

reduces the safety distance by 40%. Once a lane change is completed, 

the original safety distance is taken into account again. 

d. Maximum deceleration for cooperative braking: It specifies to what 

extent the trailing vehicle is braking cooperatively, so as to allow a 

preceding vehicle to change lanes into its own lane. The higher the 

value, the stronger the braking and greater the probability of changing 

lanes. The default value of this parameter in VISSIM is -3.00 m/s2. 

iv. Lateral behavior parameters: “Apart from car following parameters, lateral 

distances of various vehicle types contribute to the VISSIM output, as a little 

variation in these can result in a varied output in simulation. The seepage of 

two-wheelers can be simulated in VISSIM by giving appropriate lateral 

distances to be maintained at rest and 50 km/h respectively and setting the 

parameters collision time gain, minimum longitudinal speed for lateral 

movement and time between direction changes” (Manjunatha, Vortisch et al. 

2013). 
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a. Collision time gain: It is the minimum value of the collision time gain 

for the next vehicle or signal head, which must be reached so that a 

change of the lateral position on the lane is worthwhile and will be 

performed. The collision time is calculated based on the desired speed 

of the vehicle. The default value of this parameter in VISSIM is 2.00 s. 

b. Minimum longitudinal speed: It is the speed which still allows for lateral 

movements. The default value of this parameter in VISSIM is 1 km/h 

which ensures that vehicles can also move laterally if they have almost 

come to a halt already. 

c. Time between direction changes: It defines the minimum simulation 

time which must pass between the start of a lateral movement in one 

direction and the start of a lateral movement in the reverse direction. The 

higher this value, the smaller are the lateral movements of vehicles. 

These lateral movements only take place if overtaking on the same lane 

is permitted. Lateral movement for a lane change is not affected by this 

parameter. The default value of this parameter in VISSIM is 0.00 s. 

d. Minimum lateral distance: It is the minimum distance between vehicles 

when overtaking within the lane and keeping the distance to vehicles in 

the adjacent lanes. It is further divided into: 

 Distance standing at 0 km/h: The default value of this parameter 

in VISSIM is 0.20 m. 

 Distance driving at 50 km/h: The default value of this parameter 

in VISSIM is 1.00 m. 

The minimum distance is linearly interpolated for other speeds 

than at 0 km/h and 50 km/h. 

 

3.5 Initial Evaluation 

 

Once the simulation model is set up, the model is run based on the default parameter 

settings and the output are compared to the input data. If a close match is found between 

them, the model is deemed appropriate for further analysis but this may not be a case 

in general. “A minimum 10 runs, using different random seeds for each run are required 

to adequately account for variations in network operational performance” (VDOT 
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2020). In this study, 5 simulation runs each with different random seed value is 

performed similar to the studied literatures (Park and Qi 2005, Park, Won et al. 2006, 

Siddharth and Ramadurai 2013). 

 

3.6 Sensitivity Analysis 

 

Sensitivity analysis is a statistical technique that studies the effects of varying various 

parameter assumptions to the outcome of the process. VISSIM provides multiple 

parameters some of which are explained above that can be adjusted to calibrate and 

influence the simulation. “In VISSIM microscopic simulation software, there are 

around 40 parameters which can be changed for modeling the driver behavior patterns” 

(Jayasooriya and Bandara 2018). Performing analysis on all the parameters offered by 

VISSIM will consume a considerable amount of time and effort. “A proper sensitivity 

analysis, including the initial screening of the parameters, can be very valuable for the 

subsequent calibration process. Moreover, it may actually reduce the total efforts 

needed during the model calibration. A good sensitivity analysis could provide both 

quantitative and qualitative information regarding the effects of the different model 

parameters (and their variations) on the simulation results” (Ge and Menendez 2012). 

Hence, sensitivity analysis is performed to identify the relevant and sensitive calibration 

parameters for the study. 

 

The sensitivity analysis involves the process of incrementing the value of the identified 

calibration parameters in small units and analyzing the effect on the simulation output. 

The process involves a large number of simulation runs taking up a considerable 

amount of time. Multiple simulation runs are performed with different random seeds to 

reduce the effect of stochasticity. The steps involved are shown below. 

 

3.6.1 Identification of Relevant Calibration Parameters 

 

Based on studied literatures on similar studies in Kathmandu and other Asian countries 

with heterogeneous traffic conditions and personal engineering judgment, 12 driving 

behavior parameters are considered important and selected for sensitivity analysis. 

“Each parameter needs a lower and upper bound the value can take so that the 
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optimization model needs to search in lesser space which makes the procedure 

computationally efficient. Such a range is necessary to ensure realistic performance of 

the simulation model” (Mathew and Radhakrishnan 2010). The acceptable range for 

these parameters are also fixed based on the data from studied literatures (Park and Qi 

2005, Park, Won et al. 2006, Mathew and Radhakrishnan 2010, Manjunatha, Vortisch 

et al. 2013, Siddharth and Ramadurai 2013, Jayasooriya and Bandara 2018, Dutta and 

Ahmed 2019, Acharya and Marsani 2020, Shrestha 2022) including the VISSIM user 

manual (PTV AG 2022). The studied parameters, their default values and the adopted 

ranges in the study are shown in Table 3-6. 

 

Table 3-6 Studied Parameter List and their Range of Values 

S.N. Driving 

Behavior 

Parameters Unit Default 

value 

Range of 

values based 

on studied 

literatures 

1 Wiedemann-

74 Car 

Following 

Parameters 

Average Standstill Distance meter 2 [0.3 – 2] 

2 Additive Part of Safety Distance - 2 [0.1 – 2] 

3 Multiplicative Part of Safety 

Distance 

- 3 [0 – 3] 

4 
Following 

Behavior 

Parameters 

Minimum Look Ahead Distance meter 0 [10 – 30] 

5 Maximum Look Ahead Distance meter 250 [200 – 350] 

6 Minimum Look Back Distance meter 0 [5 – 30] 

7 Maximum Look Back Distance meter 150 [80 – 180] 

8 
Lane 

Change 

Behavior 

Parameters 

Waiting Time Before Diffusion second 60 [30 – 75] 

9 Minimum Clearance 

(Front/Rear) 

meter 0.5 [0.1 – 1] 

10 Safety Distance Reduction 

Factor 

- 0.6 [0.2 - 0.7] 

11 
Lateral 

Behavior 

Parameters 

Minimum Lateral Distance 

(Standing) at 0 km/h 

meter 0.2 [0.1 - 0.5] 

12 Minimum Lateral Distance 

(Driving) at 50 km/h 

meter 1 [0.6 – 1] 
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3.6.2 Latin Hypercube Sampling (LHS) 

 

Latin Hypercube Sampling (LHS) is a powerful and widely-used statistical technique 

for sampling from multi-dimensional parameter spaces in a systematic and efficient 

manner. Unlike traditional random sampling methods, LHS ensures a more 

representative and evenly spaced coverage of the input variables, making it particularly 

valuable when dealing with complex systems and computationally expensive 

simulations or experiments (McKay, Beckman et al. 2000). The fundamental idea 

behind Latin Hypercube Sampling is to create a stratified and space filling sampling 

design that ensures even and representative coverage of the input parameter space while 

reducing sampling variance. Unlike traditional random sampling, where each parameter 

is randomly chosen without any constraints, LHS divides each parameter into equally 

spaced intervals and then selects one sample per interval for each parameter. The 

resulting samples form a "Latin hypercube," which refers to the Latin square-like 

structure of the data points. 

 

The primary advantages of Latin Hypercube Sampling are as follows. 

 Improved space-filling properties and better coverage of the entire parameter 

space. 

 Reduced correlation between samples i.e. even distribution of the samples 

across each parameter's range. 

 Efficient exploration of high-dimensional spaces. 

 Better representation of uncertainty allowing a more robust analysis. 

 

The steps involved in Latin Hypercube Sampling are as follows. 

 Define the space, ranges and constraints for each input parameter. 

 Divide each parameter range into equally spaced intervals. 

 Randomly permute the samples within each interval. 

 Combine the samples from all parameters to create the final Latin hypercube 

sample set which ensures that no two samples share the same row or column. 

 

After the identification of relevant calibration parameters, the number of combinations 

for testing among these parameters will be extremely large. The amount of time to 
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consider all these possibilities will be extremely large. For e.g., if 5 values are provided 

to each studied calibration parameters, it would generate 512 = 244140625 possible 

combinations. The amount of time to conduct simulation runs for each possible 

combination along with multiple runs with different random seeds to reduce stochastic 

variability would have been immense. Based on similar literatures, 200 scenarios are 

deemed to be adequate to cover the entire parameter surface. Hence, in this study 12 

calibration parameters each with three to five different values inside the range defined 

in Table 3-6 are used to generate 200 scenarios. 5 random seeded simulation runs of the 

200 scenarios are performed in VISSIM, for a total of 1000 runs. The 5 random seeded 

runs are then averaged to represent the results of each of the 200 parameter sets. 

 

Using LHS, an orthogonal array that randomly samples the entire design space broken 

into regions of equal probability is created. 200 sets of 12 parameters is created using 

LHS and each set of parameter values is simulated for 5 random seeds. The VISSIM 

model for the intersections under study are simulated for all these random sets and the 

error between the actual and simulated traffic volume is collected. VISSIM has a COM 

interface which can be accessed to call and simulate VISSIM externally through a code. 

To reduce time and effort, a programming code is written in Python programming 

language through COM interface of VISSIM to create parameter sets from LHS, run 

the simulation, and collect the output in a separate Excel file. The randomly created 

samples from LHS are then made discrete, grouped and indexed. The programming 

code used in the first level sensitivity analysis is provided in APPENDIX E. 

 

3.6.3 First Level ANOVA Testing 

 

Analysis of variance is being widely employed for obtaining the optimal set of 

parameters (Park and Qi 2005, Lownes and Machemehl 2006). Siddharth and 

Ramadurai (2013) have shown the effectiveness of using ANOVA in finding the 

parameters that are sensitive in a significant way. “ANOVA tests the null hypothesis 

that the means for several groups in the population are equal by comparing the sample 

variance estimated from the group means with that estimated within the groups” 

(Arnold and Milton 2003). SPSS, a statistical package is used for this analysis. It is used 

to draw conclusion about population means when the means are affected by different 
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factors and shows whether the particular parameter affects the output of the simulation. 

This procedure can reduce the number of the several independent parameters to those 

factors which significantly affect the response variable which saves a significant 

amount of time and effort in simulation. 

 

The discrete values of the parameter from the LHS samples and the change in error with 

respect to the default parameter set values are input into SPSS to perform one way 

ANOVA testing. The change in error is calculated by comparing the traffic volume 

obtained using default parameter values with those obtained by changing the parameter 

values given in Table 3-6. Trials are carried out on the different approach legs of the 

intersections under study. When the significance value of the F-test (p-value) is smaller 

than the user defined confidence level, the null hypothesis is rejected, thereby indicating 

that the group means are statistically different. Following similar literatures (Siddharth 

and Ramadurai 2013, Dutta and Ahmed 2019), the parameters with small p-values less 

than 0.2 are identified as sensitive parameters in this study. 

 

3.6.4 Second Level ANOVA Testing 

 

After performing first level sensitivity analysis, it may be determined that some of the 

parameters are not sensitive, prompting the performance of a second level sensitivity 

analysis. The reason for doing so is the possibility of highly significant parameters 

dominating the effect of marginally significant parameters. Similar to the first level 

testing, the same code with some minor adjustments is run by removing the sensitive 

parameters identified from the first level of testing. 200 sets of those parameters which 

are not identified as sensitive during the first level testing is created using LHS and 

each set of parameter values is simulated for 5 random seeds again for a total of 1000 

runs. The VISSIM model for the intersections under study are simulated for all these 

random sets and the error between the actual and simulated traffic volume is collected. 

The output is collected in a separate Excel file implemented by the code. The randomly 

created samples from LHS are then made discrete, grouped and indexed. The discrete 

values of the parameter from the LHS samples and the change in error from default 

parameter set values are input into SPSS to perform one way ANOVA testing again. 

Trials are carried out on the different approach legs of the intersections under study. 
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Similarly, the parameters with small p-values less than 0.2 are identified as sensitive 

parameters. The programming code used in the second level sensitivity analysis is 

provided in APPENDIX F. 

 

3.7 Calibration 

 

Calibration is the process of fine-tuning the different parameters in the model such that 

the error between the actual and simulated measures is less than the acceptable value. 

Once the sensitive parameters have been identified from the sensitivity analysis, they 

need to be adjusted to accurately represent the field conditions in the model, while 

keeping the other parameter values constant. The calibration of the model is done using 

the peak hour traffic data from the first and second day of the three-day traffic count 

data at each intersection. The queue length is also being simultaneously checked during 

the calibration process. There are majorly two methods of calibration which are listed 

below. 

i. Trial and Error method (Manual calibration): A conventional optimization 

technique that is time-consuming when the traffic to be represented is complex. 

ii. Automated calibration: A large amount of time and effort is required to find 

the best parameter set from the large number of combination of the parameter 

values. “Therefore it is better that the process of calibration be automated to 

search for the best parameter set” (Siddharth and Ramadurai 2013). The various 

techniques used in automated calibration include genetic algorithm, 

evolutionary algorithm, neural networks, Nelder-Mead (NMA) algorithm, 

simulated annealing, Quasi-Optimized Trajectories based Elementary Effect 

(Quasi-OTEE) method, Particle Swarm Optimization (PSO), Downhill Simplex 

Method, Pareto Archived Dynamically Dimensioned Search (PA-DDS) 

algorithm, etc. 

 

The literature review identifies genetic algorithm (GA) as a popular optimization 

methodology used by multiple researches. “Many of the previous works have used 

optimization with GA as a tool for calibration due to its robustness and ability to handle 

a large number of parameters” (Mathew and Radhakrishnan 2010). So, this study also 

utilizes genetic algorithm which is a heuristic optimization technique to perform 
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automated calibration of the VISSIM model. VISSIM has a COM interface which can 

be accessed to call and simulate VISSIM externally through a code. A programming 

code is written in Python programming language with the help of a Genetic Algorithm 

package through COM interface of VISSIM. The code creates parameter sets from 

LHS, loads the network, runs the simulation, performs automated calibration, checks 

the fitness function, and compiles the output in a separate Excel file. The steps involved 

in the automated calibration process for this study are shown in Figure 3-8 below. 

 

 

Figure 3-8 Program Modules for VISSIM Calibration 

 

3.7.1 Measure of Effectiveness (MOE) 

 

Measure of effectiveness is a single or multiple factors which provides a basis for 

evaluating the performance of a transportation system. The choice of an effective 

measure influences the calibration process. “Traffic volume has been widely 

implemented by various researchers as a basic MOE for calibration and validation in 

signalized intersections (Siddharth and Ramadurai 2013, Acharya and Marsani 2020, 

Shrestha 2022), roundabouts (Arroju, Gaddam et al. 2015), and unsignalized 

intersections (Caliendo 2014, Dutta and Ahmed 2019)”. In this study, traffic volume 

and queue length have been selected as the key measure of effectiveness for calibration 

and validation. The queue length for the secondary data source was not available during 

the study. The volume counts observed in the primary data collection are similar to the 

secondary data and the traffic conditions during those periods are somewhat similar in 

signal timing, vehicle routing, geometric characteristics and seasonal conditions. 
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Hence, the queue lengths obtained in the field are used in the automated calibration 

process. 

 

3.7.2 Statistical Checks for Calibration 

 

The simulation models are initially run with default parameters. The generated output 

is used to find the initial error between the simulation output and observed 

measurements using MAPE. The mean absolute percentage error (MAPE) is a measure 

of prediction accuracy of a forecasting method in statistics. “Mean Absolute Percentage 

Error (MAPE) has been widely used for testing the goodness of fit by various 

researchers” (Siddharth and Ramadurai 2013, Arroju, Gaddam et al. 2015, Jayasooriya 

and Bandara 2018, Dutta and Ahmed 2019). It usually expresses the accuracy as a ratio 

defined by the formula as given in Equation (3.3) below. 

 
𝑀𝐴𝑃𝐸 =  

1

𝑁
∗  ෍ 𝐸i

ே

௜ୀଵ

 
(3.3) 

Where, 

Ei:    Absolute percentage error at interval ‘i’ as given in Equation 

(3.4). 

 
      𝐸௜ =  

|𝐴𝑐𝑡𝑢𝑎𝑙 𝑄𝑖 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑄𝑖|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑄𝑖
∗ 100% 

(3.4) 

Actual Qi:   Actual stream flow at interval ‘i’ 

Simulated Qi:   Simulated stream flow at interval ‘i’ 

 

Different literatures have recommended and accepted the threshold value for MAPE as 

a statistical check. Dowling, Skabardonis et al. (2004), Mathew and Radhakrishnan 

(2010), Manjunatha, Vortisch et al. (2013), Dutta and Ahmed (2019) adjusted the 

sensitive parameters to bring down the errors to an acceptable limit of 15%. 

 

The best universal measure to compare traffic flow is the Geoffrey E. Havers (GEH) 

formula which has been used by numerous researchers (Jayasooriya and Bandara 2018, 

Acharya and Marsani 2020, Shrestha 2022). GEH statistic is a modified chi‐square 

statistic that accounts for both absolute and relative errors defined by the formula as 

given in Equation (3.5) below. 
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𝐺𝐸𝐻 =  ඨ

2 (𝑀 − 𝐶)ଶ

(𝑀 + 𝐶)
 

(3.5) 

Where, 

M:   Model traffic volume in vehicles per hour 

C:   Input traffic volume in vehicles per hour 

Different literatures have recommended calibration and validation threshold values. 

The values recommended by the Oregon Department of Transportation (ODOT) are 

shown below in Table 3-7. 

 

Table 3-7 GEH Statistic Guidelines (Source: (ODOT 2011)) 

GEH < 5.0 Acceptable Fit 

5.0 < = GEH < = 10.0 Caution: possible model error or bad data 

GEH > 10.0 Unacceptable 

 

Similarly, the threshold values recommended by the Florida Department of 

Transportation (FDOT) are shown below in Table 3-8. In this study, MAPE threshold 

value of 15% and GEH threshold value of 5.0 are used. 

 

Table 3-8 Classical Model Calibration Targets (Source: (FDOT 2014)) 

Calibration Item Calibration Target/Goal 

Traffic Volume Simulated and measured link volumes for more 

than 85% of links to have a GEH statistic value of 

five (5) or lower. 

Sum of link volumes to have a GEH statistic 

value of five (5) or lower. 

Queue Length Difference between simulated and observed 

queue lengths to be within 20%. 

 
 
3.7.3 Genetic Algorithm with Latin Hypercube Sampling (LHS) 

 

“Genetic Algorithms (GAs) are powerful and versatile optimization techniques inspired 

by the process of natural selection and evolution in biology. Developed by John Holland 
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in the 1970s, GAs are a part of the broader field of evolutionary computation and have 

proven to be highly effective for solving complex optimization and search problems in 

various domains. The fundamental concept behind Genetic Algorithms lies in 

simulating the process of natural selection to evolve a population of potential solutions 

over successive generations. The algorithm mimics the principles of natural selection, 

including reproduction, mutation, and survival of the fittest, to find an optimal or near-

optimal solution to a given problem” (Holland 1992). Genetic Algorithms have become 

a valuable and effective tool for finding near-optimal solutions for complex 

optimization problems. “However GA do not necessarily guarantee global optimality 

in the mathematical sense” (Ma and Abdulhai 2002). The methodology for the use of 

genetic algorithms is guided as per the framework shown in Figure 3-9 below. 

 

 

Figure 3-9 Methodological Framework of Genetic Algorithm 
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“The GA solution to a problem generally proceeds by completing the six basic steps of 

chromosome representation, population initialization, objective value evaluation, 

selection, genetic operators and reinsertion” (Pradhananga, Hanaoka et al. 2011). The 

sensitive parameters are optimized based on an optimization problem which minimizes 

the MAPE as shown in Equations (3.6) and (3.7) below between the observed and 

simulated flow/queue length for each intersection as given in Equation (3.4) above. The 

optimization problem in context to this study can be written as: 

 

Minimize 
𝑀𝐴𝑃𝐸 =  

1

𝑁
∗ ෍ 𝐸i

ே

௜ୀଵ

 
(3.6) 

Subjected to,       βj
min ≤ βj ≤ βj

max,      ∀ j (3.7) 

Where, 

Ei:    Absolute percentage error at interval ‘i’ as given in Equation 

(3.4). 

Actual Qi:   Actual stream flow at interval ‘i’ 

Simulated Qi:   Simulated stream flow at interval ‘i’ 

βj
min:    Lower range of the jth parameter 

βj:    Value of the jth parameter 

βj
max:    Upper range of the jth parameter 

 

After the identification of the sensitive parameters and their acceptable ranges, a GA is 

applied to find the optimal parameter values. GA is a heuristic optimization technique 

based on the concepts of natural selection and natural evolution, a process that operates 

on chromosomes. It is a must that VISSIM and GA are integrated to run simultaneously 

at every iteration. A programming code is written in Python programming language 

with the help of a Genetic Algorithm package through COM interface of VISSIM. The 

GA begins by randomly initializing a population of initial chromosomes in which each 

chromosome represents a set of combinatorial parameters (genes). The chromosomes 

are passed through the COM interface to the VISSIM model and a simulation run is 

then automatically triggered based on that configuration. After the end of the 

simulation, VISSIM returns the generated results (feedback) back to GA, which in turn 

evaluates the fitness function value. The total number of simulation runs is determined 

by the population size and the total number of new chromosomes produced through all 
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generations. On the basis of the fitness function value of each chromosome in the 

population, the GA conducts genetic operations which involves the process of selection, 

crossover, mutation, and replacement to produce a new set of chromosomes. The GA 

continues for multiple iterations until a stopping criteria is met which can be 

convergence, saturation of the fitness function value, or by reaching a specified 

maximum number of generations to find the least MAPE value between the observed 

and simulated measures. The programming code used in the automated calibration 

process is provided in APPENDIX G. The program modules for the code is shown in 

Figure 3-8 above. The steps involved in the genetic algorithm process are as follows: 

i. Chromosome representation: Genetic algorithm require an appropriate 

representation of the potential solutions to the problem. A chromosome can be 

defined as a set of values of combinatorial parameters for the simulation model. 

A chromosome is subdivided into genes, which is a binary representation of a 

single parameter value with a specified lower and upper bound. In this study, 

the genes are represented by the identified sensitive parameters with their value 

ranges as shown in Table 3-6. “The length of the bit string is of paramount 

importance. It determines how precise a point the GA could reach in the search 

space. The longer the binary bit string is, the better, but this comes at the expense 

of high computation cost” (Ma and Abdulhai 2002). For better results and 

precision, the gene type is chosen as float string. The representation of gene, 

chromosome and population is shown in Figure 3-10 below. 

 

Figure 3-10 Gene, Chromosome and Population Representation 



51 
 

ii. Random initialization of the population: During the simulation run of the 

represented chromosomes, a population of individuals is created, with each 

individual representing a potential solution. GA operates on these several 

potential solutions. The initial population data is randomly generated using 

Latin Hypercube Sampling (LHS), which gives an unbiased output and utilizes 

a wide range of data. Based on various literatures, the population size is chosen 

as 20 among which half of the population are allowed to mate. 

iii. Fitness function evaluation: The fitness function value is the measure of 

goodness of an individual solution in the population to solving the optimization 

problem. Higher fitness value candidates have a higher probability of being 

selected for further examination. The simulation outputs are compared to the 

real target values to find the deviations from the target. Smaller deviations inch 

towards better solutions. Traffic volume is used in the evaluation of the fitness 

function as the inverse of MAPE values while simultaneously checking the 

MAPE value of queue length. The fitness function takes the form: 

 

Maximize: Fitness function value (FV) = |
𝟏

𝑴𝑨𝑷𝑬
| or, 

Minimize: 𝑴𝑨𝑷𝑬 =  
𝟏

𝑵
∗  ∑ 𝑬i𝑵

𝒊ୀ𝟏  

 

iv. Generation of the next population (Genetic Operation): Based on various 

literatures, the maximum number of generations is chosen as 20. The process 

involves 3 operations using genetic operators. The genetic algorithm operation 

is shown in Figure 3-11 below. 

 Selection: It is the process to determine the number of times an 

individual is selected from the current population for reproduction. The 

copies of better individuals will be reproduced from the fittest 

individuals to form the parent population for the next generation. It 

selects individuals with higher fitness values as they are more likely to 

contribute to the next generation. The different types of available 

selection scheme in the GA package include steady-state, roulette wheel, 

stochastic universal, rank, random, and tournament. Based on various 

literatures, the roulette wheel parent selection method is used. 
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 Reproduction (Crossover): Crossover is a basic genetic operator for 

producing new chromosomes. It is a recombination process that creates 

new individuals (offspring) in successive generations by combining 

material from a pair of selected individuals of the previous generation 

using crossover probability. The idea is to combine the characteristics 

of the parents to potentially produce better solutions. The different types 

of available crossover methods in the GA package include single point, 

two points, uniform, and scattered. Based on various literatures, the two-

point crossover option is used and the probability of crossover is chosen 

as 0.8. 

 Mutation: Mutation is another genetic operator to modify the elements 

of the chromosomes. It involves the addition of new information in a 

random way to the offspring which ultimately helps to avoid getting 

trapped at local optima using mutation probability. Mutation helps 

prevent premature convergence to suboptimal solutions and enables the 

exploration of some of the areas that have not been searched. The 

different types of available mutation methods in the GA package include 

random, swap, inversion, scramble, and adaptive. Based on various 

literatures, the random mutation option is used and the probability of 

mutation is chosen as 0.05. 

 

Figure 3-11 Genetic Algorithm Operation (Source: Max Maxfield) 
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v. Replacement (Reinsertion): This process involves the replacement of the 

parents of the previous generation by their offspring bringing a new set of the 

more fit population for the next generation. The replacement is based on the 

fitness function values of the individuals. 

vi. Termination (Stopping criteria): The algorithm terminates when a stopping 

criterion is met, which could be a maximum number of generations, a target 

fitness value, saturation of the target fitness value, or a specific amount of 

computational time. The stopping criteria employed in this study is the 

maximum number of generations which is set as 20. After the termination of the 

algorithm, the queue length is checked based on the MAPE threshold value. If 

the error in queue length is within the MAPE threshold value, the program is 

terminated. Otherwise, the program is again run using queue length as a fitness 

function. 

 

“The control parameters for GA such as crossover rate, mutation rate, population size, 

and number of generations are critical to solution quality. Especially sufficient but not 

excessive chromosomes should be initialized to fill the population” (Ma and Abdulhai 

2002). The different run time configuration settings used during the implementation of 

GA in the code are adopted based on values used in relevant literature (Pattnaik, Mohan 

et al. 1998, Ma and Abdulhai 2002, Park and Qi 2005, Park, Won et al. 2006, Mathew 

and Radhakrishnan 2010, Manjunatha, Vortisch et al. 2013, Siddharth and Ramadurai 

2013) and is shown in Table 3-9. 
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Table 3-9 Adopted GA Run-Time Configuration Settings 

S.N. GA Run-Time Settings Value 

1 Number of generations 20 

2 Population Size 20 

3 Number of mating parents 10 

4 Probability of Crossover 0.8 

5 Probability of Mutation 0.05 

6 Gene Type Representation Float 

7 Crossover Option Two Points 

8 Mutation Option Random 

9 Parent Selection Roulette Wheel 

 
 
3.8 Validation 

 

Validation is a process to confirm the reliability of the calibrated model which is done 

by providing a different input data set to the calibrated model and checking its accuracy. 

After finding the optimal value of the sensitive parameters from calibration, the 

simulation models are then validated using a new set of field data including input traffic 

volume, traffic composition, etc. The validation of the model is done using the peak 

hour traffic data from the third day data of the three-day traffic count secondary data at 

each intersection. Using the calibrated parameter values, the simulation models are run 

for 5 random seeds. Input traffic flows are compared with the simulation output using 

MAPE values to check the reliability of the calibrated model. 

 

Along with traffic volume, queue length is selected as an additional measure of 

effectiveness in validation. The extracted traffic data from the video graphic survey is 

used to validate the traffic flow for two sub intervals (30 minutes) within the peak hour 

and the maximum queue length within the peak hour. Based on studied literatures, many 

researchers have used queue length as an effective MOE for calibration and validation 

process (Park, Won et al. 2006, Jayasooriya and Bandara 2018, Shrestha 2022). 

“Further, the main justification for using queue length is the practicality and accuracy 

of obtaining data as opposed to obtaining vehicle or passenger delays in the practical 
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context” (Jayasooriya and Bandara 2018). So, the models are also validated by 

comparing field values of maximum queue length with those obtained from VISSIM 

using MAPE values. This is done to improve the reliability of the simulation models to 

the actual field conditions. Field values of queue length are measured at all approaches 

of the intersections for comparison with the simulated output. The queue length field 

data is recorded for the whole peak hour identified at all approaches of the individual 

intersections. The end of the queue line is marked and numbered serially at the start of 

green interval for each signal phase during the peak hour. After the completion of the 

peak hour, the queue length is then measured between the intersection stop line and the 

marked end line using a 50m measuring tape and noted down. 

The longest queue length at each approach leg in the field is designated as the maximum 

queue length. The simulated queue length is obtained from VISSIM by using queue 

counters placed at the stop line of the model for each approach. The simulated 

maximum queue lengths of vehicles are obtained from the simulation models during 

the peak hour for each approach. “A variety of techniques have been used by 

researchers to validate the calibrated models such as visual validation, statistical 

validation using two-sample tests, absolute percentage error, and mean absolute 

percentage error” (Dutta and Ahmed 2019). But similar to the whole research, the field 

maximum queue lengths are compared with the simulation output using MAPE for 

validation. “The simulation model is considered to be validated if the MAPE values are 

within acceptable limits of 15%” (Dowling, Skabardonis et al. 2004, Dutta and Ahmed 

2019).  
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CHAPTER 4. RESULTS AND DISCUSSION 

 

 

4.1 VISSIM Model Formation 

 

The first step towards the research analysis involves the formation of the VISSIM 

model of the study area intersections as explained in the Section 3.3.4. The VISSIM 

network was created using the primary source of field data and secondary data. The 

approach legs were drawn using links with appropriate lane dimensions and they were 

connected with each other using connectors for the different directional movements. 

The approach links were made long enough to the point that they reached the next 

intersection so that the vehicle flow and queue length generated would be more 

accurate. Figure 4-1 and Figure 4-2 shows the formulated VISSIM model of 

Singhadurbar intersection in 2D and 3D visualization respectively. Similarly, Figure 

4-3, Figure 4-4, Figure 4-5 and Figure 4-6 shows the 2D and 3D visualization of 

Padmodaya and Putalisadak intersections respectively. 

 

 

Figure 4-1 Screenshot of the Simulation Run of Singhadurbar Intersection in 

VISSIM (2D Visualization) 
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Figure 4-2 Screenshot of the Simulation Run of Singhadurbar Intersection in 

VISSIM (3D Visualization) 

 

Figure 4-3 Screenshot of the Simulation Run of Padmodaya Intersection in 

VISSIM (2D Visualization) 
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Figure 4-4 Screenshot of the Simulation Run of Padmodaya Intersection in 

VISSIM (3D Visualization) 

 

Figure 4-5 Screenshot of the Simulation Run of Putalisadak Intersection in 

VISSIM (2D Visualization) 
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Figure 4-6 Screenshot of the Simulation Run of Putalisadak Intersection in 

VISSIM (3D Visualization) 

 
4.2 Data Analysis and Extraction 

 

The data analysis based on various literature review are summarized below. 

1. Vehicle Types - The data analysis and the adopted vehicle types are provided in 

the Section 3.3.2 and Table 3-3 above respectively. 

2. Vehicle Dimensions - The data analysis and the adopted average vehicles 

dimensions are provided in the Section 3.3.4.2 and Table 3-4 above 

respectively. 

3. Desired Speed Distributions - The data analysis and the desired minimum and 

maximum speed of different vehicle categories are provided in the Section 

3.3.4.6 and Table 3-5 above respectively. 

4. Passenger Car Unit (PCU) - The data analysis and the adopted PCU values are 

provided in the Section 3.3.2 and Table 3-3 above respectively. 

5. Traffic Representation - The adopted driver behavior parameter options for 

representing the traffic network are provided in the Section 3.3.4.3. 

6. Driver Behavior Parameters – The literature regarding the various driving 

behavior parameters studied are provided in the Section 3.4. 



60 
 

4.2.1 Peak Hour 

 

The literature regarding the peak hour analysis are provided in the Section 3.3.3. The 

24 hours traffic volume count for 3 days of the study area intersections were analyzed 

at 15 minute intervals for the adopted vehicle categories. Using the adopted PCU factor, 

the peak hour time and the peak hour volume in vehicles/hr and PCU/hr were obtained. 

A sample of the total volume counts for 15 minute intervals for all 3 days including 

PCU values and the adopted peak hour time have been shown in Table 4-1, Table 4-2, 

and Table 4-3 for Singhadurbar, Putalisadak and, Padmodaya intersection respectively. 

 

The peak hour in Putalisadak and Padmodaya intersections were found to be different 

at different days but it was the same in the Singhadurbar intersection. So, based on 

visual examination and personal engineering judgement to get the best representative 

data set, the peak hour for Singhadurbar, Putalisadak, and Padmodaya intersections 

were adopted as 10:00 AM – 11:00 AM, 10:15 AM – 11:15 AM, and 10:00 AM – 11:00 

AM respectively. 

 

Table 4-1 Peak Hour Analysis of Singhadurbar Intersection 

Start 

Time 

(AM) 

End 

Time 

(AM) 

1st Day Peak 

Hour 

Volume 

(PCU/hr) 

2nd Day Peak 

Hour 

Volume 

(PCU/hr) 

3rd Day Peak 

Hour 

Volume 

(PCU/hr) 

Adopted 

Peak Hour 

Time (AM) 
Vehi

cles 

PCU Vehi

cles 

PCU Vehi

cles 

PCU 

09:00 09:15 1216 683.3  1286 725.3  1147 650.3   

09:15 09:30 1350 750.2  1512 838.8  1533 864.5   

09:30 09:45 1499 796.4  1646 884.3  1725 927.3   

09:45 10:00 1632 882.5  1840 993.1  1786 976.8   

10:00 10:15 1951 1102.9 

4293.2 

2163 1231.1 

4813 

2144 1221 

4709.4 
10:00 - 

11:00 

10:15 10:30 1905 1074.5 2134 1192.2 2024 1152.9 

10:30 10:45 1931 1094.3 2205 1241.7 2069 1185.2 

10:45 11:00 1881 1021.5 2128 1148 2104 1150.3 

11:00 11:15 1875 1031.7  2195 1200.9  2119 1174.9   

11:15 11:30 1799 972.2  2095 1113.3  2075 1134.6   

11:30 11:45 1756 941.8  2018 1074.1  1820 990.9   

11:45 12:00 1888 976  2185 1117.4  2081 1089.9   
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Table 4-2 Peak Hour Analysis of Putalisadak Intersection 

Start 

Time 

(AM) 

End 

Time 

(AM) 

1st Day Peak 

Hour 

Volume 

(PCU/hr) 

2nd Day Peak 

Hour 

Volume 

(PCU/hr) 

3rd Day Peak 

Hour 

Volume 

(PCU/hr) 

Adopted 

Peak Hour 

Time (AM) 

Vehi

cles 

PCU Vehi

cles 

PCU Vehi

cles 

PCU 

09:00 09:15 1231 627.4  1533 802  1552 798.8   

09:15 09:30 1397 669.3  1633 804  1741 842.7   

09:30 09:45 1528 742.2  1813 901.5  1862 904   

09:45 10:00 1683 785.7  1972 948.1  2104 1016.8 

4188.2 
10:15 – 

11:15 

10:00 10:15 1859 877.4  2089 1010.7  2297 1122.4 

10:15 10:30 1863 859.7 

3538 

2111 999.7  2208 1023.7 

10:30 10:45 1847 866 2131 1026 

4110.2 

2148 1025.3 

10:45 11:00 1876 874.2 2061 979.9 1769 821.3  

11:00 11:15 1943 938.1 2151 1068.4 1666 774.5  

11:15 11:30 1833 853.7  2172 1035.9 1681 773.9  

11:30 11:45 1795 809.3  2110 980.1  1712 804.1   

11:45 12:00 1768 794.3  2068 954  1750 800.4   

 

 

Table 4-3 Peak Hour Analysis of Padmodaya Intersection 

Start 

Time 

(AM) 

End 

Time 

(AM) 

1st Day Peak 

Hour 

Volume 

(PCU/hr) 

2nd Day Peak 

Hour 

Volume 

(PCU/hr) 

3rd Day Peak 

Hour 

Volume 

(PCU/hr) 

Adopted Peak 

Hour Time 

(AM) 

Vehi

cles 

PCU Vehi

cles 

PCU Vehi

cles 

PCU 

09:00 09:15 1134 525.9  1373 646.9  1093 523.6   

09:15 09:30 1300 624.5  1505 724.6  1233 570.5   

09:30 09:45 1499 707.2  1665 797.8  1380 678.1   

09:45 10:00 1639 757.7  1766 835.8 

3410.2 

1655 835.8  

10:00 – 

11:00 

10:00 10:15 1806 832 

3178 

1908 923.1 1772 839.6  

10:15 10:30 1790 807.4 1796 834.1 2027 946.1 

3524.2 
10:30 10:45 1750 777.3 1771 817.2 2017 894.4 

10:45 11:00 1698 761.3 1758 814.9  1866 826.8 

11:00 11:15 1666 760.7  1734 811.5  1866 856.9 

11:15 11:30 1662 750.1  1753 833  1774 803   

11:30 11:45 1612 727.1  1677 775.9  1766 806.7   

11:45 12:00 1599 708  1649 735.1  1804 816.8   
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4.2.2 Traffic Volume, Vehicle Inputs, and Compositions 

 

The literature regarding the traffic volume analysis and vehicle composition analysis 

are provided in the Section 3.3.4.4. Sample data of the 24 hours traffic volume count 

for 3 days of the study area intersections analyzed at 15 minute intervals for the adopted 

vehicle categories are provided in APPENDIX A. The summary of the 24 hour traffic 

count analysis for 3 days of the approach legs in the chosen study area intersections are 

provided in APPENDIX B. The data showed that the average daily traffic and average 

PCU for Singhadurbar, Putalisadak, and Padmodaya intersections are 91417.67 

(49952.93 PCU), 93478 (45140.03 PCU), and 80736.67 vehicles (38290.067 PCU) 

respectively. The data also showed that the maximum traffic occurred in the Sahidgate 

– Maitighar approach leg in Singhadurbar intersection, Hattisar – Singhadurbar 

approach leg in Putalisadak intersection, and Putalisadak – Singhadurbar approach leg 

in Padmodaya intersection. This may have occurred due to the location of major 

business and commercial centers around Putalisadak, Maitighar and Sahidgate area. 

 

The vehicle input to VISSIM was provided in terms of vehicle numbers per hour of the 

peak hour data in each approach link of the model. The peak hour traffic volume data 

for day 1 and day 2 were averaged and given as input to the VISSIM model. The two 

day average peak hour traffic volume input in 15 minute intervals for calibration have 

been shown in Table 4-4, Table 4-5, and Table 4-6 for Singhadurbar, Putalisadak and 

Padmodaya intersection respectively. 

 

Table 4-4 Traffic Volume Input for Calibration at Singhadurbar Intersection 

Start Time 

(AM) 

End Time 

(AM) 

Two Day Average Traffic Volume Input for Calibration (veh) 

M-S M-P P-S P-M S-P S-M 

Warmup Period 166 328 72 336 72 764 

10:00 10:15 219 374 98 424 82 862 

10:15 10:30 187 386 102 419 83 845 

10:30 10:45 186 406 97 413 97 870 

10:45 11:00 163 422 93 389 104 833 

M-S = Maitighar to Sahidgate, M-P = Maitighar to Putalisadak, P-S = Putalisadak to Sahidgate, 

P-M = Putalisadak to Maitighar, S-P = Sahidgate to Putalisadak, and S-M = Sahidgate to 

Maitighar 
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Table 4-5 Traffic Volume Input for Calibration at Putalisadak Intersection 

Start 

Time 

(AM) 

End 

Time 

(AM) 

Two Day Average Traffic Volume Input for Calibration (veh) 

B-D B-H B-S D-B D-H D-S S-D S-B S-H H-D H-B H-S 

Warmup 

Period 

0 189 0 203 221 246 0 162 416 0 0 531 

10:15 10:30 0 207 0 178 193 247 0 193 410 0 0 555 

10:30 10:45 0 188 0 176 177 240 0 186 421 0 0 595 

10:45 11:00 0 186 0 166 159 234 0 194 431 0 0 595 

11:00 11:15 0 200 0 170 141 236 0 216 429 0 0 645 

Similar to the above table,  B = Bagbazar, D = Dillibazar, S = Singhadurbar, and H = Hattisar 

 
 

Table 4-6 Traffic Volume Input for Calibration at Padmodaya Intersection 

Start Time 

(AM) 

End Time 

(AM) 

Two Day Average Traffic Volume Input for Calibration (veh) 

S-A S-P P-A P-S A-S A-P 

Warmup Period 195 346 213 244 333 373 

10:00 10:15 208 354 248 291 365 393 

10:15 10:30 214 347 247 292 330 364 

10:30 10:45 213 340 242 309 306 352 

10:45 11:00 242 328 230 328 259 342 

Similar to the above tables, A = Anamnagar, S = Singhadurbar, and P = Putalisadak 

 
 
The vehicle compositions for each approach leg of the intersections were found to be 

different from the overall vehicle composition of the entire network. So, vehicle 

proportions of different vehicle types of each approach leg were computed from the 

data and assigned in the VISSIM model using static routing decisions. The VISSIM 

input traffic composition of the approach legs of the three day traffic volume data for 

calibration have been shown in Table 4-7, Table 4-8, and Table 4-9 for Singhadurbar, 

Putalisadak, and Padmodaya intersection respectively. 
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Table 4-7 Traffic Composition of Approach Legs of Singhadurbar Intersection 

Traffic Composition 

Vehicle Type M-S M-P P-S P-M S-P S-M 

Heavy Truck 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 

Light Truck 0.00% 0.17% 0.01% 0.16% 0.07% 0.27% 

Big Bus 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 

Mini Bus 5.37% 2.57% 0.04% 0.23% 0.02% 2.64% 

Micro Bus 2.93% 0.58% 0.00% 0.44% 0.00% 2.29% 

Car 18.82% 20.08% 21.56% 18.39% 16.71% 19.48% 

Motorcycle 65.05% 68.99% 71.23% 72.42% 73.79% 69.66% 

Utility Vehicles 1.77% 1.96% 0.00% 1.24% 1.80% 1.57% 

4 Wheel Drive 4.37% 3.17% 4.83% 4.84% 4.38% 3.35% 

3 Wheeler (Tempo) 0.00% 0.10% 0.00% 0.00% 2.86% 0.00% 

Bicycle 1.70% 2.37% 2.33% 2.29% 0.37% 0.55% 

Similar to the above tables, M = Maitighar, S = Sahidgate, and P = Putalisadak 

 
 

Table 4-8 Traffic Composition of Approach Legs of Putalisadak Intersection 

Traffic Composition 

Vehicle Type B-H D-B D-H D-S S-B S-H H-S 

Heavy Truck 0.00% 0.06% 0.04% 0.06% 0.00% 0.03% 0.01% 

Light Truck 0.01% 0.11% 0.07% 0.10% 0.06% 0.04% 0.00% 

Big Bus 0.00% 0.00% 0.00% 0.00% 2.11% 1.74% 0.02% 

Mini Bus 0.00% 6.34% 0.00% 0.04% 1.26% 0.26% 0.68% 

Micro Bus 0.03% 0.83% 1.82% 0.01% 0.04% 0.03% 0.02% 

Car 10.45% 14.85% 18.76% 19.14% 14.82% 16.95% 15.87% 

Motorcycle 82.45% 70.69% 73.39% 71.25% 75.99% 71.19% 81.00% 

Utility Vehicles 0.61% 1.14% 0.30% 0.89% 0.28% 0.15% 0.23% 

4 Wheel Drive 3.95% 2.66% 2.46% 2.20% 2.96% 7.34% 1.41% 

3 Wheeler (Tempo) 0.05% 0.08% 0.13% 3.80% 0.00% 0.00% 0.09% 

Bicycle 2.44% 3.24% 3.03% 2.49% 2.47% 2.27% 0.67% 

Similar to the above tables, B = Bagbazar, D = Dillibazar, S = Singhadurbar, and H = Hattisar. 
The vehicle routes B-D, B-S, S-D, H-D and H-B have negligible traffic volume so their vehicle 

compositions were not required.  
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Table 4-9 Traffic Composition of Approach Legs of Padmodaya Intersection 

Traffic Composition 

Vehicle Type S-A S-P P-A P-S A-S A-P 

Heavy Truck 0.00% 0.02% 0.00% 0.04% 0.08% 0.01% 

Light Truck 0.01% 0.01% 0.02% 0.12% 0.10% 0.08% 

Big Bus 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Mini Bus 0.05% 2.14% 1.90% 0.27% 0.03% 1.71% 

Micro Bus 0.00% 0.01% 0.08% 0.02% 0.01% 0.35% 

Car 20.17% 15.32% 12.21% 14.06% 17.62% 12.47% 

Motorcycle 72.51% 78.15% 80.10% 75.15% 71.44% 77.18% 

Utility Vehicles 0.01% 0.36% 0.19% 0.08% 0.15% 0.54% 

4 Wheel Drive 3.51% 2.50% 3.60% 7.56% 8.69% 3.23% 

3 Wheeler (Tempo) 2.39% 0.00% 0.02% 0.00% 0.01% 1.88% 

Bicycle 1.34% 1.48% 1.88% 2.69% 1.86% 2.53% 

Similar to the above tables, A = Anamnagar, S = Singhadurbar, and P = Putalisadak 

 
 
The following Figure 4-7, Figure 4-8, and Figure 4-9 shows the vehicle composition of 

the entire intersection network of Singhadurbar, Putalisadak and Padmodaya 

respectively. The data shows that motorcycle contributes the most to the total traffic 

volume followed by car in all of the study area intersections. The vehicle composition 

follows almost the same pattern in all of the approach legs. The significant percentage 

difference between the privately owned vehicles and public ones is a concerning issue 

to the traffic network of Kathmandu Valley intersections. 
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Figure 4-7 Vehicle Composition of the Singhadurbar Intersection Network 

 

 

Figure 4-8 Vehicle Composition of the Putalisadak Intersection Network 
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Figure 4-9 Vehicle Composition of the Padmodaya Intersection Network 

 

4.2.3 Vehicle Routing and Relative Flows 

 

The literature regarding the vehicle routing analysis are provided in the Section 3.3.4.4. 

The summary of the vehicle routing and relative flow analysis for 3 days of the 

approach legs in the chosen study area intersections are provided in APPENDIX C. The 

VISSIM input vehicle routing and relative flows of the approach legs based on two day 

average peak hour traffic volume in 15 minute intervals for calibration have been shown 

in Table 4-10, Table 4-11, and Table 4-12 for Singhadurbar, Putalisadak, and 

Padmodaya intersection respectively. The relative flow for B-D, B-S, S-D, H-D and H-

B vehicle routes in Putalisadak intersection are taken as zero due to their negligible 

traffic volume. 
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Table 4-10 Vehicle Routing Decision and Relative Flow of Singhadurbar 

Intersection 

Intersection 

Approach 

Legs 

Vehicle 

Routing 

Decision 

Relative Flow – As per defined time interval in 

seconds 

Warmup 

Period (0 - 300) 

300 - 

1200 

1200 - 

2100 

2100 - 

3000 

3000 - 

3900 

Maitighar 
M-S 0.336 0.369 0.327 0.315 0.28 

M-P 0.665 0.632 0.674 0.686 0.721 

Putalisadak 
P-S 0.177 0.188 0.196 0.19 0.193 

P-M 0.824 0.813 0.805 0.811 0.808 

Sahidgate 
S-P 0.086 0.087 0.09 0.101 0.111 

S-M 0.915 0.914 0.911 0.9 0.89 

 
 

Table 4-11 Vehicle Routing Decision and Relative Flow of Putalisadak 

Intersection 

Intersection 

Approach 

Legs 

Vehicle 

Routing 

Decision 

Relative Flow – As per defined time interval in 

seconds 

Warmup 

Period (0 - 300) 

300 - 

1200 

1200 - 

2100 

2100 - 

3000 

3000 - 

3900 

Bagbazar 

B-D 0 0 0 0 0 

B-H 1 1 1 1 1 

B-S 0 0 0 0 0 

Dillibazar 

D-B 0.303 0.288 0.297 0.297 0.311 

D-H 0.331 0.313 0.299 0.285 0.258 

D-S 0.368 0.4 0.406 0.419 0.432 

Singhadurbar 

S-D 0 0 0 0 0 

S-B 0.28 0.321 0.306 0.311 0.335 

S-H 0.721 0.68 0.695 0.69 0.666 

Hattisar 

H-D 0 0 0 0 0 

H-B 0 0 0 0 0 

H-S 1 1 1 1 1 
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Table 4-12 Vehicle Routing Decision and Relative Flow of Padmodaya 

Intersection 

Intersection 

Approach 

Legs 

Vehicle 

Routing 

Decision 

Relative Flow – As per defined time interval in 

seconds 

Warmup 

Period (0 - 300) 

300 - 

1200 

1200 - 

2100 

2100 - 

3000 

3000 - 

3900 

Singhadurbar 
S-A 0.36 0.37 0.382 0.385 0.425 

S-P 0.641 0.631 0.619 0.616 0.576 

Putalisadak 
P-A 0.466 0.461 0.459 0.44 0.413 

P-S 0.535 0.54 0.542 0.561 0.588 

Anamnagar 
A-S 0.473 0.482 0.476 0.465 0.431 

A-P 0.528 0.519 0.525 0.536 0.57 

 
 
4.2.4 Signal Control 

 

The literature regarding the signal control analysis are provided in the Section 3.3.4.5. 

The signal groups were taken as those intervals when vehicles on a particular direction 

were stopped and were input to the VISSIM model. It was observed that there were 3 

phases of movement in the Singhadurbar and Padmodaya intersections while the 

Putalisadak intersection consisted of 2 phases of movement. Green time was found to 

be followed by three seconds of amber time. The VISSIM input signal control for the 

different signal phases at 15 minute intervals have been shown in Table 4-13, Table 

4-14, and Table 4-15 for Singhadurbar, Putalisadak, and Padmodaya intersection 

respectively. 
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Table 4-13 Existing Signal Phases and Timing at Singhadurbar Intersection 

Time 

Interval 

(Sec) 

Phase Vehicle Route Average 

Green 

Time (Sec) 

Amber 

Time 

(Sec) 

Cycle 

Time 

(Sec) 

Warmup 

Period (0 

– 300) 

1 M-P, M-S, P-M, and S-P The signal timing was kept the same 

for warmup period as 300 – 1200 

time interval. 

2 M-S, P-M, P-S, and S-P 

3 M-S, S-P, and S-M 

300 – 

1200 

1 M-P, M-S, P-M, and S-P 112 3 
321 (3 

cycles) 
2 M-S, P-M, P-S, and S-P 59 3 

3 M-S, S-P, and S-M 141 3 

1200 – 

2100 

1 M-P, M-S, P-M, and S-P 94 3 
220 (4 

cycles) 
2 M-S, P-M, P-S, and S-P 27 3 

3 M-S, S-P, and S-M 90 3 

2100 – 

3000 

1 M-P, M-S, P-M, and S-P 117 3 
290 (3 

cycles) 
2 M-S, P-M, P-S, and S-P 27 3 

3 M-S, S-P, and S-M 137 3 

3000 - 

3900 

1 M-P, M-S, P-M, and S-P 110 3 
280 (3 

cycles) 
2 M-S, P-M, P-S, and S-P 38 3 

3 M-S, S-P, and S-M 123 3 

 
 

Table 4-14 Existing Signal Phases and Timing at Putalisadak Intersection 

Time 

Interval 

(Sec) 

Phase Vehicle Route Average 

Green 

Time (Sec) 

Amber 

Time 

(Sec) 

Cycle 

Time 

(Sec) 

Warmup 

Period (0 

– 300) 

1 B-H, D-S, H-S, S-B, and S-H The signal timing was kept the 

same for warmup period as 300 

– 1200 time interval. 

2 B-H, D-S, D-B, D-H, and S-B 

300 – 

1200 

1 B-H, D-S, H-S, S-B, and S-H 102 3 192 (4 

cycles) 2 B-H, D-S, D-B, D-H, and S-B 84 3 

1200 – 

2100 

1 B-H, D-S, H-S, S-B, and S-H 138 3 262 (4 

cycles) 2 B-H, D-S, D-B, D-H, and S-B 118 3 
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2100 – 

3000 

1 B-H, D-S, H-S, S-B, and S-H 111 3 218 (4 

cycles) 2 B-H, D-S, D-B, D-H, and S-B 101 3 

3000 - 

3900 

1 B-H, D-S, H-S, S-B, and S-H 118 3 244 (4 

cycles) 2 B-H, D-S, D-B, D-H, and S-B 120 3 

 
 

Table 4-15 Existing Signal Phases and Timing at Padmodaya Intersection 

Time 

Interval 

(Sec) 

Phase Vehicle Route Average 

Green 

Time (Sec) 

Amber 

Time 

(Sec) 

Cycle 

Time 

(Sec) 

Warmup 

Period (0 

– 300) 

1 S-A, S-P, P-A, and A-S The signal timing was kept the same 

for warmup period as 300 – 1200 time 

interval. 

2 S-P, P-A, P-S, and A-S 

3 S-P, P-A, A-P, and A-S 

300 – 

1200 

1 S-A, S-P, P-A, and A-S 103 3 
345 (3 

cycles) 
2 S-P, P-A, P-S, and A-S 112 3 

3 S-P, P-A, A-P, and A-S 121 3 

1200 – 

2100 

1 S-A, S-P, P-A, and A-S 102 3 
303 (3 

cycles) 
2 S-P, P-A, P-S, and A-S 85 3 

3 S-P, P-A, A-P, and A-S 107 3 

2100 – 

3000 

1 S-A, S-P, P-A, and A-S 84 3 
250 (3 

cycles) 
2 S-P, P-A, P-S, and A-S 73 3 

3 S-P, P-A, A-P, and A-S 84 3 

3000 - 

3900 

1 S-A, S-P, P-A, and A-S 113 3 
318 (3 

cycles) 
2 S-P, P-A, P-S, and A-S 108 3 

3 S-P, P-A, A-P, and A-S 88 3 

 
 
The Red – Green – Amber signal state sequence has been used in the VISSIM input 

except for some approaches where permanent green sequence was applied for the 

continuous movement. The following Figure 4-10, Figure 4-11, and Figure 4-12 shows 

the signal phase movement diagrams of the entire intersection network of Singhadurbar, 

Putalisadak, and Padmodaya respectively. The approaches which are open throughout 

the signal cycle have been identified in the figures below using the double arrow. 



72 
 

 

Figure 4-10 Signal Phase Movement Diagram of Singhadurbar Intersection 

 

 

Figure 4-11 Signal Phase Movement Diagram of Putalisadak Intersection 
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Figure 4-12 Signal Phase Movement Diagram of Padmodaya Intersection 

 
4.3 Sensitivity Analysis 

 

The literature regarding the sensitivity analysis are provided in the Section 3.5 and 3.6 

and its subsequent subheadings 3.6.1, 3.6.2, 3.6.3, and 3.6.4. The sensitivity analysis 

was performed on all three intersections. 

 

4.3.1 Initial Run on Default Parameters 

 

The VISSIM model of the intersection under study was run on default parameter 

settings with 5 different random seed value. The VISSIM output and the percentage 

error in MAPE have been shown in Table 4-16, Table 4-17, and Table 4-18 for 

Sahidgate, Maitighar, and Putalisadak approach legs of the Singhadurbar intersection 

respectively. Similarly, the summary of the percentage error in MAPE for the three 

intersections have been shown in Table 4-19 below. 
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Table 4-16 Error for Default Parameter Values for Sahidgate Approach Leg of 

Singhadurbar Intersection 

1. Sahidgate Approach Leg 

Time Period (s) Actual Flow 

(vehicles) 

Flow with Default 

Parameters (vehicles) 

Percentage Error 

(MAPE) 

0-300 Warmup Period 

300-1200 
219 176 19.63% 

98 81 17.35% 

1200-2100 
187 148 20.86% 

102 85 16.67% 

2100-3000 
186 191 2.69% 

97 107 10.31% 

3000-3900 
163 126 22.70% 

93 87 6.45% 
  

Average MAPE 14.58% 

 
 
Table 4-17 Error for Default Parameter Values for Maitighar Approach Leg of 

Singhadurbar Intersection 

2. Maitighar Approach Leg 

Time Period (s) Actual Flow 

(vehicles) 

Flow with Default 

Parameters (vehicles) 

Percentage Error 

(MAPE) 

0-300 Warmup Period 

300-1200 
424 391 7.78% 

862 500 42.00% 

1200-2100 
419 384 8.35% 

845 654 22.60% 

2100-3000 
413 453 9.69% 

870 493 43.33% 

3000-3900 
389 374 3.86% 

833 625 24.97% 
  

Average MAPE 20.32% 
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Table 4-18 Error for Default Parameter Values for Putalisadak Approach Leg of 

Singhadurbar Intersection 

3. Putalisadak Approach Leg 

Time Period (s) Actual Flow 

(vehicles) 

Flow with Default 

Parameters (vehicles) 

Percentage Error 

(MAPE) 

0-300 Warmup Period 

300-1200 82 91 10.98% 

374 286 23.53% 

1200-2100 83 91 9.64% 

386 301 22.02% 

2100-3000 97 91 6.19% 

406 357 12.07% 

3000-3900 104 272 161.54% 

422 329 22.04% 
  

Average MAPE 33.50% 

 
 

Table 4-19 Summary of Initial MAPE for Default Parameter Values 

Measure of 
Effectiveness 

Intersection Approach 
Leg 

Vehicle 
Route 

MAPE Average 
MAPE 

GEH 

Traffic 
Volume 

Singhadurbar 

Sahidgate (S) 
M-S 16.47% 

14.58% 
4.315 

P-S 12.69% 1.549 

Maitighar 
(M) 

P-M 7.42% 
20.31% 

1.067 

S-M 33.20% 21.333 

Putalisadak 
(P) 

S-P 47.08% 
33.50% 

8.387 

M-P 19.91% 8.328 

 22.8%  

Padmodaya 

Singhadurbar 
(S) 

A-S 30.43% 
20.81% 

11.984 

P-S 11.20% 4.068 

Putalisadak 
(P) 

A-P 29.63% 
15.91% 

12.386 

S-P 2.20% 0 

Anamnagar 
(A) 

S-A 4.39% 
3.50% 

0.271 

P-A 2.61% 0.096 

 13.41%  
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Putalisadak 

Bagbazar (B) 
S-B 4.46% 

4.53% 
0.071 

D-B 4.60% 0 

Hattisar (H) 

S-H 9.16% 

7.84% 

3.884 

B-H 4.60% 0 

D-H 9.76% 0.039 

Singhadurbar 
(S) 

D-S 1.98% 
2.97% 

0.032 

H-S 3.97% 0.020 

 5.11%  

       

Maximum 
Queue Length 

Singhadurbar 

Sahidgate - - 84.46% 9.945 

Maitighar - - 84.63% 9.901 

Putalisadak - - 48.80% 5 

 72.63%  

Padmodaya 

Singhadurbar - - 65.48% 6.806 

Putalisadak - - 95.10% 8.789 

Anamnagar - - 72.64% 9.003 

 77.74%  

Putalisadak 

Dillibazar - - 34.68% 6.329 

Hattisar - - 39.22% 3.517 

Singhadurbar - - 55.64% 3.211 

 43.18%  

 
 
4.3.2 First Level ANOVA Testing 

 

The VISSIM simulations were performed on a HP Elite Book 830 G8 Notebook PC 

with an 11th Gen Intel (R) Core i7-1165G7 @ 2.80 GHz processor and 16.00 GB of 

RAM. Using the identified driving behavior parameters along with their ranges as 

shown in Table 3-6, multiple simulations were performed using Latin Hypercube 

Sampling (LHS) and a written Python programming code. A total of 1000 runs for 12 

calibration parameters was performed for 200 scenarios generated by Latin Hypercube 

Sampling (LHS) for 5 random seeded runs which took 37 hours and 43 minutes for 

Singhadurbar, 35 hours and 40 minutes for Padmodaya, and 35 hours and 59 minutes 

for Putalisadak intersection. The 5 random seeded runs were then averaged to represent 

the results of each of the 200 parameter sets. The discrete values of the parameter from 

the LHS samples and the change in error with respect to the default parameter set values 
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are input into SPSS to perform one way ANOVA testing. Some samples of the outputs 

generated by SPSS for First Level One Way ANOVA Testing are attached in 

APPENDIX D. 

 

The p – value results of the First Level one way ANOVA have been shown in Table 

4-20 for the Sahidgate, Maitighar, and Putalisadak approach legs of the Singhadurbar 

intersection. The results confirm that the following six driving behavior parameters are 

sensitive in the first level ANOVA testing for Singhadurbar intersection, whose p-

values are less than 0.2 in any of the trials (Siddharth and Ramadurai 2013, Dutta and 

Ahmed 2019). 

1. Minimum Look Back Distance 

2. Average Standstill Distance 

3. Additive Part of Safety Distance 

4. Multiplicative Part of Safety Distance 

5. Minimum Clearance (Front/Rear) 

6. Minimum Lateral Distance (Standing) at 0 km/h 

 

Similarly, the results of the first level ANOVA testing for the Padmodaya and 

Putalisadak intersection have been shown in Table 4-21 below. The SPSS analysis of 

the Bagbazar and Singhadurbar approach legs of Putalisadak intersection were not 

performed because the SPSS input i.e. the change in error with respect to the default 

parameter set values were significantly small. These values could lead to erratic output 

hence, these data were omitted during the study. 
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Table 4-20 First Level ANOVA results of Singhadurbar 

ANOVA Probability (p – value) of Singhadurbar Intersection 

Driving Behavior 
Parameter 

Default 
Values 

Sahidga
te 

Maitigh
ar 

Putalisa
dak 

Remarks Result 

Minimum Look Ahead 
Distance (m) 

0 0.257 0.274 0.335 All trials > 
0.2 

NS 

Maximum Look Ahead 
Distance (m) 

250 0.382 0.896 0.404 All trials > 
0.2 

NS 

Minimum Look Back 
Distance (m) 

0 0.395 0.035 0.275 Trial 2 < 0.2 S 

Maximum Look Back 
Distance (m) 

150 0.979 0.94 0.933 All trials > 
0.2 

NS 

Average Standstill 
Distance (m) 

2 6.32357
E-31 

3.65783
E-15 

1.56049
E-39 

All trials < 
0.2 

S 

Additive Part of Safety 
Distance 

2 0.00043
4458 

2.04711
E-11 

0.00011
9478 

All trials < 
0.2 

S 

Multiplicative Part of 
Safety Distance 

3 0.001 1.68113
E-08 

0.006 All trials < 
0.2 

S 

Waiting Time Before 
Diffusion (s) 

60 0.43 0.292 0.374 All trials > 
0.2 

NS 

Minimum Clearance 
(Front/Rear) (m) 

0.5 0.098 0.234 0.038 Trial 1 and 3 
< 0.2 

S 

Safety Distance Reduction 
Factor 

0.6 0.586 0.845 0.706 All trials > 
0.2 

NS 

Minimum Lateral Distance 
(Standing) at 0 km/h (m) 

0.2 0.00000
5 

0.00015
5 

0.00017
8 

All trials < 
0.2 

S 

Minimum Lateral Distance 
(Driving) at 50 km/h (m) 

1 0.31 0.417 0.287 All trials > 
0.2 

NS 

S = Sensitive and NS = Not Sensitive 
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Table 4-21 First Level ANOVA results of Padmodaya and Putalisadak 

ANOVA Probability (p – value) 

Driving Behavior 
Parameter 

Padmodaya Putalisadak 

Singhadu
rbar 

Anamnag
ar 

Putalisad
ak 

Result Hattisar Result 

Minimum Look Ahead 
Distance (m) 

0.604 0.413 0.761 NS 0.04 S 

Maximum Look Ahead 
Distance (m) 

0.791 0.704 0.786 NS 0.355 NS 

Minimum Look Back 
Distance (m) 

0.476 0.386 0.406 NS 0.835 NS 

Maximum Look Back 
Distance (m) 

0.357 0.172 0.358 S 0.592 NS 

Average Standstill Distance 
(m) 

8.61E-41 3.85E-34 1.00E-37 S 1.29E-28 S 

Additive Part of Safety 
Distance 

1.14E-12 7.37E-10 2.71E-12 S 1.59E-07 S 

Multiplicative Part of Safety 
Distance 

0.573 0.711 0.327 NS 5.67E-07 S 

Waiting Time Before 
Diffusion (s) 

0.656 0.728 0.495 NS 0.857 NS 

Minimum Clearance 
(Front/Rear) (m) 

0.51 0.259 0.519 NS 0.409 NS 

Safety Distance Reduction 
Factor 

0.834 0.785 0.562 NS 0.506 NS 

Minimum Lateral Distance 
(Standing) at 0 km/h (m) 

0.006 0.155 0.025 S 0.001 S 

Minimum Lateral Distance 
(Driving) at 50 km/h (m) 

0.524 0.741 0.65 NS 0.06 S 

S = Sensitive and NS = Not Sensitive 

 
 
4.3.3 Second Level ANOVA Testing 

 

Multiple VISSIM simulations were again performed using the same Python 

programming code with some minor adjustments by removing the sensitive parameters 

identified from the first level of testing. A total of 1000 runs now for 6 calibration 

parameters which were not identified as sensitive in the first level ANOVA testing, was 

performed for 200 scenarios generated by Latin Hypercube Sampling (LHS) for 5 

random seeded runs which took 45 hours and 39 minutes in the case of Singhadurbar 
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intersection. 8 calibration parameters were used in the case of Padmodaya intersection 

which took 28 hours and 13 minutes, and 6 parameters were used in Putalisadak 

intersection which took 27 hours and 52 minutes. The process was repeated again 

similarly to the first level ANOVA testing process to perform one way ANOVA using 

SPSS. Some samples of the outputs generated by SPSS for Second Level One Way 

ANOVA Testing are attached in APPENDIX D. 

 

The p – value results of the Second Level one way ANOVA have been shown in Table 

4-22 for the Sahidgate, Maitighar, and Putalisadak approach legs of the Singhadurbar 

intersection respectively. The results showed that three driving behavior parameters 

which were not considered to be sensitive in the First Order sensitivity analysis are now 

found to be sensitive in the Second Order sensitivity analysis since the p-values for the 

parameters are less than 0.2 in all of the trials (Siddharth and Ramadurai 2013, Dutta 

and Ahmed 2019). 

 

Similarly, the results of the second level ANOVA testing for the Padmodaya and 

Putalisadak intersection have been shown in Table 4-23 below. Based on the results of 

the first and second order ANOVA tests, nine parameters were found to be sensitive in 

Singhadurbar and Putalisadak, while seven parameters were found to be sensitive in 

Padmodaya intersection. The amalgamation of the sensitive parameters results in the 

identification of nine sensitive driving behavior parameters for VISSIM models for 

heterogeneous traffic conditions which are listed below. 

1. Minimum Look Ahead Distance 

2. Minimum Look Back Distance 

3. Maximum Look Back Distance 

4. Average Standstill Distance 

5. Additive Part of Safety Distance 

6. Multiplicative Part of Safety Distance 

7. Minimum Clearance (Front/Rear) 

8. Minimum Lateral Distance (Standing) at 0 km/h 

9. Minimum Lateral Distance (Driving) at 50 km/h 
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Table 4-22 Second Level ANOVA results of Singhadurbar 

ANOVA Probability (p – value) of Singhadurbar Intersection 

Driving Behavior Parameter Sahidg
ate 

Maitig
har 

Putalis
adak 

Remarks Result 

Minimum Look Ahead Distance (m) 3.56E-
17 

2.58E-
10 

3.78E-
22 

All trials < 0.2 S 

Maximum Look Ahead Distance (m) 0.799 0.861 0.601 All trials > 0.2 NS 

Maximum Look Back Distance (m) 0.052 0.122 0.042 All trials < 0.2 S 

Waiting Time Before Diffusion (s) 0.613 0.785 0.641 All trials > 0.2 NS 

Safety Distance Reduction Factor 0.879 0.55 0.555 All trials > 0.2 NS 

Minimum Lateral Distance 
(Driving) at 50 km/h (m) 

1.13E-
11 

1.03E-
20 

1.08E-
12 

All trials < 0.2 S 

S = Sensitive and NS = Not Sensitive 

 
 

Table 4-23 Second Level ANOVA results of Padmodaya and Putalisadak 

ANOVA Probability (p – value) 

Driving Behavior 
Parameter 

Padmodaya Putalisadak 

Singhadu
rbar 

Anamnag
ar 

Putalisad
ak 

Result Hattisar Result 

Minimum Look Ahead 
Distance (m) 

0.267 0.109 0.429 S - - 

Maximum Look Ahead 
Distance (m) 

0.601 0.409 0.523 NS 0.898 NS 

Minimum Look Back 
Distance (m) 

0.332 0.222 0.315 NS 0.026 S 

Maximum Look Back 
Distance (m) 

- - - - 0.007 S 

Multiplicative Part of Safety 
Distance 

1.66E-
127 

1.11E-
138 

6.38E-
115 

S - - 

Waiting Time Before 
Diffusion (s) 

0.528 0.544 0.426 NS 0.663 NS 

Minimum Clearance 
(Front/Rear) (m) 

0.482 0.514 0.567 NS 0.171 S 

Safety Distance Reduction 
Factor 

0.486 0.634 0.348 NS 0.213 NS 

Minimum Lateral Distance 
(Driving) at 50 km/h (m) 

0.083 0.086 0.078 S - - 

S = Sensitive and NS = Not Sensitive 
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The result of the sensitivity analysis was compared to the different literatures reviewed 

during this study. It can be seen that the sensitivity of the Wiedemann - 74 car following 

parameters and lateral behavior parameters are consistent throughout different studies. 

The results for the following behavior parameters are also same throughout different 

studies except for maximum look back distance which was identified as a sensitive 

parameter in this study. The results of the lane change behavior parameters are different 

with the various reviewed literatures. Based on the comparisons, we can see that the 

results of the analyzed parameters of heterogeneous traffic conditions within 

Kathmandu are quite similar to the results of Indian heterogeneous traffic conditions. 

The discrepancy in the results of the sensitivity analysis with the various reviewed 

literatures are highlighted in Table 4-24 below. 
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Table 4-24 Comparison of Sensitivity Analysis Results with Various Literatures 

Driving Behavior Parameter Jayasooriya 

and Bandara 

2018 (Sri 

Lanka) 

Mathew and 

Radhakrish

nan 2010 

(India) 

Manjunatha, 

Vortisch et al. 

2013 (India) 

Dutta and 

Ahmed 2019 

(India) 

Siddharth 

and 

Ramadurai, 

2013 (India) 

Ge and 

Menendez, 

2012 (Zurich, 

Switzerland) 

Minimum Look Ahead Distance (m) Not Tested Sensitive Sensitivity 

analysis 

performed on 

Wiedemann 99 

parameters 

(Not Tested) 

Sensitive Sensitive Not Tested 

Maximum Look Ahead Distance (m) Not Tested Not Sensitive Not Sensitive Not Tested Not Tested 

Minimum Look Back Distance (m) Not Tested Not Tested Sensitive Sensitive Not Tested 

Maximum Look Back Distance (m) Not Tested Not Tested Not Sensitive Not Tested Not Tested 

Average Standstill Distance (m) Sensitive Sensitive Sensitive Sensitive Sensitive 

Additive Part of Safety Distance Sensitive Sensitive Sensitive Sensitive Sensitive 

Multiplicative Part of Safety Distance Sensitive Sensitive Sensitive Sensitive Sensitive 

Waiting Time Before Diffusion (s) Not Sensitive Sensitive Not Tested Not Tested Not Tested 

Minimum Clearance (Front/Rear) 

(m) 

Not Sensitive Not Tested Sensitive Sensitive Not Sensitive 

Safety Distance Reduction Factor Not Sensitive Not Tested Not Tested Not Tested Sensitive 

Minimum Lateral Distance 

(Standing) at 0 km/h (m) 

Sensitive Sensitive Sensitive Sensitive Not Tested 

Minimum Lateral Distance (Driving) 

at 50 km/h (m) 

Sensitive Sensitive Sensitive Not Tested Not Tested 
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4.4 Calibration 

 

The literature regarding the automated calibration of VISSIM parameters are provided 

in the Section 3.7 and its subsequent subheadings 3.7.1, 3.7.2, and 3.7.3. In this study, 

traffic volume and queue length have been selected as the key measure of effectiveness 

for calibration. The traffic flow data used in calibration and queue length data were 

obtained in different periods of time. The volume counts observed in the primary data 

collection are similar to the secondary data and the traffic conditions during those 

periods are somewhat similar in signal timing, vehicle routing, geometric 

characteristics and seasonal conditions. Hence, the queue lengths obtained in the field 

were used in the automated calibration process as a check for MAPE values. The queue 

length was also being simultaneously checked during the calibration process. If the 

error in queue length is within the MAPE threshold value after the completion of the 

optimization process, the program is terminated. Otherwise, the program is again run 

using queue length as a fitness function. The initial MAPE values for traffic flow and 

queue length for the intersections were well above the recommended value of 15% as 

proposed by (Dowling, Skabardonis et al. 2004) and the GEH values were also more 

than 5 (ODOT 2011, FDOT 2014) as highlighted in the Table 4-19 above. Hence, 

calibration process was deemed necessary to reduce the errors for the accurate 

representation of the intersections. 

 

The nine identified sensitive calibration parameters were adjusted to represent the field 

conditions of the intersection using the peak hour traffic data from the first and second 

day of the three-day traffic count data at each intersection. Multiple VISSIM 

simulations along with automated calibration of the nine sensitive driving behavior 

parameters with their ranges as shown in Table 3-6 were performed simultaneously 

using Latin Hypercube Sampling (LHS) and Genetic Algorithm in a written Python 

programming code. The first generation of the population was done using LHS to 

randomly permute the samples within each interval. The code was run with the 

configuration settings as defined in the Table 3-9. Automated calibration was done 

based on the selected measure of effectiveness i.e. traffic flow. A maximum of 400 runs 

was performed for 20 population and 20 generations. The code was run for the whole 

20 generations. Among the 20 parent population, 10 population with the best fitness 
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value were chosen for genetic operation which resulted in further 20 offspring 

population. The 20 offspring population and the 10 parent population were again 

compared to find the best 10 population for further genetic operation. The whole 

process took 19 hours and 20 minutes, 8 hours and 8 minutes, and 10 hours and 33 

minutes for the Singhadurbar, Padmodaya, and Putalisadak intersections respectively. 

The error in queue length were checked for the intersections after the completion of the 

optimization process which was found to be within the MAPE threshold value of 15%. 

Hence, the program was terminated instead of running the program again using queue 

length as a fitness function. The optimally best fit value of the sensitive parameters 

obtained are as shown in Table 4-25. 

 

Table 4-25 Calibrated Values of the Sensitive Parameters 

S.
N. 

Sensitive Calibration Parameters 
Defau

lt 
Value 

Calibrated Values Recommended 
Range of 
Values 

Singha
durbar 

Padmo
daya 

Putali
sadak 

1 Minimum Look Ahead Distance (m) 0 20 10 15 [10 – 20] 

2 Minimum Look Back Distance (m) 0 18.71 15 16.24 [15 – 18.71] 

3 Maximum Look Back Distance (m) 150 135.6 107.94 150 [107.94 – 150] 

4 Average Standstill Distance (m) 2 1.5 0.3 0.88 [0.3 – 1.5] 

5 Additive Part of Safety Distance 2 0.5 0.1 0.1 [0.1 – 0.5] 

6 Multiplicative Part of Safety Distance 3 1 0 0 [0 – 1] 

7 Minimum Clearance (Front/Rear) (m) 0.5 0.49 0.73 0.7 [0.49 – 0.73] 

8 Minimum Lateral Distance (Standing) 
at 0 km/h (m) 

0.2 0.2 0.41 0.4 [0.2 - 0.41] 

9 Minimum Lateral Distance (Driving) 
at 50 km/h (m) 

1 0.88 0.9 0.6 [0.6 – 0.9] 

 

After the completion of the calibration process, the errors were recalculated. The MAPE 

values between the input and simulated flows for each individual approach legs and the 

average MAPE value of 6.83%, 4.29% and 3.91% for Singhadurbar, Padmodaya, and 

Putalisadak intersections respectively are acceptable and conform to the limits (15%). 

The reduction of MAPE value of traffic flow in every successive generation for 

Singhadurbar, Padmodaya, and Putalisadak intersections are shown in Figure 4-13, 

Figure 4-14, and Figure 4-15 below. 
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Figure 4-13 Average MAPE of Traffic Flow for each Generation of 

Singhadurbar Intersection 

 

 

Figure 4-14 Average MAPE of Traffic Flow for each Generation of Padmodaya 

Intersection 
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Figure 4-15 Average MAPE of Traffic Flow for each Generation of Putalisadak 

Intersection 

 
Similarly, the errors in queue length were also calculated after calibration. The average 

MAPE between the field values and simulated values after calibration of 14.65%, 

13.26% and 10.22% for Singhadurbar, Padmodaya, and Putalisadak intersections 

respectively are acceptable and conform to the limits (15%) as shown in Table 4-26 

below. 
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Table 4-26 Average MAPE of Maximum Queue Length after Calibration 

Maximum Queue Length 

Interse

ction 

Approach 

Leg 

Actual Maximum 

Queue Length 

Maximum Queue Length 

in Calibrated Model 

Average 

MAPE 

GEH 

Singha

durbar 

Sahidgate 230.53 270.360 17.28% 2.517 

Maitighar 198.13 150.436 24.07% 3.613 

Putalisadak 143.93 140.191 2.60% 0.317 

    14.65%  

Padmo

daya 

Singhadurbar 143.417 107.042 25.36% 3.250 

Putalisadak 126.013 140.285 11.33% 1.237 

Anamnagar 209.41 215.866 3.08% 0.443 

    13.26%  

Putalis

adak 

Dillibazar 120.66 109.030 9.64% 1.085 

Hattisar 80.177 75.586 5.73% 0.520 

Singhadurbar 165.365 190.680 15.31% 1.897 

    10.22%  

 
 
The range of values for the sensitive calibration parameters obtained from the 

automated calibration process was compared to the different literatures reviewed during 

this study. It can be seen that the values of the Wiedemann - 74 car following parameters 

are within the recommended range throughout different studies. The values for the 

following behavior parameters are different with the various reviewed literatures but 

the values are very close to the end limits of the recommended range with a tolerance 

level of ±10 m. The values for the lateral behavior parameters and the lane change 

behavior parameters of the various reviewed literatures are somewhat within the 

recommended range. These values are also very close to the end limits of the 

recommended range with a tolerance level of ±0.1 m. Based on the comparisons, we 

can see that the calibration values adopted during studies in Kathmandu are within the 

recommended range of this study. We can also see that that the results of the analyzed 

parameters of heterogeneous traffic conditions within Kathmandu are quite similar to 

the results of Indian heterogeneous traffic conditions based on the calibration values. 

The discrepancy in the values of the calibration parameters of the various reviewed 

literatures are highlighted in Table 4-27 below. 
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Table 4-27 Comparison of Automated Calibration Results with Various Literatures 

S.

N. 

Sensitive Calibration 

Parameters 

Recommen

ded Range 

of Values 

Shresth

a 2022 

(Nepal) 

Acharya and 

Marsani 

2020 (Nepal) 

Sharm

a 2016 

(Nepal) 

Jayasooriya and 

Bandara 2018 

(Sri Lanka) 

Mathew and 

Radhakrishna

n 2010 (India) 

Dutta and 

Ahmed 2019 

(India) 

Siddharth and 

Ramadurai, 

2013 (India) 

1 Minimum Look Ahead 

Distance (m) 

[10 – 20] 20 30 27.91 - 127.79 28 27.91 

2 Minimum Look Back 

Distance (m) 

[15 – 18.71] 12 5 14.31 - - 21 14.31 

3 Maximum Look Back 

Distance (m) 

[107.94 – 

150] 

100 - 100 - - - - 

4 Average Standstill 

Distance (m) 

[0.3 – 1.5] 0.4 0.3 1 1.5 1.33 1.4 1 

5 Additive Part of Safety 

Distance 

[0.1 – 0.5] 0.1 0.19 0.2 1.5 0.28 0.24 0.2 

6 Multiplicative Part of 

Safety Distance 

[0 – 1] 0.8 0.71 0.78 2 0.16 0.19 0.78 

7 Minimum Clearance 

(Front/Rear) (m) 

[0.49 – 

0.73] 

0.4 0.5 0.5 - - 0.25 0.11 

8 Minimum Lateral Distance 

(Standing) at 0 km/h (m) 

[0.2 - 0.41] 0.25, 0.3 

and 0.4 

- - 0.5 0.3 0.22 0.62 

9 Minimum Lateral Distance 

(Driving) at 50 km/h (m) 

[0.6 – 0.9] 0.3, 0.5 

and 0.75 

- - 0.75 0.42 0.5 - 
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4.5 Validation 

 

The literature regarding the validation of the VISSIM models are provided in the 

Section 3.8. After calibration, the calibrated model was then validated using a new set 

of field data i.e. the third day data of the three-day traffic count data. The simulation 

models were run for 5 random seeds and the input traffic flows were compared with the 

simulation output using MAPE values and GEH statistic. The validation of the traffic 

flow are shown in Table 4-28, Table 4-29, and Table 4-30 below for the Singhadurbar, 

Padmodaya, and Putalisadak intersections respectively. The simulation models were 

considered to be validated as the MAPE values were within acceptable limits of 15% 

(Dowling, Skabardonis et al. 2004, Dutta and Ahmed 2019) and GEH values were less 

than 5 (ODOT 2011, FDOT 2014). 

 
Table 4-28 Validation of Flow in Singhadurbar Intersection 

Time Period 
(AM) 

Approach 
Leg 

Vehicle 
Route 

MAPE Average 
MAPE 

GEH 

10:00 - 11:00 

Sahidgate 
(S) 

M-S 3.47% 
8.95% 

0.211 

P-S 14.42% 0.646 

Maitighar 
(M) 

P-M 2.61% 
2.63% 

0.640 

S-M 2.65% 1.489 

Putalisadak 
(P) 

S-P 9.74% 
7.52% 

0.052 

M-P 5.31% 1.118 
  

  6.37%  

 

Table 4-29 Validation of Flow in Padmodaya Intersection 

Time Period 
(AM) 

Approach Leg Vehicle 
Route 

MAPE Average 
MAPE 

GEH 

10:00 - 11:00 

Singhadurbar 
(S) 

A-S 6.76% 
6.90% 

0.391 

P-S 7.04% 0.082 

Putalisadak (P) 
A-P 7.39% 

6.85% 
0.301 

S-P 6.31% 0.026 

Anamnagar 
(A) 

S-A 8.68% 
7.03% 

0.099 

P-A 5.38% 0 
  

  6.93%  
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Table 4-30 Validation of Flow in Putalisadak Intersection 

Time Period 
(AM) 

Approach 
Leg 

Vehicle 
Route 

MAPE Average 
MAPE 

GEH 

10:15 - 11:15 

Bagbazar (B) 
S-B 0.92% 

8.29% 
0 

D-B 15.67% 0.535 

Hattisar (H) 

S-H 4.35% 

9.10% 

0.071 

B-H 7.31% 0 

D-H 15.65% 0.463 

Singhadurbar 
(S) 

D-S 17.71% 
16.16% 

0.063 

H-S 14.61% 0.021 
  

  11.18%  

 
 
Similarly, the traffic flow data from the video graphic survey and maximum queue 

length were also validated with the simulation output using MAPE values and GEH 

statistic for each approach. The field queue length data were obtained at the peak hour 

identified from the analysis of the 3 day traffic count data at each intersection. The 

video graphic survey data validation of the Singhadurbar, Padmodaya, and Putalisadak 

intersections are shown in Table 4-31, Table 4-32, and Table 4-33 below respectively. 

The simulation models were considered to be validated as the average MAPE values 

were within acceptable limits of 15% (Dowling, Skabardonis et al. 2004, Dutta and 

Ahmed 2019) and GEH values were less than 5 (ODOT 2011, FDOT 2014). Some of 

the outputs on the approach legs were seen to be over the acceptable limit of 15% as 

highlighted in Table 4-31, Table 4-32, and Table 4-33 below. The possible reason for 

such outputs may have been the effect of the fluctuations of signal timing during the 

peak hour as traffic control was being done manually by the traffic police officers. As 

the signal timing is not fixed throughout the peak hour and depends majorly upon the 

operation of the traffic police officers, these errors may have been generated. 
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Table 4-31 Validation of Video Graphic Survey in Singhadurbar Intersection 

Time Period 

(AM) 

Approach 

Leg 

Vehicle 

Route 

MAPE Average 

MAPE 

GEH 

Traffic Volume 

10:00 - 10:30 

Sahidgate 

(S) 

M-S 7.15% 14.18% 0.191 

P-S 21.21% 3.474 

Maitighar 

(M) 

P-M 8.03% 10.62% 0.436 

S-M 13.20% 1.471 

Putalisadak 

(P) 

S-P 0.00% 2.82% 0 

M-P 5.63% 0.579 
  

  9.20%  

Maximum Queue Length 

Time Period 

(AM) 

Approach 

Leg 

Actual 

Maximum 

Queue 

Length 

Maximum 

Queue Length 

in Calibrated 

Model 

Average 

MAPE 

GEH 

10:00 - 10:30 

Sahidgate 230.53 194.411 15.67% 2.478 

Maitighar 198.13 240.423 21.35% 2.856 

Putalisadak 143.93 147.637 2.58% 0.307 

    13.20%  

 

Table 4-32 Validation of Video Graphic Survey in Padmodaya Intersection 

Time Period 

(AM) 

Approach 

Leg 

Vehicle 

Route 

MAPE Average 

MAPE 

GEH 

Traffic Volume 

10:00 - 10:30 

Singhadurbar 

(S) 

A-S 2.87% 4.81% 0.579 

P-S 6.75% 0.045 

Putalisadak 

(P) 

A-P 13.49% 9.71% 0.406 

S-P 5.94% 0.037 

Anamnagar 

(A) 

S-A 10.47% 8.39% 0 

P-A 6.32% 0 
  

  7.64%  
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Maximum Queue Length 

Time Period 

(AM) 

Approach 

Leg 

Actual 

Maximum 

Queue 

Length 

Maximum 

Queue Length 

in Calibrated 

Model 

Average 

MAPE 

GEH 

10:00 - 10:30 

Singhadurbar 143.417 113.510 20.85%  2.639 

Putalisadak 126.013 110.242 12.52% 1.451 

Anamnagar 209.41 208.511 0.43% 0.062 

    11.27%  

 

Table 4-33 Validation of Video Graphic Survey in Putalisadak Intersection 

Time Period 

(AM) 

Approach 

Leg 

Vehicle 

Route 

MAPE Average 

MAPE 

GEH 

Traffic Volume 

10:15 - 10:45 

Bagbazar (B) S-B 1.46% 2.01% 0 

D-B 2.55% 0.525 

Hattisar (H) S-H 1.75% 10.65% 0.032 

B-H 15.53% 0 

D-H 14.68% 2.276 

Singhadurbar 

(S) 

D-S 2.49% 3.56% 0 

H-S 4.62% 0.031 
  

  5.41%  

Maximum Queue Length 

Time Period 

(AM) 

Approach 

Leg 

Actual 

Maximum 

Queue 

Length 

Maximum 

Queue Length 

in Calibrated 

Model 

Average 

MAPE 

GEH 

10:15 - 10:45 

Dillibazar 120.66 146.760 21.63% 2.257 

Hattisar 80.177 74.031 7.67% 0.7 

Singhadurbar 165.365 179.961 8.83% 1.111 

    12.71%  
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CHAPTER 5. CONCLUSION AND RECOMMENDATION 

 

 

5.1 Conclusion 

 

This study was performed to identify the sensitive calibration parameters of VISSIM 

models and determine their range of values applicable for intersections for 

heterogeneous traffic conditions in Kathmandu using genetic algorithm. Three 

unsignalized intersections (Singhadurbar, Padmodaya, and Putalisadak) were chosen 

for the study. A study carried out by the Department of Roads to collect 72 hours traffic 

volume counts at intersections in Kathmandu was used to identify the peak hours which 

were observed to be from 10:00 AM – 11:00 AM, 10:00 AM – 11:00 AM, and 10:15 

AM – 11:15 AM for the Singhadurbar, Padmodaya, and Putalisadak intersections 

respectively. A video graphic survey was also carried out at the studied intersections 

for two sub intervals (30 minutes) within the peak hour for the purpose of model 

validation. 

 

The models of the intersection were built in the latest version of PTV VISSIM 2023 

(SP 06) “Academic License”. The collected primary and secondary data were used to 

represent the geometric, vehicular, heterogeneous traffic, routing, signal, and other 

conditions of the intersections. The models were initially run on default parameters of 

VISSIM which showed that the MAPE values for volume and queue length were greater 

than the recommended value of 15% and the GEH values were also more than 5. Hence, 

calibration process was deemed necessary for the accurate representation of the 

intersections. 

 

Before calibration, sensitivity analysis was performed to identify the sensitive 

calibration parameters using Latin Hypercube Sampling (LHS) and one way ANOVA 

testing in two levels. The optimum value for these sensitive parameters were obtained 

by minimizing the error between the simulated and field measures using genetic 

algorithm. Automated calibration was done based on the selected measures of 

effectiveness i.e. traffic flow and queue length. Multiple VISSIM simulations along 

with automated calibration were performed simultaneously using LHS and Genetic 
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Algorithm in a written Python programming code. Finally, a range of values for the 

calibration parameters was recommended based on the results of the calibration 

process. The numerical results are summarized in the followings: 

 Using traffic flow as a measure of effectiveness, the first level ANOVA testing 

resulted in 6 sensitive calibration parameters in Singhadurbar, 4 parameters in 

Padmodaya, and 6 parameters in Putalisadak intersection. 

 Second level ANOVA testing performed for the 6 calibration parameters which 

were not identified as sensitive in the first level ANOVA testing resulted 3 

additional sensitive parameters in Singhadurbar similar to Putalisadak 

intersection, while 4 additional sensitive parameters among 8 calibration 

parameters were identified in Padmodaya intersection. Based on the 

amalgamation of the results of the first and second order ANOVA tests, nine 

sensitive driving behavior parameters were identified as minimum look ahead 

distance, minimum look back distance, maximum look back distance, average 

standstill distance, additive part of safety distance, multiplicative part of safety 

distance, minimum clearance (front/rear), minimum lateral distance (standing) 

at 0 km/h, and minimum lateral distance (driving) at 50 km/h. So, the sensitive 

analysis identified a total of 9 calibration parameters sensitive in context of 

Kathmandu. Based on the comparisons, we can see that the results of the 

analyzed parameters of heterogeneous traffic conditions within Kathmandu are 

quite similar to the results of Indian heterogeneous traffic conditions. 

 The average MAPE and GEH values between the input and simulated measures 

for the intersections under study during calibration and validation are acceptable 

and conform to the limits of 15% and 5.0 respectively. 

 The optimally best fit value of the sensitive parameters obtained were used to 

recommend a range of values for the calibration parameters which are shown 

below: 

i. Minimum Look Ahead Distance = [10 – 20] m 

ii. Minimum Look Back Distance = [15 – 18.71] m 

iii. Maximum Look Back Distance = [107.94 – 150] m 

iv. Average Standstill Distance = [0.3 – 1.5] m 

v. Additive Part of Safety Distance = [0.1 – 0.5] 

vi. Multiplicative Part of Safety Distance = [0 – 1] 
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vii. Minimum Clearance (Front/Rear) = [0.49 – 0.73] m 

viii. Minimum Lateral Distance (Standing) at 0 km/h = [0.2 - 0.41] m 

ix. Minimum Lateral Distance (Driving) at 50 km/h = [0.6 - 0.9] m 

 

Based on the comparison of the results of the calibration process with similar literatures, 

we can see that the calibration values adopted during studies in Kathmandu are within 

the recommended range of this study. We can also see that that the results of the 

analyzed parameters of heterogeneous traffic conditions within Kathmandu are quite 

similar to the results of Indian heterogeneous traffic conditions based on the calibration 

values. 

 

5.2 Recommendations and Scope for Future Research 

 

A methodology to model and calibrate heterogeneous traffic conditions using genetic 

algorithm has been presented in this study which was performed in VISSIM. Automated 

calibration process has greatly reduced the manual effort required for the calibration of 

models. This study is expected to help future practitioners in developing simulation 

models during calibration of VISSIM models. It is always recommended that a 

simulation model be calibrated before any analysis. This study recommends the use of 

the identified sensitive calibration parameters and their range of values during 

calibration of VISSIM at intersections for heterogeneous traffic conditions in 

Kathmandu. It is expected that the use of these sensitive calibration parameters and 

their ranges would significantly reduce the time and effort consumed during calibration 

of the VISSIM models. Addressing each and every facet of a subject within a restricted 

timeframe proves to be a difficult task. The subsequent tasks are suggested for further 

academic investigation. 

1. Conducting similar research at corridor or network level is suggested. 

2. Driver behavior may change when it comes to rural areas so further research 

could be done in such areas. 

3. This study uses traffic volume and queue length as measures of effectiveness 

for calibration and validation so further research is recommended using 

additional MOEs for the study. 
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4. Only 12 calibration parameters were studied so further research is 

recommended using additional calibration parameters such as Wiedemann 99 

parameters. 

5. The verification of the range of values recommended for the sensitive 

calibration parameters through field measurement is difficult and subjected to 

different factors. Further research is recommended to explore such areas. 

6. Vehicle characteristics such as axle configuration and turning radius may also 

be incorporated in further research. 

7. Conducting the same research using other traffic flow simulation software is 

suggested.  
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APPENDIX A Sample Data of Classified Traffic Volume Count 
 
 

Sample Data of Maitighar Leg of Singhadurbar Intersection (Day 1) 

 

Leg: a: b:

a b a b a b a b a b a b a b a b a b a b a b a b a b a b

Day 1

00:00:00 00:15:00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 1 0 1 0 0 0 0 0 0 0 0 6

00:15:00 00:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 5

00:30:00 00:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 1 0 0 0 0 0 0 0 1 6

00:45:00 01:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0 5

01:00:00 01:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 7

01:15:00 01:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 4 0 0 0 0 0 0 0 0 0 0 7

01:30:00 01:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 4

01:45:00 02:00:00 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 2 0 2 0 1 0 0 0 0 0 0 0 0 10

02:00:00 02:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 2 0 0 0 0 0 0 0 0 0 1 8

02:15:00 02:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 1 0 1 0 0 0 0 0 0 0 0 6

02:30:00 02:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 4 1 1 0 0 0 0 0 0 0 0 0 0 12

02:45:00 03:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 1 0 1 0 0 0 0 0 0 0 0 7

03:00:00 03:15:00 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 9 0 4 0 2 0 0 0 0 0 0 0 1 21

03:15:00 03:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 0 1 0 2 0 0 0 0 0 0 0 0 10

03:30:00 03:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 1 0 0 0 0 0 0 0 0 1 0 6

03:45:00 04:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 0 2 1 1 0 0 0 0 0 0 0 1 12

04:00:00 04:15:00 0 0 0 0 0 0 0 0 0 1 0 0 0 3 1 7 0 0 0 3 0 0 0 0 0 0 0 2 17

04:15:00 04:30:00 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 6 0 2 0 2 0 0 0 0 0 0 1 1 15

04:30:00 04:45:00 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 9 0 4 1 0 0 0 0 1 0 0 1 0 21

04:45:00 05:00:00 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 10 0 1 0 1 0 0 0 0 0 0 0 1 17

05:00:00 05:15:00 0 0 0 0 0 0 0 0 0 1 2 0 1 1 1 11 0 2 1 1 0 0 0 1 0 0 3 2 27

05:15:00 05:30:00 0 0 0 0 0 0 0 0 0 0 1 0 3 4 0 16 0 3 0 1 0 0 0 1 0 0 1 2 32

05:30:00 05:45:00 0 0 0 0 0 0 0 0 2 1 1 0 1 9 1 22 0 1 1 1 0 0 0 0 0 0 0 3 43

05:45:00 06:00:00 0 0 0 0 0 0 0 0 1 2 0 0 1 11 3 31 0 1 0 1 0 0 0 0 0 0 1 2 54

06:00:00 06:15:00 0 0 0 0 0 1 0 0 1 4 2 0 0 13 3 37 0 0 0 3 0 0 0 0 0 0 1 5 70

06:15:00 06:30:00 0 0 0 0 0 0 0 0 2 8 2 0 2 16 2 67 0 2 1 2 0 0 0 1 0 0 2 4 111

06:30:00 06:45:00 0 0 0 0 0 0 0 0 2 6 3 0 1 19 1 65 1 0 2 3 0 0 0 0 0 0 1 3 107

06:45:00 07:00:00 0 0 0 0 0 1 0 0 2 5 2 0 0 25 2 79 0 1 2 2 0 0 0 0 0 0 0 2 123

07:00:00 07:15:00 0 0 0 0 0 0 0 0 3 7 1 0 1 21 3 81 1 2 0 3 0 0 0 0 0 0 2 5 130

07:15:00 07:30:00 0 0 0 0 0 2 0 0 1 5 3 1 2 23 6 85 0 1 1 2 0 0 0 1 0 0 1 6 140

07:30:00 07:45:00 0 0 0 0 0 0 0 0 3 6 1 0 1 24 5 98 2 0 2 4 0 0 0 0 0 0 0 4 150

07:45:00 08:00:00 0 0 0 0 0 0 0 0 7 5 1 1 0 28 7 103 1 2 1 2 0 0 0 0 0 0 2 2 162

Bicycle

Month: August

Maitighar Sahidgate Putalisadak

Motor Cycle
Multi axle Heavy

Station: Singhadurbar

4Wheel Drive Tractor 3-Wheeler Power Triller
Light Big

Start 
 Time

End 
 Time

Utility 
Vehicles

Truck Bus

Car
Mini Micro

Total
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Sample Data of Singhadurbar Leg of Padmodaya Intersection (Day 2) 

 

Leg: a: b:

a b a b a b a b a b a b a b a b a b a b a b a b a b a b

09:00:00 09:15:00 0 0 0 0 0 0 0 0 0 3 0 0 36 48 136 227 0 0 7 2 0 0 5 0 0 0 1 5 470

09:15:00 09:30:00 0 0 0 0 0 0 0 0 0 10 0 0 39 51 154 258 0 0 5 5 0 0 8 0 0 0 2 3 535

09:30:00 09:45:00 0 0 0 0 0 0 0 0 0 9 0 0 41 51 164 278 0 0 4 2 0 0 5 0 0 0 1 6 561

09:45:00 10:00:00 0 0 0 0 0 0 0 0 0 10 0 0 32 47 151 293 0 0 4 3 0 0 3 0 0 0 3 3 549

10:00:00 10:15:00 0 0 0 0 0 0 0 0 1 7 0 0 28 35 154 303 0 0 6 5 0 0 8 0 0 0 1 6 554

10:15:00 10:30:00 0 0 0 0 0 0 0 0 0 12 0 0 31 33 165 272 0 0 3 9 0 0 3 0 0 0 2 4 534

10:30:00 10:45:00 0 0 0 0 0 0 0 0 0 11 0 0 35 27 162 263 0 0 1 8 0 0 4 0 0 0 0 5 516

10:45:00 11:00:00 0 0 0 0 0 0 0 0 0 11 0 0 45 34 186 250 0 0 7 10 0 0 7 0 0 0 0 7 557

11:00:00 11:15:00 0 0 0 0 0 0 0 0 2 10 0 0 47 32 194 249 0 0 5 12 0 0 3 0 0 0 3 2 559

11:15:00 11:30:00 0 0 0 0 0 0 0 0 0 7 0 0 53 30 173 256 0 0 11 11 0 0 5 0 0 0 2 6 554

11:30:00 11:45:00 0 0 0 0 0 0 0 0 0 12 0 0 50 28 171 260 0 0 10 10 0 0 4 0 0 0 2 4 551

11:45:00 12:00:00 0 0 0 0 0 0 0 0 0 6 0 0 32 18 160 251 0 0 9 6 0 0 6 0 0 0 0 3 491

12:00:00 12:15:00 0 0 0 0 0 0 0 0 0 7 0 0 48 29 146 249 0 2 15 12 0 0 9 0 0 0 2 3 522

12:15:00 12:30:00 0 0 0 0 0 0 0 0 0 4 0 0 58 33 168 246 0 0 13 7 0 0 7 0 0 0 3 4 543

12:30:00 12:45:00 0 0 0 0 0 0 0 0 0 6 0 0 67 31 156 238 0 0 11 8 0 0 8 0 0 0 2 6 533

12:45:00 13:00:00 0 0 0 0 0 0 0 0 0 5 0 0 53 27 140 221 0 0 9 8 0 0 4 0 0 0 1 5 473

13:00:00 13:15:00 0 0 0 0 0 0 0 0 2 8 0 0 69 43 151 212 0 0 3 9 0 0 8 0 0 0 0 3 508

13:15:00 13:30:00 0 0 0 0 0 0 0 0 0 4 0 0 51 24 132 216 0 0 6 5 0 0 3 0 0 0 0 3 444

13:30:00 13:45:00 0 0 0 0 0 0 0 0 0 2 0 0 59 29 128 209 0 0 9 8 0 0 8 0 0 0 3 3 458

13:45:00 14:00:00 0 0 0 0 0 0 0 0 0 3 0 0 50 27 135 223 0 0 6 6 0 0 3 0 0 0 1 3 457

14:00:00 14:15:00 0 0 0 0 0 0 0 0 0 7 0 0 57 34 142 223 0 0 10 8 0 0 2 0 0 0 5 1 489

14:15:00 14:30:00 0 0 0 0 0 0 0 0 0 7 0 0 70 30 153 236 0 0 10 6 0 0 4 0 0 0 5 2 523

14:30:00 14:45:00 0 0 0 0 0 0 0 0 0 4 0 0 47 25 144 220 0 0 9 6 0 0 4 0 0 0 3 3 465

14:45:00 15:00:00 0 0 0 0 0 0 0 0 0 4 0 0 51 27 126 219 0 0 12 5 0 0 6 0 0 0 2 2 454

15:00:00 15:15:00 0 0 0 0 0 0 0 0 0 4 0 0 36 18 142 240 0 0 5 6 0 0 1 0 0 0 2 3 457

15:15:00 15:30:00 0 0 0 0 0 0 0 0 0 3 0 0 37 32 146 251 0 0 16 4 0 0 4 0 0 0 3 3 499

15:30:00 15:45:00 0 0 0 0 0 0 0 0 2 4 0 0 48 36 154 239 0 0 9 7 0 0 3 0 0 0 3 2 507

15:45:00 16:00:00 0 0 0 0 0 0 0 0 0 8 0 0 40 37 131 242 0 0 4 2 0 0 2 0 0 0 3 2 471

16:00:00 16:15:00 0 0 0 0 0 0 0 0 0 9 0 0 33 41 142 226 0 0 7 6 0 0 5 0 0 0 2 0 471

16:15:00 16:30:00 0 0 0 0 0 0 0 0 0 6 0 0 25 30 153 238 0 0 2 8 0 0 3 0 0 0 4 3 472

16:30:00 16:45:00 0 0 0 0 0 0 0 0 0 5 0 0 28 44 163 263 0 0 4 5 0 0 7 0 0 0 4 2 525

16:45:00 17:00:00 0 0 0 0 0 0 0 0 0 10 0 0 45 35 194 278 0 0 10 3 0 0 2 0 0 0 2 4 583

17:00:00 17:15:00 0 0 0 0 0 0 0 0 0 3 0 0 37 25 156 289 0 0 6 8 0 0 3 0 0 0 2 2 531

17:15:00 17:30:00 0 0 0 0 0 0 0 0 0 2 0 0 44 40 200 303 0 0 10 8 0 0 2 0 0 0 4 2 615

17:30:00 17:45:00 0 0 0 0 0 0 0 0 0 4 0 0 38 45 203 312 0 0 12 8 0 0 4 0 0 0 2 3 631

17:45:00 18:00:00 0 0 0 0 0 0 0 0 0 4 0 0 38 35 186 277 0 0 5 4 0 0 2 0 0 0 2 4 557

Station: Padmodaya

Start 
 Time

Bus

Car

Singhadurbar Anamnagar Putalisadak

End 
 Time

Truck

Multi axle Heavy Light Big Mini Micro

Day 2

Utility 
Vehicles

4Wheel 
Drive

Tractor 3-Wheeler Total

Month: August

BicycleMotor Cycle Power Triller
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Sample Data of Bagbazar Leg of Putalisadak Intersection (Day 3) 

 

 

  

Leg: a: c:

a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c: a b c a b c a b c a b c

17:00:00 17:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 177 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 1 6 0 215

17:15:00 17:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 182 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 3 10 1 230

17:30:00 17:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 169 0 0 2 0 0 10 0 0 0 0 0 0 0 0 0 0 3 3 0 206

17:45:00 18:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 155 1 0 1 0 0 7 0 0 0 0 0 0 0 0 0 0 2 4 1 186

18:00:00 18:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 195 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 4 4 0 237

18:15:00 18:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 197 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 7 10 0 243

18:30:00 18:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 190 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 3 4 0 236

18:45:00 19:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 179 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 2 6 0 227

19:00:00 19:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 192 2 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 4 10 2 253

19:15:00 19:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 187 0 0 2 0 0 15 0 0 0 0 0 0 0 0 0 0 5 13 0 245

19:30:00 19:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 172 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 3 9 2 224

19:45:00 20:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 168 0 0 2 0 0 12 0 0 0 0 0 0 0 0 0 0 6 8 0 217

20:00:00 20:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 130 0 0 1 0 0 9 0 0 0 0 0 0 1 0 0 0 2 5 2 165

20:15:00 20:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 126 0 0 1 0 0 8 0 0 0 0 0 0 0 0 0 0 1 1 0 147

20:30:00 20:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 131 0 0 2 0 0 9 0 0 0 0 0 0 0 0 0 0 1 0 1 152

20:45:00 21:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 90 0 0 0 0 0 6 0 0 0 0 0 0 1 0 0 0 1 2 1 110

21:00:00 21:15:00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 0 0 73 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 2 0 2 91

21:15:00 21:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 66 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 3 0 0 78

21:30:00 21:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 55 0 0 0 0 0 5 0 0 0 0 0 0 1 0 0 0 2 1 0 66

21:45:00 22:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 42 0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 1 0 0 49

22:00:00 22:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 32 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 2 0 0 44

22:15:00 22:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 1 0 0 29

22:30:00 22:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 19 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 0 27

22:45:00 23:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 15 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 19

23:00:00 23:15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

23:15:00 23:30:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 8

23:30:00 23:45:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

23:45:00 00:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2 0 0 1020 2 2 8377 33 3 65 3 0 432 0 0 0 0 0 0 7 0 0 0 157 249 68 10422

Multi axle Heavy Light Big
Start 

 Time
End 

 Time

Truck Bus

Station: Putalisadak

4Wheel Drive Tractor 3-Wheeler Power Triller

Bagbazar Dillibazar b:             Hattisar Singhadurbar

Utility Vehicles

Total

Car
Mini Micro

Day 3

Month: August

TotalBicycleMotor Cycle
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APPENDIX B Traffic Volume Count Summary 

 

24 hour Traffic Volume Summary of Singhadurbar Intersection 

 

Day 24 hour Traffic Volume Count Summary 

M-S M-P P-S P-M S-P S-M Total 

Vehicles 

Total 

PCU 

Average 

Daily 

Traffic 

Day 1 5043 17271 4246 17921 5750 37058 87289 47487.5 91417.67 

Day 2 5074 18698 4874 20212 6574 41490 96922 52921.6 

Day 3 5406 17827 4417 18430 5942 38020 90042 49449.7 

Similar to the above tables, M = Maitighar, S = Sahidgate, and P = Putalisadak 
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24 hour Traffic Volume Summary of Putalisadak Intersection 

Day 24 hour Traffic Volume Count Summary 

B-D B-H B-S D-B D-H D-S S-D S-B S-H H-D H-B H-S Total 

Vehicl

es 

Total 

PCU 

Averag

e Daily 

Traffic 

Day 1 130 9496 78 7451 7344 9702 22 6548 20783 36 23 25867 87480 41406.2 93478 

Day 2 288 11158 323 8660 8856 11316 34 7872 20695 62 34 30637 99935 48741.7 

Day 3 163 10146 113 7959 8106 10437 18 7400 20870 56 26 27725 93019 45272.2 

Similar to the above tables, B = Bagbazar, D = Dillibazar, S = Singhadurbar, and H = Hattisar 

 

 

24 hour Traffic Volume Summary of Padmodaya Intersection 

Day 24 hour Traffic Volume Count Summary 

S-A S-P P-A P-S A-S A-P Total 

Vehicles 

Total 

PCU 

Average 

Daily 

Traffic 

Day 1 9341 14651 13059 16955 10798 14188 78992 36670.6 80736.67 

Day 2 10173 14722 12232 18011 12429 15178 82745 39494.3 

Day 3 10153 13143 11953 18159 11578 15487 80473 38705.3 

Similar to the above tables, A = Anamnagar, S = Singhadurbar, and P = Putalisadak 
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APPENDIX C Vehicle Routing and Relative Flow 

 

Relative Flow in Approach Legs of Singhadurbar Intersection 
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Relative Flow in Approach Legs of Putalisadak Intersection 
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Relative Flow in Approach Legs of Putalisadak Intersection (contd.) 
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Relative Flow in Approach Legs of Padmodaya Intersection 
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APPENDIX D Samples of SPSS Output for First Level and Second Level One Way 

ANOVA Testing 
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APPENDIX E Sample of Python Programming Code 

for First Level Sensitivity Analysis 

 

# Sensitivity Analysis of VISSIM Parameters for Modeling Heterogeneous Traffic Conditions Using 
Latin Hypercube Sampling. 
# VISSIM Parameter Sensitivity Analysis 
# Latin Hypercube Sampling to reduce range 
 
# Authors: Aashish Manandhar, Buddha Thapa Magar 
 
import numpy as np 
import matplotlib.pyplot as plt 
import win32com.client as com # VISSIM COM 
from pyDOE import * 
from scipy.stats.distributions import norm 
import pandas as pd 
 
if __name__ == "__main__": 
    LookAheadDistMax = [200, 250, 300, 350]; 
    LookAheadDistMin = [10, 15, 20, 25, 30]; 
    LookBackDistMin = [5, 10, 15, 20, 25, 30]; 
    LookBackDistMax = [80, 120, 150, 180]; 
    W74ax = [0.3, 0.7, 1, 1.5, 2]; 
    W74bxAdd = [0.1, 0.5, 1, 1.5, 2]; 
    W74bxMult = [0, 1, 2, 3]; 
    DiffusTm = [30, 50, 75]; 
    MinFrontRearClear = [0.1, 0.5, 1]; 
    SafDistFactLnChg = [0.2, 0.4, 0.6, 0.7]; 
    LatDistStandDef = [0.1, 0.2, 0.5]; 
    LatDistDrivDef = [0.6, 0.8, 1]; 
 
    Pairs = [LookAheadDistMax, LookAheadDistMin, LookBackDistMin, LookBackDistMax, W74ax, 
W74bxAdd, W74bxMult, DiffusTm, MinFrontRearClear, SafDistFactLnChg, LatDistStandDef, 
LatDistDrivDef]; 
    PairsLength = [len(LookAheadDistMax), len(LookAheadDistMin), len(LookBackDistMin), 
len(LookBackDistMax), len(W74ax), len(W74bxAdd), len(W74bxMult), len(DiffusTm), 
len(MinFrontRearClear), len(SafDistFactLnChg), len(LatDistStandDef), len(LatDistDrivDef)]; 
#========================================================================
========= 
# Latin Hypercube Sampling Design 
# Candidate sets 
    sam = 200 # sample size 
    LHsets = lhs(12, samples = sam)         # Generate candidate sets             
    LHsets = norm(loc=0, scale=1).ppf(LHsets)       # Normalize the value of candidate sets to N(0,1) 
    for i in range(12):                             # Substitute the LH matrix to real value 
        Range = Pairs[i] 
        N = PairsLength[i] 
        Prob = 1/N 
        Interval = []; 
        for k in range(N-1): 
            Interval.append(norm.ppf(Prob*(k+1))) 
        for j in range(sam): 
            for q in range(N-1): 
                if Interval[q] > LHsets[j,i]: 
                    LHsets[j,i] = Range[q] 
                    break 
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                if q == N-2: 
                    LHsets[j,i] = Range[N-1] 
 
    columns = ['LookAheadDistMax', 'LookAheadDistMin', 'LookBackDistMin', 'LookBackDistMax', 
'W74ax', 'W74bxAdd', 'W74bxMult', 'DiffusTm', 'MinFrontRearClear', 'SafDistFactLnChg', 
'LatDistStandDef', 'LatDistDrivDef']; 
 
    parameterData = pd.DataFrame(LHsets, columns= columns); 
    parameterData.to_csv("D:\SimulationOutput\parameterData.csv", header= columns); 
 
#========================================================================
======= 
# VISSIM Configurations 
    # Load VISSIM Network 
    Vissim = com.Dispatch("Vissim.Vissim"); 
    Vissim.LoadNet(r'D:\Engineering\Master of Science in Transportation Engineering\4th Sem - 
Thesis\03. Thesis\02. VISSIM Analysis\03. Singhadurbar - Latest\Singhadurbar Latest.inpx');     
    # Define Simulation Configurations 
    Sim = Vissim.Simulation; 
    Net = Vissim.Net; 
    G = Vissim.Graphics; 
    dbpss = Net.DrivingBehaviors;                                               # Driving behavior module 
    dbps = dbpss.ItemByKey(1);                                                  # Urban (motorized) 
 
    # Set Simulation Parameters 
    TotalPeriod = 3900;        # Define total simulation period 
    WarmPeriod = 300;           # Define warm period 5 minutes      
    Random_Seed = 36;           # Define random seed 
    Random_Seed_increment = 2 
    step_time = 10              # Define Step Time 
    total_number_of_stem_in_each_simulation = TotalPeriod * step_time 
    Sim.SetAttValue('SimPeriod',TotalPeriod); 
    Sim.SetAttValue('SimRes',step_time); 
    Sim.SetAttValue('RandSeed', Random_Seed);    
    Sim.SetAttValue('RandSeedIncr', Random_Seed_increment); 
    Sim.SetAttValue('NumRuns',5); 
    G.CurrentNetworkWindow.SetAttValue('QuickMode',1); 
#========================================================================
======= 
# Test all candidate sets, to reduce the boundary 
 
    output = [] 
    #Run = 1; 
    for i in range(sam): 
        dbps.SetAttValue('LookAheadDistMax',LHsets[i,0]); 
        dbps.SetAttValue('LookAheadDistMin', LHsets[i,1]); 
        dbps.SetAttValue('LookBackDistMin', LHsets[i,2]); 
        dbps.SetAttValue('LookBackDistMax', LHsets[i,3]); 
        dbps.SetAttValue('W74ax', LHsets[i,4]); 
        dbps.SetAttValue('W74bxAdd', LHsets[i,5]); 
        dbps.SetAttValue('W74bxMult', LHsets[i,6]); 
        dbps.SetAttValue('DiffusTm', LHsets[i,7]); 
        dbps.SetAttValue('MinFrontRearClear', LHsets[i,8]); 
        dbps.SetAttValue('SafDistFactLnChg', LHsets[i,9]); 
        dbps.SetAttValue('LatDistStandDef', LHsets[i,10]); 
        dbps.SetAttValue('LatDistDrivDef', LHsets[i,11]); 
         
        for runOfSimulation in range(1,6): 
            for simulationStep in range(total_number_of_stem_in_each_simulation): 
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                if (round(Sim.AttValue("SimSec"),1) == 3899.9)  :                               #To read output at the 
end of a run of simulation 
                    for dataCollectionMeasurementKey in range(1,Net.DataCollectionMeasurements.Count 
+1): 
                        dataCollectionMeasurement = 
Net.DataCollectionMeasurements.ItemByKey(dataCollectionMeasurementKey) 
                        for timeInt in range(1,5): 
                            attribute = 'Vehs(Current,'+ str(timeInt) + ', All)' 
                            data = [i, timeInt, runOfSimulation, dataCollectionMeasurement.AttValue("Name"), 
dataCollectionMeasurement.AttValue(attribute)] 
                            output.append(data) 
                Sim.RunSingleStep() 
    Sim.Stop() 
    columns = ['item','TimeInt', 'RunOfSimulation', 'Name', 'Volume'] 
    parameterData = pd.DataFrame(output, columns= columns) 
    parameterData.to_csv("D:\SimulationOutput\SensitiveAnalysisOutput.csv", header= columns) 
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Appendix F Sample of Python Programming Code 

for Second Level Sensitivity Analysis 

 

# Sensitivity Analysis of VISSIM Parameters for Modeling Heterogeneous Traffic Conditions Using 
Latin Hypercube Sampling (Second Order). 
# VISSIM Parameter Sensitivity Analysis 
# Latin Hypercube Sampling to reduce range 
 
# Authors: Aashish Manandhar, Buddha Thapa Magar 
 
import numpy as np 
import matplotlib.pyplot as plt 
import win32com.client as com # VISSIM COM 
from pyDOE import * 
from scipy.stats.distributions import norm 
import pandas as pd 
 
if __name__ == "__main__": 
    LookAheadDistMax = [200, 250, 300, 350]; 
    LookAheadDistMin = [10, 15, 20, 25, 30]; 
    LookBackDistMax = [80, 120, 150, 180]; 
    DiffusTm = [30, 50, 60, 75]; 
    SafDistFactLnChg = [0.2, 0.35, 0.5, 0.6, 0.7]; 
    LatDistDrivDef = [0.6, 0.7, 0.8, 0.9, 1]; 
 
    Pairs = [LookAheadDistMax, LookAheadDistMin, LookBackDistMax, DiffusTm, 
SafDistFactLnChg, LatDistDrivDef]; 
    PairsLength = [len(LookAheadDistMax), len(LookAheadDistMin), len(LookBackDistMax), 
len(DiffusTm), len(SafDistFactLnChg), len(LatDistDrivDef)]; 
#========================================================================
======= 
# Latin Hypercube Sampling Design 
# Candidate sets 
    sam = 200 # sample size 
    LHsets = lhs(6, samples = sam)         # Generate candidate sets             
    LHsets = norm(loc=0, scale=1).ppf(LHsets)       # Normalize the value of candidate sets to N(0,1) 
    for i in range(6):                             # Substitute the LH matrix to real value 
        Range = Pairs[i] 
        N = PairsLength[i] 
        Prob = 1/N 
        Interval = []; 
        for k in range(N-1): 
            Interval.append(norm.ppf(Prob*(k+1))) 
        for j in range(sam): 
            for q in range(N-1): 
                if Interval[q] > LHsets[j,i]: 
                    LHsets[j,i] = Range[q] 
                    break 
                if q == N-2: 
                    LHsets[j,i] = Range[N-1] 
 
    columns = ['LookAheadDistMax', 'LookAheadDistMin', 'LookBackDistMax', 'DiffusTm', 
'SafDistFactLnChg', 'LatDistDrivDef']; 
 
    parameterData = pd.DataFrame(LHsets, columns= columns); 
    parameterData.to_csv("D:\SecondOrderSimulationOutput\parameterData.csv", header= columns); 
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#========================================================================
======= 
# VISSIM Configurations 
    # Load VISSIM Network 
    Vissim = com.Dispatch("Vissim.Vissim"); 
    Vissim.LoadNet(r'D:\Engineering\Master of Science in Transportation Engineering\4th Sem - 
Thesis\03. Thesis\02. VISSIM Analysis\03. Singhadurbar - Latest - SeconDOrder\Singhadurbar 
Second Order.inpx');     
    # Define Simulation Configurations 
    Sim = Vissim.Simulation; 
    Net = Vissim.Net; 
    G = Vissim.Graphics; 
    dbpss = Net.DrivingBehaviors;                                               # Driving behavior module 
    dbps = dbpss.ItemByKey(1);                                                  # Urban (motorized) 
 
    # Set Simulation Parameters 
    TotalPeriod = 3900;        # Define total simulation period 
    WarmPeriod = 300;           # Define warm period 5 minutes      
    Random_Seed = 36;           # Define random seed 
    Random_Seed_increment = 2 
    step_time = 10              # Define Step Time 
    total_number_of_stem_in_each_simulation = TotalPeriod * step_time 
    Sim.SetAttValue('SimPeriod',TotalPeriod); 
    Sim.SetAttValue('SimRes',step_time); 
    Sim.SetAttValue('RandSeed', Random_Seed);    
    Sim.SetAttValue('RandSeedIncr', Random_Seed_increment); 
    Sim.SetAttValue('NumRuns',5); 
    G.CurrentNetworkWindow.SetAttValue('QuickMode',1); 
#========================================================================
======= 
# Test all candidate sets, to reduce the boundary 
 
    output = [] 
    #Run = 1; 
    for i in range(sam): 
        dbps.SetAttValue('LookAheadDistMax',LHsets[i,0]); 
        dbps.SetAttValue('LookAheadDistMin', LHsets[i,1]); 
        dbps.SetAttValue('LookBackDistMax', LHsets[i,2]); 
        dbps.SetAttValue('DiffusTm', LHsets[i,3]); 
        dbps.SetAttValue('SafDistFactLnChg', LHsets[i,4]); 
        dbps.SetAttValue('LatDistDrivDef', LHsets[i,5]); 
         
        for runOfSimulation in range(1,6): 
            for simulationStep in range(total_number_of_stem_in_each_simulation): 
                if (round(Sim.AttValue("SimSec"),1) == 3899.9)  :                               #To read output at the 
end of a run of simulation 
                    for dataCollectionMeasurementKey in range(1,Net.DataCollectionMeasurements.Count 
+1): 
                        dataCollectionMeasurement = 
Net.DataCollectionMeasurements.ItemByKey(dataCollectionMeasurementKey) 
                        for timeInt in range(1,5): 
                            attribute = 'Vehs(Current,'+ str(timeInt) + ', All)' 
                            data = [i, timeInt, runOfSimulation, dataCollectionMeasurement.AttValue("Name"), 
dataCollectionMeasurement.AttValue(attribute)] 
                            output.append(data) 
                Sim.RunSingleStep() 
    Sim.Stop() 
    columns = ['item','TimeInt', 'RunOfSimulation', 'Name', 'Volume'] 
    parameterData = pd.DataFrame(output, columns= columns) 
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    parameterData.to_csv("D:\SecondOrderSimulationOutput\SensitiveAnalysisOutput.csv", header= 
columns)   
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APPENDIX G Sample of Python Programming Code 

for Automated Calibration Using Genetic Algorithm 

 

# Automated calibration of VISSIM parameters for modeling heterogeneous traffic conditions in 
Kathmandu using Latin Hypercube Sampling and Genetic Algorithm 
# Latin Hypercube Sampling to reduce range 
 
# Authors: Aashish Manandhar, Buddha Thapa Magar 
 
import numpy as np 
import matplotlib.pyplot as plt 
import os 
import win32com.client as com # VISSIM COM 
import geatpy as ga           # Genetic Algorithm Package 
import time 
from pyDOE import * 
from scipy.stats.distributions import norm 
import pandas as pd 
import pygad 
 
# Fitness Calculation for GA 
def fitnessFunction(ga_instance, solution, solution_idx): 
    print("Solution: ", solution) 
    print("solution index: ", solution_idx) 
    output = [] 
    queueLengthOutput = [] 
    dbps.SetAttValue('LookBackDistMax',solution[0]) 
    dbps.SetAttValue('LookAheadDistMin', solution[1]) 
    dbps.SetAttValue('LookBackDistMin', solution[2]) 
    dbps.SetAttValue('W74ax', solution[3]) 
    dbps.SetAttValue('W74bxAdd', solution[4]) 
    dbps.SetAttValue('W74bxMult', solution[5]) 
    dbps.SetAttValue('MinFrontRearClear', solution[6]) 
    dbps.SetAttValue('LatDistStandDef', solution[7]) 
    dbps.SetAttValue('LatDistDrivDef', solution[8]) 
    Sim.RunContinuous() 
    for timeInt in range(1,5): 
 
        # Queue length at three points: 
        queueCounterPoints = Net.QueueCounters.GetMultiAttValues("Name") 
        ''' 
        1: Sahidgate 
        2: Putalisadak 
        3: Maitighar 
        ''' 
 
        for queueCounterPoint in queueCounterPoints: 
            print(queueCounterPoint) 
            queueCounterPointDetail = Net.QueueCounters.ItemByKey(queueCounterPoint[0]) 
            queueLengthData = [timeInt, queueCounterPoint[0], 
queueCounterPointDetail.AttValue("Name"), queueCounterPointDetail.AttValue("QLenMax(Current, 
"+str(timeInt) + ")")] 
            queueLengthOutput.append(queueLengthData) 
         
        # Volume measurements at different points 
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        dataCollectionMeasurementPoints = 
Net.DataCollectionMeasurements.GetMultiAttValues("Name") 
        ''' 
        1 = S-P IN/OUT 
        4 = M-S OUT,M-S OUT 
        5 = P-S OUT 
        10 = M-P OUT,M-P OUT 
        11 = P-M OUT,P-M OUT 
        12 = S-M OUT,S-M OUT 
        ''' 
        outputDataCollectionMeasurementPoints = [t for t in dataCollectionMeasurementPoints if t[0] in 
[1,4,5,10,11,12]] 
        for outputDataCollectionMeasurementPoint in outputDataCollectionMeasurementPoints: 
            dataCollectionMeasurement = 
Net.DataCollectionMeasurements.ItemByKey(outputDataCollectionMeasurementPoint[0]) 
            attribute = 'Vehs(Current,'+ str(timeInt) + ', All)' 
            data = [i, timeInt, outputDataCollectionMeasurementPoint[0], 
dataCollectionMeasurement.AttValue("Name"), dataCollectionMeasurement.AttValue(attribute)] 
            output.append(data) 
     
    columns = ['item','TimeInt', 'data collection measurement index', 'Data Collection Measurement', 
'Simulated Volume'] 
    outputDataFrame = pd.DataFrame(output, columns=columns) 
    newMergedDataFrame = pd.merge(outputDataFrame, Data,  how='inner', left_on=['TimeInt','Data 
Collection Measurement'], right_on = ['TimeInt','Data Collection Measurement']) 
    newMergedDataFrame["Error Percentage"] = (abs(newMergedDataFrame["Simulated Volume"] - 
newMergedDataFrame["Input Data Vehs (All) (veh/hr)"])/newMergedDataFrame["Input Data Vehs 
(All) (veh/hr)"]) * 100 
 
    averageErrorCalculationForEachDataCollectionMeasurementPoints = 
newMergedDataFrame.groupby(["data collection measurement index", "Data Collection 
Measurement"]).agg({"Error Percentage": 'mean'}).reset_index() 
    replacement_dict = { 
        "S-P IN/OUT": 'S-P IN/OUT and M-P OUT,M-P OUT',  
        "M-S OUT,M-S OUT": 'M-S OUT,M-S OUT and P-S OUT',  
        "P-S OUT": 'M-S OUT,M-S OUT and P-S OUT',  
        "M-P OUT,M-P OUT": 'S-P IN/OUT and M-P OUT,M-P OUT', 
        "P-M OUT,P-M OUT": "P-M OUT,P-M OUT and S-M OUT,S-M OUT",  
        "S-M OUT,S-M OUT": "P-M OUT,P-M OUT and S-M OUT,S-M OUT" 
        } 
    averageErrorCalculationForEachDataCollectionMeasurementPoints["CombinedMeasurementPoint"] 
= averageErrorCalculationForEachDataCollectionMeasurementPoints["Data Collection 
Measurement"].replace(replacement_dict) 
    combinedOutputData = 
averageErrorCalculationForEachDataCollectionMeasurementPoints[["CombinedMeasurementPoint", 
"Error Percentage"]].groupby("CombinedMeasurementPoint").agg({"Error Percentage": 
"mean"}).reset_index() 
 
    # Queue Counter Output Details: 
    queueCounterClumns = ['TimeInt', 'Queue Counter index', 'Queue Counter Name', 'QLenMax'] 
    queueCounterOutputDataFrame = pd.DataFrame(queueLengthOutput, 
columns=queueCounterClumns) 
    queueCounterOutputMaxValues = queueCounterOutputDataFrame.groupby('Queue Counter 
index')['QLenMax'].max() 
    queueCounttOutputResult = queueCounterOutputDataFrame.groupby(['Queue Counter index', 
'Queue Counter Name']).agg(maximumQueueLength=('QLenMax',  'max')).reset_index() 
 
    ACTUAL_MAXIMUM_QUEUE_LENGTH = [230.53, 143.93, 198.13] #This data is measured 
values and is  used for error calculation on queue length 
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    queueCounttOutputResult['Error Percentage'] = 
abs((queueCounttOutputResult['maximumQueueLength'] - 
ACTUAL_MAXIMUM_QUEUE_LENGTH)/ACTUAL_MAXIMUM_QUEUE_LENGTH) * 100 
 
 
    # print output: 
    filename = 
f"D:\Output\FINAL_output_ga_005_sin_2_percent_error_20_saturation\generation_{ga_instance.gene
rations_completed}.xlsx" 
    sheet_name = f"solution_{solution_idx}_output" 
    if os.path.isfile(filename): 
        with pd.ExcelWriter(filename, engine="openpyxl", mode="a", if_sheet_exists= "overlay") as 
Writer: 
                outputDataFrame.to_excel(Writer, sheet_name= sheet_name, index= True) 
                newMergedDataFrame.to_excel(Writer, sheet_name= sheet_name, startrow= 30, index = 
True )     
                averageErrorCalculationForEachDataCollectionMeasurementPoints.to_excel(Writer, 
sheet_name= sheet_name, startrow= 60, index = True)      
                combinedOutputData.to_excel(Writer, sheet_name = sheet_name, startrow= 70, index = 
True) 
                queueCounterOutputDataFrame.to_excel(Writer, sheet_name= sheet_name, startrow= 80, 
index= True) 
                queueCounttOutputResult.to_excel(Writer, sheet_name= sheet_name, startrow= 100, index= 
True) 
    else: 
        with pd.ExcelWriter(filename, engine="openpyxl", mode="w") as Writer: 
            population = ga_instance.population 
            populationDf = pd.DataFrame(population, columns= ['LookBackDistMax', 
'LookAheadDistMin', 'LookBackDistMin', 'W74ax', 'W74bxAdd', 'W74bxMult', 'MinFrontRearClear', 
'LatDistStandDef', 'LatDistDrivDef']) 
            populationDf.to_excel(Writer, sheet_name= "parameter", index = True)  
            outputDataFrame.to_excel(Writer, sheet_name= sheet_name, index= True) 
            newMergedDataFrame.to_excel(Writer, sheet_name= sheet_name, startrow= 30, index = True )          
            averageErrorCalculationForEachDataCollectionMeasurementPoints.to_excel(Writer, 
sheet_name= sheet_name, startrow= 60, index = True)      
            combinedOutputData.to_excel(Writer, sheet_name = sheet_name, startrow= 70, index = True)      
            queueCounterOutputDataFrame.to_excel(Writer, sheet_name= sheet_name, startrow= 80, 
index= True) 
            queueCounttOutputResult.to_excel(Writer, sheet_name= sheet_name, startrow= 100, index= 
True)   
    averageError = combinedOutputData.agg({"Error Percentage": "mean"}).values[0] 
    averageQueueLengthError = queueCounttOutputResult.agg({"Error Percentage": "mean"}).values[0] 
 
    # Fitness value 
    fitness = 1/averageError 
    queueLengthFitness = 1/averageQueueLengthError 
    return fitness 
 
 
if __name__ == "__main__": 
#========================================================================
======= 
    # Candidate parameter sets 
    LookBackDistMax = [80, 120, 150, 180] 
    LookAheadDistMin = [10, 15, 20, 25, 30] 
    LookBackDistMin = [5, 10, 15, 20, 25, 30] 
    W74ax = [0.3, 0.7, 1, 1.5, 2] 
    W74bxAdd = [0.1, 0.5, 1, 1.5, 2] 
    W74bxMult = [0, 1, 2, 3] 
    MinFrontRearClear = [0.1, 0.3, 0.5, 0.7, 1] 
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    LatDistStandDef = [0.1, 0.2, 0.3, 0.4, 0.5] 
    LatDistDrivDef = [0.6, 0.7, 0.8, 0.9, 1] 
 
    Pairs = [LookBackDistMax, LookAheadDistMin, LookBackDistMin, W74ax, W74bxAdd, 
W74bxMult, MinFrontRearClear, LatDistStandDef, LatDistDrivDef] 
    PairsLength = [len(LookBackDistMax), len(LookAheadDistMin), len(LookBackDistMin), 
len(W74ax), len(W74bxAdd), len(W74bxMult), len(MinFrontRearClear), len(LatDistStandDef), 
len(LatDistDrivDef)] 
#========================================================================
======= 
# Latin Hypercube Sampling Design 
# Candidate sets 
    sam = 20 # sample size 
    LHsets = lhs(9, samples = sam)         # Generate candidate sets             
    LHsets = norm(loc=0, scale=1).ppf(LHsets)       # Normalize the value of candidate sets to N(0,1) 
    for i in range(9):                             # Substitute the LH matrix to real value 
        Range = Pairs[i] 
        N = PairsLength[i] 
        Prob = 1/N 
        Interval = []; 
        for k in range(N-1): 
            Interval.append(norm.ppf(Prob*(k+1))) 
        for j in range(sam): 
            for q in range(N-1): 
                if Interval[q] > LHsets[j,i]: 
                    LHsets[j,i] = Range[q] 
                    break 
                if q == N-2: 
                    LHsets[j,i] = Range[N-1] 
 
    columns = ['LookBackDistMax', 'LookAheadDistMin', 'LookBackDistMin', 'W74ax', 'W74bxAdd', 
'W74bxMult', 'MinFrontRearClear', 'LatDistStandDef', 'LatDistDrivDef']; 
 
#This part stores the initial parameters into csv file. 
    parameterData = pd.DataFrame(LHsets, columns= columns); 
    parameterData.to_csv("D:\Output\geneticAlgorithmParameterData.csv", header= columns); 
#========================================================================
======= 
 
# This portion performs reading field input volumes for error calculation. 
    Data = pd.read_excel('D:\Output\StandardMeasuredOutputUpdatedVersion.xlsx', sheet_name= 
'GEH Check', header= 0) 
    conditions = [(Data['Time Int'] == "0-900"), (Data['Time Int'] == "900-1800"), (Data['Time Int'] == 
"1800-2700"), (Data['Time Int'] == "2700-3600")] 
    values = [1, 2, 3, 4] 
    Data['TimeInt'] = np.select(conditions, values) 
 
# VISSIM Configurations   
    # Load VISSIM Network 
    Vissim = com.Dispatch("Vissim.Vissim"); 
    Vissim.LoadNet(r'D:\Engineering\Master of Science in Transportation Engineering\4th Sem - 
Thesis\03. Thesis\02. VISSIM Analysis\03. Singhadurbar - Latest Final GA - Error 2%\Singhadurbar - 
Latest Final 2_percent_error.inpx');     
    # Define Simulation Configurations 
    Sim = Vissim.Simulation 
    Net = Vissim.Net 
    G = Vissim.Graphics 
    dbpss = Net.DrivingBehaviors;                                               # Driving behavior module 
    dbps = dbpss.ItemByKey(1);                                                  # Urban (motorized) 
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    # Set Simulation Parameters 
    TotalPeriod = 3900;        # Define total simulation period 
    WarmPeriod = 300;           # Define warm period 5 minutes     
    step_time = 10              # Define Step Time 
    total_number_of_stem_in_each_simulation = TotalPeriod * step_time 
    Sim.SetAttValue('SimPeriod',TotalPeriod) 
    Sim.SetAttValue('SimRes',step_time) 
    Sim.SetAttValue('NumRuns',1) 
    G.CurrentNetworkWindow.SetAttValue('QuickMode',1) 
 
#========================================================================
======= 
# Range for simulation parameters 
    LookBackDistMaxRange = [80, 180] 
    LookAheadDistMinRange = [10, 30] 
    LookBackDistMinRange = [5, 30] 
    W74axRange = [0.3, 2] 
    W74bxAddRange = [0.1, 2] 
    W74bxMultRange = [0, 3] 
    MinFrontRearClearRange = [0.1, 1] 
    LatDistStandDefRange = [0.1, 0.5] 
    LatDistDrivDefRange = [0.6, 1] 
 
    inputParameterRange = np.stack([ 
        LookBackDistMaxRange, 
        LookAheadDistMinRange,  
        LookBackDistMinRange,  
        W74axRange, 
        W74bxAddRange, 
        W74bxMultRange, 
        MinFrontRearClearRange, 
        LatDistStandDefRange, 
        LatDistDrivDefRange 
        ], axis=0) 
     
    init_range_low = inputParameterRange[:,0] 
    init_range_high = inputParameterRange[:, 1] 
    gene_space = [ 
        {"low": LookBackDistMaxRange[0], "high": LookBackDistMaxRange[1]}, 
        {"low": LookAheadDistMinRange[0], "high": LookAheadDistMinRange[1]}, 
        {"low": LookBackDistMinRange[0], "high": LookBackDistMinRange[1]}, 
        {"low": W74axRange[0], "high": W74axRange[1]}, 
        {"low": W74bxAddRange[0], "high": W74bxAddRange[1]}, 
        {"low": W74bxMultRange[0], "high": W74bxMultRange[1]}, 
        {"low": MinFrontRearClearRange[0], "high": MinFrontRearClearRange[1]}, 
        {"low": LatDistStandDefRange[0], "high": LatDistStandDefRange[1]}, 
        {"low": LatDistDrivDefRange[0], "high": LatDistDrivDefRange[1]} 
    ] 
 
 
# This method will be called at the initiation of GA. 
    def on_start(ga_instance): 
        print("Starting generation {generation}".format(generation=ga_instance.generations_completed)) 
 
 
# This method will be called after the completion of each fitness calculation of all chromosomes of 
population set. 
    def on_generation(ga_instance): 
        # Get the current generation number 
        generation = ga_instance.generations_completed 
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        # Get the fitness values of the current population 
        fitness_values = ga_instance.last_generation_fitness 
 
        fitness_values_df = pd.DataFrame(fitness_values, columns=["Fitness"]) 
        fitness_values_df["Average Error"] = 1/fitness_values_df["Fitness"] 
 
        # Storing population generated by GA for each generation. 
        filename = 
f"D:\Output\FINAL_output_ga_005_sin_2_percent_error_20_saturation\generation_{ga_instance.gene
rations_completed}.xlsx" 
        sheet_name = "fitness_output" 
        if os.path.isfile(filename): 
            with pd.ExcelWriter(filename, engine="openpyxl", mode="a", if_sheet_exists= "overlay") as 
Writer: 
                fitness_values_df.to_excel(Writer, sheet_name=sheet_name, index = True) 
        else: 
            with pd.ExcelWriter(filename, engine="openpyxl", mode="w") as Writer: 
                fitness_values_df.to_excel(Writer, sheet_name=sheet_name, index = True) 
     
 
        # Print generation number completed and fitness values of all chromosomes of population used in 
each generation 
        print("Generation:", generation) 
        print("Fitness Values:", fitness_values) 
 
# Process the data, preparing inputs for GA 
    geneticAlgorithm = pygad.GA( 
        num_generations=20,  
        num_parents_mating = 10, 
        fitness_func = fitnessFunction, 
        initial_population = LHsets, 
        num_genes= 9, 
        init_range_low= init_range_low, 
        init_range_high= init_range_high, 
        gene_type = [float, 2], 
        parent_selection_type= "rws", 
        crossover_type= "two_points", 
        crossover_probability= 0.8, 
        mutation_type= "random", 
        mutation_probability=0.05, 
        mutation_by_replacement=False, 
        mutation_percent_genes='20', 
        mutation_num_genes=2, 
        random_mutation_min_val=-1.0, 
        random_mutation_max_val=1.0, 
        gene_space=gene_space, 
        allow_duplicate_genes=False, 
        on_start=on_start, 
        on_fitness=None, 
        on_parents=None, 
        on_crossover=None, 
        on_mutation=None, 
        on_generation=on_generation, 
        on_stop=None, 
        delay_after_gen=0.0, 
        save_best_solutions=False, 
        save_solutions=False, 
        suppress_warnings=False, 
        stop_criteria=["reach_0.5", "saturate_20"], 
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        parallel_processing=None, 
        random_seed=None, 
        logger=None, 
        ) 
     
    geneticAlgorithm.run() 
     
    best_solution = geneticAlgorithm.best_solution() 
    print(best_solution) 
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APPENDIX H Pictures of Field Survey 

 
 

 
 



130 
 

 
 

 



131 
 

 
 

 


