

TRIBHUVAN UNIVERSITY
INSTITUTE OF SCIENCE AND TECHNOLOGY

CENTRAL DEPARTMENT OF COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY

KIRTIPUR, KATHMANDU
NEPAL

SYMMETRIC ENCRYPTION ALGORITHM USING
CODE REUSE TECHNIQUE FOR AUTHENTICATION
BASED ON NEEDHAM SCHROEDERS’ PROTOCOL

By

THANESHOR PRASAD PANERU

A dissertation submitted to the Central Department of Computer Science

and Information Technology in partial fulfillment of the requirements for

the Master’s Degree in Computer Science and

Information Technology

Date: Feb 12 - 2011

TRIBHUVAN UNIVERSITY
INSTITUTE OF SCIENCE AND TECHNOLOGY

CENTRAL DEPARTMENT OF COMPUTER SCIENCE
 AND INFORMATION TECHNOLOGY

KIRTIPUR, KATHMANDU
NEPAL

CERTIFICATION

Mr. Thaneshor Prasad Paneru has carried out this research work entitled

“SYMMETRIC ENCRYPTION ALGORITHM USING CODE REUSE

TECHNIQUE FOR AUTHENTICATION BASED ON NEEDHAM

SCHROEDERS’ PROTOCOL” under my supervision and guidance. In

my best knowledge this is an original work in computer science. I,

therefore, recommend for further evaluation.

………………………..

Dr. Tanka Nath Dhamala

Head
Central Department of Computer Science
and Information Technology
Tribhuvan University
Kirtipur, Kathmandu
Nepal

TRIBHUVAN UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY
CENTRAL DEPARTMENT OF COMPUTER SCIENCE

AND INFORMATION TECHNOLOGY
KIRTIPUR, KATHMANDU

NEPAL

LETTER OF APPROVAL

We certify that we have read this research work and in our opinion, it is
satisfactory in the scope and quality as dissertation in the partial
fulfillment for the requirement of the Master’s Degree in Computer
Science and Information Technology.

Evaluation Committee

 ………………………..

Prof. Dr. Jivanjyoti Nakarmi

(Act. Head)
CDCSIT

Tribhuvan University

………………………..

Dr. Tanka Nath Dhamala

(Supervisor)
Head of the Department

CSCSIT
Tribhuvan University

 ………………………..

External Examiner

………………………..

Internal Examiner

ACKNOWLEDGEMENTS
First and foremost, I would like to express my sincere gratitude to my

advisor, Professor Dr. T.N. Dhamala, for his guidance, encouragement,

and optimism. His patience, support, and confidence have been the

driving force of this thesis work. My gratitude also to my Professors

Suvarna Sakya, Sashidhar Ram Joshi, Sudarshan Karanjeet and my

teachers Min Bahadur Khati, Samujjwal Bhandari for extremely

insightful knowledge discussions on various topics. Furthermore, I had

the pleasure of working very closely with Dr. A Antonysamy S J, Vishnu

K. Rana, Jitendra Manandhar, Kamal Raj Sharma, Rajan Karmacharya

and Rajeev Nakarmi; from whom I received extensive assistance.

I am thankful to all members of evaluation committees for going through

such a long document and giving me valuable feedback. I would also like

to acknowledge the support and friendship I received from so many

friends over the years in school and college: Shiv Raj Badu, Kriti Bistha,

Ganesh Chataut, Narendra Bohara, Prakash Saud, Thaneshwar Paneru,

Padam Bhandari, Kamala Paneru and many others that I forgot to

mention here. Special thanks go to my former roommate Padam Shahi

and my sister Khageshori Paneru for assisting me at the kitchen.

Finally, for all the support, love, and understanding they have given me

throughout the years, I wish to thank my parents and my family members.

I wish to thank my parents and my teachers for their encouragement,

wonderful and loving support, to have faith in me for the preparation of

this work in every step of its way.

Thaneshor Prasad Paneru

Kathmandu, Nepal

December, 2010

ABSTRACT

Secure data transmission is a significant problem in human history.

Following the problem, security is one of the flourishing areas in the field

of computer science and information technology which deals with

prevention and protection of assets, both logical (data) and physical

(hardware), from unauthorized access, use, alteration, degradation,

destruction and other threats.

Many encryption algorithms have come and gone as cryptography,

cryptanalysis, and technology have progressed. Today’s communication

and computer technologies need cryptography to truly secure data in

many applications. The demands on the cryptography needed for some

commercial applications will exceed the security offered by the National

Bureau of Standards Data Encryption Standard (DES) in the near future

due to advances in technology, advances in cryptanalysis, and the

increasing rewards for breaking such a heavily used algorithm. To meet

part of this need, a new block encryption algorithm is proposed. This

algorithm is implemented using C-programming language. One way to

further increase security of encrypted data, as well as to achieve storage

and/or transmission economy, is by redundancy reduction prior to

encryption. A linguistic approach to redundancy reduction, together with

an example computer program to implement it, is given for this purpose.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENTS

TABLE OF CONTENT

LIST OF FIGURES

1. INTRODUCTION 1

1.1. Secrecy System 2

1.2. Valuation of Secrecy System 2

1.3. Motivation 3

1.4. Approach 5

2. LITERATURE REVIEW 6

2.1. History of Cryptography 6

2.2. Cryptography Model 7

2.2.1. Symmetric Model 7

2.2.1.1.Substitution Technique 8

2.2.1.2.Transposition Technique 10

2.2.2. Asymmetric Model 12

2.2.2.1.The RSA Based Systems 13

2.2.2.2.Galois Field Based Systems 13

2.2.2.3.Elliptic Curve Based Systems 14

2.2.2.4.Coding Technique 14

2.2.2.5.Quantum Encryption 14

2.2.2.6.Noise Addition 14

2.2.3. Steganography 15

2.3. Threat Models 15

2.4. Cryptanalytic Attacks 15

2.5. Brute Force Attack 16

2.6. Encryption Timeline 16

2.7. Authentication 17

2.7.1. The Needham Schroeder’s Authentication Protocol 17

2.7.1.1.Symmetric Key Protocol 18

2.7.1.2.Public Key Protocol 18

2.8. Cryptographic Principles 19

2.8.1. Kerkhoff’s Principle 19

2.8.2. Unconditionally Secure Scheme 19

2.8.3. Computationally Secure Scheme 19

3. ANALYSIS OF ALGORITHMS 20

3.1. Feistel Cipher Structure 20

3.2. Data Encryption Standard 20

3.3. Simplified DES 24

3.4. 3DES 28

4. PROBLEM DEFINITION 29

5. PROPOSED SOLUTION 30

5.1. Design Criteria 30

5.2. Recursive Odd Parity Operation(ROOP) 31

5.3. Design and Implementation of the algorithm 32

5.3.1. Generation of Subkey 32

5.3.2. The Encryption Algorithm 34

5.4. Implementation of The Algorithm 35

5.4.1. Tools 35

6. TESTING AND ANALYSIS 36

7. CONCLUSION 44

8. REFERENCES

APPENDIX

LIST OF FIGURES

Figure 1. Schematics of Simple Secrecy System 2

Figure 2. Vigenere’s Table 9

Figure 3. Matrix of Playfair Cipher 11

Figure 4. Asymmetric Cryptogram 13

Figure 5. Fiestel Cipher Structure 20

Figure 6. General Description of DES 22

Figure 7. Single Step of DES 23

Figure 8. Simplified Data Encryption Standard 25

Figure 9. 3 DES Encryption 28

Figure 10. Key Space Modification 33

Figure 11. The Encryption Process 35

1. INTRODUCTION
Secure data communication he increasing proliferation

3. about the algorithms used.

The cryptographer can make life as difficult as possible for the cryptanalyst by

depriving him of some of

ain text attack.

7. Making sure users of the system understand how to properly use it.

 is a significant problem. T

d computer data base storagof digital communication an e has brought the increase

in difficulty of maintaining the privacy and security of that data [7]. There is only

one effective way to protect the privacy of communications using encryption [5].

It is impossible to deny unauthorized access by a determined and knowledgeable

interceptor to the communications, but it is possible to render the communications

totally unintelligible to all but the intended receivers [32]. A lot of schemes have

been proposed and are in use. Many of these can be broken with few resources by

someone else. Cryptology is the study of method of hiding secret in which trying

to figure out the secrets that someone else has hidden is known as cryptanalysis.

History reveals many examples of cryptology that worked, and that did not [13].

Successful cryptanalysis depends on taking advantage of as many of the following

as are available to the cryptanalyst [33]

1. Taking advantage of the redundancy in any natural language to determine

the validity of assumptions.

2. Clues gained from corresponding plain and cipher text.

Information that might be known

4. The general expected content of the cryptograms.

5. All of the cipher text that is available in the same system and key.

6. Compromised keys.

7. As much computational and analytical power as can be obtained.

8. Mistakes made in the users of the cryptographic system.

these things [23, 36].

1. Using redundancy reduction before encryption.

2. Using an algorithm that is resistant to the known pl

3. Using a strong enough algorithm that these clues are not really useful.

4. Changing keys often and selecting them properly.

5. Guarding keys as closely as the data they protect justifies.

6. Ensuring that there are not enough computers in the world to do a brute

force attack on the algorithm.

 1

1.1
A secrecy system is defined abstractly as a set of transformations of one space

(the set of possible messages) into a second space (the set of possible

cryptograms)[4]. Each particular transformation of the set corresponds to

cular key. The transformations are supposed reversible so

 Secrecy system

enciphering with a parti

that unique deciphering is possible when the key is known. A secrecy system can

be represented by following diagram [4].

Figure 1: Schematics of Simple Secrecy System

If M is the message, K the key, and E the enciphered message, we have

E= f (M, K)

1.2 Valuation o
ating the

value of a proposed secrecy system st important of these are:

Amount of Secrecy

fect; the enemy is no better off after

f Secrecy System
There are a number of different criteria that should be applied in estim

 [20]. The mo

There are some systems that are per

intercepting any amount of material than before [31]. Other systems, although

giving him some information, do not yield a unique “solution” to intercepted

cryptograms.

Among the uniquely solvable systems, there are wide variations in the amount of

labor required to affect this solution and in the amount of material that must be

intercepted to make the solution unique.

 2

Size of Key

Size of key is very important factor for providing secrecy. The secrecy system

may be attacked by using brute force so having large size key system will be

strong against brute force. On the other hand the key should be transmitted

 size of data is small;

Hz. Trying brute force with such

erefore we have proposed some larger size key system in

sive machines.

s error expansion.

Expansion of Message

secrecy systems the size of the message is increased by the

through secure channel. Maintaining security is easier if the

hence we have to come to some equilibrium point to select size of key.

DES is in use since 1977 with key size 64 bits. Recently we have i-series

processor systems with average speed of 15 G

system will be faster. Th

this work.

Complexity of Enciphering and Deciphering Operations

Enciphering and deciphering should be as simple as possible. If they are done

manually, complexity leads to loss of time, errors, etc. If done mechanically,

complexity leads to large expen

Propagation of Errors

In certain types of ciphers, an error of one letter in enciphering or transmission

leads to a large number of errors in the deciphered text [44]. The errors are spread

out by the deciphering operation, causing the loss of much information and

frequent need for repetition of the cryptogram. It is naturally desirable to

minimize thi

In some types of

enciphering process [33]. This undesirable effect may be seen in systems where

one attempts to swamp out message statistics by the addition of many nulls, or

where multiple substitutes are used. It also occurs in many “concealment” types

of systems.

1.3 Motivation
DES is the mostly used symmetric key cipher and a lot of researches have been

completed on the study of DES. Most of it has been favorable to DES [7], but

there are a few indicates that it would be better to search for some supplement of

the DES.

DES is in use for last 34 years. During this time, it is possible that someone has

discovered a computationally feasible method for breaking the cipher [8]. Under

 3

such circumstances, it is highly unlikely that such a discovery would be made

known.

One of the closest thing of breaking DES is a story of the FBI successfully

decrypting a file of drug transaction records that were encrypted on a PC using a

DES board [46]. The DES board that the criminal used has an algorithm to

generate a key from a word or phrase. By an exhaustive search of an English

st, A. Shamir and L. Adleman) encryption has great

rity of RSA relies heavily on the

failure of the state of the art in mathematics to progress makes it at least

dictionary and key names from the criminal’s family and friends using a

supercomputer, the file was solved. This indicates some weakness in DES.

DES is subject to attacks that require pre-computation that could tie up a

supercomputer for a few years, after which it would take only a few days to solve

a DES cryptogram. This is becoming less of a barrier as the price of computers

drops and the speed and storage capacity of computers increase.

There are other alternatives to DES now, but none of them in the public domain

are even as good for general cryptography [20]. Some better algorithms in terms

of security are very costly in terms of execution. Asymmetric encryption

techniques, in which different keys are used for encryption and decryption, are

almost thousands times slower than Symmetric techniques using same key for

encryption and decryption, because they require more computational processing

power [9]. A study was conducted for different popular secret key algorithms

such as Data Encryption Standard (DES), 3DES and Advanced Encryption

Standard (AES)[9]. The algorithms were tested on two different hardware

platforms; two different machines: P-II 266 MHz and P-4 2.4 GHz., to compare

their performance. It showed that AES had a better performance than 3DES and

DES. It also shows that 3DES has almost 1/3 throughput of DES. Some faster

algorithms in terms of execution cannot provide the high level of security [9].

RSA (Named by R.L. Rive

advantages in the authentication of digital signatures, but the complications of

selecting good keys and the fact that the secu

inconvenient to use and at most insecure. Similarly, Cryptosystems based on

elliptic curve are faster for execution but to break the system, it is sufficient to

factor its modulus [9, 25].

 Because of the above considerations, it is our interest to suggest a better

algorithm for general use in the private sector.

 4

1.4 Approach
To design the supplement encryption algorithm of DES, it will be better to study

weaknesses of the DES and various attacks that can happen on DES. The design

criteria chosen for the algorithm are discussed under proposed solution topic. To

avoid repetition of one or more of the many mistakes that have been made

throughout history of cryptography, it is, of course, necessary to analyze the

newly designed algorithm. The analysis of the proposed algorithm is done under

testing and analysis topic. The ideas collected after the study of certain ciphers

along with knowledge of current technology together with a bit of creativity are

applied to design the algorithm that required a lot of hard work.

 5

2. LITERATURE REVIEW

2.1 History of Cryptography
Cryptography is in use to maintain data security since ancient age. In “The Code

Breakers”, David Kahn discussed about cryptography from prehistory to World

War II. The first codes and ciphers were in written form, and used to protect the

privacy of communications sent by courier or mail through hostile or unknown

territory [13]. Some of these were reasonably good, but most were not difficult to

break using manual methods, provided that the interceptor had sufficient cipher

text and perhaps some probable text. The use of radio, especially by the military,

increased the need for cryptography, as well as increasing the rewards for those

who could break the encryption schemes in use. Kahn has written about the

efforts of those who broke some of the very complex encryption schemes, like the

German Enigma and the Japanese Purple Ciphers, lend great insight to the kind of

process cryptanalysis really is. Kahn points out the kinds of mistakes the

inventors and users of cryptographic algorithms tend to make that reduce the

security of their communications. For example, German users of Enigma tended

to choose a three-letter indicator for their messages that consisted of three

consecutive letters on the keyboard. This substantially reduced the number of

keys that had to be searched to determine the one that they were using. While the

designer of an algorithm may calculate the great number of combinations of keys

that there are, the cryptanalyst looks at ways to isolate parts of the key so that the

difficulty of a solution is much less than the size of the key space indicates. The

difference in mind set between the concealer of secrets and the one who pry into

them has caused many an inventor of an encryption algorithm to be

overconfident.

The job of the cryptanalyst is a tedious one. He tries all kinds of things to try to

unscramble the cipher text in front of him. Sometimes the search is fruitless.

Sometimes the search yields something that looks like a meaningful language. It

is this ability to recognize a meaningful message when it comes out of the various

operations that the cryptanalyst tries that makes the whole process possible. It is

also helpful for the cryptanalyst to know some probable plain text that is

contained in a message. This is almost always the case. For example, military

messages even now have a very stereotyped format, with the from, to, and date

 6

indicators in the same places in the message. The cryptanalyst almost always

knows what language to expect a message to be written in, and this is a great help.

Natural languages contain a great deal of redundancy. A message that is only 90%

recovered is usually readable [22]. Natural languages also have very consistent

statistical properties that are very useful in cryptanalysis, especially when the

cryptanalysis is automated. The only time that these things don’t help the

cryptanalyst is in the ‘‘one-time pad.’’

2.2 Cryptography Model
There have been lots of techniques existing for producing the secure cryptogram

[48]. Some of the techniques are tested and are in use; some new techniques are

proposed and are under the testing phase for future use. On the basis of input of

the plain text to the encryption algorithm, we have two different classes of the

cryptographic approach.

Block Cipher: If the plain text is divided into different blocks of fixed size and

each block are inputted to the encryption algorithm to produce cipher text then

such approach is comes under Block Cipher.

Stream Cipher: The technique in which, whole plain text is taken as input to the

encryption algorithm as stream is Stream Cipher [16].

However cryptography models can be classified as -

2.2.1 Symmetric Model
A symmetric cryptosystem € is a set of cryptographic transformations

€ = }|{ KkEk ∈
The index set K is called the key space, with its elements k keys.

Ek is one to one mapping and its inverse must exist and let it be Dk. This Dk is

used to recover the plain text from the scrambled one. Provided that k is known.

This k is transferred through secure channel to the receiver.

A symmetric encryption scheme has five ingredients [23].

Plain text: - This is the original intelligible message or data that is fed into the

algorithm as input.

Encryption algorithm: - The algorithm performs various substitution and

transformations on the plain text

 7

Secret key: - The secret key is also input to the encryption algorithm. It is value

independent of the plain text, and of the algorithm. The algorithm produces a

different output depending on the specific key.

Cipher text: - This is the scrambled text produced as output.

Decryption algorithm: - It is the algorithm that runs in reverse of the encryption

algorithm.

2.2.1.1 Substitution Technique
A substitution technique [13,2] is one in which the letters of plain text are

replaced by other letters or by numbers or symbols. If the plain text is viewed as a

sequence of bits then substitution involves replacing plain text bit patterns with

cipher text bit pattern. In this cipher each letter of the message is replaced by a

fixed substitute, usually also a letter. Thus the message,

M = m1m2m3m4… (where, m1, m2 … are the successive

letters)

 becomes:

E = e1e2e3e4…

= f(m1)f(m2)f(m3)f(m4)…

where, the function f (m) is a function with an inverse. The key is a permutation

of the alphabets.

The simple substitution cryptogram and a variation by Julius Caesar ‘Caesar

cipher’ were popular classical cryptograms [3, 13]. The main weakness of

substitution technique is that one can choose fixed permutation of the alphabet

space of the plain text and if the frequency of occurrence of the characters is

known, it is easy to recover the plain text with very less effort.

2.2.1.1.1 Vigenère, and Variations

In the Vigenère cipher the key consists of a series of letters [17]. These are

written repeatedly below the message and the two added modulo 26 considering

the alphabet numbered from A = 0 to Z = 25. Thus

ei = mi + ki (mod 26)

Where ki is of period d, in the index i.

 8

0 a b c d e f g h i j k l m n o p q r s t u v w x y z
1 b c d e f g h i j k l m n o p q r s t u v w x y z a
2 c d e f g h i j k l m n o p q r s t u v w x y z a b
3 d e f g h i j k l m n o p q r s t u v w x y z a b c
4 e f g h i j k l m n o p q r s t u v w x y z a b c d
5 f g h i j k l m n o p q r s t u v w x y z a b c d e
6 g h i j k l m n o p q r s t u v w x y z a b c d e f
7 h i j k l m n o p q r s t u v w x y z a b c d e f g
8 i j k l m n o p q r s t u v w x y z a b c d e f g h
9 j k l m n o p q r s t u v w x y z a b c d e f g h i

10 k l m n o p q r s t u v w x y z a b c d e f g h i j
11 l m n o p q r s t u v w x y z a b c d e f g h i j k
12 m n o p q r s t u v w x y z a b c d e f g h i j k l
13 n o p q r s t u v w x y z a b c d e f g h i j k l m
14 o p q r s t u v w x y z a b c d e f g h i j k l m n
15 p q r s t u v w x y z a b c d e f g h i j k l m n o
16 q r s t u v w x y z a b c d e f g h i j k l m n o p
17 r s t u v w x y z a b c d e f g h i j k l m n o p q
18 s t u v w x y z a b c d e f g h i j k l m n o p q r
19 t u v w x y z a b c d e f g h i j k l m n o p q r s
20 u v w x y z a b c d e f g h i j k l m n o p q r s t
21 v w x y z a b c d e f g h i j k l m n o p q r s t u
22 w x y z a b c d e f g h i j k l m n o p q r s t u v
23 x y z a b c d e f g h i j k l m n o p q r s t u v w
24 y z a b c d e f g h i j k l m n o p q r s t u v w x
25 z a b c d e f g h i j k l m n o p q r s t u v w x y

Figure 2: Vigenère’s Table

The simplest form of Vigenère cryptosystem is the Caesar ciphers [2,23]. It has

only one period. It is a simple substitution in which each letter of M is advanced a

fixed amount in the alphabet. This amount is the key, which may be any number

from 0 to 25. The Beaufort and Variant Beaufort are similar to the Vigenère. The

equation for Beaufort is

ei = ki – mi (mod 26)

and for Variant Beaufort is

ei = mi – ki (mod 26).

The Beaufort of period one is the reversed Caesar cipher. The application of two

or more Vigenère in sequence is known as compound Vigenère. It has the

equation

ei = mi + ki + li + … + si (mod 26),

where ki, li, …,si in general have different periods. The period of their sum, ki + li

+… + si as in compound transposition is the least common multiple of the

individual periods.

 9

Lemma[23]

Let C be the cipher text, which is the result of Vigenère encryption of plain text m

of length n with key k of length r. further let all the letters in m are generated

independently of each other, all with the frequency distribution p(m) given by

Vigenère’s table and let the letter ki in the key are chosen with independent and

uniform distribution from {a, b, ……, z}; then for each 1 ≤ i <j ≤ m,

Pr [ci = cj] =
.'

,
,03846.026/1

,06875.0)(2

ijdividetdoesnrif
ijdividesrifmp

m

−
−

⎩
⎨
⎧

≈
≈∑

Noted point 1: Though, above lemma showed that the probability of recovering

the plain text after knowing the part of plain text is very less, the cipher text

produced by Vigenère cryptosystem can be cryptanalyzed by “method of probable

word” or by Kasiski’s method.

 .

2.2.1.2 Transposition Technique
It refers to the changing of character position in the plain text to generate some

cipher text [48]. A very different kind of mapping is achieved by performing

some sort of permutation on the plain text letters [18]. The message M is divided

into groups of length d and a permutation applied to the first group, the same

permutation to the second group, etc. The permutation is the key and can be

represented by a permutation of the first d integers. Thus for d = 5, we might have

2 3 1 5 4 as the permutation. This means that:

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 …….

Becomes

m2 m3 m1 m5 m4 m7 m8 m6 m10 m9 …….

Sequential application of two or more transpositions will be called compound

transposition [4]. A pure transposition cipher is easily recognized, because it has

the same letter frequency as the original plain text.

 10

2.2.1.2.1 Vernam, Playfair, Rotor Machines
The one-time pad, also called the Vernam cipher [4,37], is a Vigenère cipher with

key length equal to the length of the plaintext. Also, the key must be chosen in a

completely random way and can only be used once. Such system is

unconditionally secure, as is intuitively clear. The major drawback of this system

is the length of the key, which makes this system impractical for most

applications.

By Mono-alphabetic ciphers, it seems that making the key large is not sufficient

to make an encryption secure[48,33]. One approach to improving security was to

encrypt multiple letters. The best-known multiple-letter encryption cipher is the

Playfair, which treats digrams in the plaintext as single units and translates these

units into cipher text digrams[2]. The Play-fair algorithm is based on the use of a

5x5 matrix of letters constructed using a keyword. The rules for filling in this 5x5

matrix are: Left to Right, top to bottom, first with keyword after duplicate letters

have been removed, and then with the remaining letters, with I/J used as a single

letter.

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

Figure 3: Matrix of Playfair cipher

Play-fair encryption was invented by Charles Wheatstone in 1854, but named

after his friend Baron Play-fair, who championed the cipher at the British foreign

office [37].

Plaintext is encrypted two letters at a time, according to the rules as shown below.

1. If a pair is a repeated letter, insert a filler like 'X', e.g. "balloon" encrypts

as "ba lx lo on"

2. If both letters fall in the same row, replace each with letter to right

(wrapping back to start from end), e.g. “ar" encrypts as "RM"

3. If both letters fall in the same column, replace each with the letter below it

(again wrapping to top from bottom), e.g. “mu" encrypts to "CM"

 11

4. Otherwise each letter is replaced by the one in its row in the column of the

other letter of the pair, e.g. “hs" encrypts to "BP", and “ea" to "IM" or "JM"

(as desired)

Decryption of the cipher text is done in the reverse order.

The Playfair cipher is a great advance over simple mono-alphabetic ciphers, since

there are 26*26=676 digrams (vs 26 letters), so that identification of individual

digrams is more difficult. Also, the relative frequencies of individual letters

exhibit a much greater range than that of digrams, making frequency analysis

much more difficult.

The Playfair cipher was for a long time considered unbreakable. It was used as the

standard field system by the British Army in World War I and still enjoyed

considerable use by the U.S.Army and other Allied forces during World War II

[8].

Despite this level of confidence in its security, the Playfair cipher is relatively

easy to break because it still leaves much of the structure of the plaintext

language.

Rotor machine consists of a set of independently rotating cylinders through which

electrical pulses can flow [27, 49]. These cylinders provide substitution of the

characters. The substitution will be done by each cylinder so it is the scheme

using multiple stages of encryption. Different variations of rotor machine and

similar other machines for encryption were found in use like Enigma, Purple,

Typex, Hagelin etc.

Noted point 2: Multi-stage transposition ciphers are more secure and security can

be enhanced using poly alphabetic technique.

2.2.2 Asymmetric model
Asymmetric cryptography uses different keys for encryption and decryption [20].

The ingredients of the asymmetric model are as follows -

Plain text: - This is the original intelligible message or data that is fed into the

algorithm as input.

Encryption algorithm: - The algorithm performs various substitution and

transformations on the plain text.

 12

Encryption key: - The encryption key is also input to the encryption algorithm. It

may be value dependent of the plain text, and of the algorithm. The algorithm

produces a different output depending on the specific key.

Cipher text: - This is the scrambled text produced as output after the encryption

process.

Decryption algorithm: - It is the algorithm that runs in reverse of the encryption

algorithm.

Decryption key: - The decryption key is input to the decryption algorithm along

with the cipher text. The algorithm recovers the plain text from the cipher.

ENAMY
CRYPTANALYST

Figure 4: Asymmetric Cryptogram

Since many encryption keys can be used to encrypt the plain text and a single

decryption key is used to recover the plain text; this model some time known as

public key cryptography and the encryption and decryption keys are respectively

known as public and private keys[48].

2.2.2.1The RSA based system

RSA system is a public key cryptogram introduced by R.L. Rivest, A. Shamir and

L. Adleman in 1978 [26,42]. It is block cipher in which plain text and cipher text

are integers between 0 and n-1 for some n. It makes use of the following three

facts:

1) Exponentiation modulo a composite number n, i.e. computing c from

 for given m and e, is a relatively simple operation.)(mod nmc e≡

2) The opposite problem of taking roots modulo a large, composite number n, i.e.

computing m from for given c and e, is, in general, believed to be

intractable.

)(mod nmc e≡

3) If the prime factorization of n is known, the problem of taking roots modulo n

is feasible [6].

MESSAGE
SOURCE ENCIPHERER DECIPHERER

KEY 1

MESSAGE
CRYPTOGRAM

KEY 2

 13

2.2.2.2 Galois Field based systems
A field {F, +, ×} is a set of elements with two binary operators, addition and

multiplication such that F is an integral domain and multiplicative inverse of the

elements must exist in F [14]. A field is said to be finite if there exist bijection

between F and subset of natural number set N for some Nn∈ . A finite field with

order as power of prime pn, where n is positive integer and p is prime, is denoted

by GF (pn) and is known as Galois Field [11,40]. Based on the Galois field some

cryptosystems like Hill cryptosystem are designed. Matrix operations and

modulus arithmetic operations are performed in the Galois field to obtain the

scrambled text [35,45].

2.2.2.3 Elliptic curve based systems
An elliptic curve ε over GF (p) is defined as the set of points (x, y) satisfying the

relation

cbxaxxvyuxyy +++=++ 232 ,

together with a single element O (u, v), called the point at infinity, where a, b and

c are the constants[1]. It is possible to define some Cryptosystems over elliptic

curves [21]. However, to break the system it is sufficient to factor its modulus.

Since the original RSA system had the same security restriction and is faster in its

calculations, there seems to be little reason to use this generalization of RSA to

elliptic curves [6].

2.2.2.4 Coding Technique
Based on the algebraic coding theory, some cryptosystems are designed [29].

Using error correction code, McEliece in 1978 proposed a cryptosystem. Some

special coding technique known as Goppa Code may lead to the very fast and

efficient cryptosystems.

2.2.2.5 Quantum Encryption
G Brassard and C Bennett introduced BB84 protocol, based on the idea of using

quantum mechanics to solve key distribution problem [10]. It uses light particles

to communicate instead of bits. A light particle ‘photon’ can have one of the four

orientations, Horizontal, Vertical, 450 diagonal and -450 diagonal. Each of these

represent a bit; ‘-’ and ‘/’ represents a logic 0 and ‘|’ & ‘\’ represents logic 1. Each

bit in the plain text is converted randomly in one of the two orientations

connected with that bit and is transferred via fiber optic cable [35].

 14

2.2.2.6 Noise addition
Adding some unnecessary data to the plain text or to the resulting cipher text

makes the cipher text more difficult against cryptanalysis. This process is known

as noise addition [24]. The unnecessary data is known as noise. Such noise may

be added on the plain text or it can also be added to the cipher text. One of the

popular noise additions is PN sequencing in which the Shift Register Sequencing

technique results some noise on cipher text to change the period of the space.

Such noise may be in the form of electrical signal, some sound waves or some

color code.

2.2.3 Steganography
Steganography is the scheme in which the actual message is covered by some

object and transmitted to the receiver [32]. The basic model of steganography

consists of Carrier, message, embedding algorithm and stego key.

The carrier is the object in which the message is embedded by using embedding

algorithm along with stego key. The covered object with secretly embedded

message is known as stego object [32].

2.3 Threat Models
Though cryptographic schemes transfers plain text to some scrambled text, the

intruders try to recover the plain text from the scrambled text. The attacking

techniques may vary in different schemes; but, by the study of historical

background of cryptography, the possible attacks can be broadly classified into

following models [33]:

Black-Box Model: In the traditional black-box model, the attacker is restricted to

observe input and output of the algorithm, without any side-channels of

information. A secret key of a cryptographic algorithm is hidden in the black-box

and is never exposed. The security depends on the strength of the cryptographic

algorithm.

Grey-Box Model: Another model is the grey-box model where an attacker is also

able to monitor side effects of the program execution. For example, an attacker

can monitor the execution time, power consumption, and electromagnetic

radiation.

 15

White-Box Model: In the white-box model [30], the attacker also has total

visibility into software implementation and execution. To prevent an attacker

from finding the key, the key needs to be hidden in the implementation.

2.4 Cryptanalytic Attacks
Various types of attacks can happen on the cipher text [48]. The main goal of the

attacker is to obtain the key used in the scheme

Cipher text only attack: This type of attack involves the cipher text and the

producing algorithm only. The attacker tries to obtain the key by Hit and Trial.

Known plain text attack: The attacker knows about the one or more plain text

cipher text pairs and the encryption algorithm.

Chosen plain text attack: The attacker can choose one or more plain texts and can

have the cipher text using the encryption algorithm.

Chosen cipher text attack: The attacker will have cipher text and also can choose

one or more cipher texts and can decrypt the chosen cipher text to get the plain

text.

Chosen text attack: The attacker can choose plain text to generate cipher text as

well as can choose the cipher text to get plain text.

2.5 Brute Force Attack
 The attacker tries every possible key on a piece of cipher text to recover the part

of plain text. It is very costly and on average, half of all possible key must be tried

to achieve the success. To prevent the encryption scheme from brute force attack,

the possible no of key should be huge. For it, the key space should be sufficiently

large.

2.6 Encryption Timeline

Modern Encryption Techniques

2010 The maser key of HDCP and private signing key for the Sony

PlayStation 3 game console are recovered and published.

2007 Users swamp digg.com with copies of 128 bit key to the AACS

system

2004 The hash MD5 was shown to be vulnerable to practical collision

attack.

2003 First commercial use of Quantum Encryption

 16

2000 Advanced Encryption Standard (AES) Developed

1991 First Quantum Encryption System developed

1984 BB84 Protocol proposing Quantum Encryption published

1978 RSA published

1977 Data Encryption Standard (DES) created

1976 Public Key Encryption proposed by Hellman and Diffie

1970 Lucifer Algorithm developed, later evolved into Triple – DES.

The Computer era

1943-1945 First computers created

Traditional Encryption

1942 Navajo Windtalkers used in World War II

1923 Arthur Scerbius builds the German Enigma Machine

1917 Vernam Cipher invented

1854 Charles Babbage reinvents the Wheel Cipher

1790 Thomas Jefferson invented the Wheel Cipher

1585 Blaise De Vigenere writes a book on Ciphers

1553 Password idea introduced by Giovan Belaso

The Dark Age of Encryption

50-60 BC Caesar Cipher introduced by Julius Caesar

486 BC Greek Skytale presumably used

500-600 BC Hebrew ATBASH Cipher used in writing the book of Jeremiah

1500 BC Mesopotamian tablet with encrypted recipe for Pottery Glaze

1900 BC First Documented Cryptography in Egypt

2.7 Authentication
Authentication is the process of verifying that the user involved in the communication

is the user supposed to involve in the communication even if it refuses the

participation [41].

 17

2.7.1 The Needham Schroeder Authentication Protocol
This protocol aims to establish mutual authentication between initiator A and a

responder B [19]. The supposition behind the protocol is “There is minimal

reliance on network wide services; in particular, there is no reliance on a single

network clock or a single network name management authority”[41].

The protocol uses nonces: random numbers generated with the purpose of being

used in a single run of the protocol. The nonces can be denoted by Na and Nb

generated by A and B respectively.

The functions of the protocols is discussed in following three points[41]-

A. Establishment of authenticated interactive communication between two

principals on different machines.

B. Authenticated one way communication, where it is impossible to require

protocol exchanges between sender and the recipient.

C. Signed communication, in which the origin of a communication and the

integrity of the content can be authenticated to a third party.

2.7.1.1 Symmetric Key Protocol
If a conventional algorithm is used then each principal has a secret key that is known

only to itself and to authentication server (AS).

The protocol can be described as -

• The protocol opens with A communicating to AS his own claimed identity and

the identity of the desired correspondent, B together with nonce of A

A AS: A, B, Na

• Up on receiving the message, authentication server looks up the secret

identifying keys of both parties and also computes a new key CK that will be

key for convention.

• AS sends the information to A as

AS A: {Na, B, CK, {CK, A} KB} KA

• A can decrypt above message and sends the message to B

A B : {CK, A}KB

• B can decrypt above message and understands that CK is the conventional key

for communicating with A.

 18

2.7.1.2 Public Key Protocol
Each agent A possesses a public key PKa, and secret key SKa. There will be key

pair of AS as PKas and SKas, public and private keys. The exchange opens with A

consulting the AS to find B’s public key.

The protocol can be described as -

• A communicates with AS for public key of B

A AS: A, B

• AS responds to A

 AS A: {PKb, B}SKas

• Now A can communicate to B

2.8 Cryptographic Principles
Designing the cryptographic scheme is notably difficult. There are various principles,

regarding the design of the cryptographic scheme.

2.8.1 Kerkhoff’s Principle
A fundamental assumption in cryptanalysis was first stated by A. Kerkhoff in the

nineteenth century [23]. It states that the adversary knows all the details of the

cryptosystem, including algorithms and their implementations i.e. the security of a

cryptosystem must be entirely based on the secret keys.

2.8.2 Unconditionally Secure Scheme
An encryption scheme is said to be unconditionally secure if the cipher text

generated by the scheme does not contain enough information to determine the

plain text uniquely [48].

2.8.3 Computationally Secure Scheme
An encryption scheme is said to be computationally secure if at least one of the

following holds-

• The cost of breaking the cipher text exceeds the value of encrypted

information.

• The time required to break the cipher text exceeds the useful life time of

the information [48].

 19

3. ANALYSIS OF ALGORITHMS

3.1 Feistel Cipher Structure
Horst Feistel described the structure of the symmetric ciphers in 1973[48]. A

block of plain text of size 2w bits is divided into two half blocks Li and Ri each of

size w bits and processed. The process requires sub key Ki generated from the

original key K. It can be described as

Plain Text (2w bits)

 Figure 5: Fiestel Cipher Structure

The two halves of the data pass through n rounds of processing and then combine

to produce the cipher text block. Each round i has as inputs Li-l and Ri-1 derived

from the previous round, as well as a sub key Ki, derived from the original key K.

A substitution is performed on the left half of the data. This is done by applying a

K1

F

K2

Kn

F

F

Cipher Text (2w bits)

 20

round function F to the right half of the data and then taking the exclusive-OR

(XOR) of the output of that function and the left half of the data. Following this

substitution, a permutation is performed that consists of the interchange of the two

halves of the data.

3.2 Data Encryption Standard
DES was published in the Federal Information Processing Standards Publication

Number 46, dated January 15, 1977 by the National Bureau of Standards [34].

DES is based on Fiestel Cipher Structure where Encryption consists of an initial

permutation, sixteen rounds of encryption, and then an inverse of the initial

permutation. Each of the sixteen rounds of encryption consist of taking the right

half of the input block (32 of the 64 bits) and running it through a nonlinear

function of the 32 bits and an internal key, then adding this result to the left half

of the input modulo two. This 32 bit answer becomes the next round’s right half

block. The next round’s left half becomes the right half block without

modification. The nonlinear function used consists of a bit selection E that selects

48 bits from the input of 32 (several of the bits are repeated). These 48 bits are

added modulo 2 to the round key of 48 bits. The results of that operation are then

fed six bits each into eight substitution boxes. Each of the eight substitution boxes

is different, but the same sets of eight boxes are used for each round. Each

substitution box gives an output of 4 bits. The outputs of these boxes are fed into

a permutation P that rearranges the output in a fixed manner. The sixteen internal

keys are generated from the 56 bit input key by feeding the input key into a fixed

permutation that rearranges the order of the key bits. The key is then split into left

and right halves called C and D. Each half is shifted left one or two times

(according to a fixed table) before generating each internal key. Each of the

sixteen internal keys is generated by taking the two halves of the key as shifted

and permuting them in a fixed manner. The key and the resulting internal keys are

the only things that vary in this algorithm. The initial and final permutations and

the contents of each of the substitution boxes are constant. The two permutations

used in generating the internal keys are constant. The bit selection and

permutation used within the nonlinear function are constant. The strengths of the

DES is that its cryptographic strength depends only on the key, that the algorithm

is easy to implement in a single IC, that it has been well tested an no one has

 21

publicly announced a solution, that hardware and software that uses it is readily

available, and that the algorithm places very few restrictions on key generation so

that random numbers may be generated by the users for use as keys.

64 Bit Plain Text 64 Bit Key

Permuted Choice 1 Initial Permutation

Figure 6: General Description of DES

The weaknesses of the DES are that the key is too short for security in the face of

anticipated increases of computing power that it is old enough and likely that

someone has broken it. Hardware implementation of the DES is too slow for

some applications, and that it limits itself to be simpler than is really necessary

with current technology.

Round 1

Round 2

Round 16

32 bit Swap

Inverse Initial Permutation

Left Circular Shift Permuted Choice 2

Permuted Choice 2

Permuted Choice 2

Left Circular Shift

Left Circular Shift

- 56 64 - 48 56
/ /

64 - - 56 48 56
/ /

48 56
/ /

64 -

64 -

64 Bit Cipher Text

 22

Figure 7: Single Step of DES

Cryptanalysis Practice

Differential cryptanalysis

Differential cryptanalysis was started after 1990 for the cryptanalysis of block

cipher called FEAL by Murphy [50]. Differential cryptanalysis is the first

published attack on DES capable to break DES in less than 255 complexities.

Biham and Shamir proposed one scheme that can successfully cryptanalyze DES

with an effort of order of 247 complexities[33].

The idea behind differential cryptanalysis is to observe the behavior of pairs of

text blocks evolving along each round of the cipher. Let the two message of block

size m and m’, where m0 and m1 are the two halves of m and so on then the new

blocks for m can be generated as

),,(11 iiii Kmfmm ⊕= −+ i = 1,2,… …, 16

Now the XOR difference ,'iii mmm ⊕=∆ is calculated. It results the

)]','(),([11 iiiiii KmfKmfmm ⊕⊕∆=∆ −+

Now by using probability theory the cryptanalysis of the DES encryption can be

done.

Linear cryptanalysis

Linear cryptanalysis is recent development than differential cryptanalysis. It can

identify the encryption key from 243 known plain texts. It performs XOR on plain

 23

text and cipher text to form a linear equation. The linear equation can be used to

find the unique key with the probability of 0.5. It can break one round at a time.

3.3 Simplified DES
The Simplified DES [15] encryption algorithm takes an 8-bit block of plaintext

and a 10-bit key as input and produces an 8-bit block of cipher text as output. The

decryption algorithm takes an 8-bit block of cipher text and the same 10-bit key

used as input to produce the original 8-bit block of plaintext. The encryption

algorithm involves five functions; an initial permutation (IP), a complex function

called which involves both permutation and substitution operations and

depends on a key input; a simple permutation function that switches (SW) the two

halves of the data; the function again, and a permutation function that is the

inverse of the initial permutation (IP−1). The function takes as input the data

passing through the encryption algorithm and an 8-bit key. Consider a 10-bit key

from which two 8-bit sub keys are generated. In this case, the key is first

subjected to a permutation P10= [3 5 2 7 4 10 1 9 8 6], then a shift operation is

performed. The numbers in the array represent the value of that bit in the original

10-bit key. The output of the shift operation then passes through a permutation

function that produces an 8-bit output P8 = [6 3 7 4 8 5 10 9] for the first sub key

(K1). The output of the shift operation also feeds into another shift and another

instance of P8 to produce sub key K2. In the second all bit strings, the leftmost

position corresponds to the first bit. The block schematic of the SDES algorithm

is as follow

Kf

Kf

Kf

 24

Encryption Decryption
P10

Shift
IP-1 IP

P8

.

Figure 8: Simplified Data Encryption Standard

The definitions of the involved functions are as follow
1. Initial and final permutation (IP): The input to the algorithm is an 8-bit block of

plaintext. It permuted using the IP function IP= [2 6 3 1 4 8 5 7]. It results all 8-

bits of the plaintext but mixes them up. At the end, the inverse permutation is

applied; by applying, IP−1 = [4 1 3 5 7 2 8 6] where we have IP−1 (IP(X)) =X.

2. The function : it consists of a combination of permutations and substitution

functions. The functions are as follows. Let L, R be the left 4-bits and right 4-bits

of the input, then, fK (L, R) = (L XOR f(R, key), R) where XOR is the exclusive-

OR operation and key is a sub - key. Computation of f(R, key) is done as follows.

Kf

a. Apply expansion/permutation E/P= [4 1 2 3 2 3 4 1] to input 4-bits.

b. Add the 8-bit key (XOR).

c. Pass the left 4-bits through S-Box S0 and the right 4-bits through S-Box S1.

d. Apply permutation P4 = [2 4 3 1].

SW SW
Shift

P8

IP IP-1

fK fK

fK fK

 25

The two S-boxes are defined as follows:

 S0 S1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

2313
3120
0123
2301

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

3012
0103
3102
3210

The S-boxes operate as follows: The first and fourth input bits are treated as 2-bit

numbers that specify a row of the S-box and the second and third input bits

specify a column of the S-box. The entry in that row and column in base 2 is the

2-bit output.

3. Since the function fK allows only the leftmost 4-bits of the input, the switch

function (SW) interchanges the left and right 4-bits so that the second instance of

fK operates on different 4- bits. In this second instance, the E/P, S0, S1 and P4

functions are the same as above but the key input is K2.

Cryptanalysis Practice

Memetic Algorithm:

The memetic algorithms can be viewed as a marriage between a population-based

global technique and a local search made by each of the individuals [39].

Memetic Algorithms are a population-based approach. Such algorithms are orders

of magnitude and faster than traditional genetic Algorithms for some problem

domains. In a memetic algorithm the population is initialized at random or using a

heuristic. Then, each individual makes local search to improve its fitness. To form

a new population for the next generation, higher quality individuals are selected.

Once two parents have been selected, their chromosomes are combined and the

classical operators of crossover are applied to generate new individuals. The latter

are enhanced using a local search technique. The role of local search in memetic

algorithms is to locate the local optimum solution.

Genetic Algorithm:

The genetic algorithm is based upon Darwinian evolution theory [39]. The genetic

algorithm is modeled on a relatively simple interpretation of the evolutionary

process; however, it has proven to a reliable and powerful optimization technique

in a wide variety of applications. J. Holland, in 1975 was first proposed the use of

genetic algorithms for problem solving. D. E. Goldberg was also pioneer in the

area of applying genetic processes to optimization [39]. Over the past twenty

 26

years numerous application and adaptation of genetic algorithms have appeared in

the literature. During each iteration in the algorithm; the processes of selection,

reproduction and mutation take place in order to produce the next generation of

solution. Genetic Algorithm begins with a randomly selected population of

chromosomes represented by strings. It uses the current population of strings to

create a new population such that the strings in the new generation are on average

better than those in current population. The selection process determines which

string in the current will be used to create the next generation. The crossover

process determines the actual form of the string in the next generation. Here two

of the selected parents are paired. A fixed small mutation probability is set at the

start of the algorithm. This crossover and mutation processes ensures that the GA

can explore new features that may not be in the population yet. It makes the entire

search space reachable, despite the finite population size.

A study was conducted, to compare the Memetic and Genetic algorithms for

cryptanalysis of simplified data encryption standard and following results were

found.

Memetic algorithm Genetic algorithm Amount of
cipher text

(characters) Time
(sec)

St.
Dev

No of bits
matched in the
key (10)

Time
(sec)

St.
Dev

No of bits
matched in the
key(10)

100 5.1 4.70 8 2.62 4.82 6

200 14 3.40 6 4.5 6.13 6

300 15.3 2.72 5 2.13 6.01 4

400 12.5 2.27 7 2.35 4.61 6

500 10 2.16 6 2.52 4.61 6

600 5.5 1.86 8 2.07 4.37 7

700 3.05 1.73 7 4.07 4.42 6

800 2.85 1.59 8 2.4 3.39 8

900 2.24 1.56 9 2.53 2.23 6

1000 2.14 1.49 9.17 2.17 2.20 8

1. Both Memetic and Genetic Algorithms can be used for cryptanalysis

2. Memetic algorithm has less variance in result than genetic algorithm

3. Memetic algorithm is more accurate then the genetic algorithm for

cryptanalysis of simplified data encryption standard.

 27

3.4 3DES
When it became clear that DES could no longer be used to protect sensitive data,

a modification was introduced, called Triple DES or 3DES[9]. It consists of three

DES implementations in a row, except that the middle one is orientated the other

technique.

Figure 9: 3DES Encryption

In 3DES there are three steps first and third are the encryptions using DES with

the same key but second step is the decryption. The second key used is different

than the encryption key used.

Cryptanalysis Practice

There is no practical cryptanalysis scheme for triple DES but some known – plain

text attacks are outlined for 3DES[47].

It was found that 3DES produce 1/3 throughput of DES, that’s why 3DES is far

more inefficient for commercial use [12].

By studying above algorithms, we found sufficiently strong cryptographic algorithms

for providing confidentiality but we do not have any cryptographic algorithm to

provide confidentiality together with authentication. During this study it is claimed

that there exists one cryptographic approach providing both confidentiality and

authentication but it uses traditional hash function SHA 256 (Source: Enhanced

Security Encryption for Data Storage Using Key Reuse.By Gladdman)

DES Encryption DES Encryption DES Decryption

K2 K1 K1

 28

4. PROBLEM DEFINITION

Maintaining the information security against the attacks is significant

problem. The primary goal of cryptography is to keep the plaintext secret

from eaves-droppers trying to get some information about the plaintext.

Various types of attacks may happen against information security.

In a network, having large number of computers communicating; there

may not be central machine that contains authoritative description of the

connected computers as explained in the Needham Schroeder’s Protocol

(Authentication Server). There may not be organized data of the purpose

of use and of the individuals using system.

The major component of Needham Schroeder’s authentication protocol

using symmetric encryption is the pseudorandom number used to identify

each communication, known as nonce. If the size of key used in encryption

is small as in DES than it is quite easy to identify the nonce by clipping it

from the cipher text. It may lead to reply attack.

By understanding the problems of secrecy, problem in authentication and

the various attacking techniques, it is worthy and very important to

introduce new schemes to preserve the confidentiality of the information

and provide authentication in communication. The main goal of this

research is to design a computationally secure symmetric scheme for

maintaining the secrecy in communication that can provide authentication

using Needham Schroeder’s protocol.

 29

5. PROPOSED SOLUTION

In this proposed system, the plain text is divided into sixteen byte blocks and each

block is individually converted into cipher text with the help of 128 bit key. The

key of size 128 bit is selected randomly and further processed for applying to

plain text.

5.1 Design Criteria
A. Strength Based on Key

The strength of the system must rely on the security of the key only. It cannot

depend on the algorithm being kept secret, because the algorithm will be

published. Even if the algorithm were not published, it would probably be reverse

engineered from software implementations of the algorithm. The algorithm must

be constructed in such a way that there is no computationally feasible way to

derive the key from samples of corresponding plain text and cipher text.

B. Usability of Random Keys

The key selection should be as easy as the random selection of a number in a

given range. Selecting a very secure key should be no more difficult than flipping

a coin once for each bit of the key, or generating keys using a pseudorandom

sequence combined with random events such as timing of keystrokes on a

computer. A one bit change in the key should provide a drastically different

transformation, so that a potential cryptanalyst has no idea when a key that he

guesses might be close to the right one.

C. Key Length & Block Size

The key length should be significantly longer than the DES 56 bit size. A key size

of 96 bits (three 32 bit blocks) was chosen as being very manageable, yet highly

secure even when attacked by multiple array supercomputers.

The block size is also chosen as 128 bits (twice the size of DES) to provide a

significant increase in complexity of the encryption. The first 32 bit of first block

of plain text can be used as the nonce while using for authentication based on

Needham Schroeder’s protocol and first 32 bits of following blocks can be used

as block pointer so that the cipher text can also be obtained in manageable packet

form.

 30

D. Effort Required to Break

The effort required to break the algorithm by any method should be so great as to

make such a task unfeasible even if significant advances are made in computer

technology. This requirement is intimately linked to the choice for key size and

block size.

E. Computational Efficiency

The encryption algorithm must be computationally efficient enough to be

implemented in software on a standard IBM PC or compatible (or on an Apple

computer of comparable power), and fast enough to handle at least 10 megabits

per second when implemented in dedicated hardware. Note that this is less

restrictive with respect to the hardware for DES, which was required to be simple

enough to implement on a single chip using 1970s technology.

F. Communication Channel Efficiency

The encryption algorithm must not significantly increase the size of the plain text

when encrypting it. This precludes the use of noise addition as a technique to be

used.

G. No Back Doors or Spare Keys

While it may be impossible to guarantee that no ‘‘back doors’’ or ways to

decipher a message without the key exist, the algorithm should be a sufficiently

complex combination of simple, well-understood operations that no help is

offered to the cryptanalyst from the structure of the algorithm. Spare keys (the

situation where more than one key will decipher a message) are avoided by

making the number of keys possible much less than the number of possible

transformations that can be done on a set of blocks.

5.2 Recursive Odd Parity Operation (ROOP)
It is the recursive operation that operates on a bit string of size n and results bit

string of the size n bits [38]. Let a1a2………an be a bit string. Then the Recursive

Odd Parity Operation (ROOP) is a unary function on the bit string that maps the

each bit of the string to the binary bit according to the following rule-

ROOP(ai) = ai XOR ai+1 for all i < n

 = ai for i = n

 31

5.3 Design and implementation of the algorithm

5.3.1 Generation of sub key
This cryptographic scheme uses the pair of keys, KEY1 (32 bits) and KEY2 (64

bits). The KEY2 will be divided into two blocks KEY2B1 and KEY2B2. The

KEY2B2 will be XORed with the 32 bit KEY1 to form TK2 while ROOP

operation is performed on KEY2B1 to form TK1. The TK1, KEY1 and TK2 are

processed (PROC1) to get INITIAL KEY (IK). On the other hand, the initial 32

bits of the plain text are XORed with the KEY1 to form PARTIAL KEY (PK).

The PARTIAL KEY (PK) and INITIAL KEY (IK) are processed (PROC2) to get

the EXTENDED KEY (EK).

The process regarding PROC1 can be described as

IK Procedure: PROC1 (TK1, KEY1, TK2)

{

 Int temp = TK1 % 3;

 Switch (temp)

 Case 0: return (concatenate (TK1, KEY1, TK2));

 Case 1: return (concatenate (TK2, KEY1, TK1));

 Case 2: return (concatenate (TK1, TK2, KEY1));

}

 32

The process regarding PROC2 can be described as-

EK Procedure: PROC2 (PK, IK)

{

 Int temp = PK % 2;

 Switch (temp)

 Case 0: return (concatenate (XOR (PK [0-31], IK [0-31]), IK [32-95]));

 Case 1: return (concatenate (IK [0-63], XOR (PK [0-31], IK [64-95])) ;

}

The detailed processing method can be represented by using flow-chart as below.

KEY2B1 KEY1 KEY2B2
(32BITS) (32BITS) (32BITS)

Figure 10: Key Space Modification

INITIAL KEY
IK (96 BITS)

+

INITIAL32 BITS OF
 THE PLAIN TEXT

+

PARTIAL KEY
PK (32 BITS)

ROOP

EXTENDED KEY
EK (96 BITS)

TK1
PROC

1

PROC
2

TK2

 33

5.3.2 The Encryption Algorithm
The original message will be divided into 128 bit blocks for encryption. To use

this algorithm for authentication, the block size should be 96 bit and the first

block will be padded to 32 bit nonce. All blocks of plaintext other than first block

will be padded to the 32 bit packet pointer. If there exist partial block then it will

be made of size 128 by appending the initial text at the end.

The plain text block of size 128 bit will be further divided into four equal sub

blocks PTs of size 32 bits. The processing method can be described as

CT PROCEDURE: ENCRYPTION (PT, KEY1, IK, EK)

{

 PT will be divided into PT1, PT2, PT3 and PT4;

 SB11 = PT1;

SB21 = PT1 XOR PT2; SB31 = PT2 XOR PT3; SB41 = PT3 XOR PT4;

SB12 = SB11 XOR KEY1;

(SB22, SB32, SB42) = (SB21, SB31, SB41) XOR EK;

(SB13, SB23, SB33) = (SB12, SB22, SB32) XOR IK;

SB43 = ROOP (SB42);

CT1 = SB13 XOR SB23; CT2 = SB23 XOR SB33; CT3 = SB33 XOR

SB43;

CT4 = SB43;

RETURN CT = (CT1, CT2, CT3, CT4);

}

 34

The pictorial representation of algorithm can also be shown as --

32 bits 32 bits 32 bits 32 bits

Figure 11: The Encryption Process

5.4 Implementation of the algorithm

5.4.1 Tools

5.4.1.1 Borland C++ 5.02

C++ is an Object oriented programming language developed by Strups Bazarne.

Borland C++ 5.02 compiler is used to compile the codes written in C++. It

provided interactive and easy environment to implement the algorithm.

+ IK

SB13 SB23 SB33 SB43

CT1 CT2

PT1 PT2 PT3 PT4

CT3 CT4

SB11 SB21 SB31 SB41

SB12 SB22 SB32 SB42

+ KEY1 + EK

ROOP

+ + +

+ + +

 35

6. TESTING AND ANALYSIS

SAMPLE INPUT
In symmetric encryption, there will be a secret key shared by the

communicating parties. In this algorithm the secrete key will be stored into

a file. The algorithm reads the key from the file key.dat.

KEY.DAT File

THIS IS MY KEY FOR ENCRYPTING THE FILE.

The file that will be encrypted is named myfile.dat. The content of the file

is as follow-

MYFILE.DAT File

“1.0 Database Management System

Data are the raw facts that can be found after some experiment,

observation or experience. Data itself do not provide any meaning but after

processing it becomes information. The collection of related data

organized in some specific manner is known as database. The database, its

processing methods and the set of rules and conditions to be followed;

collectively known as database management system (DBMS). Here,

related data refers logically consistent facts of the real world. Random

collection of data can not consider database. The primary goal of DBMS is

to store and manage data both conveniently and efficiently. Database

systems are generally designed to manage large volume of information.

Management of data involves defining structure for storage of information

and providing mechanisms for manipulation of information.

DBMS can also define as a general purpose software system that enables

user to create, maintain and manipulate database. It provides fast and

convenient access to information from data stored in database. DBMS

interfaces with application programs so data contained in database can be

 36

accessed by multiple applications and users. Some popular DBMS

software are: Oracle, SQL – Server, IBM-DB2, MySQL, MS Access,

Sybase etc.

Some application areas of database system are:

• Banking: customer and their account info

• Airlines: reservations and schedules info

• Universities: student info, grades etc.

• Credit card transactions: for purchases on credit cards and generation of

statements.

• Telecommunications: record of calls made

• Finance: for storing information about holding, sales and purchases etc.

• Sales: for customer, product and purchase information.

• Manufacturing: for management of supply chain.

• Human resources: for information about employee

1.1 Purpose of Database System

Traditionally, file processing system was used to manage information. It

stores data in various files of different application programs to extract or

insert data to appropriate file.

File processing system has several drawbacks due to which database

management system is required. Database management system removes

problems found in file processing system. Some major problems of file

processing systems are:

1. Data redundancy and inconsistency

In file processing system, different programmer creates files and writes

application programs to access it. After a long period of time files may

exist with different formats and application programs may written in many

different programming languages. Moreover, same information may be

duplicated in several files. We have to pay for higher storage and access

cost for such redundancy. It may leads database in inconsistent state

because update made in one file may reflected in one file but it may not

reflected in another files where same information exist in another files.

2. Difficulty in accessing data

In file processing system, we can not easily access required data stored in

particular file. For each new task we have to write a new application

 37

program. File processing system can not allow data to be retrieve in

convenient and efficient manner.

3. Data isolation

Since data are scatter in different files and data may stored in different

format, so it is difficult to write program to retrieve appropriate data.

4. Integrity problem

In database, we required to enforce certain type consistency constraints to

ensure the database correctness or to enforce certain business rules. It is in

fact called integrity constraints (e.g. account balance > 0), integrity of

database need not to be violated. In file processing system, integrity

constraint becomes the part of application program. Programmer need to

write appropriate code to enforce it. When new constraints are required to

add or change existing one, it is difficult to change program to enforce it.

5. Atomicity problem

Failures may lead database in an inconsistent state with partial updates.

For example, failure occurs while transferring fund from account A to B.

There would be the case that certain amount from account A is retrieved

and it is updated but failure occurs just before it is deposited to account B,

such case may lead database in inconsistent state.

6. Concurrent access problem

Concurrent accessed increase the overall performance of system providing

fast response time but uncontrolled concurrent accesses can lead

inconsistencies in system. File processing system allow concurrent access

but it is unable to coordinate different application programs so database

may lead in inconsistent state. E.g. two people reading a balance and

updating it at the same time

7. Security problems

Since file processing system consist large no. of application programs and

it is added in ad hoc manner. So it is difficult to enforce security to each

application to allow accessing only part of data/database for individual

database users.

1.2 Data Abstraction

Data abstraction in database system is a mechanism to hide complexity of

database. It allows database system to provide abstract view to database

 38

user. It hides how data are actually stored and maintain in database. Data

abstraction simplifies users’ interactions with the system. Three are three

level of abstraction

Physical level

It is a lowest level of abstraction. It describes how data are actually stored

in database. It describes complex low level data structures in detail.

Logical Level

This is a next highest level of abstraction. It describes what data are stored

in database and what relationship exists among them. It describes entire

database relatively in a simple structure. The user in logical level needs not

to aware the complexity of physical level structure.”

After the encryption the resultant encrypted text will be written in the file

myfile.rp

MYFILE.RP
“!� �/8S.´<xJÆt6�PAX-- S?8cÅWZ<‹PTNMS91EkKI�S �6 A

 ^O,- (F2�[. �D�K� ,?T.uŠP�5Ê -A]D$4E%b–

†L'ÃÏ�@ZXH"7 j•Òl'ÒÏ9ACX_cyd*ñÅÂOîÃ¬�F �HPm 7 O? �$ee "'-

�@COm4E*†H_AÒ� TKZS(+ ;(|Êh9'Å?@�IIm;E(Â�EtÑ� �SJT90O

%¡ˆ�VîÛM]�O_90O%°GXŒü �ÒRHA�)8T*ˆ^S�Ì� PB

@#yS$ZÃïq�Ïõ$BDI� 8N%Gu–��5Ò HL�,* /ZEÄ� Ã

�oD�m=A?—r@KÃ E�IJ?6C. Qp�[�$-�G KR>yA%j xS9 ?

EHUPm+U'Ï�¬NÏ�ÿ�UB 90O%F”oW Û-��E@".E/¡©JFüù �LMZU!

JbæR�:ù��HN�/8S.”\xJÆ�6�PAX-> S?xc»ã: <õä9$$H (+Eg ×�÷Ï

À�XMC,yR.�ÃZx Ï :�GGX! (TkýB�9õ-S�J\.-SkW*©î�6õüYL��:

6R's… ¡]5ÃöBX�NS!5E(} QH(�-��F[�m:A%�]Nr

��.�BBX?yD*_ÂCWÃ sE�S =+ I&Cru É3 0×�HN �m�œ�

µ¬}B•TH�Em8N/ RDL ��-QNX�m;O?È�FkØÆ�-S[BI! *Ws�J�'

[KND! k)|çÄx(îÃ�ZCE9<M8üR|iü !:�]MQ! /F]Ó^�-Û�NB-,7A ,M›-

SÒ�P@@� < $R�ÞJ�ÏÛ�SSRQ#w �JÒÃ��ÀÃ

~E�C[m=A?ÃÀ_oÃ Ì�.GT�A (?I% @E�‹���ÒDHNT(yF$k�ec9 ?-

 39

^�GRm0N-À,MZÑ-� @HYm)R$®roRú+: L�_#0

S&x™mY'Û?�H�TG!8T"SQ±E��ü T�RP,-

I$B½÷,�î¥}udtS,5S$•]n�Ã� :�\U�m>E%Úc ZÏ?��WODm*O-øXGlü

�<B�_Gm-H*û´SNüü��FPE(+ ?\ìÙ^-öÅ

� PW$7T*��¬S ü [B N85A?pžNh0Ô�?SL���- ;#t½(M-

ú+VLI�m8N/�NW] ��-GCS�,:C.fu›%60Å3]�RP,-

I$B¯Cv�ü�'ZQ��>-O9|x–,:0Ñ-N OS><k% ‡Yi¥

•�SAF.<SknKUÊ<�

 Ø�@ZB90O%°cb_ü+'�@�[Qm=A?ÄÀ]eÃÌ�-TYL�$7 /KmÎ�

� .Ã VZBS/< *VFÈ$� Ï6ET 85T"L].Œ� 3Û\[XK $6N8�VFmÛ�

�N��-6M.àu)•! �?�`jl - yS$xÐtc_ü

�G__Im�R*Ð�gßÅe9×T38L(V.(Ðå�9âútT7H7 s�Xü£��ÿ•$d

{Cays2ÉÎ }ÒÃ`$Z'n_ < *0�îE'?Ô�XG�[?<A8¿]�´ö-

 õRHNWm*Y8ê`�°ü:<õ?3 +,?K".<ñ£��óÛXP_Um8N/�{HF ?

�^Y�G#- "Yi×ê 6Ñ¥/�aT *�kzmÁÒ9 :ÛÏOQF Tm8N/ �p^P

6��T_�V#?OAî—Hœ±ÊN¬NWXH(*�kx[ÖÖ: ÑÌXH[�ayG9ÆÊ

NM×Ì��Z'6� +D/ G:é-~ Ï AHL�>8C?}I\@.�� �H_I? : H *W �|„� -

ÃIC Y9y C*XÁ~˜

Ì0ÃRCC�?8T"f]¯U'�üS�_J(7T8�þÙ¸Ý¬�õcBH[87I(~gMI<.

�H^��?= $h…ÏA<ÌÅ�UE^�GS –’Î�¥±ÃxQB�S>-

O9o}L÷..�öOKNH$6NkW]Eø���Ÿl HR*u 8UÀÏN ÀÏ

TYRE.1A8�}žh -Ã:+ 48) <Sqï� MÐÔ�$Ø DQE?u ; RÎÈI

ÅÌ�YXIB8+C#s] “<�

ØOKNH$6Neêû”¬¥±Ò¥TEH@?0N,Ÿ™KYØÛ��H

 CW<N?€RX¾×-�ü KD �@

%8I%ší½ŒÊ½½Òr�VW>6U9y�Dœ0-ØTGHG"+M*6~LE--���]Y)L

$ps -ö<?�¯5� �"*Ekkq‘¯ ?Ï¬TOM�- S?<~ÔgZ<‹`R@BT,5L2–

™Tt×Ô-0JB F>*I%i¡ma<õ .9�KMM m,S. ˜µR[Ìÿ

 -�BM�$7F$qDC1-�-�nS]>-O9=|ƒ;: Ñ:\R��,+I$`WÛ

Q<�Û�� KJ)0F-�cL �-��P�A@,-I$T¬bx� ü+'V\�F"y E3{í r-ö -

�HR(+Tk�fSÃ�5 Ã�LV�")R"HDr“� 9Û�+c_!< ;49êu"-Å?@�SD>-

E&µ8Seõ$"�IMIm=R*èToXù 5�J^IC"yW#DÈ?—

Å!ØRHNWm4A%ÕZW]Ã-�B_N�(4 "x‹ìZ:×ö�@Y� 8T*M

�-j�BMP(7TkjxQâ:9üTH�W(*;mrÀq9$Æ$WJO�)yI%šÍUUÌÊ�^ \R>0

 40

N,½ l{{õ.9< ~K�(yM* êjœ�Ñ!ÃH_KBm6FkÒH\ÏÊ -Ï�]HO$7Gkp

zaü.9<üPW _IGhkíûìŠ ÒðîÃ�THV#: Yk^Rs���'

SUCO9<N(Yï'T�±i�� PM":E8z�An$-�< ^] m=I-ÊJ`�Ê�-

�HSQ,4M.r�Q}5×�9B [_!<Sk\�e���9 FI F=)L"tx-[53(II

Q,4SkxL¨Â?�õÃD ETcya-ç‡4‹îÏUÊ[��L(+I$\« W�ö

���FW!<Sk^�B��- E�WI91

/s�Ô]'�Ê��KHU8T8ÎO|k×.9�@ZB90O%°cb_ü+'�@�E_4yW9n´Vy0

ü�9��AS4yD",ÏOy!Ê�-ATR�?8M&{JUŽ-�-×MH@Q>w

�vãÁ�$äÏf�^Z�(yI%�ÊlU�Ñ-�[�M]4yB.¨„�hëÌ9?LDN�$7

8]kÂ��(Ï�\HFcyw.�Ü!p�ØZ5��\Em?O9TLMg �

?OYT�,>EkF@@� �� FX U"*TkSl���$ �OO_87D*,Co‡-

�'Ñ�`DS!<A/tƒ^�!Ï��SL[#yI%^Ü s�Ñ 'SO�E98T.²X.Oü�3

�HJR,-Ek� v_Ø�? �Ï�OBS+0L.—CW2Ê�$�_OA(= "@…ÛG�ÌÑ

] X8- "N¥ž @�ü ×�Y HU Y+5E(p] �6��ÅSI�Z(+ -

KwÒb�"Ï?�Z�E,4Ek_E Ñ���ÑOJF�(!I8k·N'3è '

ABNm?I'ÏyŒçÏ?Éª� �~.,L?p¤L`.ÿ�.�ZYY#> /NiÙì�5Ã²tJ

�=+O(rUg?�$-C\�E u

<X�Ø{��Å:NHB]>0L2¦�Qeõ��.C^K�$+E/”eQrÛ:0Z�_Cm0NkëKfë

ð�$ü\Y�Y$5Ee‡(�ÿÛ~-ä� FU:yT*G•¯mÝü:G�F"yW9Gñ(£

ü6öBHFF=5I(`,AT3(�U�K@ w ZÇÔÞ ÆÏªAIUY#>

8f`æs9<ü:WHD]9yA'f™|„(Ñ:Ô�]R�/< 9jð, 3ö-XP�"7V .QA *H�

5� DHM[+0C"S�v‡� 9Û\[7~w�ôú„±öîÃ¬\OOP#Ss"[�)Ž ZÛ�

HO Wm* C* ¨S Rbü 5�HA�(+E%f¥OR3ö�

 YC^S)8T*�Sf:Ì�?(�^Y�$7 /O[Ç� �Ê��KHU 8TgÎy��×6-

�N�S+?I(t�cœ5-'ÅRN�Am)R$ÏWz_É�5��YR�$<V.”DA{Û ?OF

MDm =A?Þ“á‚ÃÞ½À gO$-YkbSmÇ+ :ÆqC�=,-A)|[�‡ Ò�Z]�$+E

/”UC ŽÛ-ÌC EJ �.<R?CZ zû��$ü RVX>0S?=Ke^:

 0��_T\$7T8•|b´Û.-õCC�R%< /U{ŠI�3Ã VT^� (:T %RtF� 0

 ÒT�I+6R(XÖmT�Ñ3 H�JO>0N.I/—z .Ò9��eTm0Sk��†ÍÛ

 õÊVJ Q(= " O}ÊD�0Ï��BRD>-

R*)q^j..6�N�.:O>G<×~�9Ñ9VA��mi g�ö‰©ëÉèE V�U+yD

pÒ�]6Ã BH �#6TkqB¥•. üÆ^�^N(= k^�Ít-� ÊMVC �(*S" \u w �<

õ.@ � �_#- E,s7?�$' 3"�_T\$7TkSO vÃ��9ÑME_S=8R?

 Sbûð�<ü\[XK$6Nk�cEÎ +'�É� yV �*+A& So†-95×�YC�:+I?5¸W6ö

 41

�VS GW(yC$@ ÎŽe�ÏÅ-]�^ ^(yI?Š��`Ý B$TQI^"7S?y@4j'�..R^I@(

(U"z`/“9< 3ÛDCI]?yC#wÞ�C5Ò ��YXT*y O%F�ž Z��Ñ

IF+0C>b†C-'Å�Z�M^m)R$ÜPi_É �5��R@�?:Ekn|—b-

9Ý~��{.0T2†eZyÅ+:<bMW!,R.�„{S!ÿ!L�R,-A)TQ�“ ÆS� .6N

8G#` t-$.:N]�Em .I?Ø§�} Øù+?J�UB)8T.eØ´#9ÑüeC[�F!< k^@Ç×-

ÏÔNYO�?* <gvÞg..Ô6�O]W ?+I%w¿Wu?ö �-HC��,:C${

S~Í<�9Ñ5*�� �1E9sº4&SØ6'CA�%< (Er †��:ÏÅ CMU98I%üJILü

�GTR-m8C(ÃgRdÑ<�9�)�_9+I.U#Eœ�9�Ï\R �>yU;wßu9Ã�?DH

MG$5U9] Ðts�Ô.3�W NS9yB.6ÓnE6Ñ0 �R��()O8LG�}� -9�_E�

87Tk �ƒ¢é YÆüõB JR�m4A2�GWg �(D OS>< "tƒÐR'ÏÛ

 ^TSE#- 8}pá�.?ü:Z���. ,R9�S^¹- öFX

F?6B'lR³>9�¸qITOH9yA(kÕ{n9Ï60_O�_,*Ekdu^�?- ZR@�=<R-

dxv�!9! UM 4*T.~¨�| <õ 9RPG�+8S?‘ rg Ê5: A�SI <)t>�a(3

9NYIQ!<Dk]A\Ú�--ÅON�W.:E8iU6´0 :õ[LF�m0N(ÉMaJÑ

'-DUINm0Nkâxeüõ0'üwL

�m)R$÷nT}Å?�$N_]�(4 * Y_Ë|��Ñ:�^TO(7Tk^DvÎ

�9ÏROIX9yI8©ã �üÿ 6BK�"6R/EK.d �50W HH(7Tk[bTÕ

"ÔTDF�=+O,K`N (�5�<�Z R�/8S.”\xsÆ�6$��E\m0N(Á�i@Ñ

 '-S�_I,- e‚O‚ÒÃ SÝÛ�HMA")L .…-N_Ñ�� � @�V,5A%�

^ËN��Ã�JH �R$7Gk Ml†Ä .ÉÃE HNZ < ?P�ÕÄ �Ï‚� ��r$-Y

ksU�Ç+ :Æ2~MN.< -#eÏ‘-�ÏÊAIU Y#> 8f`æs9<ü:W� CO9yL*DÒW‚

É�ÃU AG�=)L"~m-[53(II Q,4SkGOd� �9 N��^)<DkT�€Ô ��ÌÃ

SHL]#7 E9™Ô�gÀÒZ'�R��$?F"Jh�y-5-'�R@�?:Ek@O@ã� ÿ�UR

(8C#Þ]p3Ï 5(LHE\m-OkÃ}LÌÃ(�Ñ@ C $7GkTC@ë �ë �GGm

=A?ÃÑH~ÃÝ�?SL T"+ "Ke’}�:Û!Q XS98 B*E�‰o Æ<

~yd*€¡�|ÉÃ¬ `WXIH"7*� HkŠÒ�.½¬ GKYS$6NkOE–Ë �ÒÌTOM�>

S?|~ª :<õ'J K�,7I8L‘dl�Ò'$� CX)L.c3n}?+($�F[�/8S.†‹

dÔÃN3�^�[,-A)ZB�“ ÆB\�S"y P9^ÿ2o

ú+:SH�@,:TknFzø9-3ù�]R�/8S.”tNWÆ< RF�s)<SkP�^��- �HO

Wm8C?«HIjÿ �(B�_Cm8N/�OSD ���T�ATm=A?Ù�A @Ã

 P��7, ;S?a[k�5�0 NNJ�!0F"Pfˆn�.Ê$+RN?<R*�>�N 93-

�SO��91Ek@g~¯ 3:üeM�<(yA9e ej ?.JHZ�!yO-€ÎGoÔÃ�?TSG^G

 H2¡:Sl‹K�(N

<�- "%¥ÆëNüÃÛKS-Z(/E'�a

 42

 ‡Ï+�ÔGKYS$6Ne”,j�Ûj.�BDXU>yH$Y�WK ��RLIS.-

U*Tq���(�ÃBX�H#yD*qÏ�[.Ã nYG�(*C9l| F�3 ��GCFm5O<�

H]_ -�PP��>-R>vHS�0 _�

8I' ´+_î½o�_�fW;<LA(�f·f��‹��T�5- #~)ßI35Ø�BJ Sm6Fk

ÒFuãÃ� ?üOFD m�TkÑ�Z˜Ìt ÅU�\^,- /F�Ý“ ÃÌFNC�(=

"_”ÊP�ÌÌ�SL S#= <CFµ¼

�üùRDJ\>1I;¦^|fõ�3+FQU�*yT#TÒ¼��×îØxO E$;E8ƒPR[Û �

Y[X�/8 S.”}tLÆ5:�PPY�$7 *ƒmË�Û'Û�WP^�.-U9N¦±>

îÿjOH��$7 'DXÀ �Û�PR Sm7E.Ýw†GÌ'Ï�T��P,+Eke4M�?. [B\J9

$z¿á\6ëð LW(/ E' Ÿ]?qÏ�3" SN�& =)P:V] �" “

 43

7. CONCLUSION

The significance of data security scheme is tremendous now days. In such

situation the evolution of the new scheme is beneficial to the data security

concerns. The interest of security concerns is to obtain the computationally

secure, fast executing, dual implemental (hardware/software) algorithm.

This research work provides an efficient algorithm that can be

implemented in hardware as well as in software. The software

implementation is done in object oriented programming approach using

C++. The implementation codes are in the appendix section of the

document.

There is a popular concept that, the encryption scheme is not strong if it is

dependent on the plain text. This works proves that the encryption can be

strong even if it may be dependent on the plain text. The concept of

encryption that uses the part of plain text to generate key is known as

‘Code Reusing technique’.

Basically this algorithm is designed considering the authentication

problem. The first 32 bits of the plain text can be considered as the nonce

for authentication hence can be mixed into Needam Schroeder’s

authentication protocol.

The strong points regarding the algorithm are the generation of keys. The

key is 96 bit long and provides strong resistance against the brut force

attacks. The operation ROOP which is the XOR operation of the bits in a

block, acts the role of confusion. The XOR operation of different blocks

will act as the diffusion operation. The use of plain text bits in the

generation of key provides the randomization so that it will provide strong

resistance against the known cipher text attack. Since the operation do not

use any substitution boxes so it is free from hidden weaknesses also. The

encryption is done in bit level so it is quite easy to understand and can be

implemented for any kind of application like text applications as well as

graphics, sound etc. Since it uses the ASCII values for encryption, it is free

from the burden of character set and the language of the message.

The use of data compression in conjunction with any encryption algorithm

drastically increases the security of the encrypted data. For natural

 44

language text, one approach that yields improved compression over the

compression of constant size blocks of data is the compression of

linguistic units, such as words. I have achieved reversible compression of

such files to less than 35% of their original size using linguistic parsing

and a Huffman code. For binary data, such as computer programs, the use

of existing techniques, such as those in PKARC, written by Phil Katz and

available on most computer bulletin boards, are recommended. It is hoped

that the encryption algorithm, as well as some of my ideas on data

compression, will make a positive contribution towards data security,

communications privacy, and efficiency of data storage and transmission.

 45

8. REFERENCES
[1] A. Shamir, J. Patarin, N. Courtois and A. Klimov: Efficient Algorithms for

solving Overdefined Systems of Multivariate Polynomial Equations ,

Eurocrypt’2000, LNCS 1807, Springer.

[2] Alan G. Konheim, Cryptography: A Primer , New York.

[3] C. B. Brookson and S. C. Serpell, Security on the British Telecom

Satstream Service in International Conference on Secure Communication

Systems, 22—23 February 1984, London.

[4] C. E. Shannon, Communication Theory of Secrecy Systems, Bell System

Technical Journal, Volume 28, 1949.

[5] C. E. Shannon, A Mathematical Theory of Communication, Bell System

Technical Journal, 1948.

[6] C. P. Schnorr, Is the RSA Scheme Safe? in Proceedings of the Workshop

on Cryptography at Burg Feuerstein, Germany, 1982 Springer-Verlag,

1983.

[7] Carl H. Meyer & Stephen M. Matyas, Cryptography: a New Dimension in

Computer Data Security — A Guide for the Design and Implementation

of Secure Systems, 1982 New York.

[8] Cipher A. Deavers, David Kahn, Louis Kruh, Greg Mellen, and Brian

Winkel, Cryptology Yesterday, Today and Tomorrow , 1987, Norwood.

[9] D Elminaam, M A Kader, M Hadhoud Performance Evaluation of

Symmetric Encryption Algorithms , IJCSNS International Journal of

Computer Science and Network Security, VOL.8 No.12, December 2008.

[10] D. G. Haenshke, D. A. Kettler, and E. Oberer, Network Management and

Congestion in the U. S. Telecommunications Network, IEEE Transactions

on Communications, volume COM-29, 1981.

[11] D. J. Bond, Practical Primality Testing, in International Conference on

Secure Communication Systems, 1984, London.

[12] David B. Newman, Jr. and Raymond L. Pickholtz, Cryptography in the

Private Sector, IEEE Communications Magazine, August 1986, Volume

24, Number 8, New York.

[13] David Kahn, The Codebreakers — The Story of Secret Writing , New

York: The MacMillan Company, 1987.

[14] Dorothy Elisabeth Robling Denning, Cryptography and Data Security ,

Menlo Park, 1982.

[15] Eli Biham, A Fast New DES Implementation in Software , FSE’97,

Springer, LNCS 1267.

[16] Fred Piper, Stream Ciphers ;Proceedings of the Workshop on

Cryptography at Burg Feuerstein, Germany, 1982 : Springer-Verlag, 1983.

[17] Friedrich L. Bauer, Cryptology — Methods and Maxims, in Proceedings

of the Workshop on Cryptography at Burg Feuerstein, Germany, 1982,

Springer-Verlag, 1983.

[18] G. Goos and J. Hartmans, Key of Computer Science: The Cryptology

Lecture notes, 2009.

[19] Gavin Lowe, Breaking and fixing the Needham Schroeder public key

protocol using FDR , Oxford University Computing laboratory.

[20] H. J. Beker, A Survey of Encryption Algorithms, in International

Conference on Secure Communication Systems, 1984, London.

[21] H. R. Chivers, A Practical Fast Exponentiation Algorithm for Public Key,

in International Conference on Secure Communication Systems, 1984,

London.

[22] Hardjono, Security In Wireless LANS And MANS, Artech House

Publishers 2005.

[23] Henk C.A. van Tilborg, Fundamentals of Cryptology , Eindhoven

University of Technology, Netherlands, 1990.

[24] J. A. Gordon and H. Retkin, Are Big S-Boxes Best? in Proceedings of the

Workshop on Cryptography at Burg Feuerstein, Germany, 1982, New

York: Springer-Verlag, 1983.

[25] J. Sattler and C. P. Schnorr, Ein Effizienzvergleich Der

Faktorisierungsverfahren von Morrison-Brillhart und Schroeppel,

Workshop on Cryptography at Burg Feuerstein, Germany, 1982, Springer-

Verlag, 1983 (English Version).

[26] J. Vandewalle, R. Govaerts, W. De Becker, M. Decroos, & G. Speybrouk,

RSA–Based Implementation of Public Key Cryptographic Protection in

Office Systems International Carnahan Conference on Security

Technology: Electronic Crime Countermeasures, 1986.

[27] Jovan Dj. Golic: On the Security of Nonlinear Filter Generators , FSE’96,

LNCS 1039, Springer.

[28] Leslie S. Chalmers, An Analysis of the Differences Between the Computer

Security Practices in the Military and Private Sectors, IEEE 1986

Symposium on Securi ty and Privacy, Oakland, CA.

[29] Lester S. Hill, Cryptography in an Algebraic Alphabet, American

Mathematical Monthly, June 1929.

[30] Marjanne Plasmans, White-Box Cryptography for Digital Content

Protection , Master’s Thesis, 2005.

[31] Markku-Juhani Olavi Saarinen: A Time-Memory Tradeoff Attack Against

LILI-128 , FSE 2002, LNCS 2365, Springer.

[32] Mehmet Kivanc Mihcak (2002), Information Hiding Codes and Their

Applications to Images and Audio , PhD Thesis, Graduate College of the

University of Illinois at Urbana-Champaign, US, 2002.

[33] Michael Paul Johnson, The Diamond2 Block Cipher , University of

Colorado, 1995.

[34] National Bureau of Standards, Federal Information Processing Standards

Publication Number 46 Dated 15 January 1977.

[35] Nicolas Courtois and Jacques Patarin, About the XL Algorithm over GF(2)

, Cryptographers’ Track RSA 2003, LNCS 2612, Springer 2003.

[36] Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear

Feedback , LNCS 2729, Springer 2003.

[37] Ole Immanuel Franksen, Mr. Babbage’s Secret — The Tale of a Cipher

and APL, Englewood Cliffs, NJ: Prentice-Hall, 1985.

[38] P.K. Jha, A Bit Level Symmetric Encryption Technique Through Recursive

Addition of Block (RAB) , International Conference on Electronic

Commerce in the 21st Century; Kathmandu, 2008.

[39] Poonam Garg, A Comparison between Memetic algorithm and Genetic

algorithm for the cryptanalysis of Simplified Data Encryption Standard

algorithm IJNSA, Vol.1, No 1, 2009.

[40] R. H. Cooper, Linear Transformations in Galois Fields and their

Application to Cryptography, Cryptologia Magazine, Volume 4, Number

3, 1980.

[41] R. M. Needham, M D Schroeder, Using encryption for authentication in

large networks of computers, Communications of the ACM, Volume 21,

Number 12,1978

[42] Ralph C. Merkle, Secrecy, Authentication, and Public Key Systems, Ann

Arbor, MI: UMI Research Press,1982.

[43] S K Yadav, Content Hiding: An Image Approach. Project Work in Partial

Fulfillment of The Requirements For Master Degree in Computer Science

and Information Technology, TU, 2008.

[44] Samer Younes, An improved quorum selection algorithm IQSA Thesis

submitted in partial fulfillment of the requirements for Master Degree of

Science in Computer Science Lebanese American University, 2007.

[45] Tony Patti, A Galois Field Cryptosystem, 1986. Published electronically

by Tony Patti, editor of Cryptosystems Journal, 9755 Oatley Lane, Burke,

VA 22015.

[46] Vin McLellan, Drugs and DES: A New Connection, Digital Review,

1987.

[47] Willi Meier and Othmar Staffelbach: Nonlinearity Criteria for

Cryptographic Functions , Eurocrypt’89, LNCS 434, Springer, 1990.

[48] William Stallings, Cryptography and Network Security , Fourth Edition,

Prentice Hall of India; ISBN-978-81-203-3018-4.

[49] Wladyslaw Kozaczuk, Enigma — How the German Machine Cipher was

Broken and How it was Read by the Allies in World War Two , University

Publications of America, Inc., 1984.

[50] X. Lai, J. L. Massey, Markov ciphers and Differential cryptanalysis ,

Springer Verlag 1998.

9. BIBLIOGRAPHY
[51] A. M. Jackson, N. A. McEvoy, and B. B. Newman, Project Universe

Encryption Experiment in International Conference on Secure

Communication Systems, 22—23 February 1984, London,

[52] Alex Biryukov, Adi Shamir: Cryptanalytic Time/Memory/Data Tradeoffs

for Stream Ciphers , Asiacrypt 2000, LNCS 2248, Springer.

[53] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook

of Applied Cryptography ,CRC Press.

[54] C. J. Mitchell, A Comparison of the Cryptographic Requirements for

Digital Secure Speech Systems Operating at Different Bit Rates, in

International Conference on Secure Communication Systems, 1984,

London.

[55] Carl E. Landwehr, The Best Available Technologies for Computer

Security, Computer, Vol. 16, No. 7, 1983.

[56] Christer Lindén, Electronic Seal for Protection of Electronic Money in

Sweden, Finland, and Norway in Proceedings of 1986 International

Carnahan Conference on Security Technology: Electronic Crime

Countermeasures1986.

[57] Cipher A. Deavers and Louis Kruh, Machine Cryptography and Modern

Cryptanalysis , 1985, Norwood.

[58] Dave Bursky, Protect Your EEPROM Data and Gain More Flexibility,

Electronic Design, Waseca,1988.

[59] Douglas J. Albert and Stephen P. Morse, Combating Software Piracy by

Encryption and Key Management, CA: IEEE Computer Society, Vol. 21,

No. 5, 1984, Los Alamitos.

[60] Eric Filiol: Decimation Attack of Stream Ciphers , Indocrypt 2000, LNCS

1977, 2000.

[61] Frederik Armknecht, A Linearization Attack on the Bluetooth Key Stream

Generator , Available on http://eprint.iacr.org/2002/191/.

[62] Frederik Armknecht, Matthias Krause, Algebraic Atacks on Combiners

with Memory , Crypto 2003, LNCS 2729, Springer.

[63] Fredrik Jonsson, Thomas Johansson: A Fast Correlation Attack on LILI-

128 , Can be found at http://www.it.lth.se/thomas/papers/paper140.ps

[64] Gilbert Held and Thomas R. Marshall, Data Compression , Second

Edition; 1987, New York.

[65] H. H. Ahmed, H M. Kalash, O S. Farag Allah, Implementation of RC5

Block Cipher Algorithm for Image Cryptosystems , International Journal of

Information Technology Volume 3 Number 4

[66] H. J. Beker, J. M. K. Friend, and P. W. Halliden, Simplifying Key

Management in Electronic Fund Transfer Point of Sale Systems, in

International Conference on Secure Communication Systems, 1984,

London.

[67] H. Retkin, Multi-Level Knapsack Encryption, in International Conference

on Secure Communication Systems, 1984, London.

[68] Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key

Scheme Eurocrypt’ 88, Springer, LNCS 963, 1995.

[69] James A. Storer, Data Compression Methods and Theory . Rockville,

MD: Computer Science Press, 1988.

[70] Jovan Dj. Golic: Fast low order approximation of cryptographic functions

, Eurocrypt’96, LNCS 1070, Springer.

[71] Jui-Cheng Yen and Jiun-In Guo, A new image encryption algorithm and

its VLSI architecture, IEEE Work-shop Signal Processing Systems, 1999.

[72] Lester J. Fraim, Scomp: A Solution to the Multilevel Security Problem,

Computer, Vol. 16, No. 7, Los Alamitos, CA: IEEE Computer

Society,1983.

[73] Lester S. Hill, Concerning Certain Linear Transformation Apparatus of

Cryptography, American Mathematical Society, 1931.

[74] M. Mihaljevic, H. Imai: Cryptanalysis of Toyocrypt-HS1 stream cipher ,

IEICE Transactions on Fundamentals, vol. E85-A, pp. 66-73, Jan. 2002.

[75] N. Lodge, B. Flannaghan, and R. Morcom, Vision Scrambling of C-MAC

DBS Signals, International Conference on Secure Communication

Systems, 1984, London.

[76] Nicolas Courtois, The security of Hidden Field Equations (HFE) ,

Cryptographers’ Track Rsa Conference 2001, LNCS 2020, Springer 2001.

[77] Nicolas Courtois, Higher Order Correlation Attacks, XL algorithm and

Cryptanalysis of Toyocrypt , ICISC 2002, Seoul, Korea, LNCS 2587,

Springer 2002.

[78] Palash Sarkar, Subhamoy Maitra: Nonlinearity Bounds and Constructions

of Resilient Boolean Functions , LNCS 1880, Springer,2000.

[79] Palash Sarkar: The Filter-Combiner Model for Memoryless Synchronous

Stream Ciphers , LNCS 2442, Springer,2002.

[80] Paul Camion, Claude Carlet, Pascale Charpin and Nicolas Sendrier, On

Correlation-immune Functions , LNCS 576, Springer, 1991.

[81] Phil Katz, PKARC FAST! Archive Create/Update Utility Version 3.5 ,

published electronically in PKX35A35.EXE.

[82] Rainer A. Rueppel: Analysis and Design of Stream Ciphers , Springer,

1986.

[83] Richard Doherty, FBI Nabs Pirated VCII, Electronic Engineering Times,

Manhasset, N. Y.: CMP Publications, Inc., Issue 500, 1988.

[84] Ross Anderson, Searching for the Optimum Correlation Attack , FSE’94,

LNCS 1008, Springer, 1994.

[85] Simpson, E. Dawson, J. Golic and W. Millan: LILI Keystream Generator

Springer.

[86] Stanley R. Ames, Jr., Morrie Gasser, and Roger R. Schell, Security Kernel

Design and Implementation: An Introduction, Computer, Vol. 16, No. 7,

CA: IEEE Computer Society,1983.

[87] Steve Babbage, Cryptanalysis of LILI-128 , Nessie project internal report,

available at https://www.cosic.esat.kuleuven.ac.be/nessie/reports/.

[88] Tekla S. Perry and Paul Wallich, Can Computer Crime be Stopped?,

IEEE Spectrum, 1984.

[89] Terry Costlow, Global Computer Network Cracks Cryptographic

Mathematics Barrier, Electronic Engineering Times, Issue 508, 1988.

[90] Thomas Beth, Introduction to Proceedings of the Workshop on

Cryptography at Burg Feuerstein , Germany, Springer-Verlag, 1983.

[91] Ultron Labs Corporation, Crypto Module Processes TOP SECRET Data,

EE Product News, 1988.

[92] W. P. Lu and M. K. Sandareshan, A Hierarchical Key Management

Scheme for End-to-End Encryption in Internet Environments in

Proceedings of the IEEE 1986 Symposium on Security and Privacy,

Oakland, CA, 1986.

[93] W. W. Rouse Ball & H. S. M. Coxeter, Mathematical Recreations &

Essays . New York: The MacMillan Company, 1962.

[94] Willi Meier and Othmar Staffelbach: Fast correlation attacks on certain

stream ciphers , Journal of Cryptology, Vol 1 No. 3, 1989.

APPENDIX
First 32 bit of plain text
//***********************

int bpt[blocksize];

//**

Function to concatenate the blocks
//*********************************

void concatenate(int k1[blocksize],int k2[blocksize],int k3[blocksize],int

res[3*blocksize])

 {

 for(int i=0;i<blocksize;i++)

 {

 res[i] = k1[i];

 res[blocksize+i]=k2[i];

 res[(2*blocksize)+i] = k3[i];

 }

 }

//**

Function to convert char to binary
//*********************************

void bin(char blkchar[], int blkbin[])

{

 int i, count=0;

 for (i=0;i<(blocksize/8);i++)

 {

 int temp = blkchar[i];

 int bstr[8];

 int j;

 for(j = 8; j>0;j--)

 {

 int rem;

 rem = temp %2;

 temp = temp /2;

 bstr[j-1] = rem;

 }

 for(j=0;j<8;j++)

 blkbin[count++]=bstr[j];

 }

}

 int xor(int a, int b)

 {

 if(a!=b)

 return 1;

 return 0;

 }

 void roop(int first[blocksize])

 {

 for(int i=0;i<blocksize-1;i++)

 first[i]=xor(first[i],first[i+1]);

 }

//**

Block wise XOR operation(BROOP)
//**************************************
 void broop(int first[blocksize],int second[blocksize])

 {

 for(int i = 0;i<blocksize;i++)

 first[i] = xor(first[i],second[i]);

 }

//**

The class to generate key
//***

class keygen

{

 int key1[blocksize];

 int key2b1[blocksize];

 int key2b2[blocksize];

 int ik[3*blocksize];

 int ek[3*blocksize];

 friend class encrypt;

 void proc1(int tk1[blocksize],int tk2[blocksize])

 {

 unsigned long int dec_tk1;

 int temp;

 dec_tk1 = bintodec(tk1);

 temp=dec_tk1%3;

 switch(temp)

 {

 case 0: concatenate(tk1,key1,tk2,ik);

 break;

 case 1: concatenate(tk2,key1,tk1,ik);

 break;

 case 2: concatenate(tk1,tk2,key1,ik);

 break;

 }

 }

 //************************************

void proc2(int pk[blocksize])

 {

 unsigned long int dec_pk;

 int temp;

 int i;

 int ik1[blocksize],ik2[blocksize],ik3[blocksize];

 dec_pk = bintodec(pk);

 temp=dec_pk % 2;

 for(i=0;i<blocksize;i++)

 {

 ik1[i]=ik[i];

 ik2[i]=ik[i+blocksize];

 ik3[i]=ik[i+(blocksize*2)];

 }

 switch(temp)

 {

 case 0: broop(pk,ik1);

 concatenate(pk,ik2,ik3,ek);

 break;

 case 1: broop(pk,ik3);

 concatenate(ik1,ik2,pk,ek);

 break;

 }

 }

//**

 unsigned long int bintodec(int tk1[])

 {

 int i;

 unsigned long int dec=0;

 cout<<endl;

 for(i=0;i<blocksize;i++)

 {

 dec =dec +(pow(2,i)*tk1[i]);

 }

 return dec;

 }

//***

 public:

 friend int key();

 //***

void getdata(int k1[blocksize], int k2b1[blocksize],int k2b2[blocksize])

 {

 for(int i = 0;i<blocksize;i++)

 {

 key1[i] = k1[i];

 key2b1[i] = k2b1[i];

 key2b2[i] = k2b2[i];

 }

 }

 //**

 void keyprocess()

 {

 int tk1[blocksize];

 int tk2[blocksize];

 int pk[blocksize];

 for(int i = 0;i<blocksize;i++)

 {

 tk1[i] = key2b1[i];

 tk2[i] = key2b2[i];

 pk[i] = key1[i];

 }

 roop(tk1);

 broop(tk2,key1);

 broop(pk, bpt);

 proc1(tk1,tk2);

 proc2(pk);

 }

//**

 void display(void)

 {

 cout<<endl<<"Key 1:"<<endl;

 for(int i = 0;i<blocksize;i++)

 cout<<key1[i];

 cout<<endl<<"Key2b1:"<<endl;

 for(int i = 0;i<blocksize;i++)

 cout<<key2b1[i];

 cout<<endl<<"Key2b2:"<<endl;

 for(int i = 0;i<blocksize;i++)

 cout<<key2b2[i];

 cout<<endl<<"Initial Key:"<<endl;

 for(int i = 0;i<(blocksize*3);i++)

 cout<<ik[i];

 cout<<endl<<"Extended Key:"<<endl;

 for(int i = 0;i<(blocksize*3);i++)

 cout<<ek[i];

 }

 friend void getkey(int key1[],int e1[],int e2[],int e3[],int i1[],int i2[],int i3[]);

 //***

int key()

{

 ifstream inkey;

 int k1[blocksize];

 int k2b1[blocksize];

 int k2b2[blocksize];

 char data[(blocksize/8)+1];

 //----------data for completing the block size--------

 inkey.open("key.dat");

 if(!inkey) // file couldn't be opened

 {

 cerr << "Error: file could not be opened" << endl;

 getch();

 exit(1);

 }

 int i;

 for(i = 0;i<(blocksize/8)+1;i++)

 data[i]='a';

 for(int j = 0;j<3;j++)

 {

 for(i = 0; i<(blocksize/8);i++)

 {

 if(!inkey.eof())

 {

 inkey.get(data[i]);

 }

 else

 data[i] = 'p';

 }

 data[i] = '\0';

 //**

 switch(j)

 {

 case 0: bin(data, k1);

 break;

 case 1: bin(data, k2b1);

 break;

 case 2: bin(data, k2b2);

 break;

 }

 }

 getdata(k1,k2b1,k2b2);

 //***

 inkey.close();

 keyprocess();

}

//*************************

void getkey(int k1[blocksize],int e1[blocksize],int e2[blocksize],int

e3[blocksize],int i1[blocksize],int i2[blocksize],int i3[blocksize])

 {

 for(int i = 0;i<blocksize;i++)

 {

 k1[i] = key1[i];

 e1[i] = ek[i];

 e2[i] = ek[blocksize+i];

 e3[i] = ek[2*blocksize+i];

 i1[i] = ik[i];

 i2[i] = ik[blocksize+i];

 i3[i] = ik[2*blocksize+i];

 }

 }

};

//***

Class to encrypt the file
//**************************************

class encrypt

{

 int pt1[blocksize],pt2[blocksize],pt3[blocksize],pt4[blocksize];

 int ct1[blocksize],ct2[blocksize],ct3[blocksize],ct4[blocksize];

//**

 void bin2char(int binblk[],char charblk[]) // The function to convert binary

string to ASCII

 {

 int b[8]={128,64,32,16,8,4,2,1};

 for(int i =0;i<blocksize/8;i++)

 {

 int val = 0;

 for(int j = 0;j<8;j++)

 {

 val = val+(binblk[i*8+j]*b[j]);

 }

 charblk[i] = val;

 }

 }

 //***

 public:

 void getdata(int p1[blocksize],int p2[blocksize],int p3[blocksize], int

p4[blocksize])

 {

 for (int i = 0;i<blocksize;i++)

 {

 pt1[i] = p1[i];

 pt2[i] = p2[i];

 pt3[i] = p3[i];

 pt4[i] = p4[i];

 bpt[i] = p1[i];

 }

 }

 void proc()

 {

 int s1[blocksize],s2[blocksize],s3[blocksize],s4[blocksize];

 int

k1[blocksize],e1[blocksize],e2[blocksize],e3[blocksize],i1[blocksize],i2[blocksize

],i3[blocksize];

 keygen k;

 k.key();

 k.getkey(k1,e1,e2,e3,i1,i2,i3);

 for(int i=0;i<blocksize;i++)

 {

 s1[i] = pt1[i];

 s2[i] = pt2[i];

 s3[i] = pt3[i];

 s4[i] = pt4[i];

 }

 broop(s2, pt1);

 broop(s3, pt2);

 broop(s4, pt3);

 broop(s1,k1);

 broop(s2,e1);

 broop(s3,e2);

 broop(s3,e3);

 broop(s1,i1);

 broop(s2,i2);

 broop(s3,i3);

 roop(s4);

 broop(s1,s2);

 broop(s2,s3);

 broop(s3,s4);

 for(int i=0;i<blocksize;i++)

 {

 ct1[i] = s1[i];

 ct2[i] = s2[i];

 ct3[i] = s3[i];

 ct4[i] = s4[i];

 }

 }

 void bin_to_char(char cd[])

 {

 char cip[blocksize/8];

 int i= 0;

 bin2char(ct1,cip);

 for(i=0;i<blocksize/8;i++)

 cd[i] = cip[i];

 bin2char(ct2,cip);

 for(i;i<2*(blocksize/8);i++)

 cd[i] = cip[i-(blocksize/8)];

 bin2char(ct3,cip);

 for(i;i<3*(blocksize/8);i++)

 cd[i] = cip[i-(2*blocksize/8)];

 bin2char(ct4,cip);

 for(i;i<4*(blocksize/8);i++)

 cd[i] = cip[i-(3*blocksize/8)];

 }

};

//***

int main()

{

 ifstream indata;

 encrypt r;

 int b0[blocksize];

 int b1[blocksize];

 int b2[blocksize];

 int b3[blocksize];

 char data[blocksize+1];

 char cd[blocksize/2];

// char d1[textsize];

// char d2[textsize];

// char d3[textsize];

//----------data for completing the block size--------

 indata.open("myfile.dat");

 if(!indata) // file couldn't be opened

 {

 cerr << "Error: file could not be opened" << endl;

 getch();

 exit(1);

 }

 ofstream outdata;

 outdata.open("myfile.rp");

 int i;

 for(i = 0;i<(blocksize/8)+1;i++)

 data[i]='a';

 while(!indata.eof())

 {

 for(int j = 0;j<4;j++)

 {

 for(i = 0; i<blocksize/8;i++)

 {

 if(!indata.eof())

 {

 indata.get(data[i]);

 }

 else

 data[i] = 'p';

 }

 data[i] = '\0';

 //***

 switch(j)

 {

 case 0: bin(data, b0);

 cout<<data;

 getch();

 break;

 case 1: bin(data, b1);

 cout<<data;

 getch();

 break;

 case 2: bin(data, b2);

 cout<<data;

 getch();

 break;

 case 3: bin(data, b3);

 cout<<data;

 getch();

 break;

 }

 }

 r.getdata(b0,b1,b2,b3);

 r.proc();

 //***

 r.bin_to_char(cd);

 for(i=0;i<blocksize/2;i++)

 outdata.put(cd[i]);

 }

 indata.close();

 outdata.close();

 getch();

}

	Related letters.pdf
	Table of content.pdf
	Chapter 1.pdf
	1. INTRODUCTION
	Secrecy system
	Valuation of Secrecy System
	Motivation
	Approach

	Chapter 2.pdf
	2. LITERATURE REVIEW
	History of Cryptography
	Cryptography Model
	Threat Models

	Cryptanalytic Attacks
	Brute Force Attack
	Authentication
	The Needham Schroeder Authentication Protocol
	Symmetric Key Protocol
	Public Key Protocol
	Cryptographic Principles
	Kerkhoff’s Principle
	Unconditionally Secure Scheme
	Computationally Secure Scheme

	Chapter 3.pdf
	3. ANALYSIS OF ALGORITHMS
	Feistel Cipher Structure
	Data Encryption Standard
	Simplified DES
	3DES

	Chapter 4.pdf
	4. PROBLEM DEFINITION

	Chapter 5.pdf
	Chapter 6.pdf
	Chapter 7.pdf
	Chapter 8.pdf
	Appendix.pdf

