PARASITIC FAUNA OF RODENTS (RODENTIA: MURIDAE) TRAPPED IN KIRTIPUR AND ITS ZOONOTIC IMPORTANCE

A Thesis

Submitted

In partial fulfilment of the requirements for the award of the degree of Master of Science in Zoology with special paper Parasitology

Submitted to

Central Department of Zoology Institute of Science and Technology Tribhuvan University Kirtipur, Kathmandu Nepal

Submitted by

Robin Rana T.U. Registration No: 5-2-49-802-2004 T.U. Examination Roll No: 5871 Batch: 064/065

June, 2011

RECOMMENDATION

This is to recommend that the thesis entitled "PARASITIC FAUNA OF RODENTS (RODENTIA: MURIDAE) TRAPPED IN KIRTIPUR AND ITS ZOONOTIC IMPORTANCE" has been carried out by Robin Rana for the partial fulfillment of Master's Degree of Science in Zoology with special paper Parasitology. This is his original work and has been carried out under my supervision. To the best of my knowledge, this thesis work has not been submitted for any other degree.

Date:

Prof. Dr. Ranjana Gupta (Supervisor) Central Department of Zoology Tribhuvan University Kirtipur, Kathmandu, Nepal

LETTER OF APPROVAL

On the recommendation of supervisor Ranjana Gupta this thesis submitted by Robin Rana entitled "PARASITIC FAUNA OF RODENTS (RODENTIA: MURIDAE) TRAPPED IN KIRTIPUR AND ITS ZOONOTIC IMPORTANCE" is approved for the examination and submitted to the Tribhuvan University in partial fulfilment of the requirements for Master's Degree of Science in Zoology with special paper Parasitology.

Date:

Prof. Dr. Ranjana Gupta Head of Department Central Department of Zoology Tribhuvan University Kirtipur, Kathmandu, Nepal

CERTIFICATE OF APPROVAL

This thesis work submitted by Robin Rana entitled "PARASITIC FAUNA OF RODENTS (RODENTIA: MURIDAE) TRAPPED IN KIRTIPUR AND ITS ZOONOTIC IMPORTANCE" has been approved as a partial fulfillment for the requirements of Master's Degree of Science in Zoology with special paper Parasitology.

EVALUATION COMMITTEE

.....

Supervisor and Head of Department

Prof. Dr. Ranjana Gupta

.....

External examiner

•••••

Internal Examiner

Date:

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my honorable supervisor and head of the department **Prof, Dr. Ranjana Gupta**, Central Department of Zoology, T.U. for her valuable suggestions and constant guidance to carry on and complete this dissertation work.

I would also like to acknowledge **Dr. Mahendra Maharjan**, **Mr. Pitamber Dhakal**, **Mr. Janak Raj Subedi**, **Mr. Ashok Bahadur Bam** and **Mr. Prem Budha** lecturers CDZ, T.U. for their kind support and guidance. I would also like to express my thanks and best regards to all the staffs of CDZ, T.U.

I would also like to thank **Dr. Kedar Karki**, Central Veterinary Laboratory (**CVL**), for allowing me to use the lab and helping me in the identification of parasites.

I would like to acknowledge **Mr. Karan Bahadur Shah**, professor of CDZ and **Mr. Sanjan Thapa**, founder of SMCRF for helping in rodent identification.

I would also like to thank **Mr. Pooran Dass Dhaubaji Shrestha**, Rodent Control Technical Officer, Nepal Agricultural Research Council for his valuable suggestions relating rodent and rodent control.

I would like to express my deepest thanks to National Academy of Science and Technology (NAST) for providing scholarship for this research work. I would also like to thank SMCRF for the financial help for the rat traps.

I would like to thank my intimate colleagues Sony Bajracharya, Chanchala Duwal, Pritima Tiwari, Ramila Shrestha, Madhu Nepal, Sunil Poudel, Hemant Dhakal and Rahul Ranjan for their kind support throughout my dissertation work. Special thanks goes to my brother Kul Bahadur Somai, for his help on preparing poster of my thesis work. I am really blessed to have all of them and wish good luck for their future.

I would like to express my deepest gratitude to my respected parents for their support and inspiration in my whole academic career.

Last but not the least I would like to acknowledge all those persons who help me directly or indirectly to complete this work.

Robin Rana T.U. Registration No: 5-2-49-802-2004 T.U. Examination Roll No: 5871 Batch: 064/065

ABSTRACT

A total of 32 rodents (Rodentia: Muridae) belonging to seven species, (12 Rattus turkestanicus, 6 Rattus nitidus, 6 Rattus rattus, 3 Niviventer fulvescens, 3 Bandicota bengalensis, 1 Bandicota indica and 1 Mus cervicolar) were trapped from five different sites of Kirtipur during 2010-2011, using live traps. Almost all rodents (100%) were found to be infected with ecto-parasites. The most prevalent ecto-parasite was Polyplax spinulosa (87.5%) followed by Laelaps echidnina (78.125%), Xenopsylla cheopis (59.375%) and Ornithonyssus bacoti (28.125%). A total of 31 rodents (15 males and 16 females) were infected with endo-parasites thus giving an overall infection rate of 96.875%. Statistically $[t^2_{(cal)} = 2.0645$ and $t^2_{(tab)} = 3.84$, 1 d.f., P < 0.05] there was no major difference in the infection rate among the males and females. Ten different endoparasites were identified: 1 trematode, 2 cestodes, 6 nematodes and 1 acanthocephalan species. The identified endoparasites belonged to trematodes: Schistosoma sp.; nematode: Syphacia sp., Nippostrongylus sp., Capillaria hepatica, Heterakis sp., Physaloptera sp. and Aspiculuris sp.; cestodes: Hymenolepis diminuta, strobilocercus larvae of Taenia taeniaeformis and acanthocephalan: Moliniformis dubius. Among the ten species of helminthes identified, six species (60%) have been incriminated as zoonotic. The most prevalent helmith type was the cestode Taenia taeniaeformis (strobilocercus larva) (62.5%) followed by nematode Syphacia sp. (53.125%) and cestode Hymenolepis diminuta (12.5%). Prevalance of infected liver by the eggs of Capillaria sp. was 43.75%. The following parasites Schistosoma sp., Syphacia sp., Capillaria hepatica, Hymenolepis diminuta, Taenia taeniaeformis, and Moliniformis dubius are considered as zoonotic and are of medical importance. R. nitidus was found to harbor maximum number of endo-parasite than other rodent species. Statistically $[F_{(cal)} = 11.196]$ and $F_{(tab)} = 2.175$, (for v₁=6 and v₂=84), P < 0.05] it was found that there was significant difference in the prevalence of parasites between the seven different rodent species. The highest prevalence of parasitic infection in rodents was found in household areas (28.125%), followed by agricultural field (25%), departmental stores (21.875%), vegetable market (15.625%) and garbage site (6.25%). The diversity and prevalence of parasites were statistically $[F_{(cal)} = 7.8 \text{ and } F_{(tab)} = 2.447, (\text{for } v_1=4 \text{ and } v_2=56), P < 0.05]$ found to be affected by the type of sites, with household area being at high risk area for zoonotic disease transmission.

Keywords: rodents, ecto-parasites, endo-parasites, zoonotic, Kirtipur

CONTENTS

Page no.

Declaration	i
Recommendation	ii
Letter of Approval	iii
Certificate of Approval	iv
Acknowledgement	v
I: INTRODUCTION	1-4
1.1 General Background	1-2
1.2 Status of Rodents in Nepal	3
1.3 Justification of the Study	4
1.4 Limitation of the Study	4
II: LITERATURE REVIEW	5-8
2.1 Global Context	5-7
2.2 In Context of Nepal	7-8
III: OBJECTIVES	9
3.1 General Objective	9
3.2 Specific Objective	9
IV: MATERIALS AND METHODS	10-14
4.1 Study Area	10
4.2 Materials Used	12
4.2.1 Laboratory Tools	12
4.2.2 Chemicals Used	12
4.3 Sample Collection and Sampling Technique	13
4.4 Collection of Ecto-parasite	13

4.5 Collection of Endo-parasite	13
4.6 Data Collection	14
4.7 Statistical Analysis	14
V: RESULTS	15-50
5.1 Trapped Rodent Species	15
5.2 Sex-wise Infection in Rodents	15
5.3 Prevalence of Ecto-parasites	16
5.3.1 Polyplax spinulosa	17
5.3.2 Xenopsylla cheopis	18
5.3.3 Ornythonyssus bacoti	19
5.3.4 Laelaps echidnina	19
5.4 Prevalence of Endo-parasites	21
5.4.1.1 Schistosoma sp.	23
5.4.1.2 Syphacia sp.	24
5.4.1.3 Capillaria hepatica	25-26
5.4.1.4 Nippostrongylus sp.	27
5.4.1.5 Aspiculuris sp.	28
5.4.1.6 <i>Heterakis</i> sp.	29
5.4.1.7 <i>Physaloptera</i> sp.	30
5.4.1.8 Hymenolepis diminuta	31-32
5.4.1 .9 Taenia taeniaformis	32-33
5.4.1.10 Moniliformis dubius	34
5.4.2 Concurrent Endo-parasitic Infection in Rodents	37
5.5 Species-wise Parasitic Prevalence	38-42
5.5.1 Prevalence of Ecto-parasite in different Rodent species	38
5.5.2 Prevalence of Nematodes in different Rodent species	39

Page no.

5.5.3 Prevalence of Trematode, Cestodes and Acanthocephala	40
in different Rodent species	
5.5.4 Overall Prevalence of Parasite in different Rodent species	41
5.5.4.1 Ecto-parasite infection	41
5.5.4.2 Trematode infection	42
5.5.4.3 Cestode infection	42
5.5.4.4 Nematode infection	42
5.5.4.5 Acanthocephalan infection	42
5.5.4.6 Liver infected with eggs of Capillaria sp.	42
5.6 Site-wise Prevalence of Parasite	44-46
5.6.1 General prevalence of parasites (ecto and endo):	44
5.6.2 Prevalence of Ecto-parasite in Rodents of five different sites	44
5.6.3 Prevalence of Nematodes in Rodents of five different sites	45
5.6.4 Prevalence of Trematode, Cestodes and Acanthocephala	45
in Rodents of five different sites	
5.6.5 Overall Prevalence of Parasites in Rodents of five different sites	46
5.7 Identification and Measurement of Eggs of Endo-parasites	48
5.8 Prevalence of Zoonotic Endo-parasites (Host Species-wise and Site-wise)	50
VI: DISCUSSION AND CONCLUSION	51-56
VII: RECOMMENDATIONS	57
VIII: REFERENCES	58-69

LIST OF TABLES

Table no.	Title of table	Page no.
Table 1:	Classification of ecto-parasites	19
Table 2:	Prevalence of parasites in different rodent species.	43
Table 3:	Prevalence of parasite in five different sites.	47

LIST OF FIGURES

Figure no.	Title of figures	Page no.
Figure 1:	Species and numbers of trapped Rodent: Muridae.	15
Figure 2:	Sex-wise infected rodent.	15
Figure 3:	Prevalence of ecto-parasites in rodents.	16
Figure 4:	Number of endo-parasites obtained.	21
Figure 5:	Prevalance (%) of Zoonotic endo-parasites.	22
Figure 6:	Prevalence of endo-parasite in rodent.	22
Figure 7:	Endo-parasitic infection in rodents.	37
Figure 8:	Prevalence of ecto-parasite in different rodent species.	38
Figure 9:	Prevalence of nematodes in different rodent species.	39
Figure 10:	Prevalence of trematode, cestode and acanthocephalan	40
	in different rodent species.	
Figure 11:	Prevalence of parasites in different rodent species.	41
Figure 12:	Prevalence (%) of parasitic infection in five different sites.	44
Figure 13:	Prevalence (%) of ecto-parasite in rodents of five different sites.	44

Figure 14:	Prevalence (%) of nematodes in rodents of five different sites.	45
Figure 15:	Prevalence (%) of trematode, cestode and acanthocephalan	45
	in five different sites.	
Figure 16:	Overall prevalence of parasites at five different sites.	46
Figure 17:	Prevalance of host species-wise zoonotically infected rodents.	50
Figure 18:	Prevalence of site-wise zoonotically infected rodents.	50

LIST OF PHOTOGRAPHS

Photograph no.

Title of photograph

Page no.

PN. 1:	Polyplax spinulosa (1 mm)	20
PN. 2:	Laelaps echidnina (L) and Ornythonyssus bacoti (O)	20
PN. 3:	Xenopsylla cheopis (Male, 1.8 mm)	20
PN. 4:	X. cheopis (Female, 2.6 mm)	20
PN. 5:	<i>O. bacoti</i> (0.5X0.7 mm)	20
PN. 6:	L. echidnina (0.7X1.2 mm)	20
PN. 7:	Collecting ecto-parasites.	20
PN. 8:	Dissecting rat.	20
PN. 9:	Observing parasite under microscope.	20
PN. 10:	Dissected female rat.	35
PN. 11:	Dissected male rat.	35
PN. 12:	Visceral mass.	35
PN. 13:	M. dubius in small intestine.	35
PN. 14:	H. diminuta in small intestine.	35

Photograph no.	Title of photograph	Page no
PN. 27:	Observing stool sample.	36
PN. 26:	Grinding stool sample for sool test.	36
PN. 25:	Head of <i>M. dubius</i>	36
PN. 24:	Scolex of T. taeniaformis	36
PN. 23:	Scolex of H. diminuta	36
PN. 22:	Physaloptera sp.	36
PN. 21:	Heterakis sp.	36
PN. 20:	Aspicularis sp.	36
PN. 19:	Nippostrongylus sp.	36
PN. 18:	Capillaria hepatica	35
PN. 17:	Syphacia sp.	35
PN. 16:	Schistosoma sp.	35
PN. 15:	Liver infected with cyst.	35

PN. 28:	Eggs of Syphacia sp. in ovi-sac.	49
PN. 29:	Eggs of Syphacia sp. in stool.	49
PN. 30:	Eggs of Physaloptera sp. in ovi-sac.	49
PN. 31:	Eggs of <i>C. hepatica</i> in ovi-sac.	49
PN. 32:	Eggs of Capillaria sp. in liver.	49
PN. 33:	Eggs of Aspicularis sp. in ovi-sac.	49
PN. 34:	Eggs of <i>H. diminuta</i> in proglottid.	49
PN. 35:	Egg of <i>H. diminuta</i> in stool.	49
PN. 36:	Eggs of <i>M. dubius</i> in ovi-sac.	49

LIST OF FIGURES IN ANNEX

Annex no.	Title of figures	Page no
Annex-I	Figure 19: Life cycle of Hymenolepis diminuta	70

	Figure 20: Life cycle of Capillaria hepatica	70
Annex-II	Figure 21: Life cycle of Moniliformis dubius	71
	Figure 22: Life cycle of Taenia taeniaformis	71
Annex-III	Figure 23: Life cycle of Schistosoma sp. (a)	72
	Figure 24: Life cycle of Schistosoma sp. (b)	72
Annex-IV	Figure 25: Poster presented in "2 nd Annual	73
	Seminar" organized by SMCRF. (4 X 3 feet square)	
Annex- V	Figure 26: Poster presented in "Students' Conservation	74
	Conference & Exhibition" organized by NTNC.	
	(3.5 X 3 feet square)	

LIST OF MAP

Map no.	Title of Map	Page no.
Map 1:	Kirtipur municipality indicating the sampling sites.	10
Map 2:	Nepal showing the location of Kirtipur.	11
Map 3:	Kirtipur showing administrative boundaries.	11

LIST OF ABBREVIATIONS

Abbreviated form	Details of abbreviations
Agri.	Agricultural
CDZ	Central Department of Zoology
CVL	Central Veterinary Laboratory
Dept.	Departmental
Ε	East
GI	Gastro Intestinal
Km	Kilo-meter
Ν	North
NAST	National Academy of Science and Technology
No.	Number
NTNC	National Trust for Nature Conservation
m	Meter
PN.	Photograph Number
SMCRF	Small Mammal Conservation and Research Foundation
sq. km	Square Kilo-meter
TU	Tribhuvan University
VDC	Village Development Community
Veg.	Vegetable