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श�ध स�र

स�म�नतय� कम	ड�टहर (एकल व� बह-कम	ड�ट) ल�ई स	तब�ट गनवम� पठ�उनक	 ल�डग पय	ग गर न! सञ�ल (Network) स#ग

समन&त पव�ह समस�हर ल�ई सञ�ल पव�ह भडनन*। एकल कम	ड�ट पव�ह समस�म� कम	ड�टहरल�ई सम�न म�डनन*   एक स	तब�ट

गनवम� पठ�इन* (बह स	त-गनवक	 अवस�म� यसल�ई भर01अल स	त   गनव पद�न ग !  एकल स	त-गनवम� घट�उन सडकन*) जबडक

बह-कम	ड�ट पव�ह समस�म� डवडभन कम	ड�टहर समन&त स	तहरब�ट समन&त गनवहरम� पठ�इन*। तस7 ग ,  मधवत9

भण� णसडहतक	 पव�ह एक सञ�ल पव�ह समस� ह	 जसम� स	तब�ट पव�डहत कम	ड�टहर गनवम� म�त नभइ उपय0क मधवत9

आशयहरम� पडन पठ�इन* त�डक स	तब�ट क0 ल पव�ह अड@कतम ह	स। अकAतर1 , कनD �फ	 द0ई-तर9 सञ�लम� पव�ह वFनGक	 ल�ग पय	ग

हन! डवड@ ह	 जसम� डवप त डदश�क� सम�न�न  आक1 हर गनवतर1  उल�इन*।

बह-कम	ड�ट पव�ह (Multi-commodity  flow) म� मधवत9 भण� णक	 स�थ पव�हक	 डवस� क	 रपम� ह�म प	डलन	मयल

(Polynomial) समयम� अड@कतम नस  (Maximum  static) बह-कम	ड�ट पव�ह समस�   स0�	-प	डलन	मयल (Pseudo-

polynomial) समयम� अड@कतम गडतशल (Maximum dynamic) बह-कम	ड�ट पव�ह समस� सम�@�न ग*L। प	डलन	मयल समय

अन0म�नक	 ल�डग ह�म प�थडमकत�म� आ@�र त अड@कतम गडतशल बह-कम	ड�ट पव�ह पस0त गद1*M# ज0न डवपदN  ववस�पनम� उपय	ग हन

सक*। तस7ग ,  ह�म प	डलन	मयल समयम� सम�न0प�डतक कमत� स�झ!द�  पडवड@   स0�	-प	डलन	मयल समयम� पव�ह-डनभ1  कमत�

स�झ!द�  डवड@ पय	ग ग !  बनल (स�झ�) आक1 हरम� कमत� स�झ!द�  ग !  अड@कतम (Maximum)   द0त (Quickest) बह-कम	ड�ट

पव�ह समस�हरक	 सम�@�न पद�न गद1*M#। ह�म Length bound   Delta-condensed डवड@हर पय	ग ग !  आ#डशक कनD �फ	क	 स�थ

पव�ह-डनभ1  द0त बह-कम	ड�ट पव�ह समस�क	 प	डलन	मयल समयम�  सम�@�न ग*L।

सञ�ल पव�ह म	�!लहरक	 डवडभन अन0पय	गहर ब�ह!क ह�म	 म0ख लक भन!क	 ह�म� समस�हरल�ई डवपदN  ववस�पन पर दशहरसYग

समन&त गन01 ह	। तसक� ण ह�म स	त/हरल�ई खत � क!त/हर, गनव/हरल�ई  स0 डकत क!त/हर   मधवत9 आशयहरल�ई स	त/हर

भन� त0लन�तक रपम� स0 डकत म�न*M#। एकल कम	ड�ट पव�ह समस� बह-कम	ड�ट पव�ह समस� क	 एक डवश!ष पर नसडत ह	। ह�म

एकल कम	ड�ट अड@कतम गडतशल पव�ह (Maximum Dynamic Flow (MDF))   प� नमक आगमन पव�ह (Earliest arrival flow

(EAF)) समस�हर कमश̀  स�म�न सञ�ल   शF#खल�-सम�न�न  (Series-parallel) सञ�लम� मधवत9 भण� णक	 स�थ प	डलन	मयल

समयम� पव�हक	 प0न �वFडa (Temporally repeated) पय	ग गदb  सम�@�न ग*L।  तस7ग ,  डवप त-सम�न�न  आक1 हरम�  समडमत

(Asymmetric) टD �ननजट समयहरसYग कनD �फ	 समस� सम�@�न गन1 ह�म डवप त-सम�न�न  पथ गठन (Anti-parallel  path

decomposition) पडवड@क	 डवक�स ग*L। मधवत9 भण� ण सडहतक	 अस�य प0न �वFडa समडमत    कनD �फ	 सञ�लम� डवप त-

सम�न�न  पथ गठन डवड@ पय	ग गदb  MDF क	 म�मल� अधयन  दष�न (Case illustration) क	 ल�डग ह�म	 सम�@�न  णनडतल�ई

क�ठम��M#क	 स�क सञ�लम� ल�गd ग*L। श	@ पब&क	 कडमक डवक�सक	 ल�डग, ह�म एकल कम	ड�ट पव�ह  समस�ब�ट स0र ग*L   बह-

कम	ड�ट म�मल�म� रक1 न*M#। 

न	�-आक1  रपम� नभई पथहरल! नfर गनg ग0ण सडहत एडलम!न-पथ रपम� कम	ड�ट पव�ह ल�ई अमdत1 (Abstract) सञ�ल पव�ह भडनन*।

ह�म अमdत1 (Abstract) सञ�लम� मधवत9 भण� णक	 स�थ पव�हल�ई प	डलन	मयल समयम� नस  (Static),  ल!कशक	ग�डरक नस 

(Lexicographic static)   गडतशल (Dynamic) पव�ह समस�हर सम�@�न ग*L। यसल! ग7 -कडसङ पकहरम� पथहरल�ई म	�Nद7   

मधवत9 आशयहर (एडलम!नहर) म� अडतर क पव�ह भण� ण ग !  भ� हट�उन मदत गद1*। अमdत1  सञ�लम� पव�ह स0@�  गन1 ह�म

आ#डशक नfडर#ग (Partial switching) डवड@ पस�व गद1*M#   प	डलन	मयल समयम� अड@कतम   द0त पव�ह समस�हर सम�@�न गद1*M#।

स0डव@� ब�Y�र�Y� (Facility allocation) समस� सञ�ल पव�ह समस�क	 अकA महतपdण1 क!त ह	 जसक	 उद!श उपय0क स�नहरम�

स0डव@�हरक	 पडतस�पनसYग7 पव�ह पस� णल�ई अड@कतम बन�उन0 ह	। ह�म समस�क	 डl-स य सdत डदन*M# जसम� म�डथल	 तहल!

स0डव@�क	 स�नक	 ल�डग उपय0क स�न ख	ज*   तल	 तहल! अड@कतम पव�ह समस�क	 इषतम सम�@�न र! ल� प�*1 । Big-M  

epsilon-Bound डवड@क	 स�थ Karush-Kuhn-Tucker (KKT) रप�न ण समस� सम�@�न गन1 पय	ग गर न! सम�@�न उप�यहर

हनN।
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Abstract

Network flow problems, with single or multiple commodity, are commonly used to transship
the objects from the source to the destination. In single commodity flow problem, objects are
considered to be uniform and are send from a source to a sink (in case of multiple source-sink,
it can be reduced to single source-sink by assigning virtual source and sink) whereas in multi-
commodity flow problem, different commodities are transshipped from respective sources to
corresponding sinks. Similarly, flow with intermediate storage is a network flow problem in
which flow from the source is not only sent to the sink but also at appropriate intermediate
shelters so that total flow out from the source is maximized. On the other hand, contraflow is
very well known and commonly used technique of flow increment in two-way network topology
in which oppositely directed anti-parallel arcs are reversed towards the destination.

As an extension of the flow with intermediate storage in multi-commodity flow (MCF), we solve
the maximum static MCF problem in polynomial time and maximum dynamic MCF problem
in pseudo-polynomial time. For the polynomial time approximation, we present priority based
maximum dynamic MCF which can be useful in disaster management. Similarly, we provide
the approximate solutions to maximum and quickest MCF problems by sharing the capacity
in bundle (common) arcs using proportional capacity sharing technique in polynomial time
and flow-dependent capacity sharing technique in pseudo-polynomial time. We also discuss
the polynomial time approximations of inflow-dependent quickest MCF problem with partial
contraflow configuration using length bound and ∆-condense approaches.

Besides the different applications of network flow models, our main concern is to relate our
problems to the evacuation scenarios. So, we consider source/s as the danger zone/s, sink/s
as the safe zone/s and intermediate shelters comparatively safer than the source/s. As single
commodity flow problem is a special case of multi-commodity flow problem, we solve the sin-
gle commodity maximum dynamic flow (MDF) and earliest arrival flow (EAF) problems with
intermediate storage in general network and series-parallel network, respectively, by using tem-
poral repetition of the flow in polynomial time complexity. Similarly, to solve the contraflow
problem with asymmetric transit times in anti-parallel arcs, we introduce anti-parallel path de-
composition technique. For the implementation of temporally repeated solution to MDF with
intermediate storage and anti-parallel path decomposition to asymmetric contraflow network,

v



we apply our solution strategies to the real road network of Kathmandu, Nepal as the case il-
lustrations. For the sequential development of the thesis, we start with single commodity flow
problem and turn to the multiple commodity case.

Abstract network flow concerns with shifting of the flow not in node-arc form but in element-
path form in which paths must satisfy the switching property. We incorporate the flow with
intermediate storage in abstract network and solve the static, lexicographic static and dynamic
flow problems in polynomial time complexity. It helps to eliminate the congestion by diverting
the flow in non-crossing sides and storing the excess flow at intermediate shelters (elements).
To improve the flow in abstract network, we propose the partial switching technique and solve
maximum and quickest flow problems in polynomial time.

The facility allocation problem is another important area of network flow problem whose ob-
jective is to maximize the flow transmission along with placement of the facilities at appropri-
ate locations. We give the bi-level formulation of the problem in which upper level problem
searches an appropriate location for the placement of the facility and lower level problem finds
the optimal solution of maximum flow problem. A naive approach and Karush-Kuhn-Tucker
(KKT) transformation with big-M constant and ϵ bound method are solution approaches used
to solve the problem.
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Chapter 1

Introduction

In mathematics, graph theory is the study of graphical structures of a physical phenomena with
points and lines which is used to model pairwise relations between them. The line segments
joining the points are considered as arcs and the points of intersection of arcs are considered as
nodes. Graphs can be directed or undirected as per the direction on arcs are assigned or not.
Two special nodes, known as source and sink, are the nodes from which flow started to move
(origin) and flow stopped (destination), respectively. Alternatively, in directed graph, a source
node is a node with no incoming arcs from other nodes, while a sink node is a node with no
outgoing arcs. The rest of the nodes are termed as intermediate nodes. Note that a network
consisting exactly of one source and one sink is said to be two-terminal network. The entities
transshipped from the source to the sink through a network is considered as the network flow.

The possibly best practice to manage and improve the performance of the graphical network
using different strategies is a network optimization. Network flow problems are the class of
optimization problems with objective of the maximization of flow or minimization of time or
cost. The maximum flow problem consists of maximization of flow out from the source to the
destination without violating the capacity constraints (flow must be less or equal to the capac-
ity) on the arcs and flow conservation constraints (inflow = outflow) on the nodes, where total
amount of flow reaching to and out from the node is called inflow and outflow of the node, re-
spectively. An earliest arrival flow problem concerns with maximization of flow not only within
the given time horizon but it maximizes the flow at each point of time. Similarly, transshipment
of the given amount of flow in minimum possible time is considered as the quickest flow prob-
lem, whereas minimum cost flow problem consists of obtaining the cheapest possible routes of
sending a certain amount of flow through the network. The multi-commodity flow problem is a
more complex problem than a single commodity one, in which different commodities are to be
transshipped from respective sources to the corresponding sinks without violating the capacity
and flow conservation constraints (Ahuja et al. (1993); Ford & Fulkerson (1962)).
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1.1 Literature Review

General Network Flow

In network flow, if the flow transshipment problems are modeled with respect to node-arc form
then it is termed as general network flow or classical network flow or simply, network flow. It
is most commonly used method to represent the flow models and their solution strategies. L.
R. Ford and D. R. Fulkerson are the pioneers of network flow problems. The Ford-Fulkerson
algorithm is a very well known algorithm that tackles the max-flow min-cut problem (Ford &
Fulkerson (1956), Ford & Fulkerson (1962)). They also have introduced and solved the maxi-
mum dynamic flow (MDF) problem, which concerns the shifting of maximum amount of flow
from the origin node (source) to the destination node (sink) within the given time horizon, us-
ing temporally repeated flow (TRF) and time expanded network. Later, many researchers have
presented their algorithms to improve the results such as shortest augmenting path algorithm
of Edmonds & Karp (1972), blocking flow algorithm of Dinic (1970), push-relabel algorithm
of Goldberg & Tarjan (1988) and many more. For detailed illustrations of maximum flow
problems and their solution strategies, we refer to the book of Ahuja et al. (1993), book series
of Kotsireas et al. (2018), survey papers of Aronson (1989); Dhamala et al. (2018); Kotnyek
(2003) and the references therein.

An optimal flow over time problem, in which the amount of flow reaching the sink is maximized
at each time step, is an earliest arrival flow (EAF) problem. Gale (1959) has shown that earliest
arrival flows exist for a single source single sink network with constant transit time. Minieka
(1973) and Wilkinson (1971) designed the algorithms for finding earliest arrival flows by

using successive shortest paths. Hoppe & Tardos (1994) presented the first polynomial time
approximation algorithm to solve the problem. More detailed information on it can be found in
Fleischer (2001); Ogier (1988); Ruzika et al. (2011); Tjandra (2003) and references therein.
Similarly, another aspect of the flow problem is minimum cost flow problem in which total cost
of flow transmission is to be minimized by using minimum cost paths. As an application of the
problem in industry, finding the best delivery route from a factory to a warehouse by taking the
road network with capacity and cost is commonly used. Most of other relevant problems can
be modeled as a minimum cost flow problem, since it can be solved by using network simplex
algorithm, and is very fundamental among all flow and circulation problems.

The inverse of maximum dynamic flow problem is the quickest flow (QF) problem, which
concerns the minimization of time to transship the preassigned flow value. By applying a binary
search to the MDF algorithm of Ford and Fulkerson, Burkard et al. (1993) provided the first
polynomial time algorithm for the quickest flow problem. To provide strongly polynomial time
algorithm, they upgraded the algorithm by incorporating a parametric approach to the minimum
cost flow problem. By using the single quickest path, Chen & Chin (1990) and Rosen et al.
(1991) transshipped the given amount of flow from the source to the sink in shortest possible
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time. Lin & Jaillet (2015) solved the quickest flow problem by applying the cost-scaling
algorithm of Goldberg & Tarjan (1990) within the same time complexity. For continuous
time settings, Fleischer & Tardos (1998) provided the first polynomial time algorithm for the
quickest flow problem by using a natural transformation.

Day to day traveling on the busy roads of urban cities, specially in office hour, every one can
realize that the constant (fix) transit times on arcs/roads are not realistic but may vary as per
the change on the flow, known as flow-dependent transit time. Merchant & Nemhauser (1978)
were the first to provide the model for flow-dependent transit times, where flow-dependent cost
function and exit function were considered in each arc. This model being non-linear and non-
convex, Carey (1986) slightly improved the model with convex programming by replacing the
maximum outflow with actual outflow. Flow-dependent models can be classified in two ways:
inflow-dependent transit time and load-dependent transit time. Köhler et al. (2002) introduced
the quickest single source and single sink flow problem in the setting of inflow-dependent transit
time in which the current rate of flow is measured when it enters on the arc and moves with
constant speed throughout the arc. Köhler & Skutella (2005) introduced a model in which, at
any moment of time, the actual speed of the flow depends on the current amount of the flow on
the arc, known as load.

Abstract Network Flow

A generalization of general (or classical) network is an abstract network which is associated
with the set of elements and linearly ordered subset of elements, known as paths. In this network
flow model, paths must satisfy the switching property: when two paths cross at an element then
there must be a path that is a subset of the first path up to the crossing element and a subset
of the second path after the crossing element (McCormick (1996)). More precisely, flows on
crossing paths of an abstract network are diverged to the different directions by switching the
flows on non-crossing sides (e.g., by means of traffic diversion, barricades, etc.).

The concept of abstract flow was first introduced in Hoffman (1974) by reviewing the first
proof of the max-flow-min-cut theorem of Ford & Fulkerson (1956) considering the flows in
terms of paths rather than on arcs. McCormick (1996) provided a polynomial time algorithm
by using an oracle where the input is an arbitrary subset of elements whose output is either a
path contained in that subset or states that no such path exists. The augmenting path structure
is used in his path construction which satisfy the complementary slackness condition: every
positive path meets the cut set exactly at one common element and every element of the cut is
saturated. Martens (2007) computed the unsplittable and k-splitable abstract network flows for
single as well as multi-commodity flows using shortest path oracle. Considering an additional
attribute of weight on paths, Martens & McCormick (2008) extended the result of McCormick
(1996) in more general case. Similarly, a polynomial time algorithm for lexicographic abstract
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maximum flow and its use to prove the existence of abstract earliest arrival flow can be found
in the PhD thesis of Kappmeier (2015).

Flow with Intermediate Storage

Except at the source and sink nodes, most of the network flow models allow the flow conser-
vation constraints where inflow must be equal to outflow. Flow with intermediate storage is a
new trend of research where flow out from the source is stored at some intermediate nodes if
the flow cannot move forward due to either non-conservation of the flow or insufficient time
to reach the next node from the current node. The flow with intermediate storage was first
introduced and modeled by Pyakurel & Dempe (2020) by holding the excess flow at interme-
diate nodes. They introduced the maximum static and maximum dynamic flow problems and
presented polynomial time solution strategies to solve them using lexicographically maximum
flow approach. Similarly, efficient algorithms for the universal maximum flow problem with in-
termediate storage in two-terminal series-parallel networks can be found in Pyakurel & Dempe
(2021). The maximum dynamic flow model for hesitant fuzzy evacuation with intermediate

storage at nodes can be found in Gerasimenko et al. (2022). In an abstract network topol-
ogy, Pyakurel et al. (2022) introduced the maximum static, lexicographic maximum static and
maximum dynamic flow problems with intermediate storage and presented algorithms to solve
the problems in polynomial time complexity. They have introduced the temporally repeated
flow (TRF) technique on switched paths to obtain the flow with intermediate storage. Recently,
Dhamala et al. (2024) introduced the generalized maximum static and dynamic flow problems
with intermediate storage in lossy network and present efficient algorithms for the solutions.

Contraflow

A network in which at least a pair of nodes connected with anti-parallel arcs (oppositely directed
parallel arcs) is called a two-way network. In such a network topology, contraflow (lane rever-
sal) is one of the best and widely used flow improvement technique in which direction of oppo-
site arcs are reversed in such a way that it increase the amount of flow and reduce the traversal
time. Because of the complexity on deciding the flipping of edges in back or forth direction for
the best solution, the contraflow problem becomes NP-hard. Kim & Shekhar (2005) proved
that contraflow problem with bounded evacuation time is NP-complete by transforming the
problem to 3SAT problem. The polynomial solutions to this problem is due to reversing the di-
rection of arcs at initial time. By incorporating the road capacity constraints, multiple sources,
congestion, and scalability, Kim et al. (2008) presented the first macroscopic approach based on
graph theory for the solution of a contraflow network reconfiguration. Rebennack et al. (2010)
presented a polynomial time algorithm to solve the maximum flow problem in two-terminal net-
work by reverting the direction of arcs at time zero and keeping them fixed afterwards. Different
aspects of contraflow configurations with various mathematical models, heuristics, optimization

4



and simulation techniques can be found in Arulselvan (2009); Baumann & Köhler (2007); Kim
& Shekhar (2005); Pyakurel et al. (2017). Using the natural transformation of Fleischer & Tar-
dos (1998), Pyakurel & Dhamala (2016) introduced the continuous time dynamic contraflow
model and presented efficient algorithms to solve the maximum, quickest, and earliest arrival
flow problems.

The maximum dynamic contraflow (MDCF) problem with intermediate storage and its poly-
nomial solution can be found in Pyakurel & Dempe (2020). Similarly, in general as well as
two-terminal series-parallel networks, efficient algorithms for the universal maximum flow and
contraflow problems with intermediate storage can be found in Pyakurel & Dempe (2021).
Pyakurel et al. (2019) introduced the concept of partial contraflow, in which only necessary
arc capacities are reversed to increase the flow value and remaining arc capacities are saved
for other emergency purpose like facility allocation and logistic supports. For these contraflow
problems, networks are considered with symmetric transit times in anti-parallel arcs. For the
contraflow with different transit times on anti-parallel arcs, Bhandari & Khadka (2020) studied
the solution strategies for maximum and earliest arrival flow with symmetric reversal of each
arc, where the auxiliary network in their modified network is an undirected network and sym-
metric reversal exists in the arcs after contraflow configuration as similar to Rebennack et al.
(2010). Nath et al. (2021) investigated on the concept of contraflow with orientation dependent
transit times and solved the maximum dynamic and quickest contraflow problems in polynomial
time. Similarly, maximum dynamic contraflow problem in a general network and earliest ar-
rival contraflow problem in two-terminal series-parallel network with asymmetric transit times
on anti-parallel arcs allowing the intermediate storage of flow can be found in Khanal et al.
(2021a).

Multi-commodity Flow

Multi-commodity flow (MCF) problem concerns with shipment of several different commodi-
ties from respective sources to corresponding sinks through a network without violating the ca-
pacity constraints associated with the arcs. Many network routing and network design problems
such as message routing in telecommunication, production scheduling and planning, supply
chains network, scheduling and routing in logistics and transportation, distribution system de-
sign, etc. are some multi-commodity network flows. The static and dynamic multi-commodity
flow problems and their solution procedures can be found in Ahuja et al. (1993); Ali et al,
(1980); Assad (1978); Kennington (1978). The static multi-commodity flow problem is

polynomial time solvable by using the ellipsoid or interior point method, whereas dynamic
multi-commodity flow problem is NP-hard, Hall et al. (2007a); Hall et al. (2007). By us-
ing time expanded network, Kappmeier (2015) provided the solution of maximum dynamic
multi-commodity flow problem and multi-source single sink multi-commodity earliest arrival
transshipment problem in pseudo-polynomial time complexity.
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The maximum multi-commodity flow over time problem with partial contraflow is presented
by Pyakurel et al. (2020). Dhamala et al. (2020) presented algorithms to solve the quickest
multi-commodity contraflow problem with partial reversal of arcs, where given amount of flow
is to be transshipped in minimum possible time. Khanal et al. (2021) presented the pseudo-
polynomial time algorithms for maximum multi-commodity flow and contraflow problems with
intermediate storage where contraflow is configured for the network with symmetric as well as
asymmetric transit times on arcs. Priority based static multi-commodity flow problem and its
polynomial time solution strategy is presented in Khanal et al. (2020).

Flow with Facility Allocation

The facility allocation problem concerns with allocation of the facilities at appropriate locations
and optimization of the flow value on the facilitated network. The impact of the placement
of facility is that it decreases the capacity of arc by the size of the facility. Weber (1909)
introduced the first location flow theory with the application in industries. Different discrete
location models and algorithms with applications can be found in Daskin (1997). Later on,
Hamacher et al. (2013) introduced the single and multiple flow location (FlowLoc) problems by
combining the network flows and locational analysis, and presented polynomial time algorithms
for the 1-FlowLoc problem and polynomial time heuristics for the q-FlowLoc problem. By
incorporating the contraflow problem, Dhungana & Dhamala (2019) presented the polynomial
time solution strategies to solve the maximum static and maximum dynamic ContraFlowLoc
problems. Similarly, Nath et al. (2021) solved the quickest flow location problem with single
and multiple facilities and presented polynomial time algorithm and polynomial time heuristics,
respectively.

Bi-level Optimization

Bi-level optimization problem, also known as leader-follower problem, is hierarchical opti-
mization problem having two decision makers. The leader problem is considered as upper level
whereas follower problem is considered as lower level. This problem was first introduced by
von Stackelberg (1934) in his habilitation thesis, where the problem was originated on eco-
nomic game theory. Bracken & McGill (1973) has given the first formal definition of bi-level
problem for the military application. The basic models and the characterizations of the problem,
areas for application and the existing solution approaches can be found in the review papers of
Wen & Hsu (1991); Vicente & Calamai (1994). In addition, we refer to the papers of Anan-
dalingam & Friesz (1992); Ben-Ayed (1993), survey papers of Colson et al. (2005); Colson et
al. (2007) and the books of Bard (1998); Dempe (2002); Dempe (2020); Dempe & Zemkoho
(2020) and the references therein for the detailed illustrations.
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1.2 Rationale of the Study

In day to day life, every individual probably has realized the transshipment of more than one
different commodities, directly or indirectly. Our main concern in this thesis is to deal with the
maximum and quickest flow problems and their solution strategies on multi-commodity flow
network, whose special case is the single commodity flow with only one commodity. Similarly,
improvement of the flow in existing network topology is very essential task when instant exten-
sion of the topological structure is impossible, especially for post disaster or peak hour traffic
managements. In this research study, intermediate storage of flow, congestion minimization by
crossing elimination and contraflow configuration with a novel technique are used as the key
tools of flow improvement. For the convenient of the study and sequential development of the
tasks, we start with single commodity flow problems and move to the multi-commodity one.

Excess flow is the flow out from the source but unable to reach the destination due to capacity
constraints of the arcs or insufficient time to reach the next node. Instead of returning back,
storage of such flow at intermediate shelters plays an important role to improve the flow trans-
mission. Theoretic and computational results on the flow with intermediate storage by introduc-
ing temporally repeated solution strategy is a fruitful achievement of the study. Incorporating
the intermediate storage, we solve the maximum multi-commodity flow problem. Similarly,
at the time of disasters, every individual may not hurt equally. So, the study of priority based
evacuation with respect to case sensitivity using multi-commodity flow model is a useful task.

On solving single as well as multi-commodity flow problems, contraflow with symmetric or
orientation dependent transit times improves the amount of flow significantly. By adopting this
technique, the quickest multi-commodity flow with partial lane reversal and inflow-dependent
quickest multi-commodity flow with partial lane reversal are the reasonable areas of our study.
Together with this, introducing the new concept to solve the contraflow problem in asymmetric
network using anti-parallel path decomposition and its computational findings for maximum
and quickest contraflow problems for the single commodity network flow is remarkable. Sim-
ilarly, route-based evacuation procedure presented for asymmetric network using anti-parallel
path decomposition is also an achievement of the study.

At the time of disasters, every individual desires to leave the danger zone as quickly as possible,
which causes extensive congestion at the crossing of the roads. Abstract network flow strictly
prohibits the crossing of the flow at intersections by switching the flow towards the non-crossing
sides. It can be a milestone to save the lives at the time of evacuation and also helpful in
distribution or supply chain management. An important aspect of this study is to integrate
the concept of abstract network flow and intermediate storage, and develop the mathematical
models and their solution strategies. Similarly, providing the essential facilities like foods and
medicines to the evacuees is another important issue. We design the model and present the
solution strategy to solve the problem using bi-level optimization.
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1.3 Objectives

The general objective of this study is to construct mathematical models and develop solution
procedures for single as well as multi-commodity flow with intermediate storage. As a special
case of the multi-commodity flow, we start our study from single commodity flow with inter-
mediate storage and turn to the multi-commodity one. We aim to study the flow problems with
different aspect of transit times on arcs/paths such as constant, flow-dependent, symmetric and
asymmetric. The specific objectives of the study are as follows.

• Develop the mathematical models for single as well as multi-commodity flow problems
and connect them with evacuation planning problems.

• Extend the mathematical models of above problems by incorporating the intermediate
storage of flow and study the importance in evacuation planning problems.

• Design the solution strategies to solve above problems and test the computational perfor-
mance of the algorithms.

1.4 Structure of the Thesis

The structure of the thesis is as follows. Chapter 2 concerns with general (classical) network
flow which is divided in four sections - notations and terminologies, general network flow mod-
els, flow with intermediate storage and contraflow. The temporally repeated solution strategy
for MDF and EAF problems with intermediate storage and the asymmetric contraflow with
anti-parallel path decomposition are novel work of this research study.

In Chapter 3, network flow problems in abstract network are studied. We divide the chapter
in two sections - abstract network flow with intermediate storage and abstract network flow
with partial switching. For the abstract flow with intermediate storage, we solved the maxi-
mum static, lexicographic maximum static and maximum dynamic flow problems whereas for
abstract flow with partial switching, maximum and quickest flow problems are introduced and
solved in polynomial time.

Chapter 4 refers to the multi-commodity network flow problems and their solution strategies.
It is divided in two sections - maximum and quickest multi-commodity flows. Priority based
maximum MCF, maximum and quickest MCF problems with proportional as well as flow-
dependent capacity sharing, maximum MCF with intermediate storage and inflow-dependent
quickest MCF with partial contraflow configuration are the findings of our research study.

The bi-level formulation of the facility allocation problem is presented in Chapter 5. Two
solution approaches - a naive approach and Karush-Kuhn-Tucker (KKT) transformation are
used to solve the problem. The thesis is summarized and concluded in Chapter 6.
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Chapter 2

General Network Flow

In this chapter, we discuss the basic notations used throughout the thesis which are essential for
the development of mathematical models. As the fundamental approach of the study is based
on the network optimization, basically linear programming, graphical representation of general
network with set of nodes (junctions) and arcs (links) having specific attributes are considered.

s

x

y

t

5,1

7,2

6,1

3,1

2,1

Figure 2.1: Directed network
with capacity and transit time.

In mathematics, network is often referred to as graph which
reflect the physical phenomena with a set of objects (nodes
or vertices) that are connected together. Network with differ-
ent attributes is used as an input of mathematical optimization
problem. It is used to analyze and design the mathematical
model of large systems such as communication, transporta-
tion, manufacturing networks, etc. and provide optimal so-
lution. A network is called a directed network if the links
(arcs) joining the pair of nodes are pointed in only one di-
rection. If all the links are bidirectional or undirected, then
the network is an undirected network. For example, Fig-
ure 2.1 presented alongside is a directed network having four nodes {s, x, y, t} and five arcs
{(s, x), (s, y), (y, x), (x, t), (y, t)} with two attributes, a capacity and a transit time, on each
arc. Here, s and t are two special nodes, the source node with no incoming arcs and the sink
node with no outgoing arcs, respectively. Rest of the nodes are called intermediate nodes. For
any arc (u, v), node u stands for the tail node and v, the head node. Our assumption is that the
network does not contain parallel arcs (i.e., two or more arcs with the same tail and head nodes)
except for the contraflow configuration.

In this chapter, we first fix the mathematical notations used throughout the thesis and present
the mathematical models. Thereafter, flow problems with intermediate storage and the TRF
solutions will be discussed. Symmetric and asymmetric contraflow problems and route-based
evacuation will be discussed in the last section of this chapter.
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2.1 Notations and Terminologies

Consider a directed network Π having a set of nodes N with cardinality |N | = n and a set of
arcs A (i.e., set of ordered pair of nodes) with cardinality |A| = m. Most commonly, the nodes
are also termed as vertices, elements or junction points and the arcs as links, branches or edges.
Each arc a = (u, v) ∈ A has an initial point u = tail(a) and a final point v = head(a). Each
arc consists of two attributes, non-negative integer capacity function κ : A → Z+

0 that limits the
flow on arc and the non-negative real valued transit time function τ : A → R+

0 that measures
the transmission time from u to v. Any particle starting at node u at time θ reaches to v at time
θ + τa. Similarly, we denote

Γout
u = {a ∈ A : tail(a) = u} and Γin

u = {a ∈ A : head(a) = u}

as the set of outgoing arcs from and incoming arcs to the node u, respectively. The time horizon
of the flow transmission T is represented in discrete time setting as T = {0, . . . , T} ⊂ Z+

0 .
In continuous time setting, flow is transmitted continuously over the time and is denoted by
T = [0, T ) ⊂ R+

0 . However, this study is mainly focused on discrete time setting, except for
inflow-dependent transit time. We represent source and sink nodes by s and t, respectively, so
that Γin

s = ∅ and Γout
t = ∅, except for the two-way network. Rest of the nodes are termed as in-

termediate nodes denoted by I = N \{s, t}. The collection Π = (N ,A, κ, τ, s, t, T ) represents
the dynamic network topology that captures the graphical structure of physical phenomena.

In some aspect of the flow transmission, we also have to consider the capacity function on the
nodes defined by ν : N → Z+

0 so that the dynamic network becomes Π = (N ,A, κ, ν, τ, s, t, T ).
The cost function c : A → R+

0 can also be included in the network as per the necessity, which
represents the per unit cost of flow transmission. In a network, if the time components τ and T
are absent, then the network becomes a static one and is represented by Π = (N ,A, κ, c, s, t).
Network defined above is a directed network because each arc is directed from a fix tail node
to a fix head node. If the head and tail nodes of the arcs are undefined, then the network be-
comes undirected. A two-terminal network is one which consists exactly one source and one
sink where as multi-terminal network is one which contains more than one source and/or sink.

Chain, Path and Cycle. Consider a subset {u1, . . . , ul} ⊆ N (l ≥ 2) of distinct nodes of the
network Π such that the ordered pair ai = (ui, ui+1) forms an arc inA, ∀i = 1, . . . , l− 1. Then
the sequence of nodes and arcs

u1, a1, u2, . . . , al−l, ul (2.1)

is called a chain from u1 to ul. If u1 = s and ul = t, then it is termed as a s− t chain. Similarly,
if first and last components of the sequence are same (i.e. u1 = ul), then it forms a cycle. The
chain formed in equation 2.1 is said to be a path from u1 to ul if ai = (ui, ui+1) or ai =
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(ui+1, ui), ∀i = 1, . . . , l− 1. Thus, the direction of arcs in a path may be forward or backward.
The chain is also termed as standard chain or even commonly, directed path. A path which is
not a chain is also known as non-standard chain. We denote the set of directed paths (chains)
and cycles by P and C, respectively.

Time Expanded Network. For the given network Π = (N ,A, κ, τ, s, t, T ) with time horizon
T , a time expanded network of Π is denoted by ΠT = (N T ,AT , κ, τ, s(θ), t(θ), T ) in which

t

x

y

s

θ → 0 1 2 3 4 5

Figure 2.2: Time expanded net-
work of Figure 2.1 with T = 5.

the original network is splitted over the time T with du-
plication of each node u ∈ N at every time period by
u(0), . . . , u(T ). Thus, N T contains T + 1 copies of origi-
nal nodes. Arc set AT = AM ∪ AH consists the arcs of two
types, movement arcsAM = {(u(θ), v(θ+τa)) : a = (u, v) ∈
A, θ ∈ T } and holdover arcs AH = {(u(θ), u(θ + 1)) : u ∈
N , θ ∈ T }. Movement arcs carry the objects from tail node
to the head node beyond the limit of their predefined capaci-
ties and transit times whereas holdover arcs hold the flow for
unit time step with infinite (sufficiently large) capacity. Here,
Figure 2.2 represents the time expanded network of Figure 2.1
with time horizon T = 5 where solid arrows represent the
movement arcs and dashed arrows represent the holdover arcs.

Flow Network. In graph theory, a flow is an object or a material that is to be shipped from
one point to another point. The amount of flow on an arc can not exceed its capacity, known
as capacity constraint. A directed graph with capacitated arcs which transships the flow from
a fixed node (source) to another fixed node (sink) without violating the capacity constraint on
each arc is called flow network. Flow network can be static or dynamic according to absence or
presence of the time component on it.

Network Flow Problems. Different classes of computational problems in which input is the
flow network and whose output is the execution of flow are called network flow problems. At
each arc, the capacity constraint needs to be satisfied, and at each node except source and sink,
flow conservation (inflow = outflow) has to be satisfied. Some commonly used network flow
problems are maximum flow, minimum cost flow, quickest flow, earliest arrival flow, multi-
commodity flow, etc.

Maximum flow problem concerns with shipment of maximum amount of flow from the source
to the sink. For the flow network with cost in arcs, minimum cost flow problem seeks to find
the minimum possible cost to transship the given amount of flow. A similar variant of the
problem in dynamic network is the quickest flow problem in which minimum possible time is
to be executed to transship the given amount of flow from source to the sink. The calculation
of maximum flow, not only in time horizon T but at each time step θ ∈ T , is an earliest arrival
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flow problem. Similarly, a flow problem with more than one different commodities in which
each commodity is transshipped from respective source to corresponding sink with total flow
amounts together respects the capacity constraint in each arc is known as multi-commodity flow
problem.

2.2 General Network Flow Models

In this section, a brief explanation of the flow models in static as well as dynamic network
topology will be considered. These models are based on general network where each equation
is defined on node-arc form. Apart from this, only in Chapter 3, the model in element-path form
will be formulated for an abstract network flow.

2.2.1 Static Flow Model

Consider a static network Π = (N ,A, κ, c, s, t), where symbols have their usual meaning. The
static flow ϕ is defined by the function ϕ : A → R+

0 satisfying the following constraints.

∑

a∈Γout
u

ϕa −
∑

a∈Γin
u

ϕa =





|ϕ| for u = s

−|ϕ| for u = t

0 for u ∈ I
(2.2a)

0 ≤ ϕa ≤ κa, ∀ a ∈ A (2.2b)

Here, equation (2.2a) represents the flow conservation constraint for each intermediate node and
non-conservation of flow at source and sink. The positive and negative signs of |ϕ| in right hand
side stands for supply from the source and demand to the sink, respectively. Equation (2.2b) rep-
resents the capacity constraint for each arc where flow is non-negative and must not exceed the
capacity of the arc. The notation |ϕ| refers to the value of the flow ϕ. Flow function satisfying
only the capacity constraint is called pseudo-flow whereas if it satisfy both flow conservation
and capacity constraints, then the flow is feasible. The objective functions can be considered
depending on the goal of the problem types as follows.

Maximum Static Flow. If the goal of the mathematical formulation is to maximize the flow
from s to t, then the objective function with flow value |ϕ| is

max |ϕ| =
∑

a∈Γout
s

ϕa =
∑

a∈Γin
t

ϕa. (2.3)

Thus, maximize |ϕ| subject to the constraints (2.2a–2.2b) is a maximum static flow (MSF)
problem. Analogously, we say that flow function ϕ is maximum flow function if there does not
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exist a flow function ϕ∗ such that |ϕ∗| > |ϕ|.

Minimum Cost Flow. Minimum cost flow problem concerns with the minimization of the cost
of given flow not exceeding the maximum flow. Thus, if the goal is to minimize the total cost
of flow transmission, then the objective function becomes

min c(ϕ) =
∑

a∈A
caϕa, (2.4)

and equation (2.4) together with constraints (2.2a–2.2b) is a minimum cost flow problem.

Minimum Cut. The dual problem of maximum flow problem is a minimum cut problem. Let
(Π1,Π2) be a partition of network Π in to two sub-networks with corresponding partition of
nodes N1 and N2 such that s ∈ N1, t ∈ N2, N1 ∩ N2 = ∅ and N1 ∪ N2 = N . Define a set X
of minimum cut arcs as

X =

{
a = (u, v) ∈ A : u ∈ N1, v ∈ N2,

∑

a

κa is minimum

}
.

The sum of capacities of the minimum cut arcs in X equals the maximum static flow in Π.

Path Flow Decomposition. Let P be a set of directed paths (chains) from the source to the sink
and P ∈ P . Define a binary variable γ with respect to the arc a by

γa =

{
1 if a ∈ P
0 otherwise.

Then the flow function ϕP : P → R+
0 satisfying the path capacity constraint

∑

P∈P:a∈P
γaϕP ≤ κa (2.5)

is a static arc-path flow function from the source to the sink. The total flow function on s − t
paths is ϕ =

∑
P∈P

ϕP . With this argument, every arc flow can be decomposed to the path flow.

Observation 2.1 (Ford & Fulkerson (1962)). If ϕ is a node-arc flow from source node s to the
sink node t with flow value |ϕ| > 0, then there exists the path (chain) flow from s to t such that
every arc of the path has flow ϕ > 0.

2.2.2 Dynamic Flow Model

Dynamic flow, also known as flow over time, is an accumulation of the static flow over the time
which can be reached to the sink within the given time horizon T . The dynamic flow function Φ,
with flow value |Φ|, defined on the dynamic network Π = (N ,A, κ, τ, s, t, T ) is the collection
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of non-negative arc flow functions Φa : A× T → R+
0 satisfying the following constraints.

∑

a∈Γout
u

θ∑

β=τa

Φa(β) −
∑

a∈Γin
u

θ∑

β=0

Φa(β − τa) ≤ 0, ∀u ∈ I, θ ∈ T (2.6a)

∑

a∈Γout
u

T∑

θ=τa

Φa(θ) −
∑

a∈Γin
u

T∑

θ=0

Φa(θ − τa) =





|Φ| for u = s

−|Φ| for u = t

0 for u ∈ I
(2.6b)

0 ≤ Φa(θ) ≤ κa, ∀a ∈ A, θ ∈ T (2.6c)

Here, Φa(θ) represents the flow starting the tail node of arc a at time θ. Equation (2.6a) repre-
sents the weak flow conservation at intermediate nodes in time step θ, where outflow may not
exceeds the inflow. The flow conservation at time horizon T is presented in the third condition
of equation (2.6b), whereas the first and second conditions are the supply and demand, respec-
tively. The satisfiability of capacity constraint in each arc at any time step θ is represented by
equation (2.6c), where capacity is an upper bound of the flow.

As in static flow problem, the objective function of the dynamic flow problem depends on the
goal of the problem. The objective of flow maximization problem within the given time horizon
T is

max |Φ| =
∑

a∈Γout
s

T∑

θ=0

Φa(θ) =
∑

a∈Γin
t

T∑

θ=τa

Φa(θ − τa), (2.7)

where |Φ| represent the value of the flow induced by the flow function Φ. Equation (2.7) together
with constraints (2.6a–2.6c) is known as maximum dynamic flow (MDF) model. The dynamic
flow function Φ is a maximum dynamic flow function if no any other dynamic flow function Φ∗

can be found satisfying |Φ∗| > |Φ|.

In the quickest flow (QF) problem, the objective is to minimize the makespan for the shipment
of the given amount of flow. Thus, the quickest flow problem is to minimize T satisfying the
constraints (2.6a–2.6c), for which |Φ| is given amount of flow to be shipped from the source
(i.e., supply). Analogously, if T is the quickest time to satisfy the supply |Φ| and denoted by
T (|Φ|), then there does not exist T ∗ such that T ∗(|Φ|) < T (|Φ|).

An earliest arrival flow (EAF) problem is to obtain the maximum flow out from the source
which is to be reached maximally to the sink at each time step θ ∈ T . Thus, The mathematical
model for an EAF problem is

max |Φ(θ)| =
∑

a∈Γout
s

θ∑

β=0

Φa(β) =
∑

a∈Γin
t

θ∑

β=τa

Φa(β − τa), ∀θ ∈ T (2.8)
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satisfying constraints (2.6a–2.6c).

Temporally Repeated Flow (TRF). On solving dynamic flow problems, most commonly used
technique is a TRF in which constant rate of static flow is repeated along the decomposed paths
(chains) within the time frame. For a feasible static flow ϕ, let ϕP be its flow decomposition
to the directed paths P ∈ P . Also, let τP =

∑
a∈P

τa be path time and T be given time horizon.

Flow sending from the source with constant flow rate ϕP along the decomposed paths P ∈ P
repeatedly during the time steps 0 to T − τP executes the dynamic flow, known as temporally
repeated flow (TRF). Throughout the thesis, we use the term ‘paths’ for flow carrying directed
paths with length not exceeding the time horizon T , i.e.,

∑
a∈P

τa ≤ T, ∀P ∈ P .

Observation 2.2 (Ford & Fulkerson (1962); Skutella (2009)). Let ϕP be the path flow decom-
position of a feasible static s-t flow ϕ such that ϕP = 0 for τP > T . Then the value of the
corresponding TRF Φ is

|Φ| =
∑

P∈P
(T + 1− τP )ϕP = (T + 1)|ϕ| −

∑

a∈A
τaϕa (2.9)

Continuous Time Dynamic Flow. To this point, we discussed on discrete time maximum
dynamic flow problems, where dynamic flow function Φ assigns the flow from source node at
each time step θ = 0, . . . , T satisfying the capacity constraints. Here, we discuss the flow in
continuous time setting. A continuous dynamic flow function Φ̃ is defined as the flow rate per
unit time [θ, θ + 1) that leaves from the source at each moment of time without violating the
capacity constraints on the arcs.

Fleischer & Tardos (1998) established the strong relation between discrete and continuous flow
models by using natural transformation. This natural transformation defines the continuous
dynamic flow for time interval [θ, θ+1) with Φ̃a[θ, θ+1) = Φa(θ), where Φa(θ) is the discrete
dynamic flow entering arc a ∈ A at each time step θ = 0, . . . , T . The discrete time flow can
be transformed to continuous time flow as follows: any discrete flow over time Φa with integral
time horizon T is equivalent to the continuous flow over time Φ̃a[θ, θ + 1) by incorporating the
flow Φ entering arc a at time step θ ≤ T − τa as a constant flow rate on arc a during the unit
time interval [θ, θ + 1). Mathematically,

∫ θ+1

θ

Φ̃a(β)dβ = Φa(θ), ∀ a ∈ A.

2.3 Flow with Intermediate Storage

For the flow with intermediate storage, network topology Π = (N ,A, κ, ν, τ, s, t, T ) with node
capacity ν is considered, where νu represent the holding capacity of the intermediate node u.
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For the existence of a feasible solution, the capacity of intermediate node is considered at least
the sum of capacity of the incoming arcs, i.e., νu ≥

∑
a∈Γin

u

κa, ∀u ∈ I (Pyakurel & Dempe

(2020)). Similarly, capacity of source and sink are considered sufficiently large, say infinity.
Flow with intermediate storage is applicable in various supply chain management situations
like industrial product distribution, water supply, electricity supply, etc. and also in evacuation
planning and disaster management. In this section, we discuss on maximum static and dynamic
flow problems with intermediate storage and their solution procedures in brief.

2.3.1 Maximum Static Flow with Intermediate Storage

For a given network Π, the objective of the maximum static flow problem with intermediate
storage is to maximize the flow leaving from source s that is to be sent to the sink t via s−t paths
by allowing the storage of maximum excess flow at intermediate nodes with storage capacity
νu ≥

∑
a∈Γin

u

κa, ∀u ∈ I.

Flow Model. For the static flow function ϕ on the given network Π, define an arc flow func-
tion ϕa : A → R+

0 that transships the flow on arcs and the excess flow function ϕ̂u : I →
R+

0 , ∀u ∈ I that holds the flow at intermediate nodes. As in Pyakurel & Dempe (2020), the
linear programming formulation of static flow with intermediate storage is as follows.

max |ϕ| (2.10a)

such that,

∑

a∈Γout
s

ϕa = |ϕ| =
∑

a∈Γin
t

ϕa +
∑

u∈I
ϕ̂u (2.10b)

∑

a∈Γin
u

ϕa −
∑

a∈Γout
u

ϕa = ϕ̂u, ∀u ∈ I (2.10c)

0 ≤ ϕa ≤ κa, ∀a ∈ A (2.10d)

0 ≤ ϕ̂u ≤ νu, ∀u ∈ I (2.10e)

Here, equation (2.10a) is an objective function which intends to maximize the flow. Equa-
tion (2.10b) represents that the static flow with intermediate storage is the total flow out from
the source which is equal to the sum of inflow at the sink and the excess flow at the intermediate
nodes. The excess flow at each intermediate node is represented by equation (2.10c). The con-
straint in (2.10d) represents the capacity constraint on each arc which means that the arc flow is
bounded by its capacity. Similarly, constraints (2.10e) represent the boundedness of the excess
flow at each intermediate node by the storage capacity of the node.

Solution Procedure. To solve the problem, first step is to decide the priority order of nodes,
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which can vary as per the problem instance. For example, if the problem instance is to solve
the problem for distribution network, then order priority can be fixed as ‘higher in demand
higher in priority’. Similarly, if the problem instance is for the evacuation network in which
source is a danger zone and sink is a safe zone, then ‘farther the distance from the source higher
in priority’ can be set with assumption that the places far from the danger zone are relatively
safer. Pyakurel & Dempe (2020) used the distance from the source to fix the priority order of
intermediate nodes as their problem was the disaster management.

As considered in Pyakurel & Dempe (2020), the sink is most appropriate place to store the flow
with sufficient (infinite) node capacity. So, possible maximum flow is shifted to their respective
sink as the first priority node. To store the excess flow at intermediate nodes, they set the priority
order with respect to the distance or cost. For this, they have calculated the shortest distance
d[s,u] (considering cost as distance) of each u ∈ I by using algorithm of Dijkstra (1959). The
minimum cost path is considered as the shortest path and the priority is given to the farthest
node among the nodes with shortest distance. That is, if d[s,u1] > d[s,u2], then u1 has higher
priority than u2 and is denoted by u1 ≻ u2, ∀u1, u2 ∈ I . The equality in distance implies the
mutability in the priority order. We adopt the same technique for the priority.

The second step of the solution procedure is to construct a modified network Π⋆ by creating
dummy node u⋆ of each prioritized node u ∈ I, denoted by Π⋆ = (N ⋆,A⋆, κ, ν, c, s,D), where
N ⋆ = N ∪ {u⋆}. A dummy arc a⋆ = (u, u⋆) is created to connect dummy node u⋆ with
cost ca⋆ = 0 and capacity κa⋆ = νu = νu⋆ so that A⋆ = A ∪ {a⋆}. The priority of dummy
node u⋆ is same as of u. The network so created is a single source multi-sink network with
D = {t} ∪ {u⋆ : u ∈ I}. This construction obviously helps to satisfy the flow conservation
at each intermediate node. Finally in third step, lexicographically maximum flow with priority
order is obtained by using the algorithm of Minieka (1973). The algorithmic framework, as
in Pyakurel & Dempe (2020), is presented in Algorithm 1.

Algorithm 1: Maximum static flow algorithm with intermediate storage.
Input : Given static network Π = (N ,A, κ, ν, c, s, t).
Output: Maximum static flow with intermediate storage in Π.

1. Fix the priority order of nodes.
2. Construct a modified network Π⋆ = (N ⋆,A⋆, κ, ν, c, s,D).
3. Compute the lexicographic maximum static flow in Π⋆ with priority order using Minieka

(1973).
4. Transform the solution to the original network Π by removing the dummy nodes and the

dummy arcs, and shifting the flow at dummy nodes to their respective original nodes.

Theorem 2.1 (Pyakurel & Dempe (2020)). Algorithm 1 solves the maximum static flow prob-

lem with intermediate storage optimally in polynomial time complexity.
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2.3.2 Maximum Dynamic Flow with Intermediate Storage

For a given dynamic network Π = (N ,A, κ, ν, τ, s, t, T ), the objective of the maximum dy-
namic flow problem with intermediate storage is to maximize the flow leaving the source s that
is to be sent to the sink t via s− t paths by allowing the storage of maximum excess flow at the
intermediate nodes with storage capacity νu ≥

∑
a∈Γin

u

κa, ∀u ∈ I within time horizon T .

Flow Model. Consider a dynamic flow function Φ, defined on a dynamic network Π, as the
collection of non-negative arc flow function Φa : A × T → R+

0 , where Φa(θ) represents a
flow starting from the tail of arc a at time θ. Similarly, let us define an excess flow function
Φ̂u : I × T → R+

0 that stores the flow at intermediate node u. Let |Φ| be the total flow value
stored at sink as well as intermediate nodes within the given time horizon. The mathematical
model for the maximum dynamic flow problem by allowing the intermediate storage is a linear
programming formulation which can be defined as follows.

max |Φ| (2.11a)

such that,

∑

a∈Γout
s

T∑

θ=0

Φa(θ) = |Φ| =
∑

a∈Γin
t

T∑

θ=τa

Φa(θ − τa) +
∑

u∈I
Φ̂u(T ) (2.11b)

∑

a∈Γin(u)

θ∑

β=τa

Φa(β − τa) −
∑

a∈Γout(u)

θ∑

β=0

Φa(β) = Φ̂u(θ), u ∈ I, θ ∈ T (2.11c)

0 ≤ Φa(θ) ≤ κa, ∀a ∈ A, θ ∈ T (2.11d)

0 ≤ Φ̂u(θ) ≤ νu, ∀u ∈ I, θ ∈ T (2.11e)

Equation (2.11a) is an objective function that intends to maximization of the dynamic flow
value. Equation (2.11b) represents that the dynamic flow with intermediate storage is the total
flow out from the source that must be equal to the sum of inflow at sink and the total excess flow
at intermediate nodes within the given time horizon T . The excess flow stored at intermediate
nodes is represented by equation (2.11c) where the constraints in (2.11d) and (2.11e) represent
the capacity constraints of arcs and nodes, respectively.

Solution Procedure. As in static case, fixing the priority of nodes and constructing modified
network Π⋆ are similar for the dynamic flow with intermediate storage. The lexicographically
maximum dynamic flow is computed in Π⋆ by using algorithm of Hoppe & Tardos (2000).
The transformation of the original network Π by removing the dummy nodes and the dummy
arcs, and shifting the flow of dummy node to their respective original nodes are also same as
in static case. Solution obtained in this procedure provides an optimal flow with intermediate
storage which can be obtained in polynomial time complexity (Pyakurel & Dempe (2020)).
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2.3.3 Temporally Repeated MDF with Intermediate Storage

The TRF at sink of a two-terminal network using s − t paths was first introduced by Ford &
Fulkerson (1962) to solve the maximum dynamic flow problem in general network, where
intermediate storage of the flow was prohibited. In previous Subsection 2.3.2, we discussed
the dynamic flow with intermediate storage in which solution procedure depends on the lexi-
cographic approach. This subsection is mainly focused on an alternative approach of finding
maximum dynamic flow with intermediate storage, known as temporally repeated approach.
This technique was first introduced in the preprint of Khanal et al. (2022) for general network
flow and Pyakurel et al. (2022) for the abstract network (c.f. Chapter 3 for abstract flow).

Here, to solve the MDF problem with intermediate storage in general network by using TRF,
we proceed the solution strategy in three stages, (Khanal et al. (2022)).

(a) Fix the priority order of nodes.

(b) Calculate the excess flow and construct the flow balancing paths.

(c) Use temporally repeated flow (TRF) at each node.

A necessary condition for the existence of a solution to MDF with intermediate storage is that
the storage capacity of intermediate nodes must be T times the sum of capacity of incoming
arcs, i.e., νu ≥ T

∑
a∈Γin

u

κa, ∀u ∈ I because the flow may have to be held at intermediate nodes

for T time horizon. Any intermediate node which has no aforementioned capacity is considered
as a part of the path segment.

(a) Priority Order of Nodes. To solve the MDF problem with intermediate storage, we begin
the procedure by fixing the priority order of nodes. As we assume the problem instance of
disaster management, the sink is most appropriate place to send the flow and so the first priority
is given to the sink to transship as much flow as possible. The storage of excess flow at the
intermediate nodes with priority order is fixed as follows. For each u ∈ I with storage capacity
νu ≥ T

∑
a∈Γin

u

κa, let dP[s→u]
be the shortest distance of node u from the source s obtained by

using algorithm of Dijkstra (1959). Set the priority order with respect to the distance so that
farthest intermediate node has highest priority, i.e., if dP[s→u1]

> dP[s→u2]
for u1, u2 ∈ I, then

u1 has higher priority than u2 and is denoted by u1 ≻ u2. The equality in distance can have
mutability in priority order. If the priority order of n−2 intermediate nodes be u1 ≻ u2 ≻ · · · ≻
un−2, then priority order including sink is M = {t ≻ u1 ≻ u2 ≻ · · · ≻ un−2} = N \ {s}.

(b) Excess Flow and Flow Balancing Path Decomposition. While shipment of the flow in a
network, flow stored at prioritized nodes due to the capacity constraint or the time constraint is
known as excess flow. If the incoming flow at a node is more than the outgoing flow, then the
amount of flow held at the node is an excess flow due to the capacity constraint. Similarly in
case of dynamic flow, if the flow is unable to reach the successor node of a path from the current
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(predecessor) node due to insufficient transit time, then the flow held at the current node is an
excess flow due to the time constraint.

For the TRF with intermediate storage, we first have to find the static excess flow λu at each
prioritized node u ∈ M that is caused by capacity constraints in the static network topology.
Next, we send the maximum static flow λt = |ϕ|t at sink by using min-cost max-flow and then
decompose the flow on s − t paths. We then obtain the residual capacity (κa − ϕa) on each
arc. Afterwards, we pick the next prioritized node u1, calculate the static flow at u1 via s − u1
paths on residual network, denote it by λu1 and update the residual capacity as in previous step.
Similar procedure is used to find the static excess flow at each intermediate node λu = |ϕ̂|u with
respective priority order.

As a node may lay in more than one path, we indicate the excess flow of node at the decomposed
paths taken in successive shortest order by balancing the flow on arcs and nodes. A path P
obtained after path decomposition of min-cost max-flow is a ‘flow balancing path with excess
flow’ if it satisfies (i) outflow from source along the path P is equal to sum of flows at sink
and intermediate nodes and (ii) inflow at each intermediate node of path P is equal the sum of
outflow from the node and excess flow hold at the node. The flow balancing paths with excess
flow at nodes can be obtained by Algorithm 2 as follows.

Algorithm 2: Flow balancing paths with excess flow.
Input : Given a dynamic network Π = (N ,A, κ, ν, τ, s, t, T ).
Output: Flow balancing paths with excess flow at nodes.

1. Fix the first priority to the sink t and the priority order of intermediate nodes u ∈ I with
farther in distance from the source higher in priority.

2. Calculate the min-cost max-flow on static network by considering transit time as cost.
Indicate the flow as excess of sink λt. Decompose the arc flows to s− t path flow. Also,
indicate the residual capacity on arcs.

3. Calculate the static flow at intermediate nodes by min-cost max-flow and decompose the
intermediate paths P[s→u] from the residual network, as in Step 2 with successive priority
order of nodes u ∈ I. Indicate it as excess flow λu on the original network.

4. Obtain the ‘flow balancing paths with excess flow’ as follows.
(a) On the decomposed s− t path, balance the flow on path from source to the sink

without violating the capacity constraints on arcs and excess flow at intermediate
nodes so that outflow from source along the path is equal to sum of flows at sink
and intermediate nodes.

(b) Update the network by reducing the used capacity on arcs and the excess flow on
the nodes obtained in Step 4(a).

(c) Continue the process as long as there exist a decomposed s− t path of positive
flow in Step 2 as well as intermediate path in Step 3 with priority order of nodes.

Edmonds & Karp (1972) introduced the scaling technique by modifying successive shortest
path algorithm to obtain the capacity scaling algorithm, which is the first polynomial time algo-
rithm for minimum cost flow problem. For min-cost max-flow calculation, we use this scaling
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algorithm by considering the transit time as cost so that the algorithm computes the solution
in polynomial time. Again, each path must transship at least one unit of flow from the source,
so number of flow balancing paths in Algorithm 2 is bounded by the sum of the capacity of
outgoing arcs from the source, i.e., |P| ≤ ∑

a∈Γout
s

κa.

Theorem 2.2. Algorithm 2 provides the optimal static excess flow at each prioritized node using

decomposed paths.

Proof. We consider the transit time on arcs as distance/cost to calculate the distance of each
node from the source. Static flow at sink can be obtained by using min-cost max-flow algorithm
optimally, where maximum static flow is calculated at first and minimum cost paths are obtained
to satisfy the demand of the maximum flow. This flow is indicated as the excess flow of the
sink λt. By obtaining the residual capacity of arcs in each iteration, we calculate the min-cost
max-flow to the prioritized intermediate nodes in the residual network and indicate it as an
excess flow λu. Thus the static excess flow obtained in each node is feasible as well as optimal.
Next, we decompose the flow on paths with intermediate storage by using successive shortest
paths (i.e., minimum cost paths) as follows: We take a s − t path (shortest among all s − t

paths) obtained while finding the excess flow and balance the flow from sink to the source with
intermediate storage without violating the capacity constraints in such a way that the sum of
inflow and excess flow equal the outflow. By updating the flow on arcs and nodes, balancing
process is continued as long as there is any successive shortest path with positive flow. Due to
updated residual capacity obtained by reducing the used capacity on arcs as well as the excess
flow at nodes in each iteration, algorithm provides the feasible flow at each node of the flow
balancing path. It is important to emphasize that the flow stored at an intermediate node is
permanently stored at the node.

Example 2.1. Consider a dynamic network with capacity and transit time on each arc as shown
in Figure 2.3, where storage capacity of nodes are νu = 155, νv = 140, νw = 135, νx = 120

and the sink has sufficient capacity, say νt = ∞. The shortest distance of intermediate nodes
from the source are dP[s→v]

= 3, dP[s→x]
= 3, dP[s→w]

= 2, dP[s→u]
= 1. As the first priority is

given to the sink t, the priority order nodes for the given network is t ≻ v ≻ x ≻ w ≻ u. Five
s− t paths obtained by min-cost max-flow algorithm are P1, P2, P3, P4 and P5 (see Figure 2.3)
with excess λt = 19. In the network with residual capacity, the next priority is for node v with a
single shortest path, excess flow on the residual network to this node is 3 units. Continuing the
process for each prioritized nodes, the excess flow at x,w and u are 0, 2 and 4 units, respectively.
The network with excess flow at each node is presented in Figure 2.4.

As our aim is to find the dynamic flow with intermediate storage using TRF, the static path flow
with their excess at nodes is essential. As an intermediate node lies in more than one paths, we
fix the excess of that node for the successive shortest decomposed paths obtained in Step 4 of
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4,1
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7,2

κ, τ

155

140

135

120

Priority Order : t ≻ v ≻ x ≻ w ≻ u.
Successive shortest (min-cost max-flow) s− t paths:
P1 : s− w − t, τ1 = 4, flow=7.
P2 : s− w − x− t, τ2 = 5, flow=1.
P3 : s− u− w − x− t, τ2 = 5, flow=3.
P4 : s− v − x− t, τ2 = 7, flow=5.
P5 : s− u− v − x− t, τ2 = 8, flow=3.
Prioritized intermediate paths with positive flow:
Intermediate path : s− u− v, flow=3
Intermediate path : s− u− w, flow=2
Intermediate path : s− u, flow=4

Figure 2.3: Given network with arc capacity, transit time and node capacity.
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Figure 2.4: Network with excess flow λ at each node.

Algorithm 2 without violating the capacity constraints on arcs as follows.

Flow Balancing Path Decomposition of Static Flow with Excess Flow λ at Nodes. As P1 is the
shortest s − t path obtained after path decomposition, so we start to balance the flow on this
path so that 7 units of flow reaches to t with rename it as P̄1 : s− w − t where, flow of 8 units
started from s reaches only 7 units to t by holding 1 unit at w.

P̄1 : s− w − t, τP̄1
= 4, flow = 7 s w t

8,2 7,21 7

Flow balancing path P̄1 with excess flow λ

Now, the arc capacity and excess along this path of Figure 2.4 are updated by reducing the used
capacity at arcs and nodes to obtain Figure 2.5.

As capacity of arc (s, w) is saturated, path P2 is not used in flow balancing path. We select
the next shortest decomposed path P̄2 : s − u − w − x − t with τP̄2

= 5 and path flow value
4 at sink. Then, we balance the flow at nodes and arcs. The flow balancing path and updated
network obtained from this step is presented in Figure 2.6.

Continuing this process, we select the next shortest decomposed path P̄3 : s − v − x − t with
τP̄3

= 7 and path flow value 5 at sink. Then, the flow is balanced at nodes and arcs. The flow
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Figure 2.5: Updated network after balancing the flow on path P̄1.

P̄2 : s−u−w−x−t, τP̄2
= 5, flow=4 s u w x t
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Flow balancing path P̄2 with excess flow λ

Updated network with excess flow: s u
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Figure 2.6: Updated network after balancing the flow on path P̄2.

balancing path and updated network are obtained as presented in Figure 2.7.

P̄3 : s− v − x− t, τP̄3
= 7, flow = 5 s v x t

5,3 5,2 5,20 0 5

Flow balancing path P̄3 with excess flow λ

Updated network with excess flow: s u

v

w

x

t

0,3

6,1

0,2

6,3

0,1

3,2

0,1

3,2

0,2

0

3

0

0

3

Figure 2.7: Updated network after balancing the flow on path P̄3.

Finally decomposed path P̄4 : s− u− v − x− t with τP̄4
= 8 and path flow value 3 at sink are

obtained in Figure 2.8 as follows.
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P̄4 : s− u− v − x− t, τP̄4
= 8, flow = 3 s u v x t

6,1 6,3 3,2 3,20 3 0 3

Flow balancing path P̄4 with excess flow λ

Updated network with excess flow: s u
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Figure 2.8: Updated network after balancing the flow on path P̄4.

As no s − t paths and intermediate paths with positive flow exist, so the process is terminated
with four flow balancing paths P̄1, P̄2, P̄3 and P̄4. Hereafter, we derive the formula for TRF
with intermediate storage and apply it on these four paths to obtain the maximum flow with
intermediate storage. □

(c) Temporally Repeated Flow (TRF) with Intermediate Storage. Ford and Fulkerson are
the pioneers of network flow who have introduced the TRF at sink using source-sink paths with
fixed transit times by repeating the constant rate of flow on paths to provide the optimal flow
at sink. We are concerning with the maximization of flow out from the source by holding the
excess flow at intermediate nodes which can not reach to the sink by using temporal repetition.
To deal with this problem, we present the TRF that transship the maximum flow to the sink as
well as to the prioritized intermediate nodes simultaneously for the general network topology.

The TRF at sink t or the last node of intermediate path with respect to the flow balancing path
P̄ within time horizon T is,

|Φ|t =
∑

P̄∈P
(T − τP̄ + 1).ϕP̄ (2.12a)

Similarly, if ui and uj are any two successive nodes in flow balancing path P̄ with P̄[s→ui] ⊆
P̄[s→uj ], the TRF at ui is,

|Φ|ui
=

∑

P̄ :P̄[s→ui]
⊆P̄

[
(T − τP̄[s→uj ]

+ 1).λui
+ (τP̄[s→uj ]

− τP̄[s→ui]
).ϕP̄[s→ui]

]
(2.12b)

where, λui
represents the excess flow at ui and ϕP̄[s→ui]

is the static path flow from s to the
node ui along the flow balancing path P̄ . Equation (2.12b) shows that the storage of the flow at
intermediate nodes is the sum of two flows, excess flow λui

at node ui due to non-conservation
of the flow on balancing paths and the path flow up to the node ui which can not move forward
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due to insufficient time.

The generalize equation (2.12a) in term of equation (2.12b) is as follows. Replace the node ui
in equation (2.12b) by t and its predecessor node uj along the path as t itself (as sink has no any
successor). Again for the sink node, excess flow λt is considered as the source-sink path flow
ϕP̄ . With these arguments, equation (2.12b) reduce to equation (2.12a).

Theorem 2.3. The TRF in equations (2.12a) and (2.12b) provides the optimal solution to the

MDF with intermediate storage in polynomial time.

Proof. As proven in Theorem 2.2, Algorithm 2 provides the optimal excess flow using min-
cost max-flow solution on each prioritized node. In equations (2.12a) and (2.12b), we use
the flow balancing path with excess flow λ obtained by using Algorithm 2. As in Ford &
Fulkerson (1956), equation (2.12a) provides the optimal flow at sink. Similarly, each prioritized
intermediate node has storage capacity at least T times the sum of incoming arc capacities and
can holds as much excess flow as possible within the time horizon by using equation (2.12b).
Intermediate node holds excess flow due to capacity constraint as long as the flow can move to
the successor node and if the flow is unable to move to the successor node due to time constraint,
then it holds full path flow up to the node. It is to be noted that the excess flow due to capacity
constraint stored at intermediate node is not possible to proceed toward the sink because at
every moment of time, inflow at the intermediate node is greater than or equals to the outflow
and the excess flow is accumulated at the node within the time horizon. The flow out from the
source with saturating arc capacity within time horizon are either reaching to the sink or to the
prioritized intermediate nodes, the TRF obtained by equations (2.12a) and (2.12b) are optimal.

The complexity of maximum dynamic flow solution with intermediate storage depends on the
complexity of Algorithm 2 because the complexity of TRF computed on the nodes using equa-
tions (2.12a) and (2.12b) is O(n). The time complexity of Dijkstra’s algorithm is O(n2). Sim-
ilarly, maximum flow can be found by shortest augmenting path algorithm in O(nm log(U))
time and generic cost-scaling algorithm solves the minimum cost flow inO(n2m log(nc′)) time,
where, U = max{κa : a ∈ A} and c′ is the maximum non-negative cost (Ahuja et al. (1993)).
Thus, the MDF with intermediate storage can be solved using TRF in polynomial time.

Example 2.2. On Figure 4.1 of Example 2.1, consider the time horizon T = 8. By using the
TRF with intermediate storage on the set of flow balancing paths {P̄1, P̄2, P̄3, P̄4} with excess
flows at the paths. As the priority order of nodes is t ≻ v ≻ x ≻ w ≻ u, we calculate flow
values as per the order of nodes as follows.

|Φ|t =
4∑

i=1

(T − τP̄i
+ 1).ϕP̄i

= 64 (∵ Node t is last node in all four Paths)

|Φ|v = [(T − τP̄3[s→x] + 1).λv(P̄3) + (τP̄3[s→x] − τP̄3[s→v]).ϕP̄3[s→v]] +
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[(T − τP̄4[s→x] + 1).λv(P̄4) + (τP̄4[s→x] − τP̄4[s→v]).ϕP̄4[s→v]]

= 31 (∵ Node v lies in Paths P̄3 and P̄4)

|Φ|x = [(T − τP̄2[s→t] + 1).λx(P̄2) + (τP̄2[s→t] − τP̄2[s→x]).ϕP̄2[s→x]] +

[(T − τP̄3[s→t] + 1).λx(P̄3) + (τP̄3[s→t] − τP̄3[s→x]).ϕP̄3[s→x]] +

[(T − τP̄4[s→t] + 1).λx(P̄4) + (τP̄4[s→t] − τP̄4[s→x]).ϕP̄4[s→x]]

= 24 (∵ Node x lies in Paths P̄2, P̄3 and P̄4)

|Φ|w = [(T − τP̄1[s→t] + 1).λw(P̄1) + (τP̄1[s→t] − τP̄1[s→w]).ϕP̄1[s→w]] +

[(T − τP̄2[s→x] + 1).λw(P̄2) + (τP̄2[s→x] − τP̄2[s→w]).ϕP̄2[s→w]]

= 32 (∵ Node w lies in Paths P̄1, and P̄2)

|Φ|u = [(T − τP̄2[s→w] + 1).λu(P̄2) + (τP̄2[s→w] − τP̄2[s→u]).ϕP̄2[s→u]] +

[(T − τP̄4[s→v] + 1).λu(P̄4) + (τP̄4[s→v] − τP̄4[s→u]).ϕP̄4[s→u]]

= 55 (∵ Node u lies in Paths P̄2, and P̄4)

Here, the notation λv(P̄3) stands for the excess flow at node v with respect to the flow balancing
path P̄3 and so on. The MDF with intermediate storage that is transshipped from source within
time horizon T = 8 is 206 units and the flow is stored at different nodes with priority order are
as follows: flow at first priority node t is 64, flow at second priority nodes v and x are (31 + 24)
= 55, flow at third priority node w is 32 and flow at fourth priority node u is 55.

It is to be noted that if we choose flow balancing path such as P̄1 : s − u − w − t with τ1 = 4

and flow = 5, P̄2 : s−w− t with τ2 = 4 and flow = 2, P̄3 : s−w− x− t with τ3 = 5 and flow
= 4, P̄4 : s− v − x− t with τ4 = 7 and flow = 5, and P̄5 : s− u− v − x− t with τ5 = 8 and
flow = 3, then we get exactly the same maximum dynamic flow with intermediate storage. □

Case Illustration I

Problem Description. Disasters are unexpected evidences that may be natural like land slide,
flooding, earthquake, heat or cold waves, fire, glacier, etc. and may also be caused by human
errors like terrorism, nuclear explosions, etc. Nepal is more likely to encounter natural disaster
every year. A case of a disaster can also be caused by a mere rumor of bombing. Suppose that,
for the sake of an illustration, there is a spiritual mass gathering in a surrounding of the greatest
holly temple of Hindus at Gausala area. This occasion is participated in by more than 40,000
people coming from different parts of the country. A group of young people in this event are also
gathered to celebrate the festival by fireworks. Unfortunately, loud explosions caused by these
fireworks are thought of by some people as as occurrence of bombing. The rumor of bombing
spreads swiftly thereby creating panic among the people and quick movement around the place
of the event. Instantly and expectedly, traffic officials will try to fix the route of evacuation to
minimize the congestion due to crossing and auto-based evacuation is started on the located
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Figure 2.9: Evacuation zone with 69 nodes. Nodes 0 (red) and 68 (blue) represent the
source and sink, respectively, whereas green areas are intermediate shelters. (Source:
https://www.greattibettour.com/nepal-tours/maps-of-kathmandu.html)

routes (see Figure 2.9).

To capture the mathematical optimization model with intermediate storage using network op-
timization, we have created 69 nodes (numbered from 0 to 68) , where nodes 0 and 68 are the
source (danger zone) and sink (safe shelter), respectively. The objective of the evacuation model
is to send maximum amount of flow from danger zone (Gausala area - 0) to safe shelter (Trib-
huvan University area - 68) by holding the excess flow at intermediate shelters (Shankha park -
1, Tinkune - 10, BICC Building - 11, Tudikhek - 20, Balaju Industrial Area - 31, Soyambhunath
- 32, Chyasal Stadium - 46, UN Park - 48, Institute of Engineering - 49 and ANFA Complex -
51). Rest of the nodes are considered as a part of path segments with no storage of flow. The
paths joining nodes are the road segments, considered as arcs. The detailed list of arcs, number
of lanes in each arc and their transit times are presented in Appendix A where number of lanes
are considered as per the width and transit times as per the length and width of the roads.

Output. We have implemented Algorithm 2 to obtain the flow balancing paths and the tempo-
rally repeated formula obtained in equations (2.12a) and (2.12b) are used to find the maximum
dynamic flow with intermediate storage. For this, we developed the programming codes in
Python of version 3.7 on Dell computer with 64-bit operating system having 11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40 GHz & 2.42 GHz dual processor and 8 GB RAM. For the net-
work presented in Figure 2.9 with 69 nodes and 135 arcs, average of 7 vehicles per minute are
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considered to pass away in each lane of the road. Thus, by natural transformation of contin-
uous flow to discrete time settings, the capacity per minute of an arc is 7 times the number
of lanes on the arc. Some pair of nodes contain parallel arcs with same transit times, for ex-
ample, two arcs joining the node 0 to node 3 with number of lanes 2 in one and 1 in another
but have the same transit time of 1 minute. So, in the table we have indicated the number of
lanes in arc 0-3 as 2+1. The priority order of shelters is obtained from programming output as
{68 ≻ 51 ≻ 32 ≻ 31 ≻ 49 ≻ 46 ≻ 48 ≻ 1 ≻ 10 ≻ 11 ≻ 20}. We set the time of evacuation
as T = 4 hours = 240 minutes. The number of evacuees shifted to respective priority order
of shelters in this time horizon are 24094, 6379, 3178, 147, 27, 47, 31, 284, 197, 58 and 171.
Hence, the total of 34,613 evacuees are evacuated from the source in 4 hours. The running time
of the program is 0.149 seconds.

2.3.4 Temporally Repeated EAF with Intermediate Storage

In this subsection, our discussion is on earliest arrival flow (EAF) problem with intermediate
storage with an objective of transshipping the maximum possible flow from the source to sink
by holding the excess flow simultaneously at prioritized intermediate nodes not only at the time
horizon θ = T but in each time step θ ∈ T .

The objective function for EAF problem with intermediate storage is,

max |Φ(θ)| =
∑

a∈Γout
s

θ∑

β=0

Φa(β) =
∑

a∈Γin
t

θ∑

β=τa

Φa(β − τa) +
∑

u∈I
Φu(θ), ∀θ ∈ T (2.13)

and the flow conservation and capacity constraints are as in (2.11c–2.11e).

Here, equation (2.13) refers to maximization of the flow not only at θ = T but in every time step
θ ∈ T = {0, 1, . . . , T}. Thus, it is a multi-objective optimization problem. Some of the solution
methods for solving multi-objective optimization problem are global criterion method, utility
function method, inverted utility method, bounded objective function method, lexicographic
model and global programming method (Chapter 9 of Nayak (2020)). To solve multi-terminal
maximum flow problem, Minieka (1973) used the lexicographic approach by forming the set
inclusion with respect to the priority order of terminals. The solution strategy of lexicographic
multi-objective optimization is to maximizes the objective of T th time step by fixing all earlier
time (i.e., θ = 0, 1, . . . , T−1) objective functions to their optimal function value with successive
order of time steps and is optimal for time θ = T .

Due to the use of non-standard chain decomposition in EAF computation, Wilkinson (1971)
has shown that it is not possible to use TRF for the general network with flow conservation
constraints where the storage of flow at intermediate nodes is not considered. Here, we present
Example 2.3 to show that the MDF with intermediate storage for general network obtained in
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Subsection 2.3.3 by using TRF is not an EAF.

Example 2.3. Consider a network presented in Figure 2.10, where the priority order of nodes
with respect to the distance (cost) is t ≻ x ≻ y. Let the storage capacity of both intermediate
nodes be 200 and time horizon be T = 8. Considering transit time as cost, the first shortest
(min-cost) path s− y − x− t sends 2 units of flow at t and then path s− x− y − t in residual
network sends 2 more flow units at t. By canceling the cycle at arc (y, x), flows are decomposed
in to two paths s − y − t and s − x − t. Similarly, excess flows at x and y are 8 and 0 units,
respectively.
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(ii) Network with excess flow

Figure 2.10: A general non-series-parallel network and its excess flow computation at nodes.

Now, to obtain the flow balancing path, if the shortest path s− y−x− t is used, then arcs (s, y)
and (x, t) will be saturated with 2 units of flow at t and no s − t path exists for the remaining
2 units of flow. Thus as in Subsection 2.3.3, instead of using all successive shortest paths, use
of decomposed paths (min-cost max-flow paths) is essential. As the TRF is used on the flow
balancing paths which does not use the shortest path s− y − x− t of length 3 units, it can not
provide the maximum flow at time T = 3, and so it is not an EAF. □

Series-parallel graphs are proper subset of acyclic digraphs defined as follows. Graph with
single arc is a series-parallel graph. Let Π1 and Π2 be two series-parallel graphs with sources
s1 and s2, and sinks t1 and t2, respectively. The series composition Π(Π1,Π2) obtained by
identifying the sink t1 as the source s2 is a series-parallel graph with source s1 and sink t2.
Similarly, the parallel composition Π(Π1,Π2) obtained by merging the source s1 with s2 and
sink t1 with t2 is also a series-parallel graph with source s1(= s2) and sink t1(= t2).

The existence of a the TRF on two-terminal series-parallel graph having the earliest arrival
property was proven by Ruzika et al. (2011) and have presented a polynomial time solution
strategy. As their problem does not concerns with the storage of flow at intermediate nodes, we
are here to address the temporally repeated EAF not only at the sink but also at the intermediate
nodes. As it is not possible to find EAF using TRF in non-series-parallel network, we adopt
the series-parallel graph as in Ruzika et al. (2011) and use the procedure as described in Sub-
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section 2.3.3. The algorithmic framework for the solution of EAF Problem with intermediate
storage by using TRF is present in Algorithm 3.

Algorithm 3: EAF algorithm with intermediate storage using TRF.
Input : Given a two-terminal series-parallel network Π = (N ,A, κ, ν, τ, s, t, T ).
Output: EAF with intermediate storage.

1. Fix the first priority to the sink t and the priority order of intermediate nodes u ∈ I with
farther in distance from the source higher in priority.

2. Use Algorithm 2 to find the excess flow and flow balancing paths.
3. Obtain the MDF at sink and intermediate nodes by temporal repetition of flow using

equations (2.12a) and (2.12b).
4. MDF so obtained is an EAF with intermediate storage.

Due to the series-parallel graph, no any path forms the cycle and each successive shortest path
obtained by Step 5 of Algorithm 2 is a successive shortest decomposed path in Algorithm 3.
Thus, MDF obtained in Algorithm 3 is an EAF with intermediate storage for series-parallel
graph, which can be obtained in polynomial time complexity.

Theorem 2.4. For the series-parallel graph, Algorithm 3 provides an optimal solution to EAF

with intermediate storage using TRF in polynomial time.

Example 2.4. Consider a series-parallel network presented in Figure 2.11, where the priority
order of nodes is t ≻ v ≻ x ≻ w ≻ u and nodes v and x are mutable as they have same shortest
distance. The excess flow of t, v, x, w and u are 16, 6, 1, 2 and 0, respectively. Let the storage
capacity of each node be 150 and time horizon be T = 8.
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(ii) Network with excess flow

Figure 2.11: A series-parallel network and its excess flow computation at nodes.

In Figure 2.11, there are four successive shortest paths s− u− w − t, s− u− t, s− v − t and
s−u−x− t of min-cost max-flow computation, which are also the flow balancing paths. Flow
balancing paths with excess flow at nodes are presented in Figure 2.12.

30



s u w t
4,1 4,1 2,10 2 2

Flow balancing path P̄1

s u t
8,1 8,30 8

Flow balancing path P̄2

s v t
10,3 4,16 4

Flow balancing path P̄3

s u x t
3,1 3,2 2,20 1 2
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Figure 2.12: Flow balancing paths of series-parallel network in Figure 2.11.

By using equations (2.12a) and (2.12b), total flow reaching to t, v, x w and u along these paths
within T = 8 are 80, 40, 10, 16 and 34 units respectively, satisfying the earliest arrival property.
Thus, total amount of earliest arrival flow transmission in T = 8 is 180 units. □

2.4 Contraflow

A general network topology in which pair of oppositely directed arcs (anti-parallel arcs) exist
in between some pair of nodes is known as two-way network topology. On solving the network
flow problems in such network, a very well known technique, known as contraflow configu-
ration, is used to increase the outbound capacity of arcs by the reversal of opposite orientated
(backward) arcs towards the destination.

Consider a two-way static network Π = (N ,A, κ, s, t) in which anti-parallel arcs a = (u, v)

and ←−a = (v, u) have respective capacity κa and κ←−a . To solve the static contraflow prob-
lem by lane reversal strategy, the auxiliary network of given two-way network Π, denoted by
Π = (N ,A, κ, s, t), is constructed where A contains the undirected edges A = {(u, v) :

(u, v) or (v, u) ∈ A}. The capacity κ of an arc in the auxiliary network is the sum of capacities
of anti-parallel arcs a and←−a , i.e., κa = κa + κ←−a , where κa = 0 if a /∈ A. Based on this graph
transformation, Rebennack et al. (2010) presented an algorithm to solve the maximum static
contraflow (MSCF) problem in polynomial time complexity.

Static Flow Model. The linear programming model for maximum static contraflow problem
can be presented as

max |ϕ| (2.14a)

such that,

∑

a∈Γout
s

ϕa = |ϕ| =
∑

a∈Γin
t

ϕa (2.14b)
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∑

a∈Γin
u

ϕa −
∑

a∈Γout
u

ϕa = 0, ∀u ∈ I (2.14c)

0 ≤ ϕa ≤ κa, ∀a ∈ A (2.14d)

Here, equation (2.14d) reflects the capacity bound of the flow after contraflow configuration.
Similarly, the static contraflow model with intermediate storage is,

max |ϕ| (2.15a)

such that,

∑

a∈Γout
s

ϕa = |ϕ| =
∑

a∈Γin
t

ϕa +
∑

u∈I
ϕ̂u (2.15b)

∑

a∈Γin
u

ϕa −
∑

a∈Γout
u

ϕa = ϕ̂u, ∀u ∈ I (2.15c)

0 ≤ ϕa ≤ κa, ∀a ∈ A (2.15d)

0 ≤ ϕ̂u ≤ νu, ∀u ∈ I (2.15e)

The symbols have their usual meaning as defined previously.

In case of dynamic network, the transit times on the anti-parallel arcs plays important role on
reversing the direction of arcs. The reversal of arc is made to increase the flow within given
time horizon or to reduce the overall makespan for the given amount of flow. At the time of
evacuation, our assumption is that lanes towards the danger zones (sources) are almost empty
and the reverse of lanes towards the safe zones (sinks) plays an effective role in evacuation
process.
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(i) Two-way symmetric network
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(ii) Two-way asymmetric network

Figure 2.13: Two-way networks with (i) symmetric and (ii) asymmetric transit times.

Transit times on anti-parallel arcs may be same or different, according to which the network
can be classified as the network with symmetric or asymmetric transit times (see Figure 2.13).
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Hereafter, we discuss and analyze the contraflow configuration with these two different aspects
of transit times between the pair of oppositely directed arcs. For asymmetric network, we focus
on the contraflow with orientation-dependent transit times and contraflow with anti-parallel path
decomposition.

2.4.1 Contraflow with Symmetric Transit Times

Consider a two-way dynamic network Π = (N ,A, κ, τ, s, t, T ) in which transit times in anti-
parallel arcs a = (u, v) and←−a = (v, u) are same, i.e., τa = τ←−a for all a,←−a ∈ A. Let κa and κ←−a
be the capacity on a and←−a , respectively. To solve the network flow problem with symmetric
transit times, an auxiliary network is constructed as follows.

Auxiliary Network. The auxiliary network of given two-way network Π is denoted by Π =

(N ,A, κ, τ , s, t, T ), where A contains the undirected (or bi-directed) edges A = {(u, v) :

(u, v) or (v, u) ∈ A}. The capacity κ of an arc in the auxiliary network is the sum of
capacities of anti-parallel arcs a and ←−a , i.e., κa = κa + κ←−a , where κa = 0 if a /∈ A.
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Figure 2.14: Auxiliary network
of Figure 2.13(i).

Similarly, the transit time of arc in an auxiliary network τ is
obtained by

τa =

{
τa if a ∈ A
τ←−a otherwise.

All other parameters of Π are same as in Π. While solving
the network flow problems using some programming lan-
guages like python, input of the arcs must be in some di-
rection. So, instead of undirected arcs, bi-directional input
is used for the auxiliary network. We must be careful that,
if the problem with intermediate storage is to be considered,
then one more parameter of storage capacity ν on the nodes is included.

Rebennack et al. (2010) used the TRF on the set of paths obtained from the chain decompo-
sition of the optimal minimum cost flow of auxiliary network to find the solution of maximum
dynamic contraflow (MDCF) problem in polynomial time. The linear programming dynamic
contraflow model defined on auxiliary network is,

max |Φ| (2.16a)

such that,

∑

a∈Γout
s

T∑

θ=0

Φa(θ) = |Φ| =
∑

a∈Γin
t

T∑

θ=τa

Φa(θ − τa) (2.16b)
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∑

a∈Γin(u)

θ∑

β=τa

Φa(β − τa) −
∑

a∈Γout(u)

θ∑

β=0

Φa(β) ≥ 0, u ∈ I, θ ∈ T (2.16c)

0 ≤ Φa(θ) ≤ κa, ∀a ∈ A, θ ∈ T (2.16d)

Symmetric MDCF with Intermediate Storage Using TRF

The solution strategy of MDCF problem with intermediate storage in symmetric network can
be found in Pyakurel & Dempe (2020). Their solution strategy depends on the lexicographic
maximum dynamic flow of Hoppe & Tardos (2000). Our concern here is to use TRF to solve
MDCF problem with intermediate storage, where storage capacity of intermediate nodes must
be νu ≥ T

∑
a∈Γin

u

κa, ∀u ∈ I.

Flow Model. The linear programming contraflow model with intermediate storage defined on
auxiliary network can be presented as

max |Φ| (2.17a)

such that,

∑

a∈Γout
s

T∑

θ=0

Φa(θ) = |Φ| =
∑

a∈Γin
t

T∑

θ=τa

Φa(θ − τa) +
∑

u∈I
Φ̂u(T ) (2.17b)

∑

a∈Γin(u)

θ∑

β=τa

Φa(β − τa) −
∑

a∈Γout(u)

θ∑

β=0

Φa(β) = Φ̂u(θ), u ∈ I, θ ∈ T (2.17c)

0 ≤ Φa(θ) ≤ κa, ∀a ∈ A, θ ∈ T (2.17d)

0 ≤ Φ̂u(θ) ≤ νu, ∀u ∈ I, θ ∈ T (2.17e)

Solution Procedure. For the solution of MDCF problem with intermediate storage, we first
fix the priority order of nodes as defined in Subsection 2.3.3. We then construct an auxiliary
network of the given network and apply Algorithm 2 on it to obtain the directed path with excess
flow. As the network has symmetric transit times on anti-parallel arcs, the priority order of nodes
in the given network remains same as the priority order of nodes in its auxiliary network. The
maximum dynamic flow from s to t and then at each intermediate nodes with their respective
priority order is obtained by using equations (2.12a) and (2.12b). Here, we present Algorithm 4
to solve the MDCF problem with intermediate storage by using TRF.

Theorem 2.5. Algorithm 4 solves the MDCF problem with intermediate storage optimally by

using temporal repetition of flow in polynomial time.

Proof. Fixing the priority of nodes and constructing auxiliary network in Steps 1 and 2 are
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Algorithm 4: MDCF algorithm with intermediate storage using TRF
Input : Given a two-way dynamic network Π = (N ,A, κ, ν, τ, s, t, T ).
Output: MDCF with intermediate storage.

1. Fix the first priority to the sink t and the priority order of intermediate nodes u ∈ I with
farther in distance from the source higher in priority.

2. Construct an auxiliary network Π of Π.
3. Use Algorithm 2 in Π to find directed flow balancing paths with excess flow at the

nodes.
4. Obtain the MDF using TRF presented in equations (2.12a) and (2.12b).

both feasible because no flow conservation and capacity constraints are violated. By using
Algorithm 2 in auxiliary network, the optimal static flow with intermediate storage and its path
decomposition is obtained in Step 3 and in Step 4, the temporal repetition of flow provides the
optimal solution to the MDF problem with intermediate storage. Thus, Algorithm 4 provides
the optimal solution to MDCF problem with intermediate storage. The time complexity of
Algorithm 4 depends on the complexity of Step 3, which is polynomial of O(m) and Step 4,
which is polynomial. So, Algorithm 4 solves the MDCF problem with intermediate storage
optimally by using temporal repetition of flow in polynomial time.

If the contraflow network is series-parallel, then Algorithm 4 provides the earliest arrival con-
traflow solution by using TRF. The idea behind is from Ruzika et al. (2011) by incorporating
the storage of flow at intermediate nodes as presented in Subsection 2.3.4.

2.4.2 Asymmetric Contraflow with Orientation-dependent Transit Times
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Figure 2.15: Auxiliary network
of Figure 2.13(ii).

In a two-way network Π, the traversal time in anti-parallel
arcs may not always be same. Network with different tran-
sit times in anti-parallel arcs (i.e., τa ̸= τ←−a ) is known as
the network of asymmetric transit times. We can realize the
asymmetric transit times on the one-way roads between two
places or the curved and inclined/declined roads in mountain
regions.

For the contraflow configuration of such network, if the tran-
sit time of reversed arc is taken as the orientation of the arc,
then it is called the contraflow with orientation dependent
transit times (Nath et al. (2021)). While constructing the
auxiliary network Π = (N ,A, κ, τ , s, t, T ) of Π, transit time τ is obtained as follows.

τa =

{
τa if the orientation is along the arc a
τ←−a if the orientation is along the arc←−a or a /∈ A.

35



The other components of Π are as similar to the contraflow with symmetric transit times. Fig-
ure 2.15 is an auxiliary network of Figure 2.13(ii) where capacities in anti-parallel arcs are
added but transit times are as per the directions. On solving network flow problems, either
dashed or dotted arcs are used for the flow transmission but not both.

Orientation-dependent MDCF with Intermediate Storage Using TRF

The algorithmic framework of MDCF problem with intermediate storage is same in symmetric
and orientation-dependent contraflow except on creating auxiliary network and fixing the pri-
ority order of nodes. In Step 2 of Algorithm 4, we must use orientation-dependent contraflow.
Similarly, for the uniqueness of the solution, priority order of nodes in Step 1 of Algorithm 4
is fixed from the given network topology before the contraflow configuration because of two
reasons, no excess flow computation is possible without deciding the priority and the priority
of nodes (i.e., distance from source) may vary in the auxiliary network due to orientation de-
pendent transit times (Khanal et al. (2021a)). After construction of auxiliary network in Step 2
with orientation dependent transit times, Algorithm 4 provides solution of the maximum dy-
namic contraflow problem with intermediate storage using TRF optimally in polynomial time.
The solution of EACF problem in series-parallel network is also similar as discussed above.

2.4.3 Asymmetric Contraflow with Anti-parallel Path Decomposition

In this subsection, we present a novel technique of contraflow configuration with asymmetric
transit times, termed as contraflow with anti-parallel path decomposition. For each given arc, we
create an anti-parallel path of two arcs. If a = (u, v) be an arc of given network with capacity κa
and transit time τa, then an oppositely directed additional path v−vu−u of two arcs a1 = (v, vu)

and a2 = (vu, u) is created with κa1 = κa2 = κa and τa1 = rτ , τa2 = (1 − r)τ, 0 ≤ r ≤ 1,
where vu is an artificial node along the path from v to u (see Figure 2.16).

u v
κ, τ

(a)

u v

κ, τ

vu κ, rτκ, (1− r)τ

(b)

Figure 2.16: Anti-parallel path decomposition (b) of given arc (a) with capacity and transit time.

An extended network of a given network with n nodes and m arcs obtained in this process
containsm+n nodes and 3m arcs. This contraflow technique depends on the extended network
instead of auxiliary network which helps to solve the contraflow problem with unequal transit
times on anti-parallel arcs. In the auxiliary network with orientation dependent transit times,
properties of the arcs are modified as per the change in directions. Sometimes, this may not
be possible because the transit time for a road remains the same whatever be the direction of
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vehicles, e.g. the one-way roads connecting two cities with parallel paths of different length.
We form an extended network Π′ of given network Π in such a way that for each given arc
a ∈ A, we create an anti-parallel path without removing the original arc as in Figure 2.16. The
graphical structure of an extended network is of the form Π′ = (N ′,A′, κ, τ ′, s, t, T ) where,
N ′ = N ∪ {u′ : u′ = uv or vu}, A′ = A ∪ {a1} ∪ {a2} and τ ′ = {τ} ∪ {τa1} ∪ {τa2}. As the
flow is transshipped in one of the direction, flow in the extended network provides the optimal
solution to the original network with contraflow configuration. Using this contraflow technique,
we solve the maximum dynamic contraflow (MDCF), quickest contraflow (QCF) and the route
based evacuation problems hereafter.

(i) Maximum Dynamic Contraflow (MDCF) with Anti-parallel Path Decomposition

The solution strategy of MDCF problem using anti-parallel path decomposition seeks to obtain
the maximum flow from the source to the sink within given time horizon T by creating anti-
parallel path for each given arc at time zero. The flow model is as similar to maximum dynamic
flow defined in Subsection 2.2.2, where the only difference is that it must be defined on Π′ =

(N ′,A′, κ, τ ′, s, t, T ) instead of Π.

Solution Procedure. The solution procedure for MDCF problem starts with the construction
of an extended network Π′ by creating anti-parallel path for each arc. The static flow from
the source is transmitted to the sink in the extended network Π′ so that flow takes one of the
directions and the removal of unused anti-parallel arc/path declares the flow transmission is
without any circulation. Finally, network is transformed to the original network with appropriate
arc reversals. Now, we present an algorithm to solve the MDCF problem with anti-parallel path
decomposition as follows.

Algorithm 5: MDCF algorithm with anti-parallel path decomposition
Input : Given a dynamic network Π = (N ,A, κ, τ, s, t, T ).
Output: Maximum dynamic contraflow with anti-parallel path decomposition in Π.

1. Construct an extended network Π′ with anti-parallel path decomposition.
2. Obtain the static s− t flow on Π′ and remove unused arcs and nodes.
3. Decompose the static flow on paths and cycles and remove the cycles.
4. Calculate the dynamic flow with temporally repeated solution.
5. Remove the artificial nodes of reversed anti-parallel paths to transform the solution in

original network.

Theorem 2.6. Algorithm 5 solves the MDCF problem with asymmetric transit times by using

anti-parallel path decomposition optimally.

Proof. In Step 1, the construction of an extended network Π′ with m + n nodes and 3m arcs
from the given network can be done in linear time complexity of O(m). Also, while calculating
static s− t flow in Step 1, it takes the arcs in one of the direction but not in both and in Step 3,
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flow is decomposed on the paths. These two steps are equivalent to finding minimum cost
maximum static flow by considering transit time as cost. Similarly, Step 4 can be obtained by
using TRF on the decomposed paths. Thus the solution obtained from Algorithm 5 is feasible.
Again, static flow in Step 1 is an optimal solution and its temporal repetition over time is the
optimal dynamic flow, so Algorithm 5 provides the optimal solution of MDCF problem with
asymmetric transit times by using anti-parallel path decomposition.

Since the time complexity of construction of extended network Π′ does not effect the complex-
ity of the maximum dynamic flow, the time complexity of maximum static flow isO(mn log n).
The temporally repeated flow executes the dynamic flow in constant time. So, MDCF problem
with asymmetric transit times by using anti-parallel path decomposition can be solved in poly-
nomial time.

Lemma 2.7. Algorithm 5 runs in polynomial time complexity.

Example 2.5. Consider a two-way network with asymmetric transit times on the arcs as shown
in Figure 2.17(a) whose expanded network with anti-parallel path decomposition is presented
in Figure 2.17(b) with r = 1

2
. Numbers on each arc represent the capacity and transit time.

The static flow is sent in expanded network from the source s to the destination t and flow is
decomposed to the paths in which it takes one of the direction. According to Step 1 and Step 3
of Algorithm 5, static flow on expanded network is sent from source s to the sink t using five
paths (minimum cost maximum flow paths) as given in Table 2.1.

Table 2.1: Maximum static path flow with anti-parallel path decomposition.

Path Transit time of path Static flow (ϕP )
P1 : s− sx− x− xt− t τ ′P1

= 4 3

P2 : s− sx− x− y − yt− t τ ′P2
= 4 1

P3 : s− sx− x− y − t τ ′P3
= 5 2

P4 : s− y − t τ ′P4
= 6 2

P5 : s− x− xy − y − t τ ′P5
= 7 1

Let T = 10 be given time horizon. To obtain the dynamic flow with anti-parallel path de-
composition, we use TRF on each path obtained by static flow decomposition (see in Fig-
ure 2.17(c)) so that total maximum dynamic contraflow within time horizon T = 10 is |Φ| =∑

(T + 1− τ ′P )ϕP = 7 ∗ 3 + 7 ∗ 1 + 6 ∗ 2 + 5 ∗ 2 + 4 ∗ 1 = 54 units. The transformed network
after contraflow configuration is presented in Figure 2.17(d). □

(ii) Quickest Contraflow with Anti-parallel Path Decomposition

Here, we solve a quickest flow problem in which flow value |Φ| is given and our concern is to
find a minimum possible time that is necessary to transship the given amount of flow from the
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Figure 2.17: Contraflow with anti-parallel path deconposition.

source to the sink by using anti-parallel path decomposition. We apply binary search method to
solve the problem in polynomial time.

Flow Model. For the flow over time function Φ with flow value |Φ| defined on an expanded
network Π′, where Φa(θ) represents the dynamic flow on arc a that moves from tail node of
a ∈ A′ at time θ with arc traversal time τ ′a, the mathematical model for the quickest flow
problem is a linear network flow model which is presented as follows.

min T (2.18a)

such that,

∑

a∈Γout
s

T∑

θ=0

Φa(θ) =
∑

a∈Γin
t

T∑

θ=τ ′a

Φa(θ − τ ′a) ≥ |Φ| (2.18b)

satisfying the weak flow conservation constraint in (2.6a) and capacity constraint in (2.6c).
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Solution Procedure. The solution procedure starts with the construction of an extended net-
work Π′ by creating anti-parallel path for each arc and the static s − t flow is obtained on it.
Let P be set of all paths used to transship the static s− t flow in Π′ and P ∗ be the shortest path
among all flow carrying paths P ∈ P with time τP ∗ and static flow ϕP ∗ . If there are more than
one shortest paths then choose the path with minimum flow value . For the polynomial time
solution, we use binary search on [Tmin, Tmax] such that Φ(Tmin) ≤ |Φ| ≤ Φ(Tmax). Initially,
we set Tmin = τP ∗ and Tmax = τP ∗ + ⌈ |Φ|ϕP∗

⌉, ϕP ∗ > 0. In each iteration, the searched interval is
halved until there exist T with Φ(T ) converging to |Φ| and the flow values at extreme points of
interval are obtained by using Algorithm 5. The algorithmic framework to solve QCF problem
by using anti-parallel path decomposition is present in Algorithm 6.

Algorithm 6: QCF algorithm with anti-parallel path decomposition
Input : Given a dynamic network Π = (N ,A, κ, τ, s, t, T ).
Output: Quickest contraflow with anti-parallel path decomposition in Π.

1. Construct an extended network Π′ with anti-parallel path decomposition.
2. Obtain the static s− t flow on Π′ and remove unused arcs and nodes.
3. Decompose the static flow on paths and cycles and remove the cycles.
4. Use binary search on [Tmin, Tmax] to find T so that Φ(T ) converges to |Φ|.
5. T = Quickest time to satisfy given flow value |Φ|.

Theorem 2.8. Algorithm 6 solves the QCF problem in polynomial time using anti-parallel path

decomposition.

Proof. The optimality of Steps (1–3) are as in Algorithm 5. As function Φ(T ) is non-decreasing
function of T and searching of minimum T satisfying Φ(T ) ≥ |Φ| using binary search can
be made optimally in polynomial time, Algorithm 6 solves the QCF problem in polynomial
time complexity. As discrete time T is an integer and the length of interval in kth iteration is
Tmax−Tmin

2k
, continuation of bisection goes unless the length of interval is less or equals to 1.

Thus, Tmax−Tmin

2k
≤ 1 implies k ≥ log(Tmax − Tmin). This shows that the lower bound for

searching a minimum number of iteration k is log(Tmax − Tmin), which is polynomial.

Example 2.6. Consider the network presented in Example 2.5. Suppose that the given flow
value |Φ| at the source is 80 units. As there are two shortest paths with time 4, we choose the
path with minimum flow value so that τP ∗ = 4 and flow ϕP ∗ = 1. Initially, [Tmin, Tmax] =

[4, 80]. By using Algorithm 6, quickest time to transship 80 units of flow is T ∗ = 13. □

The contraflow technique with anti-parallel path decomposition is useful for the route-based
evacuation planning because it has the possibility of contraflow on directed paths not only to-
wards the sink but also towards the source. For this purpose, the solution strategy of route-based
evacuation problem is presented hereafter.
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(iii) Route-based Evacuation Planning Using Anti-parallel Path Decomposition

An evacuation scenario in which every evacuee depend on the public vehicles of predefined
route is a route-based evacuation. Evacuees are to be collected at pickup location (source node)
s nearby the danger zone and evacuated to the sink t (safe zone) by sending vehicles from
the safe zone. Our assumption is that the pickup location s is very near but comparatively
safer than the danger zone so that the evacuees can move to the pickup location themselves
within arbitrary small (zero) transit time. Also, no individuals have their own vehicles so that
evacuation scenario is completely route-based. As the vehicles are first moved from the sink to
the source using t− s paths and pickup the evacuees from s to bring back at the sink t by using
another s − t path, the network topology must have at least two arcs in either of the cut that
separates the source and sink so that the circulation of flow becomes smooth.

Here, we solve the route-based maximum dynamic evacuation planning problem with asymmet-
ric times on anti-parallel arcs by using circulation of flow (vehicles) on the extended network
which is obtained by anti-parallel path decomposition. In real evacuation scenarios, the first
trip of vehicles can originate from anywhere and form the circulation of the flow from the sec-
ond trip onward, but this complicates the formulation of mathematical models. So, from the
beginning of the evacuation process, we assume that all of the vehicles begin to move from the
sink and form a circulation of flow at the sink. For this purpose, we solve the problem with
two objectives, one is selection of the circuits with possibly shortest route solving subset sum
problem and another one is maximizing the number of evacuees on the route.

Due to the construction of anti-parallel arcs in Π′, every s− t path in Π has its t− s path in Π′.
Let P =

←−P ∪ −→P be set of all paths with backward (t − s) and forward (s − t) directions in
Π′ with

←−
P ∈ ←−P and

−→
P ∈ −→P , respectively. The minimum cut capacity of

←−P and
−→P are same

because each arc has its anti-parallel path. Hereafter, we denote Pc to the set of all paths P that
forms the circulation t − s − t at t and Pa be the set of paths that passes through arc a ∈ A′
i.e., Pa = {P ∈ Pc : a ∈ P}. The mathematical model defined on the extended network with
circulation of paths is as follows.

Flow Model. The dynamic flow function Φ defined on the network Π′ with arc traversal time τ ′

is the collection of non-negative path flow function ΦP : P×T → R+. The linear programming
model for the dynamic contraflow problem with circulation of flow at sink t can be presented
as follows.

max |Φ| (2.19a)

such that,

∑

P∈Pc

T∑

θ=0

ΦP (θ) = |Φ| (2.19b)
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∑

P∈Pa:a∈Γin
u

ΦP (θ)−
∑

P∈Pa:a∈Γout
u

ΦP (θ) = 0, ∀ u ∈ N ′, θ ∈ T (2.19c)

∑

P∈Pa

ΦP (θ) ≤ κa, ∀ a ∈ A′, θ ∈ T (2.19d)

ΦP ≥ 0, ∀P ∈ Pc (2.19e)

Here, equation (2.19a) is an objective function which seeks to maximize the total flow and
this flow obtained by circulation at sink t along paths P ∈ Pc within the time horizon T is
represented in equation (2.19b). Flow conservation at each node lying on the path is represented
by equation (2.19c). Equations (2.19d) and (2.19e) represent the capacity constraint in each arc
and non-negativity of the flow in each circulation path, respectively.

Solution Procedure. To form a set Pc of the circulation paths P of maximum flow not exceed-
ing the half of minimum cut capacity in Π′, we proceed as follows. As minimum cut capacity
of s − t and t − s paths in Π′ are same, we construct two lists F = {ϕ←−

P
} and Γ = {τ ′←−

P
} of

static flows and their corresponding path transit times of all t − s paths, respectively, where
τ ′←−
P
=

∑
a∈←−P

τ ′a. Our aim is to search a subset F ∗ of F in such a way that the sum of minimum cut

capacity of t− s paths in F ∗ is nearly half of the total capacity of t− s paths but not exceeding
it, i.e., greatest sum such that

∑
F ∗ ≤

⌊∑
F

2

⌋
and the corresponding subset Γ∗ of Γ with min-

imum sum i.e.,
∑

Γ∗ is minimum ( possible shortest routes). The notation
∑
F represents the

sum of elements in set F and have similar meaning for
∑
F ∗ and

∑
Γ∗. Mathematically, it can

be modeled as follows.

min
∑

τ ′←−
P

(2.20a)

such that,

←−
P ∈ ←−P and τ ′←−

P
∈ Γ∗ ⊂ Γ. (2.20b)

To obtain the t− s paths
←−
P ∈ ←−P in equations (2.20a–2.20b) with flows in F ∗ ⊂ F , we model

the subset sum problem as follows.

max
∑

ϕ←−
P
· γ←−

P
(2.21a)

such that,

∑
ϕ←−
P
· γ←−

P
≤

⌊∑
F

2

⌋
, for F = {ϕ←−

P
} (2.21b)

γ←−
P
=




1 if

←−
P is selected for its flow in F ∗ ⊂ F

0 otherwise.
(2.21c)
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The paths
←−
P with flow values in F ∗ satisfying subset sum problem (2.21a – 2.21c) which also

satisfy the minimum transit time from equation (2.20a) are used to sent the flows from t to
s. Then after, their corresponding anti-parallel paths are removed. Again, s − t paths

−→
P are

obtained so that the sum of path flows is close to
⌊∑

F
2

⌋
and then, their corresponding anti-

parallel paths are removed. Now to form the circulation of path flows in Pc, we obtain the
maximum static flow along t − s paths

←−
P at time θ = 0 and continue the same flow on s − t

paths
−→
P . TRF along the circulation paths Pc is used to obtain the dynamic flow.

We remark that the process of finding t− s paths from equations (2.20a – 2.21c) can also be de-
fined as a multi-objective optimization problem which aims to search the subset of paths of max-
imum flow with minimum traversal time. From the set of solutions obtained by equations (2.21a
– 2.21c), equation (2.20a) selects the possibly best one. The boundedness in equation (2.21b)
seems it to be solvable by bounded objective function method.

Example 2.7. Consider an arbitrary network having 7 paths from t to s with positive flow and
their corresponding transit times in Π′ as follows.
←−
P1 : τ ′1 = 2, ϕ1 = 5;

←−
P2 : τ ′2 = 3, ϕ2 = 3;

←−
P3 : τ ′3 = 4, ϕ3 = 7;

←−
P4 : τ ′4 =

4, ϕ4 = 4;
←−
P5 : τ

′
5 = 5, ϕ5 = 2;

←−
P6 : τ

′
6 = 6, ϕ6 = 6;

←−
P7 : τ

′
7 = 6, ϕ7 = 2.

Thus, we have F = {5, 3, 7, 4, 2, 6, 2}with
∑
F = 29 and Γ = {2, 3, 4, 4, 5, 6, 6}. The possible

subsets F ∗ with
∑
F ∗ ≤

⌊∑
F

2

⌋
= 14 are as follows.

F ∗1 = {5, 3, 4, 2},∑Γ∗1 = 14; F ∗2 = {5, 7, 2},∑Γ∗2 = 11; F ∗3 = {5, 3, 6},∑Γ∗3 = 11;
F ∗4 = {3, 7, 4},∑Γ∗4 = 11; F ∗5 = {3, 7, 2, 2},∑Γ∗5 = 18; F ∗6 = {4, 2, 6, 2},∑Γ∗6 = 21.
So the possible subsets with minimum path transit times are F ∗2 , F ∗3 , and F ∗4 , and one of the
set is used for t − s paths. If F ∗2 with paths {←−P1,

←−
P3,
←−
P5} is used for t − s paths, then their

anti-parallel paths are removed. From the network so obtained, s− t paths with maximum static
flow computation are obtained and their anti-parallel paths are removed. □

Now we present Algorithm 7 to solve the maximum flow problem with circulation of flow on
paths P ∈ Pc.

Theorem 2.9. Solution obtained from the route-based maximum flow circulation in Algorithm 7

is approximate efficient over the circulation of paths.

Proof. The feasibility on constructing the extended network in Step 1 is from Theorem 2.6.
The construction of a subset F ∗ from the list of t− s paths by using subset sum problem is also
feasible because no paths violate the flow conservation and capacity constraints. The maximum
static flow obtained in t− s− t circulation is feasible because it is obtained from set of feasible
paths. So, the solution obtained in Algorithm 7 is feasible. Again, paths obtained from Steps 4
and 5 in the direction of t− s and then s− t are independent. The selection of t− s paths with
capacity

⌊∑
F

2

⌋
is made by polynomial time approximation scheme of Kellerer et al. (2003)

and paths with minimum sum in equation (2.20a) is used to rescue the evacuees as quickly as
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Algorithm 7: Route-based maximum flow circulation algorithm
Input : Given evacuation network Π = (N ,A, κ, τ, s, t, T ).
Output: Maximum flow circulation at sink t with path reversals in Π.

1. Construct extended network Π′ with anti-parallel path decomposition having two-way
path set P =

−→P ∪←−P .
2. Construct a list F of flow values on each t− s path of Π′ with positive flow and a set Γ

of respective transit times.
3. Use subset sum problem in equations (2.21a–2.21c) to find a subset F ∗ ⊂ F whose sum

is a greatest integer less than or equals to
⌊∑

F
2

⌋
and whose corresponding sum of transit

time in Γ∗ ⊂ Γ is to be minimized by equation (2.20a).
4. Save the paths having flow values in F ∗ as t− s paths

←−
P and remove their anti-parallel

paths.
5. Find s− t paths

−→
P from the network obtained in Step (4) so that the sum of path

capacities equal to the sum of capacities obtained for the flows in Step (4) and remove
their anti-parallel paths.

6. Obtain the maximum static flow on circulation paths t− s− t obtained from Step 4 and
Step 5 at time θ = 0.

7. Compute the MDF circulation at t within time horizon T by using TRF.

possible by saving approximately equal capacity in s−t paths. Similarly, selection of s−t paths
can be made by using any path decomposition technique of maximum flow algorithm satisfying
the maximum static flow arrived at s by using t− s paths. The TRF on the circulation paths is
used to find the dynamic flow. So, Algorithm 7 computes an approximate efficient solution in
t− s− t circulation.

With the notion of multi-objective optimization, an efficient (or Pareto optimal) solution is one
that can’t be improved in any of the objectives without compromising at least one of the others.
To divide the minimum cut capacity of extended network Π′ in to approximately two halves
for t − s and s − t paths, we use subset sum problem with minimum of total traversal time on
t−s paths. The reason behind dividing the path capacities into two halves is for the optimal use
of capacities without wasting unnecessarily while forming the circulation of paths and taking
minimum total travel time on t− s paths is to response the evacuees as quickly as possible. So,
the solution obtained here is an efficient.

Theorem 2.10. An efficient solution obtained from Algorithm 7 is executed in polynomial time.

Proof. Construction of extended network in Step 1 of Algorithm 7 depends on the number of
arcs of the given network. In Steps 2, all t− s paths with positive flow can be obtained by cost-
scaling in polynomial time by considering transit time as cost, Edmonds & Karp (1972) or any
flow decomposition algorithm. Step 4 is saving of t− s paths and removal of their anti-parallel
paths and in Step 5, we search s− t paths with maximum static flow using any polynomial time
maximum flow algorithm. The TRF in Step 7 for maximum dynamic flow takes the constant
time. Similarly, the subset sum problem in Step 3 can be solved by using fully polynomial
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approximation scheme of Kellerer et al. (2003) in O(min{n.1
ϵ
, n + 1

ϵ2
log(1

ϵ
)}) time, where ϵ

is the worst-case relative error. So, the route-based dynamic flow circulation problem can be
solved efficiently by Algorithm 7 in polynomial time approximation.

Remember that, Algorithm 7 solves the route-based evacuation planning problem by using anti-
parallel path decomposition not only for the contraflow network having two-way arcs but also
for the general network having one-way arcs with at least two minimum-cut-arcs if reversal of
the direction of arc is allowed. In one-way general network, the construction of anti-parallel
paths for each arc is similar to two-way network. We can apply Algorithm 7 to solve maximum
dynamic flow circulation at sink t as in similar manner. Moreover, this approach also applies to
the network with symmetric transit times on the arcs.

Theorem 2.11. For one-way s − t network with at least two minimum-cut-arcs, Algorithm 7

provides the solution of route-based maximum flow problem with flow circulation by reversing

necessary arcs from sink to the source at time zero.

Example 2.8. Consider a network presented in Figure 2.17(a) of Example 2.5. Let T = 15 be
given time horizon. The construction of extended network Π′ is as in Figure 2.17(b). The t− s
paths with positive flow in Π′ are
←−
P1 = t − x − s, τ ′1 = 4,Φ1 = 3;

←−
P2 = t − y − yx − x − s, τ ′2 = 4,Φ2 = 1;

←−
P3 =

t − −ty − y − yx − x − s, τ ′3 = 5,Φ3 = 2;
←−
P4 = t − ty − y − ys − s, τ ′4 = 6,Φ4 = 2;

←−
P5 = t− ty − y − x− xs− s, τ ′5 = 7,Φ5 = 1.

As F = {3, 1, 2, 2, 1} with
∑
F = 9, so we search t − s paths with capacity at most 4 units

and having minimum total time by using subset sum problem. Step 3 of Algorithm 7 provides
←−
P1 and

←−
P2 as t − s paths. After removing the anti-parallel paths of

←−
P1 and

←−
P2, we can find two

s− t paths in the remaining network, s− y − t and s− x− xy − y − t with flow value 2 each
having transit times 6 and 7 units, respectively.

The one-way representation of Figure 2.18(a) is presented in Figure 2.18(b). While sending
static flow on t − s − t circulation, we have three paths P c

1 = t − x − s − y − t, P c
2 =

t− x− s− x− xy − y − t and P c
3 = t− y − yx− x− s− x− xy − y − t with transit times

τ ′P c
1
= 10, τ ′P c

2
= 11 and τ ′P c

3
= 11 which carry the flow of 2, 1 and 1 units, respectively. Total

amount of flow circulation in T = 15 by using TRF is 22 units. That is, 22 units of vehicles are
circulated in T = 15 to pickup the evacuees. □

Case Illustration II

Problem Description. In this case illustration, we are considering an artificial incidence of
flooding at the residential area of Kathmandu valley situated at the confluence of two major
rivers Bagmati and Manohara. Consider an incidence that there is heavy rainfall in Kathmandu
valley and its surrounding mountains at a morning. Meteorological forecasting division release
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(b) t− s− t paths as one-way network flow

Figure 2.18: (b) represents the t− s− t path of (a) as one-way network flow.

a warn notice that the residential areas of lower part of Buddhanagar situated at the confluence
of two rivers Bagmati and Manohara is going to be flooded after 2 hours. Government of Nepal
declares the area as an emergency zone and decides to evacuate them at Tudikhel approximately
in 1 hour. All the vehicles from Tinkune, Koteshwor, Pulchouk, Kalimati, Jamal and Gausala
to this area are diverted to other directions except the vehicles used for the evacuation process.
Due to the narrow roads at disaster zone, Traffic Department suggests to use the micro vans
which have capacity of 16 passengers at a time. Traffic police has requested micro van service
committees for humanitarian support by sending vehicles and managed the routes for these
vehicles from Koteshwor, Gwarko and Lagankhel areas to the emergency area. Evacuation
zone is presented in the Figure 2.19 below.

To capture the mathematical optimization model of evacuation zone using network optimiza-
tion, we have created 50 nodes (numbered from 0 to 49) at the crossing points of the roads,
where nodes 0 and 49 are the source (emergency area) and sink (safe shelter), respectively.
Similarly, paths joining nodes are the road segments, considered as arcs. In Figure 2.19, bold
yellow line at the middle and other black dashed lines are paths used for the evacuation process
in which some are of one-way. Yellow path from node 2 to 18 is a two-way main road of 8
lanes (4 lanes in each direction) and that from 18 to 47 has 6 lanes (3 lanes in each direction).
Similarly, bold dashed road from 21 to 24 is of 6 lanes (3 lanes in each direction) where as from
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Figure 2.19: Evacuation zone with 50 nodes. Nodes 0 (red dashed lines) and 49 (entry point
of green rectangular area) represent the source (emergency area) and sink (safe shelter), respec-
tively.

26 to 49 and 6 to 30 are of 4 lanes (2 lanes in each direction). Thin roads are of 2 lanes. Some
roads are one-way, for example, 48 to 49 and 49 to 44 with capacity 6 each. Similarly, some
anti-parallel roads are of asymmetric transit times, for example, road from 1 to 0 along corridor
of Bagmati river has transit time 1 minute whereas the road next to it form 0 to 1 has transit time
1.5 minutes. The detailed list of arc, capacity and transit time are presented in Appendix, where
capacities are considered as per the lanes of road segments and transit times of vehicles (in
minutes) are taken with respect to the length and width of the road segments for which average
speed of each vehicle is considered as 40 km/hr.

Output: MDCF. To implement MDCF Algorithm 5 to solve the problem, we used program-
ming language of Python 3.7 version on Dell computer with 64-bit operating system, having
11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz & 2.42 GHz dual processor and 8 GB
RAM. For the given network with 50 nodes (numbered from 0 to 49) and 131 arcs, maximum
flow of vehicles sent to the sink in one hour are 377 so that 6032 peoples can be shifted within
the time (without contraflow configuration). For anti-parallel path decomposition, we devel-
oped and used the codes in python programming language and it executes a extended network
with 181 nodes and 393 arcs, where new nodes are numbered by system code from 50 to 180.
The maximum flow of vehicles in this network is 756 so that 12096 evacuees can be shifted
to the safe shelter. Thus due to asymmetric contraflow with anti-parallel path decomposition,
flow of evacuees is increased by 100.53%. The running time of program is 0.12 seconds. While
flow transmission with asymmetric contraflow configuration, 23 arcs (1,0), (7,0), (8,0), (10,0),
(2,1), (6,7), (7,4), (12,6), (12,11), (14,12), (15,14), (16,15), (18,16), (17,10), (24,17), (25,2),
(43,18), (44,43), (45,44), (46,45), (47,24), (48,47) and (49,46) are used in the reverse direction
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with anti-parallel path decomposition, which is approximately 18% of the total arcs in the given
network. For the comparative study of flow values obtained with and without contraflow in each
time interval of 10 minutes, we have illustrated it in Table 2.2 and Figure 2.20.

Table 2.2: Comparison of no. of evacuees reaching to the destination with and without con-
traflow configuration.

Time (in minutes) 0 10 20 30 40 50 60
Evacuees without contraflow 0 416 1152 2672 3792 4912 6032
Evacuees with contraflow 0 896 3136 5376 7616 9856 12096

Output: QCF. If the population in disaster zone is considered to be 15,000, total number of
vehicle trips need to evacuate is FV = 938. To solve QCF problem by using Algorithm 6,
we have Tmin = 5.2, Tmax = 943.2, because the shortest path have capacity 1 and traversal
time 5.2. For the convergence of the flow value, we set tolerance value (error of convergence in
|Tmin − Tmax| and respective dynamic flow) as tol = 0.1. The quickest time of evacuation for
15,000 evacuees executed by python program is 74 minutes (1 hour and 14 minutes) whereas
without contraflow is 141 minutes (2 hours and 21 minutes). Due to contraflow configuration
with anti-parallel path decomposition, quickest time of evacuation is reduced by 47.5%. The
running time of program with tol = 0.1 is 3.6 seconds. The comparison of quickest time with
and without contraflow using anti-parallel path decomposition is presented in Table 2.3 and
Figure 2.21.

Table 2.3: Comparison of quickest time (in minutes) with and without contraflow configuration.

No. of Evacuees 0 2,500 5,000 7,500 10,000 12,500 15,000
Time (min.) without contraflow 0 29 51 74 96 119 141
Time (min.) with contraflow 0 18 29 40 51 62 74

Figure 2.20: Comparison of no. of evac-
uees with and withour contraflow.

Figure 2.21: Comparison of quickest time
with and without contraflow.
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Chapter 3

Abstract Network Flow

In this chapter, we describe the flow problems in an abstract network associated with the set
of paths and elements, where elements are capacitated and paths are linearly ordered subset of
elements. Every path in the abstract network must satisfy the switching property: when two
paths cross at an element then there must be a path that is a subset of the first path up to the
crossing element and a subset of the second path after the crossing element. Traffic management
offices use different tools of traffic diversion like physical presence of traffic police, use of traffic
signals, traffic lights, diversions, barricades, etc. to divert the flows on crossing paths to non-
crossing sides. In this chapter, we incorporate the concept of intermediate storage in abstract
network which is mainly considered in our paper Pyakurel et al. (2022). We also discuss on an
abstract network flow with partial switching of the paths from Khanal et al. (2022).

3.1 Abstract Network Flow with Intermediate Storage

Our main aim in this section is to introduce the concept of intermediate storage on an abstract
network topology, where nodes are taken as elements. As the solution strategy, we fix the first
priority to the sink and the priority of intermediate elements are set according to the maximum
of shortest distance from the source. Flows are stored according to their priority order by using
lexicographic maximum flow technique. Similarly, we present TRF to obtain the maximum
dynamic abstract flow with intermediate storage if the storage capacity of each intermediate
element is sufficient (i.e., at least T times the sum of capacities of incoming paths from its left
elements).

With flow conservation at each intermediate elements, Hoffman (1974) generalized the max-
flow-min-cut theorem of Ford & Fulkerson (1962) for abstract network flow. Due to bottleneck
flow on each path, shipment of the excess flow from the source element greater than the min-
imum cut capacity is not considered. Here, we adopt the intermediate storage of excess flow
introduced by Pyakurel & Dempe (2020) for general network in the abstract network.
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3.1.1 Notations

Consider an abstract network topology Π = (E ,P) with finite set of elements E and the collec-
tion of paths

P = {P ⊆ E : P has a linear order <P of elements in P} ⊆ 2E .

Here, the notation P represents the set of all paths of two type: the source-sink (s− t) paths P
and the intermediate paths P[s→u] from s ∈ E to u ∈ E \ {s, t}. Except for sink t, each element
u ∈ E has the non-negative integral movement capacity κu : E ×E → Z+ which is used to send
the flow from element u to its adjacent elements. Similarly, each element u ∈ E has the storage
capacity νu : E → Z+ which is used to hold the flow at u. We denote the order of elements in
the path P ∈ P by <P so that u <P v represents that u is the left of v on P . Similarly, if u
is right of v on path P then u >P v is used. Element u ∈ P is said to be the leftmost or first
(rightmost or last) element of P if there does not exist v in P such that v <P u (v >P u).
Source node s in s − t path P is the leftmost element whereas the sink t is the rightmost. The
set of intermediate elements is denoted by I = E \ {s, t}.

To have a network Π = (E ,P) an abstract network, it must satisfy the switching property:
∀P,Q ∈ P and an intermediate element u ∈ P ∩Q, ∃R ∈ P such that R ⊆ P ×u Q, where

P ×u Q = {v ∈ P : s ≤P v ≤P u} ∪ {v ∈ Q : u ≤Q v ≤Q t}.

In a similar manner, the definition for switched path R ⊆ Q×u P can be obtained. For simplic-
ity, we use the notations

P[s→u] = {v ∈ P : s ≤P v ≤P u} and P[u→t] = {v ∈ P : u ≤P v ≤P t}

to represent the elements on path P from source s up to u and that begin from u up to sink t,
respectively. Similarly, the elements on path P that are left of u and right of u can be written as

P[s→u) = {v ∈ P : s ≤P v <P u}, and P(u→t] = {v ∈ P : u <P v ≤P t},

respectively. If P and Q are two paths both containing u1 and u2, then it is possible to have
u1 <P u2 but u1 >Q u2.

Our assumption is that the terminal elements source and sink have sufficiently large storage
capacity, i.e., νs = νt ≤ ∞ whereas the intermediate elements have finite storage capacity
such that νu ≥

∑

P∈P:v<Pu

κv for all u ∈ I. The source and intermediate elements have finite

movement capacities (i.e., κu <∞, ∀u ∈ E \ {t}) and that of the sink is zero (i.e., κt = 0). If
the incoming movement capacity of an intermediate element u ∈ I is more than the outgoing
movement capacity, then the excess flow is used to store at u. Furthermore, the incoming and
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outgoing movement capacities of source and sink elements are zero, respectively, except for the
contraflow network.

3.1.2 Abstract Maximum Static Flow with Intermediate storage

For the given abstract network Π = (E ,P), the abstract maximum static flow problem with
intermediate storage is to obtain the maximum flow leaving the source element which is to be
shifted to the sink element via s − t paths P ∈ P by allowing the maximum storage of excess
flow at intermediate elements u via intermediate paths P[s→u] ∀u ∈ I with storage capacity
νu ≥

∑
P∈P:v<Pu

κv.

Flow Model. Let ϕP : P → R+ be the path flow on s − t path P of network Π = (E ,P). We
can induce a path-flow ϕP through the elements lying on it by ϕP

u =
∑

P∈P:u∈P
ϕP . A path flow

ϕP is feasible if and only if ϕP
u ≤ κu and ϕP ≥ 0 for all u ∈ E . We say that an element u is

saturated with respect to ϕ if ϕP
u = κu. Denote ϕP,out

u =
∑

P∈Γout
u

ϕP and ϕP,in
u =

∑
P∈Γin

u

ϕP as the

total outflow from u and the total inflow into u, respectively, where Γout
u and Γin

u represent the
set of outgoing paths from u and incoming paths into u. Let cu : E × E → Z+ be the per unit
cost of flow transmission from u to its right element so that cP =

∑
u∈P

cu.

Consider the excess flow function ϕ̂u : I → R+ which stores the flow at element u ∈ I and
is obtained by the difference of inflow and outflow. The linear programming model of abstract
static network flow with intermediate storage can be presented as follows.

max
∑

P∈P
ϕP +

∑

u∈I
ϕ̂u (3.1a)

such that,

∑

P∈P:u∈P
ϕP ≤ κu, ∀u ∈ E (3.1b)

ϕP,in
u − ϕP,out

u = ϕ̂u, ∀u ∈ I (3.1c)

0 ≤ ϕ̂u ≤ νu, ∀u ∈ I (3.1d)

ϕP ≥ 0, ∀P ∈ P (3.1e)

Here, the objective function in equation (3.1a) is to maximize the total flow reaching at sink
t as well as the excess flow at intermediate elements. The boundedness of the path flow by
the movement capacity of each element is represented in equation (3.1b) and the excess flow
is presented in equation (3.1c). The left inequality of equation (3.1d) represents the weak flow
conservation whereas the boundedness of the excess flow by the storage capacity is represented
in its right inequality. Similarly, equation (3.1e) represents the non-negativity of the flow on
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each path. For the feasible solution, the lower bound of storage capacity is considered as νu ≥∑
P∈P:v<Pu

κv, ∀u ∈ I.

Solution Procedure. As in Section 2.3, the first priority is given to the sink by considering as
most appropriate shelter and transship as much flow as possible. To store the excess flow at
intermediate elements, the priority ordering is set as farther in distance higher in priority, i.e.,
∀u, v ∈ I if dP[s→u]

> dP[s→v]
, then u has higher priority than v and this is denoted by u ≻ v

where dP[s→u]
represents the shortest distance (or minimum cost) of element u from s.

For each prioritized element u ∈ I, we create the dummy element u⋆ with cost cP[u→u⋆]
=

dP[u→u⋆]
= 0 and capacities κ[u→u⋆] = νu = νu⋆ , where cP[u→u⋆]

and κP[u→u⋆]
are the cost and

movement capacity from u to u⋆, respectively. The priority order of dummy element u⋆ is
same as of element u and the collection of dummy elements {u⋆} together with sink t forms a
multiple sink D. The modified network Π⋆ = (E⋆,P⋆) is obtained having single source s and
multiple sinks D = {t} ∪ {u⋆}, where E⋆ = E ∪ {u⋆} and P⋆ = P ∪ {P[s→u⋆]}.

Let u1, . . . , un−2 be n− 2 intermediate elements with priority order t ≻ u1 ≻ u2 ≻ · · · ≻ un−2

in E . Then the dummy element u⋆i of each ui forms the priority order u⋆0 ≻ u⋆1 ≻ · · · ≻ u⋆n−2
in D with denotation t = u⋆0. A sequence of elements is said to be compatible if the elements
respect their ranks. Here, D = {u⋆0 ≻ u⋆1 ≻ · · · ≻ u⋆n−2} is the prioritized set of sinks in which
more priority is given to the one in left than in right and satisfies the condition

P ∈ P⋆, u⋆i ̸= u⋆j ∈ P : i < j =⇒ u⋆i ≤P u
⋆
j ,

and so D forms a compatible sequence of sinks.

Now we define the collection of paths in compatible sequence of sinks as follows.

P⋆
0 = {P[s→u⋆

0]
}

P⋆
i = P⋆

i−1 ∪ {P[s→u⋆
i ]
} for i = 1, . . . , n− 2.

As in Kappmeier (2015), the network topology Π⋆
i = (E⋆,P⋆

i ) for i = 0, 1, . . . , n−2 containing
the paths starting from s and ending at u⋆i forms the abstract network satisfying the switching
property.

Observation 3.1 (Kappmeier (2015)). For an abstract network Π = (E ,P) and a compati-
ble sequence of sinks u⋆0, u

⋆
1, . . . , u

⋆
n−2, the abstract path-system Π⋆

i = (E⋆,P⋆
i ) for each i =

0, 1, . . . , n− 2 is an abstract network.

Lastly, the solution obtained in this network is transformed to the original network by removing
dummy elements and dummy paths. Flows to dummy elements are shifted to their correspond-
ing intermediate elements.
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Example 3.1. Consider a network Π presented in Figure 3.1 having storage capacity at each el-
ement together with movement capacity and cost in between pair of elements. The set of paths
in Π is P = {P1, P2, P3, P4, P5, P6} where, P1 = (s, u, x, y, t), P2 = (s, w, x, v, t), P3 =

(s, u, v, t), P4 = (s, w, y, t), P5 = (s, u, x, v, t) and P6 = (s, w, x, y, t). Let P1, P2, P3 and P4

be four paths with positive flow. Here, x is common element in paths P1 and P2 whose switched
paths are P5 = P1×xP2 and P6 = P2×xP1. The shortest distance of each intermediate element
is dP[s→y]

= 4, dP[s→v]
= 3, dP[s→x]

= 2, dP[s→w]
= 1 and dP[s→u]

= 0. Thus the priority order
of elements is t ≻ y ≻ v ≻ x ≻ w ≻ u. We create the dummy element of each intermediate
element together with the dummy path having movement capacity equal to the storage capac-
ity of original element and taking cost on dummy path as zero. Also, the storage capacity of
dummy element is taken as the storage capacity of original element. The set of dummy ele-
ments {y⋆, v⋆, x⋆, w⋆, u⋆} together with sink element forms a compatible sequence denoted by
D = {t, y⋆, v⋆, x⋆, w⋆, u⋆} (See in Figure 3.2). □
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s− t paths:
P1 = (s, u, x, y, t) κP1 = 3, cP1 = 8
P2 = (s, w, x, v, t) κP2 = 1, cP2 = 7
P3 = (s, u, v, t) κP3 = 5, cP3 = 6
P4 = (s, w, y, t) κP4 = 2, cP4 = 7
P5 = (s, u, x, v, t) κP5 = 1, cP5 = 6
P6 = (s, w, x, y, t) κP6 = 1, cP6 = 9.

Figure 3.1: Network with movement capacity, cost between elements and storage capacity at elements.
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Figure 3.2: Reconfigured network with a compatible sequence of sinks (dummy elements) after priority
ordering on Figure 3.1.
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Using the lexicographically maximum flow algorithm of Kappmeier (2015) (cf. Page 167, Al-
gorithm 6.2), we present Algorithm 8 to the abstract maximum static flow problem with inter-
mediate storage on single source multi-sink abstract network Π⋆ as follows.

Algorithm 8: Abstract maximum static flow algorithm with intermediate storage
Input : Given abstract static network Π = (E ,P).
Output: Abstract maximum static flow with intermediate storage on Π.

1. For each u ∈ I with νu ≥
∑

P∈P:v<Pu

κv, compute the shortest distance dP[s→u]
by using

Dijkstra’s algorithm.
2. Fix the priority order as t ≻ u1 ≻ · · · ≻ un−2 with first priority to the sink t and priority

for intermediate elements as farther in distance higher in priority order.
3. Construct the modified network Π⋆ = (E⋆,P⋆) with single source s and compatible

sequence of multiple sinks with dummy elements D = {t = u⋆0, u
⋆
1, . . . , u

⋆
n−2}, where

E⋆ = E ∪D and P⋆ = P ∪ {P[s→u⋆
i ]
}.

4. Compute the lexicographic abstract maximum static flow with priority ordering in
Step (2) according to Kappmeier (2015).

5. Transform the solution to the original network Π by removing dummy elements and
dummy paths.

Lexiocographically Maximum Flow. For any two flows ϕ and ψ, we say that ϕ is lexicograph-
ically greater than ψ, and denote ϕ ≥L ψ, if either (ϕin

u⋆)l > (ψin
u⋆)l and (ϕin

u⋆)j−1 = (ψin
u⋆)j−1

holds for some l ∈ {0, 1, . . . , n − 2} and j = 1, . . . , l, or (ϕin
u⋆)j = (ψin

u⋆)j holds for all
j = 0, 1, . . . , n − 2. The maximum flow ϕ̄ with lexicographic order ≥L among all feasible
abstract flows ϕ is a lexicographic abstract maximum flow and is denoted by ϕ̄ ≥L ϕ for all ϕ.

Theorem 3.1. For each i = 0, 1, . . . , n − 2, there exists an abstract flow ϕi in Π⋆
i = (E⋆,P⋆

i )

which is a lexicographically maximum flow.

Proof. When i = 0, Π⋆
0 = Π is a single source single sink abstract network. As in Mc-

Cormick (1996)), it provides an abstract maximum flow by taking the initial flow as zero flow
and using an augmenting structure. The mathematical induction method is used for further
proof. For some i < n− 2, assume that flow ϕi is lexicographic abstract maximum flow which
is obtained by taking initial flow ϕi−1 and using augmenting structure of McCormick’s algo-
rithm. We aim to show that ϕi+1 is also lexicographic abstract maximum flow. As the sequence
u⋆0, u

⋆
1, . . . , u

⋆
n−2 of sinks is compatible, augmenting structure of McCormick assures that the in-

flow to the sink element is not reduced and so ϕi+1 is maximum. If possible, let us assume that
ϕi+1 is not lexicographic abstract maximum flow in the abstract network Π⋆

i+1 = (E⋆,P⋆
i+1).

Then there exists a flow ϕ′ which sends more flow to the sink u⋆r for some r ∈ {0, 1, . . . , i}. For
each P ∈ P⋆

i , define the restricted flow ϕ̃ by ϕ̃P = ϕ
′P . For ϕ̃ and ϕ′, incoming flow at sink u⋆r

is the same and ϕ̃ is a feasible abstract flow in Π⋆
i = (E⋆,P⋆

i ) which sends more flow to sink u⋆r
than ϕi. This contradicts to ϕi being a lexicographically maximum.
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Theorem 3.2. The static flow obtained from Algorithm 8 is an abstract maximum static flow

with intermediate storage in Π = (E ,P).

Proof. Steps 1 and 2 of Algorithm 8 are as same in Section 2.3. For the network with abstract
path-system Π⋆

i = (E⋆,P⋆
i ), the set inclusion holds i.e., Π⋆

i ⊆ Π⋆
i+1, for i = 0, 1, . . . , n − 3.

Theorem 3.1 assures the existence of a lexicographic abstract maximum flow in Π⋆
i . Lastly,

we transform the flow of dummy elements in Π⋆ to their respective intermediate elements to
obtain the solution with intermediate storage in Π and transformation of the network to original
network is made by removing dummy elements and dummy paths. Thus the solution obtained
is an abstract maximum static flow with intermediate storage in Π = (E ,P).

Corollary 3.3. Abstract maximum static flow problem with intermediate storage can be solved

in polynomial time by using Algorithm 8.

Proof. The shortest distance of each element can be obtained inO(|E|2) times and their priority
ordering with respect to the distance can be calculated in linear time. After fixing the priority
order of intermediate elements, the problem is transformed to a single source and multi-sink
problem and by using Kappmeier (2015), Step 4 can be obtained in polynomial time. Similarly,
a transformation of the solution to the original network can be obtained in linear time. So, the
polynomial time solution of Algorithm 8 to solve an abstract maximum static flow problem with
intermediate storage is at hand.

Example 3.2. This example is continuation of Example 3.1 which proceeds to find the static
solution with intermediate storage before and after switching of the paths. The set of dummy
elements D⋆ = {y⋆, v⋆, x⋆, w⋆, u⋆} and a compatible sequence D = D⋆ ∪ {t} are obtained
in Example 3.1. Here, we obtain the solution of maximum static flow by using lexicographic
approach and restore the flows at sink and dummy elements with priority order. Finally, dummy
elements and dummy paths are removed to get a maximum static flow with intermediate storage.

The flow with intermediate storage in general network (without switching of paths) is pre-
sented in Figure 3.3, where possible paths of flow transmission are P1, P2, P3, P4, P5 and P6.
The numbers in between the elements represent the movement capacity, flow and cost of the
path segment. Similarly, in reconfigured abstract network flow is transmitted through four
paths P3, P4, P5 and P6 after switching of two crossing paths P1 and P2 (see in Figure 3.4
and Table 3.1). Being minimum cost path, flow of 5 units is first send to the sink via path
P3 = (s, u, v, t), where compatible sequence of sink and intermediate elements is {t, v⋆, u⋆}.
Now, possible maximum excess flow is send to v⋆ through two possible paths (s, u, v, t, v⋆) and
(s, u, v, v⋆). As the first path (s, u, v, t, v⋆) is already saturated, only 1 unit of excess flow can
be reached to v⋆. Similarly, the 4 units flow at u is diverged towards more prioritized element x,
2 units of excess flow is stored at u⋆. This process is simultaneously used for all possible paths.
At last, the flow at each dummy element is transformed to the respective element.
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It is to be noted in Figure 3.4 that the 5 units of flow reaching x through two paths (4 from u and
1 from w) are not been merged at x but diverged to non-crossing sides by some traffic signal
mechanism; and excess flows are stored at appropriate shelter. Otherwise, it becomes a general
network flow. Out of the 4 units of flow reaching x from u, 1 unit is switched to v due to the
switching property, and the remaining 3 units are stored as excess flow. On the other hand, the
1 unit of flow reaching x from w is switched to y with no excess flow. Thus, two flows from
different paths are not crossing at x but diverging from the intersection.

The total amount of flow out from the source element before switching the paths (i.e. general
network) without intermediate storage is 9 units whereas with intermediate storage is 22 units
(Figure 3.5(a)). Figure 3.5(b) shows the flow at sink and excess flow at intermediate elements
after switching the paths. Total amount of flow out from the source element without inter-
mediate storage is 8 units whereas with intermediate storage is 22 units, which emphasize the
importance of intermediate storage in the abstract network. Table 3.1 represents the flow pattern
in each path with intermediate storage. □
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Figure 3.3: Storage of flow at dummy elements and sink before switching the paths (general).

Table 3.1: General and abstract path flows with intermediate storage

Intermediate storage: General Intermediate storage: Abstract
Path u w x v y t Path u w x v y t

P3 2 × × 1 × 5 P3 2 × × 1 × 5
P5 0 × 0 1 × 0 P5 0 × 3 1 × 0
P2 × 7 1 0 × 0 P4 × 7 × × 0 2
P4 × 0 × × 0 2 P6 × 0 0 × 0 1
P1 0 × 0 × 1 2
P6 × 0 0 × 0 0
Total flow 2 7 1 2 1 9 Total flow 2 7 3 2 0 8
×= element not used
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Figure 3.4: Storage of flow at dummy elements and sink after switching the paths (abstract).
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Figure 3.5: Solution in (a) before switching of paths and (b) after switching of paths.

3.1.3 Lexicographic Abstract Maximum Static Flow with Intermediate
Storage

In this subsection, we consider a network with single source s but multiple sinkD = {t1, . . . , tl}
and solve the lexicographic abstract maximum static flow problem with intermediate storage.
Let Π = (E ,P) be an abstract s − D network with E = {s} ∪ I ∪ D, where D be a set of
multiple sinks and other components have their usual meaning as defined previously.

Solution Procedure. Due to multiple sinks in given network, we first fix the priority of sinks
with a compatible sequence. Secondly, the priority order of intermediate elements are set as in
previous subsection and finally, we merge them with a priority of sinks followed by priority of
intermediate elements. Three stages for fixing the priority order are as follows.

Stage 1: For a given set of sinks D = {t1, t2, . . . , tl} with dP[s→t1]
> dP[s→t2]

> · · · > dP[s→tl]
,

the priority ordering of sinks is fixed as t1 ≻ t2 ≻ · · · ≻ tl which respect their rankings. In case
of equal distance, priority can be set arbitrarily. Similarly, if the priority order is pre-defined, it
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can be adopted with the given order.

Stage 2: for the set of intermediate elements {u1, u2, . . . , uk} in I with k = n − l − 1, the
priority order is set as in previous subsection with farther in distance higher in priority order,
i.e., dP[s→ui]

> dP[s→uj ]
=⇒ ui ≻ uj, ∀i, j ≤ k which respect their rankings. Equality in

distance indicates the mutability in order.

Stage 3: In this stage, we first merge two sets in Stage 1 and Stage 2 with priority order
t1 ≻ · · · ≻ tl ≻ u1 ≻ · · · ≻ uk. The set of dummy elements is created as {u⋆l+1, . . . , u

⋆
l+k}

corresponding to {u1, . . . , uk} with the same priority order of Stage 2. Let us construct a super
sink D′ = {t1, . . . , tl, u⋆l+1, . . . , u

⋆
l+k} with a compatible sequence of elements having priority

order as t1 ≻ · · · ≻ tl ≻ u⋆l+1 ≻ · · · ≻ u⋆l+k.

As in previous subsection, we define the collection of paths as

P⋆
0 = ∅
P⋆

i = P⋆
i−1 ∪ {P[s→ti]} for i = 1, . . . , l

P⋆
i = P⋆

i−1 ∪ {P[s→u⋆
i ]
} for i = l + 1, . . . , l + k.

Each abstract path-system Π⋆
i = (E⋆,P⋆

i ) for i = 0, 1, . . . , l + k forms the abstract network
satisfying the switching property, where E⋆ = E∪{u⋆l+1, . . . , u

⋆
l+k}. The algorithmic framework

to solve the lexicographic abstract maximum static flow problem with intermediate storage is
as follows.

Algorithm 9: Lexicographic abstract maximum static flow algorithm with intermediate
storage
Input : Given abstract static network N = (E,P).
Output: Lexicographic abstract maximum static flow with intermediate storage.

1. Fix the priority order t1 ≻ · · · ≻ tl ≻ u⋆l+1 ≻ · · · ≻ u⋆l+k as described in three stages.
2. Construct the modified network Π⋆ = (E⋆,P⋆) with single source s and compatible

sequence of super sinks D′ = {t1, . . . , tl, u⋆l+1, . . . , u
⋆
l+k}.

3. Compute the lexicographic abstract maximum static flow with priority ordering in Step 1
according to Kappmeier (2015) with similar procedure of Algorithm 8.

4. Transform the solution to the original network Π by removing dummy elements and
dummy paths.

The proof of existence of lexicographic abstract maximum flow in Π⋆
i on super sink D′ of sinks

together with dummy elements and the polynomial time complexity of Algorithm 9 can be
proved as in Subsection 3.1.2.

Theorem 3.4. Algorithm 9 computes the lexicographic abstract maximum static flow with in-

termediate storage in Π = (E ,P) in polynomial time complexity.
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3.1.4 Abstract Maximum Dynamic Flow with Intermediate Storage

Consider an abstract dynamic network topology Π = (E ,P , τ, T ) with temporal dimensions
τ : E ×E → Z+ and T ∈ T as a non-negative transit time of element u ∈ E that is necessary to
transship flow from u to its right element and time horizon in discrete time setting, respectively.
If u and v are two consecutive elements on path P with u <P v, then flow traveling through u
at time θ reaches v at time θ+ τu. For each s− t path P ∈ P , the traversal time of the flow from
s to t is represented as τP =

∑
u∈P[s→t)

τu and the traversal time of flow from s to intermediate

element v through the path P[s→v] is represented as τP[s→v]
=

∑
u∈P[s→v)

τu.

Mathematical Model. Consider an abstract dynamic path flow function ΦP (θ) : P × T → R+

that sends the flow from s to t as at discrete time θ ∈ T and an excess flow function Φ̂u(θ) :

I × T → R+ that stores the flow at intermediate element u ∈ I within time θ ∈ T . We
denote the total outflow from u and inflow into u by ΦP,out

u =
∑

P∈Γout
u

ΦP and ΦP,in
u =

∑
P∈Γin

u

ΦP ,

respectively, whose difference gives the excess flow. The linear programming formulation of
abstract dynamic flow with intermediate storage is as follows.

max
∑

P∈P

T∑

θ=τP

ΦP (θ) +
∑

u∈I

T∑

θ=τP[s→u]

Φ̂u(θ) (3.2a)

such that,

∑

P∈P:u∈P
ΦP (θ) ≤ κu, ∀u ∈ E , θ ∈ T (3.2b)

ΦP,in
u (θ)− ΦP,out

u (θ) = Φ̂u(θ), ∀u ∈ I, θ ∈ T (3.2c)

0 ≤ Φ̂u(θ) ≤ νu, ∀u ∈ I, θ ∈ T (3.2d)

ΦP ≥ 0, ∀P ∈ P (3.2e)

Our objective in equation (3.2a) is to maximize the sum of two flows, the flow reaching at sink t
and the excess flow stored at intermediate elements u ∈ I, within time horizon T . The capacity
constraints and excess flow are represented by equation (3.2b) and equation (3.2c), respectively.
Similarly, weak flow conservation at each time step θ and the boundedness of excess flow by
storage capacity are presented in the left and right inequalities of equation (3.2d), respectively.
Equation (3.2e) represents the non-negativity of the flow on each path. For the existence of
solution, the lower (i.e., necessary) and upper (i.e., sufficient) bounds of the storage capacity
for each intermediate element u is taken as

∑
P∈P:v<Pu

κv ≤ νu ≤ T
∑

P∈P:v<Pu

κv.

Solution Procedure. To start the solution procedure, we first have to describe the formation
of temporal paths in time expanded form. As similar to general network, elements in the time
expanded network ET are obtained by creating T + 1 copies of the elements for each time step
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θ ∈ T and defined as
ET = {u(θ) : u ∈ E , θ ∈ T },

where {u(0)} represents the set of elements in the given network. Any flow starting from source
element s at the time θ reaches to u along with a path P at time θ +

∑
v∈P[s→u)

τv. For each path

P ∈ P and θ ∈ {0, 1, . . . , T}, the temporal path P (θ) is the copy of elements of P in which
flow starts on it at the time θ and travels through path P . That is,

P[s→u](θ) =



u(β) ∈ E

T : u ∈ P, β = θ +
∑

v∈P[s→u)

τv



 .

Replacing the arbitrary element u by sink element t provides the source-sink temporal path and
is denoted simply by P (θ). The order of elements in temporal path P (θ) is same as in P . We
denote the set of all temporal paths that reach to the intermediate element u and sink element t
within time horizon T by PT

[s→u](θ) and PT (θ), respectively, which are defined as follows.

PT
[s→u](θ) =



P[s→u](θ) : P[s→u] ⊂ P ∈ P , θ ∈ T , θ +

∑

v∈P[s→u)

τv ≤ T





PT (θ) =

{
P (θ) : P ∈ P , θ ∈ T , θ +

∑

u∈P
τu ≤ T

}
,

The abstract path system (ET ,PT (θ)) may not be an abstract network because it may not sat-
isfy the switching property (Kappmeier (2015)). To handle this problem, paths with delay in
elements are essential. We define the delay function δ : P → {0, 1, . . . , T} for each element in
path P . Every flow traveling from s along with path P with delay pattern δ reaches to u ∈ P at
time

∑
v∈P[s→u)

(τv + δv) + δu. The temporal path with delay pattern can be represented as

P δ
[s→u] =



u(β) ∈ E

T : u ∈ P, β =
∑

v∈P[s→u)

(τv + δv) + δu



 .

The order of elements in P δ is the same as in P . Now, we represent the set of temporal paths
with delay pattern δ arriving at the intermediate element u and destination sink t within time T
by Pδ,T

[s→u] and Pδ,T , respectively, which can be defined as follows.

Pδ,T
[s→u] =



P

δ
[s→u] : P[s→u] ⊂ P ∈ P , δ ∈ {0, 1, . . . , T}P ,

∑

v∈P[s→u)

(τv + δv) ≤ T





Pδ,T =

{
P δ : P ∈ P , δ ∈ {0, 1, . . . , T}P ,

∑

u∈P
(τu + δu) ≤ T

}
.
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Example 3.3. Consider a network with transit times between the elements presented in Fig-
ure 3.6 in which a set of s−t paths isP = {P1, P2, P3, P4}, where P1 = s−u−t, P2 = s−v−t,
P3 = s − u − v − t and P4 = s − v − u − t. Let T = 4 be given time horizon. Then, the
temporal s− t paths P (θ) with starting time θ from s are as follows:

s

u

v

t

2

1

11

1

1

Figure 3.6: Dynamic network with transit time.

P1(0) = s(0)− u(2)− t(3),
P1(1) = s(1)− u(3)− t(4),
P2(0) = s(0)− v(1)− t(2),
P2(1) = s(1)− v(2)− t(3),
P2(2) = s(2)− v(3)− t(4),
P3(0) = s(0)− u(2)− v(3)− t(4)
P4(0) = s(0)− v(1)− u(2)− t(3)
P4(1) = s(1)− v(2)− u(3)− t(4)
Here, two temporal paths P3(0) and P4(0) are crossing at u at θ = 2. By applying the switching
property, paths are switched along s(0)−u(2)− t(3) and s(0)−v(1)−u(2)−v(3)− t(4). The
second switched path does not belong to the path set which also forms a cycle v(1)−u(2)−v(3).
The cycle can be removed by taking path as s(0)− v(1)− t(4) but still it is not an abstract path
because the transit time from v to t is not 3 units but 1 unit. Thus we have to assign the waiting
time δv = 2 at v to form an abstract path.

Lemma 3.5 (Kappmeier (2015)). (i) For u ∈ P ∩ Q and R = P ×u Q, an abstract network

is said to preserve the order of path if v, w ∈ R ∩ P[s→u] with v <P w implies v <R w and if

v, w ∈ R \ P[s→u] with v <Q w implies v <R w.

(ii) If an abstract network Π = (E ,P , τ, T ) preserves the order on paths, then the network

Πδ,T = (ET ,Pδ,T , τ, T ) with path system Pδ,T is an abstract network.

As in static case, the compatible set of dummy elements D = {t = u⋆0, u
⋆
1, . . . , u

⋆
n−2} with

same priority ordering u⋆0 ≻ u⋆1 ≻ · · · ≻ u⋆n−2 is obtained and the problem is transformed to
a single source multi-sink s − D flow problem in abstract network. We use the lexicographic
maximum dynamic flow solution procedure of Kappmeier (2015) in the reconfigured network
Πδ,T

i = (Ei,Pδ,T
i ) with Ei = E ∪Di, Di = {u⋆0, u⋆1, . . . , u⋆i } and Pδ,T

i = Pδ,T ∪ Pδ,T
[s→u⋆

i ]
for all

i = 0, 1, . . . , n − 2 and for each time step θ ∈ T . Here, D0 ⊆ · · · ⊆ Dn−2 and similar set
inclusion holds in Pδ,T

i . The algorithmic framework to solve abstract maximum dynamic flow
with intermediate storage is presented in Algorithm 10.

Theorem 3.6. Algorithm 10 provides an optimal solution to the abstract maximum dynamic

flow problem with intermediate storage.

Proof. While prioritizing the intermediate elements, constructing the modified network with
dummy elements, constructing the reconfigured network with D0 ⊆ · · · ⊆ Dn−2 and Πδ,T

i ⊆
Πδ,T

i+1 for i = 0, . . . , n − 3, the movement capacity and the flow conservation constraints are
not violated. Using time expanded temporal paths with time horizon T , flow at sink t = u⋆0 is
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Algorithm 10: Abstract maximum dynamic flow algorithm with intermediate storage
Input : Given abstract dynamic network Π = (E ,P , τ, T ).
Output: Abstract maximum dynamic flow with intermediate storage on Π.

1. For each u ∈ I with νu ≥
∑

P∈P:v<Pu

κv, compute the shortest distance dP[s→u]
by using

Dijkstra’s algorithm.
2. Fix the priority order t = u0 ≻ u1 ≻ · · · ≻ un−2 with first priority to the sink t = u0 and

priority of intermediate elements with farther in distance from source higher in priority.
3. Construct the modified network Π⋆ = (E⋆,P⋆) with single source s and compatible

sequence of multiple sinks with dummy elements D = {u⋆0, u⋆1, . . . , u⋆n−2}, where
E⋆ = E ∪D and P⋆ = P ∪ {P[s→u⋆

n−2]
}.

4. Set Di = {u⋆0, u⋆1, . . . , u⋆i } for all i = 0, 1, . . . , n− 2 so that D0 ⊆ · · · ⊆ Dn−2.
5. Construct the reconfigured network Πδ,T

i = (Ei,Pδ,T
i ) with Ei = E ∪Di and

Pδ,T
i = Pδ,T ∪ Pδ,T

[s→u⋆
i ]

for all i = 0, 1, . . . , n− 2.
6. For θ = 0, 1, . . . , T :

For i = 0, 1, . . . , n− 2:
Compute the lexicographic abstract maximum static flow with priority ordering of
Step 2 in Πδ,T

i = (Ei,Pδ,T
i ) using Kappmeier (2015).

7. Transform the solution to the original network Π by removing dummy elements and
dummy paths.

obtained. At the same time, the excess flows on prioritized intermediate elements are stored with
respect to their priority order. The next priority is given to element u⋆1 in which flow through
path Pδ,T

[s→u⋆
1]

is shifted to u⋆1 satisfying the storage capacity constraints within time T together
with storing excess flow on the rest of the prioritized intermediate elements along the paths. The
process is continued in successive order of prioritized elements u⋆i as long as all elements have
storage capacity and sufficient time to reach the flow. In each iteration of Step 6, feasible flow
from s to u⋆i is executed within time horizon T in lexicographic order. Thus the flow obtained
from Algorithm 10 is feasible. The optimality of algorithm is assured by the optimality of
Step 6. Because of the lexicographic abstract maximum flow being optimal, Algorithm 10
provides the optimal abstract maximum dynamic flow with intermediate storage.

Lemma 3.7. Algorithm 10 computes the abstract maximum dynamic flow with intermediate

storage in polynomial time complexity.

Proof. The shortest distance in Step 1 of Algorithm 10 can be computed in O(|E|2) time where
as providing the priority order of elements, arranging them in a compatible sequence and ref-
ormation of a network in Steps 2–5 and Step 7 can be obtained in linear time. As in Kapp-
meier et al. (2014), the time complexity of abstract maximum dynamic flow at sink t is
µ(|E|, log(U), log(T )).O(P ), where µ is a polynomial, U = max

u∈E
{κu}, and O(P ) denotes

the time needed for a call of the oracle O for the abstract network path P ∈ Pδ,T
i . For Q ⊆ E ,

an oracle O returns path P with order <P for some P ∈ Pδ,T
i such that P ⊆ Q or verifies that

there is no path contained in Q. Since the maximum flow is to be calculated at (n− 1) dummy
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elements, Algorithm 10 solves an abstract maximum dynamic flow problem with intermediate
storage within the time complexity of (n− 1)[µ(|E|, log(U), log(T )).O(P )].

Example 3.4. To find an abstract maximum dynamic flow with intermediate storage on the
abstract network presented in Example 3.1, we consider the cost c as the transit time τ and time
horizon T = 10. Using Algorithm 10, we sent the flow to the sink as the first priority for each
time step θ and successively store the excess flow at intermediate elements along the path with
respective priority order. The detail of which is illustrated in Table 3.2.

The total amount of flow reached at sink t in time T = 10 is 35 units whereas intermediate
elements y, v and x store 9, 31 and 31 units, respectively. Due to insufficient storage capacity,
flow at w through path P[s→w] can store only 2 units and only 4 units of flow through P[s→u] at u
at tine θ = 8. Total amount of flow sent from s within time T = 10 is 200 units which is stored
at different elements as follows: Φt = 35, Φ̂y = 9, Φ̂v = 31, Φ̂x = 31, Φ̂w = 60 and Φ̂u = 34.
The detailed information (regarding paths and flow values) is given in Table 3.2.

Abstract s-t paths after switching: Abstract intermediate paths after switching:

P5 = (s, u, x, v, t), τP5 = 6, ΦP5 = 1 P[s→v], P[s→x], P[s→u]

P3 = (s, u, v, t), τP3 = 6, ΦP3 = 4 P[s→v], P[s→u]

P4 = (s, w, y, t), τP4 = 7, ΦP4 = 2 P[s→y], P[s→w]

P6 = (s, w, x, y, t), τP6 = 9, ΦP6 = 1 P[s→y], P[s→x], P[s→w]

Here, the waiting pattern of each element is 0 because no two successive common elements
appeared in crossing of paths. □

Observation 3.2. As the sink element has sufficient storage capacity, the abstract maximum
dynamic flow at the sink is obtained by using TRF along paths P ∈ Pδ,T . To calculate the flow
at intermediate elements, flows in intermediate paths P δ

[s→u⋆
i ]

may not be temporally repeated
because flow value may change over time due to insufficient storage capacity (see Table 3.2).
Thus the lexicographic maximum flow is essential.
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Table 3.2: Abstract flow with intermediate storage in each time θ

Path Start time at s u w x v y t Reaching time at last element

P5 θ = 0 2 × 3 0 × 1 θ = 6

P5 θ = 1 2 × 3 0 × 1 θ = 7

P5 θ = 2 2 × 3 0 × 1 θ = 8

P5 θ = 3 2 × 3 0 × 1 θ = 9

P5 θ = 4 2 × 3 0 × 1 θ = 10

P[s→v] θ = 5 2 × 3 1 × × θ = 8

P[s→v] θ = 6 2 × 3 1 × × θ = 9

P[s→v] θ = 7 2 × 3 1 × × θ = 10

P[s→x] θ = 8 2 × 4 × × × θ = 10

P[s→u] θ = 9 6 × × × × × θ = 9

P[s→u] θ = 10 6 × × × × × θ = 10

P3 θ = 0 0 × × 2 × 4 θ = 6

P3 θ = 1 0 × × 2 × 4 θ = 7

P3 θ = 2 0 × × 2 × 4 θ = 8

P3 θ = 3 0 × × 2 × 4 θ = 9

P3 θ = 4 0 × × 2 × 4 θ = 10

P[s→v] θ = 5 0 × × 6 × × θ = 8

P[s→v] θ = 6 0 × × 6 × × θ = 9

P[s→v] θ = 7 0 × × 6 × × θ = 10

P[s→u] θ = 8 4 × × × × × θ = 8 storage full

P4 θ = 0 × 7 × × 0 2 θ = 7

P4 θ = 1 × 7 × × 0 2 θ = 8

P4 θ = 2 × 7 × × 0 2 θ = 9

P4 θ = 3 × 7 × × 0 2 θ = 10

P[s→y] θ = 4 × 7 × × 2 × θ = 8

P[s→y] θ = 5 × 7 × × 2 × θ = 9

P[s→y] θ = 6 × 7 × × 2 × θ = 10

P[s→w] θ = 7 × 9 × × × × θ = 8

P[s→w] θ = 8 × 2 × × × × θ = 9 storage full

P6 θ = 0 × 0 0 × 0 1 θ = 9

P6 θ = 1 × 0 0 × 0 1 θ = 10

P[s→y] θ = 2 × 0 0 × 1 × θ = 8

P[s→y] θ = 3 × 0 0 × 1 × θ = 9

P[s→y] θ = 4 × 0 0 × 1 × θ = 10

P[s→x] θ = 5 × 0 1 × × × θ = 8

P[s→x] θ = 6 × 0 1 × × × θ = 9

P[s→x] θ = 7 × 0 1 × × × θ = 10

P[s→w] θ = 8 × 0 × × × × θ = 9 storage full

Total flow stored 34 60 31 31 9 35 Total=200

×= element not used along the path
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3.1.5 Abstract TRF with Intermediate Storage

To find the temporally repeated maximum dynamic flow with intermediate storage, the storage
capacity of each prioritized intermediate element must be sufficient (at least upper bound, i.e.,
νu ≥ T

∑
P∈P:v<Pu

κv ∀u ∈ I). The flow value can be obtained by using TRF on sink and

intermediate elements through paths with waiting pattern δ as follows:
For u0 = t and P ∈ Pδ,T with ϕP = min{κu : u ∈ P},

|Φ|t =
∑

P

(T − τP + 1).ϕP

For intermediate element ui ∈ I and P[s→ui] ∈ Pδ,T
[s→ui]

⊆ Pδ,T with ui <P uj ,

|Φ̂|ui
=

∑

P[s→ui]

[(T − τP[s→uj ]
+ 1).ϕ̂ui

+ (τP[s→uj ]
− τP[s→ui]

).ϕP[s→ui]
]

where, |Φ̂|ui
is the net flow at element ui within time T , ϕP[s→ui]

= min{κu : u ∈ P[s→ui)} and
τP[s→ui]

=
∑

u∈P[s→ui)

(τu + δu). Similarly, ϕ̂ui
is the excess flow at ui used on path flow balancing.

Before using the formula, we first find the abstract static path flow and excess flow at each
element as described in Subsection 3.1.2. We first choose one of the s − t path and balance
the flow such that inflow at an element is equal to the sum of out flow and excess flow. The
dynamic flow is obtained at each elements of the path by using above formula. The network
is now updated by reducing the movement capacity and excess flow of elements used by this
path. In updated network, next path is obtained, then dynamic flow is calculated and again the
network is updated. This process continues until there exists any s − t or s − ui path with
priority order of elements having positive flow on path (cf. Section 2.3).

Example 3.5. By using the TRF in Example 3.4, total amount of flow that can be pushed from
the source within time T = 10 is 232 units, where amount of flow stored at sink and intermediate
elements are as follows: Φt = 35, Φ̂y = 9, Φ̂v = 31, Φ̂x = 31, Φ̂w = 78 and Φ̂u = 48. □

Observation 3.3. For a given abstract static [dynamic] network Π = (E ,←→P ) [Π = (E ,←→P , τ, T )],
the abstract maximum static [dynamic] contraflow problem with intermediate storage can be
solved by sending the flow via s − t paths

−→
P ∪ ←−P at sink and allowing the storage of excess

flow at intermediate elements u via paths
−→
P [s→u] ∪

←−
P [u→s], ∀u ∈ I with storage capacity

νu ≥
∑

P∈P:v<P ′u
κv; P ′ =

−→
P ∪ ←−P [within a given time horizon T ] by reversing the direction

of paths
←−
P and

←−
P [u→s] at time zero. The solution procedure can be found in detail in our paper

Pyakurel et al. (2022).
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3.2 Abstract Network Flow with Partial Switching

In section 3.1, we consider the abstract network in which flow on paths are switched completely.
As abstract flow is very beneficial to reduce the congestion by crossing elimination, it may
reduce the flow value while switching the direction of flow. In this subsection, we aim to
introduce the concept of partial switching property, where the existence of residual path together
with complete switched paths eliminate the crossing effect and increases the flow value.

As a motivational example of the partial switching, we consider a road network presented in
Figure 3.7. Figure 3.7(i) represents the general network in which green and red paths from a

are crossing with blue path from b at o. In Figure 3.7(ii), paths from a and b are switched to
c and d, respectively, by using traffic signals, barricades, diversion, traffic lights or presence
of traffic police, etc (see barrier line in Figure 3.7(ii)). Similarly, Figure 3.7(iii) represent the
situation of partial switching in which red flow of original network remains same together with
other switched paths. Network with complete switching sends 4 units of flows towards the
destination. In general network flow pattern and partial switching pattern, 5 units of flows
are heading towards the destination but major defect of general network flow is that how long
the flows have to wait at crossing point. Thus, partial switching improves the flow by using
complete switched paths together with an additional residual path (red path Figure 3.7(iii)), and
reduces the congestion effect at crossings.

o

c

d

a

b
(i) Flow without switching

o

c

d

a

b
(ii) Complete switching

o

c

d

a

b
(iii) Partial switching

Figure 3.7: Flow pattern in three cases: without switching, with complete switching and with
partial switching.

3.2.1 Abstract Static Flow with Partial Switching

The effect of complete switching property on an abstract network is that the abstract flow may
not be equal to the general network flow because of the change in capacity and transit time of s-t
paths after switching. To recover the flow decrease by complete switching, the partial switching
property is defined as follows: ∀P,Q ∈ P and intermediate element u ∈ P ∩Q, ∃Ri ∈ P , i =
1, 2, 3 such that

R1 ⊆ P ×u Q = {v ∈ P : s ≤P v ≤P u} ∪ {v ∈ Q : u ≤Q v ≤Q t}.

R2 ⊆ Q×u P = {v ∈ Q : s ≤Q v ≤Q u} ∪ {v ∈ P : u ≤P v ≤P t}.
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and if the saturated path segments of R1 and R2 lie in the different sides of crossing element u,
then ∃R3, a residual path in residual network Πr with residual capacity κ̃u, such that

R3 ⊆ P : κ̃P > 0 or R3 ⊆ Q : κ̃Q > 0,

where, κ̃P = min{κ̃u : u ∈ P}. Here, R1, R2 and R3 represent three modes of s − t paths
P ×u Q, Q ×u P and residual path, respectively. Clearly, ∪3i=1Ri = R ⊆ P represent the
collection of switched s-t paths of three modes. If P be a s − t path without crossing effect,
then P = P ×u P = Ri, ∀u ∈ P, and i = 1, 2, 3. Except in the two-way contraflow network,
no path segments out going from the sink element and incoming to the source element exist.
Hereafter, we denote P ∈ R ⊆ P as a member of paths obtained by partial switching.

Flow Model. The linear programming flow model for abstract static network with partial
switching can be presented as follows.

max
∑

P∈R
ϕP (3.3a)

such that,

∑

P∈R:u∈P
ϕP ≤ κu, ∀u ∈ E (3.3b)

ϕP,in
u − ϕP,out

u = 0, ∀u ∈ I, P ∈ R (3.3c)

ϕP ≥ 0, ∀P ∈ R (3.3d)

Equation (3.3a) is an objective function that maximizes the total flow reaching to the sink t
by using partially switched paths. Equation (3.3b) represents the capacity constraint on each
path segment and conservation of flow is represented by equation (3.3c). Similarly, the non-
negativity of the flow on each partially switched path is represented by equation (3.3d).

Solution Procedure. To solve the abstract maximum static flow problem with partial switching
of paths, we first compute the abstract paths with complete switching and obtain the maximum
static flow by using McCormick (1996). To improve the flow value, we construct a residual
network and find residual paths satisfying partial switching property. The algorithmic frame
work to solve the problem is presented hereafter in Algorithm 11.

Theorem 3.8. Algorithm 11 provides an optimal solution to an abstract maximum static flow

problem with partial switching in polynomial time.

Proof. Due to satisfiability of flow conservation and capacity constraints, all steps of Algo-
rithm 11 are feasible. As Step 2 provides optimal solution and Steps 3 and 4 compute optimal
solution in residual paths, so Algorithm 11 provides an optimal abstract maximum static flow
with partial switching. As proven in McCormick (1996), Step 2 can be computed in polyno-
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Algorithm 11: Abstract maximum static flow algorithm with partial switching
Input : Given abstract static network Π = (E ,P) with partial switching.
Output: Abstract maximum static flow with partial switching on Π.

1. Initialize ϕ = ϕ0 if initial flow is given, otherwise set initial flow as zero flow.
2. Use augmenting structure to compute an abstract maximum static flow with complete

switching using McCormick (1996).
3. Construct a residual network Πr by finding residual capacity of each path.
4. Decompose the residual capacity into residual s− t path flow satisfying the partial

switching property.

mial time and the construction of residual network in Step 3 can be computed in O(|E2|) time.
Therefore, Algorithm 11 provides an optimal solution in polynomial time.

3.2.2 Abstract Dynamic Flow with Partial Switching

For a given abstract dynamic network Π = (E ,P , τ, T ), an abstract maximum dynamic flow
problem with partial switching is to find the maximum flow leaving the source element that is
to be sent to the sink via s − t paths P ∈ R ⊆ P by allowing the partial switching property
within the given time horizon T .

Flow Model. for the dynamic s − t path flow function ΦP (θ) : P × T → R+ with partial
switching, the linear program for abstract dynamic flow with partial switching is as follows.

max
∑

P∈R

T∑

θ=τP

ΦP (θ) (3.4a)

such that,

∑

P∈R:u∈P
ΦP (θ) ≤ κu, ∀u ∈ E , θ ∈ T (3.4b)

ΦP,in
u (θ)− ΦP,out

u (θ) ≥ 0, ∀u ∈ I, θ ∈ T (3.4c)

ΦP,in
u (T )− ΦP,out

u (T ) = 0, ∀u ∈ I (3.4d)

ΦP ≥ 0, ∀P ∈ R ⊆ P (3.4e)

Objective function in equation (3.4a) represents the maximization of the amount of flow trans-
mitted from s to t within time horizon T . Equation (3.4b) is the capacity constraint of each
path segment at θ ∈ T and the non-negativity of the flow on each path is represented by equa-
tion (3.4e). Similarly, weak flow conservation at intermediate elements at time θ is presented in
equation (3.4c), whereas the flow conservation at time T is presented in equation (3.4d).

Solution Procedure. To solve the problem, we first find the completely switched paths as well
as residual paths P by using partial switching property on static network, where the transit
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time is considered as cost. We construct the temporal paths from each partially switched paths
P . As these paths may not be abstract, the paths with delay pattern P ∈ Rδ,T ⊆ Pδ,T is
essential. The temporally repeated abstract flow is obtained on P ∈ Rδ,T which provides the
abstract maximum dynamic flow with partial switching. This temporally repeated abstract flow
is an abstract dynamic flow obtained from static flow ϕ by repeatedly sending in each paths
P ∈ Rδ,T as long as possible to reach the destination, i.e., up to the point in time T − τP ,
Kappmeier et al. (2014). Here, we present an algorithm to solve the maximum dynamic flow
problem with partial switching.

Algorithm 12: Abstract maximum dynamic flow algorithm with partial switching
Input : Given abstract dynamic network Π = (E ,P , τ, T ).
Output: Abstract maximum dynamic flow with partial switching on Π.

1. Using static flow computation, find the partially switched paths P .
2. From P , construct temporal paths P (θ).
3. Construct abstract paths P ∈ Rδ,T with delay pattern δ.
4. Use temporally repeated flow on P ∈ Rδ,T by using Kappmeier et al. (2014).

Theorem 3.9. Algorithm 12 computes the solution of an abstract maximum dynamic flow prob-

lem with partial switching optimally.

Proof. Since temporal paths P (θ) and the paths with delay pattern P ∈ Rδ,T are relaxation
of abstract paths P with partial switching and satisfy flow conservation as well as capacity
constraints, so Algorithm 12 provides feasible solution. Optimality of algorithm is dominated
by Step 4. In each path with delay pattern P ∈ Rδ,T , the static flow ϕP is repeatedly send up to
T − τP times so that

|ΦP | =
∑

P∈Rδ,T

(T + 1− τP )ϕP .

Thus, as in Kappmeier et al. (2014), Algorithm 24 provides an optimal solution to abstract
maximum dynamic flow with partial switching.

Here, Partially switched paths in Step 1 can be obtained in polynomial time as in static case.
As in Lemma 3.7, the maximum abstract dynamic flow with complete switching of paths can
be computed in µ(|E|, log(U), log(T ))O(P ) time. Again, residual network for partial switched
paths in Step 1 can be obtained in O(|E|2) time. So an abstract maximum dynamic flow with
partially switching can be computed in O(|E|2)µ(|E|, log(U), log(T ))O(P ) time.

Theorem 3.10. The time complexity of Algorithm 24 is polynomial.

Example 3.6. Consider a dynamic network presented in Figure 3.8 containing six paths P1 =

s − a − c − t, P2 = s − a − e − d − t, P3 = s − a − e − c − t, P4 = s − b − d − t,
P5 = s− b− e− c− t and P6 = s− b− e− d− t. As paths P2 and P5 crosses at e, for the flow
with complete switching flow must be switched towards the abstract paths P3 and P6 together
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with non-crossing paths P1 and P4. For the abstract flow with partial switching, we have five
paths except P5. By taking time horizon T = 10, maximum flow value in general network
obtained by using TRF is 166 units whereas abstract maximum flow with complete switching
is 139 units. Flow value is significantly increased to the general network flow value by partial
switching which sends 166 units of flow from s to t. Flow pattern in each path is presented in
Table 3.3.

s

a

b

e

c

d

t

22,1 7,1

8,1

20,225,2

11,2

3,1

10,1

3,3

14,3

capacity, transit time

Time horizon T=10
General max. flow = 166
Abstract max. flow with complete switching =139
Abstract max. flow with partial switching =166

Figure 3.8: Dynamic network with movement capacity and transit time of each element which
is used to transship flow to it’s adjacent element.

Table 3.3: Flow pattern of Figure 3.8 with time horizon T = 10.

Path Path Transit General Flow with Flow with
notation time flow complete switching partial switching
P1 s− a− c− t 6 55 55 55
P2 s− a− e− d− t 5 42 - - 30
P3 s− a− e− c− t 8 - - 9 6
P4 s− b− d− t 5 60 60 60
P5 s− b− e− c− t 9 4 - - - -
P6 s− b− e− d− t 6 5 15 15

Total 166 139 166

A question arises here is - what is the reason of using the flow pattern with partial switching
even if the flow in general network is same? Reason behind is that, in general network, the
waiting time of the flow at crossings are not considered in the solution procedure. In real life
scenario, when two paths cross at an intersection, turn by turn the flow must wait in one path
until the flow passes through another path. Thus possibly half flow can transshipped in paths P2

and P5, and so the flow in general network may decreased.

It is to be remarked that, in Figure 3.8, the crossing effect of paths can be seen for the flow with
time horizon T = 9 or more. This is because, if we consider time horizon T = 8 or less, then
s−t flow does not exists in path P5 so that no crossing effect is seen. The flow value in different
time horizon is presented in Table 3.4 hereafter.
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Table 3.4: Maximum flow obtained from Figure 3.8 in different time horizon.

Time General network Flow with Flow with Crossing
horizon flow complete switching partial switching effect
T = 5 17 17 17 No
T = 6 46 46 46 No
T = 7 75 75 75 No
T = 8 104 104 104 No
T = 9 135 112 135 Yes
T = 10 166 139 166 Yes

3.2.3 Abstract Quickest Flow with Partial Switching

For an abstract network Π = (E ,P , τ, T ), our concern here is to find the minimum possible
time T to transship the given amount of flow |Φ| from the source element that is to be sent to
the sink element via s− t paths P ∈ R ⊆ P by allowing the partial switching property at each
crossing element. As in Burkard et al. (1993), the maximum dynamic flow is a non-decreasing
function of time T and finding a solution to the quickest flow problem satisfying given amount
of flow |Φ| is equivalent to finding the minimum time T such that |Φ(T )| ≥ |Φ|. By using
parametric search, Burkard et al. (1993) presented a polynomial time algorithm for general
network topology. Here, we adopt the same technique to introduce the abstract quickest flow
problem with partial switching. The text is published in conference paper Khanal et al. (2022).

Solution Procedure. We start the solution procedure by constructing the temporal paths with
delay pattern. Flows are sent via temporal paths until the given demand is not fulfilled. For the
polynomial time solution, we use binary search method starting with interval [Tmin, Tmax] such
that |Φ(Tmin)| ≤ |Φ(T )| ≤ |Φ(Tmax)|, which implies that the quickest time T ∈ [Tmin, Tmax].
Initially, we start with Tmin = τP ⋆ and Tmax = τP ⋆ +

⌈
|Φ|
ϕP⋆

⌉
, ϕP ⋆

> 0, where P ⋆ ∈ R is the
shortest path with partial switching and ϕP ⋆ is the static flow on P ⋆. In case of the existence of
more than one shortest paths with same length, we take a minimum flow shortest path as P ⋆. In
each iteration, the searched interval is halved unless the point of convergence is obtained and
the flow values at extreme points of interval are obtained by using polynomial time algorithm of
Kappmeier et al. (2014). Applying this technique, the algorithmic framework for the abstract
quickest flow with partial switching is presented in Algorithm 13.

Algorithm 13: Abstract quickest flow algorithm with partial switching
Input : Given abstract dynamic network Π = (E ,P , τ, T ) and flow value |Φ|.
Output: Abstract quickest flow with partial switching on Π.

1. Using static flow computation, find the partially switched paths P ∈ R.
2. From P , construct temporal paths P (θ).
3. Construct abstract paths P ∈ Rδ with delay pattern δ.
4. Use binary search on [Tmin, Tmax] unless |Φ(T )| converges to |Φ| .
5. T= quickest time to satisfy demand |Φ|.
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Theorem 3.11. Algorithm 13 provides the polynomial time solution to solve the abstract quick-

est flow problem with partial switching.

Proof. The time complexity of maximum dynamic flow at each extreme points of the interval
can be computed polynomially by using oracle (Kappmeier et al. (2014)). Similarly, due to
binary search, time complexity of quickest time on [Tmin, Tmax] is also polynomial (Burkard et
al. (1993)). So Algorithm 13 solves an abstract quickest flow problem with partial switching
in polynomial time, (as similar to Theorem 2.8).
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Chapter 4

Multi-commodity Network Flow

In day-to-day life, we have realized the shipment of more than one commodities from one place
to another. The flow problem regarding the transshipment of more than one different commodi-
ties from respective sources (origins) to corresponding sinks (destinations) through a network
without violating the capacity constraints on the arcs is known as multi-commodity flow (MCF)
problem. Some of the very commonly used examples of multi-commodity flow problems in the
literature of mathematical modeling are vehicle routine in transportation, production planning,
supply chains for essential goods, massage routing in telecommunication, etc., Ahuja et al.
(1993); Ali et al, (1980); Assad (1978); Kennington (1978). On the basis of temporal dimen-
sion, multi-commodity flow problem can be classified as static multi-commodity flow problem
and dynamic multi-commodity flow problem. If we maximize the supply-demand in a fixed
time horizon, then the problem becomes a maximum dynamic multi-commodity flow problem.
The static multi-commodity flow problem is polynomial time solvable by using the ellipsoid or
interior point method, whereas dynamic multi-commodity flow problem isNP-hard, Hall et al.
(2007). By using time expanded network, Kappmeier (2015) provided the solution of max-

imum dynamic multi-commodity flow problem and multi-source single sink multi-commodity
earliest arrival transshipment problem in pseudo-polynomial time complexity.

Some basic characteristics of multi-commodity flow problems that distinguish it from the single
commodity flow problems are as follows.

• The multi-commodity flow problems have quite different nature in common arcs that
carry more than one commodities, where sum of the flows of different commodities can
not exceed its capacity.

• The single commodity models cancel the flows in cycles but the multi-commodity flow
may contrary this property for different commodities.

• The single commodity maximum static flow can be computed by very well known max-
flow min-cut theorem but this may not be correct for multi-commodity flow problems.
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• If capacities on the arc are integer, then single commodity flow problem gives integer
solution but this may not always be true for multi-commodity flow.

Notations. Consider a network Π = (N ,A, κ, c,K, di, S,D), where S and D are the set of
sources and sinks such that si ∈ S ⊂ N and ti ∈ D ⊂ N with respect to the commodities
i ∈ K = {1, 2, . . . , h}. Here, di represents the amount of supply from the source node si
for each commodity i ∈ K that is to be sent to the corresponding sink ti. In case of max-
imum flow problem, di is a variable to be maximized whereas for quickest flow problem, it
becomes a constant (given parameter). Rest of the symbols have their usual meaning as defined
in Chapter 2. The set of intermediate nodes is denoted by I = N \ {S,D}. Similarly, the
dynamic multi-commodity network topology with temporal components can be represented as
Π = (N ,A, κ,K, di, τ, S,D, T ). Hereafter, the flow models for static and dynamic networks
are defined as follows.

4.1 Maximum Multi-commodity Flow

Static Multi-commodity Flow Model

For the given network Π = (N ,A, κ, c,K, di, S,D), the static multi-commodity flow function
ϕ is the sum of non-negative arc flow functions ϕi

a : A ×K → R+ for each i ∈ K, satisfying
the conditions (4.1a - 4.1c). The linear programming formulation of static multi-commodity
flow is as follows.

max
∑

i∈K
di (4.1a)

such that,

∑

a∈Γout
u

ϕi
a −

∑

a∈Γin
u

ϕi
a =





di if u = si

−di if u = ti

0 otherwise

∀i ∈ K (4.1b)

0 ≤ ϕa =
∑

i∈K
ϕi
a ≤ κa ∀a ∈ A (4.1c)

Objective function in equation (4.1a) is to maximize the total flow out from each source (i.e.,
supply) which is equal to the total inflow at the sink (i.e., demand). Here, di represents the sup-
ply/demand of flow (i.e., flow value) so that di = |ϕi|. Three conditions in equation (4.1b) rep-
resent the supply, demand and conservation of flow at sources, sinks and intermediate nodes, re-
spectively. The constraint in (4.1c) represents the bundle constraint on each arc that is bounded
by its capacity. If c represents the per unit cost of static flow ϕ associated with arc a and com-
modity i with coefficient cia, then
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c(ϕ) =
∑

i∈K

∑

a∈A
ciaϕ

i
a.

Dynamic Multi-commodity Flow Model

The multi-commodity flow over time function Φ, defined on a given dynamic network Π with
constant transit time τ on each arc a, is the sum of non-negative arc flow functions Φi : A ×
K ×T → R+, for each i ∈ K, satisfying the constraints (4.2a - 4.2d). The linear programming
formulation of dynamic multi-commodity flow is as follows.

max
∑

i∈K
di (4.2a)

such that,

∑

a∈Γout
u

θ∑

β=τa

Φi
a(β)−

∑

a∈Γin
u

θ∑

β=0

Φi
a(β − τa) ≤ 0, ∀u ∈ I, i ∈ K, θ ∈ T (4.2b)

∑

a∈Γout
u

T∑

θ=0

Φi
a(θ)−

∑

a∈Γin
u

T∑

θ=τe

Φi
a(θ − τa) =





di if u = si

−di if u = ti

0 otherwise

∀i ∈ K (4.2c)

0 ≤ Φa(θ) =
∑

i∈K
Φi

a(θ) ≤ κa, ∀a ∈ A, i ∈ K, θ ∈ T (4.2d)

The objective function in equation (4.2a) is to maximize the total flow out from the sources (i.e.,
supply) within the time horizon T which is equal to the sum of inflow at sinks (i.e., demand).
Equation (4.2b) represents the weak flow conservation at intermediate nodes for each time step
θ. In any instance of time θ, the bundle constraint in (4.2d) is bounded by arc capacity. Similarly,
three steps of equation (4.2c) represent the supply, demand and flow conservation at sources,
sinks and intermediate nodes within the time horizon T , respectively. The cost of discrete time
dynamic flow Φ associated with arc a and commodity i with cost coefficient cia is

c(Φ) =
∑

i∈K

∑

a∈A
cia

T∑

θ=0

Φi
a(θ).

If Bi be the budget constraint of commodity i which represents the upper bound of the cost

function, then
∑
a∈A

cia
T∑

θ=0

Φi
a(θ) ≤ Bi, for all i ∈ K.

Solving the multi-commodity flow problem is comparatively more complex than the single-
commodity flow problem. The solutions of maximum dynamic multi-commodity flow problem
and multi-source single sink multi-commodity earliest arrival transshipment problem can be
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found in Kappmeier (2015), where the solutions are obtained by using a time expanded network
within pseudo-polynomial time complexity. Similarly, Skutella (2009) presented polynomial
time approximation to solve maximum dynamic multi-commodity flow problem using TRF on
T-length bound paths.

As sharing of the capacities on bundle arcs is one of the major issues in multi-commodity
flow problems, we introduce prioritized multi-commodity flow, multi-commodity flow with
proportional and flow-dependent capacity sharing to solve the maximum flow problem. We
also incorporate the concept of intermediate storage on solving the maximum flow problem.

4.1.1 Commodity Prioritized Maximum Multi-commodity Flow

Prioritization is the process of deciding the relative importance or urgency of the things or
objects. It helps on achieving the goals in an efficient way. As we realize on day to day life,
every individual has a list of works to be completed within certain period of time. The optimal
use of limited time is only possible by efficient planning of the works with priority. Thus, a
vital skill that is used to manage the variety of tasks by deciding the relative importance is
the prioritization. Though priority may not be uniform for each individual, it helps to fulfill
the objectives, achieve the goals and improve the efficiency of the work. In network flow and
optimization, it is highly applicable for large scale disaster management and facility allocation
problems. Priority based static multi-commodity flow problem and polynomial time solution
strategy can be found in our conference paper Khanal et al. (2020).

Priority Ordering on Evacuation Planning. At the time of post disaster evacuation, each and
every evacuees may not have equal priority while shifting them from the danger zone to the
safe place. People who are critically injured (or at high risk zone) need very quick treatment
(or rescue) to save their lives. Similarly, minor injured, old aged people and pregnant women
or with babies, normal evacuees (i.e., comparatively low risk) may be successively lower in
priority order in evacuation process. Critically injured people have to be transshipped to the
well equipped hospitals as soon as possible, whereas minor injured evacuees can be treated in
the health centers. Similarly, old aged people and pregnant women or women with babies have
to be sent to the shelters with special care whereas the normal people to some safe shelters. In
this evacuation scenario, the collection of evacuees are made according to their priority order
(as per the case sensitive) at different collection centers. Our assumption is that the evacuees
within the group (collection center) are of homogeneous character and between the groups
are of heterogeneous character. Thus, evacuation problem becomes a multi-commodity flow
problem with commodity priority where commodities are transshipped from respective sources
(collection centers si) to corresponding sinks (destinations ti) without violating the capacity
constraint on the arcs.

We define the commodity priority ordering function P : K → Z+ such that P(i) ≻ P(i+1), i =
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1, . . . , h−1, where P(i) represents the priority of ith commodity that are to be transshipped from
si to ti. The symbol P(i) ≻ P(i+ 1) represents that P(i) is higher in priority than P(i+ 1). At
any instance of time θ, if more than one commodities are entering on an arc, then commodity of
the first priority P(1) enters at first and if the flow of first commodity is strictly less than the arc
capacity, then commodity of the second priority P(2) is to be entered and so on with successive
priority order.

The priority order of flows in arcs of the network is as follows. If ϕi
a and κia denote the static

flow and arc capacity of commodity i on arc a, then

∑

i∈K
ϕi
a ≤ κa

0 ≤ ϕ1
a ≤ κ1a = κa

0 ≤ ϕ2
a ≤ κ2a = κa − ϕ1

a

...
...

0 ≤ ϕh
a ≤ κha = κa −

h−1∑

i=1

ϕi
a

Similarly, if Φi
a and κia denote the dynamic flow and arc capacity of commodity i on arc a, then

at any time step θ ∈ T
∑

i∈K
Φi

a(θ) ≤ κa

0 ≤ Φ1
a(θ) ≤ κ1a(θ) = κa

0 ≤ Φ2
a(θ) ≤ κ2a(θ) = κa − Φ1

a(θ)
...

...

0 ≤ Φh
a(θ) ≤ κha(θ) = κa −

h−1∑

i=1

Φi
a(θ)

Flow Model. For the given network Π = (N ,A, κ,K, di, S,D), the prioritized static multi-
commodity flow function ϕ is the sum of non-negative arc flow functions ϕi

a : A×K → R+ for
each i ∈ K, satisfying the conditions (4.1a - 4.1c) together with the priority ordering constraint
in (4.3).

0 ≤ ϕi
a ≤ κia = κa −

i−1∑

r=0

ϕr
a, ∀i ∈ K (4.3)

Here, constraint in (4.3) represents the allocation of capacity for each commodity with respect
to the priority order, where ϕ0

a = 0. The objective is to maximize the amount of flow out from
the sources

∑
i∈K

di with respective order of priority.
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Similarly, the multi-commodity flow over time function Φ, defined on a given dynamic network
Π with constant transit time τ on each arc a, is the sum of non-negative arc flow functions
Φi : A × T ×K → R+, for each i ∈ K, satisfying the constraints (4.2a - 4.2d) together with
priority ordering constraint (4.4).

0 ≤ Φi
a(θ) ≤ κia(θ) = κa −

i−1∑

r=0

Φr
a(θ), ∀i ∈ K (4.4)

Here, allocation of the capacity of bundle arc for each commodity with respect to the priority
order is presented in constraint (4.4), where Φ0

a = 0 and the goal is to maximize the total flow∑
i∈K

di out from the sources that reaches to the sinks within the given time horizon T .

Commodity Prioritized Maximum Static Multi-commodity Flow

For a given static multi-commodity network Π with commodity priority order P(i) ≻ P(i +
1), i = 1, . . . , h − 1, our aim is to maximize

∑
i di by sending the flow value di from si to ti

using priority order of commodities and without violating the capacity constraints on the arcs.

To solve this problem, we first prioritize the commodities by P(i) ≻ P(i+1), i = 1, . . . , h−1,
so that the priority order of sources and sinks are also determined with respect to the commodity.
While sending the flow on bundle arcs, priority is given to the commodities as presented in
equation (4.3). We use the lexicographic approach to solve the prioritized maximum static flow
problem in polynomial time. Here, we present an algorithm to solve the problem.

Algorithm 14: Commodity prioritized maximum static multi-commodity flow algorithm
Input : Given static multi-commodity network Π = (N ,A, κ, c,K, di, S,D).
Output: Commodity prioritized maximum static multi-commodity flow on Π.

1. Prioritize the commodities such that P(i) ≻ P(i+ 1), i = 1, . . . , h− 1.
2. Static_flow = 0 (initialization of the static flow).
3. For i = 1, . . . , h,

(a) Compute maximum static flow di from si to ti.
(b) Static_flow = Static_flow + di.
(c) Update the network with residual capacity κa − ϕi

a.
4. Maximum static flow with priority order = Static_flow.

Theorem 4.1. Algorithm 14 provides the lexicographically maximum flow with priority order

of commodities.

Proof. Algorithm starts by fixing the priority order of commodities. Initially, we set the static
flow as zero. Maximum flow calculation begins inside the ‘for’ loop with i = 1. Since s1 − t1
network contains single commodity flow from s1 to t1 with given arc capacities, it is single
source and single sink static flow. So maximum flow algorithm of Ford & Fulkerson (1962)
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provides the maximum number of flow units from s1 to t1. Thus, the flow value d1 is maximal
flow and stored it on static flow value as Static_flow = d1.

Before starting the solution for s2 − t2 flow, network is updated by reducing the capacity of
arcs used by the flow of commodity-1. Thus, the updated network is obtained with residual
capacity κa−ϕ1

a. On the updated network, maximum static flow from s2 to t2 is calculated using
maximum flow algorithm to obtain d2 and is optimal s2 − t2 flow. This flow is accumulated to
static flow value by Static_flow = d1 + d2 and the network is again updated by reducing the arc
capacity used by commodity-2. This process is continued by ‘for’ loop until the optimal flow
for last prioritized commodity h is obtained. As each di is lexicographically optimal, total static
flow

∑
i

di is optimal. Thus, Algorithm 14 provides the lexicographically maximum flow (i.e.,

maximal flow) with priority order of commodities

Theorem 4.2. Algorithm 14 solves the commodity prioritized maximum static multi-commodity

flow problem in polynomial time.

Proof. At first, we prove the feasibility of the theorem. Step 1 is the prioritization of com-
modities which can be obtained in constant time, so is feasible. The residual capacity in Step
3(c) is obtained by using priority order as presented in (4.3) in each bundle arcs within O(m)

times. As the maximum static flow is polynomial time solvable, Step 3 is also feasible. Next,
the optimality of the solution is dominated by the optimality of Step 3(a) In which maximum
static flow is computed for h times within the loop and is polynomially solvable (∵ h ≤ n

2
).

Thus, Theorem 4.1 solves the problem in polynomial time complexity.

Example 4.1. Consider a multi-commodity network with three commodities that are to be trans-
shipped from si to ti for i = 1, 2, 3 as shown in Figure 4.1. While sending the flow, first priority
is given to commodity-1 through two paths: s1− t1 with flow value 3 units and s1− v−w− t1
with bottleneck capacity 4. Path s1−v−w−t1 uses arc (v, w) which is a bundle arc where flow
transmission can take place for other commodities as well with priority order. The maximum
static flow of d1 = 7 units is obtained for commodity-1. The remaining capacity in arc (v, w)

for commodity-2 is 11− 4 = 7, so commodity-2 is transshipped through path s2 − v − w − t2
with flow value d2 = 5 units because of its bottleneck capacity. Similarly, third priority is
given to commodity-3 in which we can send 2 units of flow on the path s3 − v − w − t3 and 4
units of flow is send through path s3 − t3. Total amount of prioritized flow for commodity-1,
commodity-2 and commodity-3 are d1 = 7 units, d2 = 5 units and d3 = 6 units, respectively,
and total flow of transmission is 18 units. □

Commodity Prioritized Maximum Dynamic Multi-commodity Flow

In this subsection, we describe the solution strategy of commodity prioritized maximum dy-
namic flow in two ways: an approximate solution by TRF with polynomial time complexity and
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Figure 4.1: (a) Multi-commodity network, (b) Solution with priority order.

another, optimal solution in time expanded network with pseudo-polynomial time complexity.

(i) An Approximate Solution by Temporally Repeated Flow (TRF)

As presented and described in equation (2.9) of Chapter 2, the TRF is a technique to find the
maximum dynamic flow for the single commodity flow problem with single source single sink
in which constant rate of static flow is repeated along the decomposed paths within the time
frame. Here, our concern is to use this technique to find the commodity prioritized maximum
dynamic multi-commodity flow problem. For this, we fix the priority order of commodity as
in static case. As commodity-1 is in first priority, static s1 − t1 flow is obtained using static
maximum flow ϕ1 and then the flow is decomposed on paths. On the decomposed paths, the
TRF Φ1 = d1 is calculated using equation (2.9). The network is then updated by reducing the
capacity of arcs used by static flow ϕ1

a. As the flow model is dynamic, the static flow ϕ1
a can

also be written in dynamic flow as Φ1
a(θ) because dynamic flow is the accumulation of static

flow in each time step θ. Now, on the updated network, process is repeated for commodity-2
from s2 to t2. The process will be terminated after finding the maximum dynamic flow for
commodity-h. In each iteration, the flow of previous iteration fixed and the flow for next itera-
tion is obtained without changing previous solutions, so the solution procedure is lexicographic.
The algorithmic framework is as follows.

Algorithm 15: Commodity prioritized maximum dynamic multi-commodity flow algorithm
Input : Given dynamic multi-commodity network Π = (N ,A, κ,K, di, τ, S,D, T ).
Output: Commodity prioritized maximum dynamic multi-commodity flow on Π.

1. Prioritize the commodities such that P(i) ≻ P(i+ 1), i = 1, . . . , h− 1.
2. Dynamic_flow = 0 (initialization of the dynamic flow).
3. For i = 1, . . . , h,

(a) Compute the static si − ti flow ϕi and decompose the flow on paths ϕi
P .

(b) Compute temporally repeated flow Φi = di from si to ti.
(c) Dynamic_flow = Dynamic_flow + di.
(d) Update the network with residual capacity κa − ϕi

a.
4. Maximum dynamic flow with priority order = Dynamic_flow.
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Theorem 4.3. Algorithm 15 computes an apporoximate solution for the commodity prioritized

maximum dynamic flow problem in polynomial time.

Proof. Due to the commodity priority, the multi-commodity flow problem is reduced to the
single commodity one. We first solve maximum dynamic flow on s1−t1 sub-network as a single
commodity flow problem by using TRF. The arc capacity is reduced in updated network and is
fixed for commodity-2. Now, the TRF is possible on s2− t2 sub-network as a single commodity
flow problem because the capacity is fixed for commodity-2 throughout the time horizon. The
process is continued for each commodity with respective priority order. As computational time
of TRF in Step 3(b) is constant and other steps can be computed in polynomial time, as in
Algorithm 14, so the time complexity of Algorithm 15 is polynomial.

Solution provided by Algorithm 15 is an approximate optimal solution. The reason behind is
that the capacity on bundle (common) arc is reduced by the higher prioritized commodity from
the beginning (i.e., θ = 0) even if the higher prioritized commodity may enter an arc later than
the lower prioritized commodity. It may effect the optimal solution of the network.

Example 4.2. Consider a network of Example 4.1 with capacity and transit time on each arc as
shown in Figure 4.2. Let T = 10 be given time horizon. As in Example 4.1, static flow on two
paths s1 − t1 and s1 − v − w − t1 are 3 and 4 units, respectively. Using temporally repeated,
maximum dynamic flow for commodity-1 is d1 = 59 units.
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t2

t1

7,0

5,1
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11,2

8,2

6,1

4,1

3,2

4,3

Figure 4.2: Dynamic network
with κa and τa.

After reducing the used capacity, the static flow for
commodity-2 in path s2 − v − w − t2 is 5 units so that the
dynamic flow for commodity-2 is d2 = 35 units. Again af-
ter reduction of used in the capacity on arcs, as in Exam-
ple 4.1, two paths for commodity-3 with static flow 2 and 4
units exist in which dynamic flow from s3 to t3 is d3 = 46

units. Thus, total amount of dynamic flow in time horizon
T = 10 is 140 units. The solution obtained here is an ap-
proximate solution whose optimal solution is obtained by
time expanded network in Example 4.3 □

(ii) An Optimal Solution Using Time Expanded Network

As described in Section 2.1 of Chapter 2, the time expanded network of given network Π =

(N ,A, κ,K, di, τ, S,D, T ), denoted by ΠT = (N T ,AT , κ, τ, di, S(θ), D(θ), T ), is an expanded
network over the time T in which the original network is splitted over the time with duplica-
tion of each node u ∈ N at every time period by u(0), . . . , u(T ). The set of arcs in time
expanded network contains two types of arcs, movement arcs and holdover arcs, denoted by
AT = AM ∪ AH . As our flow model is commodity prioritized, capacity of each movement arc
is shared with respect to the priority of commodity obtained in equation (4.4), especially in the
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bundle arcs. Thus, the movement arcs are defined as AM = {ai = (u(θ), v(θ + τa))
i : a =

(u, v) ∈ A, θ = 0, 1, . . . , T − τa, i ∈ K} and holdover arcs as AH = {(u(θ), u(θ + 1)) : u ∈
N , θ = 0, 1, . . . , T −1}. Movement arcs carry the flow from tail node to the head node beyond
the limit of their predefined capacities and transit times whereas holdover arcs hold the flow for
unit time step with infinite (sufficiently large) capacity.

Though flow obtained in time expanded network is optimal, major drawback of this method
is that the solution provided can not be computed in polynomial time complexity. Its solution
depends on time horizon T , so is pseudo-polynomial.

Example 4.3. Consider the network presented in Figure 4.2 whose time expanded network with
time horizon T = 10 is constructed on Figure 4.3. All si − ti paths obtained by movement arcs
are presented in solid arrows and holdover arcs by dashed arrows. At θ = 0, flow of commodity-
1 and commodity-3 enter the arc (v, w), so commodity-1 uses capacity of 4 units and remaining
capacity of 7 units is used by commodity-3. But after θ = 1 onward, all three commodities use
the arc (v, w) and the capacity is shared as in Example 4.2. Within the time horizon T = 10,
amount of flow shipped for commodity-1, commodity-2 and commodity-3 are 59, 35 and 51
units, respectively. Thus total amount of flow transshipped is 145 units. □
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Figure 4.3: The time expanded network of Figure 4.2. Blue, black and red paths are for commodity-1,
commodity-2 and commodity-3, respectively.
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Commodity-wise Separation of Mix Commodity Terminals

When we go to a supermarkets or a business complex, we can see more than one commodities
inside the same roof. The question arises here is, how the multi-commodity flow model applied
in such realistic problems with mixed commodity at same destination? To solve the problem,
we investigate the partitioning method which separates the mix commodity to single one.

Let Dr, r = 1, . . . , l be destinations which contains commodities i ∈ K. Partition the desti-
nation Dr into virtual destinations Di

r with respect to the commodity i = 1, . . . , h and connect
them with virtual arcs (Dr − Di

r) having infinite capacity and zero cost/transit time. Again,
create the super sink ti and connected with Di

r by using virtual arc (Di
r − ti), r = 1, . . . , l hav-

ing infinite capacity and zero cost/transit time. The network so formed is an extended network.
By this technique, all the destinations of mixed commodity are separated commodity-wise and
can be applicable for multi-commodity flow model. The static and dynamic flow problems can
be solved in this extended network using priority based flow models, as explained in previous
sections. Similar partitions can be used for the sources, if necessary.

Example 4.4. Consider a two-commodity static network having two destinations D1, D2 con-
taining both of commodities, commodity-1 and commodity-2, as presented in Figure 4.4, where

s2

s1

v w

D2

D1

7,0

6,0

11,2

8,2

4,1

5,2 (u,c)

4,3

Figure 4.4: Network with mix
commodity at D1 and D2

s1 and s2 are the sources for commodity-1 and commodity-
2, respectively. The numbers assigned on each arc are
capacity and cost. We partition the destination D1 into
two virtual destinations D1

1 and D2
1 for commodity-1 and

commodity-2, respectively (as presented in Figure 4.5(a)).
Similarly, we partition D2 into D1

2 and D2
2 for commodity-

1 and commodity-2, respectively. Join D1 to D1
1 and D2

1

and likewise D2 to D1
2 and D2

2 with u = ∞, c = 0. Simi-
larly, join D1

1 and D1
2 to t1, likewise D2

1 and D2
2 to t2 with

u = ∞, c = 0, where t1, t2 are super sinks for commodity-
1 and commodity-2, respectively. Figure 4.5(b) represents the solution of prioritized multi-
commodity flow problem from si to ti for i = 1, 2, in which 11 and 9 units of flow is trans-
shipped to t1 and t2, respectively. □

4.1.2 Maximum MCF with Proportional and Flow-dependent Capacity
Sharing

On solving multi-commodity flow problems, flow of different commodities departing from their
sources arrive at the common intermediate node and share the capacity through the common arc.
The sharing of the capacity in the common arc (bundle arc) is one of the major issues in the
multi-commodity flow problems. If the sharing of capacity on the bundle arc is set in proportion
to the bottleneck path capacity from their respective sources to the tail node of the bundle arc,
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Figure 4.5: Partitioning of destination with mix commodity in Figure!4.4 into commodity-wise
separate destination in (a) and its prioritized static solution in (b).

then it is known as proportional capacity sharing. As the shared capacity of the bundle arc for
each commodity is fixed, the multi-commodity flow problem is reduced to independent single
commodity flow problems. Similarly, flow-dependent capacity sharing refers to the distribution
of bundle arc capacity based on the inflow rate of the flow of each commodity. The shared
capacity of the bundle arc in this manner might not always be the same because the flow on arc
might change over time. However, our assumption is that the nature of flows inside the same
commodity group are homogeneous and between the commodity groups are heterogeneous but
uniform in the occupancy rate of arc capacity. The text of this subsection is taken from our
proceeding paper Khanal et al. (2022a).

(i) Proportional Capacity Sharing

Due to transshipment of more than one commodity on the bundle arcs and the unique source-
sink pair for each commodity, multi-commodity flow problem differs from single commodity
flow problem. To share the capacity of bundle arc, we present a proportional capacity shar-
ing technique depending on the bottleneck (minimum cut) capacity of paths P[si,u] from their
respective sources si to the tail node u of bundle arc a = (u, v), for each i ∈ K, as follows.

κia =
κie∑

e∈P[si,u]
:i∈K

κie
κa (4.5)

where, κa is the capacity of a bundle arc a to be shared for each commodity i ∈ K, P[si,u] is the
path from si to the tail node u of bundle arc a and e is an arc in P[si,u] with bottleneck capacity
κe which is also the minimum si − u cut arc, i.e., κie = min{κe : e ∈ P[si,u]}. The portion of
the capacity of arc a allocated for the commodity i is κia. Clearly,

∑
i∈K

κia = κa.

The shared capacity for each commodity obtained from equation (4.5) may be in fraction, i.e.,
κia = int(κia)+fra(κia), the sum of integral part int(κia) and fractional part fra(κia). The fractional
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capacities can be converted into integral capacities as follows.

• First arrange the fractional arc capacities with descending order of fractional part and
find their sum

∑
fra(κia). If

∑
fra(κia) = r, then first r fractional capacities with greatest

fractional part are rounded up using ceiling function ⌈.⌉ and remaining capacities are
rounded below by floor function ⌊.⌋ .

• For the same fractional part in more than one commodities, priority is given to commodity
with greatest integral part among them.

• In case of equal integral parts, set the priority with higher demand among them if demand
is pre-defined in problem like quickest flow. Otherwise, either can be rounded up.

The static flow model is as presented in equations (4.1a–4.1c) together with one additional
constraint of proportional capacity sharing equation (4.5). Similarly, for dynamic flow with
proportional capacity sharing, the flow model is as presented in equations (4.2a–4.2d) together
with proportional capacity sharing equation (4.5).

Solution Procedure for Static MCF. The solution procedure starts with reduction of the multi-
commodity flow problem into h independent single commodity flow problems by sharing the
capacity of the bundle arc using equation 4.5. The maximum static flow ϕi = di is obtained for
each individual commodity whose sum is the total maximum static flow value |ϕ| = ∑

i

di. The

algorithmic framework is presented in Algorithm 16.

Algorithm 16: Maximum static MCF algorithm with proportional capacity sharing
Input : Given static multi-commodity flow network Π = (N ,A, κ, c,K, di, S,D).
Output: Maximum static MCF on Π with proportional capacity sharing.

1. Construct h independent sub-problems by proportional capacity sharing (4.5) on bundle
arcs for all i ∈ K.

2. Compute the solution ϕi = di to the static maximum flow problem for all i.
3. Maximum flow |ϕ| = ∑

i∈K
ϕi.

Solution Procedure for Dynamic MCF. To solve the maximum dynamic flow with propor-
tional capacity sharing, multi-commodity flow problem is reduced to h independent single
commodity flow problems. The static flow is obtained for each commodity and the TRF is
used on the commodity-wise decomposed paths P i for the dynamic flow. The solution strategy
is presented in Algorithm 17.

Theorem 4.4. Algorithms 16 and 17 provide the approximate solutions to the maximum static

and dynamic MCF problems, respectively, with proportional capacity sharing in polynomial

time.
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Algorithm 17: Maximum dynamic MCF algorithm with proportional capacity sharing
Input : Given dynamic multi-commodity flow network Π = (N ,A, κ,K, τ, di, S,D, T ).
Output: Maximum dynamic MCF on Π with proportional capacity sharing.

1. Construct h independent sub-problems by proportional capacity sharing (4.5) on bundle
arcs for all i ∈ K.

2. Compute the maximum static flow ϕi for all i using Algorithm 16.
3. Decompose flow ϕi into path flows ϕi

P with P ∈ P i.
4. Determine maximum dynamic flow for each i ∈ K using TRF such that
di = Φi =

∑
P∈Pi

(T + 1− τP )ϕi
P .

5. |Φ| = ∑
i∈K

Φi.

(ii) Flow-dependent Capacity Sharing

In proportional capacity sharing technique, the shared capacity of each commodity remains
fixed at each time step θ so that temporal repetition of flow is possible. But, the major weakness
of this technique is that the capacity of bundle arc allocated for one commodity can not be used
by other commodities in absence of that commodity. To manage this issue, we introduce flow-
dependent capacity sharing where the share of capacity for each commodity depends on the
inflow rate of the flow in predecessor arcs. At any instance of time θ, if a bundle arc a = (u, v)

with capacity κa holds more than one commodities i ∈ K, then the flow-dependent capacity
sharing of κa for each commodity i ∈ K is,

κia(θ) =
Φi

e(θ − τe)∑
e∈α(a):i∈K

Φi
e(θ − τe)

κa (4.6)

where, α(a) is the set of predecessor arcs of bundle arc a so that e ∈ α(a) =⇒ head(e) =

tail(a). Clearly,
∑
i∈K

κia(θ) = κa. If the shared capacities are in fraction, we can convert them

into integer values as described in proportional capacity sharing.

For a given multi-commodity network Π = (N ,A, κ,K, τ, di, S,D, T ), our concern here is to
transship the maximum amount of flow from si to ti within given time horizon T , where shared
capacity for each i ∈ K on the bundle arc is depending on the inflow of the bundle arc. Since
the flow of the commodity on the bundle arc may not be fixed for each time step θ, temporal
repetition is not possible. So, we solve the problem by using a 3-dimensional time expanded
layer graph as follows.

Time expanded Layer Graph. The multi-commodity time expanded layer graph is a three
dimensional graph that contains the copy of nodes from underlying static network for every dis-
crete time steps and for each commodity. It is applicable to solve the variety of flow over time
problems by applying the algorithms and techniques developed for the static network flows.
For a given network Π with integral transit time on arcs and time horizon T , the T -time ex-
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panded layer graph ΠT is obtained by creating T + 1 copies of node set N which are labeled
as N (0),N (1), ...,N (T ) together with θth copy of node u labeled as u(θ), θ ∈ T and the
commodities i ∈ K. For every arc a = (u, v) ∈ A and θ ∈ {0, 1, ..., T − τa}, there is an arc
ai(θ) from ui(θ) to vi(θ + τa) with the same capacity of arc a for single commodity arc and
the sharing capacity for bundle arc a. Similarly, the arc from ui(θ) to ui(θ + 1) represents the
holdover arc with infinite capacity that is used to hold the flow for unit time interval [θ, θ + 1)

for all θ ∈ {0, 1, ..., T −1}. As the size of the graph in time expanded network depends on time
horizon T , its time complexity is pseudo-polynomial.

Theorem 4.5. An approximate solution to the maximum dynamic MCF problem with flow-

dependent capacity sharing can be obtained in pseudo-polynomial time.

Example 4.5. Let us consider a two-commodity network presented in Figure 4.6)(a) in which
commodity-1 is transshipped from s1 to t1 and commodity-2 from s2 to t2. The 3-dimensional
layer graph ΠT with time horizon T = 6 taking the coordinate axes as N , T and K with usual
meanings is presented in Figure 4.6(b). Each commodity i ∈ K preforms the layers of graphs
in vertical line. As commodity-1 can not reach to bundle arc (u, v) at time θ = 0 and θ = 1,
commodity-2 uses full capacity of the bundle arc. But then after, capacity is shared among the
commodities for θ = 2 and θ = 3 (presented as red arcs). Again, at time θ = 4, the flow of
commodity-1 uses full capacity of bundle arc due to the absence of commodity-2. □

s1

s2

u v

t1

t2

(a) capacity, transit time

6, 2

4, 0 8, 1

3, 1

5, 2

s2

u

v

t2

s1

u

v

t1

0 1 2 3 4 5 6 7 T

(b) layer graph

0 1 2 3 4 5 6 7

K

Figure 4.6: (b) represents the time expanded layer graph ΠT of given network (a).

4.1.3 Maximum Multi-commodity Flow with Intermediate Storage

In this subsection, we deal the multi-commodity flow problems with intermediate storage where
the storage of the flow at intermediate nodes with some priority order is allowed. We consider
the network Π = (N ,A, κ, c,K, ν, di, S,D) or Π = (N ,A, κ,K, ν, τ, di, S,D, T ) according
as the problem is static or dynamic. Here, an additional component ν represents the storage
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capacity of node and for the existence of a feasible solution, the storage capacity of intermediate
nodes must be at least the sum of incoming arc capacities. The static and dynamic multi-
commodity flow models with intermediate storage and their solution strategies, presented in
this subsection, are taken from our paper Khanal et al. (2021).

Maximum Static Multi-Commodity Flow with Intermediate Storage

Flow Model. The mathematical model for the static multi-commodity flow with intermediate
storage is as follows.

max
∑

i∈K
di (4.7a)

such that,

∑

a∈Γout
si

ϕi
a =

∑

a∈Γin
ti

ϕi
a +

∑

u∈I
ϕ̂i
u = di, ∀i ∈ K (4.7b)

∑

a∈Γin
u

ϕi
a −

∑

a∈Γout
u

ϕi
a = ϕ̂i

u, ∀u ∈ I, i ∈ K (4.7c)

0 ≤ ϕa =
∑

i∈K
ϕi
a ≤ κa, ∀a ∈ A (4.7d)

0 ≤ ϕ̂u =
∑

i∈K
ϕ̂i
u ≤ νu, ∀u ∈ I (4.7e)

Equation (4.7a) is an objective function which maximizes the total flow
∑
i∈K

di. The total flow

out from each source for all i ∈ K is equal to the sum of inflow at the sink and excess flow
at intermediate nodes, which is presented in (4.7b). The excess flow of commodity i at each
intermediate node is represented in equation (4.7c). The bundle constraint on each arc bounded
by its capacity is presented in equation (4.7d) whereas the excess flow at each intermediate
node bounded by the storage capacity is presented in equation (4.7e). The storage capacity
of intermediate node u ∈ I must be at least the sum of incoming arc capacities to u, i.e.,
νu ≥

∑
a∈Γin

u

κa.

Solution Procedure. As the solution strategy, the multi-commodity flow problem is first re-
duced to h independent single commodity flow problems by reallocating the capacity of bundle
arcs using the resource directive decomposition method (Ahuja et al. (1993)). It reallocates the
capacity of bundle arc for each commodity in such a way that the flow value is optimal. Other
approaches of solving multi-commodity flow problems are Lagrangian relaxation, Dantzig-
Wolfe decomposition and partitioning method. The maximum flow at each sink ti, ∀i ∈ K,
is obtained by using maximum flow algorithm and the excess flow is stored at intermediate
nodes u ∈ I with some priority order of nodes. The priority order of nodes can be set as per
the justification of the problem instances. We consider the network with single sink for each
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commodity i ∈ K and if there are multiple sinks for the same commodity, then we create a
virtual sink to convert the single sink of the commodity and connect it by virtual arcs of infinite
capacity. Similar procedure is used for multiple sources of a commodity. Here, we adopt the
process of declaration of priority order of nodes as in Section 2.3. We must note that, due to
multiple commodities in the bundle arcs, there may be different priority ordering of a node with
respect to the commodity. So, the node u with respect to commodity i is denoted by ui.

The dummy node u⋆i of each prioritized node u ∈ I is created commodity-wise (since the
node u ∈ I lying in the bundle arc contains the flow of more than one commodity, so dummy
nodes are represented commodity-wise, i.e., u⋆i ) with cost c[u,u⋆

i ]
= 0 and capacity κ[u,u⋆

i ]
=

νu = νu⋆
i
. Here, the notations κ[u,u⋆

i ]
and c[u,u⋆

i ]
represent the arc capacity and cost of dummy

arc (u, u⋆i ), respectively. Every dummy node u⋆i with respect to commodity i has the same
priority order as ui has. The modified network Π⋆

i = (N ⋆
i ,A⋆

i , κ, c, ν, di, si, D
⋆
i ) with single

source si and multiple sink D⋆
i = {ti} ∪ {u⋆i } is formed associated with each commodity i,

where D⋆
i is the collection of dummy nodes {u⋆i } together with the sink ti. For an instance,

if ti ≻ ui,1 ≻ · · · ≻ ui,r be priority order of nodes with respect to commodity i, then D⋆
i =

{ti = u⋆i,0, u
⋆
i,1, . . . , u

⋆
i,r}. Hereafter, we present Algorithm 18 to solve the maximum static MCF

problem with intermediate storage in single source multi-sink network Π⋆
i , ∀i ∈ K as follows.

Algorithm 18: Maximum static MCF algorithm with intermediate storage
Input : Given static network Π = (N ,A, κ, c,K, ν, di, S,D).
Output: Maximum static multi-commodity flow with intermediate storage in Π.

1. Reconfigure the multi-commodity flow problem into h independent single commodity
flow problems by reallocating the capacity of bundle arcs using the resource directive
decomposition.

2. For each u ∈ I , compute commodity-wise shortest distance d[si,u] by using Dijkstra’s
algorithm.

3. Fix the commodity-wise priority order of nodes ti ≻ ui,1 ≻ · · · ≻ ui,r, with first priority
to the sink ti and priority for intermediate nodes as d[si,ui,k] > d[si,ui,k+1] =⇒ ui,k ≻
ui,k+1, for k = 1, . . . , r − 1.

4. For each i ∈ K, construct the modified network Π⋆
i = (N ⋆

i ,A⋆
i , κ, c, ν, di, si, D

⋆
i ) with

single source si and multiple sinks with dummy nodes D⋆
i = {ti = u⋆i,0, u

⋆
i,1, . . . , u

⋆
i,r}.

5. For i = 1, . . . , h:
Compute the lexicographic maximum static flow in Π⋆

i with priority order in Step (3).
6. Transform the solution to the original network Π by removing the dummy nodes and the

dummy arcs.

Theorem 4.6. Algorithm 18 solves the maximum static MCF problem with intermediate storage

optimally.

Proof. The proof of the theorem starts with the feasibility of the algorithm. In Step 1, the multi-
commodity flow problem is decomposed to single commodity flow problems using resource
directive decomposition method and in Steps 2, Dijkstra’s algorithm is used to calculate the
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shortest distances, so both steps are feasible. Steps 3, 4 and 6 are prioritization of nodes,
modification of network and transformation of solution, which does not violate the capacity
constraints on the arcs and can be solved in linear time, and so are feasible. Similarly, multi-
commodity flow problem is decomposed into h independent single commodity sub-problems
and flow with intermediate storage in single source single sink network is feasible (see Pyakurel
& Dempe (2020)), so Step 5 provides feasible solution for each commodity i ∈ K.

Next, we prove the optimality of the algorithm which is assured by the optimality of Step 5.
Since the lexicographic maximum static flow in prioritized sink D⋆

i is obtained optimally after
decomposition as the single commodity flow problem. So, the sum of optimal single commodity
flows

∑
i∈K

di is optimal multi-commodity flow with intermediate storage.

Theorem 4.7. Maximum static multi-commodity flow problem with intermediate storage can be

solved in polynomial time complexity by using Algorithm 18.

Proof. The time complexity of calculating the shortest distance using Dijkstra’s algorithm is
O(n2). The prioritization of nodes and creating dummy nodes can be obtained in linear time.
Similarly, decomposition of the multi-commodity flow problem to the single one can be com-
puted in polynomial time. Step 3 can be solved in polynomial time complexity of O(δnm2) for
0 < δ < n by shortest augmenting path algorithm (Pyakurel & Dempe (2020)). Therefore, Al-
gorithm 18 solves the maximum static multi-commodity flow problem with intermediate storage
in polynomial time with complexity O(n2 + hδnm2), where |K| = h ≤ n/2.

Example 4.6. Consider a two-commodity network presented in Figure 4.7(a) where numbers
along the arcs are capacity and cost, and numbers aside of the nodes are node capacities. We set
the priority order of intermediate nodes with farther-in-distance-higher-in-priority order, where
the distance of each intermediate node is obtained by using Dijkstra’s algorithm considering the
cost as distance. The priority order of nodes for commodity-1 and commodity-2 are t1 ≻ v ≻ u

and t2 ≻ u ≻ v, respectively, whose set of prioritized dummy nodes are D⋆
1 = {t1, v⋆1, u⋆1} and

D⋆
2 = {t2, u⋆2, v⋆2} (see also in Figure 4.7(b)).

While decomposing the flow on the bundle arc (u, v), flow of 3 and 2 units are assigned for
commodity-1 and commodity-2, respectively. By using Algorithm 18, maximum amount of
flow leaving the source s1 is 8 units out of which 2 units of flow through s1− t1 path and 2 units
along s1 − u− v − t1 is reached at sink t1. As node v is more prioritized then u, flow of 1 and
3 units are reached to v and u, respectively. Similarly, there are three paths s2 − t2, s2 − v − t2
and s2 − u− v − t2 for commodity-2 through which flow of 3, 4 and 1 units are reached at the
sink t2, respectively. As node u is in higher prioritized than v, the intermediate nodes u holds
2 units of flow along s2 − u − v − t2 and no flow is hold at node v. At last, the solution is
transformed to the original network by removing the dummy nodes and dummy arcs, and flow
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of dummy nodes are back to their respective original nodes. The amount of flow stored at sinks
and the intermediate nodes are ϕt1 = 4, ϕt2 = 8, ϕu = 5 and ϕv = 1.
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(a) Given two-commodity network

s1

u

s2

v

t1

t2

v⋆1

u⋆1

u⋆2

v⋆2

6,1

2,3

3,2

5,1

4,1

3,2

2,2

5,2

20,0

35,0

35,0

20,0

∞

∞

5/35 1/20

4/∞

8/∞

1/20

3/35

2/35

0/20

(b) Modified network of (a)

Figure 4.7: Two-commodity network (a) with arc capacity, cost and storage capacity. Figure (b)
is its modified network with prioritized dummy nodes.

If the intermediate storage is not permitted, then the total flow of
2∑

i=1

di = 12 units is trans-

shipped out of which ϕt1 = 4 and ϕt2 = 8 units. Due to intermediate storage, the total flow

transmission is
2∑

i=1

di = 18 units, which is 50% more than without intermediate storage. □

Maximum Dynamic Multi-Commodity Flow with Intermediate Storage

Flow Model. The dynamic flow model with intermediate storage for the maximum flow prob-
lem is as follows.

max
∑

i∈K
di (4.8a)

such that,
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∑

a∈Γout
si

T∑

θ=0

Φi
a(θ) =

∑

a∈Γin
ti

T∑

θ=τa

Φi
a(θ − τa) +

∑

u∈I
Φ̂i

u(T ) = di, ∀i ∈ K (4.8b)

∑

a∈Γin
u

θ∑

β=τa

Φi
a(β − τa)−

∑

a∈Γout
u

θ∑

β=0

Φi
a(β) = Φ̂i

u(θ), ∀u ∈ I, i ∈ K, θ ∈ T (4.8c)

0 ≤ Φa(θ) =
∑

i∈K
Φi

a(θ) ≤ κa, ∀a ∈ A, θ ∈ T (4.8d)

0 ≤ Φ̂u(θ) =
∑

i∈K
Φ̂i

u(θ) ≤ νu, ∀u ∈ I, θ ∈ T (4.8e)

Equation (4.8a) is an objective function that maximizes the total flow
∑
i∈K

di. The value of di,

for each commodity i, is defined in (4.8b) as total flow out from the source si within time
horizon T which is equal to the sum of inflow at sink ti and the excess flow at intermediate
nodes. Equation (4.8c) represents the excess flow at intermediate nodes for each time step θ.
In any instance of time θ, the bundle constraint in (4.8d) is bounded by arc capacity and the
boundedness of the excess flow at intermediate nodes by its storage capacity is represented by
the constraint in (4.8e). The lower bound (necessary) and upper bound (sufficient) of the storage
capacity of intermediate node u ∈ I is represented as

∑
a∈Γin

u

κa ≤ νu ≤ T
∑

a∈Γin
u

κa.

Solution Procedure. As in static MCF problem with intermediate storage, we first reduce the
multi-commodity flow problem into h independent sub-problems and fix the priority order of
intermediate nodes. Static solution is obtained in the modified single source multi-sink network
Π⋆

i = (N ⋆
i ,A⋆

i , κ, ν, τ, di, si, D
⋆
i , T ) for all i ∈ K, by using Algorithm 18. As in Kappmeier

(2015), we use the static multi-commodity flow on time expanded network ΠT to obtain the
dynamic solution as follows.

For each i, construct a virtual sink t̄i with infinite capacity and join it to each dummy node
u⋆i ∈ D⋆

i with capacity κ[u⋆
i ,t̄i]

= ϕu⋆
i
(θ) and transit time τ[u⋆

i ,t̄i]
= 0, where ϕu⋆

i
(θ) is the static

flow of commodity i at dummy node u⋆i at time θ. The choice of κ[u⋆
i ,t̄i]

= ϕu⋆
i
(θ) is taken to

assure that the flow while sending back from the dummy nodes must be on respective nodes.
Now, for each i ∈ K, the super network Π̃⋆

i is obtained by adding virtual sink and arcs in Π⋆
i

so that it becomes a single source single sink network with prioritized intermediate nodes. Let
ΠT = (N T ,AT = AM ∪ AH ∪ As ∪ At, κ,K, ν, τ, di, Ŝ, D̂, T ) be the time expanded network
of super network Π̃⋆ which is obtained by including virtual sinks, super source and super sink
in Π⋆

i . The components in time expanded network ΠT are defined as follows.

N T = {u(θ) : u ∈ N , θ ∈ T } ∪ {{u⋆i (θ)} ∪ {t̄i(θ)} : i ∈ K, θ ∈ T } ∪ {s′i, t̄′i : i ∈ K} ∪ {s̃, t̃}
AM = {(u(θ), v(θ + τa)) : a = (u, v) ∈ A, θ ∈ T } ∪ {(u(θ), u⋆i (θ)) ∪ (u⋆i (θ), t̄i(θ)) : u ∈ I, θ ∈ T }
AH = {(u(θ), u(θ + 1)) : u ∈ N , θ ∈ T } ∪ {(u⋆i (θ), u⋆i (θ + 1)) ∪ (t̄i(θ), t̄i(θ + 1)) : i ∈ K, θ ∈ T }
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As = {(s̃, s′i) : i ∈ K} ∪ {(s′i, si(θ)) : i ∈ K, θ ∈ T }
At = {(t̃, t̄′i) : i ∈ K} ∪ {(t̄′i, t̄i(θ)) : i ∈ K, θ ∈ T }
Ŝ = {s̃, s′i, si(θ) : i ∈ K, θ ∈ T }
D̂ = {t̃, t′i, t̄i(θ) : i ∈ K, θ ∈ T }.

Kappmeier (2015) has shown that the static multi-commodity flow on the time expanded
network is equivalent to the dynamic multi-commodity flow on the original network.

Theorem 4.8 (Kappmeier (2015)). For a given dynamic network Π with time horizon T , a

feasible static Ŝ − D̂ multi-commodity flow ϕT in the time expanded network ΠT yields the

feasible dynamic multi-commodity flow Φ in Π such that |ϕT | = |Φ|.

We now present an algorithm to solve the dynamic MCF problem with intermediate storage by
using time expanded network.

Algorithm 19: Maximum dynamic MCF algorithm with intermediate storage
Input : Given dynamic network Π = (N ,A, κ,K, ν, τ, di, S,D, T ).
Output: Maximum dynamic multi-commodity flow with intermediate storage in Π.

1. Reconfigure the multi-commodity flow problem into h independent single commodity
flow problems by reallocating the capacity of bundle arcs and fix the priority order by
considering the transit times as cost.

2. Construct a super network Π̃⋆ by including virtual sinks, super source and super sink in
Π⋆

i .
3. Construct ΠT = (N T ,AT = AM ∪ AH ∪ As ∪ At, κ,K, ν, τ, di, Ŝ, D̂, T ), the time

expanded network of super network Π̃⋆.
4. As in Kappmeier (2015), calculate the maximum static multi-commodity flow with

intermediate storage on the time expanded network ΠT .
5. Transform the solution to the original network Π by removing the dummy nodes, virtual

sinks, super source, super sink and dummy arcs.

Theorem 4.9. Algorithm 19 provides an feasible solution to the maximum dynamic multi-

commodity flow problem with intermediate storage in pseudo-polynomial time complexity.

Proof. As the static multi-commodity flow with intermediate storage is optimal from Theo-
rem 4.7, every static flow in time expanded network is feasible. Next, the time complexity of
static multi-commodity flow with intermediate storage is polynomial. As the dynamic solution
in time expanded network not only depend on input size of m and n but also in time horizon T ,
Algorithm 19 solves the maximum dynamic multi-commodity flow problem with intermediate
storage in pseudo-polynomial time.

Example 4.7. Consider the network presented in Figure 4.7 by considering the arc cost as the
transit time. Let the time horizon be T = 5. The prioritization of intermediate nodes and
creating dummy nodes are as similar to Example 4.6. After creating the dummy nodes, we add
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the virtual sink t̄i for each i, so that it reduces to commodity-wise single source single sink
(si − t̄i) problem (see Figure 4.8).
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Figure 4.8: Super network Π̃⋆ with dummy
nodes and virtual sinks.

As in Kappmeier (2015), We calculate the
maximum static multi-commodity flow with
intermediate storage in time expanded net-
work, where maximum static flow is calcu-
lated from minimum cost flow by consider-
ing the transit time as cost. The time ex-
panded network of Figure 4.8 with time hori-
zon T = 5 is presented in Figure 4.9. At last,
dummy nodes and arcs are removed to obtain
the maximum dynamic flow with intermedi-
ate storage and flow at dummy nodes are back
to their original nodes.

The flow pattern in two paths of commodity-1
and three paths of of commodity-2 with inter-
mediate storage is presented in Table 4.1. To-
tal amount of flow leaving from the source s1
of commodity-1 within time T = 5 is 36 units
out of which 10 units reach to the sink t1 by
storing 18 and 8 units at u and v, respectively.
Similarly, 44 units of flow of commodity-2
leaves the source s2 in same time horizon out
of which 11, 8 and 25 units reaching to u, v
and t2, respectively. Thus, total of 80 units of
flow is transshipped through given network so that 35 units reaches to the sinks by holding
29 units at u and 16 units at v. We can see that if intermediate storage is not allowed then
only 35 units of flow is transshipped. Thus due to intermediate storage, 128.57% of the flow is
increased.

Observation 4.1. If we consider a two-way dynamic multi-commodity network with contraflow
configuration as Π = (N ,A, κ,K, ν, τ, di, S,D, T ), then auxiliary network Π can be con-
structed with symmetric transit time as described Subsection 2.4.1 or orientation-dependent
transit time described respectively in Subsection 2.4.2 for symmetric or asymmetric network.
We first fix the priority order of nodes in the given network Π and then construct an auxiliary
network Π. Static flow with intermediate storage is obtained in auxiliary network where orien-
tation of arcs are fixed as per the static flow computation. We apply algorithm 19 on an auxiliary
network to get pseudo-polynomial time solution (see in Khanal et al. (2021)).
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Figure 4.9: Time expanded multi-commodity network flow with intermediate storage, where black and
red colors are for commodity-1 and commodity-2, respectively. Dotted arcs represent the dummy arcs.
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Table 4.1: Multi-commodity flow with intermediate storage in each time θ

commodity-1 commodity-2
Start time flow at Reaching time Start time flow at Reaching time

at s1 u v t1 at last node at s2 u v t2 at last node
Path:s1-t1 Path:s2-t2

θ =0 × × 2 θ =3 at t1 θ =0 × × 3 θ =2 at t2
θ =1 × × 2 θ =4 at t1 θ =1 × × 3 θ =3 at t2
θ =2 × × 2 θ =5 at t1 θ =2 × × 3 θ =4 at t2

θ =3 × × 3 θ =5 at t2
Path:s1-u-v-t1 Path:s2-u-v-t2

θ =0 3 1 2 θ =4 at t1 θ =0 2 0 1 θ =5 at t2
θ =1 3 1 2 θ =5 at t1 θ =1 3 × × θ =3 at u
θ =2 3 3 × θ =4 at v θ =2 3 × × θ =4 at u
θ =3 3 3 × θ =5 at v θ =3 3 × × θ =5 at u
θ =4 6 × × θ =5 at u Path:s2-v-t2

θ =0 × 0 4 θ =3 at t2
θ =1 × 0 4 θ =4 at t2
θ =2 × 0 4 θ =5 at t2
θ =3 × 4 × θ =4 at v
θ =4 × 4 × θ =5 at v

Total 18 8 10 Total d1=36 Total 11 8 25 Total d2=44

Observation 4.2. If the storage capacity of the intermediate nodes is sufficient, then the ap-
proximate maximum MCF with intermediate storage can be obtained by using TRF defined in
Chapter 2 after sharing the capacity of bundle arc by proportional capacity sharing.

4.2 Quickest Multi-commodity Flow

For the given demand di of each commodity i ∈ K, quickest multi-commodity flow problem
concerns with minimization of makespan T to satisfy the given demand. In this section, we
concern with solving quickest MCF problem by using proportional as well as flow-dependent
capacity sharing on bundle arcs. We also solve the quickest multi-commodity contraflow prob-
lem with inflow-dependent transit times using length bound and ∆-condensed techniques by
reversing the necessary arcs.

4.2.1 Quickest MCF with Proportional and Flow-dependent Capacity
Sharing

Using proportional capacity sharing technique presented in equation (4.5), multi-commodity
flow problem is reduced to h independent single commodity flow problems where commodity-
wise capacity is fixed on each bundle arc. So, polynomial time solution is possible by using
scaling algorithm of Lin & Jaillet (2015). Similarly, using flow-dependent capacity sharing
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technique presented in equation 4.6, pseudo-polynomial time solution is possible in time ex-
panded layer graph because the flow a commodity may vary over time. Due to sharing of the
capacities on bundle arcs using ceiling and floor functions, the solutions obtained are approxi-
mate solutions.

(i) Quickest MCF with Proportional Capacity Sharing

As the quickest flow problem is an inverse problem of maximum dynamic flow problem, the
quickest multi-commodity flow problem with proportional capacity sharing can be represented
by rearranging the temporally repeated flow of discrete time setting as





T ∗i = min
di+

∑
a∈A

τaϕi
a

|ϕi| − 1, (|ϕi| ≠ 0)

satisfying κia =
κi
e∑

e∈P[si,u]
:i∈K

κi
e
κa and constraints in (4.1b− 4.1c)

(4.9)

where, ϕi
a denotes the feasible static flow of commodity i on arc a (see in Lin & Jaillet (2015)

for single commodity). Similarly, τa and |ϕi| denote the arc cost (or transit time) and the value
of static flow for commodity i, respectively. κia is the shared capacity of bundle arc a for the
commodity i as derived in equation (4.5). The quickest time to satisfy all the demands di is
T ∗ = max{T ∗i : i ∈ K}.

Solution by Cost-scaling Approach. The quickest flow problem is to search a smallest possible
time by sending maximum amount of flow from the source to the sink iteratively over time as
long as the demand is not fulfilled. By using Newton’s method and Megiddo’s parametric
search Megiddo (1979), Burkard et al. (1993) developed a polynomial time algorithm based
on the min-cost flow problem. Lin & Jaillet (2015) extended the cost-scaling algorithm of
Goldberg & Tarjan (1990) which solves the quickest flow problem within the same time bound
as the min-cost flow problem. The solution strategy of quickest contraflow problem using cost-
scaling approach can be found in Pyakurel et al. (2018). Based on the cost-scaling algorithm of
Lin & Jaillet (2015) and Pyakurel et al. (2018), we present Algorithm 20 to solve the quickest
MCF problem with proportional capacity sharing on the bundle arcs as follows.

Solution procedure starts with reduction of the multi-commodity flow problem to h independent
single commodity sub-problems by sharing the capacity of bundle arcs proportionally for each
commodity i ∈ K. The dual variables corresponding to the flow conservation constraints, node
potentials π and the residual network Πr are introduced to minimize the ratio

Ti =

di +
∑
a∈A

τaϕ
i
a

|ϕi| − 1.

The reduced cost ca(π) of arc a = (u, v) in Πr is obtained by ca(π) = π(v)− π(u) + τa which
we consider, as in Lin & Jaillet (2015), not less than −ϵ, for some ϵ > 0. Initially, we consider
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Algorithm 20: The cost-scaling algorithm for the quickest MCF
Input : Given multi-commodity flow network Π = (N ,A, κ,K, τ, di, S,D, T ).
Output: Quickest time to satisfy the demand di on Π

1. Construct h independent sub-problems by proportional capacity sharing (4.5) on bundle
arcs for all i ∈ K.

2. Set the node potential π(u) = 0 for all u ∈ N , ϕi
a = 0 for all a ∈ A and

ϵ = τ̂ = max
a∈A
{τa}.

3. Improve the 2ϵ-optimal flow into the ϵ-optimal flow.
4. Reduce the gap between Ti and the difference of potential π(si)− π(ti).
5. Scale ϵ by 1

2
and repeat Step 3 and Step 4 if ϵ ≥ 1

8ni

6. If Ti is more than the time (cost) of the shortest simple path in residual network Πr then
saturate the static flow ϕi by sending the maximum flow from si to ti in the sub-network
Π̂ containing those arcs which are on some shortest path in residual network Πr.

7. end if
8. T = max{Ti : i ∈ K}.

the node potential π = 0, arc flow ϕa = 0 and ϵ = τ̂ = max
a∈A
{τa}. Then, each 2ϵ-optimal flow

is improved to an ϵ-optimal one by assigning

ϕi
a =

{
0 if ca(π) > 0

κia if ca(π) < 0
∀a ∈ A.

Any static flow ϕi is said to be ϵ-optimal if the reduced cost is not less than −ϵ. Push/Relabel
algorithm is used for the active nodes having positive excess. To reduce the gap between Ti and
π(ti) − π(si), extra flow is created at the source node si, then the admissible flow is pushed
through the arcs in Πr to the sink node ti and node potentials are relabeled, if required. Then
ϵ is scaled by 1

2
and the process is continued until ϵ < 1

8ni
, where ni is the number of nodes

associated with commodity i. If Ti obtained from above by scaling phases is more than the cost
in simple shortest si− ti path in Πr, the flow is then saturated by sending maximum si− ti flow
in sub-network Π̂, where Π̂ is formed from the residual network Πr by taking those arcs which
are on some shortest path from si to ti. Lastly, we take T = max{Ti : i ∈ K} which is the
quickest possible time to satisfy all the demands of the original network Π.

Here, we first prove the optimality condition for quickest MCF problem and then the correctness
of Algorithm 20. For the notational simplicity, we denote |ϕi| by yi as a parameter and f(yi) =∑
a∈A

τaϕ
i
a. With the help of this, the objective function of the problem in equation (4.9) can be

rewritten as
T ∗i = min

di + f(yi)

yi
− 1 = minT ∗i (y

i), yi > 0

Theorem 4.10 (Lin & Jaillet (2015)). The function T ∗i (y
i) has local minimum at flow value yi

if and only if

−1− cti−si ≤ T ∗i (y
i) ≤ csi−ti
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where,−cti−si and csi−ti are the costs of shortest ti−si and si−ti paths in the residual network

of flow yi, respectively.

Proof. The function T ∗i (y
i) has local minimum at yi if for arbitrary small ϵ > 0,

T ∗i (y
i) =

di + f(yi)

yi
− 1 ≤ di + f(yi + ϵ)

yi + ϵ
− 1 = T ∗i (y

i + ϵ) (4.10a)

and,

T ∗i (y
i) =

di + f(yi)

yi
− 1 ≤ di + f(yi − ϵ)

yi − ϵ − 1 = T ∗i (y
i − ϵ). (4.10b)

Here, f(yi + ϵ) represents the increment of flow value yi by ϵ in cost function f(yi), which
means sending of extra ϵ amount of flow from si to ti maintaining the min-cost flow. For this,
extra flow is sent through the shortest path in residual network Πr with cost ϵ csi−ti . That is,
f(yi + ϵ) = f(yi) + ϵ csi−ti . Using this relation in equation (4.10a), we get

di + f(yi)

yi
− 1 ≤ di + f(yi) + ϵ csi−ti

yi + ϵ
− 1

⇒ csi−ti ≥
di + f(yi)

yi

∴ T ∗i (y
i) =

di + f(yi)

yi
− 1 <

di + f(yi)

yi
≤ csi−ti (4.11)

As similar to the above case, f(yi − ϵ) represents the reduction of flow value yi by ϵ in cost
function f(yi), which means sending ϵ amount of flow back from ti to si with cost ϵ (−cti−si).
That is, f(yi − ϵ) = f(yi)− ϵ (−cti−si). Using this relation in equation (4.10b), we get

−cti−si ≤
di + f(yi)

yi

⇒ −cti−si − 1 ≤ di + f(yi)

yi
− 1

∴ T ∗i (y
i) =

di + f(yi)

yi
− 1 ≥ −cti−si − 1 (4.12)

Theorem 4.11. For each commodity i, the TRF of a feasible static flow ϕi is optimal if and only

if ϕi is a min-cost flow with flow value |ϕi| and satisfies

−1− cti−si ≤
di +

∑
a∈A

τaϕ
i
a

|ϕi| − 1 ≤ csi−ti . (4.13)
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Proof. For quickest MCF problem in (4.9), if we consider the flow value |ϕi| = yi as a param-
eter, then the objective function is the sum of di

yi
and 1

yi
times the min-cost flow problem, and

less by 1. The min-cost flow problem can be written as follows.





f(yi) = min
∑
a∈A

τaϕ
i
a

subject to, κia =
κi
e∑

e∈P[si,u]
:i∈K

κi
e
κa and the constraints (4.1b− 4.1c)

(4.14)

The objective function of the problem in (4.9) is to minimize

T ∗i (y
i) =

di + f(yi)

yi
− 1, yi > 0.

From Theorem 4.10, the flow value yi is a local minimum for the function T ∗i (y
i) if and only if

−1 − cti−si ≤ T ∗i (y
i) ≤ csi−ti holds. Moreover, the problem in (4.14) is linear programming

problem with cost minimization and f(yi) is convex with piecewise linear in yi. So T ∗i (y
i)

is a unimodal function and a local minimum of T ∗i (y
i) is the global minimum (Lin & Jaillet

(2015)).

Let ȳi be an optimal flow value for T ∗i (y
i). Then −1− cti−si ≤ T ∗i (ȳ

i) ≤ csi−ti . Also, if ϕ̄i is a
feasible flow with value ȳi, then f(ȳi) = min

∑
a∈A

τaϕ̄
i
a if and only if ϕ̄i is a min-cost flow. As a

consequence,

T ∗i (ȳ
i) =

di +
∑
a∈A

τaϕ̄
i
a

ȳi
− 1

if and only if ϕ̄i is a min-cost flow with flow value ȳi. This concludes that, feasible flow ϕ̄i with
value ȳi is an optimal solution to the problem in (4.9) if and only if ϕ̄i is a min-cost flow and

−1− cti−si ≤
di +

∑
a∈A

τaϕ̄
i
a

ȳi
− 1 ≤ csi−ti .

Hence, the TRF of static flow ϕ̄i is an optimal solution to the QMCF with proportional capacity
sharing of bundle arcs for all i ∈ K.

Theorem 4.12. Algorithm 20 solves the quickest MCF with proportional capacity sharing in

polynomial time.

Proof. The running time of Step 1 of Algorithm 20 is O(m|K|), where |K| = h ≤ n/2

denotes the given number of commodities and the running time of Steps 3 and 4 are O(n3).
Due to the cost-scaling phase in Step 5, Steps 3 and 4 are repeated at most O(log(nτ̂) times.
Similarly, the running time of Step 6 is O(n3log(n)). So the time complexity of Algorithm 20
is O(n3m|K|log(nτ̂)). Hence, the quickest MCF problem with proportional capacity sharing
can be solved in polynomial time.
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Example 4.8. Consider a two-commodity network presented in Figure 4.10(a), where commodity-
1 is transshipped from s1 to t1 with demands d1 = 35 and commodity-2 is transshipped from s2

to t2 with demands d2 = 25. In order to solve the quickest flow problem, first we use propor-
tional capacity sharing on the bundle arc (u, v). It provides the capacity of 2 units each for both
commodities (as shown in Figure 4.10(b)). Then we convert this problem into two independent
sub-problems.

u v

s2 t2

s1 t1

4, 1

4, 0
5, 2

3, 2 3, 1

3, 3

4, 3

2, 2

2, 1

(a) capacity, transit time

u v

s2 t2

s1 t1

2, 1, 2
2, 1, 1

4, 0, 4
5, 2, 2

3, 2, 1 3, 1, 3

3, 3, 3

4, 3, 4

2, 2, 2

2, 1, 2

(b) capacity, transit time, flow

Figure 4.10: (b) represents the network with proportional capacity sharing of (a).

Sub-problem 1: We have to find the quickest time to satisfy the demands d1 = 35 from s1 − t1.
By using Algorithm 20, the quickest time for commodity-1 after proportional capacity sharing
is,

T1 = min

d1 +
∑
a∈A

τaϕ
1
a

|ϕ1| − 1 =
55

7
− 1 = 6.85

Sub-problem 2: For given demands d2 = 25, we have to find the quickest time to send flow
from s2 − t2. As above, the quickest time for commodity-2 after proportional capacity sharing
is,

T2 = min

d2 +
∑
a∈A

τaϕ
2
a

|ϕ2| − 1 =
44

7
− 1 = 5.28

Thus, the quickest time (in integer) to satisfy both demands is T = 7. □

(ii) Quickest MCF with Flow-dependent Capacity Sharing

The quickest multi-commodity flow problem with flow-dependent capacity sharing can be rep-
resented as





minT

satisfying κia(θ) =
Φi

e(θ−τe)∑
e∈α(a):i∈K

Φi
e(θ−τe)κa and constraints in (4.1b− 4.1c) (4.15)

where κia(θ) is flow-dependent capacity sharing of bundle arc capacity at each time step θ as
described in equation (4.6).
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Solution Procedure. As a solution strategy, we first construct the temporal paths P (θ) ∈ P i(θ),
which start from source si at time θ and reach to the corresponding sink ti at time θ+τP through
the arcs a ∈ P . These temporal paths can be visualized in time expanded layer graph. Let
P(θ) = {∪P i(θ) : i ∈ K} and τ ′P = min{τP : P ∈ P i} be set of all temporal paths starting
from source at time θ and the length of shortest path in the network, respectively. Denote ϕi,P (θ)

as the amount of time-dependent static flow on temporal paths P (θ) ∈ P i(θ) which may vary
over time due to flow-dependent capacity sharing on bundle arcs. If two temporal paths P i(θ1)

and Qj(θ2) of different commodities i, j ∈ K meet at u(θ) with θ1, θ2 ≤ θ, then the capacity
along the arc a = (u(θ), v(θ + τa)) is shared by using flow-dependent capacity sharing. We
first construct a time expanded layer graph within the time horizon T = τ ′P and calculate the
flow value of each commodity within this time using flow-dependent capacity sharing. In each
iteration, we gradually increase the time horizon by unit time (i.e., T = τ ′P + 1) whenever the
demand of each commodity is not satisfied. Flow of the commodity, whose demand is already
satisfied, is taken as zero on further construction of time expanded layer graph. The algorithmic
framework of solution procedure is as follows.

Algorithm 21: Quickest MCF algorithm with flow-dependent capacity sharing
Input : Given multi-commodity flow network Π = (N ,A, κ,K, τ, di, S,D, T ).
Output: Quickest time with flow-dependent capacity sharing on Π.

1. Set T = τ ′P = min{τP : P ∈ P i} and Φi(T ) = 0.
2. while Φi < di, ∀i ∈ K, do

(a) Send the static flow ϕi on time expanded layer graph with sharing the capacity on
bundle arc of temporal paths using flow-dependent capacity sharing (4.6).

(b) Compute the flow value of each commodity within time horizon T as Φi(T )
(c) Set ϕi = 0 if Φi(T ) ≥ di.
(d) Update Φi(T ) = Φi(T ) + ϕi, and T = T + 1.

3. end while
4. T= Quickest time to satisfy all the demands di.

Theorem 4.13. Algorithm 21 provides an approximate solution to the quickest MCF problem

with flow-dependent capacity sharing in pseudo-polynomial time.

Proof. As Step 2(a) shares the capacity on bundle arc using flow-dependent capacity sharing
and integer solution is obtained by ceiling ⌈.⌉ and floor ⌊.⌋ functions, the solution obtained from
Algorithm 21 is an approximate solution. Since the shared capacity in bundle arc depends on
the inflow rate of the flow of predecessor arcs and the sharing process is continued on the layer
graph until all the demand di,∀i ∈ K is satisfied, the running time of Algorithm 21 depends
on demand di. Therefore, the time complexity of the quickest multi-commodity flow over time
problem with flow-dependent capacity sharing is pseudo-polynomial.
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4.2.2 Inflow-dependent Quickest MCF with Partial Contraflow

In general, traversal time from one location to another location depends on the amount of flow
(vehicles) on the road, known as flow-dependent transit time. One can realize this fact while
traveling on the urban roads with high traffic congestion. Flow-dependent transit times can be
classified in two ways: inflow-dependent transit times and load-dependent transit times. Köhler
et al. (2002) introduced the quickest single source single sink flow problem with the setting of
inflow-dependent transit times in which the current rate of flow is measured when it enters on
the arc and moves with constant speed throughout the arc. Similarly, Köhler & Skutella (2005)
introduced a model in which, at any moment of time, the actual speed of the flow depends on
the current amount of the flow on the arc (i.e., load). Both of these flow problems are related
with single commodity flow.

To solve the quickest multi-commodity flow problem with inflow-dependent transit times, Hall
et al. (2007a) presented two approximation approaches: one length bound and another con-
densed time expanded network. In this subsection, we define a symmetric inflow-dependent
transit time function on the anti-parallel arcs in the given network and present an inflow-
dependent transit time function in auxiliary network. By using partial contraflow, we present
two approximation algorithms, one by using T -length bounded function and another fully poly-
nomial time approximation scheme (FPTAS) by using condensed time expanded network. A
flow is said to be T -length bounded if it uses the paths of length at most T . Due toNP-hardness
of the problem, we adopt the relaxation technique of bow graph and solve the inflow-dependent
quickest multi-commodity flow problem in two-way network using partial contraflow.

The term partial contraflow is the contraflow technique in which only necessary arcs are re-
versed and rest of the arcs are saved so that it can be used for further purposes. We have to be
careful that in multi-commodity network flow, sources of some commodities may lie towards
the sink of others so that flow can be bi-directional in some bundle arcs. Our assumption is that
flows of the same commodity in opposite directions effectively cancel, while flows of different
commodities are accumulated in either directions. The main idea behind the partial contraflow
for a two-way multi-commodity network with arcs a = (u, v) and←−a = (v, u) is as follows.

• Arc←−a = (v, u) is reversed if and only if either flow along the arc a = (u, v) is greater
than its capacity or there is positive flow along the arc a = (u, v) /∈ A. If ϕa > κa,
ϕ←−a < κ←−a and κa > ϕa + ϕ←−a , where κa = κa + κ←−a , then the arc←−a is reversed partially
and the unused capacity of arc←−a is saved.

• If ϕa > κa, ϕ←−a = 0 and κa = ϕa, then we have to reverse the arc←−a completely. Thus no
capacity is saved in←−a .

• If ϕa < κa and ϕ←−a < κ←−e , then neither arc a nor arc ←−a is reversed. In this case, the
remaining capacity of arc a and←−a are saved in their respective directions.
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Inflow-dependent Transit Times. In the previous models, we deal the problems with constant
transit times on the arcs. But in the real road network, transit time is constant only up to some
flow value, known as a free flow, and then it depends on the inflow rate of each additional flow.
Mathematically, inflow-dependent transit time in general (one-way) network can be presented
as

τa(ϕ) =

{
τ0 for 0 < ϕ ≤ ϕ0

τ0 + τ ′(ϕ) for ϕ > ϕ0

∀a ∈ A, (4.16)

where τ0 represents the constant transit time of free flow ϕ0 and τ ′(ϕ) is the inflow-dependent
transit time for additional flow. Our assumption is that, if there is no flow then no transit time is
considered, i.e., if ϕ = 0 then τ = 0. Geometrically, inflow-dependent transit time function and
its relaxation to piecewise constant function in some arbitrary precision is shown in Figure 4.11.

0 ϕ0 ϕ1 ϕ2 ϕ

free flow

τ0

τ

Flow-dependent transit time function
0 ϕ0 ϕ1 ϕ2 ϕ

free flow
τ0

τ

piecewise constant transit time function

Figure 4.11: Flow-dependent transit time function and transformation to the piecewise constant.

For the purpose of contraflow configuration, we define the symmetric inflow-dependent transit
times as follows. Let τa(ϕ) and τ←−a (ϕ) be symmetric inflow-dependent transit times on a two-
way network such that

τ←−a (ϕ) = τa(ϕ) =

{
τ0 for 0 < ϕ ≤ ϕ0

τ0 + τ ′a(ϕ) for ϕ > ϕ0

∀a,←−a ∈ A. (4.17)

Considering τ ′a(ϕ) = τ0α(
ϕa

κa
)β
′ and τ ′a(ϕ) = τ0J(

ϕa

κa−ϕa
), above transit time function be-

comes BPR function and Davidson’s function, respectively. According to Sheffi (1984), α =

0.15, β′ = 4 and J = 0.1 are commonly used in usual practice. Pyakurel et al. (2019) studied
the effect of lane reversals on the Kathmandu road network using the BPR function and David-
son’s function by taking free flow time on the roads. They also compared the effect of quickest
time with inflow-dependent transit time and the quickest time with constant transit time by con-
sidering three types of constant transit times, the upper bound on the step function, average of
the step function values, and the free flow transit times.

After contraflow configuration, the free flow value in auxiliary network increases approximately
up to double on the same free flow time τ0, and flow-dependent transit time of per additional
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flow decrease by half due to increase in the capacity of arc. The transit time function on auxiliary
network after lane reversals is

τa(ϕ) =

{
τ0 for 0 < ϕ ≤ 2ϕ0

τ0 + τ ′a(
ϕ
2
) for ϕ > 2ϕ0

∀a ∈ A. (4.18)

Moreover, τa = τa or τ←−a , if either←−a /∈ A or a /∈ A, respectively. To simplify the notation, we
use τa(ϕ), a ∈ A instead of τa(ϕ).

Flow Model. Flow models presented in previous sections are in discrete time and using natu-
ral transformation, continuous time dynamic flow can also be computed equivalently. For the
dynamic flow with inflow-dependent transit time, flow models are to be considered in continu-
ous time settings because of transit times on the arcs are not constant but flow-dependent. As
in Hall et al. (2007a), we generalize the multi-commodity dynamic contraflow model with
inflow-dependent transit times as follows. The flow of commodity i entering arc a at time θ at
flow rate Φi

a(θ) arrive at the head of arc a at time θ + τa(Φa(θ)) for all a ∈ A and θ ∈ [0, T )

with Φa(θ) > 0 and θ + τa(Φa(θ)) < T . For each u ∈ N , the total inflow and outflow of
the commodity i ∈ K at time β ∈ [0, T ) are defined by

∑
a∈Γin

u

∫
θ≥0:θ+τa(Φa(θ))≤β

Φi
a(θ)dθ and

∑
a∈Γout

u

β∫
0

Φi
a(θ)dθ, respectively. Thus the flow model for inflow-dependent quickest flow prob-

lem defined on an auxiliary network is as follows.

min T (4.19a)

such that,

∑

a∈Γin
u

∫

θ≥0:θ+τa(Φa(θ))≤T

Φi
a(θ)dθ −

∑

a∈Γout
u

T∫

0

Φi
a(θ)dθ =





di if u = si

−di if u = ti

0 otherwise

∀i ∈ K(4.19b)

∑

a∈Γin
u

∫

θ≥0:θ+τa(Φa(θ))≤β

Φi
a(θ)dθ −

∑

a∈Γout
u

β∫

0

Φi
a(θ)dθ ≥ 0 ∀u ∈ I, i ∈ K, β ∈ T (4.19c)

0 ≤ Φa(θ) =
∑

i∈K
Φi
a(θ) ≤ κa, ∀a ∈ A, i ∈ K, θ ∈ T (4.19d)

Solution Procedure. To solve the quickest multi-commodity flow problem with inflow-dependent
transit time, Hall et al. (2007a) presented a strategy based on strong relaxation of inflow-
dependent transit time in a bow graph with piecewise constant attribute. They developed an
approximation technique based on length bounded static flow, which is modified to inflow-
preserving flow to produce provably good solutions. It is then transformed into a feasible
multi-commodity flow over time with inflow-dependent transit times and bounded cost. The
authors also presented FPTAS, which uses a condensed time expanded network to solve the
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problem with inflow-dependent transit time and bounded cost. By adopting these techniques in
two-way network, we use relaxation of inflow-dependent transit time for the partial contraflow
configuration.

Relaxation of Inflow-dependent Transit Times Using Bow Graph. The bow graph is an ex-
tension of the original graph by creating a bunch of parallel arcs to reflect the inflow-dependent
transit time. As in Köhler et al. (2002), a strong relaxation of the dynamic flow is essential to
replace the inflow-dependent transit time function τa of an arc a ∈ A by piecewise constant,
non-decreasing, and left continuous function τ stepa . The transit time function τ is said to be
left continuous at ϕl if sup{τ(ϕ′l) : ϕ′l < ϕl} = τ(ϕl). The breakpoints for τ stepa are taken as
ϕ0 < ϕ1 < · · · < ϕr with corresponding transit times τ0 < τ1 < ... < τr, where τ0 is the transit
time for the free flow 0 < ϕ ≤ ϕ0 and τk represents the transit time for the flow entering arc a
at flow rate (ϕk−1, ϕk] for all k = 1, .., r, (see Figure 4.11).

We denote the bow graph by Π
b
= (N ,Ab

) having the same set of nodes as in Π but each arc
a ∈ A is replaced by a set of parallel bow arcs ak ∈ Ab

a with corresponding transit times τk and
capacity ϕk, for all k = 0, 1, .., r. The cost function on each arc remains the same as in original
network. The notation Ab

represents the set of all bow arcs, and Ab

a represents the set of bow
arcs associated with an original arc a ∈ A.

The approximation of non-decreasing left continuous transit time function by the step function
can be presented in the following observation.

Observation 4.3 (Köhler et al. (2002)). Let δ, η > 0. For every non-negative, non-decreasing,
and left continuous transit time function τ : [0, κ] → R+, there exists a step function τ step :

[0, κ]→ R+ with

i. τ step(ϕ) ≤ τ(ϕ) ≤ (1 + η)τ step(ϕ) + δ for every ϕ ∈ [0, κ],

ii. the number of break points of τ step is bounded by ⌈log1+η(
τ(κ)
δ
)⌉+ 1.

Every dynamic flow function Φ in Π with inflow-dependent transit times τ stepa and time horizon
T corresponds to some dynamic flow function Φb in Π

b
with constant transit time and same

time horizon T . But the converse may not be true because the flow is scattered in different bow
arcs with different transit times. An additional property is essential to address this problem,
termed as inflow-preserving flow.

Inflow-preserving flow. A dynamic flow function Φ in Π is inflow-preserving if, for every
original arc a ∈ A and every point in time θ, function Φb sends flow into at most one bow arc
ak ∈ Ab

a (Hall et al. (2007)).

In bow graph, the capacity of bunch of parallel bow arcs lies between 0 to κa and due to inflow-
preserving property, only one of the bow arcs is chosen depending on the inflow rate of flow.

Observation 4.4 (Hall et al. (2007a)). Every dynamic inflow-preserving flow Φb in Π
b

with
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time horizon T corresponds to a dynamic flow function Φ in Π with inflow-dependent transit
time (τ stepa )a∈A and time horizon T , and vice versa.

Example 4.9. Consider an arc a = (u, v) ∈ A with capacity κa = 3 and transit time function

u va0 : 1, 1

a1 : 2, 3

a2 : 3, 5

ak : κ, τ

Figure 4.12: Bow graph of arc a with
respect to the step function τ stepa (ϕ)

τa(ϕ) =

{
1 for 0 < ϕ ≤ 1

1 + 2ϕ for ϕ > 1.

Taking {0, 1, 2, 3} as break points of κa, the lower step
function of τa(ϕ) becomes

τ stepa (ϕ) =





1 for 0 < ϕ ≤ 1

3 for 1 < ϕ ≤ 2

5 for 2 < ϕ ≤ 3.

In inflow-dependent transit time, flow is splitted into three bow arcs with capacity ϕ0 = ϕa0 = 1,
ϕ1 = ϕa1 = 2 − 1 = 1 and ϕ2 = ϕa2 = 3 − 2 = 1. The total flow value at T = 10 is
|Φ| = ∑

ak

(T − τ stepak
)ϕak = 9 + 7 + 5 = 21.

Next, for inflow-preserving flow, flow is sent from a2 for time units in (0, 5] at flow rate ϕ2 = 3

and then from a1 for time units in (5, 7] at flow rate ϕ1 = 2 and at last from a0 for time units in
(7, 9] at flow rate ϕ0 = 1 so that total flow within time T = 10 is |Φ| = 15 + 4 + 2 = 21. This
illustrates the Observation 2. □

Since inflow-preserving flow over time is a non-convex function, as in Hall et al. (2007a),
weakly inflow-preserving flow in Π

b
is used for the convexification of flow.

Weakly Inflow-preserving flow. Let µak(θ) =
Φb

ak
(θ)

κak
be the per capacity flow rate on arc

ak ∈ Ab
at time θ. Then the weakly inflow-preserving flow is the flow over time Φb in Π

b
with

time horizon T satisfying
∑

ak∈Ab
a

µak(θ) ≤ 1.

Example 4.10. Consider the arc as explained in Example 4.9. The per capacity flow rate are
µa0 =

ϕ0

1
, µa1 =

ϕ1

2
and µa2 =

Φ2

3
. Thus, the weakly inflow-preserving flow is

|Φ| = ϕ0(T − 1) + ϕ1(T − 3) + ϕ2(T − 5) = µa0(T − 1) + 2µa1(T − 3) + 3µa2(T − 5).

At time T = 12,

|Φ| = 11µa0 + 18µa1 + 21µa2 = 11(µa0 + µa1 + µa2) + 7(µa1 + µa2) + 3(µa2) ≤ 21.

So, to satisfy the same flow value |Φ| = 21 units in Example 4.9, the minimum time required is
T = 12. □

Based on these relaxations, we now present the solution procedure by using the length bound
approach and the condensed time expanded network as follows.
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(i) Length Bound Approximation

The solution procedure starts with the transformation of given network to an auxiliary network.
We construct the bow graph according to the lower step function of τa(ϕ) and use T -length
bound approximation to calculate the quickest weakly inflow-preserving flow. A flow is said
to be T -length bound if it is obtained by using the paths of length at most T . This flow is
converted to inflow-preserving flow by using the δ-resting property which corresponds to the
dynamic flow in Π. A dynamic flow Φ is δ-resting if, for every node u ∈ N \ S and δ > 0, all
flow arriving at u is stored there for at least δ time units before it moves on. Partial contraflow
is applied on the static flow obtained on T -length bound approximation and the flow is repeated
temporally over the time to obtain the dynamic flow unless the demand is not satisfied.

Let us denote the optimal solution to weakly inflow-preserving dynamic multi-commodity flow
with time horizon T by Φw and the static multi-commodity flow obtained from Φw by ϕw, where

ϕw is obtained by averaging over time interval (0, T ], i.e., ϕw,i
ak

= 1
T

T∫
0

Φw,i
ak

(θ)dθ, for all ak ∈ Ab

and i ∈ K. Here, flow ϕw,i
ak

is T -length bounded, satisfies 1
T

part of demand of Φw and has cost
1
T

part of the cost of Φw. Also, Φw being weakly inflow-preserving flow, it’s per capacity flow
µak =

ϕw
ak

κak
, ak ∈ Ab

satisfies the condition
∑

ak∈Ab

µak ≤ 1 for all a ∈ A.

The weakly inflow-preserving static flow ϕw in Π
b

can be turned to the dynamic flow within
time horizon 2T as follows. Send the flow into each T -length bounded si− ti paths P obtained
by path decomposition such that τ(P ) =

∑
a∈P

τa ≤ T with a ∈ Ab
for T time units and wait for

at most another T times until all flow arrives at the destination. But by Handler & Zang (1980),
T -length bounded flow problem is NP-hard. So relaxation of T -length bound is essential to
compute polynomial time approximate solution which gives (2+ ϵ)-approximation for quickest
weakly-inflow preserving flow.

Theorem 4.14 (Hall et al. (2007a)). For a weakly inflow-preserving dynamic multi-commodity

flow Φw with time horizon T and cost/budget B, there exists a polynomial time quickest weakly

inflow-preserving dynamic multi-commodity flow with time horizon (2 + ϵ)T and cost B, for

every ϵ > 0.

Now, we present Algorithm‘22 to solve the inflow-dependent quickest multi-commodity flow
problem with partial reversal of arcs as follows.

Theorem 4.15. The weakly inflow-preserving dynamic flow Φw with time horizon Tw, generated

by a static flow ϕw, can be turned into dynamic flow Φ with inflow-dependent transit time

(τa)a∈A and time horizon T , where T is bounded from above by (1 + η)Tw + 2nδ.

Proof. Since lower step function τ step does not correspond exactly with the original transit
time function τ , we define a transit time function τ ′ak = (1 + η)τak + δ, ∀ ak ∈ Ab

which
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Algorithm 22: Length bound approximation algorithm to inflow-dependent quickest MCF
with partial contraflow
Input : Given multi-commodity network Π = (N ,A, κ,K, τ, di, S,D, T ).
Output: The inflow-dependent quickest MCF with partial contraflow.

1. Transform network Π to auxiliary network Π by adding two-way capacities as
κa = κa + κ←−a and inflow-dependent transit time τa(ϕ), ∀ a ∈ A.

2. Replace the transit time function τa(ϕ), a ∈ A by lower step function τ stepa (ϕ) and
construct corresponding bow graph Π

b
.

3. Compute (2 + ϵ)-approximate quickest weakly inflow-preserving flow by T -length
bound as in Hall et al. (2007a).

4. Convert weakly inflow-preserving flow in Π
b

to inflow-preserving flow by using
δ-resting property which corresponds to flow over time in Π.

5. Decompose the flow along the si − ti paths and cycles and remove the cycles ∀i.
6. Reverse←−a ∈ A up to capacity ϕa − κa iff ϕa > κa and ϕ←−a < κ←−a , replaced κa by 0

whenever a /∈ A, where ϕa =
∑
i

ϕi
a and ϕ←−a =

∑
i

ϕi←−a . Similar for reverse direction.

7. For each a ∈ A, if←−a is reversed, sc(←−a ) = κa−ϕa−ϕ←−a and sc(a) = 0. If neither a nor
←−a is reversed, sc(a) = κa − ϕa > 0, where sc(a) is the saved capacity of a and
similarly, sc(←−a ) = κ←−a − ϕ←−a > 0.

8. Transform the solution to the original network.

corresponds to the bow graph of the lower step function τ ′,stepa (ϕ) = (1 + η)τ stepa (ϕ) + δ for
all ϕ ∈ (0, κa]. Denote the set of si − ti paths obtained by length bounded path decomposition
of static flow ϕb,i as P i and the set of all such paths by P = ∪ki=1P i. The weakly inflow-
preserving flow Φw is sent along path P at constant rate ϕP . The transit time to reach the
destination before the increase in the transit time is τ(P ) =

∑
ak∈P

τak and after increasing is

τ ′(P ) =
∑

ak∈P
τ ′ak ≤ (1 + η)τ(P ) + nδ. As τ(P ) ≤ Tw, so τ ′(P ) ≤ (1 + η)Tw + nδ. Repeat

this process by increasing the transit time by factor of δ so that weakly inflow-preserving flow
in the bow graph becomes the δ-resting. The flow is now turned to inflow-preserving (Hall et
al. (2007a)), and by Observation 4.4, it yields the dynamic flow with inflow-dependent transit
times. The time horizon is thus (1 + η)Tw + 2nδ.

Theorem 4.16. Algorithm 22 provides the T -length bound approximate solution to the inflow-

dependent quickest multi-commodity contraflow problem with bounded cost using partial con-

traflow configuration.

Proof. As Steps 1 and 8 are transformation of the network without violating the flow conserva-
tion and capacity constraints, they are feasible. According to Observation 4.3, the construction
of the bow graph in Step 2 is also feasible. Step 5 decomposes the flow along the paths and cy-
cles and removes the positive flows in cycles. Steps 6 and 7 reverse the necessary arc capacities
and save unused capacities, which are feasible. Similarly, the feasibility of Steps 3 and 4 can be
found in Theorems 4.14 and 4.15, respectively.
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A dynamic multi-commodity flow problem reduces to a static flow problem on Π
b

by using a
length bound approximation that provides polynomial time bound. An approximate solution to
the quickest flow with inflow-dependent transit time on Π

b
can be obtained from Theorems 4.14

and 4.15. Moreover, any optimal solution on Π
b

is equivalent to the feasible solution to given
network Π. Thus, an approximate solution to the inflow-dependent quickest multi-commodity
contraflow problem with bounded cost can be computed for the given network Π.

Example 4.11. Consider a network with two commodities in which commodity-1 is to be trans-
shipped from s1 to t1 with demand d1 = 25 and commodity-2 from s2 to t2 with demand d2 = 20

units. The capacity and transit time of each arc are as indicated in Figure 4.13. The feasible
paths for commodity-1 and commodity-2 are P1 = s1 − u− v − t1 and P2 = s2 − u− v − t2.
In the case without contraflow, the bottleneck capacity on both paths are 2 units each. Inflow-
dependent transit times on both paths are presented in Table 4.2.

u v

s1

s2

t1

t2

3, τ2

5, τ2

2, τ1
3, τ1

5, τ4

4, τ3

2, τ5
1, τ5

τ1(ϕ) =

{
1 for 0 < ϕ ≤ 1
2ϕ− 1 for ϕ > 1

τ2(ϕ) =

{
2 for 0 < ϕ ≤ 1
2ϕ for ϕ > 1.

τ3(ϕ) =

{
3 for 0 < ϕ ≤ 3
2ϕ− 4 for ϕ > 3.

τ4(ϕ) =

{
1 for 0 < ϕ ≤ 1
ϕ− 1 for ϕ > 1.

τ5(ϕ) =

{
1 for 0 < ϕ ≤ 1
4ϕ− 3 for ϕ > 1.

Figure 4.13: Two-commodity two-way network with symmetric inflow-dependent transit times.

Table 4.2: Inflow-dependent transit times on paths of given network without lane reversals.

P1 s1 − u u− v v − t1 Total time P2 s2 − u u− v v − t2 Total time
Φ = 1 1 2 3 6 Φ = 1 1 2 1 4
Φ = 2 3 4 3 10 Φ = 2 1 4 5 10

To satisfy the demand d1 = 25 without contraflow, 13-length bound paths are essential and flow
is sent for next 13 time units so that demand is satisfied within [25, 26) times. But there is no
path of length more than 10, so flow is temporally repeated to this path for 13 unit times so that
the demand is fulfilled in 23 time units. Similarly, to satisfy demand d2 = 20, 10-length bound
paths are essential and flow is send for the next 10 time units so that the demand is satisfied
within [19, 20) times. Thus, both demands are satisfied within time T = 23.

Figure 4.14(a) represents an auxiliary network of Figure 4.13 which is obtained by adding two-
way capacities and transit times are obtained from equations (4.18). Similarly, Figure 4.14(b)
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represents the saved arc capacities on arcs. The flow-dependent transit times for feasible flow on
each path are presented in the Table 4.3. The bottleneck capacities of paths P1 = s1−u−v− t1
and P2 = s2 − u− v − t2 are 4 and 3 units, respectively.

u v

s1

s2

t1

t2

8, τ2

5, τ1

5, τ4

4, τ3

3, τ5

(a) capacity, transit times

u v

s1

s2

t1

t2

0,1,

7, 0

4, 0
0, 1

3, 2

4, 0

3, 0

(b) flow, saved capacity

Figure 4.14: (a) represents the two-commodity auxiliary network and (b) represents the static
flow with saved arc capacities.

Table 4.3: Inflow-dependent transit time on each path.

P1 s1 − u u− v v − t1 Total time P2 s2 − u u− v v − t2 Total time
Φ = 1 1 2 3 6 Φ = 1 1 2 1 4
Φ = 2 1 2 3 6 Φ = 2 1 2 1 4
Φ = 3 2 3 3 8 Φ = 3 2 3 3 8
Φ = 4 3 4 4 11

To satisfy the demand d1 = 25 units with lane reversals, the path of 9-length bound is essential,
and flow is sent for the next 9 times so that demand is satisfied within time interval [17, 18).
As there is no path of length 9, we send flow on the 8-length bound path for the next 9 times
and demand is satisfied in 17-time units. Similarly, to satisfy demand d2 = 20 units, the path
of 8-length bound is essential, and flow is sent for the next 7 times so that demand is satisfied
within time interval [14, 15). So, the total time to satisfy both demands after lane reversals is
T = 17. By comparing the quickest time with and without contraflow, approximately 26.1% of
the time is saved due to lane reversal strategy. □

(ii) An FPTAS by ∆-Condensed Time Expanded Graph

Here, we present an FPTAS to solve the quickest MCF problem with inflow-dependent transit
times and bounded cost by using partial contraflow configuration. We consider the ∆-condensed
time expanded network as defined in Dhamala et al. (2020). As in Hall et al. (2007a), we
develop an FPTAS in the network Π by defining lower, upper, and 2∆-lengthened bow graphs
as follows.

Let ϵ > 0 be an arbitrary positive number. By rounding down τa(ϕ) to the nearest multiple
of ∆, a lower step function τ ↓a = ⌊ τa(ϕ)

∆
⌋∆, for a ∈ A with ϕ ≤ κa is defined, where ∆ is

taken as ϵ2T
n

. With the help of this lower step function, the lower bow graph Π
b,↓

is constructed.
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By lengthening the transit time of each lower bow arc by ∆, i.e., τ ↑a (ϕ) = τ ↓a (ϕ) + ∆, upper
∆-lengthened bow graph Π

b,↑
is obtained. Similarly, by lengthening the transit time of each

lower bow arc by 2∆, i.e., τ⇈a (ϕ) = τ ↓a (ϕ) + 2∆, upper 2∆-lengthened bow graph Π
b,⇈

=

(N ,A⇈
, K, κ′, τ⇈, di, S,D, T ) with κ′a = ∆(κa + κ←−a ) is obtained.

For time horizon T , construct a ∆-condensed time expansion Π
F
= (N F ,AF

) of Π
b,⇈

, known
as fan graph. Every arc a = (u, v) ∈ A is represented in the bow graph Π

b,⇈
by its expansion

A⇈
. Consequently, for each point of time θ ∈ {ρ∆ : ρ = 0, . . . , ⌈T/∆⌉ − 1}, the fan graph

consists of a "fan" of arcs AF

a (θ) = {ak(θ) : ak ∈ A⇈
a , θ + τ⇈ak ≤ (⌈ T

∆
⌉ − 1)∆}, where

ak(θ) = (u(θ), v(θ + τ⇈ak)).

For a static flow ϕ in fan graph Π
F

, define per capacity inflow value on arc a ∈ AF
by µak =

ϕak

κak
. Similarly, as defined above, the static flow ϕ is weakly inflow-preserving if

∑
ak∈AF

a (θ)

µak ≤

1,∀a ∈ A and θ ∈ {ρ∆ : ρ = 0, . . . , ⌈T/∆⌉ − 1}. Moreover, any weakly inflow-preserving
static flow in Π

F
corresponds to a weakly inflow-preserving flow over time in Π

b,⇈
and vice-

versa. The algorithmic framework is as follows.

Algorithm 23: An FPTAS for inflow-dependent quickest MCF with partial contraflow
Input : Given multi-commodity flow network Π = (N ,A, κ,K, τ, di, S,D, T ).
Output: The inflow-dependent quickest MCF with partial contraflow.

1. The auxiliary network Π is transformed to ∆-condensed auxiliary network
Π

b,⇈
= (N ,A⇈

, K, κ′, τ⇈, di, S,D, T ) with τ⇈a (ϕ) = τ ↓a (ϕ) + 2∆ and
κ′a = ∆(κa + κ←−a ).

2. Compute approximate quickest weakly inflow-preserving flow on Π
F

by using FPTAS
as in Hall et al. (2007a).

3. Decompose the flow along the si − ti paths and cycles and remove the cycles ∀i.
4. Reverse←−a ∈ A up to capacity ϕa − κa iff ϕa > κa and ϕ←−a < κ←−a , replaced κa by 0

whenever a /∈ A, where ϕa =
∑
i

ϕi
a and ϕ←−a =

∑
i

ϕi←−a . Similar for reverse direction.

5. For each a ∈ A, if←−a is reversed, sc(←−a ) = κa−ϕa−ϕ←−a and sc(a) = 0. If neither a nor
←−a is reversed, sc(a) = κa − ϕa > 0, where sc(a) is the saved capacity of a and
similarly, sc(←−a ) = κ←−a − ϕ←−a > 0.

6. Transform the solution to the original network.

Theorem 4.17. An approximate solution to the inflow-dependent quickest MCF problem with

contraflow configuration can be computed in fully polynomial time complexity.

Proof. Since all other steps except Steps 2 and 3 are computed in linear time, so the complexity
of Algorithm 23 is dominated by Steps 2 and 3. Step 3 can be solved in O(mn) time. An
estimation of time can be found within O(log 1

ϵ
) geometric mean binary search steps. In every

search step, a weakly inflow-preserving multi-commodity flow can be computed in a condensed
fan graph Π

F
.

The fan graph contains O( n
ϵ2
) layers with O(n

2

ϵ2
) nodes and every arc is represented in each time
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layer by a fan with at most O(mn
ϵ2
) arcs. The number of arcs in fan graph lies in O(mn2

ϵ4
). Hence,

Π
F

is of polynomial size. Thus, a weakly inflow-preserving multi-commodity flow with partial
contraflow configuration can be computed in fully polynomial time.

Example 4.12. Transform the auxiliary network in

u v

s1

s2

t1

t2

16, τ⇈2

10, τ⇈1

10, τ⇈4

8, τ⇈3

6, τ⇈5

Figure 4.15: Condensed auxiliary network
with capacity κ′ and transit time τ⇈.

Figure 4.14(a) to ∆-condensed auxiliary network
Π

⇈
with ∆ = 2, τ⇈a (ϕ) = τ ↓a (ϕ) + 2∆ and

κ′a = ∆(κa + κ←−a ) as shown in Figure 4.15. Us-
ing lane reversals, Table 4.4 represents the flow on
each path and time to satisfy demands using ∆-
condensed time expanded auxiliary network N a⇈.
Similarly, Table 4.5 represents the same as in Ta-
ble 4.4 but without lane reversals which are calculated from Figure 4.13.

In the case of contraflow configuration, the time to satisfy demand d1 = 25 units is T = 36, and
for demand d2 = 20 units is T = 32 (cf. Table 4.4). Thus both demands are satisfied within
time T = 36. If contraflow strategy is not applied, then time to satisfy demand d1 = 25 units is
T = 42, whereas for demand d2 = 20 units is T = 40 (cf. Table 4.5), and so, both demands are
satisfied within time T = 42. The graphical representation of inflow-dependent quickest time
is presented in Figure 4.16. Hence, due to partial contraflow, the quickest time is reduced by
14.3%. □

Table 4.4: Inflow-dependent transit times of paths after contraflow with ∆ = 2.

P1 s1 − u u− v v − t1 τP1
Time for P2 s2 − u u− v v − t2 τP2

Time for
d1 = 25 d2 = 20

Φ = 1 4 6 6 16 [64, 66) Φ = 1 4 6 4 14 [52, 54)
Φ = 2 4 6 6 16 [40, 42) Φ = 2 4 6 4 14 [32, 34)
Φ = 3 6 6 6 18 [34, 36) Φ = 3 6 6 6 18 [30, 32)
Φ = 4 6 8 8 22 [34, 36) Φ = 4 6 8 8 22 [30, 32)
Φ = 5 8 8 10 26 [34, 36) Φ = 5 8 8 10 26 [32, 34)
Φ = 6 8 10 12 30 [38, 40) Φ = 6 8 10 12 30 [36, 38)
Φ = 7 10 10 14 34 [40, 42)
Φ = 8 10 12 16 38 [44, 46)

Table 4.5: Inflow-dependent transit times of paths before contraflow with ∆ = 2.

P1 s1 − u u− v v − t1 τP1 Time for P2 s2 − u u− v v − t2 τP2 Time for
d1 = 25 d2 = 20

Φ = 1 4 6 6 16 [64, 66) Φ = 1 4 6 4 14 [52, 54)
Φ = 2 6 8 6 20 [48, 50) Φ = 2 4 8 8 20 [38, 40)
Φ = 3 8 10 6 24 [40, 42) Φ = 3 6 10 12 28 [40, 42)
Φ = 4 10 12 8 30 [42, 44) Φ = 4 6 12 16 34 [42, 44)
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Figure 4.16: Graphical representation of inflow-dependent quickest time after and before lane
reversals taking ∆ = 2. Due to lane reversals, quickest time is reduced significantly.
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Chapter 5

Bi-level Facility Allocation Problem

Facility allocation problem concerns with establishment of facilities, specially at the time of
evacuation, so that essential goods can be provided as soon as possible. Facilities can be estab-
lished at nodes or arcs, due to which the capacity is reduced and can effect on the maximum flow
transmission. Thus, selection of appropriate location with minimum loss in total flow transmis-
sion and optimal use of facilities is a major concern in facility allocation problem. By incorpo-
rating the maximum flow problem with location analysis, Hamacher et al. (2013) introduced
single and multi-facility flow location problems. For single and multiple facility allocation, they
have presented polynomial time algorithms and polynomial time heuristics, respectively. The
maximum static and dynamic contraflow problems with facility location are solved in Dhun-
gana & Dhamala (2019). The single and multiple quickest flow location problems and their
solution strategies can be found in Nath et al. (2020).

Bi-level problems are two stage optimization problems in which first stage optimize the overall
system under the best possible decision of the second stage. The first study in bi-level optimiza-
tion can be found in von Stackelberg (1934). The exciting interest on this field of optimization
is rapidly increased after the 1970s. For more detailed illustration, we refer to the papers of
Anandalingam & Friesz (1992); Ben-Ayed (1993); Wen & Hsu (1991), survey papers of Col-
son et al. (2005); Colson et al. (2007) and the books of Bard (1998); Dempe (2002); Dempe
(2020); Dempe & Zemkoho (2020).

In game theory, bi-level optimization problem is also known as leader-follower optimization
problem with successive iteration of two players where the leader first optimizes its objective
function knowing the follower’s reaction, and the follower optimizes another objective function
depending on the leader’s selection.

The bi-level formulation of facility allocation problem is a major research gap in existing lit-
erature in which possibly best location can be decided to allocate the facilities and the loss
in optimal flow value can be minimized as two levels of the problem. To deal with this, we
formulate upper level problem which declares the appropriate location for the facility and the
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lower level problem which maximize the flow on facilitated network. We present the solution
procedure in two ways. The first is a naive approach with combinatorial problem for selecting
the arcs to allocate the facility and find maximum dynamic flow on the network with facility
allocation. The second one is Karush-Kuhn-Tucker (KKT) transformation approach.

5.1 Basic Notations

Consider a network Π = (N ,A, κ, s, t), where N with |N | = n represents a set of n nodes
and A ⊆ N × N with |A| = m represents a set of m arcs. Here, s ∈ N and t ∈ N
are the source (origin) and sink (destination) nodes and I = N \ {s, t} represents the set of
intermediate nodes. Each arc a = (u, v) ∈ A with head(a) = v and tail(a) = u has a capacity
function κ : A → R+ that limits the flow on arc. Similarly, let L ⊆ A be a set of feasible
locations and η : L → R+ be the size of facility that is to be placed in some arc. We denote
the set of outgoing arcs from node u and incoming arcs to node u by Γout

u and Γin
u , respectively.

In case of dynamic network, two additional parameters are to be considered, one transit time
τ : A → R+ that measures the transmission time from u to v and another T = {0, 1, ..., T}
to represent time horizon T in discrete time settings. Thus the dynamic network is of the form
Π = (N ,A, κ, s, t, τ, T ).

5.2 Bi-level Problem Formulation with Facility Allocation

Let ϕ be a static flow on a network Π = (N ,A, κ, s, t) which is defined as a non-negative
arc flow functions ϕ : A → R+. The static flow model is the network flow satisfying the
conditions (5.1a - 5.1c). The mathematical formulation of the maximum static flow as a linear
programming problem is as follows.

max |ϕ| (5.1a)

such that,

∑

a∈Γout
u

ϕa −
∑

a∈Γin
u

ϕa =





|ϕ| for u = s

−|ϕ| for u = t

0 for u ∈ I
(5.1b)

0 ≤ ϕa ≤ κa ∀a ∈ A (5.1c)

Here, equations have their usual meanings as in Section 2.2. The dynamic flow within the time
horizon T can be obtained by temporally repetition of the static flow along the paths as

∑

P∈P
(T + 1− τP )ϕP = (T + 1)|ϕ| − τaϕa

116



with usual meaning of the symbols.

Now, for the purpose of bi-level formulation, we take γ and ϕ as two variables. The lower level
problem is formulated as

max
γ
{f(γ, ϕ) : g(γ, ϕ) ≤ 0} (5.2)

which depends on the upper level variable ϕ. Here, f is a real valued function defined as
f : Rp×Rq → R and g = (g1, . . . , gl) is a vector valued function defined as g : Rp×Rq → Rl.
Similarly, if Ψ : Rp → 2R

q be a solution set mapping such that ϕ ∈ Ψ(γ), then the upper level
optimization problem is of the form

max
γ,ϕ
{F (γ, ϕ) : G(γ, ϕ) ≤ 0, ϕ ∈ Ψ(γ)}, (5.3)

where F : Rp × Rq → R and G : Rp × Rq → Rk with G = (G1, . . . , Gk). We refer to Dempe
(2002); Dempe (2019) and references therein for detailed illustrations. With the help of these

formulations, we introduce the bi-level formulation of maximum dynamic flow problem with
allocation of facility at the arcs hereafter.

At the time of disasters, proper allocation of the location of emergency facilities for their support
is very important. Let η represent the size of a facility that is to be placed at an appropriate arc
in L. The upper level problem in network Π is

max H(γ, ϕ) (5.4a)

such that,

0 ≤ η γa ≤ κa, ∀a ∈ L (5.4b)
∑

a∈L
γa = 1 (5.4c)

γa = 0, ∀a ∈ A \ L (5.4d)

γa ∈ {0, 1}, ∀a ∈ L (5.4e)

ϕ solves the lower level problem depending on γ (5.4f)

where, γ = (γa)a∈A and ϕ = (ϕa)a∈A. Constraint in (5.4b) represents that the facility is allo-
cated at the arc with sufficient capacity. The single facility location is assured by equation (5.4c).
Non-selection of arc outside of L for the facility allocation is represented by equation 5.4d,
where (5.4e) represents the binary variable. The upper level objective function in (5.4a) is to
maximize H defined by

H(γ, ϕ) = (T + 1)|ϕ∗| −
∑

a∈A
τaϕa +

∑

a∈L
γawa
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where, wa is a predefined reward function that depends on the situation of evacuation scenario.
Thus, the objective of upper level problem is to maximize the flow out from the source by
appropriate allocation of facility on arc. Here, |ϕ∗| is the value of static flow induced by ϕ after
placement of the facility that is to be maximized in static flow computation.

The lower level problem is to obtain the maximum flow after reduction of the capacity at facility
allocated arc by the size of facility as follows.

max
ϕ∗,ϕ

(T + 1)|ϕ∗| −
∑

a∈A
τaϕa (5.5a)

such that,

∑

a∈Γin
u

ϕa −
∑

a∈Γout
u

ϕa =





−|ϕ∗| for u = s

0 for u ∈ I
|ϕ∗| for u = t

(5.5b)

0 ≤ ϕa ≤ κa − η γa, ∀a ∈ A (5.5c)

Here, the objective of lower level problem (5.5a) is to maximize the dynamic flow obtained
by temporal repetition of static flow. The flow conservation at intermediate nodes and non-
conservation of flow at source and sink are represented by equation (5.5b). The boundedness of
the flow on each arc after placement of the facility is represented in (5.5c).

In case of multiple facility allocation, say r facilities of size ηi, i = 1, . . . , r with r ≤ |L|,
the upper level constraint in (5.4c) is to be replaced by

∑
a∈L

γa = r. Similarly, lower level

constraint in (5.5c) is to be replaced by 0 ≤ ϕa ≤ κa − ηa,i γa, ∀a ∈ A, i = 1, . . . , r,
ηa,i = max{ηi : ηi is associated with a}. The objective function and rest of the constraints
remain the same.

The dual formulation of lower level problem is as follows.

min
∑

a∈A
Θa(κa − η γa) (5.6a)

such that,

ζu − ζv +Θa ≥ −τa, ∀a = (u, v) ∈ A (5.6b)

ζs − ζt ≥ T + 1 (5.6c)

Θa ≥ 0 ∀a ∈ A (5.6d)

ζu ∈ R (unrestricted) (5.6e)
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5.3 Solution Procedure

In this section, we present two approaches to solve the facility allocation problem. First one
is a naive approach which selects an arc with some strategy to place the facility, finds the
maximum dynamic flow over the time horizon and continues the process until the best solution
is obtained. Another approach is the conversion of bi-level problem to single level one by using
Karush-Kuhn-Tucker (KKT) transformation and solve by replacing complementarity condition
by big-M method for mixed-integer reformulation.

5.3.1 Solution by Naive Approach

For a given subset L ⊆ A of possible locations, our concern here is to present a simple proce-
dure to solve the facility allocation problem. The basic idea for this approach is from Stackel-
berg leadership model of a strategic game in which the leader makes the first move and then the
follower reacts sequentially for the optimal output. The leader (upper level) iteratively chooses
an arc for the allocation of a facility as long as the best optimal solution from follower (lower
level) is produced.

Here, we present the pseudo codes of an algorithmic framework to solve the maximum dynamic
flow problem with facility allocation. First and second steps inside ‘for loop’ of the algorithm
are obtained by upper level problem and third one by lower level problem. This loop runs over
all arcs a′ ∈ A with κa′ ≥ η to obtain the best optimal flow MDFopt.

Algorithm 24: Naive algorithm for maximum dynamic flow with facility allocation
Input : Given a dynamic network Π = (N ,A, κ, s, t, τ, T ).
Output: MDFopt = Maximum dynamic flow with facility allocation.

1. L = Set of feasible locations (L ⊆ A).
η = Size of facility.
γ = {0, 1}, a decision variable.

2. For a′ ∈ L with κa′ ≥ η:
Assign γa′ = 1 and γa = 0, ∀a ∈ L \ {a′}.
Assign κa′ = κa′ − η.
MDF(a′) = Maximum dynamic flow after placement of facility at a′.

3. MDFopt = max {MDF(a′) : a′ ∈ L and γa′ = 1}

The time complexity of the algorithm depends on the number of iterations over the arcs in L and
the complexity of the maximum dynamic flow, that is, |L|×O(MDF ), whereO(MDF ) is time
complexity of maximum dynamic flow problem. As |L| ≤ m and maximum dynamic flow can
be computed in polynomial time, overall time complexity of the algorithm with single facility
allocation is polynomial, Hamacher et al. (2013). However, solving multiple (i.e., r) facility
allocation problem is a combinatorial optimization problem with complexity |L|Pr×O(MDF ),
where, |L|Pr represents the number of permutations of |L| locations taken r at a time.
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5.3.2 Solution by KKT Transformation

Karush-Kuhn-Tucker (KKT) condition is one of the most commonly used approach to solve the
bi-level programming problem which is only applicable if the lower level problem is a convex
optimization problem. It transfers the problem into single level optimization problem. As both
lower and upper level problems in our facility allocation model are linear, KKT transformation
is possible. For this, consider the Lagrangian function of lower level problem as

L(γ, ϕ, ζ,Θ) = (T + 1)|ϕ∗| −
∑

a∈A
τaϕa +

∑

u∈I
ζu


 ∑

a∈Γin
u

ϕa −
∑

a∈Γout
u

ϕa


+

∑

a∈A
Θa (κa − η γa − ϕa).

The objective function for KKT condition is the objective of upper level problem and the
KKT constraints are the constraints for lower level problem (5.5b)- (5.5c) together with dual
constraints (5.6b)-(5.6e) and the complementarity constraint

Θa (κa − η γa − ϕa) = 0 ∀a ∈ A.

This yields the mathematical program with complementarity constraints (MPCC) as follows.

max
γ,ϕ,ζ,Θ

H(γ, ϕ) (5.7a)

such that,

0 ≤ η γa ≤ κa ∀a ∈ L (5.7b)
∑

a∈L
γa = 1 (5.7c)

∑

a∈Γin
u

ϕa −
∑

a∈Γout
u

ϕa =





−|ϕ∗| for u = s

0 for u ∈ I
|ϕ∗| for u = t

(5.7d)

0 ≤ ϕa ≤ κa − η γa ∀a ∈ A (5.7e)

ζu − ζv +Θa ≥ −τa ∀a = (u, v) ∈ A (5.7f)

ζs − ζt ≥ T + 1 (5.7g)

Θa (κa − η γa − ϕa) = 0 ∀a ∈ A. (5.7h)

Θa ≥ 0 ∀a ∈ A (5.7i)

ζu ∈ R (non-restricted) (5.7j)

The complementarity constraints in (5.7h) can be replaced by the mixed-integer reformulation
using sufficiently large big-M constants M ′ and M ′′ as follows.

κa − η γa − ϕa ≤M ′(1− βa), Θa ≤M ′′βa, βa ∈ {0, 1}, ∀a ∈ A.
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This reformulation was introduced by Fortuny-Amat & McCarl (1981) so that resulting model
of single level problem can be solved by standard mixed-integer solvers. However, a major
concern here is to approximate the value of big-M . Pineda & Morales (2019) have shown that
choosing too small big-M can result in sub-optimal solution. Similarly, too large values of big-
M may cause infeasible solution for original bi-level problem (Kleinert & Schmidt (2020)).
As M ′ is an upper bound of the primal variable ϕa on arcs, without loss of generality, we can
set M ′ = max{κa : a ∈ A}. However, M ′′ is an upper bound of dual variable Θa and tuning
such large enough constant for dual variable is a more challenging task. Trial-and-error tuning
procedure is most commonly used in literature for the upper bound of the dual variable.

Due to the linear constraints in lower level problem, an ϵ bound method can be used to refor-
mulate the complementarity constraint 5.7h and solve with relaxation in the sense of Scholtes
(2001). The reformulation of complementarity constraint is

Θa (κa − η γa − ϕa) ≤ ϵ, ∀a ∈ A,

where locally optimal solution of the problem is obtained for ϵ ↓ 0, (see also in Burtscheidt et
al. (2020)). Not only for a single facility allocation, KKT transformation solves the multiple
facility allocation problem with same pace.
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Chapter 6

Summary and Conclusions

Disasters are unexpected circumstances, may be caused by nature or human errors, which create
massive loss of infrastructures and lives. They also impact on overall economy of the people
and nation. Efficient plannings for pre and post disasters are very essential though they are very
challenging tasks. Different mathematical models and their applications can be found in the
literature of applied mathematics. In this thesis, we have presented mathematical models for
single as well as multi-commodity flow problems with and without intermediate storage, which
are applicable for post disaster management.

At the time of disaster, every individual wants to move towards the safe zone as quickly and
efficiently as possible. Because of which, flow at bottleneck arcs/paths creates the high conges-
tion. Holding of the excess flow at comparatively safer intermediate shelters is the flow with
intermediate storage. In Chapter 2, new solution strategy of the flow with intermediate storage
using temporal repetition of flow is presented to solve the maximum as well as earliest arrival
flow problems. To justify the result in practical application, we have presented case illustra-
tion of maximum dynamic flow with intermediate storage by taking a part of road network of
Kathmandu using Python programming language. Similarly, contraflow is another important
and commonly used technique which improves the flow transmission by the reversal of unused
oppositely directed arcs towards the destination. Contraflow with symmetric transit times and
asymmetric contraflow with orient dependent transit times can be found in literature. A differ-
ent aspect of the asymmetric contraflow problem in which transit time of an arc remains the
same whatever be its orientation is introduced by using anti-parallel path decomposition. The
maximum and quickest contraflow with anti-parallel path decomposition are solved in polyno-
mial time complexity whose case illustrations using Python are presented by taking real road
network of a part of Kathmandu.

Congestion elimination at the crossing of paths plays a vital role to smooth the flow, which
can be possible in abstract network by switching of the paths. Integrating the abstract network
flow and flow with intermediate storage, we introduced the flow models and solution strategies
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for maximum static, lexicographic maximum static and maximum dynamic flow problems and
presented the polynomial time solution strategies (cf. Chapter 3). It helps to smooth the flow
on non-crossing paths by holding the excess flow at intermediate shelters. Similarly, we have
proposed the abstract flow model with partial switching and its solution strategy to improve the
flow transmission at the destination.

As a major concern of the study, we have incorporated the flow with intermediate storage in
multi-commodity flow problems, where flow of different commodities are transshipped from
respective sources to their corresponding sinks. The polynomial time algorithm for static MCF
and pseudo-polynomial time algorithm for dynamic MCF with intermediate storage are pre-
sented in Chapter 4. At the time of disaster, every individual may not hurt equally. We have
presented a priority based multi-commodity evacuation planning problem whose solution is ob-
tained by using TRF in polynomial time approximation and using time expanded network in
pseudo-polynomial time. The sharing of capacity in bundle arc is one of the challenging issue
in multi-commodity flow problem. We have proposed a proportional capacity sharing technique
which reduces the multi-commodity flow problem to commodity-wise single commodity flow
problems. Using this sharing, polynomial time approximation to the maximum and quickest
multi-commodity flow problems are possible. Similarly, we have presented pseudo-polynomial
time solutions of maximum and quickest MCF problems by defining flow-dependent capacity
sharing. By incorporating the partial contraflow in two-way network with flow-dependent tran-
sit time on arcs, we have presented a polynomial time approximation by using length bound
approach and a fully polynomial time approximation by using ∆-condensed time expanded
network.

Finally, our concern was to provide some supports to the evacuees through the allocation of
facilities at appropriate locations. To address this problem with mathematical model, we have
designed a bi-level facility allocation model in which lower level problem solves maximum flow
problem and the optimal location for the placement of the facilities is assured by the upper level
problem (cf. Chapter 5).

Problems for Further Research. We have solved the maximum and quickest multi-commodity
flow problems in general network topology. However, solving these problems in abstract net-
work by switching of paths is the problem for further research and can be a hard problem as the
switched path may violate the commodity-wise source-sink flow. Similarly, declaration of the
number of arcs to be reversed for symmetric as well as asymmetric contraflow configuration,
instead of reversing all arcs at time zero, for the best solution can also be another problem for
further research and can be a hard problem as it is combinatorial problem.
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Appendix A

Data for Case Illustration I

For the purpose of case illustration, we consider a part of Kathmandu and Lalitpur Metropolitan
Cities surrounded by ring road as an evacuation zone and the image with road networks is taken
from Google. The number of lanes and vehicle traversal time (in minutes) for each arc/path
segment of the network are presented in Table A.1 herein

Table A.1: Arcs/road segments with respective no. of lanes and vehicle transit times.

S.N. Arc No. of lanes Tr. Time (min.)
1 0-1 6 4
2 0-2 6 2
3 0-3 2+1=3 1
4 0-5 4 1.5
5 0-6 2 2
6 1-7 1 3
7 1-9 6 1
8 2-3 2 2
9 2-10 6 1.5
10 3-4 2 2
11 3-11 2+1=3 2.5
12 4-15 2 0.5
13 4-16 1 1
14 5-4 2 0.5
15 5-17 4 0.5
16 6-5 2 0.5
17 6-7 2 0.5
18 6-18 2 0.5
19 7-19 1 3
20 8-7 2 2.5
21 8-28 4 3
22 9-8 4 1.5
23 9-30 6 3

S.N. Arc No. of lanes Tr. Time (min.)
24 10-11 6 2
25 10-43 6 0.5
26 10-46 1 3
27 11-12 2 1
28 11-13 6 2
29 11-45 1 1.5
30 11-47 2 1
31 11-48 1 1.5
32 12-13 2 0.5
33 16-22 2 0.5
34 13-24 6 1
35 14-13 2 1
36 14-20 2 0.5
37 15-14 2 0.5
38 15-21 2 1
39 16-14 2 0.5
40 17-15 2 0.5
41 17-22 4 0.5
42 18-17 2 0.5
43 18-23 2 0.5
44 19-18 2 0.5
45 19-28 2 1
46 20-13 2 1
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S.N. Arc No. of lanes Tr. Time (min.)
47 20-25 2 1
48 20-35 2 1
49 20-36 1 1
50 21-20 4 0.5
51 21-26 2 0.5
52 22-21 4 0.5
53 22-26 4 0.5
54 23-22 2 0.5
55 23-27 2 0.5
56 24-48 1 1
57 24-49 2 1
58 24-63 2 1
59 24-64 2 2
60 24-66 1 3.5
61 25-24 4 0.5
62 25-36 4 0.5
63 26-20 4 0.5
64 26-34 2 0.5
65 26-35 2 1
66 27-26 4 1
67 27-29 2 0.5
68 28-27 4 0.5
69 28-29 2 0.5
70 29-31 4 1.5
71 29-34 4 1.5
72 30-29 4 2.5
73 30-31 6 2.5
74 31-32 6 3
75 31-33 2 2
76 32-41 6 1
77 33-32 4 1
78 33-40 2 1
79 34-33 2 2
80 34-35 2 0.5
81 35-37 2 0.5
82 35-39 2 0.5
83 36-37 4 0.5
84 37-38 4 0.5
85 37-64 1 0.5
86 37-65 1 1
87 38-42 4 2
88 38-65 4 1
89 39-38 2 0.5
90 39-42 2 2.5
91 40-39 2 1.5

S.N. Arc No. of lanes Tr. Time (min.)
92 40-41 2 0.5
93 41-42 6 2
94 42-68 8 2
95 43-44 8 0.5
96 44-46 1 0.5
97 44-50 8 2
98 45-46 2 0.5
99 46-44 2 1
100 46-50 2 1
101 47-45 2 0.5
102 47-48 1 0.5
103 48-45 2 2
104 48-49 1 0.5
105 49-55 2+1=3 1
106 49-56 2 1
107 49-63 1 2
108 50-51 8 0.5
109 50-54 2 0.5
110 50-55 2 1
111 51-52 8 0.5
112 52-53 8 0.5
113 53-58 8 1
114 54-52 2 1
115 54-53 2 1
116 54-57 2 1
117 55-56 2 1
118 56-57 2 0.5
119 56-59 2+2=4 0.5
120 57-58 2 1
121 58-60 8 1.5
122 59-60 1 1
123 59-61 2 1
124 59-62 2 1
125 60-61 8 0.5
126 60-68 1 2
127 61-62 8 0.5
128 62-66 8 0.5
129 63-62 2 1.5
130 63-66 1 0.5
131 64-65 2 0.5
132 65-66 2 1
133 65-67 4 1
134 66-67 8 0.5
135 67-68 8 0.5
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Appendix B

Data for Case Illustration II

For the purpose of case illustration, we consider a part of Kathmandu Metropolitan City as an
evacuation zone and the image with road networks is taken from Google. The capacity and
vehicle traversal time (in minutes) for each arc/path segment of the network are presented in
Table B.1 herein.

Table B.1: Arcs/road segments with respective capacities and vehicle transit times.

S.N. Arc Capacity Tr. Time
1 0-1 2 1.5
2 1-0 2 1
3 0-2 2 2
4 2-1 2 1
5 0-4 2 0.5
6 0-7 1 0.2
7 7-0 1 0.2
8 0-8 1 0.5
9 8-0 1 0.5
10 0-10 1 1
11 10-0 1 1
12 0-20 2 1.5
13 4-5 2 1.5
14 4-7 1 0.5
15 7-4 1 0.5
16 7-6 2 1.5
17 6-7 3 1
18 7-9 1 0.5
19 9-7 1 0.5
20 8-9 1 0.2
21 9-8 1 0.2
22 8-10 2 0.2
23 34-36 2 0.5

S.N. Arc Capacity Tr. Time
24 9-11 1 0.2
25 11-9 1 0.2
26 12-11 2 0.5
27 11-10 3 0.5
28 10-13 2 0.5
29 13-14 2 0.5
30 11-13 1 0.5
31 13-11 1 0.5
32 20-21 2 1.5
33 21-22 2 0.5
34 22-21 2 0.5
35 22-19 2 1.5
36 19-10 2 0.5
37 10-23 2 1.5
38 24-17 2 0.5
39 17-10 2 1.5
40 16-17 1 1
41 17-16 1 1
42 22-23 2 1
43 23-22 2 1
44 23-24 2 0.5
45 24-23 2 0.5
46 24-18 2 1
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S.N. Arc Capacity Tr. Time
47 18-24 2 1
48 24-47 2 1
49 47-24 2 1
50 2-3 4 0.5
51 3-2 4 0.5
52 3-5 4 0.2
53 5-3 4 0.2
54 6-5 4 0.5
55 5-6 4 0.5
56 6-12 4 0.5
57 12-6 4 0.5
58 12-14 4 0.5
59 14-12 4 0.5
60 14-15 4 0.5
61 15-14 4 0.5
62 15-16 4 0.2
63 16-15 4 0.2
64 16-18 4 0.5
65 18-16 4 0.5
66 3-25 2 1
67 25-2 2 1
68 25-27 2 0.5
69 27-28 2 1
70 26-25 2 1.5
71 28-26 2 0.5
72 26-28 2 0.5
73 30-28 2 0.2
74 28-30 2 0.2
75 27-29 2 0.5
76 29-27 2 0.5
77 31-5 2 1
78 6-32 2 0.5
79 32-6 2 0.5
80 31-29 2 0.5
81 29-31 2 0.5
82 29-30 2 1
83 30-29 2 1
84 32-33 1 1
85 33-32 1 1
86 33-35 1 0.2
87 35-33 1 0.2
88 35-18 2 1

S.N. Arc Capacity Tr. Time
89 18-35 2 1
90 33-14 2 0.5
91 15-35 2 0.5
92 29-34 2 1.5
93 33-34 2 0.2
94 35-36 2 0.5
95 36-35 2 0.5
96 36-37 2 0.2
97 37-36 2 0.2
98 37-42 2 1
99 42-37 2 1
100 42-41 2 0.2
101 41-42 2 0.2
102 41-45 3 1
103 46-40 3 1
104 30-38 2 1.5
105 38-30 2 1.5
106 38-39 2 1
107 39-38 2 1
108 39-49 2 1
109 49-39 2 1
110 18-44 4 1
111 44-43 4 0.5
112 43-18 4 1
113 47-48 2 1
114 48-47 2 1
115 48-44 3 0.5
116 44-48 3 0.5
117 48-49 6 1
118 49-46 6 0.5
119 46-45 6 0.2
120 45-44 6 0.5
121 43-42 2 0.5
122 42-43 2 0.5
123 41-40 2 0.2
124 40-41 2 0.2
125 39-40 2 0.5
126 40-39 2 0.5
127 20-19 2 0.2
128 32-31 2 0.2
129 31-32 2 0.2
130 37-38 1 1
131 38-37 1 1
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+e multicommodity flow problem deals with the transshipment of more than one commodity from respective sources to
corresponding sinks without violating the capacity constraints. Due to the capacity constraints, flows out from the sources may
not reach their sinks, and so, the storage of excess flows at intermediate nodes plays an important role in the maximization of flow
values. In this paper, we introduce the maximum static as well as maximum dynamic multicommodity flow problems with
intermediate storage. We present polynomial and pseudopolynomial time algorithms for the former and latter problems, re-
spectively. We also present the solution procedures to these problems in contraflow network having symmetric as well as
asymmetric arc transit times. We transform the solutions in continuous-time settings by using natural transformation.

1. Introduction

Network is a topological structure with links (arcs), with its
crossings (nodes) being its components. +e transportation
network is one of the relevant examples of a network to-
pology, in which road segments are considered as the arcs
and their crossings as nodes. Any kinds of entities moving
on the road are considered as flows, and their initial and final
destinations are considered as the source and sink, re-
spectively. Each arc has nonnegative capacity, which limits
the flow on arc. Dynamic network has one more attribute on
arc, i.e., transit time, which represents the time to send the
flow from one node to another one. Ford and Fulkerson are
the pioneers of the network flow over time (so-called dy-
namic flow) problems [1, 2].

+e transshipment of several different commodities
from respective sources to corresponding sinks through a
network without violating the capacity constraints on the
arcs is known as multicommodity flow problem. Vehicle
routine in transportation, production planning, supply
chains for essential goods, and massage routing in tele-
communication are some examples of multicommodity flow
problem. On the basis of temporal dimension, multi-
commodity flow problem can be classified as static

multicommodity flow problem and dynamic multi-
commodity flow problem [3–6]. If we maximize the supply-
demand in a fixed time horizon, then the problem becomes a
maximum dynamic multicommodity flow problem. +e
static multicommodity flow problem is polynomial time
solvable by using the ellipsoid or interior point method,
whereas dynamic multicommodity flow problem is
NP-hard [7]. By using time expanded network, Kappmeier
[8] provided the solution of maximum dynamic multi-
commodity flow problem and multisource single sink
multicommodity earliest arrival transshipment problem in
pseudopolynomial time complexity. Priority-based multi-
commodity flow problem and polynomial time solution
strategy are presented in [9].

Maximum flow problem with intermediate storage is
extremely relevant in large scale disaster management. In
evacuation models, one wishes to shift maximum evacuees
from danger zones (sources) to safety places (sinks) as
quickly and efficiently as possible. +us, at the time of
evacuation, if the number of evacuees out from sources is
greater than the minimum cut capacity, then the excess
evacuees can be placed at intermediate shelters that are
comparatively safer than the danger zone. +e various ap-
plications of the network flow with intermediate storage are
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evacuation planning, demand-supply chain of goods, water
supply system, etc. Pyakurel and Dempe [10] introduced the
concept of maximum static and maximum dynamic flow
problems with intermediate storage and presented poly-
nomial time algorithms to solve them. +ey also presented
polynomial time algorithm for dynamic contraflow problem
with intermediate storage. In case of multisource multisink
network, Pyakurel et al. [11] solved the prioritized maximum
flow problem with intermediate storage and presented
polynomial time algorithm to solve the problem, where
priority is given to the farthest element from the source.
Recently, Pyakurel and Dempe [12] presented efficient al-
gorithms for universal maximum dynamic flow problem
with intermediate storage in general as well as two-terminal
series parallel networks.

In two-way network, contraflow (lane reversal) is one of
the best techniques to increase the outbound capacities of
arcs andminimize the overall time horizon, in which arcs are
reversed towards the destination [13]. Rebennack et al. [14]
provided the models and polynomial time algorithms for
maximum and quickest flow problems in a two-terminal
network by reverting the arcs at time zero and keeping them
fixed afterward by using analytical approach for discrete-
time settings. In continuous-time settings, Pyakurel and
Dhamala [15] introduced the dynamic contraflow model. By
using the natural transformation of Fleischer and Tardos
[16], they have presented efficient algorithms to solve the
maximum, quickest, and earliest arrival flow problems with
lane reversals.

Pyakurel et al. [17] introduced the concept of partial lane
reversals, in which only necessary arc capacities are reversed
to increase the flow value, and unused arc capacities are
saved for other emergency proposes like logistic supports
and facility locations. Dhamala et al. [18] presented ap-
proximation algorithms for quickest multicommodity flow
over time problem with partial lane reversals using length
bound flow and condensed time expanded network in
discrete-time settings. Continuous-time solutions of these
problems are found in [19]. Similarly, Pyakurel et al. [20]
presented polynomial time algorithm for maximum static
and pseudopolynomial algorithm for maximum dynamic
multicommodity flow problems with partial lane reversals.

In this paper, we aim to find the solution of discrete-time
maximummulticommodity flow problem with intermediate
storage by integrating the concept of multicommodity flow
problem and the maximum flow problem with intermediate
storage. We present polynomial time algorithm for static
multicommodity flow problem and pseudopolynomial time
algorithm for dynamic multicommodity flow problem by
allowing the storage of excess flow at intermediate nodes.
We extend the results for contraflow configuration with
symmetric as well as asymmetric transit times and also in
continuous-time settings.

Our models are designed with the following limitations:
at each intermediate node, inflowmust be greater or equal to
the outflow. At each arc, flow must not exceed the capacity.
+e storage capacity of intermediate nodes must be at least
the sum of incoming arc capacities. Every commodity must
transship from respective sources to their corresponding

sinks. Objects within a commodity group are homogeneous
and between the commodity groups are heterogeneous.

We organize the paper as follows. Section 2 provides the
basic terminologies used in the paper and the mathematical
formulation of flow models. In Section 3, we present a
polynomial time algorithm to solve the maximum static
multicommodity flow problem with intermediate storage,
and in Section 4, we solve the maximum dynamic multi-
commodity flow problem with intermediate storage in
pseudopolynomial time complexity. For two-way multi-
commodity network, we present a solution procedure of
these problems in Section 5 within the same time com-
plexity. Similarly, in Section 6, we extend the results of
dynamic flow problems in continuous-time settings by using
natural transformation. +e paper is concluded in Section 7.

2. Basic Terminologies and
Mathematical Models

Consider a dynamic network N � (V, A, K,u, b,

τ, di, S, D, T), where V and A⊆V × V represent the sets of
nodes and arcs with |V| � n and |A| � m, respectively. Let
si ∈ S ⊂ V and ti ∈ D ⊂ V be the source and sink nodes with
respect to commodity i ∈ K � 1, 2, . . . , k{ } and I � V∖ S, D{ }

the set of intermediate nodes. Here, di represents the amount
of supply from the source node si for each commodity i ∈ K

that is to be sent to the corresponding sink ti and the in-
termediate nodes I. Each arc a � (v, w) ∈ A with head (a) �

w and tail (a) � v is equipped with a capacity function
u: A⟶R+ that restricts the flow of commodity and a
nonnegative transit time function τ: A⟶R+ that mea-
sures the time to transship the flow from node v to node w.
Similarly, b: V⟶R+ represents the storage capacity
function of nodes that is used to hold the flow at sources and
sinks, together with the storage of excess flow leaving from
the source si but not reaching the sink ti at intermediate
nodes. Capacity of arcs (roads) and the storage capacity of
nodes (shelters) are the controlling parameters of our model,
which control the flow at arcs and nodes, respectively. Let
δout(v) and δin(v) be the set of outgoing arcs from node v

and incoming arcs to node v, respectively. +e time period T

given in advance is denoted byT � 0, 1, . . . , T{ } in discrete-
time settings and T � [0, T + 1) in continuous-time set-
tings. In static flow, the transit time is considered as the cost,
and time parameter T is absent.

+roughout the paper, we consider that the storage
capacity of sources and sinks is sufficiently large, i.e., bsi

�

bti
≤∞ and that of intermediate nodes is finite. If the sum of

incoming arc capacities of an intermediate node v ∈ I is
more than the sum of outgoing arc capacities, then the excess
flow is used to store at v. Moreover, for the uniqueness of the
solution, the storage capacity of v ∈ I should be
bv ≥a∈δin(v)ua.

2.1. Static Multicommodity Flow Model. +e static multi-
commodity flow function g on the given network
N � (V, A, K, c,u, b, di, S, D) is the sum of nonnegative arc
flow functions gi

a: A⟶R+ and the excess flow functions
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gi
v: I⟶R+, for each i ∈ K, satisfying conditions (1)–(5).

+e linear programming formulation of static multi-
commodity flow with intermediate storage is as follows:

maxdi � 

a∈δout si( )

g
i
a � 

a∈δin ti( )

g
i
a + 

v∈I: bv ≥ 0
g

i
v,

(1)

such that



a∈δin(v)

g
i
a − 

a∈δout(v)

g
i
a ≥ 0, ∀v ∈ I, i ∈ K,

(2)

0≤ga � 
i∈K

g
i
a ≤ua, ∀a ∈ A, (3)

0≤gv � 
i∈K

g
i
v ≤ bv, ∀v ∈ I, (4)



a∈δin(v)

ua ≤ bv, ∀v ∈ I.pt
(5)

Objective function in equation (1) is to maximize the
total flow out from each source, for all i ∈ K, which is equal
to the sum of inflow at the sink and the excess flow at

intermediate nodes. Equation (2) represents the noncon-
servation of flow at intermediate nodes.+e constraint in (3)
represents the bundle constraint on each arc that is bounded
by its capacity, and the constraints in (4) represent the excess
flow at each intermediate node, which is bounded by the
storage capacity. Similarly, the constraint in (5) represents
that the storage capacity of intermediate node v ∈ I is at least
the sum of incoming arc capacities to v. +e cost of static
flow g associated with arc a and commodity i with cost
coefficient ci

a is defined as

c(g) � 
i∈K


a∈A

c
i
ag

i
a. (6)

2.2. Dynamic Multicommodity Flow Model. For a given
dynamic networkN with constant transit time τ on each arc
a, the multicommodity flow over time function ψ is the sum
of nonnegative arc flow functions ψi: A × T⟶R+ and
the storage flow functions ψi

v: I × T⟶R+ for each i ∈ K,
satisfying constraints (7)–(11). +e linear programming
formulation of dynamic multicommodity flow with inter-
mediate storage is as follows:

max di � 

a∈δout si( )



T

θ�0
ψi

a(θ) � 

a∈δin ti( )



T

θ�τa

ψi
a θ − τa(  + 

v∈I: bv ≥ 0
ψi

v(T), (7)

such that



a∈δin(v)



θ

β�τa

ψi
a β − τa(  − 

a∈δout(v)



θ

β�0
ψi

a(β)≥ 0,

∀v ∈ I, i ∈ K, θ ∈ T,

(8)

0≤ψa(θ) � 
i∈K

ψi
a(θ) ≤ua, ∀a ∈ A, θ ∈ T, (9)

0≤ψv(θ) � 
i∈K

ψi
v(θ) ≤ bv, ∀v ∈ I, θ ∈ T, (10)



a∈δin(v)

ua ≤ bv ≤T 

a∈δin(v)

ua, ∀v ∈ I.
(11)

Equation (7) is an objective function that maximizes
the total flow out from the source in time horizon T, for
each i ∈ K, which is equal to the sum of inflow at sink and
the excess flow at intermediate nodes. Equation (8)
represents the nonconservation of flow at intermediate
nodes for each time step θ. In any instance of time θ, the
bundle constraint in (9) is bounded by arc capacity, and
the constraint in (10) represents that the excess flow at
each intermediate node is bounded by the storage ca-
pacity. Similarly, the constraint in (11) represents the
lower and upper bounds of the storage capacity of in-
termediate node v ∈ I. +e cost of discrete dynamic flow ψ
associated with arc a and commodity i with cost coeffi-
cient ci

a is defined as

c(ψ) � 
i∈K


a∈A

c
i
a 

T

θ�0
ψi

a(θ). (12)

3. Maximum Static Multicommodity Flow

In this section, we introduce the maximum static multi-
commodity flow problem with intermediate storage and
present a polynomial time algorithm to solve it.

Problem 1. For a given static network N � (V,

A, K, c,u, b, di, S, D), the maximum static multicommodity
flow problem with intermediate storage finds the maximi-
zation of flow leaving from each source si, for all i ∈ K, which
is to be sent to the corresponding sink ti via si − ti paths by
allowing the storage of maximum excess flow at intermediate
nodes with storage capacity bv ≥a∈δin(v)ua.

As the solution strategy, we first reduce the multi-
commodity flow problem into k independent single com-
modity flow problems by reallocating the capacity of bundle
arcs using the resource directive decomposition method. It
reallocates the capacity of bundle arc for each commodity in
such a way that the objective is optimal. +e decomposition
algorithm to minimal-cost multicommodity flow problem
can be used for minimum cost flow problem, which was the
motivation for the development of the original Dant-
zig–Wolfe decomposition method [21] (see Bazaraa et al.
[22]). For each i ∈ K, we used to store the maximum flow at
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sink ti and the excess flow at intermediate nodes v ∈ I with
priority order. As in Pyakurel and Dempe [10], we have a
single sink for each commodity i ∈ K, which is considered as
the most appropriate place to store the flow. So, the first
priority is given to the sink to transship as much flow as
possible. To store the excess flow at intermediate nodes, we
set the priority order as follows: for each v ∈ I with storage
capacity bv ≥a∈δin(v)ua, calculate the shortest distance
d[si,v], for each i, by using algorithm of Dijkstra [23]. We
consider the path with the minimum cost as the shortest
path, and the priority is given to the farthest node among the
nodes with shortest distance. +at is, ∀v1, v2 ∈ I if
d[si,v1]> d[si,v2], then v1 is higher in priority than v2 and it is
denoted by v1 ≻ v2. It is to be noted that the nodes lying in the
bundle arcs may have different priority ordering with respect
to the commodity.

For each prioritized node v ∈ I, we create dummy port vi
′

(since the node v ∈ I lying in the bundle arc contains the
flow of more than one commodity, so dummy ports are
represented commodity-wise, i.e., vi

′) with cost
c[v,vi
′] � d[v,vi

′] � 0 and capacity u[v,vi
′] � bv � bvi

′, where u[v,vi
′]

and c[v,vi
′] are the arc capacity and cost of dummy arc (v, vi

′),
respectively. Every dummy port vi

′ with respect to com-
modity i has the same priority order as v has. Associated with
each commodity i, the collection of dummy ports vi

′  to-
gether with the sink ti forms a modified network
Ni
′ � (Vi
′, Ai
′, c,u, b, di, si, Di

′) with single source si and
multiple sink Di

′ � ti ∪ vi
′  . For an instance, if

ti ≻ vi,1 ≻ . . . ≻ vi,r is priority order of nodes with respect to
commodity i, then Di

′ � ti � vi,0′ , vi,1′ , . . . , vi,r
′ .

Now, we present a polynomial time algorithm to solve
Problem 1 by using the algorithm of Pyakurel and Dempe
[10] for single source multisink network Ni

′, ∀i ∈ K.

Theorem 1. Algorithm 1 solves the maximum static mul-
ticommodity flow problem with intermediate storage
optimally.

Proof. Before proving the optimality, we first prove the
feasibility of the algorithm. Step 1 is the use of de-
composition algorithm to reduce the multicommodity
flow problem to single commodity flow problem, and
Step 2 calculates the shortest distances by using
Dijkstra’s algorithm, so both steps are feasible. Steps 3,
4, and 6 are prioritization of nodes, modification of
network, and transformation of solution, which can be
solved in linear time, and so they are feasible. Similarly,
according to Pyakurel and Dempe [10], Step 5 provides
feasible flow with intermediate storage for each com-
modity i ∈ K. +us, the solution obtained from Algo-
rithm 1 is feasible.

+e optimality of algorithm is assured by Step 5. For each
commodity i ∈ K, lexicographic maximum static flow in
prioritized sink Di

′ is obtained optimally as the single
commodity flow problem solved by Pyakurel and Dempe
[10]. So, the sum of optimal single commodity flows idi is
optimal multicommodity flow with intermediate
storage. □

Theorem 2. Maximum static multicommodity flow problem
with intermediate storage can be solved in polynomial time
complexity by using Algorithm 1.

Proof. +e decomposition algorithm in Step 1 is obtained in
polynomial time complexity, and the shortest distance can
be obtained in O(n2) time by using Dijkstra’s algorithm.+e
prioritization of nodes and creating dummy ports can be
obtained in linear time. For each single commodity i, Step 5
can be solved in polynomial time complexity of O(δmn) for
0< δ < n, [10]. +erefore, Algorithm 1 solves the maximum
static multicommodity flow problem with intermediate
storage in polynomial time with complexity
O(n2) + O(kδmn), where |K| � k. □

Example 1. Consider a two-commodity network with ca-
pacity and cost on each arc as shown in Figure 1(a), where
the numbers aside the nodes represent the node capacities.
Using Dijkstra’s algorithm, we find the shortest distance of
each intermediate node and fix the priority order with
farther-in-distance-higher-in-priority. So, the priority or-
ders are t1 ≻y≻ x and t2 ≻ x≻y for commodity 1 and
commodity 2, respectively. After priority ordering, we de-
note D1′ � t1, y1′, x1′  and D2′ � t2, x2′, y2′  as the set of
prioritized dummy ports for commodity 1 and commodity
2, respectively, which is presented in Figure 1(b).

While decomposing the flow on the bundle arc (x, y),
flows of 3 and 2 units are assigned for commodity 1 and
commodity 2, respectively. By using Algorithm 1, the
maximum amount of flow leaving the source s1 is 4 units out
of which 2 units of flow are reached at sink t1 and the in-
termediate nodes y and x hold 1 unit each. Similarly, 7 units
of flow are transmitted from the source s2, out of which 6
units of flow are reached at the sink t2 and the intermediate
nodes x and y hold 1 and 0 units, respectively. At last, the
solution is transformed to the original network by removing
the dummy ports and dummy arcs and sending back the
flow to its respective nodes. +e amount of flow stored at
sinks and the intermediate nodes is gt1

� 2, gt2
� 6, gx � 2,

and gy � 1. If the intermediate storage is not permitted, then
the flow of gt1

� 2 and gt2
� 6 units can only be

transshipped.

4. Maximum Dynamic Multicommodity Flow

+is section deals with the maximum dynamic multi-
commodity flow problem, where storage of the excess flow at
intermediate nodes is allowed. We present a pseudopoly-
nomial time algorithm based on the time expanded network
of Kappmeier [8] to solve the problem.

Problem 2. For a given dynamic network
N � (V, A, K,u, b, τ, di, S, D, T), the maximum dynamic
multicommodity flow problem with intermediate storage is
to maximize the flow leaving each source si, for all i ∈ K,
which is to be sent to the corresponding sink ti via si − ti

paths by allowing the storage of maximum excess flow at the
intermediate nodes with storage capacity a∈δin(v)ua ≤
bv ≤Ta∈δin(v)ua within time horizon T.
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As in Section 3, we first reduce the multicommodity flow
problem into k independent subproblems and fix the pri-
ority order of intermediate nodes. Static solution is obtained
in the modified single source and multisink network Ni

′ �
(Vi
′, Ai
′,u, b, τ, di, si, Di

′, T) for all i ∈ K, by using Algo-
rithm 1. To obtain the dynamic solution, we use the static
multicommodity flow on time expanded network as in
Kappmeier [8].

For this, we construct a temporary sink ti with infinite
capacity and join each dummy port vi

′ ∈ Di
′ with u[vi

′,ti]
�

gi
vi
′(θ) and τ[vi

′,ti]
� 0, where gi

vi
′(θ) is the static flow of

commodity i at vi
′ at time θ. +e choice of u[vi

′,ti]
� gi

vi
′(θ) is

taken to assure that the flow while sending back from the
dummy ports must be on respective nodes. Now, for each
i ∈ K, the new network Ni

′ is obtained by adding temporary
sink and arcs in Ni

′ so that it becomes a single source single
sink network with prioritized intermediate nodes. LetNT �

(VT, AT � AM ∪AH ∪As ∪At, K,u, b, τ, di,
S, D, T) be the

time expanded network of new network N′ � ∪ i
Ni
′, where

Ni
′ is obtained by including temporary sinks, supersource,

and supersink in Ni
′. +e components in time expanded

network NT are defined as follows:
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Figure 1: (a) A two-commodity network with capacity and cost on the arcs and storage capacity on the nodes. (b)+e modified network of
(a) with prioritized dummy ports.

Input: given static network N � (V, A, K, c,u, b, di, S, D).
Output: maximum static multicommodity flow with intermediate storage in N.

(1) Reconfigure themulticommodity flow problem into k independent single commodity flow problems by reallocating the capacity of
bundle arcs using the resource directive decomposition.

(2) For each v ∈ I with bv ≥a∈δin(v)ua, compute commodity-wise shortest distance d[si ,v] by using Dijkstra’s algorithm.
(3) Fix the priority order as ti ≻ vi,1 ≻ . . . ≻ vi,r with respect to commodity iwith first priority to the sink ti and priority for intermediate

elements as d[si ,vi,m]> d[si ,vi,m+1]⇒ vi,m ≻ vi,m+1, for m � 1, . . . , r − 1.
(4) For each i ∈ K, construct the modified networkNi

′ � (Vi
′, Ai
′, c,u, b, di, si, Di

′) with single source si and multiple sinks with dummy
ports Di

′ � ti � vi,0′, vi,1′, . . . , vi,r
′ .

(5) For i � 1, . . . , k:
Compute the lexicographic maximum static flow in Ni

′ with priority order of Step 3 according to [10].
(6) Transform the solution to the original network N by removing the dummy ports and the dummy arcs.

ALGORITHM 1: Maximum static multicommodity flow algorithm with intermediate storage (MSMCFAIS).
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VT � vθ: v ∈ V, θ ∈ T ∪ vi,θ′ ∪ ti,θ : i ∈ K, θ ∈ T ∪ s
∗
i , t
∗
i : i ∈ K ∪ s,t ,

AM � vθ, wθ+τa
 : a � (v, w) ∈ A, θ ∈ T ∪ vθ, vi,θ′ ∪ vi,θ′, ti,θ : v ∈ I, θ ∈ T ,

AH � vθ, vθ+1( : v ∈ V, θ ∈ T ∪ vi,θ′, vi,θ+1′ ∪ ti,θ, ti,θ+1 : i ∈ K, θ ∈ T ,

A
s

� s, s
∗
i( : i ∈ K ∪ s

∗
i , si,θ : i ∈ K, θ ∈ T ,

A
t

� t, t
∗
i( : i ∈ K ∪ t

∗
i , ti,θ : i ∈ K, θ ∈ T ,

S � s, s
∗
i , si,θ: i ∈ K, θ ∈ T ,

D � t, t
∗
i , ti,θ: i ∈ K, θ ∈ T .

(13)

Kappmeier [8] has shown that the static multi-
commodity flow on the time expanded network is equivalent
to the dynamic multicommodity flow on the original
network.

Theorem 3. (see [8]). For a given dynamic network N �

(V, A, K,u, b, τ, di, S, D, T) with time horizon T, a feasible
static S − D multicommodity flow gT in the time expanded
networkNT yields the feasible dynamic multicommodity flow
ψ in N such that |gT| � |ψ|.

We now present an algorithm to solve problem 2 by
using time expanded network.

Theorem 4. Algorithm 2 provides an optimal solution to the
maximum dynamic multicommodity flow problem with in-
termediate storage in pseudopolynomial time complexity.

Proof. At first, we prove the feasibility of Algorithm 2. As
Step 1 is a reconfiguration of given network by using de-
composition algorithm, and Step 2 is its modification in-
cluding dummy ports and temporary sinks, so these steps
provide the feasible solution. Due to +eorem 3, con-
struction of time expanded network in Step 3 is feasible, and
the feasibility of Step 4 is obtained by Algorithm 1. +e
transformation of solution in original network is also fea-
sible. +e optimality of algorithm is assured by the opti-
mality of Step 4, which is as similar to [8].

Next, we prove the computational time of Algorithm 2,
which is dominated by the complexity of Step 4. Here, the
computational time complexity of Step 4 is
O(T × MSMCFAIS), where O(MSMCFAIS) is the com-
plexity of maximum static multicommodity flow algorithm
with intermediate storage. From +eorem 2,
O(MSMCFAIS) � O(n2) + O(kδmn) for 0< δ < n. With
Step 4 being polynomial in input size of the network, but not
bounded in T, Algorithm 2 solves the maximum dynamic
multicommodity flow problem with intermediate storage in
pseudopolynomial time. □

Example 2. Consider a two-commodity network from
Figure 1 by considering the cost on each arc as the transit
time with time horizon T � 5. +e prioritization of inter-
mediate nodes and creating dummy ports are similar to
Example 1. For each commodity i � 1, 2, the problem is

reduced to single source and multisink single commodity
flow problem due to dummy ports (see Figure 1(b)). By
adding temporary sink ti, it reduces to commodity-wise
single source single sink (i.e., si − ti) problem, which is
shown in Figure 2. We calculate the maximum static
multicommodity flow with intermediate storage using Al-
gorithm 1 and then repeat the procedure with intermediate
storage in time expanded network as similar to Kappmeier
[8]. Here, the maximum static flow is calculated from
minimum cost flow by considering the transit time as cost.
Figure 3 represents the time expanded network of Figure 2
with time horizon T � 5. At last, we obtain the maximum
dynamic flow with intermediate storage by removing the
dummy arcs and replacing the flow of dummy ports to their
respective nodes.

For commodity 1, total amount of flow leaving the
source s1 within the time horizon T � 5 along the path s1 −

x − y − t1 is 20 units, out of which 4, 8, and 8 units are
transshipped with priority order at t1, y and x, respectively.
For commodity 2, flows are sent through two paths s2 − x −

y − t2 and s2 − y − t2 with priority order t2 ≻ x≻y. It is to be
noted that while sending flow from the path s2 − x − y − t2,
flow leaving s2 at θ � 0 sends 2 units of flow at t2 by storing 1
unit at x. After next iteration onward, flow cannot reach the
sink, and so it is to be stored at x but not at y because x is
higher in priority than y. Similarly, path s2 − y − t2 first
sends 4 units of flow thrice at t2 and then holds the flow at y

for next two times. Total amount of flow leaving the source s2
through two paths within T � 5 is 32 units, out of which 14,
10, and 8 units are transshipped at t2, x and y, respectively.
+e detailed information of the flow leaving from sources at
different time steps θ, which are to be stored at sinks and the
intermediate nodes, is presented in Table 1.

Here, the amount of flow reaching the sinks is the max-
imum multicommodity flow without intermediate storage. So,
if intermediate storage is prohibited, then only 4 units of flow of
commodity 1 and 14 units of flow of commodity 2 can be
reached at their respective sinks within the time T � 5.

5. Multicommodity Contraflow Problems

In this section, we investigate themulticommodity flowproblem
with contraflow configuration, where the storage of excess flow
at intermediate nodes is allowed. In a two-way network, con-
traflow means the reversal of oppositely directed arcs towards
the destination node to improve the flow and reduce the overall
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time horizon. We discuss two different aspects of transit times
(or cost for static), symmetric and asymmetric, between the pair
of nodes with oppositely directed arcs.

5.1. Contraflow with Symmetric Transit Times. Let
N � (V, A, K,u, b, τ, di, S, D, T) be a dynamic multi-
commodity network having symmetric transit times on

antiparallel arcs, i.e., τa � τ
a
←, where a

←
� (w, v) is oppositely

directed arc of a � (v, w). To solve the problem in contra-
flow network, we transform the given network to an aux-
iliary network as follows.

Input: given dynamic network N � (V, A, K,u, b, τ, di, S, D, T).
Output: maximum dynamic multicommodity flow with intermediate storage in N.

(1) Reconfigure themulticommodity flow problem into k independent single commodity flow problems by reallocating the capacity of
bundle arcs by using the resource directive decomposition and considering the transit times as cost.

(2) Construct a modified new network N′ by including temporary sinks, supersource, and supersink in Ni
′.

(3) Using new network N′, construct the time expanded network NT � (VT, AT � AM ∪AH ∪As ∪At, K,u, b, τ, di,
S, D, T).

(4) Calculate the maximum static multicommodity flow with intermediate storage on the time expanded network NT by using
Algorithm 1.

(5) Transform the solution to the original network N by removing the dummy ports, temporary sinks, supersource, supersink, and
dummy arcs.

ALGORITHM 2: Maximum dynamic multicommodity flow algorithm with intermediate storage (MDMCFAIS).
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Figure 2: Modified new network N′ with dummy ports and
temporary sinks.
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Figure 3: Time expanded multicommodity network flow with
intermediate storage, where black and red colors are for commodity
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For a given two-way multicommodity network N with
symmetric transit times, the corresponding auxiliary net-
work is denoted by N with network topology
N � (V, A, K,u, b, τ, di, S, D, T), containing undirected
edges A � (v, w): (v, w) or (w, v) ∈ A{ }. +e capacity of an
arc in an auxiliary network is the sum of capacities of arcs a

and a
←

such that ua � ua + u
a
←, where ua � 0 if a ∉ A. +e

transit time of an arc in an auxiliary network is

τa �
τa, if a ∈ A,

τ
a
←, otherwise.

⎧⎨

⎩ (14)

All other parameters are the same as in N. Contrary to
the general network, incoming arcs to the sources si and
outgoing arcs from the sinks ti may be present in the
contraflow network for all i ∈ K.

We now present the maximum dynamic contraflow
problem with intermediate storage herein.

Problem 3. For a given dynamic network
N � (V, A, K,u, b, τ, di, S, D, T), the maximum dynamic
multicommodity contraflow problem with intermediate
storage is to find the maximum flow leaving from each
source si, ∀i ∈ K, which is to be sent to their respective
sinks ti via si − ti paths by allowing the storage of maximum
excess flow at intermediate nodes v ∈ I with storage ca-
pacity a∈δin(v)ua ≤ bv ≤Ta∈δin(v)ua, ∀a ∈ A within the
given time horizon T by reverting the direction of arcs at
time zero.

To solve the problem, we present an algorithm based on
the time expanded network of an auxiliary network N as
follows.

We first transform the given two-way network into an
auxiliary network N. As in Section 3, we decompose the
multicommodity flow problem to k single commodity flow
problems and then fix the priority order of each intermediate
node. On each cycle free path of auxiliary network N, we
solve the maximum dynamic multicommodity flow prob-
lem, for each i ∈ K, as described in Section 4.

Here, Steps 1, 3, and 4 of Algorithm 3 can be computed
in O(E) time. In Step 2, we can find a pseudopolynomial
time solution for dynamic multicommodity contraflow
problem with intermediate storage in N (as in +eorem 4).
So, the maximum dynamic multicommodity contraflow
problem with intermediate storage can be solved in pseu-
dopolynomial time by using Algorithm 3.

Theorem 5. Algorithm 3 solves the maximum dynamic
multicommodity contraflow problem with intermediate
storage in pseudopolynomial time complexity.

Remark 1. If we consider the cost instead of transit time and
apply Algorithm 1 in Step 2 of Algorithm 3, then the solution
of maximum static multicommodity contraflow problem
with intermediate storage can be obtained in polynomial
time complexity.

5.2. Contraflow with Orientation-Dependent Transit Times.
If the transit times on antiparallel arcs of a two-way network
are not identical, then it is known as the network with
asymmetric transit times. For a network with asymmetric
transit times, if the transit times of arcs in an auxiliary
network are taken as the orientation of the arcs, then it is
known as orientation-dependent transit time. Nath et al.
[24] considered the orientation-dependent asymmetric
transit times of reversed lanes in general form and presented
strongly polynomial time algorithms to solve the single
source single sink maximum dynamic and quickest con-
traflow problems. Here, we discuss about the multi-
commodity contraflow problem with intermediate storage
by taking orientation-dependent transit times.

Let N � (V, A, K,u, b, τ, di, S, D, T) be a two-way dy-
namic network with asymmetric nonzero transit times τ on
arcs, so that τa ≠ τa

←. We construct an auxiliary network
N � (V, A, K,u, b, τ, di, S, D, T), where A is obtained
by reverting the direction of arcs a

←
at time zero. +e

arc capacity u and transit time τa can be obtained as follows:

ua � ua + u
a
←, (15)

Table 1: Multicommodity flow with intermediate storage in each time θ.

Commodity 1 Commodity 2
Path: s1 − x − y − t1 Path: s2 − x − y − t2

Start time at s1
Flow at Reaching time at last node Start time at s2

Flow at Reaching time at last node
x y t1 x y t2

θ� 0 1 1 2 θ� 4 at t1 θ� 0 1 0 2 θ� 5 at t2
θ� 1 1 1 2 θ� 5 at t1 θ� 1 3 × × θ� 3 at x

θ� 2 1 3 × θ� 4 at y θ� 2 3 × × θ� 4 at x

θ� 3 1 3 × θ� 5 at y θ� 3 3 × × θ� 5 at x

θ� 4 4 × × θ� 5 at x Path: s2 − y − t2

θ� 0 × 0 4 θ� 3 at t2
θ� 1 × 0 4 θ� 4 at t2
θ� 2 × 0 4 θ� 5 at t2
θ� 3 × 4 × θ� 4 at y

θ� 4 × 4 × θ� 5 at y

Total 8 8 4 Total d1 � 20 Total 10 8 14 Total d2 � 32
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where ua � 0 if a ∉ A and

τa �
τa if the orientation of arc is along a,

τ
a
← if the orientation of arc is along a

←
.

⎧⎨

⎩ (16)

By using Algorithm 3, the optimal solution for maxi-
mum static and maximum dynamic multicommodity con-
traflow problems with intermediate storage can be obtained
for a given network with asymmetric transit times, where
transit time is considered as a cost in static problem.

If, on the other hand, the transit time attributes on the
evacuation network are antisymmetric, but one wishes to
adopt contraflow approach with the same transit time on the
reversed arcs as it was before its reversal, Algorithm 3 ob-
viously works well as that can be interpreted as symmetric
transit time solution. It can be applied if two nodes in a
network have parallel connections with different transit
times.

6. Continuous Dynamic Multicommodity Flow

We discussed the maximum dynamic flow and contraflow
problems with intermediate storage in Section 4 and Section
5, respectively, where transit times are taken in discrete
settings. Actually, discrete dynamic flow function ψ assigns
the flow from the source node at each time step θ � 0, . . . , T

satisfying the capacity constraints. In this section, we for-
mulate the dynamicmulticommodity flowwith intermediate
storage in continuous-time settings. A continuous dynamic

flow function ψc with intermediate storage is defined as the
flow rate per unit time that leaves from the source at each
moment of time by allowing the storage of excess flow at
intermediate nodes without violating the capacity
constraints.

By using natural transformation, Fleischer and Tardos
[16] established the relation between discrete and contin-
uous flow models. +is natural transformation defines the
continuous dynamic flow for time interval [θ, θ + 1) with
ψc

a[θ, θ + 1) � ψa(θ), where ψa(θ) is the amount of discrete
dynamic flow entering arc a ∈ A at each time step
θ � 0, . . . , T. Here, we use this logic to transform the dis-
crete-time multicommodity flow to continuous-time mul-
ticommodity flow with intermediate storage as follows: any
discrete multicommodity flow over time ψi

a with integral
time horizon T is equivalent to the continuous multi-
commodity flow over time ψi,c

a [θ, θ + 1) by incorporating the
flow ψ entering an arc a at time step θ ≤T − τa as a constant
flow rate on arc a during the unit time interval [θ, θ + 1) by
allowing the storage of excess flow at intermediate nodes.
Mathematically,


θ+1

θ
ψi,c

a (α)dα � ψi
a(θ), ∀a ∈ A, i ∈ K. (17)

We formulate the dynamic multicommodity flow
models with intermediate storage in continuous settings as
follows:

maxdi � 

a∈δout si( )


T

θ�0
ψi,c

a (θ)dθ � 

a∈δin ti( )


T

θ�τa

ψi,c
a θ − τa( dθ + 

v∈I: bv ≥ 0


T

θ�0
ψi,c

v (θ)dθ, (18)

such that



a∈δin(v)


θ

β�τa

ψi,c
a β − τa( dβ − 

a∈δout(v)


θ

β�0
ψi,c

a (β)dβ≥ 0, ∀v ∈ I, i ∈ K, θ ∈ T, (19)

0≤ψc
a(θ) � 

i∈K
ψi,c

a (θ)≤ua, ∀a ∈ A, θ ∈ T, (20)

0≤ψc
v(θ) � 

i∈K
ψi,c

v (θ)≤ bv, ∀v ∈ I, θ ∈ T, (21)

Input: given two-way dynamic multicommodity network N.
Output: maximum dynamic multicommodity contraflow with intermediate storage.

(1) Construct an auxiliary network N of N.
(2) Compute the maximum dynamic multicommodity flow with intermediate storage in N by using Algorithm 2.
(3) Decompose the flow along si − ti paths and cycles, and remove the flows in cycles ∀i ∈ K.
(4) An arc a

←
is reversed if and only if the flow along arc a is greater than its capacity, or if there is a nonnegative flow along arc a ∉ A.

ALGORITHM 3: Maximum dynamic multicommodity contraflow algorithm with intermediate storage.
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a∈δin(v)

ua ≤ bv ≤T 

a∈δin(v)

ua, ∀v ∈ I.
(22)

Here, equation (18) represents an objective function,
which is to maximize the total amount of flow out from the
source in continuous-time settings, which is sent to the sink
and the intermediate nodes.+e nonconservation of the flow
is represented by equation (19). Equations (20)–(22) have
their usual meanings as in Section 2.

Dynamic flow problems defined in Section 4 and Section
5 can be solved in continuous-time settings by using this
natural transformation with their respective algorithms
within the same time complexity.

7. Conclusion

If the amount of flow out from the source node is more
than the minimum cut capacity, then the excess flow
cannot reach the sink. To deal with this problem, maxi-
mum static, maximum dynamic, and maximum dynamic
contraflow problems with the storage of excess flow at
intermediate nodes have been studied in two-terminal
general network.

In this paper, we have investigated the multi-
commodity flow models with intermediate storage in
static as well as dynamic networks. We have introduced
the maximum static and maximum dynamic multi-
commodity flow problems. We have presented a poly-
nomial time algorithm to solve the maximum static
multicommodity flow problem and a pseudopolynomial
time algorithm for the maximum dynamic multi-
commodity flow problem by allowing the storage of excess
flow at intermediate nodes. Moreover, we have presented
an algorithm to solve the maximum dynamic multi-
commodity contraflow problem with symmetric as well as
asymmetric transit times. By using natural transformation
in multicommodity network, we solved the maximum
dynamic flow and maximum dynamic contraflow prob-
lems with intermediate storage in continuous-time set-
tings. To the best of our knowledge, the maximum
multicommodity flow problems with intermediate storage
and their solution strategies for the static flow, dynamic
flow, and contraflow problems are introduced for the first
time.

+e universally maximum multicommodity flow prob-
lem (the earliest arrival flow problem) with intermediate
storage is harder problem, which is of interest for the further
research. +is problem is NP-hard even in case of two-
terminal series parallel networks. Together with this, we are
interested to work on maximum flow and earliest arrival
flow problems with orientation-dependent transit times and
flow-dependent transit times. We are also interested in
implementing these techniques as a case study in Kath-
mandu road network.
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Abstract: Contraflow is one of the best and widely accepted techniques in evacuation planning problems,

where the reversal of arcs is made to increase the amount and decrease the time of flow transmission. At the

time of evacuation, if the flow value leaving the source node exceeds the bottleneck capacity of the network,

then the storage of excess flow at comparatively safer intermediate nodes can be a milestone to save the life

of evacuees. In this paper, we introduce the maximum dynamic contraflow problem in a general network and

earliest arrival contraflow problem in two-terminal series-parallel network with asymmetric transit times on

anti-parallel arcs. We present polynomial time solution strategie s with orientation dependent transit times

by allowing the storage of flow at intermediate nodes.

Key Words: Maximum flow, earliest arrival flow, intermediate storage, contraflow, symmetric and asym-

metric transit times.
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1. Introduction

Network flow over time problems, also known as dynamic flow problems, deal with the transshipment

of flow from one point to other using running time i.e., traversal time. Ford and Fulkerson are the pioneers

of this problem which has been introduced more than sixty years ago, [9]. Maximum dynamic flow problem

concerns the shifting of maximum amount of flow from the origin node (source) to the destination node (sink)

in the given time horizon. Evacuation planning problems can be modeled as the maximum dynamic flow

problem, which is also applicable in transportation management, communication system and production

planning etc. Similarly, earliest arrival flow problem treats with the maximization of flow at each time

step, [11]. For the EAF problem, Minieka [21] and Wilkinson [29] provided the algorithms by adopting the

successive shortest path augmenting algorithm which needed exponential time. In a two-terminal general

network, Pyakurel and Dhamala [25] presented optimal solution to the earliest arrival flow problem for

discrete and continuous time settings. The detailed illustrations of maximum flow can be found in the books

[1, 10], book series of [20], survey papers [2, 19, 7, 14] and the references therein.

Existance of the excess flow occures if the amount of flow leaving the source node is greater than the

minimum cut capacity. In this case, the excess flow cannot reach the destination node and the storage

of such flow at appropriate intermediate nodes is an important issue. The maximum flow problem with

intermediate storage is a very relevant task in large scale disaster management problems. By introducing

Accepted/Published Online December, 2021 .
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the concept of intermediate storage, Pyakurel and Dempe [23] provided the maximum static and maximum

dynamic flow problems and presented the polynomial time solution strategies to solve the problems. Not

only in disaster management and evacuation planning, transshipment of flow with intermediate storage is

highly applicable for different demand-supply chains like commodity supply, electricity distribution, water

supply and so on.

In a two-way network topology, contraflow (lane reversal) means the reversing of the direction of arcs

to increase the amount of flow transmission and reduce the total traversal time. Rebennack et al. [27]

presented a polynomial time algorithm to solve the maximum flow problem in two-terminal network by

reverting the direction of arcs at time zero and kept fixed afterwards. Various problems with contraflow can

be found in [3, 4, 17, 18]. The maximum dynamic contraflow (MDCF) problem with intermediate storage

and its polynomial solution can be found in Pyakurel and Dempe [23]. By reverting only necessary arcs,

Dhamala et al. [5] presented algorithms to solve the quickest multi-commodity contraflow problem, where

given amount of flow is to be transshipped in minimum possible time. The maximum multi-commodity flow

over time problem with partial contraflow is presented by Pyakurel et al. [26]. Similarly, in general as well

as two-terminal series-parallel networks, efficient algorithms for the universal maximum flow and contraflow

problems with intermediate storage can be found in Pyakurel and Dempe [24]. For these contraflow problems,

networks are considered with symmetric transit times in anti-parallel arcs.

For contraflow network with asymmetric transit times, if the transit time of reversal arc depends on

the orientation of arc, then it is known as orientation dependent transit times (ODTT). Different transit

times on anti-parallel arcs exist in the real network scenario of private as well as public transportation due

to the speed limits, time card system, condition of roads and government policies. To illustrate ODTT with

an example, consider a two-way dynamic network with asymmetric transit times on arcs as presented in

Figure 1(i). The numbers on each arc represent the capacity u and transit time τ , whereas numbers on

the nodes are storage capacities b. The other four figures are the possible auxiliary networks with ODTT.

Figure 1(ii) is formed by taking directions along (x, y) and (x, t), whereas Figure 1(iii) with directions along

(y, x) and (x, t). Similarly, Figure 1(iv) is formed by taking directions along (x, y) and (t, x), whereas

Figure 1(v) is with directions along (y, x) and (t, x). Nath et al. [22] presented the concept of contraflow

with orientation dependent transit times, where asymmetric transit times of reversed lanes in general form

is considered. They have presented strongly polynomial time algorithms to solve the maximum dynamic and

quickest contraflow problems in single source single sink network. Gupta et al. [12] extended the analytical

solution of generalized dynamic contraflow problem by considering the asymmetric transit times on arcs and

presented an efficient algorithm to solve the problem. The earliest arrival transshipment contraflow problem

in multi-source single sink network and the prioritized maximum dynamic partial contraflow problem in

single source multi-sink network by considering the non-symmetric transit times on the arcs can be found in

[13]. Similarly, for maximum multi-commodity contraflow problems with symmetric and asymmetric transit

times, Khanal et al. [16] presented the pseudo polynomial time algorithms to solve the problems.

In this paper, we present the models for static as well as dynamic flow by incorporating the intermediate

storage of the flow. We introduce the MDCF problem with ODTT by allowing the storage of excess flow

at intermediate nodes and present a polynomial time algorithm to solve it. We also introduce an earliest

arrival contraflow (EACF) problem with ODTT and propose a solution in polynomial time complexity by

allowing the intermediate storage.

The paper is organized as follows. In Section 2, we present a contraflow network and its auxiliary

network with symmetric as well as asymmetric transit times. We also formulate static and dynamic flow

models with intermediate storage. The MDCF with ODTT and EACF with ODTT are presented in Section 3

and Section 4, respectively, which permit the storage of flow at intermediate nodes. We conclude the paper

in Section 5.
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Figure 1. (i) represents a contraflow network with asymmetric transit times

and (ii)-(v) represent possible orientation dependent auxiliary networks of

(i). Numbers aside the nodes are the storage capacities.

2. Basic Terminologies and Flow Models

2.1. Contraflow Network. Consider a two-way network topology N = (V,A, u, b, τ, s, t, T ), where V rep-

resents the set of nodes and A ⊆ V × V represents the set of arcs. Let |V | = n and |A| = m. Here, s ∈ V
and t ∈ V are the source (origin) and sink (destination) nodes and I = V \ {s, t} represents the set of

intermediate nodes. Each arc a = (v, w) ∈ A with head(a) = w and tail(a) = v has a capacity function
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u : A→ R+ that limits the flow on arc and a non-negative transit time function τ : A→ R+ that measures

the transmission time from v to w. Similarly, ←−a = (w, v) is an oppositely directed arc of a = (v, w) with

capacity u←−a and transit time τ←−a . Let b : V →R+ represents the storage capacity function of the nodes. We

denote the set of outgoing arcs from node v and incoming arcs to node v by δout(v) and δin(v), respectively.

The time period T given in advanced is denoted by T = {0, 1, ..., T} in discrete time settings. In static flow,

the time parameters are absent.

Auxiliary Network with Symmetric Transit Times. Consider a dynamic network N having anti-

parallel arcs of symmetric transit times i.e., τa = τ←−a . The auxiliary network of given network N is denoted

by N = (V,A, u, b, τ , s, t, T ), containing undirected edges A = {(v, w) : (v, w) or (w, v) ∈ A}. The capacity

ua of an arc is the sum of capacities of anti-paralled arcs a and ←−a , i.e., ua = ua + u←−a , where ua = 0 if

a /∈ A. Similarly, the transit time of an arc in this network is obtained as

τa =

{
τa if a ∈ A
τ←−a otherwise.

All others parameters are as same in N .

Auxiliary Network with ODTT. In a two-way dynamic network, if the transit times on anti-parallel arcs

are not identical, then it is known as the network with asymmetric transit times. In contraflow configuration,

the flow on anti-parallel arcs traverses in one of the directions but not the both directions. In auxiliary

network, if we consider the transit time of the arc depending on its orientation, then it is defined as the

contraflow with orientation dependent transit times. For a two-way dynamic network N with asymmetric

transit time on arcs, an auxiliary network N = (V,A, u, b, τ , s, t, T ) is constructed in such a way that A

contains the undirected arcs obtained by reverting the direction of arcs ←−a at time zero. The arc capacity

ua and transit time τa are obtained by ua = ua + u←−a where ua = 0 if a /∈ A and

τa =

{
τa if the orientation of arc is along a

τ←−a if the orientation of arc is along ←−a or a /∈ A
It is to be noted that if there is no arc along the orientation of auxiliary network, then transit time of

auxiliary arc is taken as the symmetric reversal of the opposite arc. Throughout the paper, our assumption

is that the storage capacity of terminals are significant enough, i.e., bs = bt ≤ ∞ and the intermediate nodes

have finite storage capacity. The excess flow at intermediate nodes exists if and only if the sum of outgoing

arc capacities of an intermediate node v ∈ I is less than the sum of incoming arc capacities. Moreover, the

storage capacity bv of intermediate node v ∈ I should be at least the sum of incoming arc capacities of v for

unique solution. Otherwise, it provides an alternate optimal solution (see explanation of Figure 2).

2.2. Static Flow Model with Intermediate Storage. The static flow ψ with intermediate storage on a

given two-way networkN = (V,A, u, b, c, s, t) is the collection of non-negative arc flow functions ψa : A→R+

and the excess flow functions ψv : I →R+. The static flow model with intermediate storage is the network

flow satisfying the conditions (2.1 - 2.4). As in [23], the mathematical formulation of the maximum static

flow with intermediate storage, as a linear programming problem, is as follows.

max |ψ| =
∑

a∈δout(s)

ψa =
∑

a∈δin(t)

ψa +
∑

v∈I:bv≥0

ψv(2.1)

such that,
∑

a∈δin(v)

ψa −
∑

a∈δout(v)

ψa = ψv ∀v ∈ I(2.2)

0 ≤ ψa ≤ ua ∀a ∈ A(2.3)

0 ≤ ψv ≤ bv ∀v ∈ I(2.4)

Equation (2.1) is an objective function that is to maximize the total outflow from the source which

must be equal to the sum of inflow at sink and the total excess flow at intermediate nodes. Here, |ψ| denotes

the total value of the flow. The excess flow at intermediate nodes is represented by Equation (2.2) and
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Equation (2.3) represents the boundedness of the flow on each arc. The left inequality in constraint (2.4)

represents the non-conservation of flow where the right inequality shows the boundedness of the excess flow

by the storage capacity of the node. For existence of unique solution, the storage capacity of intermediate

node v ∈ I must be at least the sum of incoming arc capacities to v. Mathematically, it is represented as
∑
a∈δin(v) ua ≤ bv ∀v ∈ I . We define the cost c of static flow ψ associated with arc a as

c(ψ) =
∑

a∈A
caψa.

At the time of an emergency, the general assumption is that the flow towards the danger zone is

almost empty and so we reverse the direction of arcs towards the safe zone (destination). After reversing

the direction of arcs using orientation dependent cost, the contraflow model can be obtained replacing a ∈ A
by a ∈ A and ua by ua. At last, the flow obtained in the auxiliary network is transformed to the original

network.

2.3. Dynamic Flow Model with Intermediate Storage. The flow over time function Φ defined on

a dynamic network N with arc traversal time τ is the collection of non-negative arc flow function Φa :

A × T → R+ and the excess flow function Φv : I × T → R+. The dynamic contraflow model with

ODTT τ in N allowing intermediate storage is a network flow satisfying the conditions (2.5 - 2.8). As in

[23], the mathematical model for the maximum dynamic flow allowing the intermediate storage, with linear

programming formulation, is as follows.

max |Φ| =
∑

a∈δout(s)

T∑

θ=0

Φa(θ) =
∑

a∈δin(t)

T∑

θ=τa

Φa(θ − τa) +
∑

v∈I:bv≥0

Φv(T )(2.5)

such that,

∑

a∈δin(v)

θ∑

β=τa

Φa(β − τa) −
∑

a∈δout(v)

θ∑

β=0

Φa(β) = Φv(θ) v ∈ I, θ ∈ T(2.6)

0 ≤ Φa(θ) ≤ ua ∀a ∈ A, θ ∈ T(2.7)

0 ≤ Φv(θ) ≤ bv ∀v ∈ I, θ ∈ T(2.8)

In given time horizon T , the objective function in Equation (2.5) refers to the maximization of the

total flow out from the source which must be equal to the sum of inflow at sink and the total excess flow

at intermediate nodes. The excess flow stored at intermediate nodes is represented by Equation (2.6).

Similarly, the constraint in (2.7) represents the boundedness of the arc flow by its capacity at each time

step θ. The left inequality of the constraint in (2.8) represents the non-conservation of flow and its right

inequality represents the boundedness of the excess flow at the intermediate node by its storage capacity.

The necessary (lower bound) and sufficient (upper bound) storage capacity of each intermediate node v ∈ I
is

∑
a∈δin(v) ua ≤ bv ≤ T

∑
a∈δin(v) ua ∀v ∈ I. The lower bound is essential for the existence of unique

solution. The cost c of discrete dynamic flow Φ is defined as

c(Φ) =
∑

a∈A
ca

T∑

θ=0

Φa(θ).

For EACF problem with ODTT by allowing intermediate storage, the linear programming formulation

is as follows.

max |Φ(θ)| =
∑

a∈δout(s)

θ∑

β=0

Φa(β) =
∑

a∈δin(t)

θ∑

β=τa

Φa(β − τa) +
∑

v∈I:bv≥0

Φv(θ)(2.9)

subject to the constraints (2.6 - 2.8).

As in static case, if we replace a ∈ A, τa and ua in above model by a ∈ A, τa and ua, respectively,

then the dynamic contraflow model can be obtained with orientation dependent transit times, where the

traversal time of the arcs in auxiliary network is depending on its orientation.
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While shifting the flow from the source, first priority is given to the sink because the assumption is that

the sink is most appropriate place with respect to location and infrastructure. The priority of intermediate

nodes is set with farther-in-distance-higher-in-priority. We fix the priority of nodes before the contraflow

configuration because the alternative lane reversals in the network grows exponentially with the number of

arc on the network which increases its computational complexity.

For the uniqueness of the solution, the minimum storage capacity of intermediate nodes should be at

least the sum of incoming arc capacities i.e., bv ≥
∑
a∈δin(v) ua. We now verify it by the following example.

Example 1. Consider the network presented in Figure 2 with unit cost/transit time on each arc except

(s, w). Let the cost of arc (s, w) be zero. The first priority is given to the sink node. Due to equal cost from

the source, second priority is given to v or y, the third priority is for u or x and fourth priority is given to

w. Firstly, we consider 2 units of storage capacity in each intermediate node. If the flow is sent to the sink

through paths s−u−v−w− t and s−w− t, then 7, 2, 2, 2, 0 and 1 units of flow can be stored at prioritized

nodes t, v, y, u, x and w, respectively. Again, by sending the flow to the sink through paths s−x−y−w− t
and s − w − t, the amount of flow stored at prioritized nodes t, v, y, u, x and w are 7, 2, 0, 2, 0 and 2

units, respectively. So, in previous pattern of flow, 7, 4, 2, and 1 units are stored at first, second third and

fourth prioritized nodes whereas 7, 2, 2, and 2 units are stored at respective prioritized nodes in case of later

pattern, respectively. Thus, instead of a unique optimal solution it provides an alternate optimal solution.

Secondly, if we consider the storage capacity of 10 units in each intermediate node, then 7, 5, 2 and 0 units

of flow can be stored at first, second, third and fourth prioritized nodes, respectively, in either of the flow

patterns.

s

u

x

v

y

w t

7,1

2,1

5,0

5,1

2,1

7,1

2,1

7,1

Figure 2. Network with capacity and unit cost/transit time on each arc.

3. MDCF with ODTT Allowing Intermediate Storage

In this section, we introduce the MDCF problem in which time to traverse through the arcs in auxiliary

network are orientation dependent and the storage of flow at intermediate nodes is allowed. We present a

polynomial time solution strategy to solve the problem.

Problem 1. For a given two-way dynamic network N = (V,A, u, b, τ, s, t, T ) with auxiliary network N , the

MDCF problem with ODTT by allowing the storage of flow at intermediate nodes is to maximize the flow out

from the source s which is to be transshipped to the sink t via s-t paths together with the storage of maximum

excess flow at the intermediate nodes with storage capacity
∑

a∈δin(v)

ua ≤ bv ≤ T
∑

a∈δin(v)

ua within the time

horizon T , where the reversal of the arcs are made at time zero and transit times on auxiliary network are

orientation dependent.

To solve the problem, the priority order of the nodes is fixed on the basis of farther-in-distance-higher-

in-priority order as described in Pyakurel and Dempe [23], where distance of each intermediate node from the

source is obtained by using Dijkstra’s algorithm ([8]) by considering transit time as cost. That is, ∀v1, v2 ∈ I
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if d(s,v1) > d(s,v2), then v1 is more relevant and highly prioritized than v2 and is denoted by v1 � v2. We then

transform the given network into an auxiliary network N with orientation dependent transit times. The flow

is send from the source with first priority to the sink and then successive order of prioritized intermediate

nodes.

For each prioritized node v ∈ I, we create the dummy port v′ with capacity u(v,v′) = bv = bv′ , where

u(v,v′) is the arc capacity of dummy arc (v, v′). The transit time of dummy arc is τ(v,v′) = 0. Every dummy

port v′ has the same priority order as v has. The modified auxiliary network N ′ = (V ′, A
′
, τ , u, b, s,D) is

constructed having single source s and multiple sink D = {t ∪ {v′}}, where {v′} is the collection of dummy

ports. Here, V ′ = V ∪ {v′}, and A
′

= A ∪ {(v, v′)}. For an instance, if t � v1 � · · · � vr be priority

order of intermediate nodes and sink, then D = {t = v′0, v
′
1, . . . , v

′
r}. We construct a new modified network

by introducing a super sink t∗ having sufficiently large (infinite) storage capacity and join each v′ ∈ D by

an arc with zero transit time and infinite capacity (See Figure 3). Using lexicographic maximum flow, the

maximum dynamic flow with intermediate storage in an auxiliary network is obtained as in [23], where the

reversal of arcs are orientation dependent. Finally, flow in the auxiliary network is transformed into the

original network.

We present a polynomial time algorithm to solve the problem as follows.

Algorithm 1: MDCF algorithm with ODTT allowing the intermediate storage
Input : Given two-terminal contraflow network N .

Output: MDCF with ODTT allowing intermediate storage.

(1) Fix the priority order of intermediate nodes using Dijkstra’s algorithm ([8]).

(2) Construct an auxiliary network N of N using orientation dependent transit times.

(3) Compute the maximum dynamic flow in N by allowing the storage of flow at intermediate nodes

using [23].

(4) Decompose the flow along s-t paths and cycles, and remove the flows in cycles.

(5) An arc ←−a is reversed with orientation dependent transit times if and only if the flow along arc a is

greater than its capacity or if there is a non-negative flow along arc a /∈ A.

(6) By removing the dummy ports and arcs, transform the solution to the original network.

Theorem 3.1. Algorithm 1 provides the feasible solution to MDCF problem with ODTT by allowing the

storage of flow at intermediate nodes optimally.

Proof. At first, we show the feasibility and then the optimality of Algorithm 1. Steps (1) and (2) are the

use of Dijkstra’s algorithm and the construction of an auxiliary network, respectively, which are feasible. In

Step 3, finding the maximum dynamic flow with intermediate storage is feasible by [23]. As steps (4), (5)

and (6) are construction of cycle free paths, condition of arc reversals and transformation of solution, which

are feasible. So, Algorithm 1 provides the feasible solution. Next, the optimality of algorithm is dominated

by the optimality of Step (3), which is optimal as proven by Pyakurel and Dempe [23]. So, Algorithm 1

solves the MDCF with ODTT by allowing the storage of flow at intermediate nodes optimally. �

Theorem 3.2. MDCF problem with ODTT can be solved by Algorithm 1 allowing the intermediate storage

in polynomial time complexity.

Proof. The time complexity of Dijkstra’s algorithm in Step 1 is O(m logn) and that of shorting algorithm

is O(n logn). Steps (2) and (4) of Algorithm 1 can be obtained in linear time. Step (3) calculates a priority

based maximum dynamic flow in s-D network in O(n ×MCF (n,m)) time, where MCF (n,m) represents

the time complexity of single source single sink minimum cost flow in original network, which can be solved

within O(m logn(m + n logn)) time. So, Algorithm 1 solves the MDCF problem with ODTT by allowing

the intermediate storage in polynomial time complexity. �
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Example 2. Consider the dynamic contraflow network given in Figure 1(i) with time horizon T = 4. Using

Dijkstra’s algorithm [8], the priority ordering is set as t � y � x. Four different auxiliary networks with

ODTT are presented in Figure 1[(ii)-(v)]. Figure 1(ii) represents an auxiliary network with orientation along

(x, y) and (x, t) which sends 19, 8 and 13 units of flow at t, y and x in T = 4, whereas Figure 1(iii) is with

orientation along (y, x) and (x, t) which sends 17, 4 and 19 units of flow at t, y and x in T = 4, respectively.

Similarly, Figure 1(iv) is obtained by taking orientation in auxiliary network along (x, y) and (t, x) which

sends 10, 8 and 22 units of flow at t, y and x in T = 4, whereas Figure 1(v) is with orientation along (y, x)

and (t, x) which sends 8, 4 and 28 units of flow at t, y and x in T = 4, respectively. In each orientation,

total 40 units of flow is pushed from source in given time horizon but Figure 1(ii) is only the network which

pushes maximum flow at sink and the prioritized farthest intermediate node. Thus, the best solution with

ODTT is obtained from Figure 1(ii), whose new modified network with super sink is presented in Figure 3.

The detailed illustration of flow in this network is given in Table 1 below.

s

x

y

t

x′

y′

t∗

7,1

4,2

3,1

5,1

2,1

28,0

20,0

∞,0

∞,0

∞,0

∞
∞

28

20

28

20

∞

Figure 3. New modified network of Figure 1(ii).

Table 1. MDCF with ODTT allowing intermediate storage at time θ.

Path Start time flow at Reaching time

at s x y t at last node

s-x-t θ = 0 2 × 3 θ =2 at t

θ =1 2 × 3 θ =3 at t

θ =2 2 × 3 θ =4 at t

θ =3 7 × × θ =4 at x

s-y-t θ =0 × 0 4 θ =3 at t

θ =1 × 0 4 θ =4 at t

θ =2 × 4 × θ =4 at y

s-x-y-t θ =0 0 1 1 θ =3 at t

θ =1 0 1 1 θ =4 at t

θ =2 0 2 × θ =4 at y

Total 13 8 19 Total=40

4. EACF with ODTT Allowing Intermediate Storage

We aim to introduce an EACF problem in a two-terminal series-parallel network by allowing the storage

of flow at intermediate nodes and adopting the orientation dependent transit times in auxiliary network. To

solve the problem, we present a polynomial time solution strategy.
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Problem 2. For a given two-terminal series-parallel network N = (V,A, u, b, τ, s, t, T ) with auxiliary net-

work N , an EACF problem with ODTT permitting the storage of flow at the intermediate nodes is to

maximize the flow leaving the source s at each time step θ, that is to be transshipped to the sink t via s-

t paths together with the storage of maximum excess flow at the intermediate nodes with storage capacity∑

a∈δin(v)

ua ≤ bv ≤ T
∑

a∈δin(v)

ua within time horizon T , where the reversal of the arcs are made at time zero

and transit times on auxiliary network are orientation dependent.

To solve the problem, we first transform the given s-t network into s-D network by creating dummy

ports as described in Section 3. Considering t∗ as the super sink and joining it to each node in D with

infinite capacity and zero transit time, it is reduced to the single source single sink s-t∗ network. As in

Pyakurel and Dempe [24], the minimum cost circulation flow with time bound of Ruzika et al. [28] provides

the solution of EACF problem with ODTT by allowing the intermediate storage of the flow in polynomial

time complexity, where transit times are orientation dependent. Hereafter, we present an algorithm which

provides the solution to an EAF Problem 2 with ODTT by allowing the intermediate storage.

Algorithm 2: EACF algorithm with ODTT allowing the intermediate storage
Input : Given two-terminal series-parallel contraflow network N .

Output: EACF with ODTT by allowing the intermediate storage.

(1) Fix the priority order of nodes and construct an auxiliary network N of N using orientation

dependent transit times.

(2) Compute earliest arrival flow with intermediate storage in N by using [24] within the time bound

of [28].

(3) Decompose the flow along s-t paths and cycles, and remove the flows in cycles.

(4) An arc ←−a is reversed with orientation dependent transit times if and only if the flow along arc a is

greater than its capacity or if there is a non-negative flow along arc a /∈ A.

(5) By removing the dummy ports and arcs, transform the solution to the original network.

Theorem 4.1. The optimal solution to the EACF problem with ODTT by allowing the intermediate storage

can be obtained by using Algorithm 2.

Proof. The feasibility and optimality of Steps (1), (3), (4) and (5) can be obtained as in Theorem 3.1.

In step (2), we compute the earliest arrival flow in auxiliary network with orientation dependent transit

times by using algorithm of Pyakurel and Dempe [24] with time bound of Ruzika et al. [28], each providing

optimal flow. So Algorithm 2 provides optimal solution to EACF with ODTT by allowing the intermediate

storage. �

The computational time bound of Step (2) determines the overall time complexity of Algorithm 2.

The minimum cost flow problem in series-parallel graph can be solved in O(nm + m logm) time for single

source sink network. So EACF problem with ODTT by allowing intermediate storage can be solved in

O(n× (nm+m logm)) time.

Theorem 4.2. Algorithm 2 solves the EACF problem with ODTT by allowing the intermediate storage in

polynomial time.

Example 3. Consider a two-terminal series-parallel contraflow network that is given in Figure 4(i), where

numbers aside the nodes represent the storage capacity of nodes. The priority ordering of nodes with respect

to the distance is t � z � y � x � w (as the shortest distance of z and y from s are same, priority of these

two nodes may interchange). The auxiliary network with orientation dependent transit times is constructed

in Figure 4(ii). Let the time horizon be T = 5. Then, the total amount of earliest arrival flow at t, z, y, x

and w in time horizon T = 5 are 30, 9, 2, 7 and 16 units, respectively.
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s w

x

y

z t

6,1

4,2

1,1
3,0

3,2

2,1

2,2

2,1

1,1

2,2

2,1

1,0
5,1

6,2

5,4

4,5

(i) Two-way series-parallel network with capacity, transit time on arc

∞ ∞
35

15

20

25

s w

x

y

z t
10,1

4,1

5,2

4,2

3,1

3,1

11,1

5,4

4,5

(ii) Auxiliary network with capacity, transit time on arc

∞ ∞
35

15

20

25

Figure 4. (i) represents a two-terminal series-parallel contraflow network

and (ii) represents an auxiliary network of (i) with ODTT.

In series-parallel graph, every cycle in the residual network has a non-negative cycle length, which

is a main advantage of this graph structure. Because of this, the minimum cost circulation flow problem

introduced by Ford and Fulkerson [10] for the maximum dynamic flow problem can be solved in the auxiliary

network N . The temporally repeated s-t flow, thus obtained is an optimal solution to the EACF problem

on a two-terminal series-parallel graph in polynomial time. So, the polynomial solution of EACF problem

with ODTT by allowing the intermediate storage is possible by using Pyakurel and Dempe [24] and applying

the ODTT on N . Moreover, for general networks, pseudo-polynomial time solution strategy exists to solve

EACF problem by using time expanded network, [6, 25, 29] without permitting the intermediate storage.

The EACF problem with ODTT by allowing the storage of flow at intermediate nodes in general network

can be obtained by using algorithm of Hoppe and Tardos [15] in modified s−D network.
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5. Conclusion

At the time of evacuation, improvement of flow values and reduction of the time horizon by the reversal

of arcs is one of the best approaches. At the meantime, settlement of flow at intermediate nodes can be

a milestone to shift the maximum evacuees from the danger zone (source). In literature, the maximum

static and maximum dynamic contraflow problems with and without intermediate storage of flow have been

studied in two terminal general network. Similarly, earliest arrival contraflow problem with intermediate

storage has been studied in two-terminal series-parallel graph. All of these contraflow problems have been

acquired symmetric transit times on the anti-parallel arcs.

In this paper, we present the flow models with asymmetric transit times on anti-parallel arcs by allowing

the storage of flow at intermediate nodes. By adopting the orientation dependent transit times on the anti-

parallel arcs, we introduce the maximum dynamic contraflow and earliest arrival contraflow problems. We

also present the polynomial time algorithms to solve the problems. Though the priority order of the nodes

in our solution strategy is on the basis of distance before the contraflow configuration, our algorithms can

be used for any other priority order.
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Abstract
The tragic circumstances caused by natural or human-made (unexpected human or 
technological errors) hazard such as earthquakes, floods, glaciers, fires or indus-
trial explosions causing significant physical damages, loss of lives or destruction 
of environment as well as economic and social life of people are known as disas-
ters. Planned evacuation is essential to save the maximum number of evacuees in 
minimum time, which also helps in minimize losses. Due to mass dispatch (move-
ment) of people aftermath of disaster, traffic scenario at the intersection of roads 
may create the disappointing situation if the vehicles have to wait for hours to cross 
the intersection. The main reason behind this is the lack of crossing elimination. 
In this paper, we discuss the partial switching property on an abstract network, in 
which crossing effect of roads is eliminated to transship optimal flow of evacuees. 
Due to the switching property, crossing of the flows at the intersections is diverted 
to non-crossing sides which can be a milestone to smooth the flows during evacu-
ation. We present polynomial time solution procedures to solve abstract maximum 
static and dynamic flow problems with partial switching of paths. We also introduce 
the abstract quickest flow and quickest contraflow problems with partial switching 
and present polynomial time algorithms to solve the problems. For disaster manage-
ment, maximum, quickest and contraflow problems on partially switched paths play 
an important role as the flow on a path system without crossing effect is very essen-
tial during evacuation process.
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1 Introduction

Disasters, both natural and human-made, are uncertain and can cause terrible 
disruptions, which in turn result in damages and casualties. According to United 
Nations International Strategy for Disaster Reduction (UNISDR) [33], “a disaster 
is a sudden, calamitous event that seriously disrupts the functioning of a commu-
nity or society and causes human, material and economic or environmental losses 
that exceed the community’s or society’s ability to cope using its own sources. 
Though often caused by nature, disasters can have human origins”.

In network optimization, an evacuation scenario is observed by the network 
topology where paths are represented by the chain of arcs and their crossings 
by the nodes. On the basis of representation, a network can be classified in two 
ways: the node-arc system, termed as classical network and the path-element 
system, termed as abstract network. In this paper, we deal the problems on an 
abstract network. Network with capacitated elements and linearly ordered sub-
set of elements, called paths, is an abstract network. Each element is equipped 
with integral movement capacity which transships the flow from an element to its 
adjacent element. In this network, each path must satisfy the switching property: 
when two paths cross at an element then there must be a path that is a subset of 
the first path up to the crossing element and a subset of the second path after the 
crossing element.

By reviewing the first proof of max-flow-min-cut theorem of Ford and Fulkerson [6], 
Hoffman [12] introduced the concept of abstract flow in terms of paths rather than on 
arcs. McCormick [24] provided a polynomial time algorithm by using an oracle where 
input is an arbitrary subset of elements whose output is either a path contained in that 
subset or states that no such path exists. He used the augmenting path structure satisfy-
ing the complementary slackness condition. Using the additional attribute of weight on 
paths, Martens and McCormick [23] extended the result of [24] in more general case. 
For single as well as multi-commodity flows, Martens [22] presented unsplittable and 
k-splitable abstract network flows in his PhD thesis. By solving weighted abstract flow 
problem and constructing a temporally repeated flow from its solution, Kappmeier 
et al. [13] have shown that the abstract maximum flow over time can be obtained in poly-
nomial time complexity. The polynomial time algorithm for lexicographic abstract maxi-
mum flow and its use in proving the existence of abstract earliest arrival flow can be 
found in PhD thesis of Kappmeier [14].

At the time of disasters, flow improvement with contraflow configuration is 
one of the best techniques in which unused arcs are reversed towards the des-
tination to increase the outbound capacity of paths towards the destination and 
reduce the evacuation time. Although authors in Bretschneider and Kimms  [3] 
allowed the movement of rescuer towards danger zone if it leads to faster evacu-
ation, but as in Vogiatzis et al. [32], we do not allow any movement towards the 
risky zone. That is, in two-way network topology, our assumption is that paths 
towards the source element (danger zone) are almost empty. The optimal use of 
such paths by reversing towards the sink element (safe zone) can be an important 
tool at the time of disaster, because every individual desires to leave the danger 
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zone as quickly and efficiently as possible. The notion of contraflow technique 
was introduced by Kim and Shekhar [18]. They have proved the NP-completeness 
of the contraflow problem and presented a heuristic to solve large-scale evacua-
tion instances. Pyakurel et  al.  [28] introduced the concept of continuous maxi-
mum abstract contraflow problem for classical network and presented polynomial 
time algorithms for static as well as dynamic cases. Similarly, by saving unused 
capacities of the elements, Pyakurel et al. [31] introduced the partial contraflow 
approach in abstract network and presented efficient algorithms for static, lexico-
graphically maximum static, maximum dynamic and earliest arrival partial con-
traflow problems.

In classical network, Pyakurel and Dempe [26] introduced the maximum dynamic 
contraflow problem with intermediate storage and presented a polynomial time algo-
rithm to solve the problem. They also have investigated universal maximum dynamic 
flow with intermediate storage and presented efficient algorithms in general as well 
as two-terminal series parallel networks in [27]. Similarly, Khanal et  al.  [16] pre-
sented pseudo-polynomial time algorithms for maximum multi-commodity flow and 
contraflow problems with intermediate storage where contraflow is configured for 
the network with symmetric as well as asymmetric transit times on arcs. For the net-
work with asymmetric transit times on anti-parallel arcs, maximum dynamic contra-
flow problem in a general network and earliest arrival contraflow problem in two-
terminal series-parallel network allowing the intermediate storage of flow can be 
found in [17]. Recently, Pyakurel et al. [29] presented the solution strategy of maxi-
mum static, lexicographic maximum static and maximum dynamic flow problems 
in an abstract network topology by incorporating the storage of flow at intermediate 
shelters.

Quickest flow problems are inverse to maximum flow problems, in which a given 
amount of flow is sent towards safety in the smallest time possible. For the prior 
or the post disaster management, mathematical models and their solution strategies 
with objective of minimum clearance time are very realistic because every individ-
ual intend to reach the safe places as quickly as possible. Using binary search to 
the maximum flow solution of Ford and Fulkerson [7], Burkard et al. [4] provided 
the first polynomial time bound for the quickest flow problem in classical network. 
They also presented strongly polynomial time bound for this problem by incorporat-
ing the parametric search to the minimum cost flow problem. Lin and Jaillet  [19] 
extended the cost-scaling algorithm of Goldberg and Tarjan [8] which solves 
the quickest flow problem within the same bound as the min-cost flow problem. 
Pyakurel et al. [30] used this cost-scaling algorithm to solve the quickest contraflow 
problem. By using length bound approximation and condensed time expanded net-
work, Dhamala et al. [5] solved the quickest multi-commodity contraflow problem 
with partial lane reversals.

Minimizing the conflict of flows at the intersections of roads and smoothing 
the flow during evacuation are important tasks. Andreas and Smith [2] introduced 
the concept of evacuation tree to minimize the conflicts at intersections and 
ensure the seamlessness of the evacuation process. Similarly, for the fast and safe 
evacuation, Achrekar and Vogiatzis  [1] introduced the time-dynamic evacuation 
model that aims to maximize a reward function. To achieve the seamlessness in 
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evacuation, they have constructed an evacuation tree with two improving policies 
of contraflow and divergence, where vehicles are evacuated using a single path to 
safety at each intersection. Purba et al.  [25] extended the concept of evacuation 
tree for the evacuation routing problem of alternative fuel vehicles.

By including maximum flow, earliest arrival flow, quickest path and quickest 
flow problems, Hamacher and Tjandra [9] published a survey for evacuation opti-
mization models. They also distinguished between microscopic and macroscopic 
approach to the evacuation modeling. The mathematical programming applica-
tion in the field of evacuation under disaster can be found in Liu et al.  [20]. Lu 
et al. [21] proposed a new capacity constrained routing algorithm for evacuation 
planning problem and presented a heuristic algorithm which produces a sub-
optimal solution for evacuation planning problem without using time-expanded 
networks. Bretschneider and Kimms [3] presented a basic evacuation model that 
restructures the traffic routing for the case of an evacuation with regard to a safe 
evacuation process and a short evacuation time, and developed heuristics to solve 
the evacuation model. To tackle the large-scale evacuation, Vogiatzis et al.  [32] 
proposed the clustering technique to divide problem into smaller sub-problems. 
By including the danger factor of each nodes, their model restricts the flow from 
low danger factor to high danger factor node. Similarly, Hassan and Van [10, 11] 
presented models and algorithms for large-scale zone-based evacuation planning.

In this paper, we introduce partial switching property on an abstract network 
to eliminate the crossing effect, which indeed minimizes the delay on flow trans-
mission due to intersection of roads. For example, consider a network given 
in Fig.  1, where s and t are source and sink elements and rest of the elements 
(i.e., a, b, c, d and e ) are intermediate elements. The numbers between the ele-
ments represent the movement capacity of path segments from an element to its 
adjacent one. By using max-flow-min-cut, maximum static flow in classical net-
work is 17 units which can be transshipped from s to t using either of four paths 
P1 = s − a − e − d − t, P2 = s − b − e − c − t, P3 = s − a − e − c − t, and P4 = s

−b − e − d − t . Here, two paths P1 and P2 are crossing at element e. For the com-
plete switching property on abstract network, flow from s reaching at crossing 
element e along P1 is switched to P2 after e and flow reaching at e along P2 is 
switched to P1 after e. Thus, we have two completely switched paths P3 and P4 
that can transship only 14 units of flow from source element to sink element. 
Now, by the help of residual network, we can find a residual path P2 in abstract 

Fig. 1  Comparison between classical and abstract flows
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network with residual capacity of 3 units so that abstract flow with partial switch-
ing can transship 17 units of flow from s to t.

If more than two paths have crossing effect at an element, then we first use the 
partial switching in two paths. If still there exists the crossing effect on the resulting 
flow of switched paths with any other paths, then partial switching is successively 
applied unless the crossing effect is eliminated.

The road traffic at disasters can be more chaotic if proper route plans are not 
applied. To reduce the congestion due to the crossing effect, abstract flow with par-
tial switching can be a milestone, which eliminates the crossing effect but allows the 
merging within the residual capacity. It helps to smooth the flow in allocated path 
system with optimal flow value. Not only in the disasters, this flow model can be 
applicable to mitigate the rush-hour traffic congestion. Since the delay on the flow 
transmission due to crossing is not considered in classical network, which is a major 
and uncertain factor for the flow transmission, the flow obtained from an abstract 
network with partial switching of paths is more practical than in a classical network.

Our contribution in this paper is to introduce the concept of partial switching 
on abstract network topology, where crossing effect of the paths is eliminated by 
using the residual path together with completely switched paths which may violate 
the complete switching property. We discuss the maximum static and maximum 
dynamic flow problems and the flow models with partial switching of paths in 
abstract network. We also present the polynomial time solution strategy of abstract 
maximum flow problem with partial switching in brief whose detailed illustration 
is presented in [15]. We present polynomial time algorithms for abstract quickest 
flow and quickest contraflow problems with partial switching. To the best of our 
knowledge, abstract quickest flow and contraflow problems with partial switching 
are introduced for the first time.

We organize the paper as follows. Section 2 provides the basic definitions and 
mathematical formulations of the flow models whereas in Sect. 3, we discuss poly-
nomial time solution procedures to solve the abstract maximum static and maximum 
dynamic flow problems with partial switching. Abstract quickest flow problem and 
its polynomial time algorithm is presented in Sect. 4. Similarly, in Sect. 5, we pre-
sent the abstract quickest contraflow problem and its polynomial time solution strat-
egy. The paper is concluded in Sect. 6.

2  Mathematical Formulation of Flow Models

In this section, we present the basic mathematical notations. We also present abstract 
static as well as abstract dynamic flow models with partial switching property.

2.1  Basic Notations

Let N = (E,P) be a network topology with finite set of elements E and the collec-
tion of paths
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Here, P represents the set of all source-sink (s-t) paths P. Each element e ∈ E 
has the non-negative integral movement capacity ue ∶ E × E → ℤ

+ which is used to 
send the flow from the element e to its adjacent element. The order of elements in 
the path P ∈ P is denoted by <P . We say that a is left of e on P if a <P e and right of 
e if a >P e . Similarly, e ∈ P is said to be leftmost or first (rightmost or last) element 
of P if there does not exist a in P such that a <P e (a >P e) . For s-t path P, source s 
is the leftmost element and sink t is the rightmost element. The set of intermediate 
elements is denoted by EI = E ⧵ {s, t}.

Network N = (E,P) is an abstract network if it satisfies the switching property: 
∀P,Q ∈ P and intermediate element e ∈ P ∩ Q, ∃R ∈ P such that R ⊆ P ×e Q 
where,

Similarly, we can define R ⊆ Q ×e P . We use the notations

to represent the elements on path P from source s up to e and that begins from e up 
to sink t, respectively. Similarly, the elements on path P that are left of e and right of 
e are represented by

respectively. If P and Q are two paths both containing e1 and e2 , then it is possible to 
have e1 <P e2 but e1 >Q e2.

Due to the switching effect, abstract flow may not be equal the classical (gen-
eral) network flow (see the comparison of flow values in Fig. 1). In this case, we 
construct a residual network to find an additional s-t path in original network which 
eliminates the crossing effect but can violate the complete switching property. Let 
xP ∶ P → ℝ+ be a static abstract path flow such that xP = min{xe ∶ e ∈ P} . Then the 
residual movement capacity of an element e ∈ E is ũe = ue − xe . An element e is said 
to be saturated with respect to x if xe = ue . The partial switching property is defined 
as follows: ∀P,Q ∈ P and intermediate element e ∈ P ∩ Q, ∃Ri ∈ P, i = 1, 2, 3 
such that

and if saturated elements of R1 and R2 lie in different sides of the crossing element e, 
then ∃R3 , a residual path, such that

P = {P ⊆ E ∶ P has a linear order <P of elements in P} ⊆ 2E.

P ×e Q = {a ∈ P ∶ s ≤P a ≤P e} ∪ {a ∈ Q ∶ e ≤Q a ≤Q t}.

P
[s→e] = {a ∈ P ∶ s ≤P a ≤P e} and P

[e→t] = {a ∈ P ∶ e ≤P a ≤P t}

P
[s→e) = {a ∈ P ∶ s ≤P a <P e} and P

(e→t] = {a ∈ P ∶ e <P a ≤P t},

R1 ⊆ P ×e Q = {a ∈ P ∶ s ≤P a ≤P e} ∪ {a ∈ Q ∶ e ≤Q a ≤Q t}.

R2 ⊆ Q ×e P = {a ∈ Q ∶ s ≤Q a ≤Q e} ∪ {a ∈ P ∶ e ≤P a ≤P t}.

R3 ⊆ P ∶ ũP > 0 or R3 ⊆ Q ∶ ũQ > 0,
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where, ũP = min{ũe ∶ e ∈ P} . Here, R1 , R2 and R3 represent three modes of paths 
with R = {∪Ri} . Clearly, R ⊆ P.

In Fig.  1, paths P3 , P4 and P2 stands for the partially switched paths of 
mode R1 , R2 and R3 , respectively. If P be a s-t path without crossing effect, 
then P=P ×e P=Ri, ∀e ∈ P . We consider that the movement capacity (i.e., out-
going movement capacity) of source and intermediate elements are finite and 
that of sink is zero (i.e., ut = 0 ). Moreover, the incoming and outgoing move-
ment capacities of source and sink, respectively, are zero except for contraflow 
network.

2.2  Abstract Static Flow Model with Partial Switching

Let N = (E,P) be an abstract network with path flow x
R
i
∶ R

i
→ ℝ

+

, R
i
∈ R ⊆ P,

i = 1, 2, 3 , satisfying the partial switching property. Every path flow xRi
 with partial 

switching induces a flow through each element, denoted by 
∑

Ri∈P∶e∈Ri

xRi
= xe . A path 

flow x is feasible if and only if 0 ≤ xe ≤ ue for all e ∈ E . Let Ae and Be be the sets of 
outgoing paths from e and incoming paths into e, respectively. We denote 
xout
e

=

∑
Ri∈Ae

xRi

 and xin
e
=

∑
Ri∈Be

xRi
 as the total outflow from e and the total inflow into 

e, respectively. Let ce ∶ E × E → ℤ
+ be the cost of transmission of flow per unit 

from e to its right element so that cRi
(x) =

∑
e∈Ri

cexe.

The linear program for abstract static network flow with partial switching is

Equation  (1) is an objective function that maximizes the total flow reaching 
at sink t through paths Ri ∈ R of all three modes. The capacity constraint of each 
element is represented in Eq. (2), where sum of flows on paths of all three modes 
through e is bounded by its movement capacity and the flow conservation con-
straint is represented by Eq. (3). Similarly, Eq. (4) represents the non-negativity 
of the flow on each path.

(1)max

3∑
i=1

∑
Ri∈R

xRi

(2)s.t.

3∑
i=1

∑
Ri∈R∶e∈Ri

xRi
≤ ue ∀e ∈ E

(3)xin
e
− xout

e
= 0 ∀e ∈ EI

(4)xRi
≥ 0 ∀Ri ∈ R ⊆ P, i = 1, 2, 3
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2.3  Abstract Dynamic Flow Model with Partial Switching

Consider a network topology N = (E,P, �,T) as the abstract dynamic network 
with temporal dimensions, where each path obey partial switching property. Let 
� ∶ E × E → ℤ

+ be a non-negative transit time of element e ∈ E that is necessary 
to transship the flow from e to its right element and T ∈ �  be a time horizon. If e 
and a are two consecutive elements on path Ri with e <Ri

a , then flow traveling 
through e at time � reaches a at time � + �e . In discrete time setting, time horizon 
is discretized as � = {0, 1,… , T} . For each s-t path Ri ∈ R ⊆ P , �Ri

=

∑
a∈Ri [s→t)

�a 

denotes the traversal time of the path flow from s to t.
Let �Ri

(�) ∶ Ri × T → ℝ
+ be the dynamic s-t path flow with partial switching 

in each discrete time steps � ∈ �  . Let �out
e

=

∑
Ri∈Ae

�Ri

 and � in
e
=

∑
Ri∈Be

�Ri
 be the 

total outflow from e and inflow into e, respectively. The linear programming 
model for abstract dynamic flow with partial switching is

Equation (5) represents an objective function which aims to maximize the total 
flow reaching to the sink t through the paths of all three modes within given time 
horizon T. Similarly, Eq.  (6) represents the capacity constraint of each element 
at � ∈ �  ,, where total flows on paths of all three modes through e is bounded by 
its movement capacity. Equation (8) represents the non-negativity of the flow on 
each path. Non-conservation of the flow at intermediate elements in each time 
step � is presented in Eq. 7, where the equality condition holds for � = T .

3  Abstract Maximum Flow with Partial Switching

In this section, we discuss on the maximum static and maximum dynamic flow 
problems in abstract network topology with partial switching of paths and present 
their solution strategies in brief. The detailed solution strategies and the proof of 
correctness are presented in [15].

(5)max

3∑
i=1

T∑
�=�Ri

∑
Ri∈R

�Ri
(�)

(6)s.t.

3∑
i=1

∑
Ri∈R∶e∈Ri

�Ri
(�) ≤ ue ∀e ∈ E, � ∈ �

(7)� in
e
(�) − �out

e
(�) ≥ 0 ∀e ∈ EI , � ∈ �

(8)𝜓Ri
≥ 0∀Ri ∈ R ⊆ P, i = 1, 2, 3
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3.1  Maximum Static Flow

Here, we formulate the problem and its solution strategy for an abstract maximum 
static flow with partial switching property on paths.

Problem  1 For a given abstract static network N = (E,P) , an abstract maximum 
static flow problem with partial switching deals with maximization of flow leaving 
the source element that is to be sent to the sink element via s-t paths Ri ∈ R ⊆ P by 
allowing the partial switching property at each crossing element.

Now, we present a polynomial time solution procedure to solve Problem 1 by 
using algorithm of McCormick [24] for a single source single sink network N .

Solution Strategy 1 For a given abstract static network N = (E,P) with partial 
switching, we first initialize x = x0 if initial flow is given, otherwise set initial flow 
at zero. By using augmenting structure of [24], we compute an abstract maximum 
static flow with complete switching. After that, the residual network is constructed 
and residual flow is obtained if the saturated elements of complete switched paths 
lie in different sides of the crossing element. These residual paths are decomposed 
into source-sink paths with positive residual capacity. Thus the flow obtained from 
complete switched paths together with residual path provides the abstract maximum 
static flow with partial switching on N .

Theorem 3.1 Solution strategy 1 provides an optimal abstract maximum static flow 
with partial switching in polynomial time.

3.2  Maximum Dynamic Flow

In this section, we discuss the abstract maximum dynamic flow problem with 
partial switching. By defining temporal paths, as in Kappmeier [14], we use tem-
porally repeated flow to solve the problem in polynomial time.

Let u and � be non-negative capacity and transit time functions, respectively, 
that are assigned to transship the flow from one element to its adjacent element 
via some path Ri ∈ R . Let T ∈ � = {0, 1,… , T} be given time horizon. As in clas-
sical network, time expanded elements are obtained by creating T + 1 copies of 
the elements for each time step � ∈ �  . The set of time expanded elements is

where e0 represents the original set of elements in the given network. Flow starting 
from source element s at time � reaches to e along path Ri at time � +

∑
a∈Ri [s→e)

�a . For 

each path Ri ∈ R ⊆ P , the temporal path Ri
� for each � ∈ {0, 1,… , T} is the copy 

ET = {e� ∶ e ∈ E, � ∈ �},
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of elements of Ri in which flow starts on it at time � and travels through path Ri . 
That is,

If we replace arbitrary element e by sink element t, then it represents source-
sink temporal path. The order of elements in temporal path Ri

� is same as in Ri . 
The set of all temporal paths that reaches to the sink element t within time hori-
zon T is

The abstract path system (ET ,P
�
T
) may not be abstract network because it may not 

satisfy (partial) switching property [14]. To handle this problem, paths with delay in 
each element are obtained by defining the delay function � ∶ Ri → {0, 1,… , T} for 
each e ∈ Ri . Every flow traveling from s along path Ri with delay pattern � reaches 
to e ∈ Ri at time 

∑
a∈Ri[s→e)

(�a + �a) + �e . The temporal path with delay pattern is

The order of elements in Ri
� are same as in Ri . It is to be noted that due to 

delay on elements, transit times of paths may change and so we use the paths 
with delay pattern that can transship the flow to the sink within the given time 
horizon. The set of temporal paths with delay pattern � arriving the sink t within 
time T is

Here, we denote the T-time expanded network of temporal paths with delay 
pattern by N�

T
= (ET ,P

�
T
) . Now, we present the abstract maximum dynamic flow 

problem with partial switching as follows.

Problem 2 Let N = (E,P, �, T) be a given abstract dynamic network. An abstract 
maximum dynamic flow problem with partial switching is to find the maximum 
flow leaving the source element that is to be sent to the sink via s-t paths Ri ∈ R ⊆ P 
by allowing the partial switching property at each crossing element within given 
time horizon T.

Ri
�
=

⎧⎪⎨⎪⎩
e� ∈ ET ∶ e ∈ Ri, � = � +

�
a∈Ri[s→e)

�a

⎫⎪⎬⎪⎭
.

P
�
T
=

{
Ri

�
∶ Ri ∈ R, � ∈ � , � +

∑
e∈Ri

�e ≤ T

}
.

Ri
�
=

⎧
⎪⎨⎪⎩
e� ∈ ET ∶ e ∈ Ri, � =

�
a∈Ri [s→e)

(�a + �a) + �e

⎫⎪⎬⎪⎭
.

P
�
T
=

{
Ri

�
∶ Ri ∈ R, � ∈ {0, 1,… , T}Ri ,

∑
e∈Ri

(�e + �e) ≤ T

}
.
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Here, we present a polynomial time solution procedure to solve Problem 2.

Solution Strategy 2 We have given an abstract dynamic network N = (E,P, �, T) . 
We first use the static flow computation to find the partially switched path flows on 
Ri as described in Solution Strategy 1. For each Ri , we construct temporal paths R�

i
 

in each time step � . As these temporal paths may not satisfy the partial switching 
property, abstract paths with delay pattern R�

i
 are essential. Now as in  [13], abstract 

maximum dynamic flow with partial switching is obtained by using temporally 
repeated flow on R�

i
.

Theorem 3.2 Solution strategy 2 computes an abstract maximum dynamic flow with 
partial switching in polynomial time.

4  Abstract Quickest Flow with Partial Switching

Quickest flow problem is a dynamic network flow problem, in which smallest 
possible time is estimated to send the given amount of flow |� ′| from the source 
to the destination. As in Burkard et al. [4], the maximum dynamic flow is a non-
decreasing function of time T and finding a solution to the quickest flow problem 
satisfying given amount of flow |� ′| is equivalent to finding the minimum time 
T ′ such that |�(T �

)| ≥ |� �| . For classical network topology, a polynomial time 
algorithm by using parametric search is presented in [4]. Here, we introduce the 
abstract quickest flow problem with partial switching and present a polynomial 
time solution strategy to solve the problem.

Problem 3 Let N = (E,P, �, T) be a given abstract dynamic network. An abstract 
quickest flow problem with partial switching is to find the minimum possible time 
T ′ to transship the given amount of flow |� ′| from the source element that is to be 
sent to the sink element via s-t paths Ri ∈ R ⊆ P by allowing the partial switching 
property at each crossing element.

To solve the problem, we first construct the temporal paths with delay pattern. We 
send the maximum amount of flow in each temporal path unless the given demand is 
not satisfied. To obtain the solution in polynomial time, we use binary search method 
starting with interval [Tmin, Tmax] such that |�(Tmin)| ≤ |� �| ≤ |�(Tmax)| . Thus, the 
quickest time T ′ lies between Tmin and Tmax . Initially, we set Tmin = 𝜏R̄i

 and 
Tmax = 𝜏R̄i

+

⌈ |𝜓 �|
xR̄i

⌉
, xR̄i

> 0 , where R̄i ∈ R is the shortest path with partial switching 

and xR̄i
 is the static flow on R̄i . In each iteration, the searched interval is halved unless 

the point of convergence is obtained and the flow values at extreme points of interval 
are obtained by using polynomial time algorithm of Kappmeier et al. [13]. Depending 
on this technique, we now present an algorithm for the abstract quickest flow with 
partial switching.



 Operations Research Forum            (2022) 3:55 

1 3

   55  Page 12 of 17

Theorem 4.1 The solution provided by Algorithm 1 is optimal.

Proof Before proving optimality, we first prove feasibility of Algorithm  1. As 
described in Solution Strategy 1, Step 1 provides the static flow in Ri which is fea-
sible. In Steps  2  and  3, construction of temporal paths and paths with delay pat-
tern, as in [13], are feasible. As the maximum dynamic flow function �(T) is non-
decreasing function of T, inquiry of quickest time satisfying the given demand using 
parametric search is also feasible. Hence, Algorithm 1 provides feasible solution for 
abstract quickest flow problem with partial switching.

Next, optimality of the algorithm is dominated by Step 4. Due to non-decreasing 
function �(T) , searching of the quickest time T ′ to satisfy the given demand |� ′| 
in the interval [Tmin, Tmax] can be obtained in polynomial time by using parametric 
search. As the sequence of flow values obtained from the iterative search converges 
to the given demand |� ′| , the solution provided by Algorithm 1 is optimal.

Theorem  4.2 Algorithm  1 solves an abstract quickest flow problem with partial 
switching in polynomial time.

Proof The time complexity of maximum dynamic flow is polynomial by using ora-
cle [13]. Similarly, time complexity of quickest time using parametric search on 
[Tmin, Tmax] is also polynomial [4]. So Algorithm 1 solves an abstract quickest flow 
problem with partial switching in polynomial time.

5  Abstract Quickest Contraflow with Partial Switching

In a two-way abstract network, contraflow configuration means the reversal of oppo-
sitely directed paths towards the destination element to increase the outbound capac-
ity of paths and reduce the overall transmission time of the flow.

Consider a two-way dynamic network N = (E, �⃖⃗P, 𝜏, T) , where �⃖⃗P =
�⃗P ∪

�⃖P repre-
sents the set of two-way paths in which �⃗P and �⃖P denote the forward P

[s→t] and the 
backward �⃖P

[t→s] source-sink paths, respectively. Let � ∶ E × E → ℤ
+ be a symmetric 
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transit time between pair of consecutive elements along a path so that 𝜏
P⃗
[e→a]

= 𝜏
P⃖
[a→e]

 
with e <

P⃗
a and a <

P⃖
e . Clearly, 𝜏

P⃗
= 𝜏

P⃖
 . Contrary to the general abstract network, 

contraflow network contains the incoming movement capacity to the source and out-
going movement capacity from the sink. Using the concept of contraflow, we intro-
duce the quickest flow problem in abstract network with partial switching herein.

Problem  4 For a given abstract dynamic network N = (E, �⃖⃗P, 𝜏,T) , an abstract 
quickest contraflow problem with partial switching is to find the minimum possible 
time to transship the given amount of flow from the source element that is to be sent 
to the sink via s-t paths �⃗P ∪

�⃖P by reverting the direction of paths �⃖P at time zero and 
allowing the partial switching property to obtain the paths Ri ∈ R ⊆ P.

As a solution procedure, an auxiliary network N̄ = (E, P̄, 𝜏, T) is constructed 
by adding two-way movement capacities between two consecutive elements. The 
set of paths in an auxiliary network P̄ is obtained by reverting the direction of 
paths �⃖P at time zero. The movement capacity ūe in auxiliary network is obtained 
by adding two way capacities i.e., for any two consecutive elements e and a with 
e <

P⃗
a and a <

P⃖
e

where u
a∶a∈P⃖

= 0 if a ∉
�⃖P . The transit time 𝜏e is obtained as follows.

Now, in the auxiliary network, partial switching property is used to obtain s-t 
paths R�

i
 with delay pattern and the quickest flow with partial switching along paths 

R�
i
 is calculated by using the Algorithm 2. 

Theorem 5.1 The feasible solution to an abstract quickest contraflow problem with 
partial switching can be obtained by using Algorithm 2 in polynomial time.

ūe = u
e∶e∈P⃗

+ u
a∶a∈P⃖

𝜏e =

{
𝜏
e∶e∈P⃗

if e <
P⃗
a

𝜏
a∶a∈P⃖

otherwise.
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Proof First we show feasibility of Algorithm 2 and then prove its time complexity. 
Construction of auxiliary network by adding two capacities of paths between con-
secutive elements and symmetric transit time is feasible. In the auxiliary network, 
we construct partially switched paths R�

i
 with delay pattern � which is feasible as 

in Sect. 3. Similarly, computation of the quickest flow on auxiliary network using 
Algorithm 1 is also feasible. So Algorithm 2 provides feasible solution for abstract 
quickest contraflow problem with partial switching. The proof of optimality is as 
similar to Theorem  4.1. Next, Steps  1 and 2 can be computed in O(E) times and 
Step 3 can be computed in polynomial time using Algorithm 1. So, the time com-
plexity of Algorithm 2 is polynomial.

Example 1 Consider a two way abstract network with movement capacity and tran-
sit time between the elements, which is represented in Fig. 2. It consists of 4 forward 
paths (i.e., s − t paths: P1 = s − a − c − l − n − p − t , P2 = s − b − d − l − m − o − t , 
P3 = s − a − c − l − m − o − t , P4 = s − b − d − l − n − p − t ) and 4 backward paths 
(i.e., t − s paths: P5,P6,P7,P8 with reverse direction of P1,P2,P3,P4 , respectively). 
Here, forward paths P1 and P2 (similarly backward paths P5 and P6 ) crosses at element l. 

Fig. 2  Two way network N  with capacity and transit times from each element to its adjacent element

Fig. 3  Auxiliary network N̄  of network N  in Fig. 2
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We construct an auxiliary network N̄  (see Fig. 3) from the given network. In the auxiliary 
network N̄  , we construct three partially switched paths P3 = s − a − c − l − m − o − t , 
P4 = s − b − d − l − n − p − t and P1 = s − a − c − l − n − p − t , representing three 
modes of paths R1 , R2 and R3 , respectively. The flow values and transit times on these 
paths are |�P3

| = 8 , |�P4
| = 7 , |�P1

| = 2 , �P3
= 7 , �P4

= 7 and �P1
= 6.

Let the given flow value at the source element be |� �| = 65 units. We have to find 
the minimum possible time to sent it with contraflow configuration by using Algo-
rithm 1 in N̄  . Here, binary search is applied with Tmin = 6 , Tmax = 6 +

⌈
65

2

⌉
= 39 . 

The minimum possible time to satisfy given demand is T = 10 units. It is to be noted 
that, if we do not apply contraflow configuration then it takes T = 16 units of time 
to transship the given flow which is 60% more than the time with contraflow.

This paper is mainly focused on the task of disaster management with three 
aspects: use of crossing free paths, minimization of the clearance time and use of 
contraflow configuration. At any kind of disasters, movement of people increases 
rapidly within very short period of time which creates the unexpected congestions. 
Movement of flows without crossing effect can be a key factor to smooth the traf-
fic efficiently. Quickest flow problem with partial switching helps to minimize the 
clearance time by using the paths without congestion. Similarly, quickest contraflow 
technique with partial switching supports even more to apply quickest transmission 
of flow by reversing the empty paths towards the destination. So, we hope that these 
solution strategies will be highly applicable for the disaster management.

6  Conclusions

Abstract network flows have been well-studied in literature. By using complimen-
tary slackness on the augmenting path structure, a polynomial time procedure was 
obtained for the abstract static flow problem. The lexicographically maximum flow, 
maximum flow over time and earliest arrival flow problems have been solved effi-
ciently in abstract networks with complete switching of paths.

In this paper, we have presented the abstract flow models with partial switching 
in static and dynamic networks. We have presented polynomial time solution proce-
dures to solve the abstract maximum static and dynamic flow problems by allowing 
partial switching property at the crossing elements. As the quickest flow problems 
are very relevant for disaster management, we have introduced the abstract quickest 
flow and contraflow problems and presented polynomial time algorithms to solve 
these problems by partial switching of paths. To the best of our knowledge, these 
problems and the solution strategies for the abstract network topology are intro-
duced for the first time.
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Abstract: Multi-commodity flow problems concerned with the transshipment of more than one com-
modity from respective sources to the corresponding sinks without violating the capacity constraints
on the arcs. If the objective of the problem is to send the maximum amount of flow within a given
time horizon, then it becomes the maximum flow problem. In multi-commodity flow problems, the
flow of different commodities departing from their sources arriving at the common intermediate node
have to share the capacity through the arc. The sharing of the capacity in the common arc (bundle
arc) is one of the major issues in the multi-commodity flow problems. In this paper, we introduce the
maximum static and maximum dynamic multi-commodity flow problems with proportional capacity
sharing and present polynomial time algorithms to solve the problems. Similarly, we investigate
the maximum dynamic multi-commodity flow problems with flow-dependent capacity sharing and
present a pseudo-polynomial time solution strategy.

Keywords: multi-commodity; maximum flow; proportional capacity sharing; flow-dependent
capacity sharing

1. Introduction

A topological structure with links and crossings, known as arcs and nodes, respectively,
is a network in which entities are transshipped from one point to another. The initial and
the final points are termed as source and sink nodes, respectively. In a multi-terminal
network, the transshipment of more than one commodity from the respective sources to the
corresponding sinks satisfying the capacity constraints on the arcs is a multi-commodity
flow (MCF) problem. Supply chain networks, message routine in telecommunication, and
transportation networks are some examples of multi-commodity network topology.

Ford and Fulkerson [1] introduced the concept of the static multi-commodity flow
problem, and thereafter many researchers have contributed to the different aspects of the
multi-commodity flow problems [2–5]. If the demand and supply of each commodity is to
be maximized in the given time horizon, then the problem becomes a maximum dynamic
multi-commodity flow problem. The static multi-commodity flow problem is polynomial
time solvable by using the ellipsoid or interior point method, whereas the dynamic multi-
commodity flow problem is NP-hard [6]. Kappmeier [7] provided the solution to the
maximum dynamic multi-commodity flow problem using a time-expanded network in
a pseudo-polynomial time complexity. Pyakurel et al. [8] presented a polynomial time
algorithm for the maximum static flow problem and pseudo-polynomial algorithms for
the earliest arrival transshipment and maximum dynamic flow problems with partial
contraflow. A priority based multi-commodity flow problem can be found in Khanal
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et al. [9]. Using the concept of intermediate storage introduced by Pyakurel and Dempe [10],
Khanal et al. [11] presented a polynomial time algorithm for the maximum static—and a
pseudo-polynomial time algorithm for the maximum dynamic—multi-commodity flow
problems with intermediate storage.

The sharing of the bundle arc capacity is one of the major issues in the multi-commodity
flow problems. For each commodity, if the sharing of the capacity of the bundle arc is set
in proportion to the bottleneck capacity of path from their respective sources to the tail
node of the bundle arc, then it is known as proportional capacity sharing. In this case, the
shared capacity of the bundle arc for each commodity is fixed and the multi-commodity
flow problem is reduced to an independent single commodity flow problem. To avoid
the fractional flow, we can use ceiling and floor functions with an appropriate manner.
Similarly, if the sharing of the capacity of the bundle arc is made according to the inflow
rate of the flow of each commodity, then it is termed as flow-dependent capacity sharing. In
this method, the shared capacity of the bundle arc may not always be the same as the flow
on the arc may vary over the time. We investigate these two sharing techniques hereafter
in Sections 2.1 and 2.2.

In this paper, we introduce the maximum multi-commodity flow problem using
proportional as well as flow-dependent capacity sharing on the bundle arcs. We present
the polynomial time algorithms for the static as well as the dynamic multi-commodity
flow problems, using proportional capacity sharing in Section 3. Similarly, in Section 4 a
pseudo-polynomial time algorithm for the dynamic multi-commodity flow problem with
flow-dependent capacity sharing is presented. The paper is concluded in Section 5.

2. Basic Terminologies

Consider a network topology G = (N, A, K, u, τ, di, S, D, T) with commodity i ∈ K = {1,
2, . . . , k}, set of nodes N and set of arcs A. Here, di represents the demand/supply of each
commodity i ∈ K which is routed through a unique source–sink pair si-ti, where si ∈ S ⊆ N
and ti ∈ D ⊆ N. Each arc e = (v, w) ∈ A with head(e) = w and tail(e) = v is equipped with a
capacity function u:A → R+ that restricts the flow of the commodity and a non-negative
transit time function τ : A → R+ that measures the time to transship the flow from node v

to node w. Let
→
δ (v) and

←
δ (v) be the set of outgoing arcs from node v and the incoming arcs

to node v, respectively. We denote Pi as the set of all paths of the commodity i such that
P ∈ Pi is a si-ti path and P[si,v] ∈ Pi represents the path from si to the intermediate node v.
The time horizon is denoted by T = {0, 1, . . . , T} in discrete time settings and T = [0, T + 1)
in continuous time settings. In case of static flow, the time parameters T and τ are absent.

2.1. Proportional Capacity Sharing

The multi-commodity flow problem differs from the single commodity flow problem
due to the bundle constraints and the unique source–sink flow for each commodity. Our
assumption is that the nature of flows inside the same commodity group are homogeneous
and between the commodity groups are heterogeneous yet uniform in the occupancy rate of
the arc capacity. To share the capacity of the bundle arc, we propose a proportional capacity
sharing technique depending on the minimum of the arc capacity of paths P[si,v], (that is,
bottleneck capacity of path P[si,v]) for each commodity i from their respective sources si to
the tail v of bundle arc e = (v, w) as follows: Let ue be the capacity of a bundle arc e, then
proportional sharing of capacity ue for each commodity i ∈ K is,

ui
e =

ui
a

∑aε P[si,v] :i ∈ K ui
a

ue (1)

where P[si,v] is the path from si to the tail v of bundle arc e, for all i ∈ K and a is an arc
in P[si,v] with minimum capacity. Here, ui

e represents the portion of the capacity of the
arc e allocated for the commodity i. Clearly, the sum of the shared capacities over each
commodity is equal to the original arc capacity, i.e., ∑i ∈ K ui

e = ue.
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The shared capacity may be in fraction, i.e., ui
e = int(ui

e) + fra(ui
e), the sum of the

integral part and the fractional part, respectively. The fractional capacities can be converted
into the integral capacities as follows:

• Find the sum ∑ fra(ui
e). If ∑ fra(ui

e) = p, then the first p fractional capacities with the
greatest fractional part (with descending order of the fractional part) are rounded up
using the ceiling function d.e and the remaining capacities are rounded below by the
floor function b.c.

• If the same fractional part occurs in more than one commodity then priority is given
to the capacity with the greatest integral part among them.

• In case of equal integral parts, priority goes to the commodity with the higher demand
among them. If the demand values are also the same, then either of them can be
rounded up.

It is to be noted that if ui
e < 1 and has no alternative path for commodity i, then it may

block the transshipment of the flow. In such a case, the fractional capacity is to be accepted.

2.2. Flow-Dependent Capacity Sharing

In the proportional capacity sharing technique the shared capacity of each commodity
remains fixed at each time step θ. In this subsection, we present the flow-dependent
capacity sharing technique, where the share of the capacity for each commodity depends
on the inflow rate of the flow f in the predecessor arcs. At any instance of time θ, if a
bundle arc e = (v, w) with the capacity ue holds more than one commodity i ∈ K, then the
flow-dependent capacity sharing of ue for each commodity i ∈ K is,

ui
e(θ) =

f i
a(θ − τa)

∑aε α(e):i ∈ K f i
a(θ − τa)

ue (2)

where α(e) is the set of the predecessor arcs of bundle arc e so that aε α(e)⇒ head(a) =
tail(e) and ui

e(θ) is the portion of the capacity of arc e for the commodity i at time θ. For
each time θ, the sum of the portion of the shared capacities ui

e(θ) over all the commodities i
∈ K is equal to the original arc capacity, i.e., ∑i ∈ K ui

e(θ) = ue. If the shared capacities are
in fraction, we can convert them into integer values as described in Section 2.1.

3. Maximum MCF with Proportional Capacity Sharing
3.1. Maximum Static Multi-Commodity Flow

In the static network G = (N, A, K, u, di, S, D) the multi-commodity flow ϕ with
proportional capacity sharing is the sum of the non-negative flows ϕi : A → R+ for each
i with demand di satisfying the proportional capacity sharing Equation (1) together with
the conditions (3) and (4).

∑
e∈
→
δ (v)

ϕi
e − ∑

e∈
←
δ (v)

ϕi
e =





di
−di

0

f or v = si
f or v = ti
otherwise

∀ v ∈ N, i ∈ K (3)

0 ≤ ϕi
e ≤ ui

e ∀ e ∈ A, i ∈ K (4)

The constraints in (3) represent the supply/demand at the source/sink nodes and
the flow conservation constraints at the intermediate nodes, whereas the constraints in (4)
represent the boundedness of the flow on the arcs by their capacities. By taking the sum
over each commodity in the later equation, we get the bundle constraints 0 ≤ ∑i∈K ϕi

e ≤
∑i∈K ui

e = ue for all e ∈ A. For a maximum static multi-commodity flow problem with
proportional capacity sharing the objective is to maximize the total flow value ∑i∈K di = |ϕ|
subject to the constraints (1), (3) and (4).

We now introduce the maximum static multi-commodity flow problem with propor-
tional capacity sharing as follows:
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Problem 1. For the given static multi-commodity network G = (N, A, K, u, di, S, D) the maximum
static multi-commodity flow problem with proportional capacity sharing is to transship the maximum
flow from si to ti, where the shared capacity for each commodity i ∈ K on the bundle arc is depending
on the minimum capacity of paths from the respective source to the tail node of the bundle arc.

To solve the problem, we first reduce the multi-commodity flow problem into k
independent single commodity flow problems by sharing the capacity of the bundle arc
using Equation (1). For each commodity i maximum static flow ϕi is obtained and the sum
of the flows for the commodities is the maximum static flow value |ϕ|. We now present the
algorithm to solve Problem 1.

Theorem 1. Algorithm 1 solves the maximum static MCF problem correctly in polynomial time
complexity.

Algorithm 1: Maximum static MCF algorithm with proportional capacity sharing

Input: Given static multi-commodity flow network G = (N, A, K, u, di, S, D).

1. Construct k independent sub-problems by proportional capacity sharing (1) on bundle arcs
for all i ∈ K.

2. Compute the solution ϕi to the static maximum flow problem for all i.
3. Maximum flow |ϕ| = ∑i∈K ϕi.

Output: Maximum static MCF on G with proportional capacity sharing.

3.2. Maximum Dynamic Multi-Commodity Flow

For a given dynamic network G with constant transit times τ on arc e, the MCF over
time function f with proportional capacity sharing is the sum of the flows f i : A× T→ R+,
satisfying the proportional capacity sharing Equation (1) together with the constraints (5)
and (7).

∑
e∈
→
δ (v)

T

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

T

∑
θ=0

f i
e(θ) =





di
−di

0

f or v = si
f or v = ti
otherwise

∀ v ∈ N, i ∈ K (5)

∑
e∈
→
δ (v)

β

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

β

∑
θ=0

f i
e(θ) ≤ 0 ∀ v /∈ {si, ti}, i ∈ K, β ∈ T (6)

0 ≤ f i
e(θ) ≤ ui

e ∀ e ∈ A, i ∈ K and θ ∈ T (7)

Here, the constraints in (5) represent the supply/demand at the sources/sinks and the
flow conservation at the intermediate nodes on time horizon T. The non-conservation of
the flow at the intermediate nodes in any time step β in T = {0, 1, . . . , T} are represented by
the constraints in (6). Similarly, (7) represents that the flows on the arcs are bounded above
by their capacities. With these constraints, together with Equation (1), we introduce the
maximum dynamic MCF problem with proportional capacity sharing, which maximizes
the total flow value ∑i∈K di = | f | within the given time horizon T as follows:

Problem 2. For given dynamic multi-commodity network G = (N, A, K, u, τ , di, S, D, T), the
maximum multi-commodity flow problem with proportional capacity sharing is to transship the
maximum amount of flow from si to ti within the given time horizon T, where the shared capacity
for each i ∈ K on the bundle arc is depending on the minimum capacity of paths from the respective
source to the tail node of the bundle arc.

We now present an algorithm to solve Problem (2).



Comput. Sci. Math. Forum 2022, 2, 5 5 of 7

Theorem 2. Algorithm 2 provides the feasible solution to the maximum dynamic MCF problem
with proportional capacity sharing in polynomial time.

Algorithm 2: The maximum dynamic MCF algorithm with proportional capacity sharing

Input: Given static multi-commodity flow network G = (N, A, K, u, di, S, D).

1. Construct k independent sub-problems by proportional capacity sharing (1) on the bundle
arcs for all i ∈ K.

2. Compute the maximum static flow ϕi for all i using Algorithm 1.
3. Decompose the flow ϕi into path flows ϕi

P.
4. Determine the maximum dynamic flow for each i ∈ K using temporally repeated flow such

that f i = ∑P ∈ Pi
(T + 1− τP)ϕi

P.
5. Maximum flow | f | = ∑i∈K f i.

Output: Maximum dynamic MCF on G with proportional capacity sharing.

4. Maximum MCF with Flow-Dependent Capacity Sharing

For a given dynamic network G with constant transit times τ on arc e, the multi-
commodity flow over time function f with flow-dependent capacity sharing is the sum of
flows f i : A× T→ R+, satisfying the constraints (8)–(12).

∑
e∈
→
δ (v)

T

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

T

∑
θ=0

f i
e(θ) =





di
−di

0

f or v = si
f or v = ti
otherwise

∀ v ∈ N, i ∈ K (8)

∑
e∈
→
δ (v)

β

∑
θ=0

f i
e(θ)− ∑

e∈
←
δ (v)

β

∑
θ=0

f i
e(θ) ≤ 0 ∀ v /∈ {si, ti}, i ∈ K, β ∈ T (9)

∑
i∈K

f i
e(θ) ≤ ue ∀e ∈ A (10)

ui
e(θ) =

f i
a(θ − τa)

∑aε α(e):i ∈ K f i
a(θ − τa)

ue ∀e ∈ A (11)

f i
e(θ) ≥ 0 ∀ e ∈ A, i ∈ K and θ ∈ T (12)

Here, the constraints in (8) and (9) have the usual meanings as represented in Section 3.2.
The bundle constraints bounded by the arc capacities are presented by (10). The constraints
in (11) represent the flow-dependent capacity sharing and the non-negativity of flows
are represented by the constraints in (12). We now present the maximum dynamic MCF
problem with flow-dependent capacity sharing satisfying the above constraints as follows:

Problem 3. For a given multi-commodity network G = (N, A, K, u,τ , di, S, D, T), the maximum
multi-commodity flow problem with flow-dependent capacity sharing is to transship the maximum
amount of flow from si to ti within the given time horizon T, where shared capacity for each i ∈ K
on the bundle arc is depending on the inflow of incoming arcs of the bundle arc.

To solve the problem, we use a time-expanded layer graph.

Multi-Commodity Time-Expanded Layer Graph

The multi-commodity time-expanded layer graph is a three-dimensional graph that
contains the copy of nodes from the underlying static network for every discrete time step
and for each commodity. It is applicable to solve the variety of flow over time problems
by applying the algorithms and techniques developed for the static network flows. For a
given network G with integral transit time on the arcs and the time horizon T, the T-time-
expanded layer graph GT is obtained by creating T + 1 copies of node set N, which are
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labeled as N(0), N(1), . . . , N(T), together with an θth copy of node v labeled as v(θ), θ ∈ T
and the commodities i ∈ K. For every arc e = (v, w) ∈ A and θ ∈ {0, 1, . . . , T − τe}, there is
an arc ei(θ) from vi(θ) to wi(θ + τe) with the same capacity of arc e for a single commodity
arc and the sharing capacity for bundle arc e. If intermediate storage is allowed at node v,
then the arc from vi(θ) to vi(θ + 1) represents the holdover arc with infinite capacity that is
used to hold the flow for the unit time interval [θ, θ + 1) for all θ ∈ {0, 1, . . . , T}.

For the graphical representation, we present a three-dimensional layer graph GT with
the set of node N, time T, and commodity K as the coordinate axes (see Figure 1). Each
commodity i ∈ K preforms the layers of the graphs in a vertical line. In Figure 1, network
(a) represents a two-commodity network in which commodity-1 is transshipped from
s1 to t1 and commodity-2 from s2 to t2. Arc (x, y) is the bundle arc, which carries both
commodities. Figure 1b represents the time-expanded layer graph of Figure 1a with the
time horizon T = 6, where parallel arcs on (x, y) share the capacity for each commodity with
the flow-dependent capacity sharing technique. At time step θ = 0 and θ = 1, no flow of
commodity-1 reaches arc (x, y), so only commodity-2 is transshipped on it; however, the
capacity is shared after among the commodities. Similarly, the bundle arc transships only
commodity-1 at time θ = 4 due to the absence of commodity-2.
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Figure 1. (b) represents the time-expended layer graph GT of given network (a).

Depending on the time-expanded layer graph, we now present the algorithm to solve
Problem 3.

Theorem 3. A feasible solution to the maximum dynamic MCF problem with flow-dependent
capacity sharing can be obtained by using Algorithm 3 in pseudo-polynomial time.

Algorithm 3: Maximum dynamic MCF algorithm with flow-dependent capacity sharing

Input: Given dynamic multi-commodity flow network G = (N, A, K, u, τ, di, S, D, T).

1. Construct a multi-commodity time-expanded layer graph GT.
2. Share the capacity on the bundle arcs (parallel arcs in GT) with flow-dependent capacity

sharing (2) at each θ ∈ T.
3. Decompose the static flow ϕi into path flows ϕi

P(θ) in GT at each time step θ.
4. Maximum flow | f | = ∑i∈K ϕi

P.

Output: Maximum dynamic MCF on G with proportional capacity sharing.

5. Conclusions

The maximum MCF problem deals with the transshipment of the maximum amount
of flow of more than one different commodity from respective sources to the corresponding
sinks within the given time horizon. Allocation of the capacity of the bundle arc to each
commodity is one of the major issues in the multi-commodity flow problem. To deal
with this problem we have proposed proportional capacity sharing and flow-dependent
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capacity sharing. We have presented polynomial time solutions for the static—as well as
the dynamic—maximum MCF problems with proportional capacity sharing and a pseudo-
polynomial time algorithm with flow-dependent capacity sharing. To the best of our
knowledge these solution strategies for the maximum MCF problems are introduced for
the first time.
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1. Introduction 

Motivation. A flow problem in an abstract network is consid- 

ered, where elements are capacitated and paths are linearly or- 

dered subset of elements. In this network flow model, paths must 

satisfy the switching property: when two paths cross at an ele- 

ment then there must be a path that is a subset of the first path 

up to the crossing element and a subset of the second path af- 

ter the crossing element. More precisely, flows on crossing paths 

of an abstract network are diverged to the different directions by 

switching the flows on non-crossing sides. (e.g., by means of traffic 

diversion). 

A disaster is an uncertain disruption that causes massive loss of 

human, infrastructure and overall economy. As an example, Gorkha 

earthquake 2015 in Nepal causes 8020 death, 375 missing and 

16,033 injuries together with 416,359 damages of houses and in- 

frastructures, Government of Nepal (2015) . Evacuation planning, 

may be pre and/or post disaster, is not only essential to save the 

lives and property but also for the quick recovery of the post dis- 

aster economy. After any disaster, may be natural or man-made, 

movement of large number of vehicles towards the safe place 

causes high congestion on the roads. Similarly, the placement of 

evacuees at comparatively safer places in an efficient way, which 

∗ Corresponding author. 

E-mail address: tanka.nath.dhamala@gmail.com (T.N. Dhamala) . 

can not reach to the destination due to some constraints, is an- 

other important issue. In this paper, we deal with the transship- 

ment of the evacuees by reducing the crossing effect of the paths 

and incorporating the settlement of excess flow at comparatively 

safer intermediate shelters, termed as an abstract flow with inter- 

mediate storage. 

A classical network deals with the transmission of flow on arcs. 

The major impact of this condition is that the flow reaching to 

the head of an arc is allowed to move towards either of its ad- 

jacent arcs without considering the crossing effect. Traffic during 

and evacuation is a special case of flow transmission in which ex- 

tensive movement of vehicles causes a high congestion. If vehicles 

are allowed to traverse the nodes (elements) where different paths 

intersect, the vehicles using one of the intersecting paths may have 

to wait for a long time unless the flow of the other path is inter- 

rupted or stopped. Thus, during usual circumstances, the vehicles’ 

waiting time at intersections may be low, but during a disaster, 

these waiting times could dramatically increase. Therefore, proper 

switching of the flow towards the non-crossing sides is essential. 

In an abstract network, flow is transmitted along the given path 

system with switching property and it is not necessary to be used 

all elements, even the crossing element, in the switched path. The 

crossing effect is reduced by switching of the paths and the aug- 

mentation of flow on feasible paths as in McCormick (1996) . Due 

to abstract paths with switching, direction of paths from the com- 

mon element are switched to the next path (for example, using 

traffic control mechanisms like proactive presence of traffic police, 
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Fig. 1. Flow pattern on classical and abstract networks. Dotted circles represent the appropriate shelters for the storage of flow nearby the intermediate elements. 

use of traffic signals, barricades, diversion, traffic lights or signal 

agents etc.) instead of crossing it. Together with this, the excess 

flows that can not move forward due to the capacity or time con- 

straints are stored at appropriate shelters, known as intermediate 

storage, which are the beneficiary task for congestion reduction on 

the paths and the increment of flow out from the source. Thus 

an abstract flow with intermediate storage can be an appropriate 

mathematical model for evacuation planning. Similarly, calculating 

the flow value in an abstract network is more realistic than in a 

classical network because delay on the flow transmission due to 

congestion is not considered in classical networks, which is a ma- 

jor and uncertain factor for flow transmission. This problem is ad- 

dressed in the abstract network with intermediate storage through 

switching of the paths and holding the excess flows at the shelters, 

which also helps to smooth the flow on paths. 

Our assumption is that intermediate elements have holding ca- 

pacity at least the sum of capacity of incoming paths from the 

predecessor elements. If the number of evacuees out from the 

source are more than the minimum cut capacity, then the excess 

of evacuees are to be hold at intermediate shelters (dotted cir- 

cles in Figure 1 (b)) which are comparatively safer than the danger 

zone (source). Similarly, the flows unable to reach to sink or any 

other successor element due to insufficient time have to hold at 

the current intermediate element. In Fig. 1 (b), flows reaching to el- 

ement e are diverged to different paths due to the switching prop- 

erty. Not only in the evacuations, traffic management bureau or 

any other authorized institutions can transform the classical flow 

pattern to abstract flow pattern by switching the paths as per the 

need to manage the peak hour traffic as well. The flow pattern in 

classical and abstract networks are presented in Fig. 1 with given 

six paths P 1 = (a, c, e, g, i ) , P 2 = (b, d, e, f, h ) , P 3 = (a, c, e, f, h ) , P 4 = 

(b, d, e, g, i ) P 5 = (a, c, f, h ) and P 6 = (b, d, g, i ) , where flows are 

transshipped along the crossing of paths P 1 and P 2 in the classical 

network ( Fig. 1 (a)) but are switched to P 3 and P 4 together with the 

flow augmentation in P 5 and P 6 to reduce the crossing effect in the 

abstract network ( Fig. 1 (b)). Dotted circles at the intermediate ele- 

ments represent the desired shelters nearby the intersections and 

diversion signal at e is represented by the diameter of entire circle. 

Literature Review. A network is considered as a graphical rep- 

resentation of a physical scenario that ease to solve different as- 

pects of the real-world problems. With the aspect of objectives, 

the flow model can be the minimization of time or maximization 

of the flow, whereas on the basis of the number of objectives, it 

can be classified as single or multi-objective. With respect to the 

nature of the time parameter, it can be a discrete or a contin- 

uous flow model. Similarly, an evacuation model on the basis of 

the movement of the vehicles can be a single or a multi-model. If 

only an homogeneous type of vehicles like cars or buses are used 

on the evacuation process then it is single model (i.e., uni-model) 

whereas the use of two or more non-homogeneous vehicle types 

together is a multi-model. The classification of the flow model on 

the behavioral aspect can be classified as microscopic and macro- 

scopic model. The consideration of homogeneous behavior of the 

group of objects to treat as a single object is the macroscopic 

model whereas dealing with the individual behavior of each ob- 

ject separately is the microscopic model. We investigate the macro- 

scopic flow model in the abstract network. We refer survey papers 

and references therein such as Akbari and Salman (2017) , Akter 

and Wamba (2019) , Dhamala (2015) , Dhamala and Adhikari (2018) , 

Anaya-Arenas, Renaud, and Ruiz (2014) , Aronson (1989) , Cova and 

Johnson (2003) , Hamacher, Heller, and Rupp (2013) , Pascoal, Cap- 

tivo, and Clímaco (2006) and Kotsireas, Nagurney, and Pardalos 

(2015) for more detailed descriptions of flow models and algo- 

rithms in various aspects. 

Network flows are the prominent techniques to solve evacua- 

tion planning problems using mathematical models such as maxi- 

mum flow ( Ford & Fulkerson, 1956 ), quickest flow ( Burkard, Dlaska, 

& Klinz, 1993 ) and earliest arrival flow ( Minieka, 1973 ) problems. 

Evacuation with auto base models can be found in Altay and 

Green (2006) , Chen and Miller-Hooks (2008) , Hamacher and Tjan- 

dra (2002) , Moriarty, Ni, and Collura (2007) , Schadschneider et al. 

(2008) , Yusoff, Ariffin, and Mohamed (2008) whereas bi-modal for- 

mulation of bus and car can be found in Pardalos and Arulsel- 

van (2009) . Similarly, Hua, Ren, Cheng, and Ran (2014) studied 

multi-modal evacuation planning problem and Purba, Kontou, and 

Vogiatzis (2021) studied the evacuation network modeling for al- 

ternative fuel vehicles. 

Modeling on network flows with intermediate storage, intro- 

duced by Pyakurel and Dempe (2020) , address the important prob- 

lem of evacuation planning. The corresponding solutions are very 

relevant in large scale disaster management. In evacuation mod- 

els, one wishes to shift evacuees from danger zones (sources) to 

safety places (sinks) as quickly and efficiently as possible. Most of 

the flow over time models used in evacuation planning are based 

on the flow conservation constraints, that is, the inflow must be 

equal to the outflow at each element (node), except at the source 

and the sink. In contrast to this, for an evacuation planning prob- 

lem with intermediate storage, the inflow may be greater than the 

outflow at intermediate elements. By holding the excess flow not 

reaching to the destination at comparatively safer intermediate ele- 

ments, this problem type maximizes the number of evacuees leav- 

ing the danger zone. 

Not only in evacuation planning, intermediate storage is highly 

applicable for different demand-supply chains like commodity sup- 

ply, electricity distribution and water supply. Production houses 

used to store their products in major cities to make the sup- 

ply system smooth. Electricity is stored at substations to regulate 

the flow. The storage of hazards associated liquids in intermedi- 
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ate bulk containers with practical measures on the design, con- 

struction and operation of storage areas is very essential to reg- 

ulate the supply with safety from unexpected accidents. Similarly, 

for uniform distribution of water supply, it is stored at reservation 

tanks and supplied to the customers, Kurian, Chinnusamy, Natara- 

jan, Narasimhan, and Narasimhan (2018) . 

Hoffman (1974) introduced the concept of abstract flow by re- 

viewing the first proof of the max-flow-min-cut theorem of Ford 

and Fulkerson (1956) with flows in terms of paths rather than 

on arcs. McCormick (1996) provided a polynomial time algorithm 

by using an oracle where the input is an arbitrary subset of el- 

ements whose output is either a path contained in that subset 

or states that no such path exists. He used the augmenting path 

structure satisfying the complementary slackness condition: every 

positive path meets the cut set exactly at one common element 

and every element of the cut is saturated. Martens and McCormick 

(2008) extended the result of McCormick (1996) in more general 

case with additional attribute of weight on paths. Unsplittable and 

k -splitable abstract network flows can be found in the thesis of 

Martens (2007) for single as well as multi-commodity flows. Simi- 

larly, Kappmeier (2015) presented a polynomial time algorithm for 

lexicographic abstract maximum flow and used it to prove the ex- 

istence of abstract earliest arrival flow in his PhD thesis. 

At the time of evacuation, paths towards the danger zones 

are almost empty. So, the optimal use of empty paths by re- 

versing their direction is a prominent way to maximize the flow 

and minimize the evacuation time. Reflecting this idea in the 

network optimization, contraflow is one of the most useful and 

widely used techniques in evacuation planning problems, where 

flipping of the orientation of arcs towards the destination node 

is used to increase the outbound capacity of arcs and reduce the 

time horizon. Heuristic, analytic and simulation techniques are 

used by different authors at different time to solve the problems 

with contraflow configuration. Kim, Shekhar, and Min (2008) pre- 

sented macroscopic models by incorporating multiple sources, road 

capacity constraints, congestion and scalability. Different evacua- 

tion models with and/or without contraflow and their solution 

strategies can be found in Amideo, Scaparra, and Kotiadis (2019) , 

Arulselvan (2009) , Dhamala, Pyakurel, and Dempe (2018) , Pyakurel 

and Dhamala (2016) , Pyakurel, Nath, Dempe, and Dhamala (2019a) , 

Rebennack, Arulselvan, Elefteriadou, and Pardalos (2010) and refer- 

ences therein. 

By integrating the concept of abstract flow and contraflow, 

Pyakurel, Dhamala, and Dempe (2017) introduced the concept of 

the continuous maximum abstract contraflow problem and pre- 

sented polynomial time algorithms for the static as well as the 

dynamic cases. Pyakurel, Nath, and Dhamala (2019b) introduced 

the partial contraflow approach in abstract network by saving un- 

used capacities of elements and presented efficient algorithms for 

static, lexicographically maximum static, maximum dynamic and 

earliest arrival partial contraflow problems in an abstract network. 

Similarly, incorporating the contraflow configuration in network 

flow with intermediate storage, Pyakurel and Dempe (2020) intro- 

duced the maximum dynamic contraflow problem with interme- 

diate storage and presented a polynomial time algorithm to solve 

the problem. Weitzel and Glock (2018) presented a systematic re- 

view of the literature on electric energy storage systems for bal- 

ancing energy demand and supply. Pyakurel and Dempe (2021) in- 

vestigated universal maximum dynamic flow and contraflow prob- 

lems with intermediate storage and presented efficient algorithms 

in two-terminal series parallel networks. The solution of maximum 

multi-commodity flow problem with intermediate storage and the 

contraflow solutions with symmetric as well as asymmetric transit 

times can be found in Khanal, Pyakurel, and Dhamala (2021) . 

Congestion minimization is one of the important issues for the 

evacuation management. Choi, Hamacher, and Tufekci (1988) pre- 

sented building evacuation models by network flow with side con- 

straints. The flow dependent capacity constraints on arcs are used 

to avoid the congestion on paths which are considered as side con- 

straints. A review of optimization models for pedestrian behaviors 

and crowd dynamics can be found in Vermuyten, Beliën, De Boeck, 

Reniers, and Wauters (2016) . They have described the characteris- 

tics of different models like continuum, network-based, cellular au- 

tomata, agent-based, social-force and game-theoretic models relat- 

ing to the congestion minimization for the pedestrian evacuation. 

Zambrano, Huertas, Segura-Durán, and Medaglia (2020) presented 

a mesoscopic model that combines a network-oriented macro- 

scopic optimization (to determine the evacuation flow) with a mi- 

croscopic discrete-event simulation model (to evaluate the con- 

gestion effect on the dynamics of the evacuation flows). Recently, 

Huertas and Van Hentenryck (2022) presented zone based evac- 

uation by assigning single evacuation path to the correspond- 

ing zone. They used convergent paths at intersections and non- 

preemptive schedules to ensure the evacuation process without in- 

terruptions. Our models are macroscopic model based on the net- 

work optimization with constant capacity on arcs and do not in- 

clude constraints to explicitly model the effect of congestion. How- 

ever, switching of paths at crossings, intermediate storage of excess 

flow and contraflow configuration are key tools to manage the con- 

gestion. 

Research Gap. At the time of evacuation, transmission of max- 

imum evacuees from the danger zone to the comparatively safer 

places through congestion free paths is very essential. As abstract 

network flow eliminates the crossing and merging effects of the 

paths, flow with intermediate storage is the major research gap in 

the literature of abstract flow. To fulfill the research gap, this paper 

mainly emphasizes the flow transmission in abstract network with 

intermediate storage. The focus is also given to fulfill the gap of 

an abstract contraflow problem with intermediate storage for the 

optimal use of empty paths. 

Our Contribution. In this paper, we introduce the concept of 

intermediate storage on an abstract network topology for the first 

time, where nodes are taken as elements. We introduce the max- 

imum static, lexicographic maximum static, maximum dynamic 

flow problems, and present the flow models and the solution strat- 

egy with intermediate storage for an abstract network. As per our 

knowledge, all of these works are introduced for the first time. For 

the uniqueness of the solution, we assume that the storage capac- 

ity of each intermediate element is at least the sum of incoming 

capacities from its left elements through the paths. Capacities of 

the source and the sink are considered as sufficiently large. As the 

solution strategy, we fix the first priority to the sink and the pri- 

ority of intermediate elements are set according to the maximum 

of shortest distance from the source. Flows are stored according 

to their priority order. To satisfy the flow conservation constraints, 

dummy ports are created to absorb the excess flow of intermedi- 

ate elements with respective storage capacity and zero cost (transit 

time). Denoting the set of dummy ports and a sink as a super sink, 

the problem is transformed to a single source multi-sink abstract 

flow problem. In the case of a lexicographic abstract flow problem, 

the priority of given multiple sinks is followed by the priority of 

intermediate elements. 

To obtain the maximum static, lexicographic maximum static 

and maximum dynamic flow with intermediate storage in an ab- 

stract network, we use the lexicographic static flow algorithm of 

Kappmeier (2015) without intermediate storage. We present poly- 

nomial time algorithms to solve these problems. Another contri- 

bution of the paper is that we present temporally repeated flow 

to obtain the maximum dynamic abstract flow with intermediate 

storage if the storage capacity of each intermediate element is suf- 

ficient (i.e., T times the sum of incoming capacities from its left 

elements through the paths). We also provide the generic algo- 
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rithm which solves all these problems for a contraflow network 

with symmetric as well as asymmetric transit times. By using nat- 

ural transformation, we present the solution procedure to solve 

dynamic flow and contraflow problems in continuous time setting 

also. 

Organization of the Paper. We organize the paper as follows. 

Section 2 provides basic notations that we use throughout the pa- 

per. In Section 3 , we formulate an abstract maximum static flow 

problem, its mathematical model and present a polynomial time 

algorithm to solve it. We also present a lexicographic abstract max- 

imum static flow problem and its solution strategy. Abstract max- 

imum dynamic flow problem, its mathematical model and a poly- 

nomial time algorithm are presented in Section 4 . For a contraflow 

configuration, a generic algorithm to solve these problems is pre- 

sented in Section 5 . We use natural transformation to transform 

the discrete time solution to continuous one in Section 6 . The pa- 

per is concluded in Section 7 . 

2. Basic notations 

In this section, we give basic mathematical notations that are 

used throughout the paper. Let N = (E, P) be a network topology 

with finite set of elements E and the collection of paths 

P = { P ⊆ E : P has a linear order < P of elements in P } ⊆ 2 

E . 

Here, P represents the set of all source-sink, i.e. s − t , paths P as 

well as intermediate paths P [ s → e ] from s ∈ E to e ∈ E. Each element 

e ∈ E has the non-negative integral movement capacity u e : E → Z 

+ 

which is used to send flow from the element e to its adjacent ele- 

ments and the storage capacity v e : E → Z 

+ which is used to hold 

flow at e . The order of elements in the path P ∈ P is denoted by 

< P . We say that a is the left of e on P if a < P e and right of e 

if a > P e . Similarly, e ∈ P is said to be the leftmost or first (right- 

most or last) element of P if there does not exist a in P such that 

a < P e (a > P e ) . For s − t path P , source node s is the leftmost ele- 

ment and sink node t is the rightmost element. We denote the set 

of intermediate elements by E I = E \ { s, t} . 
Network N = (E, P) is an abstract network if it satisfies the 

switching property: ∀ P, Q ∈ P and an intermediate element e ∈ 

P ∩ Q, ∃ R ∈ P such that R ⊆ P ×e Q , where 

P ×e Q = { a ∈ P : s ≤P a ≤P e } ∪ { a ∈ Q : e ≤Q a ≤Q t} . 
A similar definition for switched path R ⊆ Q ×e P can be obtained. 

For simplicity, we use the notations 

P [ s → e ] = { a ∈ P : s ≤P a ≤P e } and P [ e → t] = { a ∈ P : e ≤P a ≤P t} 
to represent the elements on path P from source s up to e and that 

begin from e up to sink t , respectively. Similarly, 

P [ s → e ) = { a ∈ P : s ≤P a < P e } , and P (e → t] = { a ∈ P : e < P a ≤P t} 
represent the elements on path P that are left of e and right of e , 

respectively. If P and Q are two paths both containing e 1 and e 2 , 

then it is possible to have e 1 < P e 2 but e 1 > Q e 2 . 

Throughout the paper, we assume that the source and sink have 

sufficiently large storage capacity, i.e., v s = v t ≤ ∞ and that of in- 

termediate elements are finite. The source and intermediate ele- 

ments have finite movement capacities (i.e., u s < ∞ ) and that of 

the sink is zero (i.e., u t = 0 ). If the incoming movement capacity of 

an intermediate element e ∈ E I is more than the outgoing move- 

ment capacity, then the excess flow is used to store at e . Moreover, 

the storage capacity of e ∈ E I should be v e ≥
∑ 

P∈P: a< P e 
u a . Further- 

more, the incoming and outgoing movement capacities of source 

and sink elements are zero, respectively, except for the contraflow 

network. 

In this paper, our assumption is that the elements being far 

from the source element are safer than nearer one. Also, the evac- 

uation scenario is of single source single sink, except in the lex- 

icographic abstract static flow problem, with possibility of inter- 

mediate storage. In case, if there are some unsafe intermediate el- 

ements, we consider them as the virtual source elements which 

turns the problem to the multiple sources. To produce it into single 

source, we create a super source with storage capacity, movement 

capacity and transit time (cost) as zero. Due to the zero transit 

time of unsafe intermediate elements from the super source, flow 

can not be stored at these intermediate elements. 

3. Abstract static flow with intermediate storage 

This section deals with the formulation of problems, mathe- 

matical models and their solution strategies for abstract maximum 

static and lexicographic abstract maximum static flows with in- 

termediate storage. We discuss the abstract maximum static flow 

problem with intermediate storage for single source single sink 

network in Section 3.1 and solve it by creating dummy ports for 

each intermediate element. The prioritized dummy ports with sink 

is considered as a set of multiple sinks which reduce the problem 

into single source multi-sink problem. Similarly in Section 3.2 , we 

introduce the lexicographic abstract maximum static flow problem 

with intermediate storage for a given single source multi-sink net- 

work. For the solution procedure, priority of given sinks are fixed 

in the first stage and then priority of intermediate elements in the 

second stage. In the third stage, we merge first and second stages 

to form a super sink. 

As both problems are transformed into single source multi-sink 

structure, we use the lexicographic abstract maximum flow algo- 

rithm of Kappmeier (2015) to solve them. The quick review of 

this algorithm is as follows: For a given network N (E, P) with 

single source s multi-sink { t i } i = 1 , . . . , r, first keep the elements 

of sink in compatible sequence and construct a modified network 

(E, P i ) with the increasing subset of paths P i ⊆ P . For each iter- 

ation i = 1 , . . . , r, flow x t i is computed by using the augmenting 

structure of McCormick (1996) , which is used to augment the fea- 

sible set of path flows to a set with strictly large total flow value 

by polynomial number of calls to the oracle. 

3.1. Abstract maximum static flow 

In this subsection, we introduce the abstract maximum static 

flow problem with intermediate storage, give its mathematical 

model and present a polynomial time algorithm to solve it. By us- 

ing abstract network topology, we aim to send the maximum flow 

from the source element to the sink element and the excess flow 

is stored at intermediate elements. 

Problem 1. For the given abstract static network N = (E, P) , the 

abstract maximum static flow problem with intermediate storage 

deals with maximization of flow leaving the source element that 

is to be sent to the sink element via s − t paths P ∈ P by allowing 

the maximum storage of excess flow at intermediate elements e 

via paths P [ s → e ] ∀ e ∈ E I with storage capacity v e ≥
∑ 

P∈P: a< P e 
u a . 

Mathematical Model. Let N = (E, P) be an abstract s − t net- 

work with path-flow x P : P → R 

+ . Every path-flow x P induces a 

flow through each element, denoted by x P e = 

∑ 

P∈P: e ∈ P x P . A path- 

flow x P is feasible if and only if x P e ≤ u e and x P ≥ 0 for all e ∈ E. 

An element e is said to be saturated with respect to x if x P e = u e . 

We denote x P,out 
e = 

∑ 

P∈ A e x 
P and x P,in 

e = 

∑ 

P∈ B e x 
P as the total out- 

flow from e and the total inflow into e , respectively, where A e and 

B e represent the set of outgoing paths from e and incoming paths 

into e . Let c e : E → Z 

+ be the cost of transmission of flow per unit 

from e to its right element so that c P = 

∑ 

e ∈ P c e . 

4 



U. Pyakurel, D.P. Khanal and T.N. Dhamala European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; July 20, 2022;16:13 ] 

Hoffman (1974) generalized the max-flow-min-cut theorem of 

Ford and Fulkerson (1962) for abstract network flow where the 

storage of flow at intermediate elements is prohibited. Due to bot- 

tleneck flow on each path, pushing the full movement capacity 

of flow from the source element greater than the minimum cut 

capacity is impossible. To deal with this problem, Pyakurel and 

Dempe (2020) introduced the concept of intermediate storage for 

classical network flow. Using this concept in abstract network flow, 

we can push maximum flow outward from the source where only 

flow with minimum cut capacity reaches to the sink and the rest 

of the flow can be stored at intermediate elements. Similarly, due 

to the switching property at common element e ∈ E I of two paths 

P and Q , if the inflow at e through P [ s → e ] is greater than outflow 

from e through Q [ e → t] then the excess flow can be stored at e . 

We define the flow function ˆ x e : E I → R 

+ as the excess flow 

stored at element e ∈ E I obtained by the difference of inflow and 

outflow. The linear programming formulation of abstract static net- 

work flow with intermediate storage is 

max 
∑ 

P∈P 
x P + 

∑ 

e ∈ E I 
ˆ x e (1) 

s.t. 
∑ 

P∈P: e ∈ P 
x P ≤ u e ∀ e ∈ E (2) 

x P,in 
e − x P,out 

e = 

ˆ x e ∀ e ∈ E I (3) 

0 ≤ ˆ x e ≤ v e ∀ e ∈ E I (4) 

x P ≥ 0 ∀ P ∈ P (5) 

Eq. (1) is an objective function that wants to maximize the to- 

tal flow reaching at sink t and the excess flow stored at interme- 

diate elements. The capacity constraint of each element is repre- 

sented in Eq. (2) and the excess flow is presented in Eq. (3) . The 

non-conservation of flow is represented by the left inequality of 

Eq. (4) and its right inequality represents that the excess flow is 

bounded by the storage capacity of e . Similarly, Eq. (5) represents 

the non-negativity of the flow on each path. As a precondition for 

the uniqueness of the solution, the lower bound of storage capacity 

is considered as v e ≥
∑ 

P∈P: a< P e 
u a , ∀ e ∈ E I . 

Due to different nature of the disasters, range of their affected 

regions may vary. We consider the affected area as a danger zone 

(source) and rest of the places as comparatively safer. The priority 

order of intermediate elements (shelters) can be considered with 

respect to different aspects like security, accessibility, availability of 

physical infrastructure and basic needs, possibility to deliver medi- 

cal and other services etc. In some disasters like tsunami, industrial 

accidents, fires, nuclear explosions etc., the regions much farther 

away from the source of disaster are considered more safe. In this 

paper, we consider the priority of intermediate elements with re- 

spect to the distance from the source. Though elements far from 

the source are considered more safer than nearer one because of 

which flows try to move as far as possible, but due to different 

barriers (constraints) flows may have to be hold nearer as well. 

As in Pyakurel and Dempe (2020) , due to the uniqueness of the 

sink in a given network, first priority is given to the sink to trans- 

ship as much flow as possible. To store the excess flow at inter- 

mediate elements, the priority ordering is set as follows: For each 

e ∈ E I with storage capacity v e ≥
∑ 

P∈P: a< P e 
u a , calculate the short- 

est distance d P [ s → e ] 
from s by using the algorithm of Dijkstra (1959) . 

Path with minimum cost is considered as the shortest path and 

the priority is given to the farthest element. That is, ∀ e 1 , e 2 ∈ E I 
if d P [ s → e 1 ] 

> d P [ s → e 2 ] 
, then e 1 has higher priority than e 2 and this is 

denoted by e 1  e 2 . 

We create dummy port e ′ for each prioritized element e ∈ 

E I with cost c P 
[ e → e ′ ] = d P 

[ e → e ′ ] = 0 and capacities u [ e → e ′ ] = v e = v e ′ , 
where u P 

[ e → e ′ ] and c P 
[ e → e ′ ] are the movement capacity and cost from 

e to e ′ , respectively. Every dummy port e ′ has the same prior- 

ity order as e has. The collection of dummy ports D 

′ = ∪{ e ′ } to- 

gether with sink t forms a modified network N 

′ = (E ′ , P 

′ ) with 

single source s and multiple sinks D = D 

′ ∪ { t} , where E ′ = E ∪ D 

and P 

′ = P ∪ { P [ s → e ′ ] } . 
Let e 1 , . . . , e r be r intermediate elements and t  e 1  e 2  · · · 

e r be priority order of elements in E. By denoting t as e ′ 0 , dummy 

port e ′ 
i 

of each e i forms the priority order e ′ 
0 

 e ′ 
1 

 · · ·  e ′ r in D . 

A sequence of elements is said to be compatible if the elements 

respect their ranks. For the priority ordered set of sinks D = { e ′ 0 
e ′ 1  · · ·  e ′ r } , more priority is given to the one in left than in right 

and satisfies the condition 

P ∈ P 

′ , e ′ i � = e ′ j ∈ P : i < j ⇒ e ′ i ≤P e ′ j , 
so that D forms a compatible sequence of sinks. 

For this compatible sequence of sinks, we define the collection 

of paths as 

P 

′ 
0 = { P [ s → e ′ 

0 
] } 

P 

′ 
i = P 

′ 
i −1 ∪ { P [ s → e ′ 

i 
] } for i = 1 , . . . , r. 

Here, each abstract path-system (E ′ , P 

′ 
i 
) for i = 0 , 1 , . . . , r con- 

tains the paths starting from s and ending at e ′ 
i 
. The network topol- 

ogy N 

′ 
i 

= (E ′ , P 

′ 
i 
) for all such path-system forms the abstract net- 

work satisfying the switching property. The solution obtained in 

this network is transformed to the original network by removing 

dummy ports and dummy paths. Flows to dummy ports are shifted 

to their corresponding intermediate elements. 

Example 1. Consider a network with element set E = 

{ s, a, b, c, e, f, t} and set of paths P = { P 1 , P 2 , P 3 , P 4 , P 5 , P 6 } 
where, P 1 = (s, a, e, f, t) , P 2 = (s, c, e, b, t) , P 3 = (s, a, b, t) , P 4 = 

(s, c, f, t) , P 5 = (s, a, e, b, t) and P 6 = (s, c, e, f, t) . Fig. 2 represents 

a network with storage capacity at each element together with 

movement capacity and cost in between pair of elements. Let 

P 1 , P 2 , P 3 and P 4 be four positive paths. As e is common ele- 

ment in paths P 1 and P 2 , the switched paths are P 5 = P 1 ×e P 2 
and P 6 = P 2 ×e P 1 . The minimum distance of each intermediate 

elements are d P [ s → f ] 
= 4 , d P [ s → b] 

= 3 , d P [ s → e ] 
= 2 , d P [ s → c] 

= 1 and 

d P [ s → a ] 
= 0 so that the priority ordering is t  f  b  e  c  a . For 

each intermediate element, dummy port is created with dummy 

path of zero cost and the movement capacity equal to the storage 

capacity of original element. Also, the storage capacity of dummy 

port is taken as the storage capacity of original element. The set 

of dummy ports D 

′ = { f ′ , b ′ , e ′ , c ′ , a ′ } together with sink element 

forms a compatible sequence denoted by D = { t, f ′ , b ′ , e ′ , c ′ , a ′ } 
(See in Fig. 3 ). 

Lemma 3.1 ( Kappmeier (2015) ) . For an abstract network N = (E, P) 

and a compatible sequence of sinks e ′ 0 , e ′ 1 , . . . , e ′ r , the abstract path- 

system N 

′ 
i 

= (E ′ , P 

′ 
i 
) for each i = 0 , 1 , . . . , r is an abstract network. 

Now, we present Algorithm 1 to solve Problem 1 by us- 

ing the lexicographically maximum flow algorithm of Kappmeier 

(2015) (cf. Page 167, Algorithm 6.2) for a single source multi-sink 

abstract network N 

′ , which solves the abstract maximum static 

flow problem with intermediate storage in polynomial time. 

For any two flows x and y , we say that x is lexicographi- 

cally greater than y , and denote x ≥L y , if either (x in 
e ′ ) l > (y in 

e ′ ) l and 

(x in 
e ′ ) j−1 = (y in 

e ′ ) j−1 holds for some l ∈ { 0 , 1 , . . . , r} and j = 1 , . . . , l, 

or (x in 
e ′ ) j = (y in 

e ′ ) j holds for all j = 0 , 1 , . . . , r. The maximum flow x̄ 

with lexicographic order ≥L among all feasible abstract flows x is 

a lexicographic abstract maximum flow and we denote it as x̄ ≥L x 

for all x . 
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Fig. 2. Network with movement capacity, cost between elements and storage capacity at elements. 

Fig. 3. Reconfigured network with a compatible sequence of sinks (dummy ports) after priority ordering on Fig. 2 . 

Algorithm 1: Abstract maximum static flow algorithm. 

Input : Given abstract static network N = (E, P) . 

Output : Abstract maximum static flow with intermediate 

storage on N . 

1. For each e ∈ E I with v e ≥
∑ 

P∈P: a< P e 
u a , compute the shortest 

distance d P [ s → e ] 
by using Dijkstra’s algorithm. 

2. Fix the priority order as t  e 1  · · ·  e r with first priority 

to the sink t and priority for intermediate elements as 

d P [ s → e i ] 
> d P [ s → e i +1 ] 

�⇒ e i  e i +1 , for i = 1 , . . . , r − 1 . 

3. Construct the modified network N 

′ = (E ′ , P 

′ ) with single 

source s and compatible sequence of multiple sinks with 

dummy ports D = { t = e ′ 0 , e ′ 1 , . . . , e ′ r } , where E ′ = E ∪ D and 

P 

′ = P ∪ { P [ s → e ′ r ] } . 
4. Compute the lexicographic abstract maximum static flow 

with priority ordering in Step~(2) according to Kappmeier 

(2015). 

5. Transform the solution to the original network N by 

removing dummy ports and dummy paths. 

Theorem 3.2. There exists an abstract flow x i in N 

′ 
i 

= (E ′ , P 

′ 
i 
) for 

each i = 0 , 1 , . . . , r that is a lexicographically maximum. 

Proof. When i = 0 , N 

′ 
0 = N is a single source single sink abstract 

network. By taking the initial flow as zero flow and using an aug- 

menting structure of McCormick’s algorithm, it provides an ab- 

stract maximum flow. For further proof we use induction. We as- 

sume that for some i < r, flow x i obtained by taking initial flow 

x i −1 and using augmenting structure of McCormick’s algorithm is 

lexicographic abstract maximum flow (see McCormick, 1996 ). We 

aim to show that x i +1 is also lexicographic abstract maximum flow. 

As the sequence e ′ 
0 
, e ′ 

1 
, . . . , e ′ r of sinks is compatible, augmenting 

structure of McCormick assures that the inflow to the sink element 

is not reduced and so x i +1 is maximum. If possible, let us assume 

that x i +1 is not lexicographic abstract maximum flow in the ab- 

stract network N 

′ 
i +1 

= (E ′ , P 

′ 
i +1 

) . Then there exists a flow x ∗ which 

sends more flow to the sink e ′ 
k 

for some k ∈ { 0 , 1 , . . . , i } . For each 

P ∈ P 

′ 
i 
, define the restricted flow ˜ x by ˜ x P = x ∗P . For ˜ x and x ∗, incom- 

ing flow at sink e ′ 
k 

is the same and ˜ x is a feasible abstract flow in 

N 

′ 
i 

= (E ′ , P 

′ 
i 
) which sends more flow to sink e ′ 

k 
than x i . This con- 

tradicts to x i being a lexicographically maximum. �

Theorem 3.3. Algorithm 1 computes an abstract maximum static 

flow with intermediate storage in N = (E, P) . 

Proof. The algorithm starts with determining the shortest distance 

of intermediate elements having storage capacity at least the sum 

of movement capacity from left elements through s − t paths. We 

fix the priority order of elements as follows: The first priority is 

given to the sink element. The second priority is for the farthest 

element from the source, the third priority for the second farthest 

element and so on. Prioritized elements are shifted to the dummy 

6 
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Fig. 4. Storage of flow at dummy ports and sink before switching the paths (classical).

ports and form a compatible sequence with the same priority or- 

dering. 

For the network with abstract path-system N 

′ 
i 

= (E ′ , P 

′ 
i 
) , 

the set inclusion holds i.e., N 

′ 
i 

⊆ N 

′ 
i +1 

, for i = 0 , 1 , . . . , r − 1 . 

Theorem 3.2 assures the existence of a lexicographic abstract max- 

imum flow in N 

′ 
i 

which is computed using Kappmeier’s algorithm. 

At last, we transform the solution obtained in N 

′ to the original

network N by removing dummy ports and sending back the flows

to their respective intermediate elements. Thus the solution ob- 

tained is an abstract maximum static flow with intermediate stor- 

age in N = (E, P) . �

It is to be noted that the maximum flow entering at sink t is 

an abstract maximum static flow without intermediate storage. 

Corollary 3.4. Abstract maximum static flow problem with interme- 

diate storage can be solved in polynomial time by using Algorithm 1 . 

Proof. Since the shortest distance of each intermediate element 

can be obtained in O (| E| 2 ) times and priority ordering with respect 

to the distance can be calculated in linear time, Steps 1 and 2 can 

be solved in polynomial time. After fixing the priority order of in- 

termediate elements, the problem is transformed to a single source 

and multi-sink problem and by using Kappmeier (2015) , Step 4 can 

be obtained in polynomial time. Similarly, a transformation of the 

solution to the original network can be obtained in linear time. So, 

Algorithm 1 solves an abstract maximum static flow problem with 

intermediate storage in polynomial time complexity. �

Example 2. Here, we continue Example 1 to find the static so- 

lution with intermediate storage before and after the switching 

of paths. In Example 1 , we created a set of dummy ports D 

′ = 

{ f ′ , b ′ , e ′ , c ′ , a ′ } and a compatible sequence D = D 

′ ∪ { t} . Now, we 

obtain the solution by using lexicographically maximum static flow 

and restore it at sink and dummy ports with priority order. Finally, 

dummy ports and dummy paths are removed to get a maximum 

static flow with intermediate storage. 

Fig. 4 represents the flow with intermediate storage in reconfig- 

ured classical network (without switching of paths) where flow is 

transmitted through six paths P 1 , P 2 , P 3 , P 4 , P 5 and P 6 by extending 

to respective compatible dummy ports. The numbers in between 

the elements represent the movement capacity, flow and cost of 

the path segment. Similarly in reconfigured abstract network, flow 

is transmitted through four paths P 3 , P 4 , P 5 and P 6 by extending to 

respective compatible dummy ports after switching of paths P 1 and 

P 2 which is shown in Fig. 5 and also in Table 1 . Being minimum 

cost path, flow is first send to the path P 3 = (s, a, b, t) . As the com- 

patible sequence of sink and intermediate elements is { t, b ′ , a ′ } , the 

flow of 5 units is transmitted to the sink t through this path. Now, 

possible maximum excess flow is send to b ′ through two possi- 

ble paths (s, a, b, t, b ′ ) and (s, a, b, b ′ ) . As the first path (s, a, b, t, b ′ ) 
is already saturated, only 1 unit of excess flow can be reached to 

b ′ . Similarly, the 4 units flow at a is diverged towards e , no excess 

flow is stored at a ′ . This process is simultaneously used for all pos- 

sible paths. At last, the flow at each dummy port is transformed to 

the respective element. 

It is to be noted in Fig. 5 that the 5 units of flow reach- 

ing e through two paths (4 from a and 1 from c) are not been 

merged at e but diverged to non-crossing sides by some traffic sig- 

nal mechanism; and excess flows are stored at appropriate shel- 

ter. Otherwise, it becomes a classical network flow. Out of the 

4 units of flow reaching e from a , 1 unit is switched to b due 

to the switching property, and the remaining 3 units are stored 

as excess flow. On the other hand, the 1 unit of flow reaching 

e from c is switched to f with no excess flow. Thus, two flows 

from different paths are not crossing at e but diverging from the 

intersection. 

The total amount of flow pushed from the source element be- 

fore switching the paths (i.e. classical network) without interme- 

diate storage is 9 units whereas with intermediate storage is 16 

units ( Fig. 6 (a)). Fig. 6 (b) shows the flow at sink and excess flow at 

intermediate elements after switching the paths. Total amount of 

flow pushed from source element without intermediate storage is 

8 units whereas with intermediate storage is 16 units, which em- 

phasize the importance of intermediate storage in the abstract net- 

work. Table 1 represents the flow pattern in each path with inter- 

mediate storage. 

7
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Fig. 5. Storage of flow at dummy ports and sink after switching the paths (abstract). 

Fig. 6. (a) Solution before switching the paths (b) Solution after switching the paths. 

Table 1 

Classical and abstract path-flows with intermediate storage. 

Intermediate storage: Classical Intermediate storage: Abstract 

Path a c e b f t Path a c e b f t 

P 3 0 × × 1 × 5 P 3 0 × × 1 × 5 

P 5 0 × 0 1 × 0 P 5 0 × 3 1 × 0 

P 2 × 3 1 0 × 0 P 4 × 3 × × 0 2 

P 4 × 0 × × 0 2 P 6 × 0 0 × 0 1 

P 1 0 × 0 × 1 2 

P 6 × 0 0 × 0 0 

Total flow 0 3 1 2 1 9 Total flow 0 3 3 2 0 8 

×= element not used. 

3.2. Lexicographic abstract maximum static flow 

In the previous Section 3.1 , we derived the polynomial time 

solution procedure for an abstract maximum static flow problem 

with intermediate storage by using the concept of lexicographic 

abstract maximum flow without intermediate storage. In this sec- 

tion, we introduce the lexicographic abstract maximum flow prob- 

lem with intermediate storage in a single source multi-sink net- 

work and present a polynomial time algorithm to solve it. Let N = 

(E, P) be an abstract s − D network with E = { s } ∪ E I ∪ D , where 

D = { t 1 , . . . , t k } be a set of multiple sinks and other components 

have their usual meaning as defined above. 

Problem 2. Let N = (E, P) be a given abstract static s − D network. 

A lexicographic abstract maximum static flow problem with inter- 
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mediate storage is to find the maximum flow leaving the source 

element that is to be sent to sinks via s − D paths P ∈ P by allow- 

ing the maximum storage of excess flow at intermediate elements 

e via paths P [ s → e ] ∀ e ∈ E I with storage capacity v e ≥
∑ 

P∈P: a< P e 
u a . 

To solve the problem, we fix the priority of sinks with a com- 

patible sequence in the first stage. In the second stage, we do the 

same for intermediate elements and finally, in the third stage, we 

merge the first two stages with a priority of sinks followed by pri- 

ority of intermediate elements. 

Stage 1: Let D = { t 1 , t 2 , . . . , t k } be a given set of multiple sinks 

with d P [ s → t 1 ] 
> d P [ s → t 2 ] 

> . . . > d P [ s → t k ] 
. Then the priority ordering of 

sinks is t 1  t 2  · · ·  t k which respect their rankings. In the case 

of equal distance, priority is given arbitrarily. 

Stage 2: Let { e 1 , e 2 , . . . , e r } be the set of intermediate elements 

in E I with storage capacity more than the sum of movement capac- 

ity of incoming paths. Let d P [ s → e 1 ] 
> d P [ s → e 2 ] 

> . . . > d P [ s → e r ] 
. Then the 

priority ordering of intermediate elements are e 1  e 2  · · ·  e r 
which respect their rankings. In case of equal distance, priority is 

given arbitrarily. 

Stage 3: In this stage, we first merge Stage 1 and Stage 2 

with element priority order t 1  · · ·  t k  e 1  · · ·  e r . We cre- 

ate dummy ports { e ′ 
k +1 

, . . . , e ′ 
k + r } corresponding to { e 1 , . . . , e r } 

with the same priority ordering as in E I of Stage 2. Let D 

′ = 

{ t 1 , . . . , t k , e ′ k +1 
, . . . , e ′ 

k + r } be super sink with a compatible sequence 

of elements with priority order t 1  · · ·  t k  e ′ 
k +1 

 · · ·  e ′ 
k + r . 

As in previous section, we define the collection of paths as 

P 

′ 
0 = ∅ 

P 

′ 
i = P 

′ 
i −1 ∪ { P [ s → t i ] 

} for i = 1 , . . . , k 

P 

′ 
i = P 

′ 
i −1 ∪ { P [ s → e ′ 

i 
] } for i = k + 1 , . . . , k + r. 

Here, each abstract path-system N 

′ 
i 

= (E ′ , P 

′ 
i 
) for i = 

0 , 1 , . . . , k + r forms the abstract network satisfying the switch- 

ing property where E ′ = E ∪ { e ′ 
k +1 

, . . . , e ′ 
k + r } . We now present 

Algorithm 2 to solve Problem 2 . 

Algorithm 2: Lexicographic abstract maximum static flow al- 

gorithm. 

Input : Given abstract static network N = (E, P) . 

Output : Lexicographic abstract maximum static flow with 

intermediate storage. 

1. Fix the priority order t 1  · · ·  t k  e ′ 
k +1 

 · · ·  e ′ 
k + r as 

described in three stages. 

2. Construct the modified network N 

′ = (E ′ , P 

′ ) with single 

source s and compatible sequence of super sinks 

D 

′ = { t 1 , . . . , t k , e ′ k +1 
, . . . , e ′ 

k + r } . 
3. Compute the lexicographic abstract maximum static flow 

with priority ordering in Step~1 according to Kappmeier 

(2015). 

4. Transform the solution to the original network N by 

removing dummy ports and dummy paths. 

The existence of lexicographic abstract maximum flow in N 

′ 
i 

is 

as shown in Theorem 3.2 . We fix the priority of sink elements 

followed by the priority of intermediate elements and create su- 

per sink set D 

′ by including dummy ports to the given sink D . As 

in Theorem 3.3 , computation of lexicographic abstract maximum 

static flow with new path-system N 

′ 
i 

and intermediate storage can 

be obtained by Algorithm 2 . Thus the polynomial time complexity 

of Algorithm 2 can be proved as in Corollary 3.4 . 

Theorem 3.5. Algorithm 2 computes the lexicographic abstract max- 

imum static flow with intermediate storage in N = (E, P) in polyno- 

mial time complexity. 

4. Abstract maximum dynamic flow with intermediate storage 

In this section, we investigate the abstract maximum dynamic 

flow by allowing the storage of excess flow at intermediate ele- 

ments. We introduce the abstract maximum dynamic flow prob- 

lem and give its mathematical model with intermediate storage. As 

a solution procedure, we define the temporal paths and use lexi- 

cographic property on a compatible sequence of dummy ports to 

solve the problem in polynomial time. 

Now, we introduce the abstract maximum dynamic flow prob- 

lem with intermediate storage and mathematical model as follows. 

Problem 3. Let N = (E, P, τ, T ) be a given abstract dynamic net- 

work. An abstract maximum dynamic flow problem with interme- 

diate storage is to find the maximum flow leaving the source ele- 

ment that is to be sent to the sink via s − t paths P ∈ P by allow- 

ing the maximum storage of excess flow at intermediate elements 

e via paths P [ s → e ] ∀ e ∈ E I with storage capacity v e ≥
∑ 

P∈P: a< P e 
u a 

within given time horizon T . 

Mathematical Model. Let us consider N = (E, P, τ, T ) as the 

abstract dynamic network with temporal dimensions. Let τ : E → 

Z 

+ be a non-negative transit time of element e ∈ E that is neces- 

sary to transship flow from e to its right element and T ∈ T be 

a time horizon. If e and a are two consecutive elements on path 

P with e < P a , then flow traveling through e at time θ reaches a 

at time θ + τe . In discrete time setting, time horizon is discretized 

as T = { 0 , 1 , . . . , T } . For each s − t path P ∈ P , τP = 

∑ 

a ∈ P [ s → t) 
τa de- 

notes the traversal time of flow from s to t and τP [ s → e ] 
= 

∑ 

a ∈ P [ s → e ) 
τa 

denotes the traversal time of flow from s to intermediate element 

e through the path P [ s → e ] . 

Let ψ 

P (θ ) : P × T → R 

+ be the dynamic s − t path-flow reach- 

ing t at discrete time θ ∈ T and 

ˆ ψ e (θ ) : E I × T → R 

+ be the 

amount of excess flow stored at intermediate element e ∈ E I within 

time θ ∈ T . Let ψ 

P,out 
e = 

∑ 

P∈ A e ψ 

P and ψ 

P,in 
e = 

∑ 

P∈ B e ψ 

P denote the 

total outflow from e and inflow into e , respectively, whose differ- 

ence gives the excess flow. The linear programming formulation of 

abstract dynamic flow with intermediate storage is 

max 
∑ 

P∈P 

T ∑ 

θ= τP 

ψ 

P (θ ) + 

∑ 

e ∈ E I 

T ∑ 

θ= τP [ s → e ] 

ˆ ψ e (θ ) (6) 

s.t. 
∑ 

P∈P: e ∈ P 
ψ 

P (θ ) ≤ u e ∀ e ∈ E, θ ∈ T (7) 

ψ 

P,in 
e (θ ) − ψ 

P,out 
e (θ ) = 

ˆ ψ e (θ ) ∀ e ∈ E I , θ ∈ T (8) 

0 ≤ ˆ ψ e (θ ) ≤ v e ∀ e ∈ E I , θ ∈ T (9) 

ψ 

P ≥ 0 ∀ P ∈ P (10) 

The objective function in Eq. (6) is to maximize the total flow 

reaching at t and the excess flow stored at intermediate ele- 

ments within time horizon T . Eq. (7) represents the capacity con- 

straint of each element at θ ∈ T and the excess flow is repre- 

sented by Eq. (8) . Similarly, non-conservation of the flow at each 

time step θ is presented by the left inequality of Eq. (9) where 

the right inequality shows that the excess flow is bounded by 

the storage capacity of e at each time θ ∈ T . Eq. (10) represents 

the non-negativity of the flow on each path. For the existence of 

unique solution, the upper and lower bounds of the storage capac- 

ity for intermediate elements are taken as (1 + δe ) 
∑ 

P∈P: a< P e 
u a ≤

v e ≤ T 
∑ 

P∈P: a< P e 
u a ∀ e ∈ E I , 0 ≤ δe < T where, the lower bound is 

the necessary storage capacity and the upper bound is the suffi- 

cient storage capacity. Here, δe is a non-negative integer taken as 

the waiting time or delay of the flow at an element e . 

9 
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At first, we describe the formation of temporal paths in time 

expanded form and then present the solution procedure of Prob- 

lem 3 . As in a classical network, time expanded elements are ob- 

tained by creating T + 1 copies of the elements for each time step 

θ ∈ T . The set of time expanded elements is 

E T = { e θ : e ∈ E, θ ∈ T } , 
where e 0 represents the original set of elements in the given net- 

work. Flow starting from source element s at the time θ reaches to 

e along with a path P at time θ + 

∑ 

a ∈ P [ s → e ) 
τa . For each path P ∈ P , 

the temporal path P θ for each θ ∈ { 0 , 1 , . . . , T } is the copy of el- 

ements of P in which flow starts on it at the time θ and travels 

through path P . That is, 

P θ[ s → e ] = 

{ 

e β ∈ E T : e ∈ P, β = θ + 

∑ 

a ∈ P [ s → e ) 

τa 

} 

. 

If we replace arbitrary element e with sink element t , then it rep- 

resents a source-sink temporal path and it is simply denoted by P θ . 

The order of elements in temporal path P θ is the same as in P . The 

set of all temporal paths that reach to the intermediate element e 

and sink element t within time horizon T are 

P 

θ
[ s → e ] ,T = 

{ 

P θ[ s → e ] : P [ s → e ] ⊂ P ∈ P, θ ∈ T , θ + 

∑ 

a ∈ P [ s → e ) 

τa ≤ T 

} 

and 

P 

θ
T = 

{ 

P θ : P ∈ P, θ ∈ T , θ + 

∑ 

e ∈ P 
τe ≤ T 

} 

, 

respectively. 

The abstract path system (E T , P 

θ
T 
) may not be an abstract net- 

work because it may not satisfy the switching property, Kappmeier 

(2015) . To handle this problem, paths with delay in elements are 

essential. We define the delay function δ : P → { 0 , 1 , . . . , T } for 

each element in path P . Every flow traveling from s along with 

path P with delay pattern δ reaches to e ∈ P at time 
∑ 

a ∈ P [ s → e ) 
(τa + 

δa ) + δe . The temporal path with delay pattern is 

P δ[ s → e ] = 

{ 

e β ∈ E T : e ∈ P, β = 

∑ 

a ∈ P [ s → e ) 

(τa + δa ) + δe 

} 

. 

The order of elements in P δ is the same as in P . The set of temporal 

paths with delay pattern δ arriving at the intermediate element e 

and destination sink t within time T are 

P 

δ
[ s → e ] ,T = 

{ 

P δ[ s → e ] : P [ s → e ] ⊂ P ∈ P, δ ∈ { 0 , 1 , . . . , T } P , 

∑ 

a ∈ P [ s → e ) 

(τa + δa ) ≤ T 

} 

and 

P 

δ
T = 

{ 

P δ : P ∈ P, δ ∈ { 0 , 1 , . . . , T } P , ∑ 

e ∈ P 
(τe + δe ) ≤ T 

} 

, 

respectively. 

Example 3. To clarify the delay pattern, we consider an example 

with given transit times between the elements as presented in 

Fig. 7 . Here, P = { P I , P II , P I I I , P IV , P V } is the set of paths from s to t . 

Let T = 4 be given time horizon. Then, the temporal s − t paths P θ

with starting time θ from s are as follows: 

P 0 
I 

= s 0 − x 1 − t 2 , P 1 
I 

= s 1 − x 2 − t 3 , P 2 
I 

= s 2 − x 3 − t 4 

P 0 
II 

= s 0 − y 2 − t 3 , P 1 
II 

= s 1 − y 3 − t 4 

P 0 
I I I 

= s 0 − x 1 − y 2 − t 3 , P 1 
I I I 

= s 1 − x 2 − y 3 − t 4 

P 0 
IV 

= s 0 − y 2 − x 3 − t 4 

P 0 
V 

= s 0 − t 4 

Here, the temporal paths P 0 
I I I 

and P 0 
IV 

are crossing at y 2 at θ = 

2 . Due to switching property, paths are switched along s 0 − y 2 −
t 3 and s 0 − x 1 − y 2 − x 3 − t 4 . The second switched path does not 

belong to the path set and also forms a cycle x 1 − y 2 − x 3 . The cycle 

can be removed by taking path as s 0 − x 1 − t 4 but still it is not an 

abstract path as transit time from x to t is not 3 units but 1 unit. 

Thus the waiting time of δx = 2 is essential to form an abstract 

path. 

Lemma 4.1 ( Kappmeier (2015) ) . If an abstract network N = (E, P) 

preserves the order on paths, then the network N T = (E T , P 

δ
T 
) with 

path system P 

δ
T 

is an abstract network. 

For the solution procedure of Problem 3 , we first fix the prior- 

ity of sink and intermediate elements as in Section 3.1 , i.e., t  e 1 
e 2  · · ·  e r . By creating dummy ports e ′ for all e ∈ E I and denoting 

t as e ′ 
0 
, the compatible set of dummy ports D = { t = e ′ 

0 
, e ′ 

1 
, . . . , e ′ r } 

with same priority ordering e ′ 
0 

 e ′ 
1 

 · · ·  e ′ r is obtained. Now, the 

problem is transformed to a single source multi-sink abstract max- 

imum static flow problem. We solve the problem by using a lexi- 

cographic maximum flow of Kappmeier (2015) for each time step 

θ ∈ T in the reconfigured network N 

δ
i,T 

= (E i , P 

δ
i,T 

) with E i, = E ∪ D i , 

D i = { e ′ 
0 
, e ′ 

1 
, . . . , e ′ 

i 
} and P 

δ
i,T 

= P 

δ
T 

∪ P 

δ
[ s → e ′ 

i 
] ,T 

for all i = 0 , 1 , . . . , r. Fi- 

nally, dummy ports are removed to get the solution with inter- 

mediate storage. Here, we present a polynomial time algorithm to 

solve Problem 3 . 

Algorithm 3: Abstract maximum dynamic flow algorithm. 

Input : Given abstract dynamic network N = (E, P, τ, T ) . 

Output : Abstract maximum dynamic flow with intermediate 

storage on N . 

1. For each e ∈ E I with v e ≥
∑ 

P∈P: a< P e 

u a , compute the shortest 

distance d P [ s → e ] 
by taking transit time as cost and using 

Dijkstra’s algorithm. 

2. Fix the priority order as t = e 0  e 1  · · ·  e r with first 

priority to the sink t = e 0 and priority for intermediate 

elements as d P [ s → e i ] 
> d P [ s → e i +1 ] 

�⇒ e i  e i +1 , for i = 1 , 

. . . , r − 1 . 

3. Construct the modified network N 

′ = (E ′ , P 

′ ) with single 

source s and compatible sequence of multiple sinks with 

dummy ports D = { e ′ 
0 
, e ′ 

1 
, . . . , e ′ r } , where E ′ = E ∪ D and 

P 

′ = P ∪ { P [ s → e ′ r ] } . 
4. Set D i = { e ′ 

0 
, e ′ 

1 
, . . . , e ′ 

i 
} for all i = 0 , 1 , . . . , r so that 

D 0 ⊆ · · · ⊆ D r . 

5. Construct the reconfigured network N 

δ
i,T 

= (E i , P 

δ
i,T 

) with 

E i, = E ∪ D i and P 

δ
i,T 

= P 

δ
T 

∪ P 

δ
[ s → e ′ 

i 
] ,T 

for all i = 0 , 1 , . . . , r. 

6. For θ = 0 , 1 , . . . , T : 

For i = 0 , 1 , . . . , r: 

Compute the lexicographic abstract maximum static 

flow with priority ordering of Step~2 in 

N 

δ
i,T 

= (E i , P 

δ
i,T 

) using Kappmeier (2015). 

7. Transform the solution to the original network N by 

removing dummy ports and dummy paths. 

Theorem 4.2. An abstract maximum dynamic flow with intermediate 

storage obtained from Algorithm 3 is optimal. 

10 



U. Pyakurel, D.P. Khanal and T.N. Dhamala European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; July 20, 2022;16:13 ] 

Fig. 7. Dynamic network with transit times between the elements. 

Proof. In the first three steps of the algorithm, we fix the priority 

of intermediate elements and keep them in compatible sequence 

as described in the previous section. To use the lexicographic al- 

gorithm of Kappmeier, we obtain set D i = { e ′ 
0 
, e ′ 

1 
, . . . , e ′ 

i 
} for all 

i = 0 , 1 , . . . , r so that D 0 ⊆ · · · ⊆ D r . For this set inclusion in multi- 

ple sinks, we construct T time expanded temporal paths with de- 

lay pattern δ and obtain the reconfigured network N 

δ
i,T 

= (E i , P 

δ
i,T 

) 

where E i = E ∪ D i and P 

δ
i,T 

= P 

δ
T 

∪ P 

δ
[ s → e ′ 

i 
] ,T 

for i = 0 , 1 , . . . , r such 

that N 

δ
i,T 

⊆ N 

δ
i +1 ,T 

. Flow at sink t = e ′ 
0 

is obtained through temporal 

paths in temporally repeated fashion within time horizon T . At the 

mean time, excess flows are stored at intermediate elements with 

respect to their priority order. After this, priority is given to ele- 

ment e ′ 1 and flow is sent through path P 

δ
[ s → e ′ 

1 
] ,T 

satisfying the stor- 

age capacity constraints within time T together with storing ex- 

cess flow on the rest of the prioritized intermediate elements along 

the path. This process continues as long as all prioritized elements 

have storage capacity and sufficient time to reach the flow. Each it- 

eration of Step 6 executes the flow sent from s at time θ = 0 , . . . , T 

and reaches lexicographically in each e ′ 
i 

within time horizon T . So 

Step 6 provides a feasible solution. At last, flow stored at dummy 

ports e ′ 
i 

are replaced at corresponding intermediate elements e i to 

get feasible abstract dynamic flow with intermediate storage. 

Feasible flow obtained by Algorithm 3 is optimal because lex- 

icographic abstract maximum flow obtained in Step 6 is optimal. 

Due to dummy ports, every element e ∈ E I satisfies flow conserva- 

tion at every time step θ . As prioritized abstract maximum flow at 

each dummy port is shifted to the corresponding intermediate ele- 

ment without changing flow at sink t , it gives the optimal abstract 

maximum dynamic flow with intermediate storage. �

Observation 4.3. The abstract maximum dynamic flow at the sink 

is obtained by using temporally repeated flow along paths in P 

δ
T 

. 

To calculate the flow at intermediate elements, temporally re- 

peated paths are used but not temporally repeated flow because 

flow value on paths P 

δ
[ s → e ] ,T 

may change over time due to insuffi- 

cient storage capacity. 

Lemma 4.4. Algorithm 3 computes an abstract maximum dynamic 

flow with intermediate storage in polynomial time complexity. 

Proof. Step 1 of Algorithm 3 can be computed in O (| E| 2 ) time. 

Steps 2-5 and Step 7 are used to fix the priority of elements, 

arranging in a compatible sequence and reformation of a net- 

work, which can be done in linear time. As in Kappmeier, Ma- 

tuschke, and Peis (2014) , maximum abstract flow over time at sink 

t can be computed in time μ(| E| , log (u max ) , log (T )) . O(P ) , where 

μ is a polynomial, u max = max e ∈ E u e , and O(P ) denotes the time 

needed by a call of the oracle O for the abstract network path 

P ∈ P 

δ
i,T 

. It is to be noted that, if Q ⊆ E be a set of elements, 

then for all P ∈ P 

δ
i,T 

the oracle O returns a violating path P to- 

gether with the order < P of its elements such that P ⊆ Q or ver- 

ifies that there is no path contained in Q . Again, flows at r dummy 

ports can be obtained in time r[ μ(| E| , log (u max ) , log (T )) . O(P )] 

and so Algorithm 3 solves an abstract maximum dynamic flow 

problem with intermediate storage within the time complexity of 

r[ μ(| E| , log (u max ) , log (T )) . O(P )] . �

Example 4. Consider an abstract network presented in Fig. 2 of 

Example 1 by taking cost c as the transit time τ and time horizon 

T = 10 . We aim to find an abstract maximum dynamic flow with 

intermediate storage. As in Algorithm 3 , we push the flow up to 

the sink as the first priority for each time step θ and successively 

in intermediate elements along the path with respect to priority 

order which is illustrated in detail in Table 2 . 

The total amount of flow reached at sink t in time T = 10 is 35 

units whereas intermediate elements f , b and e store 9, 31 and 31 

units, respectively. Flow leaving through path P [ s → c] at time θ = 9 

can store only 3 units at c because of insufficient storage capacity. 

Similarly, only 4 units of flow through P [ s → a ] can store a at θ = 

10 due to insufficient storage capacity. Total amount of flow sent 

from s within time T = 10 is 161 units which are stored at different 

elements as follows: ˆ ψ t = 35 , ˆ ψ f = 9 , ˆ ψ b = 31 , ˆ ψ e = 31 , ˆ ψ c = 35 

and 

ˆ ψ a = 20 . The detailed information (regarding paths and flow 

values) is given in Table 2 below. 

Abstract s − t paths after switching: 

Abstract intermediate paths after switching: 

P 5 = (s, a, e, b, t) , τP 5 = 6 , ψ P 5 = 1 P [ s → b] , P [ s → e ] , P [ s → a ] 

P 3 = (s, a, b, t) , τP 3 = 6 , ψ P 3 = 4 P [ s → b] , P [ s → a ] 

P 6 = (s, c, e, f, t) , τP 6 = 9 , ψ P 6 = 1 P [ s → f ] , P [ s → e ] , P [ s → c] 

P 4 = (s, c, f, t) , τP 4 = 7 , ψ P 4 = 2 P [ s → f ] , P [ s → c] 

Time horizon T = 10 

11 
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Table 2 

Abstract flow with intermediate storage in each time θ . 

Path Start time a c e b f t Reaching time 

at s at last element 

P 5 θ = 0 0 × 3 0 × 1 θ = 6 

P 5 θ = 1 0 × 3 0 × 1 θ = 7 

P 5 θ = 2 0 × 3 0 × 1 θ = 8 

P 5 θ = 3 0 × 3 0 × 1 θ = 9 

P 5 θ = 4 0 × 3 0 × 1 θ = 10 

P [ s → b] θ = 5 0 × 3 1 × × θ = 8 

P [ s → b] θ = 6 0 × 3 1 × × θ = 9 

P [ s → b] θ = 7 0 × 3 1 × × θ = 10 

P [ s → e ] θ = 8 0 × 4 × × × θ = 10 

P [ s → a ] θ = 9 4 × × × × × θ = 9 

P [ s → a ] θ = 10 4 × × × × × θ = 10 

P 3 θ = 0 0 × × 2 × 4 θ = 6 

P 3 θ = 1 0 × × 2 × 4 θ = 7 

P 3 θ = 2 0 × × 2 × 4 θ = 8 

P 3 θ = 3 0 × × 2 × 4 θ = 9 

P 3 θ = 4 0 × × 2 × 4 θ = 10 

P [ s → b] θ = 5 0 × × 6 × × θ = 8 

P [ s → b] θ = 6 0 × × 6 × × θ = 9 

P [ s → b] θ = 7 0 × × 6 × × θ = 10 

P [ s → a ] θ = 8 6 × × × × × θ = 8 

P [ s → a ] θ = 9 6 × × × × × θ = 9 

P [ s → a ] θ = 10 0 × × × × × storage full 

P 4 θ = 0 × 3 × × 0 2 θ = 7 

P 4 θ = 1 × 3 × × 0 2 θ = 8 

P 4 θ = 2 × 3 × × 0 2 θ = 9 

P 4 θ = 3 × 3 × × 0 2 θ = 10 

P [ s → f ] θ = 4 × 3 × × 2 × θ = 8 

P [ s → f ] θ = 5 × 3 × × 2 × θ = 9 

P [ s → f ] θ = 6 × 3 × × 2 × θ = 10 

P [ s → c] θ = 7 × 5 × × × × θ = 8 

P [ s → c] θ = 8 × 5 × × × × θ = 9 

P [ s → c] θ = 9 × 3 × × × × θ = 10 

P 6 θ = 0 × 0 0 × 0 1 θ = 9 

P 6 θ = 1 × 0 0 × 0 1 θ = 10 

P [ s → f ] θ = 2 × 0 0 × 1 × θ = 8 

P [ s → f ] θ = 3 × 0 0 × 1 × θ = 9 

P [ s → f ] θ = 4 × 0 0 × 1 × θ = 10 

P [ s → e ] θ = 5 × 0 1 × × × θ = 8 

P [ s → e ] θ = 6 × 0 1 × × × θ = 9 

P [ s → e ] θ = 7 × 0 1 × × × θ = 10 

P [ s → c] θ = 8 × 1 × × × × θ = 9 

P [ s → c] θ = 9 × 0 × × × × storage full 

Total flow stored 20 35 31 31 9 35 Total = 161 

×= element not used 

Here, the waiting pattern of each element is 0 because no two 

successive common elements appeared in crossing of paths. 

The storage pattern of each element can be represented by the 

time expanded network as shown in Fig. 8 . 

4.1. Temporally repeated abstract flow with upper bound (sufficient) 

storage capacity 

If the storage capacity of each prioritized intermediate element 

equals its upper bound (i.e. v e = T 
∑ 

P∈P: a< P e 
u a ∀ e ∈ E I ) , then the 

flow value can be obtained by using temporally repeated flow on 

sink and intermediate elements through paths with waiting pat- 

tern δ as follows: 

For e 0 = t and P ∈ P 

δ
T with ψ 

P = min { u a : a ∈ P } , 
| ψ | e 0 ,T = 

∑ 

P 

(T − τP + 1) .ψ 

P 

For intermediate element e i ∈ E I and P [ s → e i ] 
∈ P 

δ
[ s → e i ] ,T 

⊆ P 

δ
T 

with 

e i < P e j , 

| ψ | e i ,T = 

∑ 

P [ s → e i ] 

[ (
T − τP [ s → e j ] 

+ 1 

)
.ψ e i + 

(
τP [ s → e j ] 

− τP [ s → e i ] 

)
.ψ 

P [ s → e i ] 

] 

where, | ψ | e i ,T is the net flow at element e i within time T , 

ψ 

P [ s → e i ] = min { u a : a ∈ P [ s → e i ) 
} and τP [ s → e i ] 

= 

∑ 

a ∈ P [ s → e i ) 
(τa + δa ) . 

To use the temporally repeated flow in Example 4 , we take suf- 

ficient storage capacity on each intermediate element. The path de- 

composition of flow in prioritized order of elements is presented 

in Fig. 9 . Numbers indicated between the elements are flow and 

transit time. 

The total amount of flow that can be pushed from the source 

within time T = 10 is 170 units. By using temporally repeated flow, 

amount of flow stored at sink and intermediate elements are as 

follows: ˆ ψ t = 35 , ˆ ψ f = 9 , ˆ ψ b = 31 , ˆ ψ e = 31 , ˆ ψ c = 38 and 

ˆ ψ a = 26 . 

Theorem 4.5. The maximum dynamic abstract flow with intermedi- 

ate storage obtained by using temporally repeated flow is optimal for 

the sink as well as each intermediate element. 

Proof. First, we prove the feasibility of the flow. Since flow on each 

decomposed path is the bottleneck movement capacity of elements 

along the path, the flow on each path P and P [ s → e i ] 
satisfies the 

capacity constraints. The flow conservation is due to dummy ports, 

so each flow on the path is feasible. 

Due to priority ordering, the first prioritized flow at sink t

is optimally obtained by using a temporally repeated flow of 

12 
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Fig. 8. Time expanded network with intermediate storage where numbers inside the circle represent the storage of flow at each time step. The pink circle shows the element 

with full of capacity. 

Fig. 9. Path decomposition of abstract flow after switching . 
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Ford and Fulkerson (1956) . In the meantime, excess flows are 

stored at prioritized intermediate elements. To obtain the flow at 

each prioritized intermediate element e i , the bottleneck movement 

capacity of elements along each decomposed paths reaching the 

element are temporally repeated within time deviation (τP [ s → e j ] 
−

τP [ s → e i ] 
) for e i < P e j . No more flow can reach this intermediate ele- 

ment within time horizon T . Thus, the sum of temporally repeated 

excess flow within time (T − τP [ s → e j ] 
+ 1) and the temporally re- 

peated path flow reaching e i within time (τP [ s → e j ] 
− τP [ s → e i ] 

) is op- 

timal for e i < P e j . Again, the total amount of flow at e i does not 

exceed T 
∑ 

P∈P: a< P e 
u a ∀ e i ∈ E I , so every intermediate element holds 

optimal flow within the time horizon T . �

If the storage capacity v e is less than the sufficient storage ca- 

pacity (i.e., v e < T 
∑ 

P∈P: a< P e 
u a ), then the temporally repeated for- 

mula may not hold for intermediate elements because storage ca- 

pacity may be insufficient to store the flow after some iterations. 

This is clearly shown in Table 2 and Fig. 8 of Example 4 . 

5. Abstract contraflow with intermediate storage 

In this section, we discuss the evacuation problem with con- 

traflow configuration in an abstract network where intermediate 

storage of the flow is allowed. In a two-way abstract network, con- 

traflow means reversal of oppositely directed paths towards the 

destination element to improve the flow and reduce the evacuation 

time. We discuss two different aspects of transit times, symmetric 

and asymmetric, between pair of elements along the oppositely di- 

rected paths. 

5.1. Contraflow with symmetric transit times 

Let N = (E, 
←→ P , τ, T ) be an abstract dynamic network, where E

represents the set of elements and 

←→ P = 

−→ 

P ∪ 

← −
P ∪ 

−→ 

P [ s → e ] ∪ 

← −
P [ e → s ] 

represents the set of two-way paths. Here, 
−→ 

P and 

← −
P represent 

forward ( P [ s → t] ) and backward ( 
← −
P [ t→ s ] ) source-sink paths, respec- 

tively. Similarly, 
−→ 

P [ s → e ] and 

← −
P [ e → s ] represent forward and back- 

ward intermediate paths from s to e and e to s , respectively. Let 

τ : E → Z 

+ be a symmetric transit time between pair of consecu- 

tive elements along a path so that τ−→ 

P [ e → a ] 
= τ← −

P [ a → e ] 
with e < 

−→ 

P 
a 

and a < 

← −
P 

e . Clearly, τ−→ 

P 
= τ← −

P 
and τ−→ 

P [ s → e ] 
= τ← −

P [ e → s ] 
. Temporal com- 

ponent T represents the time horizon. For static network, transit 

time τ is considered as cost c and time horizon T is absent. Con- 

trary to the general abstract network, it is possible to have incom- 

ing movement capacity to the source and outgoing movement ca- 

pacity from the sink as non-negative integer for the two way ab- 

stract network. 

Problem 4. For a given abstract static (dynamic) network N = 

(E, 
←→ P ) ( N = (E, 

←→ P , τ, T ) ), the abstract static (dynamic) maximum 

contraflow problem with intermediate storage is to find the maxi- 

mum flow leaving the source element that is to be sent to sink via 

s − t paths 
−→ 

P ∪ 

← −
P and allowing the storage of excess flow at in- 

termediate elements e via paths 
−→ 

P [ s → e ] ∪ 

← −
P [ e → s ] ∀ e ∈ E I with stor- 

age capacity v e ≥
∑ 

P∈P: a< 
P ′ e u a ; P ′ = 

−→ 

P ∪ 

← −
P (within a given time 

horizon T ) by reversing the direction of paths 
← −
P and 

← −
P [ e → s ] at 

time zero. 

To solve the problem, we first construct an auxiliary network 

by adding two-way movement capacities between two consecutive 

elements. We denote auxiliary network N̄ = (E, P̄ , τ̄ , T ) where P̄ is 

obtained by reverting the direction of paths 
← −
P and 

← −
P [ e → s ] at time 

zero. The movement capacity ū e and transit time τ̄e are defined 

as follows: For any two consecutive elements e and a with e < 

−→ 

P 
a and a < 

← −
P 

e 

ū e = u 

e : e ∈ −→ 

P 
+ u 

a : a ∈ ← −
P 

where u 
a : a ∈ ← −

P 
= 0 if a / ∈ 

← −
P and 

τ̄e = 

{
τ

e : e ∈ −→ 

P 
if e < 

−→ 

P 
a 

τ
a : a ∈ ← −

P 
otherwise. 

We now present a generic algorithm to solve abstract con- 

traflow problems. We first transform the given two-way network 

to an auxiliary network N̄ = (E, P̄ ) and construct cycle free paths 

on N̄ . On these cycle free paths, we solve abstract maximum static 

and lexicographic abstract maximum static flow problems as de- 

scribed in Section 3 and use Algorithm 4 to obtain an optimal so- 

lution to the corresponding contraflow problems with intermediate 

storage. In these static cases, transit times are considered as costs. 

Similarly, in Step 2 of Algorithm 4 , we solve the abstract maximum 

dynamic flow problem on the auxiliary network via cycle free path 

as in Section 4 , which gives the optimal solution to the abstract 

maximum dynamic contraflow problem with intermediate storage. 

Algorithm 4: Generic algorithm for abstract maximum con- 

traflow problems. 

Input : Given abstract two-way network N = (E, 
←→ P ) . 

Output : Abstract maximum contraflow with intermediate 

storage. 

1. Construct an auxiliary network N̄ = (E, P̄ ) . 

2. Construct cycle free paths on N̄ satisfying the switching 

property. 

3. Compute abstract maximum flow with intermediate storage. 

4. A path 

← −
P / 

← −
P [ e → s ] is reversed if and only if the flow along 

with path 

−→ 

P / 
−→ 

P [ s → e ] is greater than its capacity or if there 

is a non-negative flow along path with 

−→ 

P / 
−→ 

P [ s → e ] / ∈ 

←→ P and 

the resulting flow is maximum abstract flow with the path 

reversals for the network N . 

Since Step 1 and Step 2 of Algorithm 4 can be computed in 

O (E) time and Step 3 can be obtained in polynomial time com- 

plexity (using Algorithm 1 for static, Algorithm 2 for lexicographic 

and Algorithm 3 for dynamic problems), the polynomial time solv- 

ability of Algorithm 4 is at hand. 

Theorem 5.1. Algorithm 4 solves the abstract maximum contraflow 

problems with symmetric transit times in polynomial time complexity. 

So far we discussed about the contraflow with symmetric tran- 

sit times on the anti-parallel paths. But it is not always neces- 

sary to have the same transit times on the anti-parallel paths be- 

tween pair of elements. Such transit times are known as asym- 

metric transit times. In such cases, symmetric reversal (i.e. rever- 

sal with same capacity and transit times as before the reversal) of 

paths can be possible by taking an additional artificial element in 

the reversed path with capacity and transit times as u, τ2 in both 

halves of the reversed path. As the parallel reversal is the sym- 

metric reversal, we can apply the algorithm of Rebennack et al. 

(2010) , Pyakurel et al. (2019b) , Pyakurel et al. (2019a) to solve 

the contraflow problem without intermediate storage and Pyakurel 

and Dempe (2020) in case of intermediate storage. Hereafter, we 

present the contraflow technique in which reversal of paths are 

made with asymmetric transit time by taking direction dependent 

transit times. 
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5.2. Contraflow with asymmetric transit times 

In two-way network topology, if transit times along the anti- 

parallel paths between two consecutive elements are not identical 

then it is known as a network with asymmetric transit times. Nath, 

Pyakurel, and Dhamala (2021) considered the orientation depen- 

dent asymmetric transit times of reversed lanes in general form 

and presented strongly polynomial time algorithms to solve single 

source-sink maximum dynamic and quickest contraflow problems. 

Here, we discuss on abstract contraflow problem with intermediate 

storage by taking direction dependent transit times. 

Let N = (E, 
←→ P , τ, T ) be an abstract dynamic network with 

asymmetric transit time τ : E → Z 

+ between pair of consecutive 

elements along a path so that τ−→ 

P [ e → a ] 
� = τ← −

P [ a → e ] 
with e < 

−→ 

P 
a and 

a < 

← −
P 

e . We construct an auxiliary network N̄ = (E, P̄ , τ̄ , T ) where 

P̄ is obtained by reversing the direction of paths 
← −
P and 

← −
P [ e → s ] 

at time zero. For any two consecutive elements e and a with 

e < 

−→ 

P 
a and a < 

← −
P 

e , we define movement capacity ū e and transit 

time τ̄e as 

ū e = u 

e : e ∈ −→ 

P 
+ u 

a : a ∈ ← −
P 

where u 
a : a ∈ ← −

P 
= 0 if a / ∈ 

← −
P and 

τ̄e = 

{
τ

e : e ∈ −→ 

P 
if e < P̄ a 

τ
a : a ∈ ← −

P 
if a < P̄ e or � 

−→ 

P : e < 

−→ 

P 
a 

∀ ̄P ∈ P̄ . 

It is to be noted that if there is no path segment between two 

adjacent elements along the orientation of auxiliary network, then 

transit time of the auxiliary path is taken as the symmetric reversal 

of the opposite path segment. 

Here, the transit time τ̄e of the auxiliary network depends on 

the direction of the abstract path after contraflow P̄ ∈ P̄ . By us- 

ing Algorithm 4 , the optimal solution to abstract maximum static, 

lexicographic abstract maximum static and abstract maximum dy- 

namic contraflow problems with intermediate storage can be ob- 

tained in a two-way network with asymmetric transit times, where 

transit time is considered as cost in static problems. For the asym- 

metric contraflow, we fix the priority of elements before the con- 

traflow configuration because the alternative path reversals be- 

tween the elements in the network grows exponentially with the 

number of path segments on the network which increases its com- 

putational complexity. Though priority order of the elements in 

our solution strategy is on the basis of distance, our algorithms 

can be used for any other priority order. 

Theorem 5.2. For contraflow network with asymmetric transit times, 

Algorithm 4 solves the abstract maximum contraflow problems in 

polynomial time complexity. 

In these contraflow configurations mentioned above, we add 

the capacity of each oppositely directed paths between two adja- 

cent elements to form undirected auxiliary network. While send- 

ing flow on abstract path, if the movement capacity of an element 

along the forward path segment is less then the bottleneck capac- 

ity of the path in auxiliary network then the reversal of backward 

path segment is essential. 

6. Continuous time abstract dynamic flow with intermediate 

storage 

In Section 4 and Section 5 , we discussed abstract dynamic flow 

and contraflow problems with intermediate storage in discrete 

time setting, where discrete dynamic flow function ψ is used to 

assign the flow from each element at each time step θ = 0 , . . . , T 

satisfying the capacity constraints. In this section, we discuss con- 

tinuous time abstract flow with intermediate storage. A continu- 

ous dynamic abstract flow function ψ̌ with intermediate storage is 

a Lebesgue-measurable function, which is defined as the flow rate 

per unit time that leaves each element at each moment of time by 

allowing the storage of excess flow at intermediate elements with- 

out violating the capacity constraints. 

Fleischer and Tardos (1998) established the strong relation be- 

tween discrete and continuous flow models by the notion of nat- 

ural transformation. This natural transformation defines the con- 

tinuous dynamic flow for a time interval [ θ, θ + 1) with ψ̌ i j [ θ, θ + 

1) = ψ i j (θ ) , where ψ i j (θ ) is the amount of discrete dynamic flow 

entering arc (i, j) , i, j ∈ E at each time step θ = 0 , . . . , T . Here, we 

use the same logic to transform the discrete time abstract flow 

to continuous time abstract flow with intermediate storage as fol- 

lows: any discrete abstract flow over time ψ 

P [ e → a ] (θ ) with integral 

time horizon T is equivalent to the continuous abstract flow over 

time ψ̌ 

P [ e → a ] [ θ, θ + 1) by incorporating the flow ψ 

P [ e → a ] leaving ele- 

ment e to a along path P with e < P a at time step θ ≤ T − τP [ e → a ] 
as 

a constant flow rate from e during the unit time interval [ θ, θ + 1) 

by allowing the storage of excess flow at intermediate elements. 

Mathematically, ∫ θ+1 

θ
ψ̌ 

P [ e → a ] (α) dα = ψ 

P [ e → a ] (θ ) ∀ e < P a. 

Using this natural transformation, problems defined in previous 

sections ( Sections 4 and 5 ) with continuous time settings can be 

solved in polynomial time complexity using their respective algo- 

rithms. 

7. Conclusion 

Abstract flow without intermediate storage has been well stud- 

ied in literature which permits the flow on path rather than on 

arc. By using complementary slackness condition on augmenting 

path structure, a polynomial time algorithm for abstract static flow 

problem has been obtained. The lexicographically maximum flow, 

maximum flow over time and earliest arrival flow problems have 

been solved efficiently in abstract networks. All these problems 

permit the flow conservation at intermediate elements in their so- 

lutions. 

In this paper, we have investigated the abstract flow mod- 

els with intermediate storage in static and dynamic networks. 

We have introduced the maximum static, lexicographic maximum 

static and maximum dynamic flow problems in the abstract net- 

work and presented polynomial time algorithms to solve them. We 

have derived temporally repeated flow with intermediate storage 

if the storage capacity of each element is sufficient, i.e., equals its 

upper bound. 

As contraflow is one of the best techniques to increase the out- 

bound capacity and minimize the transmission time, we have pre- 

sented a generic algorithm to solve maximum static, lexicographic 

maximum static and maximum dynamic flow problems in the ab- 

stract contraflow network with symmetric as well as asymmetric 

transit times. By using natural transformation in abstract network, 

we solved the maximum dynamic flow problem and maximum dy- 

namic contraflow problems in continuous time setting. 

To the best of our knowledge, abstract network flow models 

with intermediate storage, polynomial time solution to the maxi- 

mum static, lexicographic maximum static and maximum dynamic 

flow problems and formulation of temporally repeated flow with 

intermediate storage are introduced for the first time. Together 

with this, abstract contraflow problems for symmetric as well as 

asymmetric transit times are the novel work of this research. 
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Abstract: Network associated with the set of elements and linearly ordered subset of elements, known as paths,

satisfying the switching property is an abstract network. Due to the switching property, flows crossing at intersections

are diverted to the non-crossing sides. Each element of an abstract network is equipped with two types of integral

capacities: one is movement capacity which transships the flow from an element to its adjacent element and another

is the storage capacity which holds the flow at the element. Due to insufficient movement capacity of intermediate

elements, flow out from the source may not reach at the destination. If the flow out from the source is more than the

minimum cut capacity, then the problem associated with the settlement of excess flow at appropriate intermediate

elements is termed as network flow with intermediate storage. In this paper, we discuss the static and dynamic

flow models with intermediate storage in an abstract network using temporal repetition of flow. We solve abstract

maximum dynamic flow and contraflow problems with intermediate storage.

Keywords: Abstract network, maximum flow, switching property, temporally repeated flow, contraflow

1. Introduction

A disaster is a disruption occurring over a short or long period of time that causes massive loss

of human, material, economic or environment. A very efficient post disaster evacuation planning

is essential to minimize the losses. At the time of evacuation, evacuees are to be shifted from

danger zones (sources) to safety places (sinks) as quickly and efficiently as possible. In contrast to

evacuation planning problems based on the flow conservation constraints at intermediate elements,

evacuation planning problem with intermediate storage deals with the settlement of excess flow

at intermediate elements. By holding the excess flow not reaching to the destination at compar-

atively safer intermediate shelters, it maximizes the number of evacuees leaving the danger zone.

To address such problems in classical network, Pyakurel and Dempe [19] introduced the concept of

network flow with intermediate storage and presented polynomial time algorithm to solve the max-

imum dynamic flow problem. Pyakurel and Dempe [21] investigated universal maximum dynamic

flow with intermediate storage and presented efficient algorithms in general as well as two-terminal

Received: November, 2022 Accepted/ Published Online: December, 2022.
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series parallel networks. To transship more than one commodity, Khanal et al. [11] introduced

the maximum multicommodity flow problem with intermediate storage and presented efficient al-

gorithm to solve it. Not only in evacuation planning, intermediate storage is highly applicable for

different demand-supply chains like commodity supply, electricity distribution, water supply, etc.

In two way network topology, an important scenario after disaster is that the paths towards

the risk zones are almost empty (i.e., no flow on paths towards the danger zones). The optimal use

of empty paths to maximize the flow and minimize the time of evacuation is possible by a widely

accepted technique, known as contraflow configuration. Kim et al. [15] presented a greedy heuristic

to produce high quality solutions and a bottleneck heuristic to deal with large scale evacuations.

The strongly polynomial time algorithms for maximum and quickest contraflow problems in two

terminal network with discrete time settings can be found in Rebenack et al. [27]. In continuous-

time settings, Pyakurel and Dhamala [20] introduced the dynamic contraflow model. By using

the natural transformation of Fleischer and Tardos [3], they have presented efficient algorithms to

solve the maximum, quickest, and earliest arrival flow problems with lane reversals. Pyakurel et

al. [25] introduced the concept of partial lane reversals in which only necessary arc capacities are

reversed to increase the flow value and unused arc capacities are saved for other emergency purposes

like logistic supports and facility locations. Models and solution strategies of different problems

regarding the evacuation plannings with/without contraflow can be found in [1, 6, 10, 12, 14, 23].

A network with capacitated elements and linearly ordered subset of elements, called paths, is

an abstract network. When two paths in abstract network cross at an element then there must be

a path that is a subset of the first path up to the crossing element and a subset of second path after

the crossing element, known as switching property. Hoffman [7] introduced the concept of abstract

flow by reviewing the first proof of max-flow-min-cut theorem of Ford and Fulkerson [4] with flows

in term of paths rather than on arcs. McCormick[18] provided a polynomial time algorithm by using

an oracle where input is an arbitrary subset of elements whose output is either a path contained in

that subset or states that no such path exists. He used the augmenting path structure satisfying the

complementary slackness condition: every positive path meets the cut set exactly at one common

element and every element of the cut is saturated. Martens and McCormick [17] extended the

result of [18] in more general case by using additional attribute of weight on paths. Martens [16]

presented unsplittable and k-splitable abstract network flows. Similarly, Kappmeier [9] presented

polynomial algorithm for lexicographic abstract maximum flow and used it to prove the existence

of abstract earliest arrival flow.

The concept of continuous maximum abstract contraflow problem is introduced by Pyakurel

et al. [22]. They have presented polynomial time algorithms to solve the problems. Similarly,

Pyakurel et al. [26] introduced the partial contraflow approach in abstract network by saving unused

capacities of the elements, and presented efficient algorithms for static, lexicographically maximum

static, maximum dynamic and earliest arrival partial contraflow problems. The polynomial time

algorithms to solve the maximum static, lexicographic maximum static and maximum dynamic

flow problems in abstract network and abstract contraflow network with intermediate storage can

be found in Pyakurel et al. [24]. The have introduced the formula of temporally repeated flow to

solve maximum dynamic flow with intermediate storage if the holding capacity of nodes is sufficient.
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By introducing the partial switching property, Khanal et al. [13] solved an abstract quickest flow

problem with partial switching of paths.

For a given set of source-sink paths with fixed transit times, if the flow is sent along the de-

composed paths repeatedly over the time with constant rate of flow, is called temporally repeated

flow. Ford and Fulkerson [5] introduced the temporally repeated flow in which a stationary maxi-

mal dynamic flow can be obtained by solving a transshipment problem associated with the static

network. This flow is known to be an optimal dynamic flow. Using the concept of temporally

repeated flow in classical network, Kappmeier et al. [8] presented the temporally repeated abstract

flow to obtain abstract flow over time from source to the sink. Here, we introduce the temporally

repeated flow on an abstract network from the source element to the sink as well as each of the

intermediate elements. With the help of intermediate storage, it maximizes the flow out from the

source in polynomial time complexity.

In this paper, we present mathematical models for static and dynamic flow problems with

intermediate storage. We introduce a temporally repeated flow with intermediate storage to obtain

the abstract maximum dynamic flow (MDF) if the storage capacity of each intermediate element is

sufficient (i.e., T times the sum of incoming capacities from its left elements through the paths) and

present a polynomial time algorithm to solve MDF problem. We also present a maximum dynamic

contraflow (MDCF) problem with intermediate storage using the temporally repeated flow and

present polynomial time solution strategy. We organize the paper as follows. Section 2 provides

the basic definitions and mathematical formulations of the flow models. In Section 3, we introduce

abstract temporally repeated flow to solve the maximum dynamic flow problem with intermediate

storage. Similarly, we solve abstract temporally repeated MDCF problem with intermediate storage

in Section 4. The paper is concluded in Section 5. To the best of our knowledge, problems

introduced in Section 3 and Section 4 and their solution strategies with temporally repeated flow

are investigated for the first time.

2. Mathematical Formulation of Flow Models

In this section, we give basic mathematical denotations that are used throughout the paper. We

also present static as well as dynamic flow models for abstract network with intermediate storage.

2.1. Basic Denotations. Consider a network N = (E,P) with finite set of elements E and the

collection of paths

P = {P ⊆ E : P has a linear order <P of elements in P} ⊆ 2E .

The collection P of paths contains source-sink (s-t) paths P as well as intermediate paths P[s→e]

from source s ∈ E to an intermediate element e ∈ E. Each element e ∈ E has the non-negative

integral movement capacity ue : E → Z+ which is used to send flow from the element e to its

adjacent element and the storage capacity ve : E → Z+ which is used to hold flow at e. The order

of elements in the path P ∈ P is denoted by <P . An element a ∈ P is left of e on P if a <P e

and right of e if a >P e. Similarly, e ∈ P is said to be leftmost or first (rightmost or last) element

of P if there does not exist a in P such that a <P e (a >P e). For s-t path P , source s is the
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leftmost element and sink t is the rightmost element. Let EI = E \ {s, t} be the set of intermediate

elements.

Network N = (E,P) is an abstract network if it satisfies the switching property: ∀P,Q ∈ P
and intermediate element e ∈ P ∩Q, ∃R ∈ P such that R ⊆ P ×e Q

where,

P ×e Q = {a ∈ P : s ≤P a ≤P e} ∪ {a ∈ Q : e ≤Q a ≤Q t}.

Similar definition for switched path R ⊆ Q ×e P can be obtained. For simplicity, we use the

notations

P[s→e] = {a ∈ P : s ≤P a ≤P e} and P[e→t] = {a ∈ P : e ≤P a ≤P t}

to represent the elements on path P from source s up to e and that begins from e up to sink t,

respectively. Similarly,

P[s→e) = {a ∈ P : s ≤P a <P e}, and P(e→t] = {a ∈ P : e <P a ≤P t}

represent the elements on path P that are left of e and right of e, respectively. If P and Q are two

paths both containing e1 and e2, then it is possible to have e1 <P e2 but e1 >Q e2.

Throughout the paper, we consider that the storage capacity at source and sink elements are

sufficiently large, i.e., vs = vt ≤ ∞ and that of intermediate elements are finite. The movement

capacity of source and intermediate elements are finite (i.e., us <∞) and that of sink is zero (i.e.,

ut = 0). If the incoming movement capacity of an intermediate element e ∈ EI is more than the

outgoing movement capacity, then the excess flow is used to store at e. Moreover, for the uniqueness

of the solution, the storage capacity of e ∈ EI should be ve ≥
∑

P∈P:a∈P
ua ∀a <P e. Furthermore,

the incoming and outgoing movement capacities of source and sink are zero, respectively, except

for contraflow network.

2.2. Abstract Static Flow Model with Intermediate Storage. Consider an abstract network

N = (E,P) with path-flow xP : P → R+. Every path-flow xP induces a flow through each

element, denoted by xP (e) =
∑

P∈P:e∈P
xP . For all e ∈ E, if xP (e) ≤ ue and xP ≥ 0 then the path-

flow xP is feasible and an element e is said to be saturated with respect to x if xP (e) = ue. We

denote xoute =
∑

P∈Ae

xP and xine =
∑

P∈Be

xP as the total outflow from e and the total inflow into e,

respectively, where Ae and Be represent the set of outgoing paths from e and incoming paths into

e. Let ce : E → Z+ be the cost of transmission of flow per unit from e to its right element so that

cP =
∑

e∈P
ce.

Hoffman [7] generalized the max-flow-min-cut theorem of Ford and Fulkerson [4] for abstract

network flow without storage of flow at intermediate elements. Due to the bottleneck flow on each

paths, sending the flow with full movement capacity from source element greater than the minimum

cut capacity is impossible. To deal with this problem, Pyakurel and Dempe [19] introduced the

concept of intermediate storage for classical network flow. Using this concept in abstract network

flow, we aim to push the maximum flow outward from the source in which flow with minimum cut

capacity reaches to the sink and rest of the flow is to be stored at intermediate elements.
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We define the flow function xe : EI → R+ as the excess flow stored at element e ∈ EI . The

linear program for abstract static network flow with intermediate storage, as presented in [24], is

max
∑

P∈P
xP +

∑

e∈EI

xe(2.1)

s.t.
∑

P∈P:e∈P
xP ≤ ue ∀e ∈ E(2.2)

0 ≤ xine − xoute = xe ≤ ve ∀e ∈ EI(2.3)

xP ≥ 0 ∀P ∈ P(2.4)

ve ≥
∑

P∈P:a∈P
ua ∀e ∈ EI , a <P e(2.5)

Equation (2.1) is an objective function that refers to maximize the total flow reaching at sink t and

the excess flow stored at intermediate elements. Equation (2.2) represents the capacity constraint

of each element. The left inequality of Equation (2.3) represents the non-conservation of flow whose

right inequality indicates that the excess flow is bounded by the storage capacity of e. Similarly,

Equation (2.4) represents the non-negativity of the flow on each path and lower bound of storage

capacity is given in Equation (2.5).

2.3. Abstract Dynamic Flow Model with Intermediate Storage. Let us consider N =

(E,P, τ, T ) as the abstract dynamic network, where τ : E → Z+ be a non-negative transit time of

element e ∈ E that is necessary to transship the flow from e to its right element and T ∈ T be a

time horizon. If e and a are two consecutive elements on path P with e <P a, then flow traveling

through e at time θ reaches a at time θ+ τe. In discrete time setting, time horizon is discretized as

T = {0, 1, . . . , T}. For each s-t path P ∈ P, τP =
∑

a∈P[s→t)

τa denotes the traversal time of flow from

s to t and τP[s→e]
=

∑

a∈P[s→e)

τa denotes the traversal time of flow from s to intermediate element e

through the path P[s→e].

Let ψP (θ) : P × T → R+ be the dynamic s-t path-flow in discrete time θ ∈ T and ψe(θ) :

EI × T → R+ be the amount of excess flow stored at intermediate element e ∈ EI within time

θ ∈ T . Let ψout
e =

∑

P∈Ae

ψP and ψin
e =

∑

P∈Be

ψP denote the total outflow from e and inflow into e,

respectively. As in [24], the abstract dynamic flow model with intermediate storage is

max

T∑

θ=τP

∑

P∈P
ψP (θ) +

T∑

θ=τP[s→e]

∑

e∈EI

ψe(θ)(2.6)

s.t.
∑

P∈P:e∈P
ψP (θ) ≤ ue(θ) ∀e ∈ E, θ ∈ T(2.7)

0 ≤ ψin
e (θ)− ψout

e (θ) = ψe(θ) ≤ ve ∀e ∈ EI , θ ∈ T(2.8)

ψP ≥ 0 ∀P ∈ P(2.9)

ve ≥ T
∑

P∈P:a∈P
ua ∀e ∈ EI , a <P e,(2.10)
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The objective function in Equation (2.6) is to maximize the total flow reaching at t and the excess

flow stored at intermediate elements within time horizon T . Similarly, Equation (2.7) represents

the capacity constraint of each element at θ ∈ T and Equation (2.9) represents the non-negativity

of the flow on each path. Non-conservation of the flow at each time step θ is presented by the

left inequality of Equation 2.8 whose right inequality shows that the excess flow is bounded by the

storage capacity of e at each time θ ∈ T . The lower bounds of storage capacity of intermediate

elements is represented in Equation (2.10) which is essential for the existence of temporally repeated

flow.

3. Abstract Temporally Repeated MDF with Intermediate Storage

For a dynamic network N , let u and τ be non-negative capacity and transit time, respectively,

that are assigned to transship the flow from one element to its adjacent element via some path P .

As in Kappmeier [9], we define the the time expanded ground set ET by creating T + 1 copies of

elements for each time step θ ∈ T = {0, 1, . . . , T} as

ET = {eθ : e ∈ E, θ ∈ T }.

Flow starting from the source element at time θ reaches to an intermediate element e along path

P at θ +
∑

a∈P[s→e)
τa. The set of temporal paths P θ associated with path P ∈ P that start from

source element at time step θ is

P θ
[s→e] =



e

β ∈ ET : e ∈ E, β = θ +
∑

a∈P[s→e)

τa



 .

For the convenient notation, we use P θ instead of source-sink temporal paths P θ
[s→t]. The order of

elements in temporal path is same as in original path P . We represent the set of all paths reaching

to the intermediate element e and the sink element t within time horizon T by Pθ
[s→e],T and Pθ

T ,

respectively, and defined as

Pθ
[s→e],T =



P

θ
[s→e] : P[s→e] ⊂ P ∈ P, θ ∈ T , θ +

∑

a∈P[s→e)

τa ≤ T





and

Pθ
T =

{
P θ : P ∈ P, θ ∈ T , θ +

∑

e∈P
τe ≤ T

}
,

Since the paths in (ET ,Pθ
T ) may not satisfy the switching property, Kappmeier [9] presented

time expanded network to obtain abstract maximum dynamic flow where paths P δ with delay

pattern δ are used to satisfy the switching property. Using this concept, we define the set of

temporal paths with delay pattern δ arriving at the intermediate element e and destination sink t
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within time T as

Pδ
[s→e],T =



P

δ
[s→e] : P[s→e] ⊂ P ∈ P, δ ∈ {0, 1, . . . , T}P ,

∑

a∈P[s→e)

(τa + δa) ≤ T





and

Pδ
T =

{
P δ : P ∈ P, δ ∈ {0, 1, . . . , T}P ,

∑

e∈P
(τe + δe) ≤ T

}
,

respectively.

Lemma 3.1 ([9]). If an abstract network N = (E,P) preserves the order on paths, then the network

NT = (ET ,Pδ
T ) with path system Pδ

T is an abstract network.

Now, we introduce the abstract maximum dynamic flow problem with intermediate storage as

follows.

Problem 1. For a given abstract dynamic network N = (E,P, τ, T ), an abstract maximum dy-

namic flow problem with intermediate storage is to find the maximum flow leaving the source element

that is to be sent to the sink via s-t paths P ∈ P by allowing the maximum storage of excess flow at

intermediate elements e via paths P[s→e] ∀e ∈ EI with storage capacity ve ≥ T
∑

P∈P:a∈P
ua ∀a <P e

within the given time horizon T .

To solve the problem, we begin the procedure by fixing the priority of elements. As in Pyakurel

and Dempe [19], first priority is given to the sink to transship as much flow as possible. The excess

flow is to be stored at the intermediate elements with priority order as follows: For each e ∈ EI

with storage capacity ve ≥ T
∑

P∈P:a∈P
ua ∀a <P e, calculate the shortest distance dP[s→e]

from s by

using algorithm of Dijkstra [2]. It is to be noted that the temporally repeated solution exists only

if the elements have upper bound capacities. The minimum cost path is considered as the shortest

path and the priority is given to the farthest element among the elements of shortest distance. For

example, if dP[s→e1]
> dP[s→e2]

for e1, e2 ∈ EI , then e1 is higher in priority than e2 and is denoted

by e1 ≻ e2.
Let e1, . . . , er be r intermediate elements with priority order e1 ≻ e2 ≻ · · · ≻ er then set of all

prioritized element including sink is D = {t ≻ e1 ≻ · · · ≻ er}. For the notational convenient, if

we write t = e0 then set of prioritized elements becomes D = {e0 ≻ e1 ≻ · · · ≻ er}. As a solution

strategy, we introduce the temporally repeated solution with intermediate storage and present an

algorithm to solve Problem 1 herein.

3.1. Temporally Repeated Flow with Intermediate Storage. Temporally repeated flow,

introduced by Ford and Fulkerson, induces the maximum dynamic flow from the source to the

sink by repeating the constant rate of flow on source-sink paths with fixed transit times. Due to

the flow conservation constraint, every flow out from the source may not reach at the sink element.

Thus, the settlement of excess flow at intermediate elements plays an important role in evacuation

planning, [19]. To deal with this problem, we introduce the temporally repeated flow in abstract

network that transship the flow to the sink and intermediate elements with priority order which

maximizes the flow out from the source element.
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As the storage capacity of each prioritized intermediate element is ve ≥ T
∑

P∈P:a∈P
ua ∀e ∈

EI , a <P e, the temporally repeated flow on the sink and intermediate elements can be obtained

through the paths with waiting pattern δ as follows, [24]:

For e0 = t and P ∈ Pδ
T with ψP = min{ua : a ∈ P},

|ψ|e0,T =
∑

P

(T − τP + 1).ψP(3.1)

For intermediate element ei ∈ EI and P[s→ei] ∈ Pδ
[s→ei],T

⊆ Pδ
T with ei <P ej ,

|ψ|ei,T =
∑

P[s→ei]

[
(T − τP[s→ej ]

+ 1).ψei + (τP[s→ej ]
− τP[s→ei]

).ψP[s→ei]

]
(3.2)

where, |ψ|ei,T is the net flow at element ei within time T , ψP[s→ei]
= min{ua : a ∈ P[s→ei)} and

τP[s→ei]
=

∑

a∈P[s→ei)

(τa + δa).

Now we present an algorithm to solve Problem 1.

Algorithm 1: Abstract temporally repeated MDF algorithm with intermediate storage

Input : Given abstract dynamic network N = (E,P, τ, T ).
Output: Abstract temporally repeated MDF with intermediate storage on N .

(1) Compute the shortest distance dP[s→e]
∀e ∈ E by taking transit time as cost and using

Dijkstra’s algorithm.

(2) Fix the priority order as t = e0 ≻ e1 ≻ · · · ≻ er with first priority to the sink t = e0 and

priority for intermediate elements as dP[s→ei]
> dP[s→ei+1]

=⇒ ei ≻ ei+1, for

i = 1, . . . , r − 1.

(3) Calculate the temporally repeated flow for sink element by using Equation 3.1 and for the

the intermediate elements by using Equation 3.2.

Theorem 3.2. Abstract maximum dynamic flow with intermediate storage obtained by Algorithm 1

using temporally repeated flow is optimal for sink as well as each intermediate elements.

Proof. First we prove the feasibility of Algorithm 1. Step 1 is to find the shortest distance of each

element by using Dijkstra’s algorithm and Step 2 is to set priority order of elements, so both steps

are feasible. In Step 3, maximum flow at the sink element is obtained as in Ford and Fulkerson [5]

but for the intermediate elements, flow is stored using paths P[s→e], e ∈ EI within the time horizon

T . So, the flow obtained at each element is feasible.

Next, the optimality of Algorithm 1 is assured by the optimality of Step 3. The optimal flow

at sink element is obtained by [5]. Each flow out from the source element that can not reach the

sink is stored at either of the intermediate element in priority order. Thus, Algorithm 1 provides

the optimal abstract temporally repeated MDF with intermediate storage within the given time

horizon T . □

Theorem 3.3. Algorithm 1 solves Problem 1 in polynomial time.
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Proof. Since the time complexity of Step 1 is O(|E|2) and by sorting algorithm, complexity of Step 2

is O(|E| log(|E|)). Similarly, temporally repeated formula is applied for each element, so Step 3 can

be computed within the time O(|E|). Thus, Algorithm 1 solves an abstract MDF problem with

intermediate storage in polynomial time. □

4. Abstract Temporally Repeated MDCF with Intermediate Storage

In this subsection, we discuss the computation of an abstract maximum dynamic contraflow

(MDCF) problem with intermediate storage and solve it by using temporally repeated solution. In

two way network topology, contraflow means the reversal of the direction of movement capacity of

element towards the destination. At the time of disasters, every individual aims to move away from

the danger zones towards the safe zones so that paths towards the danger zone are almost empty.

Thus, contraflow technique helps to increase the movement capacity of elements by utilizing the

unused paths so that maximum amount of flow can be sent within the given time horizon.

Consider an abstract dynamic contraflow network N = (E,
←→P , τ, T ), where E represents the

set of elements and
←→P =

−→
P ∪←−P ∪ −→P [s→e] ∪

←−
P [e→s] represents the set of two-way paths. Here,

−→
P

and
←−
P represent forward (P[s→t]) and backward (P[t→s]) source-sink paths, respectively. Similarly,

we represent
−→
P [s→e] and

←−
P [e→s] for forward and backward intermediate paths, respectively. Our

assumption is that the time to transship the flow from an element to its adjacent element in either

direction is same. Let τ : E → Z+ be a symmetric transit time between pair of consecutive

elements along a path. Then, τ−→
P [e→a]

= τ←−
P [a→e]

with e <−→
P
a and a <←−

P
e so that τ−→

P
= τ←−

P
and

τ−→
P [s→e]

= τ←−
P [e→s]

. The temporal component T represents the time horizon. For static network,

transit time τ is considered as cost c and time horizon T is absent. Contrary to general abstract

network, incoming movement capacity to the source and outgoing movement capacity from the sink

are nonzero for abstract contraflow network. Here, we introduce an abstract MDCF problem with

intermediate storage and solve it by using temporally repeated flow.

Problem 2. For a given abstract dynamic network N = (E,
←→P , τ, T ), abstract maximum dynamic

contraflow problem with intermediate storage is to find the maximum flow leaving the source element

that is to be sent to sink via s-t paths
−→
P ∪←−P and allowing the storage of excess flow at intermediate

elements e via paths
−→
P [s→e] ∪

←−
P [e→s] ∀e ∈ EI with storage capacity ve ≥ T

∑

P∈P:a∈P ′
ua ∀a <P ′

e, P ′ =
−→
P ∪←−P within given time horizon T by reverting the direction of paths

←−
P and

←−
P [e→s] at

time zero.

To solve the problem, we construct an auxiliary network N̄ = (E, P̄, τ̄ , T ) by adding two-way

movement capacities between two consecutive elements. Here, P̄ represent the set of paths in an

auxiliary network obtained by reverting the direction of paths
←−
P and

←−
P [e→s] at time zero. The

movement capacity ūe and transit time τ̄e are defined as follows: For any two consecutive elements

e and a with e <−→
P
a and a <←−

P
e

ūe = u
e:e∈−→P + u

a:a∈←−P

where u
a:a∈←−P = 0 if a /∈ ←−P and
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τ̄e =

{
τ
e:e∈−→P if e <−→

P
a

τ
a:a∈←−P otherwise.

We now present an algorithm to solve abstract MDCF problems using temporally repeated

flow. We first transform the given two-way network to an auxiliary network N̄ = (E, P̄, τ̄ , T ) and
construct cycle free paths on N̄ . On these cycle free paths, we solve abstract maximum dynamic

flow problem as described in Section 3 by using Algorithm 1 to obtain optimal solution to the

corresponding contraflow problem with intermediate storage.

Algorithm 2: Abstract temporally repeated MDCF algorithm with intermediate storage

Input : Given abstract two-way network N = (E,
←→P , τ, T ).

Output: Abstract temporally repeated MDCF with intermediate storage on N .

(1) Construct an auxiliary network N̄ = (E, P̄, τ̄ , T ).
(2) Construct cycle free paths on N̄ satisfying the switching property.

(3) Compute abstract maximum dynamic flow on N̄ with intermediate storage using

Algorithm 1.

(4) A path
←−
P (
←−
P [e→s]) is reversed if and only if the flow along path

−→
P (
−→
P [s→e]) is greater than

its capacity or if there is a non-negative flow along path
−→
P (
−→
P [s→e]) /∈

←→P .

Theorem 4.1. An optimal solution to an abstract MDCF problem with intermediate storage can

be obtained from Algorithm 2 by using temporally repeated flow.

Proof. As each step of Algorithm 2 are feasible, solution obtained from it is feasible. The optimality

of Algorithm 2 is dominated by the optimality of Step 3. We compute the abstract MDF in

auxiliary network in polynomial time complexity by using Algorithm 1, which is optimal. So

Algorithm 2 provides an optimal solution to an abstract MDCF problem with intermediate storage

using temporally repeated flow. □

Here, Step 1 of Algorithm 2 can be computed in O(|E|) time and Step 2 can be obtained in

polynomial time, [8]. Similarly, Step 3 can be obtained in polynomial time complexity by using

Algorithm 1. So the polynomial time solvability of Algorithm 2 is at hand.

Theorem 4.2. Algorithm 2 solves the abstract MDCF problems with symmetric transit times in

polynomial time complexity.

5. Conclusion

Abstract network permits the flows on paths rather than on arcs satisfying the switching

property. In literature, the lexicographically maximum flow, maximum flow over time and earliest

arrival flow problems have been solved efficiently in abstract networks. In this paper, we have

presented the abstract flow models with intermediate storage in static and dynamic networks. We

have solved the MDF problem with intermediate storage by using temporally repeated flow in

polynomial time complexity. Similarly, for two way network topology, we have solved abstract
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MDCF problem by using temporally repeated flow and present a polynomial time algorithm to

solve it . To the best of our knowledge, temporally repeated flow with intermediate storage to solve

MDF and MDCF problems in an abstract network topology is introduced for the first time.
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