

Data-Centric Routing

Simulation in Cellular Network
Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Tribhuvan University

in partial fulfillment of the requirements for the degree of

Masters in Computer Science and Information

Technology

By

Rashmi Shrestha

Central Department of Computer Science and Information Technology

Tribhuvan University

Kirtipur, Kathmandu

Nepal

August, 2008

Data-Centric Routing

Simulation in Cellular Network
Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Tribhuvan University

in partial fulfillment of the requirements for the degree of

Masters in Computer Science and Information

Technology

By

Rashmi Shrestha

Central Department of Computer Science and Information Technology

Tribhuvan University

Kirtipur, Kathmandu

Nepal

August, 2008

 i

CERTIFICATION

This is to certify that the dissertation work entitled “Data-

Centric Routing Simulation in Cellular Network”, submitted

by Rashmi Shrestha has been carried out under my supervision

and guidance. This work is done independently for the

fulfillment of Masters Degree in Computer Science. I, therefore

recommend for further evaluation.

Prof. Dr. Srinath Srinivasa
International Institute of Information Technology

Bangalore-560100, INDIA
(Supervisor)

 ii

Tribhuvan University

Institute of Science and Technology
Central Department of Computer Science and Information

Technology
Kirtipur, Kathmandu

Nepal

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in

the scope and quality as a dissertation in the partial fulfillment for the requirement of

Masters Degree in Computer Science and Information Technology.

Evaluation Committee

Head, Central Department of
Computer
Science and Information Technology
Tribhuvan University

Prof. Dr. Srinath Srinivasa
International Institute of Information
Technology, Bangalore (IIIT-B)
(Supervisor)

(External Examiner) (Internal Examiner)

Date: __________________

 iii

Acknowledgement

Firstly I would like to bestow my sincere gratitude to Prof. Dr. Srinath Srinivasa

(IIIT-B) for his supervision and encouragements and I am very grateful to Mr Sanket

Patil (IIIT-B) for his invaluable guidance and co-operations.

I would also like to express my gratitude to Prof. Dr. Devi Dutta Paudyal (Former

Head, Central Department of Computer Science and Information Technology) for his

inspiration during our two years study of Master Degree.

My heartily thanks to Prof. Dr. Shashidhar Ram Joshi, Asst. Prof. Arun Timilsina,

Dr. Tanka Dhamala (Head, CDCSIT), Prof. Dr. Laxmi P. Gewali (University of

Nevada, Las Vegas, USA), Asst. Prof. Min B. Khati and all other teachers of my

Master Degree for their guidance.

I thanks Lalita, Bhaskar, Achyut, Dinesh, Rajiv, Anil for supporting me and always

being there for me to help me out and my family for their never-ending support and

co-operation.

Thanks

Rashmi Shrestha

 iv

Abstract

Mobile data communication has become a very important and rapidly evolving

technology as it allows users to transmit data from remote locations to other remote or

fixed locations.

Cellular network consists of the network nodes distributed into number of cells. Each

cell has an independent fixed base station controlling all the nodes within that cell and

all these base stations are controlled by Mobile Switching Station.

Each cell has a fixed frequency allocated. Cell can use its frequency only within its

boundary. Adjacent cells cannot use the same frequency but cells that are sufficiently

far from each other can use the same frequency and thus the frequency is reused in

cellular network. This frequency reuse enables cellular network to handle number of

connections with limited number channels.

Mobile nodes can be anywhere at an instance of time. This mobility of the mobile

nodes from one cell to another is observed by its respective base station and control of

the moving nodes is handed over to the base station of the new cell. This feature of

cellular network is termed as handover.

Since the structure of mobile network is very different from the static network,

routing in mobile network is under different approach than that of static network.

Host centric routing approach focuses on finding short routes between pair of static

nodes whereas the data centric routing approach focuses on finding the single

destination of required data with no redundancy, from any node in the network.

Data centric abstraction middleware is one of the distributed data centric application

that abstract a network of mobile nodes as a database where an instance gets some

data from another application instance simply by querying the network without

knowing where that data is located.

In mobile network, the nodes get disconnected frequently due to their mobility; hence

they may not be available all the time. So, routing protocols in mobile network are

significantly different from traditional routing protocols. To obtain the data from a

 v

node in mobile network, no matter where the node is situated, data centric approach is

used rather than host centric approach. In data centric approach routing is performed

based on data element and not on the nodes in the network. For this a distributed

index is maintained, Distributed Hash Table (DHT), and simulation routing is

performed over it. DHT is the overlay network protocol.

However, the simulation of maintaining the DHT, adding and retrieving the records

and other DHT aspects are covered in another dissertation work “Design and

Simulation of Distributed Hash Table in Cellular Mobile Network”.

To improve the way of routing overlay network is used. The overlay network has no

control over how data are routed in the underlying network but it can control the

sequence of overlay nodes data traverse before reaching its destination.

Computer simulations are invaluable and often unavoidable tool for studying the

dynamic behavior and performances of network systems.

Networks usually involve a large number of entities (up to millions) each of which

having a potentially complex and time-independent (asynchronous) behavior.

Discrete-event simulation techniques are well suited for modeling the individual

behavior of entities in such networks. Though the network simulator involves

assumptions and simplified models that may not reflect in real network system, the

majority of routing protocol research has been done in simulation only.

 vi

Table of Contents

Certification ... i

Letter of Approval ... ii

Acknowledgement ... iii

Abstract ... iv

Table of Contents .. vi

Figures List .. viii

Chapter 1 : Introduction ... 1 – 5

1.1. Cellular Network .. 1

1.2. Mobile Switching Center ... 2

1.3. Base Station ... 3

1.4. Mobile Station .. 4

1.5. Handover .. 4

1.6. Frequency Reuse .. 4

1.7. Cellular Network Operations ... 5

Chapter 2 : Background and Problem Formulation 8 – 11

2.1 Background .. 8

2.2. Problem Definition... 9

2.3. Objective .. 10

2.4. Literature Review... 11

Chapter 3 : Data Centric Approach Overview 16 – 18

3.1. Data Centric over Host Centric .. 16

3.3. Overlay Network .. 18

Chapter 4 : Routing ... 19 – 31

4.1 Routing overview ... 19

4.2. Routing with data-centric approach ... 20

4.3. Routing Scheme ... 23

4.4. Routing process Illustration ... 26

4.5. Routing performance ... 31

 vii

Chapter 5 : Simulator Design ... 32 – 35

5.1 Network Simulator ... 32

5.2. Discrete-event Simulation .. 33

5.3. Simulator Description .. 33

5.4. Add record event .. 34

5.5. Retrieve record event ... 34

5.6. Routing ... 35

Chapter 6 : Implementation .. 36 – 45

6.1. Simulator Class Descriptions ... 36

6.1.1. Simulator .. 36

6.1.2. Configurator ... 37

6.1.3. Space .. 37

6.1.4. Chunk ... 38

6.1.5. Node ... 39

6.1.6. Event .. 39

6.1.6. NodeCreation ... 40

6.1.7. NodeMove.. 40

6.1.8. AddRecordEvent .. 41

6.1.9. RetrieveRecordEvent ... 42

6.1.10. Bucket Class... 44

6.1.11. DHT Class .. 44

6.1.12. The Base Station(BS) Class ... 45

6.1.13. Route Data Class .. 45

Chapter 7 : Simulator Testing .. 47

Chapter 8 : Conclusions and Future works ... 50

Chapter 9 : References ... 51

Chapter 10 : Bibliography.. 54

 viii

Figures List

Figures used in the documentation are as follows:

Fig 1 : Cell divisions in cellular network .. 2

Fig 2: Mobile Switching Center ... 3

Fig 3: Base Station controlling mobile nodes .. 3

Fig 4: Frequency reuse ... 5

Fig 6: Cellular network architecture ... 21

Fig 7: Bucket and Node files illustration .. 22

Fig 8: Routing Scheme Design ... 24

Fig 9: Sequence diagram of direction discovery 26

Fig 10: Sequence diagram for checking the neighbor node 27

Fig 11: Sequence diagram of data broadcasting to n-1 nodes 27

Fig 12: Sequence diagram of routing table maintaining 28

Fig 13: Complete Routing Process .. 30

Fig 14: Implementation Class Diagram.. 36

 1

Chapter 1 : Introduction

1.1. Cellular Network

Mobile devices are small or medium sized devices with mobility, such as mobile

phones, PDAs and laptops. Mobile network is the network of such devices. They have

very little or no infrastructural support.

Two classes of mobile networks are

1. Cellular Network

2. Adhoc Network

If the mobile devices can discover and communicate with each other within their

ranges without involving central access points, it is peer-to peer or adhoc network. In

cellular network mobile units are linked to an infrastructure of switching equipment

interconnecting different parts of the system.

The cellular network is divided into number of hexagonal cells. These cells are used

to cover different areas in order to provide the coverage to the wider area than the area

of one cell.

Each cell has a fixed base station that communicates with all the mobile units in that

particular cell simultaneously.

Each cell is allocated a band of frequencies. Adjacent cells are assigned different

frequencies to avoid interference. Cells that are sufficiently distance from each other

can use same frequency band.

 2

Fig 1 : Cell divisions in cellular network [28]

The general system architecture of a cellular network consists of

1. Mobile Station

2. Base Station

3. Switching Centre

The base station is connected to mobile devices via radio interface. Mobile switching

centre controls number of cells and, arranges base stations and channels for the

mobile and handle the connections.

1.2. Mobile Switching Center

Mobile switching center holds the primary part in the cellular network. It handles all

the base stations in network. It plays important role in inter base station processes

such as hand over.

 3

Fig 2: Mobile Switching Center [27]

1.3. Base Station

Base station in cellular network is responsible for handling traffic and signaling

between mobile nodes and switching center. A base station serves several different

mobile nodes from the same location. It is possible because of the directional antennas

on the base station pointing in different directions. Base stations also handle the

handover of mobile node control from one base station to another.

Fig 3: Base Station controlling mobile nodes [29]

 4

1.4. Mobile Station

Mobile stations are the network hosts with the mobility. These mobile hosts comprise

the cellular network with addition to base station in every cell and mobile switching

center for numbers of base stations. They can be in any of the cells in the cellular

network at any instance of time. They can move freely in the network and can get out

of range. The stations are tracked by the base station. The data are transferred from

one mobile host to another which is within the range of the network. A mobile host is

under the control of the base station depending upon its location.

1.5. Handover

Since the mobile nodes have mobility, mobile nodes can move from one cell to

another in the cellular network. The base station will detect this from the signal power

and informs its respective Mobile Switching Center. Then the Mobile Switching

Center switches the control of the call to Base Station of the new cell of the mobile

node. This behavior is called handover.

1.6. Frequency Reuse

In cellular system, frequency reuse is achieved. The subset of total number of

channels available is assigned to each base station. This increases the capacity by

increasing number of channels available to users. And the adjacent cells are not

allowed to operate at same frequency since this causes interference between the cells.

Whereas in earlier nodes of communications, areas (groups) are allocated dedicated

radio frequencies and to ensure that those channels are not affected by transmissions

from other users operating at same frequency, sufficient separation between the

transmitters must be allowed while allocation of frequencies.

 5

Fig 4: Frequency reuse [30]

1.7. Cellular Network Operations

Each cell in the cellular network contains a base station at an appropriate center. At

any time, a number of mobile user units may be active and moving within a cell,

communicating with the Base Station. Each Base Station is connected to a Mobile

Switching Center, with one MSC serving multiple Base Stations.

When the mobile unit is turned on, it scans and selects the strongest setup channel to

establish the relationship between mobile unit and nearest Base Station. The mobile

unit is identified and its location is registered to MSC through Base Station in the

current cell. As long as the mobile unit is on, this procedure is repeated periodically to

account for the motion of the mobile unit. If the unit enters a new cell, then new Base

Station is selected.

If the mobile unit moves out of the range of one cell into the range of another during

the connection, the connection of Base Station to the new cell is to be changed. The

system makes this change without either interrupting the call or alerting the user.

It is necessary for the network to monitor the location of every registered mobile

station in order to connect the mobile nodes to the network upon request. The

management of mobile station location information is handled by the mobility

management scheme. The scheme operated mobile stations registering themselves

with the BSC of the cell where the mobile station is currently located. A centralized

 6

database stores a list of all the mobile stations in the network, and the BSCs they are

currently registered with. A distributed database system in MSC is used to

synchronize the database at the BSC and the centralized database at the server

provider's premise.

Fig 5: Cellular Network Operations [29]

In fig, a mobile station (little car) arrives in a cell served by some BSC. It sends a

message identifying itself to the BSC. The BSC sends this message to the MSC,

which enters the identity of the mobile station in its visiting location register (VLR).

The MSC then notifies the server on the service providers’ premise that it must update

the home location register (HLR) with the new information about the mobile station's

location. The mobility management scheme therefore consists of a distributed

database (the VLR and HLR) to maintain location information of all the mobile

stations on a network.

 7

Using this scheme, a query to the centralized HLR is all that is necessary to find the

current location of a mobile station. In order to keep the HLR current, a considerable

amount of information is transmitted across the network. The HLR is updated every

time a mobile station moves from one BSCs area into another. As the number of

subscribers on the network increases, the information flow of updates to the HLR

increases exponentially. Mobility management is also responsible for the

authentication of mobile stations to the network. Mobile stations entering MSCs area

must be authenticated before they acquire the network's resources. This ensures that

only valid customers make use of the network. [24]

 8

Chapter 2 : Background and Problem Formulation

2.1 Background

Small distributed application instances run over mobile nodes and these distributed

applications instances need to communicate and exchange data. To get the required

data, the application needs to know the location of the data and how to get that data.

Conventionally, if an application instance wants any data from another instance then

it has to know the address of the node on which the latter application instance is

running. Then the two application instances communicate in a point to point manner.

Thus the communication is based on host addresses and the conventional

communication in network is host centric. However, the application instances only

need to know the data and not the location of the data. As well as, the host centric

networking approach works well in case of static networks only. Because, the static

networks are managed explicitly and routing of data is based on host centric routing

tables.

The mobile network topology is dynamic in nature and there cannot be any special

node in the network that will know the entire topology. In Data centric network the

network is abstracted as a database and if any node needs any kind of data, it simply

queries the network like querying database and gets the data regardless of where the

host is situated. Whereas in Host centric networking communication is based on host

addresses. It is used in static network topology where data are routed based on static

routing table. Host centric approach in mobile network is not feasible. Since

availability of data matters much than the host containing the data, data centric

approach is used. Routing in Data centric network is based on data and queries rather

than the host centric routing tables.

Hence the routing algorithm used in static networks would not be suitable in cellular

network.

 9

Since routing in cellular network is based on data centric approach rather than host

centric, overlay network concept is followed for routing. Overlay network concept

creates a virtual topology on top of physical topology.

 2.2. Problem Definition

Data centric approach in the mobile network makes mobile network different from

wired network with fixed topologies. In mobile network, the topology is changing all

the time. Moreover, in cellular network there is mixed kind of topologies. The mobile

nodes in the cellular network are under dynamic topologies whereas the base stations

controlling those mobile nodes are under fixed topology. Due to these circumstances,

routing in cellular network is quite different from routing in other type of networks.

Every mobile node in the cellular network is under control of a base station. And

numbers of base stations are under control of mobile switching center. In this

dissertation, existence of only one mobile switching center is being considered which

will be controlling a fixed numbers of base stations. Each of those base stations will

be controlling number of mobile nodes that are within its range. Since mobile nodes

will be moving handing over its control from one base station to another, getting data

residing in one mobile node from another mobile node seems impossible under host

centric approach. Hence, following the data centric approach, all the data are stored in

a distributed way. As the result, if a mobile node needs any kind of information then it

is not necessary to connect to every other mobile node one by one until the required

data is obtained rather the required data is obtained from the common place of data

storage in the network. This makes easy to retrieve required data from any mobile

node in the network.

To store the data commonly a metadata is being maintained. The distributed index,

Distributed Hash Table [2], is maintained in Data centric networking which is a set of

<key,value> pairs that is accessible by every node in the network. A common hash

function is used in the network.

DHT is the decentralized distributed system providing lookup service similar to a

hash table with (key, value) pair and any node involved in DHT can easily retrieve the

value associated with the given key. Node itself is responsible for maintaining the

 10

mapping from name to values resulting to minimal disruption. This feature allows

DHT to handle large numbers of nodes and can handle continual arriving, departing

and failings of nodes

The data from every mobile node in the network are hashed using a common hash

function. The hash value obtained from every data determines where that data is to be

stored. For data storage a single bucket in every base station is defined. This bucket

contains the information about in which mobile node the particular data resides in key

value pair. Collection of these buckets is DHT.

In key value pair of DHT, key is the name in string and value is the hashed value of

the name. The bucket where the name is located is determined by comparing the value

of key-value pair with the bucket id.

For hashing, SHA-1 hash function is being used.

SHA-1 hash function [3] is one of the popular one-way hash function used to create

160 bit digital signature known as message digest which is, to a high degree of

probability, unique for a given input sequence. In this hash function, it is

computationally impossible to find a message that corresponds to a given message

digest as well as to find two different messages that produce same message digest

2.3. Objective

The main objective of this dissertation is to get the data as requested by the nodes in

the cellular network with reference to DHT, and route the data to the destination host

from the source efficiently.

In cellular network, though IP can be used for host identification, it is not feasible to

for routing as in traditional routing in static network. Overlay networks can eliminate

the binding between IP and host [9]. IP can be acquired in overlay networks but these

IP can no longer be used to define the identity and location of host. As the result,

routing can be done using aliases of host instead of IP.

 11

Traditionally, IP addresses are used by routers to transfer packets to their destination

using certain routing algorithm. The packet is transferred from the host and routers

forward the packet using their routing tables until the receiver host is found. Overlay

networks affect this traditional routing function.

Overlay network can undertake the routing decision. With the usage of overlay

networks, aiming better routing performance, routers can be functionless, because

these overlay networks propose alternative routing paths to the ones determined by

routers. The servers contributing the overlay network communicate with the help of

routers, but the routing paths between two hosts are not totally determined by or

dependent on the current deployed routers. However, totally discarding routers is at

the extreme point and can be impossible.

2.4. Literature Review

The topic of routing has been covered in computer science literature for more than

two decades, but routing achieved commercial popularity as late as the mid-1980s.

The primary reason for this time lag is that networks in the 1970s were simple,

homogeneous environments.

In mobile network, numbers of routing protocols are being designed over overlay

networks. Some of the routing protocols designed over the DHT are as followings:

Chord [6] is a distributed look up protocol that locates the node storing particular data

item given. It efficiently adapts as nodes leave and join the network and answers the

queries even if the system is continuously changing. Chord nodes need the routing

information about only few other nodes and maintains the routing information as node

leaves and joins the network. A chord node requires information about O (log N)

other nodes for efficient routing, but performance degrades when that information is

out of date. Chord uses 160 bit circular id space and forwards the messages in

clockwise direction in the circular id space [7]. Chord nodes maintain a routing table

called finger table consisting of up to 160 pointers to other live nodes. The ith entry in

the finger table of node n is the node with the smallest node id clockwise from n +2i-1.

The first entry in finger table of node n points to n’s successor and subsequent entries

refer to nodes at repeatedly doubling distance from n. Each node in chord also

 12

maintains pointers to its predecessor and to its n successors in the node Id space. The

expected routing hops in chord are 1/2log2N.

Pastry [8, 10] is a scalable, distributed object location and routing substrate. Pastry is

an overlay and routing network for the implementation of DHT and is similar to

chord. The DHT of pastry is similar to other DHT but its routing overlay network

built on top of DHT sets it apart. The routing metric can be supplied by an outside

program such as ping or trace route to determine the best route to store in its routing

table. It performs application level routing and object location in large overlay

network on nodes. Pastry is completely decentralized, scalable and self organizing

and automatically adapts to the arrival, departure and failure of nodes. Each node in

pastry has a unique numeric identifier (nodeId).

For given message and key, the pastry node efficiently routes the message to the node

with the nodeId that is numerically closest to the key. The expected number of routing

steps is O(log N) where N is the number of nodes in the pastry. At each node in pastry

within the route, the application is notified and may perform application-specific

computation related to the message. In pastry, the packet is routed on the circular ring

and the node whose nodeId is closest to the desired destination will receive the

packet. Whenever the node receives the packet and want to forward it, it first

examines its leaf set and routes directly to the correct node if found.

Pastry nodeIds are assigned randomly with uniform distribution from a circular 128

bit id space [7]. With 128 bit key, Pastry routes the message the node whose nodeId is

numerically closed to the key. Each pastry node keeps track of its neighbor set and

notifies applications of the changes in the set. For the purpose of routing, nodeIds and

keys are thought of as a sequence of digit of base 2b (b is configuration parameter

with typical value of 4). Routing table in the node is organized into 128/2b rows and 2b

columns. The 2b rows of the routing table contains the IP addresses of the nodes

whose nodeId share the first r digit with the present node’s nodeId and r+1 digit of

nodeId of the node in column c of row r equals c. The column of row r that

corresponds to value of r+1 digit of the local node’s nodeId remains empty. A routing

table entry is left empty if no node with the appropriate nodeId prefix is known.

 13

Each pasty node also maintains a neighbor set called as leaf set. It contains l nodeIds

of nodes that are numerically closest to the nodeId of current node with l/2 larger and

l/2 smaller nodeIds than current nodeId. The value of l is approximately [8*log2
b N]

where N is the number of nodes in the overlay. The message to be routed is forwarded

to the node in the routing table whose nodeId is shares with the prefix that is at least

one or b digits longer than the prefix that the key shares with the present node’s

nodeId. If no such node is found then the message is forwarded to the node whose

nodeId shares prefix with the key as long as the current node, but is numerically close

to the key than the present node’s id. Again if no such node is found then routing table

or in neighbor then the current node or its immediate neighbor is the destination.

Tapestry [11] is a DHT which provides a decentralized object location, routing and

multicasting infrastructure for distributed applications. It is overlay network offering

efficient, scalable, self repairing location aware routing. Tapestry, CAN, Chord,

Pastry, these overlays implements a basic key based routing mechanism and allow

deterministic routing of messages and adaptation of node failures in the overlay

network. Tapestry is an extensible infrastructure providing decentralized object

location and routing focusing on efficiency and minimize message latency. The

routing tables are constructed locally from initialization and maintained in order to

reduce routing stretch. It also allow multicasting in overlay network. Each tapestry

node is assigned a unique node id and SHA-1 hash function is used to produce 160 bit

space represented by 40 digit hex key. Application specific GUID’s are also assigned

a unique identifier. Tapestry efficiency is said to increase with increase in network

size so multiple application sharing same overlay network is said to increase the

efficiency.

[7] Tapestry is similar to chord but differs in mapping keys to nodes and managing

replication. The neighboring nodes are not aware of each other in tapestry. When a

node’s routing table doesn’t have an entry for the node that matches the key’s nth

digit, the message is forwarded to the node with next higher value in the nth digit,

modulo 2b found in routing table. This process is called surrogate routing and maps

keys to unique node if node routing tables are consistent. The expected number of

routing hops in tapestry is log2
b N.

 14

CAN [12] uses d-dimensional Cartesian space and space is partitioned into

rectangular zones where each zone is maintained by a host. Each object is hashed to

the point and assigned to the host. Similar to routing in other overlay network, the

routing in CAN is greedy. The message is passed to neighbor closest to destination.

Routing in CAN is said to be inefficient when d is small. CAN routing is O (N1/d)

with O(d) routing state per node. [7] Each node in CAN maintains the routing table

with O (d) entries and any node can be reached in (d/4) (N1/d) routing hops on

average. Unlike Chord, Pastry and Tapestry, CAN’s routing table doesn’t grows with

network size but the number of routing hops grow faster than log N

[13] One of the key features provided by systems such as CAN, Chord, Pastry, and

Tapestry are scalable routing performance while maintaining a scalable amount of

routing state at each node. Scalable routing paths mean the expected number of

forwarding hops between any two communicating nodes is small with respect to the

total number of nodes in the system. Chord, Pastry, and Tapestry scale with logN,

where N is the system size, while maintaining logN routing state at each overlay node.

CAN scales with D · N1/D, where D is a parameter with a typical value of 6, while

maintaining an amount of per-node routing state proportional to D. A second key

feature of these systems is that they are able to route to destination addresses that do

not equal the address of any existing node. Each message is routed to the node whose

address is “closest” to that specified in the destination field of a message. This feature

enables implementation of a distributed hash table (DHT), in which content is stored

at an overlay node whose node ID is closest to the result of applying a collision-

resistant hash function to that content’s name (i.e. consistent hashing).

Another routing protocol designed for wireless network is Ad Hoc On Demand

Distance Vector (AODV) [14]. It is an on-demand routing protocol that uses

traditional routing tables to store routing information. It is capable of both uni-cast

and multicast routing. AODV uses timers at each node and the routing table entry

expires after the route is not used for a certain time. AODV [15, 16, 17] is the reactive

routing protocol and routes are determined only when needed. When a source has data

to transmit to an unknown destination, it broadcasts a Route Request (RREQ) for that

destination. At each intermediate node, when a RREQ is received a route to the source

is created. Nodes receiving this packet update their information for the source node

 15

and set up backwards pointers to the source node in the route tables. If the receiving

node is not the destination and does not have a current route to the destination, it

rebroadcasts the RREQ. If the receiving node is the destination or has a current route

to the destination, it generates a Route Reply (RREP). The RREP is unicast in a hop-

by hop fashion to the source. As the RREP propagates, each intermediate node creates

a route to the destination. When the source receives the RREP, it records the route to

the destination and can begin sending data. If multiple RREPs are received by the

source, the route with the shortest hop count is chosen. Nodes keep track of the

RREQ's source IP address and broadcast ID. If they receive a RREQ which they have

already processed, they discard the RREQ and do not forward it. As data flows from

the source to the destination, each node along the route updates the timers associated

with the routes to the source and destination, maintaining the routes in the routing

table. If a route is not used for some period of time, a node cannot be sure whether the

route is still valid; consequently, the node removes the route from its routing table.

DSR [18] (Dynamic Source Routing) is another routing protocol designed for multi

hop wireless adhoc network. This protocol is composed of two routing mechanisms:

Route discovery and route maintenance. DSR is also on demand algorithm. Route

Discovery is the mechanism by which a node S wishing to send a packet to a

destination node D obtains a source route to D. Route Discovery is used only when S

attempts to send a packet to D and does not already know a route to D. Route

Maintenance is the mechanism by which node S is able to detect, while using a source

route to D, if the network topology has changed such that it can no longer use its route

to D because a link along the route no longer works. When Route Maintenance

indicates a source route is broken, S can attempt to use any other route it happens to

know to D, or can invoke Route Discovery again to find a new route. Route

Maintenance is used only when S is actually sending packets to D.

 16

Chapter 3 : Data Centric Approach Overview

3.1. Data Centric over Host Centric

In network, data are routed from one host to another. There are numbers of routing

algorithms which can be used depending upon various networking factors, to achieve

maximum performance in routing. While getting any kind of data in network one host

needs to request data to another host. The location of the data is found and data

transferring is started.

Location of the host with the required data is considered important than the data itself.

This is host centric network. In static network host centric approach is used, whereas

in dynamic network with mobiles node host centric approach would not be effective

to use and data centric approach must be implemented.

In static network, if an application instance wants to get data located on some other

node then firstly the location of the destination node is obtained and required data is

routed to the source node using the convenient type of routing table. Since the

destination node address is prior known, this approach is host centric approach. Host

centric approach works well in static network because in static network, network

topology is explicitly managed and data are routed based on routing table.

But, the application instance running in the node is interested in only the data and not

the location of the destination node where that data resides. Moreover, the mobile

network topology changes constantly due to the mobility in the nodes resulting to

frequent disconnection and failures. In mobile network, maintaining routing tables is

not possible so host centric approach is not possible in mobile networks.

In host centric, host to host communication takes place and hosts are assumed to

know which host to contact for required data. However, an increasing number of

applications involve accessing particular data objects whose location can’t easily be

determined within the host centric architecture [25]. In such type of architectures data

centric approach is more feasible.

 17

In the overall data transferring process within the network, data is of much importance

rather than the host where the data resides. No matter where the host is, more

important is the data in that host machine. This highlighting of data rather than the

data residence is defined in data centric approach.

Since applications are interested in data and not the location of data, they should be

able to get the required data regardless of the data location. Data centric approach

abstracts the network as database and applications query the network for the data

required resulting to the query being routed to the node holding that data. Instead of

static routing tables, routing is done on basis of the query and data.

The database abstracted from the network is queried using simple database queries

like select, update, delete etc. These queries returns the data requested.

Any data can be searched using select query in the database of network as if the whole

network data is locally available to the user. The user need not know where the data is

located. However, one query can requests for the data located in more than one node,

in that case, query is decomposed and processed separately.

The mobile nodes can be unavailable at any instance and users may query for the data

located in the unavailable node. Then the middleware maintains the data availability

in such node failures by replicating the data across the network in different nodes.

However, consistence replication of data is to be maintained and the garbage

replications are to be removed [20].

3.2. Distributed Applications on Data-Centric Approach

Mobile application instance can communicate with other instances and form a

collaborative group for any reason. If the user wants to share any kind of information

in his group he can add data in the network abstracted database by insert query and

other users in the group can access same data using select query without knowing the

exact location of where the data is stored [26].

 18

Followings are the potential distributed applications over cellular network.

1. Distributed Address Book

Distributed address book is a mobile collaborative application where the data
centric abstraction middleware allows the user to search for contact number of
other users in collaboration. If we need to get contact number of one of the
user, then instead of guessing who might have that contact information and
querying each of the guesses, the data centric abstraction middleware allows
us to query the whole database for the contact number and returns the search
result as if the whole data base is our own local address book.

2. Distributed Social Book marking

Distributed book marking application allows book marking and organizing
them. The data centric abstraction middleware allows sharing the book
marking among each other and searching much larger space than that the own
bookmarks.

3.3. Overlay Network

In mobile network routing researches, overlay networks are being used. Overlay
network is constructed in order to permit the routing to destination not specified by IP
address. DHT is an example of overlay network where routing is performed by
specific logical address, whose IP address is not known in advance. Overlay network
is built on top of an existing network. Formally, overlay network is defined as a
virtual network of nodes and logical links that is built on top of an existing network
with the purpose to implement a network service that is not available in the existing
network [5]. Internet is also considered as an overlay network built on top of local
area networks to connect local area networks and adds an internet protocol headers in
all the packets transferred.

For routing in mobile nodes, overlay network can be built on top of existing network
where the nodes in overlay network define the neighbor nodes by content stored, and
they can change the search process from standard graph traversal problem into a
localized iterative process. In this process, each hop brings the query closer to its
target set of hops, which can be calculated according to the mathematical function.
This reduces the overall network load and makes the query process deterministic.
Thus overlay network works like DHT and allows key insertion, querying and
removal.

 19

Chapter 4 : Routing

4.1 Routing overview

Routing (or routeing) is simply defined as the process of selecting paths in computer

networking to send data. Routing is choosing a specific route among the multiple

paths between source and destination. In an efficient routing algorithm, the best path

is chosen.

Routing directs forwarding, the passing of logically addressed packets, from their

source toward their ultimate destination through intermediary nodes.

There are various routing algorithms designed for static network which gives the best

performance depending upon the numbers of networking factors. However, routing in

static network and mobile network is completely different from one another besides

transferring of data from source to destination host.

The routing algorithm designed should have following properties

• Correctness

• Simplicity

• Robustness

• Stability

• Fairness and

• Optimality

• Convergence

The routing algorithm should be designed as simple as possible and efficient with

minimum numbers of software and utilization overheads. The routing should be done

in a simple manner so that the overhead is as low as possible. With increasing

complexity of the routing algorithms the overhead also increases.

 20

 Optimality refers to the capability of routing algorithm to select the best route which

depends upon the routing algorithm metrics.

Routing algorithm must be robust and stable. They should perform correctly in the

face of certain numbers of unusual and unforeseen circumstances as well, such as

hardware failure, high load conditions and incorrect implementation. The routing

algorithms that proves to be working under variety of network conditions is said to be

the best routing algorithm.

Routing algorithm must converge rapidly. Convergence is the process of agreement

for the optimal path. When one of the routers goes down or become unavailable

resulting to the recalculation of the optimal path, the routing algorithm that converges

slowly may cause the routing loops.

4.2. Routing with data-centric approach

Numbers of routing schemes are being designed for ad hoc network. But, again within

mobile network as well, the routing between cellular network and ad hoc network

differs. This is because cellular network is under mixed topology and ad hoc network

is totally under dynamic topology.

In cellular network, the nodes remain in mobility whereas base stations controlling

those nodes remain stationary. Mobile node may be under one base station at a time

and at another instance of time may be under different base station. The base station

controlling the mobile host can be determined by the position of the mobile node,

where the mobile is currently located.

Each cell in the cellular network contains a base station in an appropriate center. At

any time, a number of mobile user units may be active and moving within a cell,

communicating with the Base Station. Each Base Station is connected to a Mobile

Switching Center, with one MSC serving multiple Base Stations.

If the mobile unit moves out of the range of one cell into the range of another during

the connection, the connection of Base Station to the new cell is to be changed.

 21

In our design, the whole network is divided into number of chunks or cells and in

every chunk one base station is located, those base stations are further controlled by a

Mobile Switching Center.

Fig 6: Cellular network architecture [29]

For routing data in data-centric cellular network, DHT is used and the following

processes are followed.

• Every Base Station contains a bucket where key (name), value (hash value) and

node id are stored.

• If any node needs the contact number for a particular name say AAA, then the

bucket where the contact number for AAA is stored is obtained.

• The bucket is searched for AAA and node id containing the record of AAA is

obtained.

 22

• If node is not in the same Base Station, then the new Base Station of the node is

searched first.

• After retrieving the record being searched, that record is routed from the base

station which contains the bucket where the record is located to the node

requesting the record.

• Firstly, the base station of the mobile node requesting for the record is obtained.

And request name AAA with its contact number is routed to destination base

station to further to the destination mobile node.

• Before the record being searched reaches the destination mobile node, if the

destination mobile node move under some other base station then again the new

base station controlling that mobile node is to be obtained.

• This process is continued until the name and contact number being searched is

stored in the file of mobile node initiating the search.

Fig 7: Bucket and Node files illustration

 23

4.3. Routing Scheme

Routing the data packets from source to destination is under the network layer

function. The general routing process holds two processes within. First process

handles each data packets as it arrives, working up the outgoing path to use for it in

routing table. This process is called forwarding. And the other process is responsible

for filling in and updating the routing tables. The routing algorithm is specifically

used in second process.

In this routing process, all stationary nodes in the network are arranged in the circular

ring interconnecting each other and are ordered in clockwise direction starting from

the least base station id to higher. If i is the identification number of a node, then the

node with identification number i-1 is prior to node i and node with identification

number i+1 is behind the node i.

Data being searched is retrieved from DHT routed to the destination node in the

network. The routing process designed is composed of numbers of steps as follows:

• Direction Discovery

• Checking the first neighbor

• Data Broadcasting

• Maintaining routing table

First step in our routing process is Direction Discovery.

In this step, the direction of the routing process is determined. Following scheme

designed is implemented to decide whether the routing process should proceed in

clockwise or anti clockwise direction and is implemented only once at the starting of

each routing process. S is the source base station Id and R is base station of the

destination node. T is the total numbers of base stations in the network.

. S: SenderId

 R: ReceiverId

 24

 T: Total number of nodes

 When (S-R) < 0, (-) ve

 |S-R| < T/2, move towards right direction

 Else move towards left

 When (S-R) > 0, (+) ve

 |S-R| > T/2, move towards right

 Else move towards left.

 NOTE: If T is odd, take floor of |T/2|

Fig 8: Routing Scheme Design

After determining the direction, second step is checking the first neighbor towards

the direction obtained. The first node in the obtained direction is checked whether the

 25

destination node is under its range or no. If yes, the destination node is reached. If no,

then third step is carried out.

The third step is data broadcasting. The source node broadcasts the message

containing the destination base station id and node id to all the other T-1 number of

nodes, except itself. Every node receiving the broadcasted message checks base

station id in the message and replies back, only if the message contains its own base

station id and the node id in the message is within its own range. If the message

doesn’t contain its own id, then that node ignores the broadcast.

The reply to the broadcast message contains the destination base station id and node

id if the destination node is still under the range of same base station, but if the

destination node is not within the range of same base station then instead of the

destination node id some negative number, say -1, is sent in the reply.

The source base station after receiving the reply checks the node id in the reply, if the

reply contains the destination node id then the Name being searched and the contact

number retrieved is sent to that base station replying the broadcast and further to the

destination node id. But if the reply doesn’t contains the destination node id but the

negative number -1, then it assumes that the destination node id is not within the

network and is out of range.

After receiving the reply, fourth step of maintaining routing table is implemented.

The information received in the reply is stored in routing table of the source node in

sequence of destination node Id, destination base station Id and direction such that

later if same node id again requests the data then there is no need to implement the

whole routing process again. The routing table maintained can be directly referred to

get the base station id of requesting node id. Since the base stations are assumed to be

in sequential ordered forming a circle, number of hops to reach the destination node is

obtained from the destination node and the source node itself in the direction stored in

the routing table.

Since the network topology keeps changing, there is no guarantee that the routing

table maintained contains the updated information. So, before beginning the routing

process, source base station first searches the route to the base station id of the

destination node in its own routing table, if base station id of the destination node is

 26

already in the routing table then source base station sends the message to that base

station. If the destination node is under the same base station as recorded in the

routing table, then base station replies back with the node id otherwise negative

number -1 is replied back and in that case only, the routing process is started.

Likewise, if no entry is made in routing table for that node id then the whole routing

process is to be implemented.

Hence, every base station node maintains a routing table which contains the data that

are searched till now and the bucket id.

The source node waits for reply for some period of time, say 1 minute, in this design,

and if no reply is received then it assumes that the node requesting the data is not

within the entire network.

4.4. Routing process Illustration

Step 1: Direction Discovery

Fig 9: Sequence diagram of direction discovery

 27

Step 2: Check neighboring node

Fig 10: Sequence diagram for checking the neighbor node

Step 3: Broadcasting

Fig 11: Sequence diagram of data broadcasting to n-1 nodes

 28

Step 4: Maintaining Routing Table

Fig 12: Sequence diagram of routing table maintaining

Two cases that may arise in the above designed routing process are as follows:

Case I:

When Sender id is less than Receiver id (S<R)

If Sender id is base station 2, receiver id is base station 10 and total numbers of base

stations are 15.

Then,

Step 1:

 S-R = 2-10 = -8 (-ve)

 |S-R|=8 and T/2=15/2=7.5

 Since T is odd floor of T/2 is taken

Since, |S-R| < T/2 then move towards right direction else move towards left direction.

And, 8 > T/2, the routing is towards left in anti-clockwise direction, that is, towards

base station 1.

 29

Step 2:

The first neighbor in anti-clockwise direction, base station 1, is checked if the

destination node is under base station 1. If yes, the destination node is reached and if

no, the further steps of the routing process are implemented.

Step 3:

The source node broadcasts the message with searched data to all the T-1 nodes in the

network in anti-clockwise direction. Base station 2 broadcasts the destination base

station id and node id to 15 nodes. In this case, AAA is broadcasted to base stations 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0 and 1.

Step 4:

The broadcasting node, base station 2, waits for reply for 1 minute and if no reply

received then it assumes destination node is not within the entire network. If any reply

is received, base station 2, maintains the destination node id and its base station id in

its routing table along with the direction calculated.

Case II:

When Sender id is greater than Receiver id (S>R)

If Sender id is base station 10 and receiver id is base station 2 and total numbers of

base stations are 15

Then,

Step 1:

 S-R = 10 -2 = 8 (+ve)

 |S-R|=8 and T/2=15/2=7.5

 Since T is odd floor of T/2 is taken

 So, |S-R| > T/2 and move towards right direction

Now the routing is towards right in clockwise direction, that is, towards base station

11.

 30

Step 2:

The first neighbor in clockwise direction, base station 11, is checked if the destination

node is under the range of base station 11. If yes, the destination node is reached and

if no, the further steps of the routing process are implemented.

Step 3:

The source node broadcasts the message with searched data to all the T-1 nodes in the

network in anti-clockwise direction. Base station 10 broadcasts the destination base

station id and node id to 15 nodes, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Step 4:

The broadcasting node, base station 10, waits for reply for 1 minute and if no reply

received then it assumes that the destination node is not within the entire network. If

any reply is received, base station 10 maintains destination node id and its base station

id in its routing table and the direction obtained.

Fig 13: Complete Routing Process

 31

4.5. Routing performance

Routing process defined above gives scalable routing performance since every

overlay node maintains the scalable amount of routing state at each node. Each node

maintains log N routing state where N is the total number of nodes in the system.

Routing path between two nodes is small with respect to the total number of nodes in

the system.

The routing process defined above determines the routes only when needed and uses

traditional routing tables to store routing information.

This routing process gives better performance with higher number routes determined.

Once a route is obtained it is stored in routing table which is used when same data is

requested again and the whole routing process implementation is not required.

So in the network with n stationary nodes, if a node has n entries in routing table, its

efficiency is log n since the node needs to look up only n entries in routing table and

no routing process is to be implemented.

 32

Chapter 5 : Simulator Design

5.1 Network Simulator

The system is modeled using number of tools and techniques and simulation is one of

them. Simulation is defined as:

"The technique of imitating the behavior of some situation or system by means of an

analogous model, situation or apparatus either to gain information more conveniently

or to train personnel".

So, the simulation is technique to build model of real or proposed system in order to

study to behavior of the system under specific conditions following the time

progression.

Network Simulation is the technique where a program simulates the behaviors of a

network. The program performs the simulation by calculating the interaction between

the different network entities and hence the behaviors of the network can be observed.

The various attributes of the environment can also be modified in a controlled manner

to assess these behaviors under different conditions. The users can also customize the

simulator to fulfill their specific analysis needs. Some network simulators require

input scripts or commands and produce trace-files. The network parameters describe

the state of network (node placement, existing links) and events (data transmissions,

link failures etc). Trace files can document every event that occurred in simulation

and are used for analysis. Some simulators incorporate or provide visualization tools

for trace files.

The simulation approaches are:

1. continuous

2. discrete

In continuous simulation, the time is controlled by continuous variables expressed as

differential equations and during the simulation the software will integrate the

equations.

 33

And within discrete simulation, there are number of logic expressions that are

evaluated at discrete points in time [4].

5.2. Discrete-event Simulation

Discrete event is the event that occurs at an instant of time. The discrete events do not

have time duration. However, the starting and ending of such activities, with the time

duration, can be considered as two separate discrete events.

Discrete event simulation is to study complex system by computing the times that

would be associated with real events in a real life situation. The idea of discrete event

simulation is to compute physical times that would occur in real time in physical

system, but without waiting for the delays between two events to occur in real time.

The discrete event simulation is a sequential program accomplished using a queue of

events that are ready to be performed. The event queue is kept sorted in increasing

time order and the program processes the events in increasing time order. The

program is started with one or more events initially in the queue and other events are

added to either event queue sequentially. These events are caused by the initial events

in the queue and the program has built in knowledge about how each kind of event

causes other sequential events.

When the simulation grows larger and lots of concurrency occurs as result of the

events that are to be processed simultaneously. The work of processing evens is

distributed across many simulators. Each simulator is responsible for processing

certain kinds of events, maintaining its own event queue and processing the events in

time order. The new event occurred are placed in local event queue or may need to be

sent elsewhere for processing.

5.3. Simulator Description

The cellular network simulator is named as cAsset. Asset is Adhoc System Simulator

and Enhancement Test-Bed. It is the discrete event simulator. cAsset is designed on

the top of Asset which is an adhoc network simulator. In cAsset all events are fired

one after another. An event takes place only after completion of previouse event. The

events are as follows:

 34

a) Node Creation Event

b) Node Reposition Event

c) AddRecord Event

d) Retrieve Record Event

Among these events, some are inherited from Asset.

5.4. Add record event

● AddRecordEvent is invoked from the event list. The node invoking the event

selects a name randomly from a common text file. In the text file, numbers of

names are placed along with the contact number. This name and contact number is

also written in the node file of this node (Every nodes has a separate text file).

● In this event, the record is selected randomly from the external file and hashed

using SHA-1 hashing algorithm. The hashed value produces 16 bit number which

is converted to an integer value.

● The value obtained after hashing is compared with hash value of the every base

station and the base station id where the selected name should reside is obtained.

● Every base station contains a bucket. For simplicity, each bucket has the same

identification number as of its base station. The bucket whose id is equal or

nearest greater integer value of that record is obtained

● And in the bucket of the base station the selected name, the hashed value and the

node id invoking the event is added

5.5. Retrieve record event

● RetrieveRecordEvent is also invoked from the event list. The node invoking this

event selects the name randomly from the common text file, where only the names

of the contacts are stored.

 35

● The name selected is hashed using SHA-1 hash function. Since SHA-1 hash

function returns 160-bit of value and value obtained from every key is to be

compared to the base station to find the bucket where that record can reside, every

base station identifiers are also hashed using SHA-1 hash function. The obtained

hash value of the key is compared with the hash value of base station one by one.

And, the base station where the selected name resides is obtained. The hash value

of the selected base station should be equal to the hashed value of key or most

nearly greater to it.

● In the base station, the name requested is searched in the bucket one by one

sequentially starting from the top of the bucket. The first found record in the

bucket with the matching name is to be routed to the requesting node.

● Along with name in the bucket, the node id where the name is located is also

stored. The node id is checked. If the node is within the base station, the name and

contact number is obtained and routed to the node invoking this event.

● If the destination node is not within the base station, the node is located in other

base stations. After locating the node, the name and contact number is received

and routed to the destination nodes.

5.6. Routing

All the base stations in the overlay network are considered to be arranged in the

circular order according to the base station identification number. After the record of

the requested name is retrieved from RetrieveRecordEvent, the record is routed from

the base station which contains the bucket where the record is located to the

requesting node.

Firstly, the base station id of the requesting node is obtained. Now, the record is

routed from its source base station to the requesting base station. The routing scheme

is repeated in every base station during routing until the requesting node is found.

In simulator implementation, the routing of records is done in RetrieveRecordEvent

class.

 36

Chapter 6 : Implementation

The implementation of simulator is done in JAVA. The class diagram of the

implementation is as follows

Fig 14: Implementation Class Diagram

6.1. Simulator Class Descriptions

6.1.1. Simulator

The simulation starts with this class. It consists of an object of Configurator class. It

initiates the enqueing of events in the event queue.

Objects used:

 37

1. nodespace : object of type Space

2. ConfObj : object of type Configurator

3. EventQ : a linked list of the events occuring in the cellular network

4. Localtime: the timestamp

Methods used:

1. Simulator (Space s, Configurator co): It sets nodespace as s and ConfObj as co

2. Run () : It sets the localtime as timestamp for the next event in the Event queue

and then executes that event by calling the happen() method

3. addEvent(Event e): Adds an event to EventQ in its place if and only if its time

stamp is below timelimit

4. main(String args[]) does the following: creates objects for configurator , space ,

simulator . The simulation starts with the command ‘start’. The node creation

event is added to the event queue. If number of nodes is specified then the node

creation events will be enqued to the event queue .The number of events depends

on the number of nodes specified or the udensity factor. The simulation stops at

the time as timelimit (parameter set in the Configurator class). To stop the

simulation before this time issue the command 'quit' may be used.

6.1.2. Configurator

It configures various parameters (such as number of nodes, time limit, radius,

udensity, space size etcetera) for the simulation. The configurations decide the

behavior of the system. The parameters are fed in the form of a file - The

Configurator file where the values for each parameter are stored beforehand.

6.1.3. Space

This is the cellular network space. This is the entire bounded space where the cellular

network system is simulated. The space has collection of mobile devices (represented

 38

by Node class). The space is divided into cells or Chunks. Each chunk has a fixed

Base-Station.

Parameters used:

1. xmin , ymin , xmax , ymax : The coordinates which bound the space under

consideration.

2. Nodelist : a linked list of all the nodes in the space

3. Chunklist : a linked list of the chunks in the space

4. ConfObj : an object of type Configurator

Methods used

1. Space (Configurator co) : It makes a linked list of chunks.Their ids vary from 0

till n-1 , where n depends on the following parameters. The boundaries of the

space (xmin,ymin) and (xmax,ymax) and the chunksize. All these parameters are

obtained with the help of the the object co.

2. int determinechunk(int x, int y) : For the node located at position (x,y) , the

method returns the id of the chunk to which the node belongs to. This calculation

depends on the node's position, the chunk-size and the boundary of the space.

6.1.4. Chunk

These are the partitions made in the Space. They are square regions of size =

chunksize * chunksize, chunksize = radius. Each chunk consists of a Base Station. To

ease the implementation, the base station id and the chunk id have been made same.

Parameters used:

1. num: Gives the chunk number.

2. LinkedList Nodelist : It is a linked list of all the nodes included in the chunk.

Methods used:

1. int getnum() : returns the chunk number

 39

6.1.5. Node

The node class represents mobile device. Node has position, unique id, network id.

Each Node knows about its immediate neighbors and even knows their location. Each

Node maintains a list of its neighbor nodes.

Methods used:

1. int getx() : It returns the x coordinate of the node

2. int gety() : It returns the y coordinate of the node

3. int getid() : It returns the Node id.

4. addConfigurator(Configurator co) : It sets the ConfObj = co

5. int getchunk() : It returns the chunk

6. int getnetid() : It returns the Node’s network id 'nid'

6.1.6. Event

It stands for any event happening in the space. Node creation, Node movement,

Record addition, Record retrieval are all events.

Parameters used:

1. timestamp: the time at which an event occurs since the starting of the simulator.

Method used:

1. Event() : It instantiates the Event class

2. Event(int ts) : sets the timestamp = ts

3. int gettimestamp() : It returns the timestamp of the event

4. settimestamp(int ts) : It sets the timestamp = ts

5. abstract void happen() : an abstract method. It will be overridden in all the other

classes that inherit the Event class.

 40

6.1.6. NodeCreation

This is an event that creates a new node in the space.

Parameters used:

1. SimObj : an object of type Simulator

2. n : an object of type node

3. ConfObj : an object of type Configurator

4. x , y : coordinates of the node which has to be created

Methods used:

1. happen() : It will create a node by calling an appropriate constructor of the node

class. It then finds out the neighbour list of the node. It then adds node movement

event at timestamp = timestamp + mf. Similarly, the AddRecord event and the

RetrieveRecord event are also added at timestamp= timestamp + constant. All of

these events are added in the event queue of the Simulator by calling the method

SimObj.addEvent(event).

2. createFile(): A file is created which stores the records of interest belonging to

that particular node.

6.1.7. NodeMove

This is an event that relocates a node from one position to another.

Parameters used:

1. SimObj : an object of type Simulator

2. nodespace : an object of type space

3. n : an object of type node

4. ConfObj : an object of type Configurator

 41

Method used:

1. happen() : It relocates the node by calling the method relocate() with the help of

the object nodespace. It recomputes node's neighbours and displays them. It then

creates a new object of the type NodeMoveEvent and adds it to the event queue

using the object SimObj.

6.1.8. AddRecordEvent

This event adds the record in the distributed hash table. This event is fired from the

event queue before the RetrieveRecord event. The node firing this event is said to

select a record from the common text file “CommonFile.txt” randomly and store in

itself. A record containing name and contact number is selected randomly from the

list of records in common text file which is accessible to all the nodes in the space.

Name in the record is hashed using SHA-1 hash function. DHT class is used to obtain

the hash value. The hashed value of the name returns an integer. Along with the name

base station id is also hashed using SHA-1 hash function such that the hashed value of

Name and base stations are comparable. The hashed value of Name is compared with

the each hashed value of base station. A base station is selected with its hash value

equal to or most nearly greater than the hashed value of Name and the record will be

stored in the bucket of thus obtained base station as the tuple of <hash_value of

record key, record_key, node_id>

Parameters used:

1. node : object of Node Class

2. buck : object of Bucket Class

3. dht : object of DHT Class

Methods used:

1. addRecordEvent (Space s, Node n): Constructore, initializes the objects

nodespace to s and node to n.

 42

2. void happen() : Within this function a record is selected from the common text

file and hashed. Separate text file is created for every node firing this event where

the record obtained from common text file “CommonFile.txt” is stored. Then

Name in the record is stored in a bucket obtained with the hashed value of the

name. The bucket is obtained using getBSBucket(String name, String contactNo)

3. getBSBucket(String name, String contactNo): It takes a name of a record as an

input, hashes it calling the function of DHT class, finds the corresponding base

station by comparing the hashed value of Name with the hashed value of every

base station and stores the tuple <value, key, node id> in the bucket of that base

station.

4. int getRecordCount(String filename): This function gets the number of records

in the filename passed as the parameter. File name of common text file is passed

as the parameter

5. int getRecord(int recdCount) : This function is used to obtained the random

number among the number of records stored in the common text file. The total

number of records in common text file is passed as the parameter recdCount.

6.1.9. RetrieveRecordEvent

It retrieves the existing record from a node (mobile device) and returns it to the

mobile device requesting it. The routing of the record after retrieving is also simulated

in this class. This event is fired after AddRecordEvent in event queue. The node firing

this event firstly selects any of the names from the common text file

“RetrieveFile.txt”. In this file only the name of the records that are in

“CommonFile.txt” are stored. To get the name from the “RetrieveFile.txt”, int

getRecordCount(String filename) and int getRecord(int recdCount) of

AddRecordEvent is used. Thus retrieved name is hashed using the hash function from

DHT class and compared with the hashed value of base station to find the bucket

where the record is stored. Then, the record is retrieved from the bucket file and

routed to the node firing this event. The record routed is then stored in the text file of

the node.

 43

Parameter used:

1. node: object of Node class

2. space : object of Space class

Methods used:

1. RetrieveRecordEvent(Space nodespace, Node n) : Constructore of the class and

initializes s to nodespace and node n

2. routeString(String strToRoute, int destBS): It takes destination basestation and

string to be routed (i.e. the requested record) as an argument, then routes the

string to the destination base station using the routing algorithm designed.

3. writeInDestNode(String strToRoute) : It takes the string to be routed (requested

record) as an argument and writes it in the text file of the destination mobile node

(the requesting mobile device).

4. int getNodeSource(int bs,String recdName): It reads the tuple <name,hashed

value , node id > from the bucket file and parses the node id where the requested

record is stored. The node id parsed is returned. The bucket id and the name of

the record is passed as parameters.

5. String readString(int src, String recd): After obtaining the node id where the

record requested is stored, this function searches the record in the text file of the

node and returns the record of name and contact number. The node id and the

name in the record is passed as arguments.

6. int getBSBucket(String recd): This function hashes the name to be searched using

the functions in DHT class and compares the hashed value of the name with the

hashed value of the base stations. The base station with its hashed value equal or

nearest greater than the hashed value of name contains the bucket where record is

stored. The obtained bucket id is returned.

7. void happen() : This function reads “RetrieveFile.txt” and get a name from the

file randomly. The record containing this name is searched in DHT using the

above functions. Then the record obtained is routed to the node firing this event

and is stored in its text file.

 44

6.1.10. Bucket Class

A bucket class keeps the list of tuples <value, key, node_id> where value is the hash

value of a record key, key is the record key and node_id is the identifier of the mobile

device which consists of the actual record of the key. The size of the bucket is not

fixed. The newly registered record-tuple is appended at the end of the tuple-list. Each

bucket has a file to store this list of tuples.

Parameters used:

1. bucket_id : an integer that uniquely identifies a bucket. This value equals to the

base station to which the bucket belongs.

Methods used:

1. void createFile(int bsid): This function takes basestation identifier as an

argument. Then it creates a file for the bucket belonging to that base station.

2. void addtoBucket(String recordStr, int buckid): It takes record string to be added

in bucket and bucket id as arguments and appends the record string at the end of

the file belonging to that bucket.

6.1.11. DHT Class

It hashes a key and produces its corresponding value. For hashing SHA-1 hash

function is being used. Functions in DHT are being used while adding as well as

retrieving records. SHA-1 hash function being used produces 160-bit string as value

for every key. Since the hashed value of the name and the base station is be compared

to obtain the bucket for every record, the hashed value of name is converted into

integer and every base station identifier is also hashed and hashed value converted to

an integer.

Parameters used

1. name : a string to be hashed

2. bucketed : an integer type data to store bucket identifier

 45

Methods used:

1. int hashKey(String name) : It takes a string as an argument and hashes it to

produce a 16-bit string hash value. This value is returned after being converted to

an integer.

2. int hashBS(int bsID): It takes an integer (base station identifier) as an argument

and hashes it to produce a 16-bit string hash value. This value is returned after

converted to an integer.

6.1.12. The Base Station(BS) Class

Base stations are created at the starting of the simulator in Space class. For every

chunk one base station is created and chunk size is defined as base station range.

Parameters used:

1. bs_id: identifier which is equal to its chunk id

2. bs_range: its range which is equal to the chunksize

3. buck: Object of type bucket

4. ConfObj: Objects of Configurator classs

Methods used

1. BaseStation(int n, Configurator ConfObj): This is the constructor of the class and

is called in Space class for creating base station. The base station id and the

configurator object is passed as parameters. Within the constructor, bs_range is

defined to the chunksize and file is created for the bucket of the particular

basestation.

6.1.13. Route Data Class

Route data class routes the records retrieved from the dht to the destination base

station. Firstly, the routing table is traced, if no record found then only the routing

direction is obtained then neighbor node is checked and lastly the broadcast message

is sent to T-1 node where T is the total number of base stations in the network.

 46

Parameters used:

1. dir: routing direction which can be 0 or 1, 0 for anti clockwise direction and 1 for

clock wise direction.

2. totalBS : total number of base stations in the network

3. receiverId: The receiver id where the retrieved record is to be routed.

4. senderId: The base station id from where DHT retrieves the record.

5. strToroute: The record retrieved to be routed to the destination.

6. strName : String whose record is being searched.

Methods used

1. GetDestination()

This function gets the destination id where the data is to routed which is the same

base station searching for data.

2. GetDirection (int senderId)

This function gets the routing direction which is anticlockwise if it returns 0 and

clock wise if it returns 1.

3. CheckRoutingTable(int nodeId, int bsId)

This function checks the node id and the base station id in the Routing Table.

4. RouteString(int senderId)

The record being searched is routed to the destination node in this function.

 47

Chapter 7 : Simulator Testing

This simulator is discrete event simulation and simulates the functions of Address

Book Application.

Simulator starts with creation of space and nodes and base stations on it. Space is

divided into number of chunks with specified radius and there is a fixed base station

in chunk. Nodes created can move around the space and can go out of range as well.

User can define the number of nodes to be created in start of the simulator. The

number of chunks in the space is defined and so is the base station numbers. Separate

storage in text file is created for every base stations and nodes as bucket file and node

file in the space. This file contains the number of Address Book Records of name and

address.

Events are added in the simulator in FIFO manner and get executed one after another

after specified time stamp. The first event is added in the simulation queue in starting

of simulation is Node Creation Event. When this event is executed other events Node

Move Event, Adding Record Event, Retrieve Record Event are added simultaneously

and simulation of the Routing part is covered in Retrieve Record Event.

Some of the snapshots of testing of this simulator are as follows:

1. Simulation Starting

 48

2. Base Station Creation

3. Node Creations and Adding of Events in Simulator

 49

4. Add Record Event

5. Retrieve Record Event

 50

Chapter 8 : Conclusions and Future works

This simulator has been designed on top of adhoc network simulator ASSET. Though

it tries to cover the cellular network designs, there are lots of cellular network features

missing in this dissertation. Current trend in overlay networks do not intend to

eliminate IP usage. This dissertation covers the simulation of routing done over DHT

overlay network with limited number of base station and only one mobile switching

center. In the routing process, after the record is retrieved from DHT, the destination

node is obtained by means of broadcasting. This eliminates the overhead of routing

through every node connected in the network and finding the destination node when

the destination node is at the end of the network. As well as, while adding record in

the bucket, the hashed value of key is compared with every base station one by one

sequentially, this can also be overhead if the bucket to be used is at the end of the

sequence.

In this dissertation, only one Mobile switching center has been considered but

communication between two and more Mobile switching center has not been

considered. These cellular network features are not covered in this dissertation and yet

to be covered.

 51

Chapter 9 : References

[1] Sanket Patil, Srinath Srinivasa. A Data centric Abstraction Middleware for

Mobile Networks. International Institute of Information Technology –

Banglore, India, 2006.

[2] Frank Dabek. A Distributed Hash Table. Massachusetts Institute of

Technology. September 2005.

[3] Wikipedia, the free encyclopedia, SHA hash function.

[4] Thomas J. Schriber, Daniel T. Brunner. INSIDE DISCRETE-EVENT

SIMULATION SOFTWARE: HOW IT WORKS AND WHY IT MATTERS.

Computer and Information Systems. The University of Michigan. Ann Arbor,

Michigan 48109-1234, U.S.A. Proceedings of the 1997 Winter Simulation

Conference.

[5] Wikipedia, the free encyclopedia, Overlay Nework.

[6] Ion Stoica, Robert Morris, David Karger, M.Frans Kaashoek, Hari

Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Services for Internet

Applications. August 2001.

[7] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron and Dan

S. Wallach. Secure routing for structured peer-to-peer overlay networks.

Microsoft Research Ltd., 7 J J Thomson Avenue, Cambridge, CB3 0FB, UK.

Rice University, 6100 Main Street, MS 132, Houston, TX 77005-1892, USA.

December 2002.

[8] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location

and routing for large-scale peer-to-peer systems. November 2001.

[9] How overlay networks will make IP irrelevant without actually killing it

<http://www.arl.wustl.edu/~jst/reInventTheNet/?p=72 >.

[10] Pastry (DHT) <http://en.wikipedia.org/wiki/Pastry_%28DHT%29>.

 52

[11] Tapestry (DHT)

<http://en.wikipedia.org/wiki/Tapestry_%28DHT%29>.

[12] Ozgur D. Sahin Divyakant Agrawal Amr El Abbadi. Techniques for Efficient

Routing and Load Balancing in Content-Addressable Networks.

[13] Nicholas J.A. Harvey, Michael B. Jones., Stefan Saroiu, Marvin Theimer,

Alec Wolman. SkipNet: A Scalable Overlay Network with Practical Locality

Properties. Department of Computer Science and Engineering, University of

Washington, Seattle, WA.

[14] AODV < www.answers.com>.

[15] Ian D. Chakeres, Elizabeth M. Belding-Royer, Dept. of Electrical & Computer

Engineering, Dept. of Computer Science University of California, Santa

Barbara. AODV Routing Protocol Implementation Design.

[16] Charles E. Perkins, Elizabeth Belding-Royer. AODV Next Generation

(AODVng) 2002 Workshop, In Proceedings of the Third ACM International

Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc) 2002.

June 8, 2002.

[17] C. Perkins, E. Belding-Royer, S. Das Ad hoc On-Demand Distance Vector

(AODV) Routing. University of California, Santa Barbara, University of

Cincinnati. July 2003.

[18] David B. Johnson David A. Maltz Josh Broch. DSR: The Dynamic Source

Routing Protocol for Multi-Hop Wireless Ad Hoc Networks. Computer

Science Department Carnegie Mellon University.

[19] Yinghui Wu, Ming Li, Weimin Zheng. ONSP: Parallel Overlay Network

Simulation Platform.

[20] Sanket Patil, Srinath Srinivasa, Shrisha Rao. Distributed Garbage Detection

of Replicated Objects in Mobile Networks. International Institute of

Information Technology – Banglore, India. May 29, 2006.

 53

[21] Sanket Patil. Localization and Garbage Collection in Ad Hoc Networks.

Master’s Thesis IIIT-b, India. June 2005.

[22] Himabindu Pucha, Saumitra M. Das and Y. Charlie Hu. Poster. How to

Implement DHT in Mobile Ad Hoc Networks? August 2004.

[23] Asset Documentation.

[24] Walters, L.O. & Kritzinger. Cellular Networks: Past, Present, and Future.

University of Cape Town, Department of Computer Science. November 2000.

[25] Scott Shenker. The Data-Centric Revolution in Networking. In Proceedings of

the 29th international conference on Very large data bases. ICSI and U. C.

Berkeley, Berkeley, CA, USA. 2003.

[26] Sanket Patil . A Data centric Abstraction Middleware for Collabration over

Mobile Networks. International Institute of Information Technology,

Bangalore. 2006.

[27] Vasilis Koudounas, Omar Iqbal. Mobile Computing: past, present and future,

[referred 10.10.1999].

<http://www.dse.doc.ic.ac.uk/~nd/surprise96/vol4/vk5/report.html>.

[28] Wikipedia, the free encyclopedia, Cellular Network.

[29] Lourens O Walters, PS Kritzinger, Cellular Network : Past, Present, and

Future, November 2000.

[30] Users Mobility and Call Blocking in Wireless Network.

 <http://people.buoedu/staro/node2.html>.

 54

Chapter 10 : Bibliography

1. William Stallings. Principles of Cellular Network in Wireless Communication

and Networking,. Isbn: 81-203-2386-6, Eastern Economy Edition, Prentice-

Hall Pvt.Ltd India.

2. Theodore S. Rappaport. Wireless Communication Principles and Practice.

Second Edition. Prentice-Hall Pvt.Ltd India.

3 Narsingh Deo. System Simulation with Digital Computer. Isbn: 81-203-0028-

9, Prentice-Hall Pvt.Ltd India.

4 Goeffrey Gordan. Discrete System Simulation in System Simulation. Isbn: 81-

203-0140-4, Second Edition, Prentice-Hall Pvt.Ltd India.

