
QUERY PROCESSING IN DISTRIBUTED
DATABASE SYSTEMS

A Dissertation

Submitted To

The Central Department of Computer Science and Information
Technology, Faculty of Science and Technology

Tribhuvan University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Computer Science and
Information Technology

By:
Bardan S.J.B. Rana

April 2009

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

 Date:___________

Recommendation

I hereby recommend that the dissertation prepared under my supervision by Mr. Bardan

S.J.B. Rana entitled “Query Processing in Distributed Database Systems” be

accepted as a partial fulfillment of the requirement for the degree of Master of Computer

Science, from Tribhuvan University, Nepal. In my best knowledge this is an original

work in computer science.

--

Prof. Dr. Shashidhar Ram Joshi
Department of Electronics and Computer Engineering,
 Institute of Engineering, Pulchowk, Nepal

(Supervisor)

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

We certify that we have read this dissertation work and in our opinion it is satisfactory in

the scope and quality as a dissertation as the partial fulfillment of the requirement of

Master in Computer Science and Information Technology from Tribhuvan University,

Nepal.

Evaluation Committee

Dr. Tanka Nath Dhamala
Head of the Department,

 Central Department of Computer
Science and Information Technology

Tribhuvan University, Nepal

Prof. Dr. Shashidhar Ram Joshi
Department of Electronics and Computer

Engineering, Institute of Engineering,
Pulchowk, Nepal

 (Supervisor)

(External Examiner)

(Internal Examiner)

Date: _______________

I

ABSTRACT

Query processing on a distributed database system requires transmission of data

between computers on a communication network. Minimizing the amount of data

transmission is one of the fundamental principles to reduce the query processing cost

and to prevent network congestion.

The semijoin operation is important in formulating query processing strategies.

Semijoin preprocessing strategy provides enough opportunities to significantly reduce

the amount of data required to be transmitted on the network by first reducing the

cardinalities of a distributed relations using semijoins and then transmitting the

resultant relations to the result node.

Algorithm LIGHT which is based on new heuristic for generating semijoin

preprocessing strategies for queries has been developed in this work. Heuristic used in

algorithm LIGHT can be thought as modification of heuristic used in algorithm SDD-

1.

Simulation model has been constructed to evaluate the performance of existing query

preprocessing algorithm SDD-1 and algorithm LIGHT. This model test random

queries and results are presented and discussed. It is shown that algorithm LIGHT

performs better than algorithm SDD-1 in general.

II

ACKNOWLEDGEMENT

First of all, I am extremely grateful to my respected teacher and dissertation

supervisor Professor Dr. Shashidhar Ram Joshi, Department of Electronics and

Computer Engineering, Institute of Engineering, Pulchowk, for his invaluable

guidance throughout this work. In spite of his hectic schedule, he has been readily

available for advice, reading, or simply a word of encouragement. I learned a lot from

him about good research practice and what it takes to achieve this goal.

I would like to acknowledge my deep appreciation to respected teacher Dr. Tanka

Nath Dhamala, Head of Computer Science and Information Technology, for paving

the first stone in this study and providing pleasant working atmosphere. Likewise, my

sincere appreciation goes also to my respected teacher and co-supervisor Mr.

Samujjwal Bhandari for his support, critical feedback, suggestions and fruitful

discussion which was instrumental.

At present, I have no words to fully express my gratitude to the respected teachers,

Dr. Onkar P. Sharma (Marist College, USA), Dr. Subarna Shakya, Mr. Sudarshan

Karanjit, Mr. Min Bahadur Khati and all other for the knowledge they poured in me

and inspirations they gave to me in the time period of two years.

I would like to thank my friends, in alphabetical order, Mr. Amar Man Maharjan, Mr.

Bishnu Subedi, Mr. Jagdish Bhatta, Mr. Shishir Paudyal and all other for their co-

operation, active participation in sharing ideas and keeping faith in me.

Finally, I would not have reached this point in my academic life without the support

and unconditional love of my parents and brothers. I am forever indebt to my parents

and brothers for their love, understanding, patience and encouragement when it was

required most. Once again I would like to thank each and every individual who are

involved in this work because I believe any accomplishment requires effort of many

individuals and this work is not different.

Bardan Rana

04/02/2009

III

ABBREVIATIONS

AP Application Processor

CC Current Cardinality

CPU Central Processing Unit

CSJ Candidate Semijoin

DDB Distributed Database

DDBMS Distributed Database Management System

DDBS Distributed Database System

DM Data Manager

DP Data Processor

I/O Input/Output

IFS Initial Feasible Solution

PERF Partially Encoded Record Filter

SDD System for Distributed Database

SJP Semijoin Program

SPJ Select Project Join

SQL Structured Query Language

TM Transaction Manager

TP Transaction Processor

WAN Wide Area Network

WWW World Wide Web

XML Extended Markup Language

IV

FIGURES

Figure 2.1 A Distributed Application ------------------------------------ 11

Figure 2.2 Distributed Database System Environment ---------------- 12

Figure 5.1 Equivalent Distributed Execution Strategies --------------- 37

Figure 5.2 Generic Layering Scheme for Distributed Query
Processing --- 42

Figure 8.1 Sample Output of IFS --- 65

Figure 8.2 Sample Output of Algorithm SDD-1 ------------------------- 67

Figure 8.2 Sample Output of Algorithm LIGHT ------------------------ 68

Figure 8.4 IFS_COST/AVG_COST versus No. of Relations --------- 69

Figure 8.5 IFS_COST/AVG_COST versus No. of Relations --------- 70

Figure 8.6 IFS_COST/AVG_COST versus Average Selectivity ----- 71

V

TABLES

Table 2.1 Summary of Transparency Features ------------------------- 15

Table 6.1 Domain Values --- 49

Table 6.2 Database Statistics -- 50

Table 6.3 Selectivity Factor of Each Attribute of Each Relation of
Table 6.2 -- 50

Table 6.4 Hypothetical Database Statistics Update of Relation R ---- 51

Table 7.1 Initial Database Statistics -------------------------------------- 61

Table 8.1 Ratio of IFS_COST/AVG_COST for Different Number of

Relations for Algorithm SDD-1 -------------------------------
69

Table 8.2 Ratio of IFS_COST/AVG_COST for Different Number of

Relations for Algorithm LIGHT ------------------------------
70

Table 8.3 IFS_COST/AVG_COST versus Average Selectivity ------ 71

VI

TABLE OF CONTENTS

Contents Page

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Motivation 3

1.3 Objective of the Study 5

1.4 Significance and Limitations 5

1.5 Report Structure 6

CHAPTER 2 BACKGROUND AND PROBLEM DEFINITION 8

2.1 Background 8

2.2 Reasons for Distribution 8

2.3 DDBMS Components 9

2.4 DDBSs Promises 10

2.5 DDBS Architecture 12

2.6 DDBS Fundamental Principle 12

2.7 Problem Definition 15

CHAPTER 3 LITERATURE REVIEW 17

3.1 Literature Review 17

CHAPTER 4 RELATIONAL DATA MODEL 26

4.1 Introduction 26

4.2 Relational Operations 28

VII

4.2.1 Selection 28

4.2.2 Projection 29

4.2.3 Join 29

4.2.4 Semijoin 30

4.3 Relational Queries 34

4.4 Reasons for Using Relational Data Model 34

CHAPTER 5 QUERY PROCESSING IN DISTRIBUTED DATABASE 35

5.1 Query Processing Problem 35

5.2 Query Processing Objectives 39

5.3 Types of Optimization 39

5.3.1 Static Query Optimization 40

5.3.2 Dynamic Query Optimization 41

5.3.3 Hybrid Query Optimization 41

5.4 Statistics 41

5.5 Layers of Query Processing 42

5.6 Assumptions 43

5.7 Complexity Consideration 45

5.8 Database State Update Consideration 45

CHAPTER 6 SEMIJOIN COST/BENEFIT ESTIMATION 46

6.1 Introduction 46

6.2 Estimation 47

6.2.1 Effect of Semijoins on Relation and Joining
Attribute Cardinality

48

6.2.2 Effect of Semijoins on Non-joining Attribute
Cardinality

48

VIII

CHAPTER 7 PREPROCESSING STRATEGIES ALGORITHMS 52

7.1 Introduction 52

7.2 Initial Feasible Solution 53

7.3 Algorithm AHY 53

7.4 Algorithm SDD-1 56

7.5 Algorithm LIGHT 58

7.6 Algorithm LUK 60

7.7 An Example 60

7.7.1 Algorithm AHY Result 61

7.7.2 Algorithm SDD-1 Result 62

7.7.3 Algorithm LIGHT Result 63

CHAPTER 8 IMPLEMENTATION AND ANALYSIS 64

8.1 Implementation 64

8.2 Analysis 68

8.2.1 Cost Comparison of IFS to Semijoin
Preprocessing Strategies

69

8.2.2 Cost Comparison of Algorithm SDD-1 and
Algorithm LIGHT

72

CHAPTER 9 CONCLUSION 73

9.1 Conclusion 73

9.2 Future Direction 74

APPENDIX A 75

REFERENCES 92

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The amount of information available to us is exploding, and the value of data as

organization assets is universally recognized. To get the most out of their large and

complex datasets, users require tools that simplify the task of managing the data and

extracting useful information in a timely fashion. Otherwise, data can become a

liability, with the cost of acquiring it and managing it far exceeding the value derived

from it.

A database is the collection of related data that corresponds to some aspect of real

world. In other words, a database is a collection of relevant persistent data to which

concerned users interact to satisfy their need. A database can be of any size and

varying complexity. In present world, database and database systems have become the

life blood for every organization to remain competitive and more importantly to

survive in this competition. In addition, recent progress in communication and

database technologies have brought it to an edge; moving from centralization to its

counter part de-centralization concept.

Typically in a ‘computerized information system’ we have a database and methods to

access data from the database in response to queries. These database systems usually

exist at an enterprise or in a government agency or department. There is also a need

for geographically distributed components of these organizations to access data from

central databases.

One method to satisfy this need is to establish a communication link between the

central computer and the site where data are required. This method has its drawbacks

for several reasons. If telecommunication lines are utilized, either a dedicated

communication line or the public communication lines may be utilized. If a dedicated

communication link exists, the cost of this link is often too expensive. If the public

communication lines are used, one must contend with problems. Lines are required to

2

establish a link with the central computer which may be unavailable if lines are busy.

In any case there is always the dial up time required to establish the link with the

central computer. The central computer may also be serving the maximum number of

users and service may not be available. Another drawback is system reliability, if the

central computer malfunctions, data access is denied. As the information needs of the

organization grow it becomes more difficult and more expensive to increase the speed

and capacity of the central computer. It is not too hard to imagine that a single central

computer operating with the latest technology may not be able to operate efficiently

on a large database.

Another method of satisfying this need for distributed data is to provide each

geographically dispersed site with a complete copy of the central database. Major

problem with this approach is the simultaneous updating of data at each site so that a

consistent version of the database is available to all users which take away all the

advantages of this approach. This approach would also involve expensive hardware

costs.

A popular intermediate approach, which is gaining much attention in the literature [2,

7, 21, 22, 33, 36] is to have data distributed such that the data most necessary to and

most often accessed by, a site is presented at that site. It is called data localization. In

this manner the large central database is divided into smaller databases and most data

would be distributed non-redundantly among the sites, although some data may be

replicated. The site computer and database system need not be as large as the single

centralized version. System reliability is enhanced since the failure of a site computer

generally only affects that site. Hardware and software updates are much simpler and

less costly as local demands increase. Communication between sites is only required

when the data required by a query is not resident at the site of origin. This attractive

intermediate approach solves information processing needs of geographically

dispersed organizations. Such a system is called distributed database system (DDBS)

and databases used by such system a distributed database. In short, distributed

database is a collection of multiple, logically interrelated databases distributed over a

computer network.

3

Distributed database system (DDBS) technology is the union of what appear to be two

diametrically opposed approaches to data processing: database system and computer

network technologies. Distributed database leads to the distributed data processing or

data computing in which a number of autonomous processing elements (not

necessarily homogeneous) that are interconnected by a computer network; co-operates

in performing their assigned task.

There are many unsolved problems with distributed database systems. Research is

currently being done in the areas of distributed concurrency control, system reliability,

failure and recovery, distributed database design, distributed system control, query

processing and security. However, this work is confined only with the query

processing aspect of distributed database systems.

1.2 Motivation

The need for communication between sites distinguishes a distributed database system

from a centralized database system. A low level view of this communication is

digitized data being transmitted from site to site. The purpose of this communication

is to access data at other sites in the network and for transmission of data in response

to queries.

In the past, queries in database systems were typically expressed in terms of

application programs written in high level procedural languages for batch processing

of queries. Interactive query processing was especially popular in distributed systems.

However, in recent years the trend has move to high level non procedural query

language like SQL (Structured Query Language) which is also utilized to this end. An

example of SQL query on a supplier database is shown below.

SELECT S.PART_NUM

FROM SUPPLIER AS S AND ORDER AS O

WHERE S.PART_NUM=O.PART_NUM AND O.PRICE>1000

4

This query requests all part numbers in the SUPPLIER relation such that the part

numbers are on order (in the ORDER relation) and these part numbers have their parts

price greater than 1000 (taken from [27]). High level query languages permit complex

data extraction without the necessity of procedurally specifying how it is to be

extracted. The relation data model is an ideal data model for this approach. Codd

[Codd 70] defined the relational data model and showed how data may be accessed in

terms of relational algebra and relational calculus, both of which form the basis for

high level query languages. A high level query may be interpreted by the local

distributed database management system as commands (operations) that will extract

the necessary distributed data to satisfy queries. Relational algebra is a procedural

language in which user has to specify the each step to obtain the result of the query

using the certain high level operator. On the other hand relational calculus is

nonprocedural language in which the user only specifies the relationships that should

hold in the result (like SQL).

An aspect of query processing on distributed database systems that has received much

attention is what operations (relational ones) will be utilized in processing queries.

The semi-join operations [2, 4, 6, 7, 19, 21, 36] (half a join in relational algebra) has

been found to be a good strategy for query processing on distributed systems. Semi-

join may be utilized to reduce relation size of distributed relations. Since semi-join

may be defined in mathematical terms which form the basis for relational set theory

and since its physical operations on data are clearly defined, semi-join is a very useful

tactic for processing queries on distributed database systems.

To answer queries, one strategy is to move all relevant relations to the node where the

result is required. This is a costly data communication process. Semi-join is used to

reduce the size of distributed relations before they are transmitted on the network to

the node where the result of the query is desired. Considerable research has been done

by [2, 4, 6, 7, 18, 19, 21, 33, 36] concerning semi-join tactics and their use in

distributed database systems. Three algorithms [7, 21, 33] have been published that

produce semi-join strategies for processing queries. In order to formulate a query

processing strategy one must assume a particular model of the distributed database

system. This model should correctly estimate the effect of semi-join on the database

state. One motivation of this work is to review the existing models of distributed

5

database systems. How to overcome the physical limitation of the wire (i.e. the

amount of data that can be transferred per unit time) logically, so that network

utilization is as low as possible is the second motivation of this work.

1.3 Objective of Study

The objective of this work is to review an existing semijoin based query processing

algorithms in distributed database systems. The specific objective of this work is to

formulate a heuristic and use this heuristic to develop an algorithm. Comparing the

total communication cost required to answer the imposed queries by an existing

algorithm SDD-1, newly developed algorithm LIGHT and initial feasible solution

(i.e., simple join) is the another objective of this study. In short, objective of this study

can be summarized as:

1. Show how query processing in distributed database system is different from

centralized one.

2. Review an existing query processing algorithms based on semijoin strategy.

3. Show how the semi-join can be used to minimize the network resource

consumption.

4. Formulate a heuristic and use it to develop an algorithm.

5. Compare the results obtained by various algorithms.

1.4 Significance and Limitations

Physical limitation imposed by the wire on the amount of data transferred within a

certain distance and certain time period naturally gives us the idea that amount of data

transfer directly affects the performance of query processing in distributed database.

Moreover, the amount of data that can be transferred through the wire per unit time is

directly proportional to the distance (characteristic of any signal carrying media like

wire). For example, the minimum round trip message propagation delay in satellite

based system is about 1 second. Semi-join tactics which is more likely to reduce this

amount of data transfer is therefore a main focus of this study. Reducing the amount

of data transfer is even more pronounced in wireless distributed database systems.

6

Amount of data transfer is considered as dominant factor in this study. Even though

other factors like I/O (Input/Output) cost, CPU (Central Processing Unit) time cost

also affects the performance of the query processing; they are not taken into

consideration. Only retrieval based queries are considered and no update queries is

being entertained as the retrieval query is the most often queries that are being

submitted and update queries whose frequency are less often can be done is off hours.

A WAN (Wide Area Network) is considered as the structure of the distributed

database and it is assumed that sites are physically connected by wire. This work is

only concerned with the query processing in distributed database and no aim is taken

on design and concurrency control aspect of distributed database.

1.5 Report Structure

Coming eight chapters consist the remaining part of thesis. The issues discussed

above are investigated in later chapters. In Chapter 2, background and problem

definition of this work is presented. Reasons for the evolution of distributed database

systems, promises it brings with it, fundamental principle of distributed database

system and like are presented in it.

The review of the literature relevant in the context of a distributed query processing is

the topic of discussion in Chapter 3. In this chapter, classical approach of semi-join to

the most recent trend of negotiation based query processing strategy of distributed

database has been discussed.

The relational data model is described in Chapter 4 in the context of a distributed

database system. The utilized relational operations are introduced and the applicability

of the relational data model to this area is discussed.

Chapter 5 is about query processing on distributed database systems. The basic

assumptions of our work in this area are given. Our views on communication network,

data transmission and incurred cost are presented. Use of semi-join as a query

processing strategy is outlined. The complexity of determining optimal query

7

processing strategies is described. This chapter is concluded with the concept of

database state updates (i.e. how the database statistics are affected by an inclusion of

semi-join operation in a semijoin program).

In Chapter 6, an estimation function for calculating the hypothetical update of

database state when a possible candidate semijoin (CSJ) is added to the semijoin

program (SJP) is presented. In this chapter, how the joining and non joining attributes

of the reduced relation is affected when it is chosen to include in the semijoin program

is illustrated.

In Chapter 7, discussion of using semijoin as a preprocessing strategy for queries has

been extended. Two published algorithm [2, 7] which produce semijoin preprocessing

strategies have been introduced. An algorithm LIGHT, a query preprocessing

algorithm that represents a result from our work has also been introduced. Finally, an

example is illustrated to demonstrate the total cost incurred by each of these

algorithms.

Chapter 8 is about the implementation of algorithm SDD-1 and algorithm LIGHT and

the analysis of the result obtained via simulation.

Chapter 9 concludes our work.

8

CHAPTER 2

BACKGROUND AND PROBLEM DEFINITION

2.1 Background

Researchers and practitioners have been interested in distributed database systems

since the 1970s. At that time, the main focus was on supporting distributed database

management of large co-operations or organizations that keep their data at different

offices or subsidiaries. Although there was a clear need and many good ideas and

prototypes (e.g. System R* [William et al. 1981], SDD-1 [Bernstein et al. 1981], and

Distributed Ingres [Stone Baker 1985]) the early effort in building distributed

database system were never commercially successful [24]. One of the main reasons is

that the early distributed database systems were ahead of their time. First,

communication technology was not stable enough to ship megabytes of data as

required for these systems. Second, large business somehow manage to survive

without sophisticated distributed database technology by sending tapes, diskettes, or

just paper to exchange data between their offices.

Today, the situation has changed dramatically. Distributed data processing is both

feasible and needed. Distributed data processing is feasible because of recent

technologies advance (e.g. hardware, software protocols, and standards). Distributed

data processing is needed because of changing business requirements which have

made distributed data processing cost-effective and in certain situation only viable

option.

2.2 Reasons for Distribution

The classical answers to this questions indicates that distributed processing better

corresponds to the organizational structure of today’s widely distributed enterprises

and that such a system is more reliable and more responsive. More importantly, many

of the current applications of computer technology are inherently distributed.

Electronic commerce over the Internet, multimedia applications such as news-on-

demand etc. are all examples of such applications.

9

From a more global perspective, however, it can be stated that the fundamental reason

behind distributed processing is to better able to solve the big and complicated

problems that we face today, by using a variation of the well-known divide and

conquer rule. If the necessary software support for distributed processing can be

developed, it might be possible to solve these complicated problems simply by

dividing them into smaller pieces and assigning them to different software groups,

which works on different computers and produce a system that runs on multiple

processing elements but can work efficiently toward the execution of a common task.

This approach has two fundamental advantages from an economics standpoint. First

distributed computing provides an economical method of harnessing more computing

power by employing multiple processing elements optimally. The second economic

reason is that by attacking these problems in smaller groups working more or less

autonomously, it might be possible to discipline the cost of software development.

2.3 DDBMS Components

The DDBMS must include (at least) the following components:

1. Computer workstations (sites or nodes) that form the network system. The

distributed database system must be independent of the computer system

hardware.

2. Network hardware and software components that reside in each workstation.

The network components allow all sites to interact and exchange data.

Network system independence is a desirable distributed database system

attribute.

3. Communications media that carry the data from one workstation to another.

The DDBMS must be communications media-independent; that is, it must be

able to support several types of communication media.

4. The transaction processor (TP) which is the software component found in each

computer that requests data. The transaction processor receives and processes

the applications data requests (remote and local). The TP is also known as the

application processor (AP) or the transaction manager (TM).

10

5. The data processor (DP), which is the software component residing on each

computer that stores and retrieves data located at the site. The DP is also

known as the data manager (DM). A data processor may even be a centralized

DBMS.

2.4 DDBSs Promises

Many advantages of DDBSs have been cited in literature, ranging from sociological

reasons for decentralization to better economics. All of these can be distilled to four

fundamentals which may also be viewed as promises of DDBS technology.

1. Transparent management of distributed and replicated data.

2. Reliability through distributed transaction.

3. Improved Performance.

4. Easier System Expansion.

Consider an engineering firm that has offices in Boston, Edmonton, Paris and San

Francisco. They run projects at each of these sites and would like to maintain a

database of their employees, the projects and other related data. Assuming that the

database is relational, we can store this information in two relations: EMP(ENO,

ENAME, TITLE) and PROJ(PNO, PNAME, BUDGET). Let PAY(TITLE, SAL),

ASG(ENO, PNO, DUR, RES) respectively store salary information and which

employees have been assigned to which projects for what duration with what

responsibility (taken from [27]). If all of these data were stored in a centralized

DBMS and we want to find out the names and salaries of employees who worked on a

project for more than 12 months, we would specify this using the following SQL

query:

SELECT ENAME, SAL

FROM EMP, ASG, PAY

WHERE ASG.DUR>12

AND EMP.ENO=ASG.ENO

AND PAY.TITLE=EMP.TITLE

11

However, given the distributed nature of this firm’s business, it is preferable, under

these circumstances to localize each data such that data about the employees in

Edmonton office are stored in Edmonton, those in Boston office are stored in Boston

and so forth. The same applies for the project and salary information. This process of

partitioning each of the relations and stored each partitioning at a different site is

known as fragmentation.

 Paris

Figure 2.1 A Distributed Application

Furthermore, it may be preferable to duplicate some of this data at other sites for

performance and reliability reasons. The result is a distributed database which is

fragmented and replicated. Fully transparent access means that the user can still pose

the query as before, without paying any attention to the fragmentation, location, or

replication of data, and let the system worry about resolving the issues.

Communication
Network

Boston Paris

Edmonton San Francisco

Boston employees,
Paris employees,
Boston projects

Paris employees,
Boston employees,
Paris projects,
Boston projects

Edmonton employees,
Edmonton projects,
Paris projects

San Francisco employees,
San Francisco projects

12

2.5 DDBS Architecture

Figure 2.2 Distributed Database System Environment

2.6 DDBS Fundamental Principle

C.J. Dates [13] distributed database commandments describe a full distributed

database, and, although no current DDBMS conforms to all of them, the rules do

constitute a useful distributed database target. The commandments are:

RULE 1: Local Site Independence

Each local site can acts as an independent, autonomous, centralized DBMS. Each site

is responsible for security, concurrency control, backup and recovery.

RULE 2: Central Site Independence

NO site in the network relies on a central site or any other site. All sites have the same

capabilities.

Communication Network

Site 1

Site 5 Site 2

Site 4 Site 3

13

RULE 3: Failure Independence

The system is not affected by node failures. The system is in continuous operation

even in the case of a node failure or an expansion of the network.

RULE 4: Location Transparency

The user does not need to know the location of data in order to retrieve the data. The

user is unaware of the fact that the data is distributed at all. What he sees is a single

logical database like central database system and operates similarly.

RULE 5: Fragmentation Transparency

The user sees only one single logical database. Data fragmentation is transparent to

the user. The user does not need to know the name of the database fragments in order

to retrieve them.

RULE 6: Replication Transparency

The user sees only one single logical database. The DDBMS transparently selects the

database fragments to access. The DDBMS manages all fragments transparently to the

user.

RULE 7: Distributed Query Processing

A distributed query may be executed at several different data processor (DP) sites.

Query optimization is performed transparently by DDBMS.

RULE 8: Distributed Transaction Processing

A transaction may update data at several different sites. The transaction is

transparently executed at several different DP sites.

RULE 9: Hardware Independence

The system must run on any hardware platform.

RULE 10: Operating System Independence

The system must run on any operating system software platform.

14

RULE 11: Network Independence

The system must run on any network platform.

RULE 12: Database Independence

The system must support any vendor’s database product.

Examples:

Case 1: Database that supports fragmentation transparency

SELECT *

FROM EMP

WHERE TITLE=’Manager’

Case 2: Database that supports location transparency

SELECT *

FROM BOSTON_EMP

WHERE TITLE=’Manager’

UNION

SELECT *

FROM EDMONTON_EMP

WHERE TITLE=’Manager’

UNION

SELECT *

FROM SAN_FRANCISCO_EMP

WHERE TITLE=’Manager’

Case 3: Database that supports mapping transparency

SELECT *

FROM BOSTON_EMP NODE BOSTON

WHERE TITLE=’Manager’

UNION

SELECT *

FROM EDMONTON_EMP NODE EDMONTON

WHERE TITLE=’Manager’

UNION

15

SELECT *

FROM SAN_FRANCISCO_EMP NODE SAN FRANCISCO

WHERE TITLE=’Manager’

LEVEL OF DISTRIBUTION TRANSPERANCY

 HIGH LOW

Specify: Fragmentation Location Local Mapping

Fragment? No Yes Yes

Location? No No Yes

Table 2.1 Summary of Transparency Features

2.7 Problem Definition

Distributed data processing is becoming a reality. Business wants to do it for many

reasons and they often must do it in order to stay competitive. While much of the

infrastructure for distributed data processing is already there (e.g. modern network

technology), a number of issue make distributed data processing still a complex

undertaking; (1) distributed system can become very large, involving thousands of

heterogeneous sites including PCS and mainframe server machines; (2) the state of

distributed system changes rapidly because the load of sites varies over time and new

sites are added to the system; (3) legacy systems need to be integrated, such legacy

systems usually have not been designed for distributed data processing and now need

to interact with other (modern) system in a distributed environment.

With respect to time when the optimization is performed, query optimization

algorithm can be static (compile time) or dynamic (execution time). According to the

type of information that is use to optimize the query, query optimization techniques

can be classified as: Statistically based query optimization algorithm, which uses

statistical information about the database and a Rule-based query optimization

algorithm, which is based on a set of user-defined rules to determine the best query

access strategy. Chapter 5 describes it more precisely.

16

The time to retrieve the result of the generated query in a distributed database system

is critical. So, to minimize the retrieval time is a key issue in the query processing of

distributed database system. Some researchers have only taken communication cost in

consideration while the other researchers have taken local processing cost in addition

to communication cost and still the others have even considered the possibility of

parallel processing. Nevertheless, minimizing communication cost will always be the

target.

17

CHAPTER 3

LITERATURE REVIEW

3.1 Literature Review

Distributed database system (DDBS) has become the need of almost every

organization to stay in the business. This shift in paradigm from centralized to

distributed database systems have forced the researchers think harder than ever before

as the opportunities and problems it bring with it is enormous. Numerous literatures

have cited the various aspect of distributed database system. Distributed database

design [3], query processing and transaction management [5] are few of it. Because of

critical performance issue query processing has been the centre of attraction of many

literatures. Objectives of distributed query processing are pointed out in [8]. A good,

recent survey of distributed query processing is presented by Donald Kossmann in

‘The State of the Art in Distributed Query Processing ‘, [24].

The cost of processing a query in a distributed database system consist sum of CPU,

I/O and communication costs (i.e., cost of query processing in distributed database

system = CPU cost + I/O cost + Communication cost). The CPU cost is incurred

while performing operation on data in main memory. The I/O cost is the time

necessary for disk input/output operations. This cost can be minimized by reducing

the number of I/O operations through fast access methods to the data and efficient use

of main memory (buffer management). The communication cost is the time needed

for exchanging data between sites participating in the execution of the query. The cost

is incurred in processing the message (formatting/ de-formatting) and in transmitting

the data on the communication network.

The first two cost components (I/O and CPU cost) are the only factors considered by

centralized DBMSs. The communication cost is probably the most important factor

considered in distributed database. Most of the earlier proposals [3, 5, 9, 33] for

distributed query optimization assume that the communication cost largely dominates

local processing cost (I/O and CPU cost) and thus ignore the latter. The assumption of

taking the communication cost as the most significant factor is valid for wide area

18

network (WAN), where the limited bandwidth makes communication much more

costly than local processing. Therefore, the aim of distributed query optimization

reduces to the problem of minimizing communication cost generally at the expense of

local processing [3, 5, 9]. However, modern distributed processing environments have

much faster communication networks, whose bandwidth is comparable to that of

disks. Therefore, a more recent research [23, 25, 28] consider a weighted combination

of these three cost components since they all contribute significantly to the total cost

of evaluating a query. More recent studies investigate the feasibility of retrieving data

from a neighbouring nodes main memory cache rather than accessing them from a

local disk [28].

Even if the relational distributed database system is assumed, there are numerous

algorithms on the subject but they are not designed for the same environment. Some

algorithms are designed for local network [19, 22], some for star network and most of

the others algorithm for long haul network. Also some environments have no

fragmented relations whereas in others some relations may be fragmented. Till date no

one is able to show the superiority of one algorithm over all other algorithms for a

given environment.

An important performance issue in distributed database systems is the implementation

of logical relationship of data elements stored across sites. An example of this is the

high cost of performing the join of relations stored at different sites. The straight

forward approach to implement the join is to send one of the join participating

relations to the site of the other relation and perform the join at that site. The objective

of join query optimization is to reduce the cost of this inter-site data transmission and

to move data in parallel so as to minimize the response time. An alternative way of

performing join is to use semi-joins. Instead of performing joins in one step, semijoins

are performed first to reduce the size of the relations. In the next step joins are

performed on the reduced relations. The main value of the semijoin in a distributed

system is to reduce the size of the join operands and then the communication cost.

The theory of semijoins and their values for distributed query processing have been

covered in [7, 11, 36]. Similarly, [10, 29] presented a distributed query processing that

use joins instead of semijoins.

19

Wong [33] is the first researcher who proposes the algorithm for distributed query

processing. Wong [33] algorithm is based on the hill climbing strategy. Wong

algorithm translates a query into a sequence of two tactics: (1) move a sub-relation

from one site to another, and (2) process data at one site using relational operations.

The algorithm is a recursive optimization procedure. It begins by selecting a site Sa

and then constructing the following initial solution.

1. Move all relations referenced by query to S a.

2. Process at Sa as a local query, using the relations moved in step 1.

The initial solution is improved by recursively replacing individual “move”

commands by lower cost sequences of “move” and “process” commands. The

algorithm terminates when no “move” command can be replaced by a lower cost

sequence. This algorithm produces increasingly efficient sequences of commands,

although its hill climbing discipline is too weak to guarantee optimality. The main

problem associated with this algorithm is a prior selection of Sa. Improved

implementation of this algorithm based on semijoins is proposed in [7, 36].

Several distributed query processing algorithms have been proposed aiming at

minimizing the amount of data transmission [7, 10, 11, 25, 29, 36]. A case study for

distributed query processing is conducted by P. Agrawal et al. [1]. There are other

query optimization strategies for distributed database systems some of which are

extensions of centralized query processing [27].

C.T. Yu and C.C. Chang [36] describe the theoretical aspect of query processing in

distributed database. They identified that only tree query can be fully reduced by

semijoins and discuss about the algorithms that reduces a cyclic query into a tree

query. Theirs semijoin strategy of query processing consists of three phase namely:

copy identification phase, reduction phase and assembly phase, which is also quite

similar in [11]. In copy identification phase, one or more copies of every relation

appearing in the qualification of the query are identified and will be used to process

the query. In reduction phase which is the most critical phase; semijoins are usually

used to eliminate tuples of the relations that do not satisfy the qualification component

of the query. In assembly phase, relations in the qualification component of the query

are sent to one site to produce the output required. The assembly site is so chosen that

20

the amount of data transfer between sites after reduction is minimal. Two steps are

required to fully reduce a tree query. In first step, semijoin is applied from leaves to

root of a tree which fully reduces the root relation where root of a tree query is

arbitrarily chosen. In second step, the semijoin is applied from root to leaves which

fully reduce the other relations, thus fully reducing all relations taking part in

answering the query. Optimizing tree queries in distributed database is also studied in

[37, 38].

Algorithm presented by Bernstein et al. [7] is a refinement of Wong’s algorithm in

which the concept of semijoin and reducer are used to abstract the main optimization

problem. It considers only the communication cost, thus ignoring the local processing

cost. This algorithm aims at minimizing intersite data transfer as it assumes that the

network bandwidth to be the system bottleneck and seek to minimize use of this

resource, all other resources are assumed to be free. The drawback of this algorithm is

that it selects the semijoins that maximize immediate gain, ignoring the fact that the

execution of one semijoin often decreases the cost and increases the benefit of other

semijoins. This algorithm consists of reduction phase and assembly phase and is based

on iterative hill climbing which is a kind of greedy algorithms. First phase executes

relational operations at various sites of the distributed database in order to delimit a

subset of database that contains all data relevant to the query and the latter one

transmit the reduction to one designated site, and query is executed locally at that site.

This first phase [7] can be taken as compact form of first two phases of [36] presented

above. At the end, Bernstein et al. [7] suggest a variation for its enhancement.

A reduced cover set of the set of full reducer semijoin programs for an acyclic query

graph for a distributed database system is covered by researchers [29]. They have

presented an algorithm based on this reduced cover set which determines the

minimum cost full reducer program. They have presented a low cost algorithm which

determines a near optimal profitable semijoin program by converting a semijoin

program into a partial order graph which expose the possibility of parallel execution

of the semijoins in the program. LaFortune et al. [25] have presented a state transition

model for the optimization of query processing in distributed database system.

LaFortune et al. [25] have parameterized a problem by means of a state describing the

21

amount of processing that has been performed at each site where database is located.

A state transition occurs each time a new join or semijoin is executed.

All the algorithms before assumed that the strategy formulation delay is negligible in

comparison to its execution delay. It is these two issues that are primarily investigated

by P. Bodorik et al. [9] for a distributed database in which partitioned relations are

permitted. So, response time include not only delays due to execution of strategies but

also delays due to their formulation. P. Bodorik et al. [9] only concentrates on an

important class of queries, the Select-Project-Join (SPJ) queries. They use a heuristic

algorithm for processing distributed queries using generalized join whose overhead

can be controlled. The trade-off between the strategy’s execution and formulation

delays is investigated. Their experimental result support the notion that simple greedy

heuristic algorithms proposed by many researchers [7, 11, 36] are sufficient in a sense

that they are likely to lead to near optimal strategies and that increasing the overhead

in forming strategies is only marginally beneficial.

Similarity and distinction between distributed and parallel database system and the

challenges offered by these techniques is discussed in [26]. Shared nothing

architecture of parallel database system which closely resembles with distributed

database system, differs it from mode of operation. In shared nothing multiprocessor

systems, there is a symmetry and homogeneity of nodes; this is not true in distributed

environment where heterogeneity of hardware and operating system at each node is a

common place. Number of query processing techniques for the World Wide Web

(WWW) which consist of semi-structured data distributed through out the world is

addressed by Florescuu et al. [17]. They propose several techniques to manage

websites and query a network for web pages as well as to manage and query a XML

data. As our concern is only with the structured data, interested readers are referred to

[17] for more detail survey on semi-structured data.

The effect of fragment and replicated strategy, local reduction strategy and integration

of these two strategies are analyzed by P. Agrawal et al. [1]. They take into

consideration all the factors that affect the distributed query processing i.e. local

processing time, data communication time as well as parallel computing.

Experimental result conducted by them conclude that fragment and replication

22

strategy along with local reduction strategy (best) is better than fragment and

replicated strategy along with all local reduction strategy and fragment and replicated

strategy with no local reduction (worst) in all the cases. However, in reality this is not

always true.

The problem of optimizing the processing of a single isolated query in a distributed

database system has received a great deal of attention [1, 7, 9, 11, 33, 36]. Many

algorithms have been devised for minimizing the cost associated with obtaining the

answer to a single isolated query in a distributed database system. However, if more

than one query may be processed by the system at the same time and if the arrival

times of the queries are unknown the determination of optimal query processing

strategies becomes a stochastic optimization problem. This stochastic optimization

problem is the issue of [14]. In order to cope with such problems, P.E. Drenick and

E.J. Smith [14] present a theoretical state transition model that treats the system as

one operating under a stochastic load. Query processing strategies may then be

distributed over the processors of a network as probability distributions in a manner

which accommodates many queries over time.

An overview of the state of the art in distributed query processing is presented by

Donald Kossmann [24]. He discussed various query processing techniques developed

for the recent products and research prototypes and showed how they can be applied

to different types of distributed systems. Much architecture can roughly be

characterized by their communication paths (client-server, peer-to-peer, or multi-tier)

and by the capabilities of the sites of the system (homogeneous or heterogeneous). For

each category, Donald Kossmann [24] presented and discussed the set of query

processing techniques which are particularly effective. For instance, [24] showed how

to exploit the query capabilities of individual sites in a heterogeneous system.

Independent of the specific architecture, all distributed database and information

systems today are based on the two principles namely: best effort and flexible data

placement.

In best effort the query processor always tries to execute a query as fast as possible or

with as little cost as possible. At the heart of this strategy is a query optimizer, which

decides for every query which query execution methods to use (e.g., which join

23

method), where to execute these methods, and in which order to execute these

methods. The optimizer can be used statically in order to compile a query once and

for all times. The optimizer can also be used dynamically just before a query instance

is executed or on the fly while the query is executed in order to adjust to the current

state of the system.

While in a flexible data placement, in order to improve the performance of a whole

query workload, caching and/or replication can be used in order to place data at or

near sites where the data are frequently asked.

A large variety of economic model for various aspects of distributed computing have

been studied since the mid-1980s (e.g. economic model for resource allocation, load

balancing, flow control and quality of service). The motivation to use an economic

model is that distributed systems are too complex to be controlled by a single

centralized component with a universal cost model. Systems based on an economic

model rely on the “magic of capitalism.” Every server that offers a service (data, CPU

cycles etc.) tries to maximize its own profit by selling its services to clients. The hope

is that the specific needs of all the individual clients are best met if all servers act this

way [24]. Pentaris and Ioannidis [28] presents the e-commerce style of query

processing (trading) in distributed database which include the bidding, bargaining and

auction way of negotiation between the buyer and seller nodes viewing answer to the

queries as commodities.

Mariposa is the first distributed database system based on economic paradigm.

Mariposa process queries by carrying out auctions. In such auction, every server can

bid to execute parts of a query and clients pay for the execution of their queries. More

precisely, query processing in Mariposa works as follows [24, 28]:

1. Queries originate at clients and clients allocate a budget to every query. The

budget of a query depends on the importance of the query and how long the

client is willing to wait for the answer. A client in Las Vegas could, for

example be willing to pay $5.00 if the client gets the latest World Cup football

results within a second, but only 10 cents if the delivery of the results takes

one minute.

24

2. Every query is processed by a broker. The broker parses the query and

generates a plan that specifies the join order and joins methods.

3. The broker starts an auction. As part of this auction every server that stores

copies of parts of the queried data or is willing to execute one or several of the

operator specified in the broker’s plan is asked to give bids in the form of

<Operator o, Price p, Running Time t, Expiration Date x>. In other words,

with such a bid a server indicates that it will be willing to execute operator o

for p dollars in t seconds and that this offer is valid until the expiration date x.

4. The broker collects all bids and makes contracts with servers to execute the

queries. Doing so, the broker tries to maximize its own profit. If, for example,

the broker finds a way to execute the Las Vegas query from above in a second,

paying only $1.00 to servers, the broker will pursue this way and keep $4.00

of the budget as profit. If the query cannot be evaluated with acceptable cost in

one second, the broker will try to find a very cheap way to execute the query

in a minute and keep a couple of cents as profit. If the broker finds no way to

execute the query within time budget limitations, the broker will reject the

query. In this case, the client must raise the budget, revise the response time

goals, or just be happy without the answer.

The beauty of this strategy is that different servers can flexibly establish different

bidding strategies in order to achieve high revenue and dynamic data placement nicely

fits into it.

How non uniform bandwidth affects the query optimization in a distributed database

system is investigated by Ip Alex et al. [23]. The cost based optimizer developed by Ip

Alex et al. [23] manipulates both operator order and the physical locations at which

these operators are evaluated and provides a basis for the detailed examinations of

resource contention issues. They aim at enhancing the optimization strategy for

distributed systems to account for non-uniform communication costs; particularly

where the system is bottlenecked by lack of bandwidth in particular links. Ideas of

how to tackle this bottleneck using the data shipping, query shipping and hybrid

shipping strategy of query processing is also presented. Accelerating the query

processing in distributed database system by using partially encoded record filter

25

(PERF) is studied by Haraty and Fany [20]. PERF is a new two way semijoin

implementation primitive. The basic idea of PERF is as follows:

1. Project R (sending relation) on a joining attribute and get PR.

2. Ship PR to S (relation to be reduced).

3. Reduced S by a semijoin with PR.

4. Send back to R, a bit vector (the PERF) that contains one bit for every tuple in

PR and in the same order. If the tuple is matching then send a 1 or else send a

0.

The fourth step is known as backward phase and which distinguish it from ordinary

semijoin. The main utility of PERF is that it minimizes this phase and hence makes

the forward phase (step 2) cost greater than the backward phase. PERF joins can be

better enhanced by sending back to R not all the bit vector corresponding the PR but

only 0s part or 1s part according to which one is less in size and hence has lower

transmission cost [20].

Yoo and LaFortune [35] have presented a heuristic method based on the A* algorithm

that efficiently finds an optimal sequence of semijoins for a given query on a

distributed database. The method generates new states from the given initial state by

repeatedly doing semijoin on the relations. Each new state n is evaluated by

estimating function f(x) = g(x) + h(x). By providing that the admissibility and

consistency conditions are satisfied, they have shown that an optimal sequence of

semijoins can be found with the proposed function. Their solution on average search

less than five percent of the search space before an optimal solution is found.

Basic concept about the distributed database system and its distinction from the

centralized database system can be found in [13, 15, 30, 32] and core concept of it can

be found in [27].

26

CHAPTER 4

RELATIONAL DATA MODEL

4.1 Introduction

The relational model was first introduced by Ted Codd of IBM Research in 1970 in a

classic paper [Codd 1970], and attracted immediate attention due to its simplicity and

mathematical foundations. The model uses the concept of a mathematical relation -

which looks somewhat like a table of values - as its basic building block and has its

theoretical basis in set theory and first order predicate logic. The relational data model

provides a formal high level description of a collection of data items (i.e. a database)

in terms of relations. The terms domain, attribute, relation, relation schema, relation

state, contribute to the definition of the relational data model. These terms are defined

as follows:

1. Domain: Domain is a set of data values. In other words, a domain D is a set of

atomic values where atomic means that each value in the domain is indivisible

as far as the relational model is concerned. A common method of specifying a

domain is to specify a data type from which the data values forming the

domain are drawn.

2. Attribute: An attribute is a name given to the set of data values. An attribute

name which describes the set of data values is a subset of the possible values

in a specific domain of values. Hence, each attribute is uniquely defined on

one domain of values.

3. Relation: A relation can be thought of as a table in which each row of the table

is called a tuple and each column of the tables is labeled by the attributes

comprising the relation. No two tuples in the relation are identical.

4. Relation Scheme: A relation scheme names the relation and the attributes in

that relation. The degree of a relation is the number of attributes of its relation

schema.

5. Relation State: The contents of a relation at some moment in time, is called the

relation state. Answer to any query presented at that time is dependent in that

relation state.

6. Database Schema: Database schema is a set of relation schemas.

27

7. Database State: Database state is a set of relation states such that there is one

relation state per relation schema.

In this work, relation name are capital letters from the latter part of the alphabet (e.g.,

Q, R) or the capital letter R, indexed by the integers (e.g., R1, R2 etc.). Attribute

names are either capital letters from the first part of the alphabet (e.g., A, B) or the

capital letter A, indexed by the integers (e.g., A1, A2 etc.). Some specific relation

example use more descriptive relation and attribute names.

Given the preceding definitions, we can define following relation and attribute

parameters.

For a relation R, let:

n = number of tuples (i.e. cardinality of a relation).

a = number of attributes.

For an attribute Ai, let:

Di = number of possible domain values (i.e. the domain cardinality).

Ci = number of distinct values currently in Ai (i.e. the attribute cardinality).

Wi = size of a data item in Ai.

Size of R (sR) = n *

a

i 1

Wi.

Projected size of the attribute with no duplicate values (sAi) = Wi * Ci.

It is assumed Wi the size of a data item in Ai, is one unit of data in size. This

assumption does not limit the generality of our work since the projected size of an

attribute is always directly proportional to the cardinality of the attribute and the size

of a relation is always directly proportional to the cardinality of that relation.

Furthermore, this assumption allows us to make the following simplifications on the

relation and attribute parameters.

For a relation R, then:

n = number of tuples.

a = number of attributes.

sR = size of R, sR = n *a.

28

For an attribute Ai, then:

Di = number of possible domain values.

Ci = number of distinct values currently in Ai.

sAi = projected size of the attribute with no duplicate values, sAi = Ci.

4.2 Relational Operations

The relational operations enable the user to specify basic retrieval requests. Each node

in a distributed database contains a local database. Each local database is described by

a database schema and database state. Relational operations in particular the join

operation can be defined intra-nodally (within a node) or inter-nodally (between

nodes).

Relational operations concerned with this work are discussed next.

4.2.1 Selection

A selection also known as restriction because of its behaviour, is a intra-nodal

operation and can be represented as R[A=x]. Attribute A in relation R is to be

restricted to those values in column A such that they equal the value x. Formally:

R[A=x] = { r ε R | r.A=x}

In relational algebra it is represented as:

σ<selection condition> (R)

where the symbol σ (sigma) is used to denote the SELECT operator and the selection

condition is a Boolean expression specified on the attributes of relation R. The

Boolean expression specified in <selection condition> is made up of a number of

clauses of the form

<attribute name> <comparison op> <constant value> or

<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is normally

one of the operators {=, <, ≤, >, ≥, ≠} and <constant value> is a constant value from

the attribute domain.

29

In SQL; ‘WHERE’ part represents the restriction.

4.2.2 Projection

A projection is an intra-nodal operation and can be represented as R[A]. The

projection of relation R on attribute A is obtained by eliminating all columns of R not

labeled by A and then eliminating duplicate tuples. Formally:

R[A] = { r.A | r ε R}

In relational algebra it is represented as:

π<attribute list> (R)

where the symbol π (pi) is the symbol used to represent the ‘PROJECT’ operation and

<attribute list> is a list of attributes from the attributes of relation R.

In SQL, ‘SELECT’ part represents the projection.

4.2.3 Join

A join operation can be represented as R[A=B]S. The join operation is used to

combine two relations. For the join of two relations to happen, the joining attributes of

these relations must be defined on the same domain. For the above case, attributes A

and B must be defined on the same domain. Value of A in R is compared with a value

of B in S. If the two values have the relationship specified in the join operation (e.g.

‘=’, equality), then the tuples of the relations are combined to form a third relation.

Formally:

R[A=B]S = {r.s | r ε R, s ε S and r.A=s.B}

In relational algebra, join is denoted by:

R <join condition>S

The join is inter-nodal if the two relations are at different nodes in the network. To

perform an inter-nodal join, one of the two relations must be moved to the node where

the other relation resides. There are different ways of joining the relations such as

30

equi-join, left outer join, right outer join, full outer join. However, this work is

concerned only with the equi-join.

4.2.4 Semi-join

Semi-join is used as an inter-nodal operation and can be represented as R<A=B]S,

where S is the sending relation and R is a reduced relation. The semi-join operation

may be used to perform the join of the two relations without moving an entire relation

to perform the join. The semi-join is performed by first projecting S.B at the node

where relation S resides. S.B is then transferred to the node where relation R resides.

R is then restricted to those values of R.A equal to those values in S.B., which reduce

the relation R. Let that reduced relation R be R’. R’ is then sent to the site where S

resides to perform the join of R’ and S in order to obtain the final result. The main

motivation to use semijoin is that the semi-join R<A=B]S will significantly reduce R

so that transferring the reduced relation R (i.e. R’) has a greater impact on the

communication cost in comparison to unreduced one (i.e. original relation R).

Formally:

R<A=B]S= {r | r ε R and r.A ε S[B]}

For joining two relations R and S located at different sites, there are two possibility

R<A=B]S

or

S<B=A]R.

Our semi-join tactics will consider both but only add one of them in a semi-join

program at a time that is more beneficial than other in terms of average percentage

gain in reduction of joining attributes cardinalities (covered in chapter 7). A semijoin

program is a sequence of semijoins which describes the order in which the semijoin is

to be performed in order to obtain the result of the requested query. There is slightly

one more variation of semi-join which is called 2-way-semijoin in which the reduced

relation again send the projection of the joining attribute to the sending relation such

that the sending relation is also reduced i.e., if R<A=B]S is the first semijoin applied

and R’ be the reduced relation R then semijoin S<B=A]R’ is applied after that so that

31

the relation S is reduced to S’. It is clear from the discussion that R’ R i.e., reduced

relation is a proper subset of original relation.

The cost of a semijoin R<A=B]S is defined to be the cost of transferring S[B] from

the site containing S to the site containing R (if the two site are identical, the cost is

zero). The benefit of the semijoin is the size of R before the operation minus the size

of R after the operation i.e., the benefit of semijoin is the amount of data it eliminates

for inter-nodal data transfer. A semijoin is said to be profitable if its cost is less than

its benefit, i.e. cost of semijoin < benefit of semijoin. It is not always the case that

semijoin is beneficial. Sometimes simple join is beneficial than semijoin. Our

semijoin program only adds semijoin that is beneficial to semijoin program. Semijoin,

unlike join, is asymmetric; that is, R<A=B]S is not equal to S<B=A]R. The former

reduces the R, while the latter reduces S.

The preference of semijoin over join as indicated by [7], is mainly for three reasons.

First, R<A=B]S R, and so semijoins monotonically reduce the size of the database.

By contrast joins can increase the size of database, in worst case |R[A=B]S| = |R|*|S| .

Second, semijoin can be computed with less data transfer than joins. To compute

semijoin R<A=B]S, we need to transfer only the projection of S on attribute B i.e.

S[B] whereas to compute join R[A=B]S, we must transfer an entire relation. Of

course, semijoins may also have less effect than the join, since R<A=B]S only

reduces R, whereas R[A=B]S simultaneously reduces R and S. However, the third

advantage of semijoins is that the “reduction effect” of any single join can be attained

by two semijoins. An optimal query processing algorithm would almost certainly

include both joins and semijoins.

The following example illustrates the above operations. Given the two relations R1

and R2 with relation states:

R1: A B

 1 Unary

2 Binary

3 Ternary

32

 R2:

The restriction R2[D=2] has the following result.

R2’:

The projection R2[C] has the following result.

R2’:

The intra or inter-nodal join, R1[A=D]R2 has the following result.

R3:

C D

- 1

- 2

* 2

/ 2

+ 2

C D

- 2

* 2

/ 2

+ 2

C

-

*

/

+

A B C D

1 unary - 1

2 binary - 2

2 binary * 2

2 binary / 2

2 binary + 2

33

The semi-join R1<A=D]R2, has the following result at the node at which R1 resides.

R1’:

To complete the join, this reduced relation is then transferred to the site containing

relation R2 and join is performed over there to obtain final result R3 as in the normal

join.

The below example taken from [4] illustrates where join is more beneficial than

semijoin.

Let the relation R1, R2, R3 and R4 are stored in Site1, Site2, Site3 and Site4

respectively with following relation state:

R1: R2:

Site1 Site2

R3: R4:

Site3 Site4

Let the ‘WHERE’ part of the SQL query is:

R1.A=R3.A

AND

A B

1 unary

2 binary

B C

1 1

0 0

A B

0 1

1 0

A C

1 1

0 0

C D E F G H I

0 0 0 0 0 0 0

1 1 1 1 1 1 1

34

R1.B=R2.B

AND

R2.C=R4.C

AND

R3.C=R4.C

Now using the semijoins, the optimal evaluation is to move R1, R2 and R3 to site 4,

i.e.; no semijoin should be used as there is no benefit from any of it and our semijoin

program would not add any. If we assume that each data item is 1 unit in length, then

this require 12 units to be transferred to answer the query. Using the join the optimal

evaluation is:

R12 = R2[B=B]R1 at Site2. This cost 4 units of data transfer.

R123 = R12[A=A AND C=C]R3 at Site2. This cost 4 units of data transfer.

Note that R123 = { }.

R4 = R4[C=C]R123 at site 4. This cost 0 unit of data transfer because R123 is empty.

So in total, the cost of answering the query with join is 4 + 4 + 0 = 8 units.

4.3 Relational Queries

Queries in a relational database system may be expressed using high-level non-

procedural query language. Codd’s original paper [Codd 70] set the basis for two

families of relational query languages, relational calculus and relational algebra. The

definitions of restriction, projection, join and semijoin presented earlier are expressed

in relational algebra. SQL has been used to illustrate example in this work. The

distributed aspect of relational queries is discussed in chapter 5.

4.4 Reasons for Using Relational Data Model

The reasons for choosing the relational data model as the underlying formulation are:

the mathematical foundation of the relational model makes it a good candidate for

theoretical treatment, the relational DBMS market has matured and is now sizable and

finally most distributed database systems are also relational.

35

CHAPTER 5

QUERY PROCESSING IN DISTRIBUTED DATABASE

5.1 Query Processing Problem

The main function of a relational query processor is to transform a high level query

(typically, in relational calculus) into an equivalent low-level query (typically, in

some variation of relational algebra). The low level query actually implements

execution strategy for the query. The transformation must achieve both correctness

and efficiency. It is correct if the low level query has the same semantics as the

original query, that is, if both queries produce the same result. The well defined

mapping from relational calculus to relational algebra makes the correctness issue

easy. But producing an efficient execution strategy is more involved. A relational

calculus query may have many equivalent and correct transformation into relational

algebra. Since each equivalent execution strategy can lead to very different

consumptions of computer resources, the main difficulty is to select the execution

strategy that minimizes resource consumption.

For example: Suppose the database have following tables:

EMP (ENO, ENAME, TITLE)

ASG (ENO, PNO, RESP, DUR)

And the following simple user query:

“Find the name of employees who are managing a project.”

The expression of the above query in relational calculus using SQL syntax is:

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO=ASG.ENO AND RESP=’Manager’

Two equivalent relational algebra queries that are correct transformation of the query

above are:

ΠENAME(σRESP='Manager' ^ EMP.ENO=ASG.ENO(EMP X ASG))

and

36

ΠENAME(EMP ENO (σRESP='Manager' (ASG))).

It is intuitively obvious that the second query which avoids the cartesian product of

EMP and ASG consumes much less computing resources than the first and thus

should be retained (extracted from [27]).

In a centralized context, query execution strategies can be well expressed in an

extension of relational algebra. The main role of a centralized query processor is to

choose, for a given query, the best relational algebra query among all equivalent ones.

Since the problem is computationally intractable with a large number of relations, it is

generally reduced to choosing a solution close to optimum.

In a distributed system, relational algebra is not enough to express execution

strategies. It must be supplemented with operations for exchanging data between sites.

Besides the choice of ordering relational algebra operations, the distributed query

processor must also select the best sites to process data, and possibly the way data

should be transformed. This increases the solution space from which to choose the

distributed execution strategy, making distributed query processing significantly more

difficult.

The below example illustrates the importance of site selection and communication for

a chosen relational algebra query against a fragmented database. We consider the

following query of above example

ΠENAME(EMP ENO (σRESP='Manager' (ASG)))

We assume that relations EMP and ASG are horizontally fragmented as follows:

EMP1=σENO≤"E3"(EMP)

EMP2=σENO>"E3"(EMP)

ASG1=σENO≤"E3"(ASG)

ASG2=σENO>"E3"(ASG)

Fragments ASG1, ASG2, EMP1 and EMP2 are stored at site 1, 2, 3 and 4 respectively,

and the result is expected at site 5.

37

Site 5

 EMP1' EMP2'

 Site 3 Site 2

ASG1' ASG2'

 Site 1 Site 2

(a) Strategy A

 Site 5

 ASG1 ASG2 EMP1 EMP2

Site 1 Site 2 Site 3 Site 4

(b) Strategy B

Figure 5.1 Equivalent Distributed Execution Strategies

For the sake of simplicity, we ignore the project operation in the Figure 5.1 which

show two equivalent distributed execution strategies for that above query. An arrow

from site i to site j labeled with R indicates that relation R is transferred from site i to

site j. Strategy A exploits the fact that relations EMP and ASG are fragmented the

same way in order to perform the select and join operation in parallel. Strategy B

centralizes all the operand data at the result site before processing the query.

 result=EMP1' U EMP2'

 ASG2'=σRESP='Manager'ASG2 ASG1'=σRESP='Manager'ASG1

 EMP1'=EMP1 ENO ASG1' EMP2'=EMP2 ENO ASG2'

 result=(EMP1 U EMP2) ENO σRESP='Manager'(ASG1 U ASG2)

38

To evaluate the resource consumption of these two strategies, we use a simple cost

model. Let us assume that a tuple access denoted tupacc, is 1 unit (which is left

unspecified) and a tuple transfer, denoted tuptrans, is 10 units. Let us assume that

relations EMP and ASG have 400 and 1000 tuples, respectively, and that there are 20

managers in relations ASG. Similarly, assume that data is uniformly distributed

among sites. Finally let us assume that relations ASG and EMP are locally clustered

on attributes RESP and ENO respectively. Therefore, there is direct access to tuples of

ASG (respectively, EMP) based on the value of attribute RESP (respectively, ENO)

[27].

The total cost of strategy A can be derived as follows:

1. Produce ASG' by selecting ASG requires (10+10) * tupacc = 20

2. Transfer ASG' to the site of EMP requires (10+10) * tuptrans = 200

3. Produce EMP' by joining ASG' and EMP requires (10 +10) * tupacc * 2 = 40

4. Transfer EMP' to result site requires (10+10) * tuptrans = 200

 Total cost is 460.

 Similarly, the cost of strategy B can be derived as follows:

1. Transfer EMP to site 5 requires 400 * tuptrans = 4,000

2. Transfer ASG to site 5 requires 1000 * tuptrans =10,000

3. Produce ASG’ by selecting ASG requires 1000 * tupacc =1,000

4. Join EMP and ASG’ requires 400 * 20 * tupacc =8,000

 Total cost is 23,000.

In strategy B we assumed that the access methods to relations EMP and ASG based

on attributes RESP and ENO are lost because of data transfer. This is reasonable

assumption in practice. Strategy A is better by a factor of 50, which is quite

significant. Furthermore, it provides better distribution of work among sites. The

difference would be even higher if we assumed slower communication and/or higher

degree of fragmentation.

39

5.2 Query Processing Objectives

The objective of query processing on distributed database systems is to facilitate users

to express queries as if the distributed database were a single unified database. The

fact that data is actually distributed physically is transparent to the user. The user

should however be able to direct the result of a query to any node (site) in the

network. This node (site) is termed the ‘result node’.

The main objective of query processing is query optimization. Because many

execution strategies are correct transformation of the same high level query, the one

that optimizes (minimizes) resource consumption should be retained.

A good measure of resource consumption is the total cost that will be incurred in

processing the query. Total cost is sum of all times incurred in processing the

operations of the query at various sites and in inter-site communication. Another good

measure is the response time of the query [16] which is the time elapsed for executing

the query. Since operations can be executed in parallel at different sites, the response

time of a query may be significantly less than its total cost. Finding the optimal

solution is computationally intractable (being NP HARD), so the goal of query

processing is to find an execution strategy for the query which is close to optimal.

There are different approaches in finding this close to optimal solution like dynamic

programming, heuristic based programming which is based on statistics of a database

which will be explored in coming section.

5.3 Types of Optimization

Conceptually, query optimization aims at choosing the best point in solution space of

all possible execution strategies. An immediate method for query optimization is to

search the solution space exhaustively, predict the cost of each strategy and select the

one with the minimum cost. Although this method is effective in selecting the best

strategy, it may incur a significant processing cost for the optimization itself. The

problem is that the solution space can be large; that is, there may be many equivalent

40

strategies even with a small number of relations. The problem becomes worse as the

number of relations or fragments increases (e.g. becomes greater than 5 or 6) [27].

Having high optimization cost is not necessarily bad, particularly if query

optimization is done once for many subsequent executions of the query. Therefore, an

exhaustive search approach is often used whereby (almost) all possible execution

strategies are considered [31].

To avoid the high cost of exhaustive search, randomized strategies, such as iterative

improvement and simulated annealing have been proposed. They try to find a very

good solution, not necessarily the best one, but avoid the high cost of optimization, in

terms of memory and time consumption.

Another popular way of reducing the cost of exhaustive search is the use of heuristics,

whose effect is to restrict the solution space so that only a few strategies are

considered. In both centralized and distributed systems, a common heuristic is to

minimize the size of intermediate relations. This can be done by performing unary

operations first, and ordering the binary operations by the increasing sizes of their

intermediate relations. An important heuristic in distributed systems is to replace join

operations by combinations of semi-joins to minimize data communication.

A query may be optimized at different time relative to the actual time of query

execution. Optimization can be done statically before executing the query or

dynamically as the query is executed. Basically, there are three types of query

optimization in accordance to optimization time. They are:

5.3.1 Static Query Optimization

Static query optimization is done at query compilation time. Thus, the cost of

optimization may be amortized over multiple query execution. Therefore, this query

optimization is quite appropriate for use with the exhaustive search method. Since the

size of the intermediate relations of a strategy is not known until run time, they must

be estimated using database statistics. Errors in these estimates can lead to the choice

of suboptimal strategies.

41

5.3.2 Dynamic Query Optimization

Dynamic query optimization proceeds at query execution time. At any point of

execution, the choice of the best next operation can be based on accurate knowledge

of the results of the operations executed previously. Therefore, database statistics are

not needed to estimate the size of intermediate results. However, they may still be

useful in choosing the first operations. The main advantage of dynamic query

optimization is that the actual sizes of intermediate relations are available to the query

processor, thereby minimizing the probability of a bad choice. The main shortcoming

is that query optimization an expensive task, must be repeated for each execution of

the query. Therefore, this approach is best for ad-hoc queries. One way of performing

the dynamic query optimization in distributed database systems is to use dynamic

programming. Dynamic programming, like the divide-and-conquer method, solves

problems by combining the solutions to sub-problems. Dynamic programming is

applicable when the subproblems are not independent, that is when subproblems share

subsubproblems [12].

5.3.3 Hybrid Query Optimization

Hybrid query optimization attempts to provide the advantages of static query

optimization while avoiding the issues generated by inaccurate estimates. In other

words, it tries to exploit the advantages of both static and dynamic query optimization.

This approach is basically static, but dynamic query optimization may take place at

run time when a high difference between predicted sizes and actual size of

intermediate relations is detected.

5.4 Statistics

The effectiveness of query optimization relies on statistics on the database. Dynamic

query optimization requires statistics to choose which operation should be done first.

Static query optimization is even more demanding since the size of intermediate

relations must also be estimated based on statistical information. In a distributed

database, statistics for query optimization typically bear on fragments, and include

42

fragment cardinality and size as well as size and number of distinct values of each

attribute. To minimize the probability of error, more detailed statistics such as

histograms of attribute values are sometimes used at the expense of higher

management cost. The accuracy of statistics is achieved by periodic updating. With

static optimization, significant changes in statistics used to optimize a query might

result in query reoptimization.

5.5 Layers of Query Processing

Figure 5.2 Generic Layering Scheme for Distributed Query Processing

As shown in the Figure 5.2 generic layering scheme for distributed query processing

can be isolated into four main functions namely: query decomposition, data

localization, global query optimization and local query optimization.

Local
Optimization

Global
Optimization

Data
Localization

Query
Decomposition

LOCAL
SCHEMES

Calculus Query on Distributed
Relations

Algebraic Query on Distributed
Relations

Fragment Query

Optimized Fragment Query with
Communication Operations

GLOBAL
SCHEME

STATS ON
FRAGMENTS

FRAGMENT
SCHEME

Optimized Local
Queries

CONTROL
SITE

LOCAL
SITES

43

Query decomposition and data localization correspond to query rewriting. The first

three layers are performed by central site and use global information, the fourth is

done by the local sites.

Once a query has been expressed, we need to follow some query processing scheme to

answer the query. The query processing scheme in general use [7, 21] is as follows:

1. Initial Local Processing

The relational operations projection, selection and intra-site join are done first to

reduce the amount of data before any data transmissions are made.

2. Processing Strategy

A sequence of data transmission steps and local processing steps are done to

further reduce the amount of data involved in answering the query. This step can

be considered to be a preprocessing step (for the next step).

3. Final data transmission

Data are then transmitted from the distributed nodes to the result node where final

local processing is done to form the result of the query.

 Steps 1 and 3 represent well known techniques in database management systems.

Step 2 has been the focus of research [7, 21]. Without processing strategies, whole

relations would always have to be transmitted on the network to answer queries. This

would lead to excessive data communication costs and a high likelihood of a several

congested communication network. This work is also focused on Step 2.

5.6 Assumptions

In this work, relational database systems are considered. Further, it is assumed that the

cost of local processing is zero and all possible initial local processing like project,

selection and intra-nodal join are performed before. Only one copy of the relation

exists and each site can contain only one relation at a time. Only one query can be

subjected to the system at a time and only retrieval based query is considered.

44

The cost measure is defined in terms of the total data transmission cost. The

transmission cost of sending X bytes of data from site R to site S is assumed to be C0

+ C1 *X, where C0 is start-up cost of initiating transmission and C1 is a proportionality

constant.

Similarly to [7], the following assumptions are made for estimating the effect of a

semi-join.

1. The distinct values in an attribute of a relation are assumed to be uniformly

distributed. The probability that a tuple has a particular value is same as the

probability that it has any other value. This is clearly a critical assumption and

quite strong since it will be utilized in forming query processing strategies. If

attribute value distribution is not uniformly distributed then the strategies

formed will not perform as predicted.

2. If the number of distinct values in one attribute is reduced by a semijoin, the

number of distinct values in each of other attributes in the same relation will

also be reduced. Although there is no agreement in the literature regarding

how cardinalities of attributes other than the joining attribute are updated with

respect to the semi-join, this work uses approximation of Yao’s function [34]

which depends on the selectivity of the semijoin as in [7] (more will be

covered in next chapter).

It is assumed that the system parameters like size of each relation, number of

attributes in each relation, size of the attribute in each relation, cardinality of domain

are contained in system catalog which is used for the cost-benefit estimation of

semijoin. It is also assumed that there is only one join attribute between any two

relations. All the assumptions are made to simplify the calculation. However, our

assumption does not take anything away from generality as the final objective is to

find a semi-join program with optimal cost-benefit.

45

5.7 Complexity Considerations

In the general query environment, the problem of determining an optimal semi-join

processing strategy is a NP-Hard problem [21]. NP-Hard problems are those problems

for which there exists no deterministic polynomial time algorithm to solve it. So,

algorithms which generate these preprocessing strategies are necessarily heuristic in

nature.

5.8 Database State Update Consideration

A problem is encountered when semi-join is used as query processing tactic. When a

particular semi-join program is generated the cost beneficial semi-joins are added to it

incrementally. For each semi-join added to the semi-join program, the database state

needs updating to reflect the execution of this semi-join so that the next semi-join to

be considered may have its correct cost and benefit determined. Research has shown

that the history of previous semi-joins that are already in a semi-join program can

affect the effect on the database state of a new semi-join that is being considered for

addition to the semi-join program (more will be covered in next chapter).

46

CHAPTER 6

SEMIJOIN COST/BENEFIT ESTIMATION

6.1 Introduction

One of the main factors affecting the performance of a query processing strategy is

the size of the intermediate relations produced during the query execution phase.

Estimating the communication cost to send a stored relation to another site while

executing a query is easy since the size of the relation is known. The situation become

more complicated when we need to estimate the communication cost to send some

intermediate relation to another site prior to the execution of the query. Since it is

necessary to estimate the sizes of intermediate relations, this estimation is based on

statistical information about the relations involved in the query and formula used to

predict the cardinalities of the relations obtained from the sequence of database

operations. There is a direct trade off between the precision of the statistical

information and the cost of calculating such information.

When semijoin algorithm is applied, it looks for each possible semijoin i.e., candidate

semijoin (CSJ) at each step for possible addition to the semijoin program (SJP). The

cost of CSJ depends on the current state of the database. The benefit which is the

amount of reduction that could be obtained after the semijoin is performed, will

involve a hypothetical update of the database state. Thus, cost/benefit problem can be

correspond to the problem of estimating the database state each time a semijoin has

been added to SJP.

The current state of database consists of cardinalities (i.e., number of tuples) of each

relation and the cardinalities (i.e., the number of distinct values) of each attribute.

Given a new semijoin to be added to SJP, we only update the state of the relation that

is being reduced.

47

6.2 Estimation

Performance of a distributed query processing algorithm depends to significant extent

on the estimation algorithm used to evaluate the expected sizes of some intermediate

relations. The choice of a reasonable estimation algorithm is therefore extremely

important.

The cost of R<A=B]S is defined to be the amount of intersite data transfer required to

compute it. This equals

0 if R and S are stored at the same site.

sB otherwise.

where sB is the product of cardinality of the S projected on attribute B times width of

the domain B.

A semijoin R<A=B]S is said to be beneficial if the size of the relation R before the

semijoin is greater than the size of the relation R after the semijoin. Given the number

of distinct value of an attribute say B on relation S and domain cardinality of an

attribute B one can calculate the selectivity of an attribute B on relation S. Selectivity

factor of an attribute B on relation S is the ratio of cardinality of distinct value of B in

S by domain cardinality of attribute B. Selectivity factor determines how reducing

relation gets affected on that join attribute. Formally,

 | value of Ai in Ri|

Selectivity (SF(Ri.Ai)) = ---------------------------- (6.1)

 |domain value of Ai|

where SF(Ri.Ai) is the selectivity of an attribute Ai in relation Ri and 0<SF(Ri.Ai)1.

If the SF(Ri.Ai) is close to 0, then it is said to have a good selectivity and if it is closer

to 1, it is said to have bad selectivity because it will not reduce the relation

significantly.

48

The estimation of the size of intermediate relation and distinct values of joining and

non-joining attribute of the reduced relation due to the effect of CSJ added to the SJP

is described below.

6.2.1 Effect of Semijoins on Relation and Joining Attribute

Cardinality

Let R<A=A]S be a semijoin that is to be added to the semijoin program (SJP). Then

the formula to calculate the new cardinality of R is as follow:

|R| = CC(R) * SF(S.A) ---------------------------- (6.2)

where CC(R) is the current cardinality of R i.e., cardinality of R before semijoin and

SF(S.A) is the selectivity of relation S on attribute A.

Similarly, the new cardinality of the join attribute A of R is calculated as follow:

|R.A| = CC(R.A) *
R))CC(i.e.,Rofycardinalit(old

|)R|i.e.,Rofycardinalit(new
---------------------------- (6.3)

 where CC(R.A) is the number of distinct value of A in R before the semijoin and |R|

is the cardinality of relation R after the semijoin.

New selectivity factor of relation R on join attribute A can be calculated as:

SF(R.A) = SF(R.A) before semijoin * SF(S.A) ---------------------------- (6.4)

6.2.2 Effect of Semijoins on Non-joining Attribute Cardinality

There is no agreement in the literature regarding how cardinalities of attributes other

than join attribute say A are updated with respect to the semijoin say R<A=A]S,

reducing R.A. [21] mentions that they should remain unchanged, while Yu et al. [37]

argue that they should be reduced in the same manner as R.A by applying the

selectivity of the semijoin to the current cardinalities of each attribute. Bernstein et al.

[7] use an approximation of Yao’s function [34] which depends on the selectivity of

the semijoin. It is felt that Bernstein et al. [7] have the most realistic approach and will

be used in this work.

49

Bernstein et al. [7] algorithm analyzes the effect on other attributes in R as a ‘hit ratio’

problem provided that the attributes are uniformly distributed among relations. If we

are given n objects (corresponds to cardinality of R), distributed uniformly over m

colours (corresponds to cardinality of R[B] where B≠A) then the hit ratio problem

may be stated as, “How many distinct colours are we expected to hit if we randomly

select r of the objects?”.

The answer is given by Yao [34] as follow:

Y(m, n, r) = m * (1 -

r

i

inind
1

)]1/()1[(), where d= 1-1/m ---------------- (6.5)

The computation of equation 6.5 is time consuming, so in practice Bernstein et al. [7]

approximate Y(m, n, r) by:

 r if r < m/2

 Y(m, n, r) = m if m< r/2 ---------------------------- (6.6)

 (r + m)/3 otherwise.

The above equation is simple yet powerful enough to estimate the reasonable

reduction on other attributes other than the join attribute of a reduced relation.

Example:

Consider a query consisting of a join of relation R and S on attribute A i.e., R[A=A]S

with the following database statistics as shown in Table 6.1 and 6.2.

X A B C D E F

|X| 10000 8000 9000 7000 7000 90000

Table 6.1 Domain Values

50

Ri |Ri| X |Ri.X|

A 360

B 320

D 1400R 5680

E 45

A 450

C 360S 5140

F 900

Table 6.2 Database Statistics

From the above Table 6.2 one can calculate the selectivity of each attribute for each

relation using equation 6.1 and it is shown in table below.

Ri X SF(Ri.X)

A 0.036

B 0.04

D 0.2
R

E 0.006

A 0.045

C 0.04
S

F 0.1

Table 6.3 Selectivity Factor of Each Attribute of Each Relation of Table 6.2

If for example, candidate semijoin (CSJ) R<A=A]S to be added to the semijoin

program (SJP) then the database state of relation R need to be updated accordingly.

The new cardinality of relation R can be calculated using equation 6.2.

|R| = CC(R) * SF(S.A) = 5680 * 0.045 = 255.6 256

51

Similarly, distinct value of attribute A in relation R after semijoin can be calculated

using equation 6.3.

|R.A| = CC(R.A) *
semijoin)before|R|(

semijoin)after|R|(
 = 360 *

5680

256
 = 16.22 17

The effect of semijoin R<A=A]S on the other attributes other than the join attribute

i.e., A can be computed using equation 6.6.

|R.B| =
3

320)256(
 = 192

|R.D| = 256

|R.E| = 45

In short when the semijoin R<A=A]S is added to semijoin program for the data given

in Table 6.2, a hypothetical update to the database statistics of relation R has to be

done and this hypothetical update is shown in Table 6.4.

Ri |Ri| X |Ri.X|

A 17

B 192

D 256R 256

E 45

Table 6.4 Hypothetical Database Statistics Update of Relation R

52

CHAPTER 7

PREPROCESSING STRATEGIES ALGORITHMS

7.1 Introduction

Generally, in a distributed environment, the semijoin operation has been used as a

preprocessing strategy for queries. The objective of semijoin preprocessing is to

reduce the amount of data required to be transmitted on the network by first reducing

the cardinalities of distributed relations using semijoin and then transmitting the

resultant relations to the result node. Algorithm that utilizes the semijoin tactics

produce as output a semijoin program that is to be executed on the network. Semijoin

program signifies the order that needs to be carried out in order to obtain the result of

a query.

In this chapter, we explore the two known algorithms in this field, algorithm SDD-1

[7] and algorithm AHY [2]. We next present algorithm LIGHT, a query preprocessing

algorithm that represents a result from our work. We then present a concept of re-

organization algorithm as explained in [36] which is proposed by Luk and Luk in

1980. This re-organization algorithm when given a semijoin program, produces a new

semijoin program that is guaranteed to have a new cost less than or equal to the cost

of the original semijoin program. In algorithm AHY, we only discuss one version that

is relevant to us although [2] has presented 3 different types of algorithms. We also

discuss how algorithm SDD-1 can be utilized to calculate the total time while

simultaneous transmission of independent semijoin is permitted. Last section of this

chapter; give an example query along with the semijoin produce by these first three

algorithms on this example query.

It should be noted again that all these algorithms are heuristic in nature which use

database statistics, as the determination of an optimal semi-join program is NP-HARD

problem. To date, no algorithms producing optimal semijoin programs are known.

53

7.2 Initial Feasible Solution

The initial feasible solution (IFS) for a given query is to first perform all initial local

processing of relations taking part in the query and then to transmit all relations to the

result node.

7.3 Algorithm AHY

Only algorithm GENERAL: Total Time as presented in [2] is discussed in this work.

Hevner and Yao were the first researchers to determine an optimal solution to simple

queries (queries with only one joining attribute and no output attributes other than the

joining attribute). Hevner proved that finding an optimal solution for more general

queries is NP-HARD problem. So, algorithm AHY utilizes the concept developed for

simple queries to solve general queries. For these general queries, algorithm AHY

ordered the relations according to their cardinalities. Starting from the smallest, a

relation is sent serially to the next smallest one in order to perform semijoin. At

starting step, transmission cost is guaranteed to be minimal. Since, at each step a

minimal size relation is created which in turns guarantees minimal transmission cost

at next step. Thus, at each step only transmission cost is guaranteed to be minimal.

Algorithm AHY utilizes the concept of relation schedule, i.e., a sequence of semijoin

to be executed in linear order to that relation. The construction of relation schedule is

based on simple query tactics. This is the main reason why this schedule results in

minimum transmission cost. Although, a problem associated with this tactics is that

relation schedules are independent. That is, if R2 is reduced in cardinality in R1’s

schedule, information of this reduction in cardinality is not utilized while forming a

schedule of R2’s relation. In fact, these independencies of relations schedule make it

worse than algorithm SDD-1 and algorithm LIGHT (covered in next section).

Before introducing the algorithm AHY, terminology used in the algorithm will be

explained next.

For each attribute A in the query we can define its ‘simple query solution’ in the

following way. For those relations, say {R1, R2,.…., Rm} with an attribute A,

54

ordered the relations according to their cardinality of an attribute A. It is assumed that

all relations are stored at different nodes in the network.

For instance, if ordering of relations happened to be R1, R2, ….., Rm, then the simple

query schedule is

The schedule is executed from left to right. The semijoins are R2<A=A]R1,

R3<A=A]R2, ………, Rm<A=A]Rm-1. The last transmission is to result node. R1.A

has the smallest cardinality among all other relations on an attribute A and the above

solution is the optimal solution if this is a simple query. In the above semijoin

attribute A in R2 gets reduced in cardinality by the semijoin R2<A=A]R1. The

reduced R2.A reduces R3, and so on.

For each attribute, CASE 1 serial schedules are formed. For example, let there be

three relations R1, R2 and R3, each at the different node in a network and let the

cardinality of joining attribute be R1.A<R2.A<R3.A. Then, the CASE 1 serial

schedules are defined as follows:

R1.A R2.A

R1.A R2.A R3.A

R1.A

R1.A R2.A Rm.A

55

If we are trying to determine the relation schedule to relation Ri in algorithm AHY,

we first need to form a CASE 2 serial schedules for relation Ri. For example the

CASE 2 serial schedules for relation R2 from the above example will be:

This is done by eliminating R2.A’s transmission from the CASE 1 serial schedules

and eliminating duplicate schedules. Algorithm AHY then utilizes the CASE 2 serial

schedule in forming relation schedules.

We now present algorithm AHY [2].

Algorithm AHY

1. Generate candidate relation schedules: Isolate each of the joining attributes

and consider each to define a simple query with an undefined result node.

Form CASE 1 serial schedule.

2. Select the best candidate schedule: For each relation, form the CASE 2 serial

schedules for each attribute. Each schedule in the set of CASE 2 serial

schedules is considered to be a ‘candidate schedule’ to the relation for that

attribute. If the cost of a candidate schedule plus the final transmission to the

result node has less cost than the initial feasible solution for that relation and is

the least cost candidate schedule then save that candidate schedule for that

attribute for that relation.

3. Integrate the schedules: If only one schedule has been saved for relation Ri,

then this is the schedule to relation Ri. Otherwise the saved schedules need

integration. This is done by Procedure TOTAL given below.

4. Remove schedule redundancies: Eliminate schedules for relations which have

been transmitted in the schedule for another relation.

R1.A R3.A

R1.A

56

Procedure TOTAL

1. Candidate schedule ordering: For each relation, say Ri, order the saved

schedules in increasing order of total cost (i.e. the cost of the schedule plus the

cost of the transmission of Ri to the result node).

2. If S1, S2, ……, Sn are the saved schedules to relation Ri, in order of

increasing total cost, then form the integrated schedules SI1, SI2, …….., SIn,

which consist of the parallel transmission of the saved schedules to relation Ri,

such that S1 is the only schedule in SI1, S1 and S2 are the only schedules in

SI2. In general, Si (i≤j) are the only schedules in SIj. Select the integrated

schedule SIj that results in the minimal total time value.

The time complexity of this algorithm in the worst case is O(nm2), where n is the

number of attributes and m is the number of relations in the query.

7.4 Algorithm SDD-1

Algorithm SDD-1 presented by Bernstein et al. [7] is a greedy optimization algorithm.

Algorithm SDD-1 chooses the semijoins to include in semijoin program (SJP) is

always the least cost semijoins as determined by the SDD-1 model of a distributed

database system. There are only two requirements for a semijoin to be included in

SJP. The first is that it must have the least cost in terms of amount of data transmitted

and the second is that the cost must be less than benefit (i.e., benefit>cost), which is

quite reasonable. The benefit is the reduction in relation size before applying the

semijoin and after applying it. Clearly with these conditions in place, the semijoin

program produced will always lead to a preprocessing strategy with total cost (the cost

to execute the semijoins plus the final transmission to the result node) less than or

equal to initial feasible solution. In one of their two papers, they have changed the

algorithm to select the semijoin at each step having the highest (benefit - cost) which

they called it algorithm OPT. The cost and benefit of the remaining semijoin which

are affected by the addition of this semijoin to SJP is updated according to the

cost/benefit estimation as presented in chapter 6.

57

Algorithm SDD-1 considers only those semijoins for inclusion in SJP which are

implied by transitive closure of the join clauses expressed in the initial query. A

semijoin once included in SJP is not considered again for possible addition to SJP.

Now we present algorithm SDD-1 which paper [7] refers as algorithm OPT.

Algorithm SDD-1

Input: Relation taking part in the query and database statistics.

Output: Semijoin program (SJP) and commands to move reduced relations to result

node.

1. STEP 1: Initialization

1.1. Perform local reduction permitted by query.

1.2. Estimate the cost and benefit of all non-local semijoins permitted by the

query.

2. STEP 2: Main Loop

2.1. Do while some non-local semijoin permitted by query has benefit>cost.

2.2. Select the most profitable semijoin and add to SJP and marked as selected.

2.3. Estimate the effect of this addition of semijoin to SJP and update the cost and

benefit accordingly.

2.4. end

3. STEP 3: Termination

3.1. The reduced relations are now transmitted to the result node. We assume that

the result node is none of the relations referenced in a join clause in the query

and all reduced relations are transmitted to this node.

Algorithm SDD-1 starts with performing local reductions using selections and

projections permitted by the initial query. Semijoin within the same site can also be

executed to reduce the size of the relations. Then all the semijoins across sites are

identified which is permitted by the query. The cost and benefit of each semijoin is

then calculated. Then the iteration process starts with choosing the most profitable

semijoin. This most profitable semijoin is then added to semijoin program (SJP) and

marked as selected and the remaining semijoins affected by this inclusion in SJP are

updated. The reason for marking the semijoin added to SJP is that in the coming

iteration it is not considered to be added to SJP any further. The iteration process

58

repeats until no profitable semijoin is found. Algorithm then terminates by sending all

these reduced relations to the result node to perform join in order to obtain the answer

of imposed query. Total cost can be calculated from this algorithm by adding the cost

of each semijoin that is in SJP and transmission of the reduced relations taking part in

the query except for those relations which are in result node. The time complexity of

this algorithm in the worst case is O(nm2), where n is the number of attributes and m

is the number of relations in the query.

The semijoin program generated by above algorithm can be used to re-calculate the

total cost in which simultaneous transmission is allowed. For this, a partial order

graph is generated from the semijoin program which exposes the semijoins that can be

carried simultaneously. Out of the semijoins which can be carried simultaneously, it is

enough to add only the cost of semijoin having the highest cost. For example, if a

semijoin program is somewhat like this R1<A=A]R2, R3<A=A]R2 then it is enough

to add only the cost of one semijoin with highest cost in order to calculate total time

(i.e. cost to add to calculate total cost = max{cost R1<A=A]R2, cost R3<A=A]R2}).

7.5 Algorithm LIGHT

Algorithm LIGHT is similar in style to algorithm SDD-1; however there is one major

difference in terms of adding a semijoin in a semijoin program. Algorithm SDD-1

overlooked the principle of basic mathematics. Algorithm SDD-1 includes most

beneficial semijoin at each step. Basic mathematics which is always in favor of taking

the average of values is never considered in algorithm SDD-1. Algorithm SDD-1 only

takes into account the semijoin that is most beneficial at each step and never looks

ahead of time. In other words, algorithm SDD-1 is not futuristic in the sense that it

never cares about consequences of adding semijoin in semijoin program. This lack of

future vision is tried to be exploited in algorithm LIGHT.

A new heuristic based on principle of basic mathematics is utilized in algorithm

LIGHT. Algorithm LIGHT includes highest average percentage gain in reduction of

joining attributes cardinalities semijoin among the beneficial semijoins at each step.

Here joining attributes refer to all those attributes of a relation going to be reduced

59

which can form a bond with any relations taking part to answer the imposed query.

The condition for a semijoin to be included in a semijoin program as in SDD-1 is still

valid in the sense that only beneficial semijoin average percentage gain in reduction of

joining attributes cardinalities is calculated. This heuristic is based on the notion that,

adding the highest average percentage gain in reduction of joining attributes

cardinalities among the beneficial semijoins have greater impact in reducing the

cardinality of a relation (thus size) in coming iteration than merely adding the greatest

beneficial semijoin. Gain in reduction of non-joining attributes cardinalities is not

considered, mainly because it is unlikely to have any impact (effect) on future

semijoins to be added to semijoin program (if any).

Now we present algorithm LIGHT.

Algorithm LIGHT

Input: Relation taking part in the query and database statistics.

Output: Semijoin program (SJP) and commands to move reduced relations to result

node.

1. STEP 1: Initialization

1.1. Perform local reduction permitted by query.

1.2. Estimate the cost and benefit of all non-local semijoins permitted by the

query.

2. STEP 2: Main Loop

2.1. Do while some non-local semijoin permitted by query has benefit>cost.

2.2. Out of the profitable semijoin, add that semijoin to the SJP that has the

highest average percentage gain in reduction of joining attributes cardinalities

and marked as selected.

2.3. Estimate the effect of this addition of semijoin to SJP and update the cost and

benefit accordingly.

2.4. end

3. STEP 3: Termination

3.1. The reduced relations are now transmitted to the result node. We assume that

the result node is none of the relations referenced in a join clause in the query

and all reduced relations are transmitted to this node.

60

Algorithm LIGHT performs almost identical as algorithm SDD-1 except for the step

2.2. Algorithm SDD-1 adds that semijoin to SJP which is most profitable whereas

algorithm LIGHT differs slightly to add that semijoin to the SJP that has the highest

average gain in reduction of joining attributes cardinalities. The time complexity of

this algorithm is same as algorithm SDD-1 which in the worst case is O(nm2), where n

is the number of attributes and m is the number of relations in the query. The reason

for naming this algorithm LIGHT is mainly because this work tried to put some light

in algorithm SDD-1.

7.6 Algorithm Luk

Algorithm Luk is presented by Luk and Luk in 1980. Algorithm Luk is an algorithm

that seeks to improve a semijoin program produced by some arbitrary heuristic. The

program is transformed into one with no-increasing cost and non-decreasing benefit.

Let SJP and SJP' be a semijoin programs input to and output from the algorithm Luk

respectively. Then SJP' satisfies the following conditions:

1. SJP' and SJP give the same answer to any given query.

2. SJP' has a cost no greater than SJP for all instances.

3. SJP' has a benefit not less than SJP for all instances.

4. SJP' is produced given only the SJP; no additional information such as

cardinalities of the attributes and relations is necessary.

Furthermore, it has been proved that the improvement of SJP' over SJP is optimal in

the sense that there will not be another SJP'' which is better than SJP' and still satisfies

conditions 1 to 4. The worst case time complexity of this algorithm is O(m3), where m

is the number of relations in a query.

7.7 An Example

An example is now presented to illustrate the results produced by algorithms AHY,

SDD-1 and LIGHT. Let the initial database state is as given in Table 7.1.

61

Joining Attribute CardinalitiesRelation Relation Size

P S A

R1 1000 400 100

R2 2000 400 450 100

R3 3000 900 300

Table 7.1 Initial Database Statistics

Let the domain cardinalities of P, S, A be 1000, 500 and 300 respectively. Let the

relations R1, R2 and R3 are at different nodes in the network. Let the where part of

the SQL query contains the following conditions:

R1.P=R2.P

AND

R1.P=R3.P

AND

R1.S=R2.S

AND

R2.A=R3.A

The cost in data communication for the initial feasible solution (IFS) for this query

would be, 1000 + 2000 + 3000 = 6000 assuming that the C0=0 and C1=1 and the

result is expected in another node in the network rather than the node containing R1,

R2 and R3. The results presented below may be compared to the IFS cost to see how

well the semijoin preprocessing strategies perform.

7.7.1 Algorithm AHY Result

Algorithm AHY when given this query produces the following relation schedules.

R2.P R1

400 400

R1:

Result Node

62

The total cost of these schedules is 400 + 400 + 100 + 400 + 400 + 160 + 100 + 160 =

2120.

7.7.2 Algorithm SDD-1 Result

Algorithm SDD-1 when given this query produces the following semijoin program.

1. R3<A=A]R2

2. R2<S=S]R1

3. R1<S=S]R2

4. R3<P=P]R1

5. R2<P=P]R3

6. R3<P=P]R2

7. R1<P=P]R3

8. R2<P=P]R1

The total cost of these semijoins plus the transmission of all reduced relations to result

node is 634.

R1.P R2.P R3

400 160

160

R2.A

100

R3:

Result Node

R1.S R2

100 400

R2:

Result Node

63

7.7.3 Algorithm LIGHT Result

Algorithm LIGHT when given this query produces the following semijoin program.

1. R3<A=A]R2

2. R2<S=S]R1

3. R1<S=S]R2

4. R2<P=P]R1

5. R3<P=P]R2

6. R2<P=P]R3

7. R1<P=P]R2

8. R3<P=P]R1

9. R2<A=A]R3

The total cost of these semijoins plus the transmission of all reduced relations to result

node is 558. For the stepwise execution of these algorithms refer Appendix A.

64

CHAPTER 8

IMPLEMENTATION AND ANALYSIS

8.1 Implementation

A simulation program to test the performance of the algorithm SDD-1 and algorithm

LIGHT introduced in the previous chapter has been developed. The program has been

developed using Ruby on Rails. Ruby is a powerful and beautiful programming

language; Rails is a web framework built on top of it. The reason for implementing it

on Ruby on Rails is to make it platform independent and easily accessible via

network.

This program accepts as input the number of relations taking part to answer the query

and database description (i.e., relation cardinality, attributes cardinalities) for each

relation. The program outputs for each algorithm the average total communication

cost per query and the semijoin program with total execution trace (if any). Average

communication cost includes the cost of executing the semijoin program and the final

transmission of relations to the result node. The cost in data communication on the

network of the semijoin program is the sum of the costs for each semijoin in the

semijoin program. The cost of the final transmission of relations to the result node is

the sum of the relation sizes after the semijoin program has been executed on the

database.

It is assumed that each site can hold no more than one relation at a time. So, the

number of inputted relations actually signifies the number of sites taking part to

answer the generated query. It is also assumed that there is only one joining attribute

between any two relations. So, whenever these two relations get involved to generate

the query, the joining condition remains same. For simplicity, the start up cost of

initiating transmission (C0) is considered to be 0 (zero) and proportionality constant

(C1) to be 1 (i.e., cost of transmitting fixed amount of data between any two sites is

equal).

65

Conceptually, the program starts with taking the basic information (i.e., number of

relations, relation cardinality, attributes cardinalities of each relation) inputted by user

and form a query based on these inputs. Then, the program generates the possible list

of semijoins that have to be considered. Initially, the ordered list of profitable

semijoin i.e., a semijoin program; say it omega-profitable, is empty. At each step,

program calculate the required information like cost of each semijoin, benefit of each

semijoin, benefit minus cost of each semijoin etc. in order to determine whether any

semijoin is to be added to the omega-profitable. If the STEP 2 of algorithm SDD-1

(similar for algorithm LIGHT) detects a semijoin that satisfies the required condition,

it is added to omega-profitable, marked it as selected and do the necessary database

statistics update operation on reduced relation as stated in chapter 6. When no more

beneficial semijoin is found, main loop terminates and the program outputs the

semijoin program with total execution trace (if any) and average total communication

cost incurred in order to answer the generated query. Our implementation consists of

two class controllers namely: Statistic and Algorithm which encapsulate the detail of

database statistics inputted and discussed algorithms respectively. Class Algorithm

controller has three main methods to evaluate each strategy. Methods ifs, sdd-1 and

light of class Algorithm controller, evaluates the initial feasible solution (IFS),

algorithm SDD-1 and algorithm LIGHT respectively. Each of these methods

respective view files output the results in the browser.

Figure 8.1, 8.2 and 8.3 shows the sample output of a program execution (just an

instance) for IFS, algorithm SDD-1 and algorithm LIGHT respectively. All these

outputs are generated under identical conditions i.e., same number of relations and

same initial database statistics (to be specific when number of relation equals to 3 and

average selectivity factor is 0.05).

===========
 IFS

 ===========
Average total communication cost is 705000.

Figure 8.1 Sample Output of IFS

66

==========================
Algorithm SDD-1

==========================

Iteration 1

Semijoin Cost Relation Reduced To Benefit Benefit-Cost

R1<A3=A3]R2 850 1215 146355 145505

R2<A3=A3]R1 900 900 102300 101400

R2<A5=A5]R3 1800 1400 100800 99000

R3<A5=A5]R2 400 1334 445998 445598

Iteration 2

Semijoin Cost Relation Reduced To Benefit Benefit-Cost

R1<A3=A3]R2 850 1215 146355 145505

R2<A3=A3]R1 900 900 102300 101400

R2<A5=A5]R3 16 13 104961 104945

R3<A5=A5]R2 Not Considered

Iteration 3

Semijoin Cost Relation Reduced To Benefit Benefit-Cost

R1<A3=A3]R2 Not Considered

R2<A3=A3]R1 22 22 104934 104912

R2<A5=A5]R3 16 13 104961 104945

R3<A5=A5]R2 Not Considered

Iteration 4

Semijoin Cost Relation Reduced To Benefit Benefit-Cost

R1<A3=A3]R2 Not Considered

R2<A3=A3]R1 22 1 36 14

R2<A5=A5]R3 Not Considered

R3<A5=A5]R2 Not Considered

Iteration 5

Semijoin Cost Relation Reduced To Benefit Benefit-Cost

R1<A3=A3]R2 Not Considered

R2<A3=A3]R1 Not Considered

R2<A5=A5]R3 Not Considered

R3<A5=A5]R2 Not Considered

67

Semijoin Program is

===============

1.R3<A5=A5]R2

2.R1<A3=A3]R2

3.R2<A5=A5]R3

4.R2<A3=A3]R1

Average total communication cost is 8938.

Figure 8.2 Sample Output of Algorithm SDD-1

==========================
Algorithm LIGHT

==========================

Iteration 1

Semijoin Cost
Relation
Reduced To

Benefit
Benefit-
Cost

Avg. % gain in joining
attributes cardinalities

R1<A3=A3]R2 850 1215 146355 145505 97.5555555555556

R2<A3=A3]R1 900 900 102300 101400 48.7058823529412

R2<A5=A5]R3 1800 1400 100800 99000 48.0

R3<A5=A5]R2 400 1334 445998 445598 99.1111111111111

Iteration 2

Semijoin Cost
Relation
Reduced To

Benefit
Benefit-
Cost

Avg. % gain in joining
attributes cardinalities

R1<A3=A3]R2 850 1215 146355 145505 97.5555555555556

R2<A3=A3]R1 900 900 102300 101400 48.7058823529412

R2<A5=A5]R3 16 13 104961 104945 98.25

R3<A5=A5]R2 Not Considered

Iteration 3

Semijoin Cost
Relation
Reduced To

Benefit
Benefit-
Cost

Avg. % gain in joining
attributes cardinalities

R1<A3=A3]R2 13 19 149943 149930 99.8888888888889

R2<A3=A3]R1 900 1 36 Negative

R2<A5=A5]R3 Not Considered

R3<A5=A5]R2 Not Considered

68

Iteration 4

Semijoin Cost
Relation
Reduced To

Benefit
Benefit-
Cost

Avg. % gain in joining
attributes cardinalities

R1<A3=A3]R2 Not Considered

R2<A3=A3]R1 1 1 36 35 46.1538461538462

R2<A5=A5]R3 Not Considered

R3<A5=A5]R2 Not Considered

Iteration 5

Semijoin Cost
Relation
Reduced To

Benefit
Benefit-
Cost

Avg. % gain in joining
attributes cardinalities

R1<A3=A3]R2 Not Considered

R2<A3=A3]R1 Not Considered

R2<A5=A5]R3 Not Considered

R3<A5=A5]R2 Not Considered

Semijoin Program is

===============

1.R3<A5=A5]R2

2.R2<A5=A5]R3

3.R1<A3=A3]R2

4.R2<A3=A3]R1

Average total communication cost is 4492.

Figure 8.3 Sample Output of Algorithm LIGHT

8.2 Analysis

The interest of this work is to find how each algorithm performs in a general query

environment. To be able to compare the performance of each algorithm it is necessary

to average total communication cost for each query for each algorithm over a large

number of queries. To have some feeling of the range that possible results could have,

the number of join clauses in the queries is varied. This variation occurred in the

range of 2 to 6. Similarly, for each number of relations taking part in the query the

average selectivity factor is varied from 0.05, 0.1, 0.2, ……….., 0.5 to explore the

impact of this variation on implemented algorithms. For the simulation purpose the

69

cardinality of relations varied from 35k to 200k and domain cardinalities from 9k to

100k (k represents thousand).

We have considered IFS as the worst case strategy and used it to compare, how well

other algorithms preformed with respect to it. Clearly, IFS does not play significant

role as a query processing strategy when a good semijoin preprocessing strategies are

available. We only conducted small scale simulation and large scale simulation is left

as future work.

8.2.1 Cost Comparison of IFS to Semijoin Preprocessing Strategies

For each query, the cost in data communication of the IFS is the sum of relation sizes

involved in the query. Algorithm SDD-1 and algorithm LIGHT only produces a

semijoin program if it can improve upon the cost of IFS. When IFS cost (IFS_COST)

for a query is compared to the average cost of query preprocessing strategy

(AVG_COST) by algorithm SDD-1, the result shown in Table 8.1 is obtained.

Number of Relations IFS_COST/AVG_COST

2 11.55

3 10.74

4 17.54

5 13.56

6 25.03

Table 8.1 Ratio of IFS_COST/AVG_COST for Different Number of Relations for

Algorithm SDD-1

0

5

1 0

1 5

2 0

2 5

3 0

2 3 4 5 6

N u m b e r o f R e l a t i o n s

IF
S

_
C

O
S

T
/A

V
G

_
C

O
S

T

Figure 8.4 IFS_COST/AVG_COST versus No. of Relations

70

When Table 8.1 is plotted, line diagram as shown in the Figure 8.4 is obtained. In

Figure 8.4 as the number of relations increases the ratio of the IFS_COST to

AVG_COST increases except for where the number of relations is 3 and 5. We

believe that this fluctuation in values will get remedies in large scale simulation. The

ratio of IFS_COST to AVG_COST of algorithm SDD-1 is never below 10.74:1.

Similarly, when IFS cost (IFS_COST) for a query is compared to the average cost

(AVG_COST) of query processing strategy by algorithm LIGHT, the results shown in

Table 8.2 is obtained.

Number of Relations IFS_COST/AVG_COST

2 11.55

3 17.70

4 21.12

5 18.78

6 26.99

Table 8.2 Ratio of IFS_COST/AVG_COST for Different Number of Relations for

Algorithm LIGHT

Figure 8.5 IFS_COST/AVG_COST versus No. of Relations

When Table 8.2 is plotted, line diagram as shown in the Figure 8.5 is obtained. In

Figure 8.5 as the number of relations increases the ratio of the IFS_COST to

0

5

10

15

20

25

30

2 3 4 5 6

Number of Relations

IF
S_

CO
ST

/A
VG

_C
O

ST

71

AVG_COST increases except for where the number of relations is 5 in which a slight

downfall is noticed. The line in Figure 8.5 are smoother than those for the Figure 8.4,

which signifies that there is more smooth increase in IFS_COST/AVG_COST when

number of relation increases in algorithm LIGHT than algorithm SDD-1. The ratio of

IFS_COST to AVG_COST of algorithm LIGHT is never below 11.55:1.

IFS_COST/AVG_COSTSelectivity Factor (S.F.)

For Algorithm SDD-1 For Algorithm LIGHT

0.05 29.4 117.3

0.1 52.58 67.73

0.2 29.88 44.70

0.3 18.13 22.63

0.4 12.79 16.70

0.5 11.85 13.24

Table 8.3 IFS_COST/AVG_COST versus Average Selectivity

Table 8.3 presents the data obtained when IFS_COST/AVG_COST versus average

selectivity is calculated for both the algorithms and Figure 8.6 is the line diagram

when data of Table 8.3 is plotted.

0

20

40

60

80

100

120

140

0 .05 0 .1 0 .2 0 .3 0 .4 0 .5

Averag e S e lec tiv ity

IF
S

_C
O

S
T

/A
V

G
_C

O
S

T

F or A lgo rithm S D D -1

F o r A lgo rithm L IG HT

Figure 8.6 IFS_COST/AVG_COST versus Average Selectivity

72

Figure 8.6 supports the notion that one can have maximum benefit when the

selectivity factor is as close to zero as possible. As the average selectivity factor

increases the ratio of IFS_COST to AVG_COST decreases smoothly for algorithm

LIGHT but for algorithm SDD-1 on can see the fluctuation when average selectivity

is 0.1. From the Figure 8.6 one can also conclude that the gap (i.e., benefit obtained)

between algorithm SDD-1 and algorithm LIGHT decreases as the average selectivity

increases and became almost identical when average selectivity is 0.5.

8.2.2 Cost Comparison of Algorithm SDD-1 and Algorithm LIGHT

Algorithm SDD-1 and algorithm LIGHT performs almost identical in our case when

the number of joining attribute is 2, no matter whatever be the selectivity. As the

number of relations (and hence sites) taking part to answer the query increases,

algorithm LIGHT starts to show its effect over algorithm SDD-1. Our simulation have

found algorithm SDD-1 to performs well than algorithm LIGHT 7.7% of the times

whereas algorithm LIGHT performs better than algorithm SDD-1 72.3% of the times.

Algorithm SDD-1 and algorithm LIGHT performs identical 20% of the times.

Algorithm SDD-1 only generates fewer numbers of semijoins in a semijoin program

2.2% of the times than algorithm LIGHT. So, the advantage obtained from algorithm

LIGHT is not taken away by the preprocessing time required to formulate the

schedule. It is believed that the fluctuation in above line diagram is mainly due to the

small scale simulation and will be removed when large scale simulation is carried out.

73

CHAPTER 9

CONCLUSION

9.1 Conclusion

The shift in paradigm from centralized to its counter part distributed database systems

have brought enormous opportunities and problems along with it. In this present

world of globalization, distributed database system is no more an obsession but a need

of almost every organization to remain competitive and more importantly to survive

in this competition. Because of critical performance issue, query processing has

always been the centre of attraction. This study also addressed query processing in

distributed database systems.

This study is mainly focused on the semijoin query preprocessing strategies for

distributed database systems which utilized the database statistics to generate the

semijoin program. The study has presented an overview of an existing semijoin

preprocessing algorithms and their downfall.

The parallel independent relation schedules that algorithm AHY produces are the

main reasons for its failure to perform worse when compared to other two algorithms

(SDD-1 and LIGHT).

Algorithm SDD-1, includes the most profitable semijoin in semijoin program at each

step and never cares about the consequences of adding it on the impact of future

semijoins to be added to the semijoin program (if any). This is believed to be the root

cause for the failure of algorithm SDD-1 to perform worse than algorithm LIGHT.

Algorithm LIGHT exploits what algorithm SDD-1 lacks by including that semijoin to

the semijoin program whose average percentage gain in reduction of joining attributes

cardinalities is highest among the profitable semijoin at each step. Our simulation has

showed that algorithm LIGHT is significantly better than algorithm SDD-1 in

producing a good semijoin preprocessing strategies. However, this does not minimize

the importance of algorithm SDD-1 as it forms the basis for algorithm LIGHT.

74

One question concerning this work that has not been answered is, how close are our

results to optimal solution? Even if the results presented here are within the factor of 2

to the optimal solution, it can be considered as good solution because an optimal

solution algorithm will necessarily be exponential (if any).

9.2 Future Direction

Only small scale simulation of algorithm SDD-1 and algorithm LIGHT has been

conducted. The results obtained are really promising. However, validity of this work

on large scale simulation is left as a future work.

No doubt, any good distributed query processing strategy always include both join

and semijoin strategies. In this regard, this study only considered semijoin strategies.

Graceful integration of join and semijoin in distributed query processing is still an

open research problem. Lately, few researchers have initiated a work on it; but still a

lot more is to be done. Query processing in World Wide Web (WWW) is probably the

most interesting, challenging and future work in this field.

75

APPENDIX A

A.1 Stepwise Execution of 7.7 Example Using Algorithm AHY

Algorithm AHY proceeds as given below:

Step 1: Generating candidate relation schedules

For attribute P

For attribute S

R1.S R2.S

100 90

R1.S

100

R1.P R2.P R3.P

400 160 144

R1.P R2.P

400 160

R1.P

400

76

For attribute A

Step 2: Selecting the best candidate schedule

For attribute P of relation R1

Total cost calculation of candidate schedules for relation R1 on attribute P

R2.P R3.P R1

400 360 360

Total Cost = 400 + 360 + 360 = 1120 (Rejected)

R2.P R1

400 400

Total Cost = 400 + 400 = 800 (Saved)

R2.P R3.P

400 360

R2.P

400

R2.A R3.A

100 100

R2.A

100

77

Where ‘Saved’ means that candidate schedule is saved for that relation for that

attribute because cost of a candidate schedule plus the final transmission to the result

node has less cost than the initial feasible solution for that relation and is the least cost

candidate schedule. Similarly, ‘Rejected’ means that candidate schedule is not even

considered for the save because cost of a candidate schedule plus the final

transmission to the result node is greater than the initial feasible solution for that

relation. From here on to end of this appendix ‘Saved’ and ‘Rejected’ carry the same

meaning as described above.

For attribute S of relation R1

Total cost calculation of candidate schedules for relation R1 on attribute S

For attribute P of relation R2

R1.P R3.P

400 360

R1.P

400

R2.S R1

450 900

Total Cost = 450 + 900 = 1350 (Rejected)

R2.S

450

78

Total cost calculation of candidate schedules for relation R2 on attribute P

For attribute S of relation R2

Total cost calculation of candidate schedules for relation R2 on attribute S

For attribute A of relation R2

R3.A

300

R1.S R2

100 400

Total Cost = 100 + 400 = 500 (Saved)

R1.S

100

R1.P R2

400 800

Total Cost = 400 + 800 = 1200 (Saved)

R1.P R3.P R2

400 360 720

Total Cost = 400 + 360 + 720 = 1460

79

Total cost calculation of candidate schedules for relation R2 on attribute A

For attribute P of relation R3

Total cost calculation of candidate schedules for relation R3 on attribute P

R1.P R3

400 1200

Total Cost = 400 + 1200 = 1600

R1.P R2.P R3

400 160 480

Total Cost = 400 + 160 + 480 = 1040 (Saved)

R1.P R2.P

400 160

R1.P

400

R3.A R2

300 2000
Total Cost = 300 + 2000 = 2300 (Rejected)

80

For attribute A of relation R3

Total cost calculation of candidate schedules for relation R3 on attribute A

Applying Procedure Total for saved schedules of R2

SI1 of R2

SI2 of R2

R1.S R2

100

160

Total Cost = 100 + 400 + 160 = 660

R1.P

400

R1.S R2

100 400
Total Cost = 100 + 400 = 500 (Selected)

R2.A R3

100 1000
Total Cost = 100 + 1000 = 1100 (Saved)

R2.A

100

81

Applying Procedure Total for saved schedules of R3

SI1 of R3

SI2 of R3

Step 4: Eliminate the schedule which is not marked as selected for the relation R2 and

R3 (i.e., SI2 of R2 and SI1 of R3).

So the final relational schedules produced by AHY is

R2.P R1

400 400

R1:

Result Node

R1.P R2.P R3

400 160

160

Total Cost = 400 + 160 + 100 + 160 = 820 (Selected)

R2.A

100

R1.P R2.P R3

400 160 480

Total Cost = 400 + 160 + 480 = 1040

82

The total cost of these schedules is 400 + 400 + 100 + 400 + 400 + 160 + 100 + 160 =

2120.

A.2 Stepwise Execution of Example 7.7 Using Algorithm SDD-1

Iteration 1

Semijoin R3<A=A]R2 has the highest (Benefit - Cost) so added to SJP.

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 400 400 600 200

R2<P=P]R1 400 800 1200 800

R1<P=P]R3 900 900 100 Negative

R3<P=P]R1 400 1200 1800 1400

R2<P=P]R3 900 1800 200 Negative

R3<P=P]R2 400 1200 1800 1400

R1<S=S]R2 450 900 100 Negative

R2<S=S]R1 100 400 1600 1500

R2<A=A]R3 300 2000 0 Negative

R3<A=A]R2 100 1000 2000 1900

R1.P R2.P R3

400 160

160

R2.A

100

R3:

Result Node

R1.S R2

100 400

R2:

Result Node

83

Iteration 2

Semijoin R2<S=S]R1 has the highest (Benefit - Cost) so added to SJP.

Iteration 3

Semijoin R1<S=S]R2 has the highest (Benefit - Cost) so added to SJP.

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 400 400 600 200

R2<P=P]R1 400 800 1200 800

R1<P=P]R3 634 634 366 Negative

R3<P=P]R1 400 400 600 200

R2<P=P]R3 634 1268 732 98

R3<P=P]R2 400 400 600 200

R1<S=S]R2 450 900 100 Negative

R2<S=S]R1 100 400 1600 1500

R2<A=A]R3 100 667 1333 1233

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 267 267 733 466

R2<P=P]R1 400 160 240 Negative

R1<P=P]R3 634 634 366 Negative

R3<P=P]R1 400 400 600 200

R2<P=P]R3 634 254 146 Negative

R3<P=P]R2 267 267 733 466

R1<S=S]R2 90 180 820 730

R2<S=S]R1 Not Considered

R2<A=A]R3 100 134 266 166

R3<A=A]R2 Not Considered

84

Iteration 4

Semijoin R3<P=P]R1 has the highest (Benefit - Cost) so added to SJP.

Iteration 5

Semijoin R2<P=P]R3 has the highest (Benefit - Cost) so added to SJP.

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 267 49 131 Negative

R2<P=P]R1 180 72 328 148

R1<P=P]R3 634 115 65 Negative

R3<P=P]R1 180 180 820 720

R2<P=P]R3 634 254 146 Negative

R3<P=P]R2 267 267 733 466

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 100 134 266 166

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 267 49 131 Negative

R2<P=P]R1 180 72 328 148

R1<P=P]R3 115 21 159 44

R3<P=P]R1 Not Considered

R2<P=P]R3 115 46 354 239

R3<P=P]R2 267 49 131 Negative

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 94 126 274 180

R3<A=A]R2 Not Considered

85

Iteration 6

Semijoin R3<P=P]R2 has the highest (Benefit - Cost) so added to SJP (if there are

more than one semijoin having the highest (Benefit - Cost) then any one of them is

randomly selected and included in SJP) .

Iteration 7

Semijoin R1<P=P]R3 has the highest (Benefit - Cost) so added to SJP.

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 31 6 174 143

R2<P=P]R1 180 9 37 Negative

R1<P=P]R3 115 21 159 44

R3<P=P]R1 Not Considered

R2<P=P]R3 Not Considered

R3<P=P]R2 31 6 174 143

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 94 15 31 Negative

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 31 6 174 143

R2<P=P]R1 180 9 37 Negative

R1<P=P]R3 4 1 179 175

R3<P=P]R1 Not Considered

R2<P=P]R3 Not Considered

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 6 1 45 39

R3<A=A]R2 Not Considered

86

Iteration 8

Semijoin R2<P=P]R1 has the highest (Benefit - Cost) so added to SJP.

Iteration 9

As there is no beneficial semijoin, main loop of the algorithm terminates.

At this point, size of relations R1, R2 and R3 reduced to 6, 1 and 6 respectively. So,

the total cost = 100 +100+90+180+115 +31+4+1+6+1+6 = 634.

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 31 1 0 Negative

R2<P=P]R1 1 1 45 44

R1<P=P]R3 Not Considered

R3<P=P]R1 Not Considered

R2<P=P]R3 Not Considered

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 6 1 45 39

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced To Benefit Benefit - Cost

R1<P=P]R2 1 1 0 Negative

R2<P=P]R1 Not Considered

R1<P=P]R3 Not Considered

R3<P=P]R1 Not Considered

R2<P=P]R3 Not Considered

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 6 1 0 Negative

R3<A=A]R2 Not Considered

87

A.3 Stepwise Execution of Example 7.7 Using Algorithm LIGHT

Iteration 1

From here on Avg. % gain means average percentage gain in reduction of joining

attributes cardinalities. Semijoin R3<A=A]R2 has the highest avg. % gain so added to

SJP.

Iteration 2

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 400 400 600 200 30

R2<P=P]R1 400 800 1200 800 22.44

R1<P=P]R3 900 900 100 Negative

R3<P=P]R1 400 1200 1800 1400 30

R2<P=P]R3 900 1800 200 Negative

R3<P=P]R2 400 1200 1800 1400 30

R1<S=S]R2 450 900 100 Negative

R2<S=S]R1 100 400 1600 1500 37.73

R2<A=A]R3 300 2000 0 Negative

R3<A=A]R2 100 1000 2000 1900 48.08

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 400 400 600 200 30

R2<P=P]R1 400 800 1200 800 22.44

R1<P=P]R3 634 634 366 Negative

R3<P=P]R1 400 400 600 200 29.95

R2<P=P]R3 634 1268 732 98 12.16

R3<P=P]R2 400 400 600 200 29.95

R1<S=S]R2 450 900 100 Negative

R2<S=S]R1 100 400 1600 1500 37.73

R2<A=A]R3 100 667 1333 1233 31.3

R3<A=A]R2 Not Considered

88

Semijoin R2<S=S]R1 has the highest avg. % gain so added to SJP.

Iteration 3

Semijoin R1<S=S]R2 has the highest avg. % gain so added to SJP.

Iteration 4

Semijoin R2<P=P]R1 has the highest avg. % gain so added to SJP.

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 267 267 733 466 36.625

R2<P=P]R1 400 160 240 Negative

R1<P=P]R3 634 634 366 Negative

R3<P=P]R1 400 400 600 200 29.95

R2<P=P]R3 634 254 146 Negative

R3<P=P]R2 267 267 733 466 36.59

R1<S=S]R2 90 180 820 730 68.5

R2<S=S]R1 Not Considered

R2<A=A]R3 100 134 266 166 44.15

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 267 49 131 Negative

R2<P=P]R1 180 72 328 148 54.54

R1<P=P]R3 634 115 65 Negative

R3<P=P]R1 180 180 820 720 43.93

R2<P=P]R3 634 254 146 Negative

R3<P=P]R2 267 267 733 466 36.59

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 100 134 266 166 44.15

R3<A=A]R2 Not Considered

89

Iteration 5

Semijoin R3<P=P]R2 has the highest avg. % gain so added to SJP.

Iteration 6

Semijoin R2<P=P]R3 has the highest avg. % gain so added to SJP.

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 49 9 171 122 72.5

R2<P=P]R1 Not Considered

R1<P=P]R3 634 115 65 Negative

R3<P=P]R1 180 180 820 720 43.93

R2<P=P]R3 634 46 26 Negative

R3<P=P]R2 49 49 951 902 72.95

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 100 24 48 Negative

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 49 9 171 122 72.5

R2<P=P]R1 Not Considered

R1<P=P]R3 32 6 174 142 81.66

R3<P=P]R1 180 9 40 Negative

R2<P=P]R3 32 3 69 37 95.05

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 49 12 60 11 78.67

R3<A=A]R2 Not Considered

90

Iteration 7

Semijoin R1<P=P]R2 has the highest avg. % gain so added to SJP.

Iteration 8

Semijoin R3<P=P]R1 has the highest avg. % gain so added to SJP.

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 2 1 179 177 99.44

R2<P=P]R1 Not Considered

R1<P=P]R3 32 6 6 142 81.66

R3<P=P]R1 180 9 40 Negative

R2<P=P]R3 Not Considered

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 49 1 2 Negative

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 Not Considered

R2<P=P]R1 Not Considered

R1<P=P]R3 2 1 0 Negative

R3<P=P]R1 1 1 48 47 97.41

R2<P=P]R3 Not Considered

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 49 1 2 Negative

R3<A=A]R2 Not Considered

91

Iteration 9

Semijoin R2<A=A]R3 has the highest avg. % gain so added to SJP.

Iteration 10

As there is no beneficial semijoin, main loop of the algorithm terminates. At this

point, size of relations R1, R2 and R3 are all reduced to 1. So, the total cost = 100

+100+90+180+49+32+2+1+1+1+1+1 = 558.

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 Not Considered

R2<P=P]R1 Not Considered

R1<P=P]R3 1 1 0 Negative

R3<P=P]R1 Not Considered

R2<P=P]R3 Not Considered

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 1 1 1 1 60.66

R3<A=A]R2 Not Considered

Semijoin Cost Relation Reduced

To

Benefit Benefit -

Cost

Avg. %

gain

R1<P=P]R2 Not Considered

R2<P=P]R1 Not Considered

R1<P=P]R3 1 1 0 Negative

R3<P=P]R1 Not Considered

R2<P=P]R3 Not Considered

R3<P=P]R2 Not Considered

R1<S=S]R2 Not Considered

R2<S=S]R1 Not Considered

R2<A=A]R3 Not Considered

R3<A=A]R2 Not Considered

92

REFERENCES

[1] Agrawal, P., Bitton, D., Guh, K., Liu, C., and Yu, C., “A Case Study for

Distributed Query Processing”, IEEE 1998, Pages 124-130.

[2] Apres, P., Hevner, A., and Yao, S.B., “Optimization Algorithms for

Distributed Queries”, IEEE Transactions on Software Engineering, January

1983, Pages 57-68.

[3] Apres, P.M.G., “Data Allocation in Distributed Database Systems”, ACM

Transactions on Database Systems, Vol. 13, No. 3, September 1988, Pages

263-304.

[4] Bernstein, P.A., and Chiu, D.W., “Using Semijoin to Solve Relational

Queries”, ACM Vol. 28, No. 1, January 1981, Pages 25-40.

[5] Bernstein, P.A., and Goodman, N., “An Algorithm for Concurrency Control

and Recovery in Replicated Distributed Databases”.

[6] Bernstein, P.A., and Goodman, N., “The Power of Natural Semijoins”, SIAM

J. Computing Vol. 10, No. 4, November 1981, Pages 751-771.

[7] Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., and Rothnie, Jr., J.B.,

“Query Processing in a System for Distributed Databases (SDD – 1)”, ACM

Transactions on Database Systems, Vol. 6, No. 4, December 1981, Pages 602-

625.

[8] Bodorik, P., and Riordon, J.S., “Distributed Query Processing Optimization

Objectives”, Proceedings of IEEE Fourth International Data Engineering

Conference, Los Angeles, CA, February 2-4, 1998, Pages 320-329.

[9] Bodorik, P., and Riordon, J.S., “Heuristic Algorithms for Distributed Query

Processing”, IEEE 1988, Pages 144-155.

93

[10] Ceri. S., and Gotlob, G., “Optimizing Joins Between Two Partitioned

Relations in Distributed Databases”, Journal of Parallel and Distributed

Computing, Vol. 3, 1986, Pages 183-205.

[11] Chang, J.M., “A Heuristic Approach to Distributed Query Processing”,

Proceedings of the Eight International Conferences on Very Large Data Bases,

September 1982, Pages 54-61.

[12] Cormen, T.H., Leiserson, C.E., Rivest, R., and Stein, C., “Introduction to

Algorithms”, Prentice-Hall, Second Edition, 2004.

[13] Date, C.J., “An Introduction to Database Systems”, Pearson Education,

Seventh Edition, 2005.

[14] Drenick, P.E., and Smith, E.J., “Stochastic Query Optimization in Distributed

Databases”, ACM Transactions on Database Systems, Vol. 18, No. 2, June

1993, Pages 262-288.

[15] Elmasri, R., and Navathe, S.B., “Fundamentals of Database Systems”, Pearson

Education, Third Edition, 2003.

[16] Epstein, R., Stonebraker, M., and Wong, E., “Distributed Query Processing in

a Relational Database System”, Proceeding of ACM SIGMOD Conference,

June 1978, Pages 169-180.

[17] Florescuu, D., Levy, A., and Mendelzon, A., “Database Techniques for the

Worldwide Web: A Survey”, ACM SIGMOD, September 1998, Vol. 27, No.

3, Pages 59-74.

[18] Fu, Q. “Distributed Query Optimization Using Multi-attribute Semijoin

Operations”, Master Thesis, University of Windsor, Ontario. Canada, 1996.

94

[19] Gouda, M.G., and Dayal, U., “Optimal Semijoin Schedules for Query

Processing in Local Distributed Database Systems”, Department of Computer

Science, University of Texas at Austin, November 1980.

[20] Haraty, R.A., and Fany, R.C., “Query Acceleration in Distributed Database
Systems”, Revista Comlombiana de Computacion, Vol. 2, No. 1, 2001, Pages
19-34.

[21] Hevner, A.R., and Yao. S.B., “Query Processing in Distributed Database

Systems”, IEEE 1979, Transaction on Software Engineering, Pages 177-187.

[22] Hevner, A.R., Wu, O.Q., and Yao, S.B., “Query Optimization on Local Area

Networks”, ACM Transactions on Office Information, Vol. 13, No. 1, January

1985, Pages 35-62.

[23] Ip, A., Rahayu, W., and Singh, S., “Query Optimisation in a Non-Uniform

Bandwidth Distributed Database System”, IEEE 2000, Proceeding of the

Fourth International Conference.

[24] Kossmann, D., “The State of the Art in Distributed Query Processing”, ACM

Computing Surveys, Vol. 32, No. 4, December 2000, Pages 422-469.

[25] LaFortune, S., and Wong, E., “A State Transition Model for Distributed Query

Processing”, ACM Transactions on Database Systems, Vol. 11, No. 3,

September 1986, Pages 294-322.

[26] Ozsu, M.T., and Valduriez, P., “Distributed and Parallel Database Systems”,

ACM Computing Surveys, Vol. 28, No. 1, March 1996, Pages 125-128.

[27] Ozsu, M.T., and Valduriez, P., “Principles of Distributed Database Systems”,

Pearson Education, Second Edition, 2004.

[28] Pentaris, F., and Ionnidis, Y., “Query Optimization in Distributed Networks of

Autonomous Database Systems”, ACM Transactions on Database Systems,

Vo. 31, No. 2, June 2006, Pages 537-583.

95

[29] Pramanik, S., and Vineyard, D., “Optimization Join Queries in Distributed

Databases”, IEEE 1998, Pages 1319-1326.

[30] Ramakrishna, R., and Gehrke, J., “Database Management System”, McGraw-

Hill, Third Edition, 2003.

[31] Selinger, P.G., and Adiba, M., “Access Path Selection in Distributed Database

Management Systems”, Proceeding of International Conference on Databases,

Aberdeen University, Aberdeen, Scotland, July 1980.

[32] Silberschatz, A., Korth, H., and Sudarshan, S., “Database System Concepts”,

McGraw-Hill, Fourth Edition, 2002.

[33] Wong, E., “Retrieving Dispersed Data from SDD-1: A System of Distributed

Databases”, Proceedings of Second Berkeley Workshop on Distributed Data

Management and Computer Networks, 1977, Pages 217-235.

[34] Yao, S.B., “Approximating Block Access to Database Organizations”,

CAMCM, April 1977.

[35] Yoo, H., and LaFortune, S., “An Intelligent Search Method for Query

Optimization by Semijoins”, IEEE Transactions on Knowledge and Data

Engineering, Vol. 1, No. 2, June 1989, Pages 226-237.

[36] Yu, C.T. and Chang, C.C, “Distributed Query Processing”, ACM Computing

Surveys, Vol. 16, No. 4, December 1984, Pages 399-433.

[37] Yu, C.T., Lam, K., and Ozsoyoglu, M., “An Algorithm for Tree-Query

Membership of a Distributed Query”, Proceedings of COMPSAC 1979, IEEE

Computer Society, November 1979.

[38] Yu, C.T., Lam, K., and Ozsoyoglu, M.Z, “Distributed Query Optimization for

Tree Queries”, Technical Report, Department of Information Engineering,

V.I.C.C., July 1980.

