Landslide Hazard Mapping Using GIS: A Case Study from Kulekhani Watershed, Makawanpur

A Dissertation Submitted to Central Department of Environmental Science In Partial Fulfillment of the Requirement for the completion of Master's Degree in Environmental Science Institute of Science and Technology, Tribhuvan University, Kirtipur Kathmandu, Nepal

Anurag Dawadi

Central Department of Environmental Science,

Institute of Science and Technology,

Tribhuvan University, Kirtipur

Kathmandu, Nepal

Symbol No: 5706

TU Regd No: 5-2-37-625-2004

May, 2011 (Baishak, 2068)

Letter of Recommendation

I certify that Mr. Anurag Dawadi has worked under my guidance and supervision. He has worked actively with devotion during the field work and table work as well. The dissertation entitled **"Landslide Hazard Mapping Using GIS: A Case Study from Kulekhani Watershed, Makawanpur"** bears the candidate own work to the best of my knowledge. So, I hereby, recommend the dissertation for approval.

Ananta Man Singh Pradhan Supervisor Ministry of Energy Kathmandu

Letter of Approval

The dissertation presented by Mr. Anurag Dawadi entitled "Landslide Hazard Mapping Using GIS: A Case Study from Kulekhani Watershed, Makawanpur" has been accepted as the partial fulfillment of requirements for the completion of Maters degree of Science in Environmental Science.

.....

Dr. Kedar Rijal Head of Department Central Department of Environmental Science

.....

External Shanmukhesh C. Amatya Senior Divisional Hydrogeologist Chief, Technology Development Section, DWIDP

Ananta Man Singh Pradhan Supervisor

Ramesh Sapkota Co-Supervisor

Abstract

Kulekhani Watershed is situated in Makawanpur district of Central Development Region, and about 30 km. west of Kathmandu valley. This watershed houses storage type reservoir, one of its only kind in Nepal. Landslides occurrence is a frequent phenomena in the study area and the disaster of 1993 and preceding year wreaked havoc. So, the problem of landslide hazard and mitigation is pivotal to address development challenge.

The study aims to develop causal factor maps by verifying digital data. The various maps are Slope, Aspect, Relief, Internal Relief, River Distance, Landuse and Geology which are formed, stored and analysed using GIS. These factors then applied in methodologies based on "Bivariate Statistical Analysis" viz. Frequency Ratio, Statistical Index Method, Landslide Susceptibility Analysis, Weight of Evidence Modelling and Certainty Factor in ILWIS 3.0. The weight maps were formed from 7 factor maps through different methods and final hazard maps were created classifying into 3 hazard areas i.e. Low, Moderate and High. The analysis of the results shows that there do not lay any major differences in methods and their prediction of hazard areas and landslides are almost coherent.

The landslide susceptibility map indicates that the area covering low, moderate and high hazard class for 5 different approaches is in the range of approx. 28-31%, 32-37% and 36-39% respectively. The detected landslides in the area for the 3 hazard areas by applying abovementioned various methods are in the range of approx 8-10%, 27-29% and 62-66%. The study estimated the accuracy of landslide hazard mapping results based on criteria considering the number of landslides occurrence. Based upon this predicted results were found to be reliable. The result of the experiment has also shown that application of GIS has proven to be an effective tool in landslide hazard assessment.

Key words: GIS, ILWIS 3.0, Bivariate Statistical Analysis, Landslide Susceptibility Map

Acknowledgements

I would like to express my sincere gratitude and appreciation to my supervisor Mr. Ananta Man Singh Pradhan, Ministry of Energy, Kathmandu for his excellent encouragement during my research. Without his remarkable guidance, suggestions and comments, it would not have seen the light of the day. I also like to extend my gratitude to my Head of Department, Dr. Kedar Rijal whose constant invaluable suggestions and help guided me to finish my thesis in due time.

My deepest acknowledgement also goes to my co-supervisor Mr. Ramesh Sapkota for his kind cooperation while preparing the thesis. I would also like to extend my thanks to Dr. Krishna Chandra Devkota for his precious help and sharing his experience and comments to make this thesis possible.

I am also grateful to Mr. Rohit Pathak and Mr. Babu Gyawali who accompanied me during the field work. Their tireless efforts and gusto made the gruesome field work rather enjoyable one.

My special thanks go to my friends of Central Department of Environmental Science, TU, Kirtipur whose ever presence and needful help made this thesis a possible. Also, I should express my thankfulness to all who have directly or indirectly helped while undergoing the task of completing my thesis.

Last but not the least, I would like to thank my family and especially my wife whose constant reminder to complete this thesis helped it to come in time. Their strong support, constant encouragement and ever willing helping hands had really made me come to this far. Thank you.

> Anurag Dawadi May, 2011

Table of Contents

	Page No.
Letter of Recommendation	i
Letter of Approval	
Abstract	
Acknowledgements	iv
Table of Contents	V
List of Figures	vii
List of Tables	ix
List of Abbreviations	Х
1. Introduction	1
1.1 Background	1
1.2 Statement of Problem	3
1.3 Research Objective	4
1.4 Justification/Rationale of Study	4
1.5 Limitation of the Study	5
2. Literature Review	6
2.1 General Concepts of Landslide	6
2.2 Landslide Influencing Factors	6
2.3 Types of Landslides	9
2.4 Landslide Mapping	13
2.5 GIS Modelling Methods	16
2.6 Review of Previous Works	18
3. Methodology	22
3.1 Research Design	22
3.2 Nature and Source of Data	22
3.3 Landslide Densities	23
3.4 Application of GIS as a tool of Analysis	24
3.5 Quantitative Methodologies	25
4. Study Area	34
4.1 Description of the Study Area	34

4.2 Disasters in the Study Area	39
5. Results	40
5.1 Factor Map Preparation	40
5.2 Hazard Map Preparation	51
6. Discussion	
7. Conclusion and Recommendation	
References	

Annex

List of Figures

		-
Figure 2.1	Schematic Illustration of Major Types of Landslides	12
Figure 3.1	Flow chart of Bivariate Statistical method	27
Figure 4.1	Location of the Study Area	34
Figure 4.2	Study Area through Google map	35
Figure 4.3	Average Annual Precipitation of Kulekhani Watershed	38
Figure 5.1	Landslide Inventory Map	40
Figure 5.2	Map of Slope Classes in the study area	41
Figure 5.3	Percentage of Slope Classes and landslide occurrence	42
Figure 5.4	Map of Aspect classes in the study area	43
Figure 5.5	Percentage of Aspect Classes and landslide occurrence	43
Figure 5.6	Map of Relief Classes in the study area	44
Figure 5.7	Percentage of Relief Classes and landslide occurrence	45
Figure 5.8	Map of Internal Relief classes in the study area	46
Figure 5.9	Percentage of Internal Relief classes with landslide distribution	46
Figure 5.10	Map of River Distance classes in the study area	47
Figure 5.11	Percentage of River Distance class with landside distribution	48
Figure 5.12	Map of Landuse classes in the study area	49
Figure 5.13	Percentage of Landuse classes with landslide occurrence	49
Figure 5.14	Map of Geology classes in the study area	50
Figure 5.15	Percentage of Geological classes and landslide occurrence	51
Figure 5.16	LSZ map of Kulekhani Watershed based on FR Method	54
Figure 5.17	Landslide distribution w.r.t to Hazard class in FR Method	54
Figure 5.18	Frequency Ratio Curve	55
Figure 5.19	LSZ map of Kulekhani Watershed based on SIM	58
Figure 5.20	Landslide distribution w.r.t to Hazard class in SIM	59
Figure 5.21	Statistical Index Method Curve	59
Figure 5.22	LSZ map of Kulekhani Watershed based on LSA	62
Figure 5.23	Landslide distribution w.r.t Hazard Class in LSA	63
Figure 5.24	Landslide Susceptibility Analysis Curve	63

Figure 5.25	LSZ map of Kulekhani Watershed based on WOE Modelling	66
Figure 5.26	Landslide distribution w.r.t Hazard Class in WOE Modelling	67
Figure 5.27	Weight of Evidence Modelling Curve	67
Figure 5.28	LSZ map of Kulekhani Watershed based on CF Method	70
Figure 5.29	Landslide distribution w.r.t Hazard Class in CF Method	71
Figure 5.30	Certainty Factor Curve	71
Figure 6.1	Examples of landslides overlaying LSZ map	74

List of Tables

Table 2.1	Schematic Landslide Classification	10
Table 2.2	Illustration of Landslide Classification	11
Table 2.3	Characteristics of Landslide Susceptibility Methods	16
Table 5.1	Weightage of each attribute class in FR Method	51
Table 5.2	Weightage of each attribute class in SIM	56
Table 5.3	Weightage of each attribute class in LSA	60
Table 5.4	Weightage of each attribute class in WOE Modelling	64
Table 5.5	Weightage of each attribute class in CF Method	68

List of Abbreviations

ASTER	$\label{eq:Advanced} Advanced \ Spaceborne \ Thermal \ Emission \ and \ Reflection \ Radiometer$
CF	Certainty Factor
C. Wt.	Cumulative Weight
DEM	Digital Elevation Model
DWIDP	Department of Water Induced Disaster Prevention
FINNIDA	Finland International Development Agency
FR	Frequency Ratio
GIS	Geographic Information System
GoN	Government of Nepal
ICIMOD	International Centre of Integrated Mountain Development
ILWIS	Integrated Land and Water Information System
IRS	Imagery Requirements Structure
LANDSAT	Land Remote Sensing Satellite
LSA	Landslide Susceptibility Analysis
LSI	Landslide Susceptibility Index
LSZ	Landslide Susceptibility Zonation
SIM	Statistical Index Method
SPOT	Satellite Pour l'Observation de la Terre
W_{ij}	Weight of i th class of parameter j
WOE	Weight of Evidence Modelling
UNESCO	United Nation Educational, Scientific and Cultural Organisation