

DESIGN AND SIMULATION

 OF

DISTRIBUTED HASH TABLE IN CELLULAR MOBILE NETWORK

A dissertation submitted in partial fulfillment of the requirement for the

Masters Degree in Computer Science and Information Technology

Submitted to

Central Department of Computer Science and Information Technology

University Campus

Tribhuvan University

Kirtipur, Kathmandu

Nepal

Submitted by

Lalita Sthapit

July, 2008

II

Central Department of Computer Science and Information Technology

University Campus

Tribhuvan University

Kirtipur, Kathmandu, Nepal

LETTER OF RECOMMENDATION

This is to certify that Ms. Lalita Sthapit has completed this dissertation

entitled “DESIGN AND SIMULATION OF DISTRIBUTED HASH TABLE IN

CELLULAR MOBILE NETWORK” under my guidance. This is her independent

work for the fulfillment of the Masters Degree in Computer Science and

Information Technology. I recommend this dissertation for final evaluation.

 Prof. Dr. Srinath Srinivasa

 International Institute of Information Technology

 Banglore, India

III

Tribhuvan University

Central Department of Computer Science and Information Technology

University Campus

Kirtipur, Nepal

LETTER OF APPROVAL

This is to certify that this dissertation entitled “Design and Simulation of

Distributed Hash Table in Cellular Mobile Network”, submitted by Ms.

Lalita Sthapit, has been accepted for partial fulfillment of the requirement

for Masters Degree in Computer Science and Information Technology.

Evaluation Committee:

Head,

Central Department of Computer Science

and Information Technology,

Supervisor,

Prof. Dr. Srinath Srinivasa

International Institute of Information

External Examiner

Internal Examiner

Date:

IV

ACKNOWLEDGEMENT

It is my pleasure to acknowledge the contributions of all the people who helped and

guided me throughout the conduction of this work.

I would like to express my gratitude towards Prof. Dr. Srinath Srinivasa (IIIT-b) for his

supervision and guidance despite his tight work schedules. I cannot remain without

thanking Mr. Sanket Patil (IIIT-b) for his assistance and suggestions throughout the

duration of this work.

I am thankful to Prof. Dr. Devi Dutta Paudyal (Former Head, Central Department of

Computer Science and Information Technology) for his inspiration and encouragement

during two years study of Masters Degree. Thanks to all the honorable teachers of

CDCSIT who helped enhance our knowledge by sharing their knowledge and

experiences with us.

I am indebted to my parents and family members, specially my aunt Dr.Sabitri

Sthapit, for their continual inspiration and support to complete this dissertation. Without

their encouragement, this work would not have become a reality.

Special thanks to my friends Rashmi, Achyut and Ritesh for their helping hands and

fruitful discussions. I would also like to thank all the friends and my seniors at CDCSIT

for their encouragement.

Lalita Sthapit

V

ABSTRACT

DHT is a decentralized system which acts like a hash table. It locates to a value in the

decentralized system when provided with a key. DHT was first used by peer to peer

system for the purpose of searching data within a group of nodes in a system.

In this work, the DHT concepts have been deployed in the base stations of cellular mobile

network. The nodes in this DHT are, hence, immobile unlike other DHTs. The DHT has

employed a data centric approach for searching of records. Thus the search is based on

the location of the data rather than the location of nodes containing data. It is a system

that binds the resources at different locations in a cellular mobile network by providing a

method to approach those resources. It maps record keys to corresponding records using

distributed index. This index is used to register as well as retrieve new records in the

system.

A model of the system has been developed and simulation has been done as how the

concept of DHT could be carried out over base stations. Simulation is a useful tool to

study the dynamic nature system. A cellular network which is a discrete system, methods

of discrete-event simulation is suitable to model and simulate such system. Hence an

event based discrete event simulation has been used for the purpose.

VI

LIST OF FIGURE
Figure 1.1: d1 indirectly communicates with d5 through an abstract layer 3

Figure 1.2: A simple flowchart of the registering approach 8

Figure 1.3: A simple flowchart of the retrieving approach 9

Figure 1.4: d1 searching for record. Base stations acting inside an abstraction. Record

found in d5. 10

Figure 1.5: Hashing – Given a key, finding out the mobile_id where the record with the

given key resides 11

Figure 2.1: Overview of cellular system 14

Figure 3.1: Key space 26

Figure 3.2: Key space Partitioning 26

Figure 3.3: Arrangement of Nodes in a ring. Each node is connected to the two other

nodes. 27

Figure 4.1: Data addition 41

Figure 4.2 : Data retrieval 43

Figure 4.3 : Class Diagram 46

VII

TABLE OF CONTENT

LETTER OF RECOMMENDATION II

LETTER OF APPROVAL III

ACKNOWLEDGEMENT IV

ABSTRACT V

LIST OF FIGURE VI

TABLE OF CONTENT VII

CHAPTER 1: INTRODUCTION 1

1.1 Background 1

1.1.1 Some Application Examples 4

1.1.1.1 An address book application 4

1.1.1.2 Managing a calendar 4

1.1.1.3 Sharing multimedia files 4

1.1.2 The Bigger Problem: Data Centric Middleware Abstraction 5

1.2 The Problem Definition 6

1.2.1 The distributed index 6

1.2.2 An approach in brief 6

CHAPTER 2: CELLULAR NETWORK 12

2.1 An Introduction 12

2.1.1 Characteristics 12

2.1.1.1 Frequency Reuse 12

2.1.1.2 Increasing Capacity 13

VIII

2.2 Operation of Cellular System 13

2.3 Handoff 15

2.4 The term - Data Centric 16

2.4.1 The Host Centric Approach 16

2.4.2 The Data Centric Approach 17

CHAPTER 3: DHT DESIGN 19

3.1. Distributed Hash Table (DHT) 19

3.1.1 Hashing 19

3.1.2 A Distributed Hash Table (DHT) 20

3.1.3 Structure of DHT 20

3.1.3.1 Key space Partitioning Scheme 21

3.1.3.2 Overlay Network 21

3.2 Literature 22

3.3 DHT Design – Our Approach 24

3.3.1 Keyspace Partitioning Scheme 25

3.3.2 Overlay Network 27

3.3.3 Bucket Management 28

3.3.3.1 Addition of record 28

3.3.3.2 Retrieval of record 30

3.3.4 Hashing 30

CHAPTER 4: DESIGN AND IMPLEMENTATION OF SIMULATOR 32

4.1 Discrete Event Simulation 32

4.1.1 Simulation 32

4.1.2 Basic System-Concepts 32

4.1.3 Components of Discrete Event Simulation 33

4.1.4 Execution Mechanism of discrete event simulation 35

IX

4.2 Simulation of DHT 35

4.2.1 Class Description 36

4.3 The class diagram 46

CHAPTER 5: CASE-STUDY 47

5.1 Simulation Run 47

5.2 Output 48

CHAPTER 6: CONCLUSIONS AND FUTURE WORKS 52

REFERENCES 53

BIBLIOGRAPHY 54

1

CHAPTER 1

INTRODUCTION

1.1 Background

Portable or mobile devices are extensively used today. They are growing more powerful

in terms of computational and storage capabilities. These devices supports and provides

variety of facilities like – browsing internet; managing calendar, date and time; storing of

multimedia files like songs, videos, games, pictures etc. As a consequence, it is desirable

to have applications and services that support not only communication but also data

sharing among mobile users. Group of users may need to communicate for different

purposes. For example – a small group of employee, at a large organization, may form a

group to share official documents while they are on move. A group of students may form

a collaborative group to share lessons, notes, and piece of music or pictures or maintain a

global address book of all their friends. Mobile teamwork or collaboration has become an

emerging requirement in the daily life nowadays. Many collaborative tools and system

have been developed, and many are being proposed.

In distributed applications / systems, a node that wants data from another node needs to

know the address of the node on which the data resides. If it does not know, it needs to

find out. The requesting node needs to form a point-to-point connection with the

destination node. Only then, communication and data sharing is possible between them.

This approach of communication in which there is a point to point connection between

two communicating nodes, is called host centric [10] approach. In this approach, the host

is in focus rather than the interested data. This approach is suitable for networks where

the topology is explicitly managed and the data are routed based on static routing tables

[15]. In host centric approach, the network layer does routing of data with the help of host

IP addresses. Routing is based completely on the host addresses, hence the term – host

centric.

2

However, it is observable that the requests are interested in the required data which

possesses the required data, and not the location of the node. So, applications should be

able to obtain the required data regardless of where the data reside. Hence, it would be

preferable to have an interface through which applications can issue queries and get to the

source of the required data no matter what the address of source of the data. This

approach is called data centric [13], since it focuses on the required data only, regardless

of the hosting-node.

In a cellular mobile network, the two types of topologies can be considered. One is the

network of the mobile devices, and another is the network of base stations. The topology

of the base station is constant and does not change frequently. On the other hand, the

topology of mobile devices changes constantly due to the continual movement of the

mobile devices. A host centric approach to distributed applications over a cellular mobile

network becomes very tedious, time consuming and complicated. This is because the

hosts of the data/ records are the mobile nodes and it becomes highly inefficient to

maintain dynamic host centric routing tables that need to be updated with every change in

the topology of mobile device. No guarantee can be given about the validity of these

routing tables. Moreover, it will be time consuming and expensive – in the sense that -

point – to – point connection is established to search and find the required data until it is

found in one particular hosting node. Therefore, a host centric networking approach is

avoidable over this network.

This work is based on the research proposal [1]. Its objective is to build a data centric

middleware abstraction on top of an existing collaborative network of mobile devices;

the abstraction being the network of mobile nodes acting like a database. The dissertation

has tried to look into one of the problems mentioned in the above research proposal. The

details of the above research proposal have been discussed in the following section 1.1.3.

The whole work has adopted the data centric networking approach, though the underlying

routing model may use the concept of host centric networking. Applications interact with

this data centric abstract layer and are not concerned about the underlying routing

schemes.

3

According to the above mentioned research proposal, applications can query the network

like querying a database. The network should take care of routing the query to the source

of the data, and the data back to the source of the query, based just on the data and the

query. Rather than having a host centric network and deploying a data centric overlay on

top of it, data centric networking approach handles both network and database services at

the same layer. This layer sits between the data link layer and the application layer. This

layer would be called as a data centric abstraction middleware [1].

Figure 1.1: d1 indirectly communicates with d5 through an abstract layer

However, there are a number of challenges that had been identified by the above proposal

writers while building the middleware [1]:

o Uniform Schemata

o Distributed Indexes

o Query Processing

o Consistency

Before discussing these challenges, let’s consider some application examples of the

abstract middleware.

4

1.1.1 Some Application Examples

1.1.1.1 An address book application

Let’s consider a scenario, which comprises of a group of mobile users. One of the users

wants to contact one of the other users but does not have the contact number of the later

one. In general, this person would try to find out his number by contacting one or more of

the other users by calling them or by sending those messages. Point-to-point connections

are established between the first user and the other users from whom he is trying to get

the number. This process would continue until he finds required number or until he gives

up.

Now let’s suppose a group of such users who share a common address book. A common

address book is a collection of the records from all the users in that group. Again, one of

the users is searching for another user’s number. He would first search in his list of

records. If not found, the abstract middleware application would search it in the common

address book and finds it out from there if it exists there. The required number is returned

to him as if it was present in his own record list.

1.1.1.2 Managing a calendar

Let’s suppose there is a group of people who are working on certain task. For this

purpose, they may have plannings and scheduled the subtasks according to the plan as to

what part of the work has to be done on/within which date. This sort of schedule may

need to be changed and updated several times. Hence a mobile calendar can be

maintained and shared among the group. Any changes in the calendar/schedule would be

known by the group members since the schedule is shared. Such an application for

managing calendar can also have a capability to alert the members about the changes

made.

1.1.1.3 Sharing multimedia files

As in the case of address book, a mobile user may have stored a list of multimedia files in

her mobile device, which she may want to share with other interested friends. An

5

application can be built for managing and sharing these multimedia files. Such

application may also have capabilities to search for a file among the group users and

return it to the requesting user.

1.1.2 The Bigger Problem: Data Centric Middleware Abstraction

Now let’s get back to the main problems that have been discussed in the proposal.

o Uniform Schemata

Records are stored in each mobile device in the form of a table. If applications are

made to communicate through queries, the query interface should be uniform

across all the communicating applications. That is, these applications should be

familiar with other applications database schemata and share the similar

schemata. These schemas cannot be guaranteed to be same in all the

communicating mobile devices. Therefore, one of the major challenges was found

out to be the way to find a technique to provide uniform schemata of the data to

be shared across the communicating applications.

o Distributed Indexes

“According to the proposal, every mobile has one or more tables. Users create

indexes on some of the fields that are regularly searched for. A large number of

queries are based on the values of the indexed fields. Queries are based on the

values of the indexed fields. Queries are data centric. Therefore, an application

that queries the network need not be concerned about the location of the data. It

should simply get the data as though it were locally available. The database

indexes should enable this by acting as data centric routing tables.” [1]

The focus of this dissertation is to contribute on this particular problem.

o Query Processing

The processing of query has been discussed to be another major problem in the

above mentioned proposal. It specifies that the queries can be complex and its

6

answer may not be available in a single node. Queries may need to be broken

down and distributed across the network or it may need to be replicated to find its

complete answer. Above all, the query needs to be processed in the abstract layer/

network and not in a particular mobile device.

o Consistency

Another major problem identified by the researcher is to maintain consistency

across the multiple copies of the same data that exist in the network. It is

undeniable that there may exist two replicas of same data. Also, given two

different copies, then how can a correct one be found?

The above are the four major problems that were found challenging in building an

abstract middleware. Among them, second problem – that is – to build a distributed index

has been kept into focus on this dissertation.

1.2 The Problem Definition

1.2.1 The distributed index

Distributed index –as the name suggests- is a collection of indexes that are partitioned

and distributed across various nodes in a network. The required data requested by a query

is located using this distributed index. This index forms on of the major part of the

abstract middleware. The major goal of this dissertation has been the designing this

distributed index and simulate a case.

1.2.2 An approach in brief

Every mobile node has table of records, see figure 1.3. These mobile devices are under a

range of certain base station. These mobiles may also have their own indexes in their

tables. If a mobile wants to participate in the group of sharing data, she has to register.

Every base station has a bucket, which is the collection of indexes from group of mobile

nodes under its range, see figure 1.3. The set of these buckets from all the base station

forms the distributed index.

7

Now, each bucket acts like a Hash Table, see figure 1.4. Hence, the name – distributed

hash table. It consists of tuples, which map the data-keys into the node that has the

records corresponding to the key. When a BS receives a key, it is hashed. This hash value

helps to locate that particular node and the mobile in which the data resides. Once this

node id is found, the required record can be returned to the requesting node. The detailed

description is on chapter 3.

The above approach of creating a distributed hash table has been simulated using the

concepts of discrete event simulation. The detailed description is on chapter 4.

8

 Figure 1.2: A simple flowchart of the registering approach

A mobile device

requests for a

record registration

providing a key

Is base station

itself?

Key is hashed and

corresponding base station to

store the hash-tuple is found

out

Stores the tuple

(<value,key,mobile_id>) in

the bucket

Refer the

corresponding

base station

yes

no

9

 Figure 1.3: A simple flowchart of the retrieving approach

A mobile device

requests for a

record search

providing a key

Key is hashed and

corresponding base station is

found out

Is base station

itself?

Search for the

mobile id in the

bucket

Refer the

corresponding

base station

yes

no

Communicate

with the mobile

device, and

receive the record

10

Figure 1.4: d1 searching for record. Base stations acting inside an abstraction.

Record found in d5.

11

Figure 1.5: Hashing – Given a key, finding out the mobile_id where the record with

the given key resides

12

CHAPTER 2

CELLULAR NETWORK

2.1 An Introduction

Cellular Network is an advanced communication technique. It is the foundation of mobile

wireless communication like mobile telephones, personal communication system, and

wireless internet and web applications. It supports users in locations that are not easily

served by wired network. A cellular network is a radio network made up of a number of

low power transmitters. The range of such low power transmitter is small; hence, the area

is divided into number of hexagonal radio cells, each served by a base station consisting

of a transmitter, receiver and control unit. Each of these cells is allocated by a band of

frequencies. Adjacent cells are assigned different frequencies to avoid interference.

Cellular networks offer a number of advantages such as, increased capacity, reduced

power usage, better coverage.

2.1.1 Characteristics

2.1.1.1 Frequency Reuse

As has been stated earlier, each cell has a base transceiver, and each cell is allocated a

band of 10 to 50 frequencies depending upon the traffic expected. The increased capacity

in a cellular network is due to the use of same radio frequency band in a different area for

a completely different transmission. This reuse of same frequency in other nearby cells

allows the frequency to be used of multiple simultaneous conversations. The transmission

power must be controlled carefully to allow communication within the cell using the

allocated frequency while limiting the power at that frequency that escapes the cell into

adjacent ones. It is essential to determine the number of cells that can intervene between

two cells using the same frequency so that the two cells do not interfere with each other.

The frequency reuse factor is the rate at which the same frequency can be used in the

network. It is 1/K where K is the number of cells, which cannot use the same frequencies

13

for transmission. Common values for the frequency reuse factor are 1/3, 1/4, 1/7, 1/9 and

1/12.

2.1.1.2 Increasing Capacity

As more customers use the system, traffic may increase so that there are not enough

frequencies assigned to a cell to handle its calls. This may be handled as follows:

- Adding new channels:

When a system is set up in a region, not all of the channels are used, and

growth and expansion cab be managed in an orderly fashion by adding

new channels.

- Frequency borrowing:

Frequencies may be taken from adjacent cells by congested cells.

Frequencies can also be assigned to cells dynamically.

- Cell splitting:

Cells in areas of high usage can be split into smaller cells. To use a smaller

cell, the power level used must be reduced to keep the signal within the

cell. Also, as the mobile units move, they pass from cell to cell, which

require transferring of the call from one base transceiver to another. As the

cells become smaller, this process becomes frequent. A radius reduction

factor F reduces the coverage area and increases the required number of

base stations by a factor of F2.

- Cell sectoring

A cell is divided into number of wedge shaped sectors (3-6 per cell), each

with its own set of channels. Each sector is assigned a separate subset of

the cell’s channels, and directional antennas at the base station are used to

focus on each sector.

2.2 Operation of Cellular System

A base station (BS) is placed approximately near the center of each cell. Each BS has

several transmitters and receivers, which simultaneously handle full duplex

14

communication and also have towers, which support several transmitting, and receiving

antennas. Each of these BSs has number of forward channels to transmit to its mobile

users and an equal number of reverse channels to receive from mobile users. BSs are

connected by a wire-line transmission link or by point-to-point microwave radio to a

Figure 2.1: Overview of cellular system

telephone switch called mobile switching center (MSC). One MSC serves multiple base

stations. It also handles connections between BS and public switched telephone network.

The MSC assigns voice channels to each call, performs handoffs and also monitors calls

for billing information. To use the cellular system, users only needs to place or answer a

call, the remaining are automatic. Two types of channels are available for communication

between a mobile device and BS. Control channels exchange information about setting

up, establishing connection of mobile with a BS and maintaining call, while traffic

channels transmits voice or data across connected mobile units.

Base

Station

Base

Station

Base

Station

Mobile

Switching Center

Mobile devices

Public telecommunication

switching network

15

Different cells/BS with different frequency bands frequently broadcasts on different setup

channels. When a mobile device is turned on, it selects the appropriate BS by selecting

the strongest setup channel in the system. Then a handshaking takes place between this

mobile unit and the MSC that controls this BS. This handshake identifies the user and

registers its location. This course of action is repeated until the mobile unit is on, to keep

track of its location and movement. If the mobile unit enters in a new cell, then a new BS

is selected.

To set up a connection with another mobile unit, a mobile unit sends a number of the

receiving mobile unit on the preselected setup channel. The receiver at the mobile unit

first checks if the setup channel is idle. If yes, it transmits the request. The BS sends the

request to the MSC.

The MSC sends a paging message to BSs. Each BS transmits the paging signal on its own

assigned setup channel.

The receiving mobile unit recognizes its number on the set up channel being monitored

and responds to that BS. This BS, in turn, responds the MSC. The MSC establishes a

circuit between a sending and receiving BSs by assigning an available traffic channel

within each BS’s cell and notify these BSs. The BSs, in turn, notifies their corresponding

mobile units. The two mobile units communicate with the assigned channels. The mobile

units can exchange voice and data signals through their respective BSs and MSC till the

connection ends.

2.3 Handoff

The mobility of the mobile units is one of the important requirements in a wireless

communication system. In cellular system, continuous coverage is achieved by executing

handoff, when the mobile units cross cell boundaries. Handoff is a procedure of

changing the assignment of a mobile unit from one base station to another as the mobile

moves from one cell to another. It is an important issue because in a cellular network,

16

neighboring cells use disjoint subset of frequency bands and there should be a negotiation

between the mobile unit and the serving base station.

As the call proceeds, the base station monitors the signal level. If the signal level falls

below a specified threshold the MSC is notified and the mobile station is instructed to

transmit on the setup channel. All base stations in the vicinity are instructed to monitor

the strength of the signal level prescribed setup channel. The MSC uses this information

to determine the best cell to which the call should be handed off. The current base station

and mobile station are instructed to prepare for a handoff. The MSC then releases its

connection to the first base station and establishes a connection to the new base station.

The mobile station changes its channels to those selected in the new cell. The connection

is interrupted for the brief period that is required to execute the handoff.

2.4 The term - Data Centric

2.4.1 The Host Centric Approach

In any communication model, distributed system or resource sharing system, the

applications are designed in such a way that, users have immediate access to computing

resource and those resources have access to application data. When an application

instance communicates with another, it needs to know the address of the host (i.e. the

node in which the later instance is running). In order to transfer resources, a point-to-

point connection between the two communicating nodes should be established first. This

approach is termed as host centric since the host of the resource is in focus rather than the

data itself. Once the relationship between the two end points is established, resources are

transferred between them.

In this approach, synchronization between servers, and between servers and clients, is

complex. When a system is upgraded, there may be a need for modifying the interface

between endpoints, upgrading and testing new codes and configurations. The absence of

incompatibilities should also be ensured during such modifications.

17

Another complexity is regarding the dynamics in the network architecture. Nodes in the

network may fail to stay in the network due to some reasons. Nodes may join and leave

recurrently. The application architect cannot assume that the network and application

architecture is static and unchanging. It may be difficult to expand the application to

include a larger network with more endpoints.

2.4.2 The Data Centric Approach

The data-centric approach gives emphasis to the data and not the data owner. This is

because, in the data sharing process, the data is more important than the host which hold

that data. Hence, the application requesting the data must receive the data regardless of

whether it knows or does not know the location of the data.

Various approaches have been adapted to achieve data centric property. Among them,

one is the publish-subscribe [13] (or "pub-sub"). In this model, data sources, or

producers, publish data to a common location on the network. This could be a memory-

to-memory transfer, or it could be a database or other persistent storage. When published

data arrives at the shared location, a message goes out to the subscribers. Processes that

need that data can subscribe to it through a messaging service. Subscribers can then go to

the shared location to obtain the data, and use it in their own processing. A publish-

subscribe model for data distribution enables the implementation of such a data-centric

architecture across a large-scale network.

Many of the approaches achieve the data centric property by deploying an overlay that

abstract the underlying layer which may still be host centric.

The host centric routing is suitable for networks where the topology is managed explicitly

and the data are routed based on static routing tables, since the routing is totally based on

the host addresses. In cellular mobile system, the hosts of the data are the mobile nodes

and it becomes highly inefficient to maintain dynamic host centric routing tables that

need to be updated with every change in the topology of mobile device. The information

18

in the routing table may become invalid due to the continual change in the positions of

mobile nodes. Point – to – point connection is established to search and find the required

data until it is found in one particular hosting node. Therefore, data centric approach is

more uncomplicated and comfortable in cellular mobile systems rather than host centric

approach.

19

CHAPTER 3

DHT DESIGN

3.1. Distributed Hash Table (DHT)

3.1.1 Hashing

Hashing is a searching scheme to, directly, find out the location of a record no matter

where the record is in the record storage space. The fundamental principle behind hashing

is to determine a number from the given key information and use this number to access

information related to the key. The transformation of the key into a corresponding

location is done using a hash function. A hash function takes a key as an input and

transforms it into a value, called hash value, which indicates the location of the required

information.

A fundamental property of all hash functions is that if two hash values are different, then

the two input keys are also different in some way. But this may not be the case always.

Sometimes, different keys may be transformed to the same location. When this occurs, it

is called collision. So, a good hash function is the one in which there is minimum

possibility of collision. Hash table is a major application for hash functions. A hash table

is a data structure that associates keys with values. A hash table is, generally, built up

using an array where the data to be searched is stored. A given key is transformed into an

array index (the associated value for the given key) using a hash function. The hash

function is a way for assigning numbers to the input data such that the data can then be

stored at the array index corresponding to the assigned number. A hash function for a

hash table should be fast relative to the cost of retrieving a record in the table, besides

minimizing collision such that the time required to retrieve a desired record is less.

20

3.1.2 A Distributed Hash Table (DHT)

DHT is a hash table, consisting of a list of (key, value) pairs. Using a hash function,

values can be mapped to a given key. Besides this, storage, lookups and retrieval are

distributed among multiple machines, called nodes, in DHT. Each node is analogous to

an array slot in a hash table. DHTs are typically designed to scale to large numbers of

nodes. These nodes can join and leave the network as and when they want.

DHT are decentralized – in the sense that the nodes, collectively, form the system without

any central coordination. DHT are scalable. The system functions efficiently even with

thousands of nodes. Further, the system should also be reliable even with nodes

continuously joining, leaving, or failing. Hence, distributed hash tables (DHTs) are

decentralized distributed systems

- in which a set of keys are distributed among multiple nodes participating in the

system

- which can efficiently route messages to the unique owner of any given key and

- which can handle continual node arrivals and failures.

A key technique used to retain the above properties is that any one node needs to

coordinate with only a few other nodes in the system, so that only a limited amount of

work needs to be done for each change in membership. DHTs should also make provable

guarantees about issues such as load balance, data integrity, and performance.

3.1.3 Structure of DHT

A DHT is built around a domain of keys (an example of keys may be set of 160-bit

strings). The keys are distributed among the participating nodes according to a key space

partitioning scheme. The overlay network connects the nodes, allowing them to find

the owner of any given key in the domain of the key. Storage in and retrieval from the

DHT may proceed as follows. Suppose the key space is the set of 160-bit strings. To store

a file with given filename and data in the DHT, the SHA1 hash of filename is found,

producing a 160-bit key k. Then, a message may be sent to any node participating in the

21

DHT to store the key k and its corresponding data. The message is forwarded from node

to node through the overlay network until it reaches the single node responsible for key k

as specified by the key space partitioning, where the pair (k, data) is stored. Any other

client can then retrieve the contents of the file by again hashing filename to produce k

and asking any DHT node to find the data associated with k by message passing. The

message will again be routed through the overlay to the node responsible for k, which

will reply with the stored data.

3.1.3.1 Key space Partitioning Scheme

Most DHTs use some variant of consistent hashing to map keys to nodes. This technique

employs a function δ(k1,k2) which defines an abstract notion of the distance from key k1

to key k2. Each node is assigned a single key called its identifier (ID). A node with ID i

owns all the keys for which i is the closest ID, measured according to δ. Consistent

hashing has the essential property that removal or addition of one node changes only the

set of keys owned by the nodes with adjacent IDs, and leaves all other nodes unaffected.

3.1.3.2 Overlay Network

Each node maintains a set of links to other nodes (its neighbors or routing table).

Together these form the overlay network, and are picked in a structured way, called the

network's topology. All DHT topologies share some variant of the most essential

property: for any key k, the node either owns k or has a link to a node that is closer to k in

terms of the key space distance defined above. To route a message to the owner of any

key k, forward the message to the neighbor whose ID is closest to k. When there is no

such neighbor, then we must have arrived at the closest node, which is the owner of k. It

is better if the maximum number of hops in any route (route length) is low, so that

requests complete quickly; and that the maximum number of neighbors of any node

(maximum node degree) is low, so that maintenance overhead is not excessive. In the

world of decentralization, distributed hash tables (DHTs) recently have had a

22

revolutionary effect. Knowledge of DHT algorithms is going to be a key ingredient in

future developments of distributed applications.

3.2 Literature

There has been a lot of research work dealing with DHT. Following are some of the

recent DHTs that have been proposed as a platform for building a variety of scalable and

robust distributed applications.

File sharing is to grant access of files and information to others through computers and

networks. Napster pioneered the concept of peer-to-peer sharing system [12]. It

introduced a technique for peer-to-peer file sharing in decentralized systems. It was an

online music file sharing service created by Shawn Fanning and operating between June

1999 [2] and July 2001 while he was attending Northeastern University in Boston. It

allowed music fans to share MP3 format song files with each other. The system used a

central database system to process and store musical resources. Napster was accused by

the music industries of massive copyright violations. The original service was shut down

by court order.

Gnutella [12], is a popular file sharing system feasibly established today as a third largest

peer-to-peer file sharing system. The main feature of Gnutella is that, users put the files

they want to share on their hard disks and make them available to others in the network.

There is no central database that possesses all the resources available on the network.

Instead, the machines on the network tell each other about available files using a

distributed query approach. To participate in the Gnutella network, users run a piece of

Gnutella software. Also, there are many different client applications available to access

the Gnutella network. Gnutella network is an unscalable distributed system [3], and hence

inspires the development of distributed hash tables, which are much more scalable but

support only exact-match, rather than keyword, search.

23

Chord [4] is a distributed lookup protocol that efficiently locates the node that stores a

particular data item. Chord uses a one-dimensional circular keyspace. The node

responsible for the key is the node whose identifier most closely follows the key; that

node is called the key’s successor. Chord maintains two sets of neighbors. Each node has

a successor list of nodes that immediately follow it in the keyspace. Routing correctness

is achieved with these lists. Routing efficiency is achieved with the finger list of nodes

spaced exponentially around the key space. Routing consists of forwarding to the node

closest to the key; path lengths are hops.

In Pastry [5], nodes are responsible for keys that are the closest with the keyspace

considered as a circle. The neighbors consist of a Leaf Set, which is the set of closest

nodes. Correct routing can be achieved with this leaf set. Routing consists of forwarding

the query to the neighboring node that has the longest shared prefix with the key (and, in

the case of ties, to the node with identifier closest numerically to the key). Pastry has

neighbors and routes within hops.

CAN (Content Addressable Network) [7] choose its keys from a d–dimensional toroidal

space. Each node is associated with a hyper-cubal region of this key space, and its

neighbors are the nodes that “own” the contiguous hypercubes. Routing consists of

forwarding to a neighbor that is closer to the key. CAN has a different performance

profile than the other algorithms; nodes have neighbors and path-lengths are hops. Note,

however, that when, CAN has neighbors and path-lengths like the other algorithms.

Tapestry [11], to address the problems of the first generation of peer-to-peer applications,

a second generation of p2p applications was developed. This includes Tapestry. It also

implements a basic key-based routing mechanism. This allows for deterministic routing

of messages and adaptation to node failures in the overlay network. Tapestry is an

extensible infrastructure that provides decentralized object location and routing focusing

on efficiency and minimizing message latency. This is achieved since Tapestry constructs

locally optimal routing tables from initialization and maintains them in order to reduce

routing stretch. Furthermore, Tapestry allows object distribution determination according

24

to the needs of a given application. Tapestry also allows applications to implement

multicasting in the overlay network.

However, all the above approaches have been designed for the Internet, Ad Hoc

networks, and peer-to-peer networks. These networks have either a static topologies (like

in peer-to-peer network) or have totally dynamic network (ad hoc networks). DHTs like

Chord, Pastry, and CAN were developed with the idea of providing data centric overlays.

In this dissertation, a concept of DHT has been tried to be deployed over a cellular

mobile network in which base stations are fixed whereas mobile nodes continually

change their position.

Some additional literature on mobile collaboration goes as follows.

MoCA [16], mobile collaboration architecture is a middleware for developing and

deploying context aware mobile collaborative applications for mobile users. It addresses

the problem of capturing and processing users’ queries. It comprises of client server

model as in mobile databases with an addition of collaborative layer.

A MOTION [8] service architecture is architecture for mobile teamwork [9]. In this

architecture, peers can interact with each other either by passing message or using pub-

sub system. It also supports distributed searches.

3.3 DHT Design – Our Approach

A cellular network can be visualized as a distributed system of mobile peers with some

special static nodes that are connected to a high-speed reliable network [6]. In this design

of DHT, the base stations are considered to be the nodes, which acquire the distributed

indices like structure. Each cell in a cellular network has its controlling base station and

each base station controls a set of mobile devices under its range. Each of these mobile

devices has a list of records of interest. The owner may create an index on some of the

fields. Each node (i.e. base station) has a bucket containing a list of tuples of the form

25

<value, key, mobile_id>. Here, the key is the value of a field of a record to be searched.

The value is the hash value of the key, the mobile_id being the identifier of the mobile

which consists of the record with the given key. Using this tuple, the desired record could

be reached. The collection of these buckets form the distributed index. As has been

discussed earlier, in a cellular mobile network, there are two types of topologies. One is

the network of the mobile devices, and another is the network of base stations. The

topology of the base station is constant and seldom changes. While the topology of

mobile devices changes constantly due to the continual movement of the mobile devices.

Hence, a host centric approach to distributed applications over a cellular mobile network

becomes very aggravating, time consuming and complicated. This is because the hosts of

the data/ records are the mobile nodes and it becomes highly inefficient to maintain

dynamic host centric routing tables that need to be updated with every change in the

topology of mobile device. Guarantee cannot be given about the validity of these routing

tables. Moreover, it will be time consuming and expensive – in the sense that - point – to

– point connection becomes necessary to search and find the required data until it is

found in one particular hosting node. Therefore, we consider a data centric networking

approach over this network.

The DHT is comprised of various components. They have been discussed in the

following sections.

3.3.1 Keyspace Partitioning Scheme

The key space consists of two sets of keys; one of them is the set of keys of nodes and the

other is the set of keys of records. Each node is assigned a single unique key called its

identifier (or node id). This key is hashed to produce a value. This value is the part of the

key space and used to uniquely identify the node in the key space. In this DHT, SHA-1

[14] has been used to produce a 160-bit identifier space represented by a 40 digit hex key.

Similarly, the values of the key field of all records are also hashed into a 160-bit value

and identifies the record tuples, such node-hashes (node identifiers) and the record-key-

26

hashes (record identifiers), combinely, form the key space. See Figure: 3.1. These

identifiers are evenly distributed in the overlay network with each node storing several

different identifiers.

The key space partitioning scheme splits the ownership of this key space among the

participating nodes in such a way that a node with an id x has all the keys for which x is

the closest id. The node ids are considered to be points on a circle. The circular key space

is split into contiguous segments whose end points are the node ids. If i1 and i2 are the

two adjacent ids, then the node with ID i2 owns all the keys that fall between i1 and i2.

See Figure 3.2.

Here, since the base stations are the nodes, it is assumed that the frequency of addition

and removal of the nodes is null. So, the node addition, removal and their effects would

not be dealt with.

Figure 3.1: Key space

Once, the keys are partitioned, the overlay network connects the nodes. The owner of any

given key in the key space can then be found out.

Figure 3.2: Key space Partitioning

Set of record keys
Set of node ids

Node-hashes

+

Record_key-hashes

=

Key space

hashed
hashed

Node_i1

Node_i2

All keys

between i1 and

i2 fall in i2,

including i2

27

3.3.2 Overlay Network

The overlay network allows mapping keys onto corresponding nodes. It has been

assumed that the nodes (or base station) of the cellular network are arranged in a ring.

That is, each base station is connected to the other two base stations, one being a previous

node and the other being the following node.

The node identifier is arranged in certain order (eg. ascending order clockwise). If a node

n is the current node and there is a destination node id, it is decided whether to go to the

following node or the proceeding node to the reach the destination node.

Figure 3.3: Arrangement of Nodes in a ring. Each node is connected to the two other

nodes.

For example, if the destination node id 5, and the current node is 2 (which is less than 5),

then the proceeding direction is forward clockwise rather than backward anticlockwise. It

is possible to reach the destination node from backwards too, since the nodes are

arranged in a ring but the distance is long. The direction of the move should be carefully

decided accordingly such that the cost is minimum and less time is spent to reach the

destination.

In this scheme, the maximum number of hops, in the worst case, to reach the destination

node is n/2. Here, n is the number of nodes. The time complexity is linear i.e. O(n). This

seems to be a somewhat inefficient. However, the efficiency can be improved by

modifying the network topology itself, by increasing the number of neighbors, i.e.

28

increasing the degree of nodes. Again, if the degree is larger, the maintenance overhead

may be excessive.

3.3.3 Bucket Management

All cells in the cellular network have a base station each. Each base station communicates

with and controls all the mobile nodes under its range. Each base station consists of a

bucket in it, see figure 1.3 and 1.4. The bucket consists of a list of tuples in the form

<value, key, mobile_id>. Here, key is the key of the record to be searched. The value is

the corresponding hash value of the key, which would map us to the mobile_id where the

actual record of the key resides.

3.3.3.1 Addition of record

When a mobile phone wants to share its records with other nodes in the network, it

registers the key of the records to its base station. During the registration it sends the keys

to the base station. The base station hashes the key using hash function to produce a

corresponding hash value, and finds where the tuple for the particular records should be

stored. This is done by comparing the hash value (hash_rec) with the hash value of the

nodes (hash_id). If h1 is the hash of the record key, a node with its node_id’s hash h2

should be found such that h2>=h1.

A list of base station identifiers and their corresponding hash value is maintained. The list

is sorted in ascending order on the basis of hash value. This is because, in the network

overlay, the order of the base stations in the ring is arranged according to the order of the

hash value. The hash values are considered as the identifiers of the base stations in this

network. To compare and find out the corresponding base station for a given key, a

search similar to a binary search is be used. The searching process work as follows.

o If the hash value (hk) of key (k) is less than or equal to the hash (identifier) of the

first base station, then hk lies in that base station.

29

o Similarly, if the hash value (hk) of key (k) is greater than the last base station in

the list, then hk lies in this base station.

o Else, the hash (hk) of key (k) is compared to check if it lies between the two base

stations (m1 and m2) that lie near the middle position among the base stations in

the list.

- If the hk > m1 and also hk<=m2 , the hk belongs to the base station m2.

- If hk <=m1, search is carried out in the sublist consisting of the base stations

starting from low + 1 upto mid1.

- If hk> m2, search is carried out in the sublist consisting of the base stations

starting from mid2+1 upto high. Here, low is the position of the first base

station in the list/ sublist of interest; while high is the position of the last base

station.

After finding out the node, which should own the tuple for the record with the given key,

the tuple <hash value, key, id of the requesting mobile> can be routed to that node (base

station), using an efficient routing method. When the tuple is routed and dropped in the

corresponding node, it is stored in its bucket. The arrangement of the stored tuple may be

ordered or unordered. Whatever the arrangement method might be, the tuples maps the

hash value to the mobile node_id. In the simulation, the undordered list of records has

been used. The tuples would be appended at the end. In this case, when one searches for a

particular tuple, sequential search is performed. But sequential search has searching

complexity of O(n).

For improved efficiency, searching algorithm and efficient data structures could be used.

One method could be sorting the tuples in ascending or descending order of the hash

values, and applying binary search. This way, the searching complexity would reduce to

O(log n).

30

Another method could be indexing using B Trees. B-Tree could be used if the number of

record-tuple is too large and wish to store and retrieve them in a disk file rather than

internal memory. B-Tree helps to minimize the number of disk accesses. The upper

bound searching time complexity or the number of disk accesses in B-tree of order M

with N keys is given by (1 + log [M/2] (N/2)).

3.3.3.2 Retrieval of record

When any mobile device user wants to search for information, she sends a query to her

base station. The query includes a record key. When the base station receives this request,

the key is hashed into a hash value. If the value matches its own id’s hash value, it will

search its own bucket. Else, the hash value is compared to find out the base station where

the corresponding mapping tuple for the given key resides. This is again done using the

above searching scheme. It will pass on the request to this base station. Once a base

station finds out that the key’s hash is in its bucket, it searches its bucket and finds the

corresponding mobile device id from the list of <value, key, mobile_id>. When the

mobile_id is found, it returns this id to the requesting base station. The base station then

obtains the required record from this mobile id, by sending a request to the base station

that is controlling this mobile. On the other hand, the later base station communicates

with this mobile to get the record. A series of communication between intermediate base

stations may be necessary to return the required record to the requesting base station. The

routing of the message and the record is done, again, using the routing method. When the

requesting base station gets the record, it is sent to the requesting node, which is under its

range.

3.3.4 Hashing

SHA 1, acronym of Secure Hash Algorithm, is a cryptographic hash function. It generates

an almost-unique 160-bit (20-byte) signature for a text. It is a ‘one-way’ cryptographic

function, and is a fixed size for any size of source text. This makes it suitable when it is

31

appropriate to compare ‘hashed’ versions of texts. SHA-1 is one of the most secure hash

algorithms, and has been used in many security applications and protocols.

32

CHAPTER 4

DESIGN AND IMPLEMENTATION OF SIMULATOR

4.1 Discrete Event Simulation

4.1.1 Simulation

It is a technique to imitate the behaviors or operations of various kinds of real world

facilities or process. The process or facility of interest is generally called a system.

Simulation is a fast and relatively inexpensive method of doing an experiment on a

system to produce the basis for making some decision regarding the system’s alteration -

the decision being based on the results of the simulation. Certain parameters and

components of the system to be studied are gathered. Then a model of the system is built

in such a way that the model satisfies the required specifications of the system. The

system’s performance is predicted from the knowledge of the model’s behavior. If the

predicted performance compares favorably with the desired performance, the designed

model is accepted. Else the system is redesigned and the process is repeated. Hence,

simulation is done and used before an existing system is altered or a new system is built,

to reduce

- the chances of failure to meet specification

- to eliminate unforeseen bottlenecks

- to prevent under or over utilization of resources

- to optimize system

4.1.2 Basic System-Concepts

A system exists and operated in time and space. It is bounded inside a system boundary.

A system may often be affected by changes occurring in the system environment.

Alternatively, some changes inside the system may also affect the system environment

and not the system itself. In a system, there are certain distinct entities (or objects), each

of which possesses attributes (or properties) of interest. The description of all the entities

and their corresponding attributes comprises the state of the system. The entities interact

33

with each other causing some changes in the description of the entities, attributes. Such

processes or interaction that occurs at a point in time, which may change the system state,

are called activities or events. The approach of simulation depends on the type of the

system to be studied. A system is called a discrete system if the state variables in the

system changes instantaneously at separate points of time. That is, the changes in the

system are predominantly discontinuous. To simulate such systems, a technique called

Discrete Event Simulation may be used.

4.1.3 Components of Discrete Event Simulation

In discrete event simulation, the system activities are represented as a chronological

sequence of events. Each event occurs at an instant of time. The event causes change in

the system state. In addition to the representation of system state variables and the logic

of what happens when system events occur, discrete event simulations include the

following components:

Clock

A number referred to as a clock time tracks the passage of time during simulation. The

clock time is zero at the beginning of the simulation. The value of the clock time skips or

hops to the next event start time as the simulation proceeds. Hence, the clock indicates

the units of elapsed simulation time. The measurement units may be specified in the way

that is suitable for the system being modeled. The discrete event simulation’s purpose is

to study a complex system by computing the times that would be associated with real

events. There are basically two ways to update the time.

- In a method called event-oriented method, clock is advanced to the time at

which the next event is due to occur. The system does not wait for the delays

between events to occur in the real time.

- A second method is called an interval-oriented method. Here, the clock is

advanced by small intervals of time and at each interval it is determined

whether an event is due to occur at that time interval.

34

Event Notice and Event List

It is a record of an event to occur at the current or some future time, along with any

associated data necessary to execute the event. Event list is a list of event notices for

future events, ordered by the time of occurrence. The simulation maintains at least one

list of simulation events. An event must have a start time, some kind of code that

constitutes the performance of the event itself, and possibly an end time. In some

approaches, there are separate lists for current and future events. Events in their lists are

sorted by event start time. Typically, events are bootstrapped – that is, they are

scheduled dynamically as the simulation proceeds. In other words, bootstrapping is the

process in which an ongoing event schedules another event to occur in some future

simulation time.

Ending Condition

A discrete event simulation can be said to run forever since the events are bootstrapped.

Therefore, the end of the simulation must be decided in advance. Common method to

identify an end condition are - “at time t” or “after processing n number of events” or,

more generally, “when statistical measure X reaches the value x”.

Random Number Generators

The simulation needs to generate random variables of various kinds, depending on the

system model. A random variable is a quantity that is uncertain or which cannot be

predicted. The generation of such quantity is accomplished by one or more

pseudorandom number generators.

Statistics

During the course of simulation, it is necessary to keep track of the system's statistics.

The statistics quantify the aspects of interest. The exact statistics required for a model

depends upon the analysis being performed. Some of the common statistics are counts (a

quantity giving the number of entities of some type or a number of times some event

occurred etc), Utilization (a quantity which defines the fraction of the time some entity is

35

engaged), occupancy (a quantity which defines the fraction of a group of entities in use

on the average) etcetera.

4.1.4 Execution Mechanism of discrete event simulation

A discrete-event simulation executes as follows :

Start

• Initialize Ending Condition to FALSE.

• Initialize system state variables.

• Initialize Clock (usually starts at simulation time zero).

• Schedule an initial event (i.e., put some initial event into the Events List).

Loop until ending condition is FALSE, do the following

• Set clock to next event time.

• Do next event and remove from the Events List.

• Update statistics.

End the simulation

• Generate statistical report.

4.2 Simulation of DHT

A cellular network simulator has been implemented to simulate the above discussed

distributed hash table. The simulation is based on the concepts of discrete event

simulation. With regards to the searching algorithms within each bucket, the above-

mentioned search algorithms have not been applied; instead a sequential search has been

use. Much concept has been borrowed from a simulator called ASSET, Ad hoc System

Simulator and Enhancement Testbed, a result of a project at iiit-b, India. ASSET was

designed with an aim to provide a Simulator for ad hoc systems where one can simulate a

network and test new protocols. ASSET simulates the creation of nodes in an ad hoc

network, movement of these nodes and positioning of the nodes. The system calculates

the position of the nodes based on real and virtual co-ordinates and verifies the error

36

factor. Such properties of ASSET have been incorporated in this DHT simulation to

simulate the creation, movement and location of mobile nodes.

The code for the simulator has been written in an objected oriented programming

language JAVA.

The class diagram along with the descriptions of their major functions (methods) that has

been built is as follows.

4.2.1 Class Description

1. Simulator

The simulation execution begins here. It consists of an object of Configurator

class. It initiates the enqueing of events in the event queue.

Important attributes:

o nodespace : object of type Space

o ConfObj : object of type Configurator

o dhtObj : object of type DHT

o EventQ : a linked list of the events occuring in the cellular network

o Localtime: the timestamp

Important method details

o Simulator (Space s, Configurator co) : it sets nodespace = s and

ConfObj = co

o Run () : it sets the localtime = timestamp for the next event in the

Event queue and then executes that event by calling the happen()

method

o addEvent(Event e): Adds an event to EventQ in its place iff its time

stamp is below timelimit

o main(String args[]) does the following :

37

creates objects for configurator , space , simulator . The simulation

starts with the command ‘start’. The node creation event is added to

the event queue. If number of nodes is specified then the node creation

events will be enqued to the event queue .The number of events

depends on the number of nodes specified or the udensity factor. The

simulation stops at the time = timelimit (parameter set in the

Configurator class). To stop the simulation before this time issue the

command 'quit' may be used.

2. Configurator

It configures various parameters (such as number of nodes, time limit, radius,

udensity, space size etcetera) for the simulation. The configurations decide the

behaviour of the system. The parameters are fed in the form of a file - The

Configurator file where the values for each parameter are stored beforehand.

3. Space

This is the cellular network space. This is the entire bounded space where the

cellular network system is simulated. The space has collection of mobile

devices (represented by Node class). The space is divided into cells or

Chunks. Each chunk has a fixed BaseStation.

Important attributes are:

o xmin , ymin , xmax , ymax : The coordinates which bound the space

under consideration.

o Nodelist : a linked list of all the nodes in the space

o Chunklist : a linked list of the chunks in the space

o ConfObj : an object of type Configurator

o bsList : a linked list of base stations

o TotalBS : integer variable that stores the number of basestation

38

Important methods

o Space(Configurator co) : It makes a linked list of chunks.Their ids

vary from 0 till n-1 , where n depends on the following parameters.

The boundaries of the space (xmin,ymin) and (xmax,ymax) and the

chunksize. All these parameters are obtained with the help of the the

object co.

o int determinechunk(int x, int y) : For the node located at position (x,y)

, the method returns the id of the chunk to which the node belongs to.

This calculation depends on the node's position, the chunksize and the

boundary of the space.

4. Chunk

These are the partitions made in the Space. They are square regions of size =

chunksize * chunksize, chunksize = radius. Each chunk consists of a Base

Station. To ease the implementation, the base station id and the chunk id have

been made same.

Its attributes:

o num : Gives the chunk number.

o LinkedList Nodelist : It is a linked list of all the nodes included in the

chunk.

An important method:

o int getnum() : returns the chunk number

5. Node

The node class represents mobile device. Node has position, unique id,

network id. Each Node knows about its immediate neighbors and even knows

their location. Each Node maintains a list of its neighbor nodes.

Some method details :

o int getx() : It returns the x coordinate of the node

39

o int gety() : It returns the y coordinate of the node

o int getid() : It returns the Node id.

o addConfigurator(Configurator co) : It sets the ConfObj = co

o int getchunk() : It returns the chunk

o int getnetid() : It returns the Node’s network id 'nid'

o int getBS() : It returns the base station id of the node

6. Event

It stands for any event happening in the space. Node creation, Node

movement, Record addition, Record retrieval is all events.

Its attributes

o timestamp : the time at which an event occurs since the starting of the

simulator.

Some method details:

o Event() : It instantiates the Event class

o Event(int ts) : sets the timestamp = ts

o int gettimestamp() : It returns the timestamp of the event

o settimestamp(int ts) : It sets the timestamp = ts

o abstract void happen() : an abstact method .It will be overridden in all

the other classes that inherit the Event class.

7. NodeCreation

This is an event that creates a new node in the space.

Its attributes are as follows:

o SimObj : an object of type Simulator

o nodespace : an object of type Space

o n : an object of type node

o dh : an object of type DHT

o ConfObj : an object of type Configurator

o x , y : coordinates of the node which has to be created

40

Some important method details

o happen() : It will create a node by calling an appropriate constructor

of the node class. It then finds out the neighbour list of the node. It

then adds node movement event at timestamp = timestamp + mf.

Similarly, the AddRecord event and the RetrieveRecord event are also

added at timestamp= timestamp + constant. All of these events are

added in the event queue of the Simulator by calling the method

SimObj.addEvent(event).

o createFile(): A file is created which stores the records of interest

belonging to that particular node.

8. NodeMove

This is an event that relocates a node from one position to another.

Its attributes:

o SimObj : an object of type Simulator

o nodespace : an object of type space

o n : an object of type node

o ConfObj : an object of type Configurator

Method

o happen() : It relocates the node by calling the method relocate() with the

help of the object nodespace. It recomputes node's neighbours and

displays them. It then creates a new object of the type NodeMoveEvent

and adds it to the event queue using the object SimObj.

9. AddRecordEvent

This event registers a new record in the network such that it is accessible to the

other members in the network. A node with a new record initiates this event to

add the tuple <hash_value of record key, record_key, node_id> in the distributed

hash table. A text file called “CommonText.txt” has been used to pick an arbitrary

record as a key, since we don’t have facility for users to give an input key.

41

Important attributes included are as follows:

o ndespace : object of type space

o node : object of type node

o buck : object of type bucket

o dht : object of type dht

o SimObj : object of type Simulator

 Methods included are as follows:

o addRecordEvent : Initializes the objects nodespace , node, dht and SimObj.

o happen : simulates the addition of new record in a mobile device, its registration

in the basestation. It then calls the function called register() which registers new

key in base station. Finally, it adds a new AddRecordEvent in the event queue.

o register: It takes a key and record as an input. The key is hashed to find the

corresponding base station to store the tuple <value, key, node id>. Once base

station is found, it stores the tuple in the bucket of that base station.

mobile_node Text File DHT Bucket File

Read Name and Contact No.

Hash the name to get its hash value

Find BaseStation/Bucket where the
hashing tuple should reside

write hash of name, name and mobile node_id in the bucket file

Write name and contact number in node text file

Cadifra Evaluation
www.cadifra.com

Figure 4.1: Data addition

42

10. Retrieve Record Event: It retrieves the existing record from a node (mobile

device) and returns it to the mobile device requesting it.

Included important attributes are as follows:

o node: Object of type node

o s : Object of type Space

o dht : Object of type DHT

o SimObj : Object of type Simulator

 Some major methods:

o retrieveRecordEvent : initializes s, node, dht and SimObj

o routeString: It takes destination basestation and string to be routed (i.e. the

requested record) as an argument, then routes the string to the destination

base station using the routing algorithm discussed above. It then calls the

writeDestNode function to write the record in the destination node.

o writeInDestNode: It takes the string (requested record) as an argument and

writes it to the destination mobile node (the requesting mobile).

o readString: finds, reads and returns the required record

o getSrcNodeId(int bs,String recdName): It searches and returns the id of

the mobile node where the requested record resides.

o find_buck: It takes a key of a record as an input, hashes it, finds the

corresponding base station that stores the tuple <value, key, node id> for a

given record key. It then returns the hash_id of that basestation.

43

o happen : The happen function directly or indirectly calls all the above

function in order to retrieve a record from a source node and return it to

the requesting node. The sequence diagram of its flow is as follows:

mobile_node Text File DHT Bucket File

Read Name .

Hash the name to get its hash value

Find BaseStation/Bucket where the hashing tuple resides

read the name, contact no. from the text file of source node id

read mobile node id from the hash tuple in the bucket file

Route the name and contact no.
to the requesting mobile node

Cadifra Evaluation
www.cadifra.com

Figure 4.2: Data retrieval

11. Bucket Class

A bucket class keeps the list of tuples <value, key, node_id> where value is the

hash value of a record key, key is the record key and node_id is the identifier of

the mobile device which consists of the actual record of the key. The size of the

bucket is not fixed. The newly registered record-tuple is appended at the end of

the tuple-list. Each bucket has a file to store this list of tuples.

Some important attributes:

o bucket_id : an integer that uniquely identifies a bucket. This value equals

to the base station to which the bucket belongs.

44

Important methods included in this class are as follows:

o createFile : This takes basestation identifier, say i , as an argument. Then it

creates a file for the bucket belonging to base station with id i.

o addtoBucket : It takes record string and bucket id, say i as an argument. It,

then, appends the record string at the end of the file belonging to the

bucket with id i.

12. DHT Class

It consists of a functions, which, simply, takes a key and hashes it to return the

value of the key. These functions would be used for both registering new records

as well as retrieving records. For hashing purpose, SHA-1 hashing algorithm has

been used. So the output value will be a 16-bit string.

Some attributes included:

o nodespace : Object of type Space

o name : a string to be hashed

o bucketid : an integer type data to store bucket identifier

o bslist[][] : an array of base station id along with their hash_id

o totalbs : an integer to store number of base stations

Some important methods included in this class are as follows:

o DHT : It’s a constructor where member variables are initialized. It

initializes the bsList [][] by reading the ids of all the basestation and

converting them to their corresponding hash_id. The pair (hash_id , id) are

stored in this list and the list is sorted in the ascending order of hash_id.

o hashKey : It takes a string as an argument and hashes it to produce a 16-bit

string hash value. This value returned after converting into an integer.

45

o getHashValue: It again takes a string as an argument and hashes it to

produce a 16 bit string hash value. It returns this value without converting

it to an integer.

o hashBS: It takes an integer (base station identifier) as an argument and

hashes it to produce a 16-bit string hash value. This value returned after

converting into an integer.

o find_successor: It takes a “key” as an input and calls bsrch function to get

a successor’s id of the input “key”.

o bsrch: It takes key, lower bound, upper bound of bsList array in argument.

It finds the successor of the key and returns it using the algorithm

discussed in section 3.3.3.1.

o getPos: It takes base station hash id as an input and returns its position

(index) in bsList[][] if it exist, -1 otherwise.

o getId : It takes base station hash id as an input and returns its

corresponding id if it exist, -1 otherwise.

13. The Base Station(BS) Class

Its data members includes

o bs_id: identifier which is equal to its chunk id

o bs_range: its range which is equal to the chunksize

o buck: Object of type bucket

o ConfObj: Objects of Configurator classs

46

Various functions of this class includes

o BaseStation: initializes bs_id to n, bs_range to the chunksize and creates

file for this particular basestation’s bucket by calling createFile() function

of the bucket class..

4.3 The class diagram

Figure 4.3: Class Diagram

47

CHAPTER 5

CASE-STUDY

5.1 Simulation Run

The simulation is done for one of the application mentioned above, i.e. the address book

application.

The simulation starts with the creation of 2D node space of the specified dimension. The

space is partitioned into number of cells with a specified radius and basestation in each

cell. A record file is also created along with the base stations to store hashing-tuples. The

simulation runs until the user quits from the simulation.

Once the base stations are created, the DHT is created which consists of a record of all

the base stations' identifier and their corresponding hash identifiers too.

Users can specify number of mobile nodes using a parameter called numnodes, which is

the number of mobile nodes that have to be created with a normal distribution around the

center of the node space.

The simulation is a discrete event simulation, hence it is event driven. The first event

added in the event queue is a node creation event which creates new mobile node. This

event bootstraps other events like node movement event, add record event and retrieve

record event which again adds new events in the event queue. The events occur

periodically.

48

5.2 Output

Some of the views of output of this simulation are as follows:

Starting output : Creation of BaseStation (Nodes) and DHT
Welcome to the prototype version of SIMULATION of DHT

BS created with an id : 0
BS Range : 5
Bucket Created - filename: Bucket0.txt
BS created with an id : 1
BS Range : 5
Bucket Created - filename: Bucket1.txt

BS created with an id : 2
BS Range : 5
Bucket Created - filename: Bucket2.txt

BS created with an id : 3
BS Range : 5
Bucket Created - filename: Bucket3.txt

BS created with an id : 4
BS Range : 5
Bucket Created - filename: Bucket4.txt

BS created with an id : 5
BS Range : 5
Bucket Created - filename: Bucket5.txt

BS created with an id : 6
BS Range : 5
Bucket Created - filename: Bucket6.txt

BS created with an id : 7
BS Range : 5
Bucket Created - filename: Bucket7.txt

BS created with an id : 15
BS Range : 5
Bucket Created - filename: Bucket15.txt

Sorted List of basestaion hash_ids with corresponding ids created
Hash_id Id

12 0
18 15
31 8
59 14
75 11
84 12
120 6
122 4
151 9

49

171 1
176 2
187 3
196 5
218 7
229 10
244 13
node#> start with numnodes

Creation of Mobile Nodes
Base station for node 8 is 10

0: Created a new node with id = 8and cordinates = (0, 0) and chunk = 10

0: Neighbours(8) = {0, 1, 2, 3, 4, 5, 6, 7}

Record File created: NodeFile8.txt

AddRecord Event added in the event queue.

RetrieveRecord Event added in event queue.

Base station for node 9 is 10

0: Created a new node with id = 9and cordinates = (0, 0) and chunk = 10

0: Neighbours(9) = {0, 1, 2, 3, 4, 5, 6, 7, 8}

Record File created: NodeFile9.txt

AddRecord Event added in the event queue.

RetrieveRecord Event added in event queue.

Base station for node 10 is 5

0: Created a new node with id = 10and cordinates = (-3, -3) and chunk =

5

0: Neighbours(10) = {}

Record File created: NodeFile10.txt

AddRecord Event added in the event queue.

RetrieveRecord Event added in event queue.

Base station for node 11 is 5

0: Created a new node with id = 11and cordinates = (-2, -3) and chunk =

5

0: Neighbours(11) = {10}

Record File created: NodeFile11.txt

AddRecord Event added in the event queue.

RetrieveRecord Event added in event queue.

50

Registering new record

Event to add new record in a DHT

The hash value for key "Anil" is 181

Successor Found!! Successor of key 181 is the bs 187

Record has been registered.

New AddRecord Event added in the event queue.

Event to add new record in a DHT

The hash value for key "Achyut" is 218

Successor Found!! Successor of key 218 is the bs 218

Record has been registered.

New AddRecord Event added in the event queue.

Retrieving Existing Record

This event retrieves record

The hash value for key Anil is 181

Successor Found!! Successor of key 181 is the bs 187

String to retrieve Anil is in base station with hash_id 187, its id is

3

The retrieve event has been generated by node 9 whose basestation is

10, basestation hash_id is 229

****Record of Anil found in the node 35.****

Destination BS reached.

Anil 5544259 added in destination NodeFile 9.txt

New RetrieveRecord Event added in event queue.

This event retrieves record

The hash value for key Achyut is 218

Successor Found!! Successor of key 218 is the bs 218

String to retrieve Achyut is in base station with hash_id 218, its id

is 7

The retrieve event has been generated by node 2 whose basestation is

10, basestation hash_id is 229

****Record of Achyut found in the node 1.****

51

Destination BS reached.

Achyut 9841253534 added in destination NodeFile 2.txt

New RetrieveRecord Event added in event queue.

This event retrieves record

The hash value for key Kabindra is 173

Successor Found!! Successor of key 173 is the bs 176

String to retrieve Kabindra is in base station with hash_id 176, its id

is 2

The retrieve event has been generated by node 59 whose basestation is

1, basestation hash_id is 171

No record available

New RetrieveRecord Event added in event queue.

Base Station Bucket File
Mukunda 206 22

Achyut 218 29

Pushpa 210 35

Rajiv 232 31

Kamal 253 42

Mobile Node File
Bhaskar 9841342145

Anil 5544259

Rashmi 4427793

Dinesh 9841355340

Achyut 9841253534

Mukunda 4222222

52

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this dissertation, a distributed indexing mechanism for a cellular network has been

presented. The indexing method being hash table, and the distribution being the division

of the hash table into parts and placing them at different nodes that are the members of

cellular network. The work was focused on building a data centric search of records. A

mobile finds the needed records stored in one of the devices within a group/network,

without getting connected to them one by one. Thus, the concept of data centric search

was achieved.

However, many issues are there which are still remained to be addressed. Some of them

are briefly discussed below.

The storage structure, record structures or schema of the actual records stored in the

mobile devices have not been dealt with. If the data are supposed to be shared, it is

important to have common schema, or else proper interface becomes necessary.

Similarly, there must be a common method/syntax of querying. Also different field in a

record should be able to act like a key rather than a single field.

Different copies of same record may be available in the network. There must be a

mechanism to maintain the consistency of such redundant data.

Security issue has not been worked out. Also the practical issues regarding the system

have not been worked out and are still left to be studied.

53

 REFERENCES

[1] Sanket Patil, Srinath Srinivasa. A Data centric Abstraction Middleware

for Mobile Networks. International Institute of Information Technology

– Banglore, India, 2006.

[2] Napster's High and Low Notes - Businessweek - August 14, 2000

[3] http:// www.gnutella.com

[4] Ion Stoica, Robert Morris, David Karger, M.Frans Kaashoek, Hari

Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Services for

Internet Applications. August 2001.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object

location and routing for large-scale peer-to-peer systems. November

2001.

[6] Sanket Patil, Srinath Srinivasa, Shrisha Rao. Distributed Garbage

Detection of Replicated Objects in Mobile Networks. A Technical

Report. International Institute of Information Technology – Banglore,

India. May 29, 2006.

[7] Sylvia Ratnasamy, Paul Trancis, Mark Handley, Richard Karp, Scott

Shenker. A Scalable Content Addressable Network. In proceedings of

ACM SIGCOMM. 2001.

[8] Egin Kirda, Pascal Renkam, Gerald Reif, Herald Gall. A Service

Architecture for Mobile Teamwork. In Proceedings of DEKE, 2002.

54

[9] G. Reif, E. Kirda, H. Gall, G.P. Picco, G. Cugola, and P. Fenkam. A

Web-based peer-to-peer architecture for collaborative nomadic working.

In Proceedings of the 10th IEEE Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises (WETICE), Boston, MA,

USA. IEEE Computer Society Press, June 2001.

[10] Scott Shenkar. The Data-Centric Revolution in Networking. Proceedings

of the International Conference on Very Large Database, 2003.

[11] http://pdos.csail.mit.edu/~strib/docs/tapestry/tapestry_jsac03.pdf

[12] http:// computer.howstuffworks.com/ file-sharing1.htm

[13] http://www.devx.com/architect/Article/34158/0/page/2

[14] http://www.itl.nist.gov/fipspubs/fip180-1.htm

[15] Sanket Patil. Localization and Garbage Collection in Ad Hoc Networks.

Master’s Dissertation, International Institute of Information Technology

– Banglore, India. June 2005.

[16] Vagner Sacramento, Markus Endler, Hana K, Rubinsztejn, Luciana S.

Lima, Kleder Goncalves, Fernando N. Nascimento, Giulliano A. Dueno.

MoCA: A middleware for developinig Collaborative Application for

Mobile Users. IEEE Distributed System. Online October 2004 Vol.5

No.10.

BIBLIOGRAPHY

1. William Stallings. Principles of Cellular Network in Wireless

55

Communication and Networking,. Isbn: 81-203-2386-6, Eastern

Economy Edition, Prentice-Hall Pvt.Ltd India.

2. Theodore S. Rappaport. Wireless Communication Principles and

Practice. Second Edition. Prentice-Hall Pvt.Ltd India.

3 Narsingh Deo. System Simulation with Digital Computer. Isbn: 81-203-

0028-9, Prentice-Hall Pvt.Ltd India.

4 Goeffrey Gordan. Discrete System Simulation in System Simulation.

Isbn: 81-203-0140-4, Second Edition, Prentice-Hall Pvt.Ltd India.

5 Remez Elmasri, Shamkant B. Navathe. Fundamentals of Database

Systems, Fourth Edition.

6 http:// www.gnutella.com

7 http:// www.napster.com

8 Himabindu Pucha, Saumitra M. Das and Y. Charlie Hu. Poster. How to

Implement DHT in Mobile Ad Hoc Networks? August 2004.

9 Sylvia Ratnasamy, Scott Shenker, Ion Stoica. Routing Algorithms for

DHTs: Some Open Questions. 2002.

10 Frank Dabek. A Distributed Hash Table. Massachusetts Institute of

Technology. September 2005.

