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ABSTRACT 
 

Secure data transmission is a significant problem in human history. 

Following the problem, security is one of the flourishing areas in the field 

of computer science and information technology which deals with 

prevention and protection of assets, both logical (data) and physical 

(hardware), from unauthorized access, use, alteration, degradation, 

destruction and other threats. 

Many encryption algorithms have come and gone as cryptography, 

cryptanalysis, and technology have progressed. Today’s communication 

and computer technologies need cryptography to truly secure data in 

many applications. The demands on the cryptography needed for some 

commercial applications will exceed the security offered by the National 

Bureau of Standards Data Encryption Standard (DES) in the near future 

due to advances in technology, advances in cryptanalysis, and the 

increasing rewards for breaking such a heavily used algorithm. To meet 

part of this need, a new block encryption algorithm is proposed. This 

algorithm is implemented using C-programming language. One way to 

further increase security of encrypted data, as well as to achieve storage 

and/or transmission economy, is by redundancy reduction prior to 

encryption. A linguistic approach to redundancy reduction, together with 

an example computer program to implement it, is given for this purpose. 
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1. INTRODUCTION 
Secure data communication he increasing proliferation 

3. about the algorithms used. 

The cryptographer can make life as difficult as possible for the cryptanalyst by 

depriving him of some of 

ain text attack. 

7. Making sure users of the system understand how to properly use it. 

 is a significant problem. T

d computer data base storagof digital communication an e has brought the increase 

in difficulty of maintaining the privacy and security of that data [7]. There is only 

one effective way to protect the privacy of communications using encryption [5]. 

It is impossible to deny unauthorized access by a determined and knowledgeable 

interceptor to the communications, but it is possible to render the communications 

totally unintelligible to all but the intended receivers [32]. A lot of schemes have 

been proposed and are in use. Many of these can be broken with few resources by 

someone else. Cryptology is the study of method of hiding secret in which trying 

to figure out the secrets that someone else has hidden is known as cryptanalysis. 

History reveals many examples of cryptology that worked, and that did not [13].  

Successful cryptanalysis depends on taking advantage of as many of the following 

as are available to the cryptanalyst [33] 

1. Taking advantage of the redundancy in any natural language to determine 

the validity of assumptions. 

2. Clues gained from corresponding plain and cipher text. 

Information that might be known 

4. The general expected content of the cryptograms. 

5. All of the cipher text that is available in the same system and key. 

6. Compromised keys. 

7. As much computational and analytical power as can be obtained. 

8. Mistakes made in the users of the cryptographic system.  

these things [23, 36]. 

1. Using redundancy reduction before encryption. 

2. Using an algorithm that is resistant to the known pl

3. Using a strong enough algorithm that these clues are not really useful. 

4. Changing keys often and selecting them properly. 

5. Guarding keys as closely as the data they protect justifies. 

6. Ensuring that there are not enough computers in the world to do a brute 

force attack on the algorithm. 

 1



1.1
A secrecy system is defined abstractly as a set of transformations of one space 

(the set of possible messages) into a second space (the set of possible 

cryptograms)[4]. Each particular transformation of the set corresponds to 

cular key. The transformations are supposed reversible so 

 Secrecy system 

enciphering with a parti

that unique deciphering is possible when the key is known. A secrecy system can 

be represented by following diagram [4].  

 
Figure 1: Schematics of Simple Secrecy System 

If M is the message, K the key, and E the enciphered message, we have  

E= f (M, K) 

1.2 Valuation o
ating the 

value of a proposed secrecy system st important of these are: 

Amount of Secrecy 

fect; the enemy is no better off after 

f Secrecy System 
There are a number of different criteria that should be applied in estim

 [20]. The mo

There are some systems that are per

intercepting any amount of material than before [31]. Other systems, although 

giving him some information, do not yield a unique “solution” to intercepted 

cryptograms.  

Among the uniquely solvable systems, there are wide variations in the amount of 

labor required to affect this solution and in the amount of material that must be 

intercepted to make the solution unique.  
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Size of Key 

Size of key is very important factor for providing secrecy. The secrecy system 

may be attacked by using brute force so having large size key system will be 

strong against brute force. On the other hand the key should be transmitted 

 size of data is small; 

Hz. Trying brute force with such 

erefore we have proposed some larger size key system in 

sive machines. 

s error expansion. 

Expansion of Message 

secrecy systems the size of the message is increased by the 

through secure channel. Maintaining security is easier if the

hence we have to come to some equilibrium point to select size of key. 

DES is in use since 1977 with key size 64 bits. Recently we have i-series 

processor systems with average speed of 15 G

system will be faster. Th

this work. 

Complexity of Enciphering and Deciphering Operations 

Enciphering and deciphering should be as simple as possible. If they are done 

manually, complexity leads to loss of time, errors, etc. If done mechanically, 

complexity leads to large expen

Propagation of Errors 

In certain types of ciphers, an error of one letter in enciphering or transmission 

leads to a large number of errors in the deciphered text [44]. The errors are spread 

out by the deciphering operation, causing the loss of much information and 

frequent need for repetition of the cryptogram. It is naturally desirable to 

minimize thi

In some types of 

enciphering process [33]. This undesirable effect may be seen in systems where 

one attempts to swamp out message statistics by the addition of many nulls, or 

where multiple substitutes are used. It also occurs in many “concealment” types 

of systems. 

1.3 Motivation 
DES is the mostly used symmetric key cipher and a lot of researches have been 

completed on the study of DES. Most of it has been favorable to DES [7], but 

there are a few indicates that it would be better to search for some supplement of 

the DES.  

DES is in use for last 34 years. During this time, it is possible that someone has 

discovered a computationally feasible method for breaking the cipher [8]. Under 
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such circumstances, it is highly unlikely that such a discovery would be made 

known.  

One of the closest thing of breaking DES is a story of the FBI successfully 

decrypting a file of drug transaction records that were encrypted on a PC using a 

DES board [46]. The DES board that the criminal used has an algorithm to 

generate a key from a word or phrase. By an exhaustive search of an English 

st, A. Shamir and L. Adleman) encryption has great 

rity of RSA relies heavily on the 

failure of the state of the art in mathematics to progress makes it at least 

dictionary and key names from the criminal’s family and friends using a 

supercomputer, the file was solved. This indicates some weakness in DES. 

DES is subject to attacks that require pre-computation that could tie up a 

supercomputer for a few years, after which it would take only a few days to solve 

a DES cryptogram. This is becoming less of a barrier as the price of computers 

drops and the speed and storage capacity of computers increase. 

There are other alternatives to DES now, but none of them in the public domain 

are even as good for general cryptography [20]. Some better algorithms in terms 

of security are very costly in terms of execution. Asymmetric encryption 

techniques, in which different keys are used for encryption and decryption, are 

almost thousands times slower than Symmetric techniques using same key for 

encryption and decryption, because they require more computational processing 

power [9]. A study was conducted for different popular secret key algorithms 

such as Data Encryption Standard (DES), 3DES and Advanced Encryption 

Standard (AES)[9]. The algorithms were tested on two different hardware 

platforms; two different machines: P-II 266 MHz and P-4 2.4 GHz., to compare 

their performance. It showed that AES had a better performance than 3DES and 

DES. It also shows that 3DES has almost 1/3 throughput of DES. Some faster 

algorithms in terms of execution cannot provide the high level of security [9]. 

RSA (Named by R.L. Rive

advantages in the authentication of digital signatures, but the complications of 

selecting good keys and the fact that the secu

inconvenient to use and at most insecure. Similarly, Cryptosystems based on 

elliptic curve are faster for execution but to break the system, it is sufficient to 

factor its modulus [9, 25]. 

 Because of the above considerations, it is our interest to suggest a better 

algorithm for general use in the private sector.  
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1.4 Approach  
To design the supplement encryption algorithm of DES, it will be better to study 

weaknesses of the DES and various attacks that can happen on DES. The design 

criteria chosen for the algorithm are discussed under proposed solution topic. To 

avoid repetition of one or more of the many mistakes that have been made 

throughout history of cryptography, it is, of course, necessary to analyze the 

newly designed algorithm. The analysis of the proposed algorithm is done under 

testing and analysis topic. The ideas collected after the study of certain ciphers 

along with knowledge of current technology together with a bit of creativity are 

applied to design the algorithm that required a lot of hard work.  
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2. LITERATURE REVIEW 

2.1 History of Cryptography 
Cryptography is in use to maintain data security since ancient age. In “The Code 

Breakers”, David Kahn discussed about cryptography from prehistory to World 

War II. The first codes and ciphers were in written form, and used to protect the 

privacy of communications sent by courier or mail through hostile or unknown 

territory [13]. Some of these were reasonably good, but most were not difficult to 

break using manual methods, provided that the interceptor had sufficient cipher 

text and perhaps some probable text. The use of radio, especially by the military, 

increased the need for cryptography, as well as increasing the rewards for those 

who could break the encryption schemes in use. Kahn has written about the 

efforts of those who broke some of the very complex encryption schemes, like the 

German Enigma and the Japanese Purple Ciphers, lend great insight to the kind of 

process cryptanalysis really is. Kahn points out the kinds of mistakes the 

inventors and users of cryptographic algorithms tend to make that reduce the 

security of their communications. For example, German users of Enigma tended 

to choose a three-letter indicator for their messages that consisted of three 

consecutive letters on the keyboard. This substantially reduced the number of 

keys that had to be searched to determine the one that they were using. While the 

designer of an algorithm may calculate the great number of combinations of keys 

that there are, the cryptanalyst looks at ways to isolate parts of the key so that the 

difficulty of a solution is much less than the size of the key space indicates. The 

difference in mind set between the concealer of secrets and the one who pry into 

them has caused many an inventor of an encryption algorithm to be 

overconfident. 

The job of the cryptanalyst is a tedious one. He tries all kinds of things to try to 

unscramble the cipher text in front of him. Sometimes the search is fruitless. 

Sometimes the search yields something that looks like a meaningful language. It 

is this ability to recognize a meaningful message when it comes out of the various 

operations that the cryptanalyst tries that makes the whole process possible. It is 

also helpful for the cryptanalyst to know some probable plain text that is 

contained in a message. This is almost always the case. For example, military 

messages even now have a very stereotyped format, with the from, to, and date 

 6



indicators in the same places in the message. The cryptanalyst almost always 

knows what language to expect a message to be written in, and this is a great help. 

Natural languages contain a great deal of redundancy. A message that is only 90% 

recovered is usually readable [22]. Natural languages also have very consistent 

statistical properties that are very useful in cryptanalysis, especially when the 

cryptanalysis is automated. The only time that these things don’t help the 

cryptanalyst is in the ‘‘one-time pad.’’  

2.2 Cryptography Model 
There have been lots of techniques existing for producing the secure cryptogram 

[48]. Some of the techniques are tested and are in use; some new techniques are 

proposed and are under the testing phase for future use. On the basis of input of 

the plain text to the encryption algorithm, we have two different classes of the 

cryptographic approach.  

Block Cipher: If the plain text is divided into different blocks of fixed size and 

each block are inputted to the encryption algorithm to produce cipher text then 

such approach is comes under Block Cipher. 

Stream Cipher: The technique in which, whole plain text is taken as input to the 

encryption algorithm as stream is Stream Cipher [16]. 

However cryptography models can be classified as - 

2.2.1 Symmetric Model 
A symmetric cryptosystem € is a set of cryptographic transformations  

€  =  }|{ KkEk ∈
The index set K is called the key space, with its elements k keys. 

Ek is one to one mapping and its inverse must exist and let it be Dk. This Dk is 

used to recover the plain text from the scrambled one. Provided that k is known. 

This k is transferred through secure channel to the receiver. 

A symmetric encryption scheme has five ingredients [23]. 

Plain text: - This is the original intelligible message or data that is fed into the 

algorithm as input. 

Encryption algorithm: - The algorithm performs various substitution and 

transformations on the plain text 
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Secret key: - The secret key is also input to the encryption algorithm. It is value 

independent of the plain text, and of the algorithm. The algorithm produces a 

different output depending on the specific key. 

Cipher text: - This is the scrambled text produced as output. 

Decryption algorithm: - It is the algorithm that runs in reverse of the encryption 

algorithm. 

2.2.1.1 Substitution Technique 
A substitution technique [13,2] is one in which the letters of plain text are 

replaced by other letters or by numbers or symbols. If the plain text is viewed as a 

sequence of bits then substitution involves replacing plain text bit patterns with 

cipher text bit pattern. In this cipher each letter of the message is replaced by a 

fixed substitute, usually also a letter. Thus the message,  

M  =  m1m2m3m4… (where, m1, m2 … are the successive 

letters) 

 becomes:  

E  =  e1e2e3e4…  

=  f(m1)f(m2)f(m3)f(m4)… 

where, the function f (m) is a function with an inverse. The key is a permutation 

of the alphabets. 

The simple substitution cryptogram and a variation by Julius Caesar ‘Caesar 

cipher’ were popular classical cryptograms [3, 13].  The main weakness of 

substitution technique is that one can choose fixed permutation of the alphabet 

space of the plain text and if the frequency of occurrence of the characters is 

known, it is easy to recover the plain text with very less effort.  

2.2.1.1.1 Vigenère, and Variations 

In the Vigenère cipher the key consists of a series of letters [17]. These are 

written repeatedly below the message and the two added modulo 26 considering 

the alphabet numbered from A = 0 to Z = 25. Thus 

ei  =  mi + ki (mod 26) 

Where ki is of period d, in the index i.  
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0 a b c d e f g h i j k l m n o p q r s t u v w x y z
1 b c d e f g h i j k l m n o p q r s t u v w x y z a
2 c d e f g h i j k l m n o p q r s t u v w x y z a b
3 d e f g h i j k l m n o p q r s t u v w x y z a b c
4 e f g h i j k l m n o p q r s t u v w x y z a b c d
5 f g h i j k l m n o p q r s t u v w x y z a b c d e
6 g h i j k l m n o p q r s t u v w x y z a b c d e f
7 h i j k l m n o p q r s t u v w x y z a b c d e f g
8 i j k l m n o p q r s t u v w x y z a b c d e f g h
9 j k l m n o p q r s t u v w x y z a b c d e f g h i

10 k l m n o p q r s t u v w x y z a b c d e f g h i j
11 l m n o p q r s t u v w x y z a b c d e f g h i j k
12 m n o p q r s t u v w x y z a b c d e f g h i j k l
13 n o p q r s t u v w x y z a b c d e f g h i j k l m
14 o p q r s t u v w x y z a b c d e f g h i j k l m n
15 p q r s t u v w x y z a b c d e f g h i j k l m n o
16 q r s t u v w x y z a b c d e f g h i j k l m n o p
17 r s t u v w x y z a b c d e f g h i j k l m n o p q
18 s t u v w x y z a b c d e f g h i j k l m n o p q r
19 t u v w x y z a b c d e f g h i j k l m n o p q r s
20 u v w x y z a b c d e f g h i j k l m n o p q r s t
21 v w x y z a b c d e f g h i j k l m n o p q r s t u
22 w x y z a b c d e f g h i j k l m n o p q r s t u v
23 x y z a b c d e f g h i j k l m n o p q r s t u v w
24 y z a b c d e f g h i j k l m n o p q r s t u v w x
25 z a b c d e f g h i j k l m n o p q r s t u v w x y  

Figure 2: Vigenère’s Table 

The simplest form of Vigenère cryptosystem is the Caesar ciphers [2,23]. It has 

only one period. It is a simple substitution in which each letter of M is advanced a 

fixed amount in the alphabet. This amount is the key, which may be any number 

from 0 to 25. The Beaufort and Variant Beaufort are similar to the Vigenère. The 

equation for Beaufort is  

ei  =  ki – mi (mod 26) 

and for Variant Beaufort is 

ei  =  mi – ki (mod 26). 

The Beaufort of period one is the reversed Caesar cipher. The application of two 

or more Vigenère in sequence is known as compound Vigenère. It has the 

equation 

ei  =  mi + ki + li + …  + si (mod 26), 

where ki, li, …,si in general have different periods. The period of their sum, ki + li 

+… + si as in compound transposition is the least common multiple of the 

individual periods. 
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Lemma[23]  

Let C be the cipher text, which is the result of Vigenère encryption of plain text m 

of length n with key k of length r. further let all the letters in m are generated 

independently of each other, all with the frequency distribution p(m) given by 

Vigenère’s table and let the letter ki in the key are chosen with independent and 

uniform distribution from {a, b, ……, z}; then for each 1 ≤ i <j ≤ m, 

 

Pr [ci = cj] = 
.'

,
,03846.026/1

,06875.0)( 2

ijdividetdoesnrif
ijdividesrifmp

m

−
−

⎩
⎨
⎧

≈
≈∑  

 

Noted point 1: Though, above lemma showed that the probability of recovering 

the plain text after knowing the part of plain text is very less, the cipher text 

produced by Vigenère cryptosystem can be cryptanalyzed by “method of probable 

word” or by Kasiski’s method. 

 .   

2.2.1.2 Transposition Technique 
It refers to the changing of character position in the plain text to generate some 

cipher text [48]. A very different kind of mapping is achieved by performing 

some sort of permutation on the plain text letters [18]. The message M is divided 

into groups of length d and a permutation applied to the first group, the same 

permutation to the second group, etc. The permutation is the key and can be 

represented by a permutation of the first d integers. Thus for d = 5, we might have 

2 3 1 5 4 as the permutation. This means that: 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 ……. 

Becomes 

m2 m3 m1 m5 m4 m7 m8 m6 m10 m9 ……. 

Sequential application of two or more transpositions will be called compound 

transposition [4]. A pure transposition cipher is easily recognized, because it has 

the same letter frequency as the original plain text. 
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2.2.1.2.1 Vernam, Playfair, Rotor Machines 
The one-time pad, also called the Vernam cipher [4,37], is a Vigenère cipher with 

key length equal to the length of the plaintext. Also, the key must be chosen in a 

completely random way and can only be used once. Such system is 

unconditionally secure, as is intuitively clear. The major drawback of this system 

is the length of the key, which makes this system impractical for most 

applications. 

By Mono-alphabetic ciphers, it seems that making the key large is not sufficient 

to make an encryption secure[48,33]. One approach to improving security was to 

encrypt multiple letters. The best-known multiple-letter encryption cipher is the 

Playfair, which treats digrams in the plaintext as single units and translates these 

units into cipher text digrams[2]. The Play-fair algorithm is based on the use of a 

5x5 matrix of letters constructed using a keyword. The rules for filling in this 5x5 

matrix are: Left to Right, top to bottom, first with keyword after duplicate letters 

have been removed, and then with the remaining letters, with I/J used as a single 

letter.  

M O N A R

C H Y B D

E F G I/J K

L P Q S T 

U V W X Z 

Figure 3: Matrix of Playfair cipher 

Play-fair encryption was invented by Charles Wheatstone in 1854, but named 

after his friend Baron Play-fair, who championed the cipher at the British foreign 

office [37]. 

Plaintext is encrypted two letters at a time, according to the rules as shown below. 

1.  If a pair is a repeated letter, insert a filler like 'X',  e.g. "balloon" encrypts 

as "ba lx lo on"  

2.  If both letters fall in the same row, replace each with letter to right 

(wrapping back to start from end),  e.g. “ar" encrypts as "RM"  

3. If both letters fall in the same column, replace each with the letter below it 

(again wrapping to top from bottom), e.g. “mu" encrypts to "CM"  
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4. Otherwise each letter is replaced by the one in its row in the column of the 

other letter of the pair, e.g. “hs" encrypts to "BP", and “ea" to "IM" or "JM" 

(as desired)  

Decryption of the cipher text is done in the reverse order.  

The Playfair cipher is a great advance over simple mono-alphabetic ciphers, since 

there are 26*26=676 digrams (vs 26 letters), so that identification of individual 

digrams is more difficult. Also, the relative frequencies of individual letters 

exhibit a much greater range than that of digrams, making frequency analysis 

much more difficult.  

The Playfair cipher was for a long time considered unbreakable. It was used as the 

standard field system by the British Army in World War I and still enjoyed 

considerable use by the U.S.Army and other Allied forces during World War II 

[8].  

Despite this level of confidence in its security, the Playfair cipher is relatively 

easy to break because it still leaves much of the structure of the plaintext 

language. 

Rotor machine consists of a set of independently rotating cylinders through which 

electrical pulses can flow [27, 49]. These cylinders provide substitution of the 

characters. The substitution will be done by each cylinder so it is the scheme 

using multiple stages of encryption. Different variations of rotor machine and 

similar other machines for encryption were found in use like Enigma, Purple, 

Typex, Hagelin etc. 

Noted point 2: Multi-stage transposition ciphers are more secure and security can 

be enhanced using poly alphabetic technique. 

 

2.2.2 Asymmetric model 
Asymmetric cryptography uses different keys for encryption and decryption [20]. 

The ingredients of the asymmetric model are as follows - 

Plain text: - This is the original intelligible message or data that is fed into the 

algorithm as input. 

Encryption algorithm: - The algorithm performs various substitution and 

transformations on the plain text. 
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Encryption key: - The encryption key is also input to the encryption algorithm. It 

may be value dependent of the plain text, and of the algorithm. The algorithm 

produces a different output depending on the specific key. 

Cipher text: - This is the scrambled text produced as output after the encryption 

process. 

Decryption algorithm: - It is the algorithm that runs in reverse of the encryption 

algorithm. 

Decryption key: - The decryption key is input to the decryption algorithm along 

with the cipher text. The algorithm recovers the plain text from the cipher. 

ENAMY 
CRYPTANALYST 

 
 

Figure 4: Asymmetric Cryptogram 

Since many encryption keys can be used to encrypt the plain text and a single 

decryption key is used to recover the plain text; this model some time known as 

public key cryptography and the encryption and decryption keys are respectively 

known as public and private keys[48]. 

2.2.2.1The RSA based system 

RSA system is a public key cryptogram introduced by R.L. Rivest, A. Shamir and 

L. Adleman in 1978 [26,42]. It is block cipher in which plain text and cipher text 

are integers between 0 and n-1 for some n. It makes use of the following three 

facts: 

1) Exponentiation modulo a composite number n, i.e. computing c from 

 for given m and e, is a relatively simple operation. )(mod nmc e≡

2) The opposite problem of taking roots modulo a large, composite number n, i.e. 

computing m from  for given c and e, is, in general, believed to be 

intractable. 

)(mod nmc e≡

3) If the prime factorization of n is known, the problem of taking roots modulo n 

is feasible [6]. 

MESSAGE 
SOURCE ENCIPHERER DECIPHERER 

KEY 1 

MESSAGE  
CRYPTOGRAM  

KEY 2 

 13



2.2.2.2 Galois Field based systems 
A field {F, +, ×} is a set of elements with two binary operators, addition and 

multiplication such that F is an integral domain and multiplicative inverse of the 

elements must exist in F [14]. A field is said to be finite if there exist bijection 

between F and subset of natural number set N for some Nn∈ . A finite field with 

order as power of prime pn, where n is positive integer and p is prime, is denoted 

by GF (pn) and is known as Galois Field [11,40]. Based on the Galois field some 

cryptosystems like Hill cryptosystem are designed. Matrix operations and 

modulus arithmetic operations are performed in the Galois field to obtain the 

scrambled text [35,45]. 

2.2.2.3 Elliptic curve based systems 
An elliptic curve ε over GF (p) is defined as the set of points (x, y) satisfying the 

relation 

cbxaxxvyuxyy +++=++ 232 , 

together with a single element O (u, v), called the point at infinity, where a, b and 

c are the constants[1]. It is possible to define some Cryptosystems over elliptic 

curves [21]. However, to break the system it is sufficient to factor its modulus. 

Since the original RSA system had the same security restriction and is faster in its 

calculations, there seems to be little reason to use this generalization of RSA to 

elliptic curves [6]. 

2.2.2.4 Coding  Technique  
Based on the algebraic coding theory, some cryptosystems are designed [29]. 

Using error correction code, McEliece in 1978 proposed a cryptosystem. Some 

special coding technique known as Goppa Code may lead to the very fast and 

efficient cryptosystems. 

2.2.2.5 Quantum Encryption 
G Brassard and C Bennett introduced BB84 protocol, based on the idea of using 

quantum mechanics to solve key distribution problem [10]. It uses light particles 

to communicate instead of bits. A light particle ‘photon’ can have one of the four 

orientations, Horizontal, Vertical, 450 diagonal and     -450 diagonal. Each of these 

represent a bit; ‘-’ and ‘/’ represents a logic 0 and ‘|’ & ‘\’ represents logic 1. Each 

bit in the plain text is converted randomly in one of the two orientations 

connected with that bit and is transferred via fiber optic cable [35].  
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2.2.2.6 Noise addition 
Adding some unnecessary data to the plain text or to the resulting cipher text 

makes the cipher text more difficult against cryptanalysis. This process is known 

as noise addition [24]. The unnecessary data is known as noise. Such noise may 

be added on the plain text or it can also be added to the cipher text. One of the 

popular noise additions is PN sequencing in which the Shift Register Sequencing 

technique results some noise on cipher text to change the period of the space. 

Such noise may be in the form of electrical signal, some sound waves or some 

color code. 

2.2.3 Steganography 
Steganography is the scheme in which the actual message is covered by some 

object and transmitted to the receiver [32]. The basic model of steganography 

consists of Carrier, message, embedding algorithm and stego key. 

The carrier is the object in which the message is embedded by using embedding 

algorithm along with stego key. The covered object with secretly embedded 

message is known as stego object [32]. 

2.3 Threat Models 
Though cryptographic schemes transfers plain text to some scrambled text, the 

intruders try to recover the plain text from the scrambled text. The attacking 

techniques may vary in different schemes; but, by the study of historical 

background of cryptography, the possible attacks can be broadly classified into 

following models [33]: 

Black-Box Model: In the traditional black-box model, the attacker is restricted to 

observe input and output of the algorithm, without any side-channels of 

information. A secret key of a cryptographic algorithm is hidden in the black-box 

and is never exposed. The security depends on the strength of the cryptographic 

algorithm. 

Grey-Box Model: Another model is the grey-box model where an attacker is also 

able to monitor side effects of the program execution. For example, an attacker 

can monitor the execution time, power consumption, and electromagnetic 

radiation. 
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White-Box Model: In the white-box model [30], the attacker also has total 

visibility into software implementation and execution. To prevent an attacker 

from finding the key, the key needs to be hidden in the implementation. 

2.4 Cryptanalytic Attacks  
Various types of attacks can happen on the cipher text [48]. The main goal of the 

attacker is to obtain the key used in the scheme 

Cipher text only attack: This type of attack involves the cipher text and the 

producing algorithm only. The attacker tries to obtain the key by Hit and Trial. 

Known plain text attack: The attacker knows about the one or more plain text 

cipher text pairs and the encryption algorithm. 

Chosen plain text attack: The attacker can choose one or more plain texts and can 

have the cipher text using the encryption algorithm. 

Chosen cipher text attack: The attacker will have cipher text and also can choose 

one or more cipher texts and can decrypt the chosen cipher text to get the plain 

text. 

Chosen text attack: The attacker can choose plain text to generate cipher text as 

well as can choose the cipher text to get plain text. 

2.5  Brute Force Attack 
 The attacker tries every possible key on a piece of cipher text to recover the part 

of plain text. It is very costly and on average, half of all possible key must be tried 

to achieve the success. To prevent the encryption scheme from brute force attack, 

the possible no of key should be huge. For it, the key space should be sufficiently 

large. 

2.6 Encryption Timeline 

Modern Encryption Techniques 

2010 The maser key of HDCP and private signing key for the Sony 

PlayStation 3 game console are recovered and published. 

2007 Users swamp digg.com with copies of 128 bit key to the AACS 

system 

2004 The hash MD5 was shown to be vulnerable to practical collision 

attack. 

2003 First commercial use of Quantum Encryption 
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2000 Advanced Encryption Standard (AES) Developed 

1991 First Quantum Encryption System developed 

1984 BB84 Protocol proposing Quantum Encryption published 

1978 RSA published 

1977 Data Encryption Standard (DES) created 

1976 Public Key Encryption proposed by Hellman and Diffie 

1970 Lucifer Algorithm developed, later evolved into Triple – DES. 

 

The Computer era 

1943-1945 First computers created 

 

Traditional Encryption 

1942 Navajo Windtalkers used in World War II 

1923 Arthur Scerbius builds the German Enigma Machine 

1917 Vernam Cipher invented 

1854 Charles Babbage reinvents the Wheel Cipher 

1790 Thomas Jefferson invented the Wheel Cipher 

1585 Blaise De Vigenere writes a book on Ciphers 

1553 Password idea introduced by Giovan Belaso 

 

The Dark Age of Encryption 

50-60 BC Caesar Cipher introduced by Julius Caesar 

486 BC Greek Skytale presumably used 

500-600 BC Hebrew ATBASH Cipher used in writing the book of Jeremiah 

1500 BC Mesopotamian tablet with encrypted recipe for Pottery Glaze 

1900 BC First Documented Cryptography in Egypt 
 

 

 

 

2.7 Authentication 
Authentication is the process of verifying that the user involved in the communication 

is the user supposed to involve in the communication even if it refuses the 

participation [41].  
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2.7.1 The Needham Schroeder Authentication Protocol 
This protocol aims to establish mutual authentication between initiator A and a 

responder B [19]. The supposition behind the protocol is “There is minimal 

reliance on network wide services; in particular, there is no reliance on a single 

network clock or a single network name management authority”[41]. 

The protocol uses nonces: random numbers generated with the purpose of being 

used in a single run of the protocol. The nonces can be denoted by Na and Nb 

generated by A and B respectively.   

The functions of the protocols is discussed in following three points[41]- 

A. Establishment of authenticated interactive communication between two 

principals on different machines.  

B. Authenticated one way communication, where it is impossible to require 

protocol exchanges between sender and the recipient. 

C. Signed communication, in which the origin of a communication and the 

integrity of the content can be authenticated to a third party. 

2.7.1.1 Symmetric Key Protocol 
If a conventional algorithm is used then each principal has a secret key that is known 

only to itself and to authentication server (AS).  

The protocol can be described as -  

• The protocol opens with A communicating to AS his own claimed identity and 

the identity of the desired correspondent, B together with nonce of A 

A  AS: A, B, Na 

• Up on receiving the message, authentication server looks up the secret 

identifying keys of both parties and also computes a new key CK that will be 

key for convention.  

• AS sends the information to A as 

AS  A: {Na, B, CK, {CK, A} KB} KA 

• A can decrypt above message and sends the message to B 

A  B : {CK, A}KB 

• B can decrypt above message and understands that CK is the conventional key 

for communicating with A.  
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2.7.1.2 Public Key Protocol 
Each agent A possesses a public key PKa, and secret key SKa. There will be key 

pair of AS as PKas and SKas, public and private keys. The exchange opens with A 

consulting the AS to find B’s public key.  

The protocol can be described as - 

• A communicates with AS for public key of B 

A  AS:  A, B 

• AS responds to A 

  AS  A: {PKb, B}SKas 

• Now A can communicate to B  

2.8 Cryptographic Principles 
Designing the cryptographic scheme is notably difficult. There are various principles, 

regarding the design of the cryptographic scheme.  

2.8.1  Kerkhoff’s Principle 
A fundamental assumption in cryptanalysis was first stated by A. Kerkhoff in the 

nineteenth century [23]. It states that the adversary knows all the details of the 

cryptosystem, including algorithms and their implementations i.e. the security of a 

cryptosystem must be entirely based on the secret keys. 

2.8.2  Unconditionally Secure Scheme  
An encryption scheme is said to be unconditionally secure if the cipher text 

generated by the scheme does not contain enough information to determine the 

plain text uniquely [48]. 

2.8.3  Computationally Secure Scheme  
An encryption scheme is said to be computationally secure if at least one of the 

following holds- 

• The cost of breaking the cipher text exceeds the value of encrypted 

information. 

• The time required to break the cipher text exceeds the useful life time of 

the information [48]. 
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3. ANALYSIS OF ALGORITHMS 

3.1 Feistel Cipher Structure 
Horst Feistel described the structure of the symmetric ciphers in 1973[48]. A 

block of plain text of size 2w bits is divided into two half blocks Li and Ri each of 

size w bits and processed. The process requires sub key Ki generated from the 

original key K. It can be described as  

Plain Text (2w bits) 

 Figure 5: Fiestel Cipher Structure 

The two halves of the data pass through n rounds of processing and then combine 

to produce the cipher text block. Each round i has as inputs Li-l and Ri-1 derived 

from the previous round, as well as a sub key Ki, derived from the original key K.   

A substitution is performed on the left half of the data. This is done by applying a 

K1 

F

K2 

Kn 

F

F

Cipher Text (2w bits) 
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round function F to the right half of the data and then taking the exclusive-OR 

(XOR) of the output of that function and the left half of the data. Following this 

substitution, a permutation is performed that consists of the interchange of the two 

halves of the data. 

3.2 Data Encryption Standard 
DES was published in the Federal Information Processing Standards Publication 

Number 46, dated January 15, 1977 by the National Bureau of Standards [34]. 

DES is based on Fiestel Cipher Structure where Encryption consists of an initial 

permutation, sixteen rounds of encryption, and then an inverse of the initial 

permutation. Each of the sixteen rounds of encryption consist of taking the right 

half of the input block (32 of the 64 bits) and running it through a nonlinear 

function of the 32 bits and an internal key, then adding this result to the left half 

of the input modulo two. This 32 bit answer becomes the next round’s right half 

block. The next round’s left half becomes the right half block without 

modification. The nonlinear function used consists of a bit selection E that selects 

48 bits from the input of 32 (several of the bits are repeated). These 48 bits are 

added modulo 2 to the round key of 48 bits. The results of that operation are then 

fed six bits each into eight substitution boxes. Each of the eight substitution boxes 

is different, but the same sets of eight boxes are used for each round. Each 

substitution box gives an output of 4 bits. The outputs of these boxes are fed into 

a permutation P that rearranges the output in a fixed manner. The sixteen internal 

keys are generated from the 56 bit input key by feeding the input key into a fixed 

permutation that rearranges the order of the key bits. The key is then split into left 

and right halves called C and D. Each half is shifted left one or two times 

(according to a fixed table) before generating each internal key. Each of the 

sixteen internal keys is generated by taking the two halves of the key as shifted 

and permuting them in a fixed manner. The key and the resulting internal keys are 

the only things that vary in this algorithm. The initial and final permutations and 

the contents of each of the substitution boxes are constant. The two permutations 

used in generating the internal keys are constant. The bit selection and 

permutation used within the nonlinear function are constant. The strengths of the 

DES is that its cryptographic strength depends only on the key, that the algorithm 

is easy to implement in a single IC, that it has been well tested an no one has 
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publicly announced a solution, that hardware and software that uses it is readily 

available, and that the algorithm places very few restrictions on key generation so 

that random numbers may be generated by the users for use as keys. 

64 Bit Plain Text 64 Bit Key 

Permuted Choice 1 Initial Permutation 

  
Figure 6: General Description of DES 

The weaknesses of the DES are that the key is too short for security in the face of 

anticipated increases of computing power that it is old enough and likely that 

someone has broken it. Hardware implementation of the DES is too slow for 

some applications, and that it limits itself to be simpler than is really necessary 

with current technology. 

Round 1 

Round 2 

Round 16 

32 bit Swap 

Inverse Initial Permutation 

Left Circular Shift Permuted Choice 2 

Permuted Choice 2 

Permuted Choice 2 

Left Circular Shift 

Left Circular Shift 

- 56 64 - 48 56 
/ / 

64 - - 56 48 56 
/ / 

48 56 
/ / 

64 - 

64 - 

64 Bit Cipher Text 
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Figure 7: Single Step of DES 

Cryptanalysis Practice 

Differential cryptanalysis 

Differential cryptanalysis was started after 1990 for the cryptanalysis of block 

cipher called FEAL by Murphy [50]. Differential cryptanalysis is the first 

published attack on DES capable to break DES in less than 255 complexities. 

Biham and Shamir proposed one scheme that can successfully cryptanalyze DES 

with an effort of order of 247 complexities[33]. 

The idea behind differential cryptanalysis is to observe the behavior of pairs of 

text blocks evolving along each round of the cipher. Let the two message of block 

size m and m’, where m0 and m1 are the two halves of m and so on then the new 

blocks for m can be generated as 

),,(11 iiii Kmfmm ⊕= −+  i = 1,2,… …, 16 

Now the XOR difference ,'iii mmm ⊕=∆  is calculated. It results the 

)]','(),([11 iiiiii KmfKmfmm ⊕⊕∆=∆ −+  

Now by using probability theory the cryptanalysis of the DES encryption can be 

done. 

Linear cryptanalysis 

Linear cryptanalysis is recent development than differential cryptanalysis. It can 

identify the encryption key from 243 known plain texts. It performs XOR on plain 
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text and cipher text to form a linear equation. The linear equation can be used to 

find the unique key with the probability of 0.5. It can break one round at a time. 

3.3  Simplified DES 
The Simplified DES [15] encryption algorithm takes an 8-bit block of plaintext 

and a 10-bit key as input and produces an 8-bit block of cipher text as output. The 

decryption algorithm takes an 8-bit block of cipher text and the same 10-bit key 

used as input to produce the original 8-bit block of plaintext. The encryption 

algorithm involves five functions; an initial permutation (IP), a complex function 

called  which involves both permutation and substitution operations and 

depends on a key input; a simple permutation function that switches (SW) the two 

halves of the data; the function  again, and a permutation function that is the 

inverse of the initial permutation (IP−1). The function  takes as input the data 

passing through the encryption algorithm and an 8-bit key. Consider a 10-bit key 

from which two 8-bit sub keys are generated. In this case, the key is first 

subjected to a permutation P10= [3 5 2 7 4 10 1 9 8 6], then a shift operation is 

performed. The numbers in the array represent the value of that bit in the original 

10-bit key. The output of the shift operation then passes through a permutation 

function that produces an 8-bit output P8 = [6 3 7 4 8 5 10 9] for the first sub key 

(K1). The output of the shift operation also feeds into another shift and another 

instance of P8 to produce sub key K2. In the second all bit strings, the leftmost 

position corresponds to the first bit. The block schematic of the SDES algorithm 

is as follow 

Kf

Kf

Kf
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Encryption Decryption 
P10 

Shift 
IP-1 IP 

P8 

. 

Figure 8: Simplified Data Encryption Standard 

The definitions of the involved functions are as follow 
1. Initial and final permutation (IP): The input to the algorithm is an 8-bit block of 

plaintext. It permuted using the IP function IP= [2 6 3 1 4 8 5 7]. It results all 8-

bits of the plaintext but mixes them up. At the end, the inverse permutation is 

applied; by applying, IP−1 = [4 1 3 5 7 2 8 6] where we have IP−1 (IP(X)) =X. 

2. The function : it consists of a combination of permutations and substitution 

functions. The functions are as follows. Let L, R be the left 4-bits and right 4-bits 

of the input, then, fK (L, R) = (L XOR f(R, key), R) where XOR is the exclusive-

OR operation and key is a sub - key. Computation of f(R, key) is done as follows. 

Kf

a. Apply expansion/permutation E/P= [4 1 2 3 2 3 4 1] to input 4-bits. 

b. Add the 8-bit key (XOR). 

c. Pass the left 4-bits through S-Box S0 and the right 4-bits through S-Box S1. 

d. Apply permutation P4 = [2 4 3 1]. 

SW SW 
Shift 

P8 

IP IP-1 

fK fK 

fK fK 
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The two S-boxes are defined as follows: 

 S0   S1 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

2313
3120
0123
2301

             

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

3012
0103
3102
3210

The S-boxes operate as follows: The first and fourth input bits are treated as 2-bit 

numbers that specify a row of the S-box and the second and third input bits 

specify a column of the S-box. The entry in that row and column in base 2 is the 

2-bit output. 

3. Since the function fK allows only the leftmost 4-bits of the input, the switch 

function (SW) interchanges the left and right 4-bits so that the second instance of 

fK operates on different 4- bits. In this second instance, the E/P, S0, S1 and P4 

functions are the same as above but the key input is K2. 

Cryptanalysis Practice 

Memetic Algorithm: 

The memetic algorithms can be viewed as a marriage between a population-based 

global technique and a local search made by each of the individuals [39]. 

Memetic Algorithms are a population-based approach. Such algorithms are orders 

of magnitude and faster than traditional genetic Algorithms for some problem 

domains. In a memetic algorithm the population is initialized at random or using a 

heuristic. Then, each individual makes local search to improve its fitness. To form 

a new population for the next generation, higher quality individuals are selected. 

Once two parents have been selected, their chromosomes are combined and the 

classical operators of crossover are applied to generate new individuals. The latter 

are enhanced using a local search technique. The role of local search in memetic 

algorithms is to locate the local optimum solution. 

Genetic Algorithm: 

The genetic algorithm is based upon Darwinian evolution theory [39]. The genetic 

algorithm is modeled on a relatively simple interpretation of the evolutionary 

process; however, it has proven to a reliable and powerful optimization technique 

in a wide variety of applications. J. Holland, in 1975 was first proposed the use of 

genetic algorithms for problem solving. D. E. Goldberg was also pioneer in the 

area of applying genetic processes to optimization [39]. Over the past twenty 
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years numerous application and adaptation of genetic algorithms have appeared in 

the literature. During each iteration in the algorithm; the processes of selection, 

reproduction and mutation take place in order to produce the next generation of 

solution. Genetic Algorithm begins with a randomly selected population of 

chromosomes represented by strings. It uses the current population of strings to 

create a new population such that the strings in the new generation are on average 

better than those in current population. The selection process determines which 

string in the current will be used to create the next generation. The crossover 

process determines the actual form of the string in the next generation. Here two 

of the selected parents are paired. A fixed small mutation probability is set at the 

start of the algorithm. This crossover and mutation processes ensures that the GA 

can explore new features that may not be in the population yet. It makes the entire 

search space reachable, despite the finite population size. 

A study was conducted, to compare the Memetic and Genetic algorithms for 

cryptanalysis of simplified data encryption standard and following results were 

found. 

Memetic algorithm Genetic algorithm Amount of 
cipher text 

(characters) Time 
(sec) 

St. 
Dev 

No of bits 
matched in the 
key (10) 

Time 
(sec) 

St. 
Dev 

No of bits 
matched in the 
key(10) 

100 5.1 4.70 8 2.62 4.82 6 

200 14 3.40 6 4.5 6.13 6 

300 15.3 2.72 5 2.13 6.01 4 

400 12.5 2.27 7 2.35 4.61 6 

500 10 2.16 6 2.52 4.61 6 

600 5.5 1.86 8 2.07 4.37 7 

700 3.05 1.73 7 4.07 4.42 6 

800 2.85 1.59 8 2.4 3.39 8 

900 2.24 1.56 9 2.53 2.23 6 

1000 2.14 1.49 9.17 2.17 2.20 8 

1. Both Memetic and Genetic Algorithms can be used for cryptanalysis 

2. Memetic algorithm has less variance in result than genetic algorithm 

3. Memetic algorithm is more accurate then the genetic algorithm for 

cryptanalysis of simplified data encryption standard. 
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3.4  3DES 
When it became clear that DES could no longer be used to protect sensitive data, 

a modification was introduced, called Triple DES or 3DES[9]. It consists of three 

DES implementations in a row, except that the middle one is orientated the other 

technique.  

 
Figure 9: 3DES Encryption 

In 3DES there are three steps first and third are the encryptions using DES with 

the same key but second step is the decryption. The second key used is different 

than the encryption key used.  

Cryptanalysis Practice 

There is no practical cryptanalysis scheme for triple DES but some known – plain 

text attacks are outlined for 3DES[47]. 

It was found that 3DES produce 1/3 throughput of DES, that’s why 3DES is far 

more inefficient for commercial use [12]. 

By studying above algorithms, we found sufficiently strong cryptographic algorithms 

for providing confidentiality but we do not have any cryptographic algorithm to 

provide confidentiality together with authentication. During this study it is claimed 

that there exists one cryptographic approach providing both confidentiality and 

authentication but it uses traditional hash function SHA 256 (Source: Enhanced 

Security Encryption for Data Storage Using Key Reuse.By Gladdman) 

DES Encryption DES Encryption DES Decryption 

K2 K1 K1 
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4. PROBLEM DEFINITION    

Maintaining the information security against the attacks is significant 

problem. The primary goal of cryptography is to keep the plaintext secret 

from eaves-droppers trying to get some information about the plaintext. 

Various types of attacks may happen against information security.  

In a network, having large number of computers communicating; there 

may not be central machine that contains authoritative description of the 

connected computers as explained in the Needham Schroeder’s Protocol 

(Authentication Server). There may not be organized data of the purpose 

of use and of the individuals using system. 

The major component of Needham Schroeder’s authentication protocol 

using symmetric encryption is the pseudorandom number used to identify 

each communication, known as nonce. If the size of key used in encryption 

is small as in DES than it is quite easy to identify the nonce by clipping it 

from the cipher text. It may lead to reply attack. 

By understanding the problems of secrecy, problem in authentication and 

the various attacking techniques, it is worthy and very important to 

introduce new schemes to preserve the confidentiality of the information 

and provide authentication in communication. The main goal of this 

research is to design a computationally secure symmetric scheme for 

maintaining the secrecy in communication that can provide authentication 

using Needham Schroeder’s protocol. 
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5. PROPOSED SOLUTION 

In this proposed system, the plain text is divided into sixteen byte blocks and each 

block is individually converted into cipher text with the help of 128 bit key. The 

key of size 128 bit is selected randomly and further processed for applying to 

plain text. 

5.1 Design Criteria 
A. Strength Based on Key 

The strength of the system must rely on the security of the key only. It cannot 

depend on the algorithm being kept secret, because the algorithm will be 

published. Even if the algorithm were not published, it would probably be reverse 

engineered from software implementations of the algorithm. The algorithm must 

be constructed in such a way that there is no computationally feasible way to 

derive the key from samples of corresponding plain text and cipher text. 

B. Usability of Random Keys 

The key selection should be as easy as the random selection of a number in a 

given range. Selecting a very secure key should be no more difficult than flipping 

a coin once for each bit of the key, or generating keys using a pseudorandom 

sequence combined with random events such as timing of keystrokes on a 

computer. A one bit change in the key should provide a drastically different 

transformation, so that a potential cryptanalyst has no idea when a key that he 

guesses might be close to the right one. 

C. Key Length & Block Size  

The key length should be significantly longer than the DES 56 bit size. A key size 

of 96 bits (three 32 bit blocks) was chosen as being very manageable, yet highly 

secure even when attacked by multiple array supercomputers.  

The block size is also chosen as 128 bits (twice the size of DES) to provide a 

significant increase in complexity of the encryption. The first 32 bit of first block 

of plain text can be used as the nonce while using for authentication based on 

Needham Schroeder’s protocol and first 32 bits of following blocks can be used 

as block pointer so that the cipher text can also be obtained in manageable packet 

form.  
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D. Effort Required to Break  

The effort required to break the algorithm by any method should be so great as to 

make such a task unfeasible even if significant advances are made in computer 

technology. This requirement is intimately linked to the choice for key size and 

block size. 

E. Computational Efficiency  

The encryption algorithm must be computationally efficient enough to be 

implemented in software on a standard IBM PC or compatible (or on an Apple 

computer of comparable power), and fast enough to handle at least 10 megabits 

per second when implemented in dedicated hardware. Note that this is less 

restrictive with respect to the hardware for DES, which was required to be simple 

enough to implement on a single chip using 1970s technology. 

F. Communication Channel Efficiency  

The encryption algorithm must not significantly increase the size of the plain text 

when encrypting it. This precludes the use of noise addition as a technique to be 

used.  

G. No Back Doors or Spare Keys  

While it may be impossible to guarantee that no ‘‘back doors’’ or ways to 

decipher a message without the key exist, the algorithm should be a sufficiently 

complex combination of simple, well-understood operations that no help is 

offered to the cryptanalyst from the structure of the algorithm. Spare keys (the 

situation where more than one key will decipher a message) are avoided by 

making the number of keys possible much less than the number of possible 

transformations that can be done on a set of blocks.  

5.2  Recursive Odd Parity Operation (ROOP) 
It is the recursive operation that operates on a bit string of size n and results bit 

string of the size n bits [38]. Let a1a2………an be a bit string. Then the Recursive 

Odd Parity Operation (ROOP) is a unary function on the bit string that maps the 

each bit of the string to the binary bit according to the following rule-  

ROOP(ai)  =  ai XOR ai+1  for all i < n 

       = ai   for i = n 
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5.3  Design and implementation of the algorithm 

5.3.1 Generation of sub key 
This cryptographic scheme uses the pair of keys, KEY1 (32 bits) and KEY2 (64 

bits). The KEY2 will be divided into two blocks KEY2B1 and KEY2B2. The 

KEY2B2 will be XORed with the 32 bit KEY1 to form TK2 while ROOP 

operation is performed on KEY2B1 to form TK1. The TK1, KEY1 and TK2 are 

processed (PROC1) to get INITIAL KEY (IK). On the other hand, the initial 32 

bits of the plain text are XORed with the KEY1 to form PARTIAL KEY (PK). 

The PARTIAL KEY (PK) and INITIAL KEY (IK) are processed (PROC2) to get 

the EXTENDED KEY (EK).  

The process regarding PROC1 can be described as 

IK Procedure: PROC1 (TK1, KEY1, TK2) 

{ 

 Int temp = TK1 % 3; 

 Switch (temp) 

 Case 0: return (concatenate (TK1, KEY1, TK2)); 

 Case 1: return (concatenate (TK2, KEY1, TK1)); 

 Case 2: return (concatenate (TK1, TK2, KEY1)); 

} 
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The process regarding PROC2 can be described as- 

 

EK Procedure: PROC2 (PK, IK) 

{ 

 Int temp = PK % 2; 

 Switch (temp) 

 Case 0: return (concatenate (XOR (PK [0-31], IK [0-31]), IK [32-95])); 

 Case 1: return (concatenate (IK [0-63], XOR (PK [0-31], IK [64-95])) ; 

} 

 

The detailed processing method can be represented by using flow-chart as below. 

KEY2B1 KEY1 KEY2B2 
(32BITS) (32BITS) (32BITS) 

 
Figure 10: Key Space Modification 

 

INITIAL KEY  
IK (96 BITS) 

+

INITIAL32 BITS OF 
 THE PLAIN TEXT 

+

PARTIAL KEY  
PK (32 BITS) 

 
ROOP 

EXTENDED KEY  
EK (96 BITS) 

TK1 
PROC

1 

PROC
2 

TK2 
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5.3.2 The Encryption Algorithm 
The original message will be divided into 128 bit blocks for encryption. To use 

this algorithm for authentication, the block size should be 96 bit and the first 

block will be padded to 32 bit nonce. All blocks of plaintext other than first block 

will be padded to the 32 bit packet pointer. If there exist partial block then it will 

be made of size 128 by appending the initial text at the end. 

The plain text block of size 128 bit will be further divided into four equal sub 

blocks PTs of size 32 bits. The processing method can be described as 

 

 

CT PROCEDURE: ENCRYPTION (PT, KEY1, IK, EK) 

{ 

 PT will be divided into PT1, PT2, PT3 and PT4; 

 SB11 = PT1;  

SB21 = PT1 XOR PT2; SB31 = PT2 XOR PT3; SB41 = PT3 XOR PT4; 

SB12 = SB11 XOR KEY1; 

(SB22, SB32, SB42) = (SB21, SB31, SB41) XOR EK; 

(SB13, SB23, SB33) = (SB12, SB22, SB32) XOR IK; 

SB43 = ROOP (SB42); 

CT1 = SB13 XOR SB23; CT2 = SB23 XOR SB33; CT3 = SB33 XOR 

SB43; 

CT4 = SB43; 

RETURN CT = (CT1, CT2, CT3, CT4); 

} 
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The pictorial representation of algorithm can also be shown as --  

32 bits 32 bits 32 bits 32 bits 

 
Figure 11: The Encryption Process 

5.4 Implementation of the algorithm 

5.4.1 Tools 

5.4.1.1 Borland C++ 5.02 

C++ is an Object oriented programming language developed by Strups Bazarne.  

Borland C++ 5.02 compiler is used to compile the codes written in C++. It 

provided interactive and easy environment to implement the algorithm. 
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ROOP 

+ + + 

+ + + 
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6. TESTING AND ANALYSIS 
 

SAMPLE INPUT 
In symmetric encryption, there will be a secret key shared by the 

communicating parties. In this algorithm the secrete key will be stored into 

a file. The algorithm reads the key from the file key.dat. 

 

KEY.DAT File 
 

THIS IS MY KEY FOR ENCRYPTING THE FILE. 

 

 

The file that will be encrypted is named myfile.dat. The content of the file 

is as follow- 

MYFILE.DAT File 
 

“1.0 Database Management System 

Data are the raw facts that can be found after some experiment, 

observation or experience. Data itself do not provide any meaning but after 

processing it becomes information. The collection of related data 

organized in some specific manner is known as database. The database, its 

processing methods and the set of rules and conditions to be followed; 

collectively known as database management system (DBMS). Here, 

related data refers logically consistent facts of the real world. Random 

collection of data can not consider database. The primary goal of DBMS is 

to store and manage data both conveniently and efficiently. Database 

systems are generally designed to manage large volume of information. 

Management of data involves defining structure for storage of information 

and providing mechanisms for manipulation of information. 

DBMS can also define as a general purpose software system that enables 

user to create, maintain and manipulate database. It provides fast and 

convenient access to information from data stored in database. DBMS 

interfaces with application programs so data contained in database can be 
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accessed by multiple applications and users. Some popular DBMS 

software are: Oracle, SQL – Server, IBM-DB2, MySQL, MS Access, 

Sybase etc. 

Some application areas of database system are: 

• Banking: customer and their account info 

• Airlines: reservations and schedules info 

• Universities: student info, grades etc. 

• Credit card transactions: for purchases on credit cards and generation of 

statements. 

• Telecommunications: record of calls made 

• Finance: for storing information about holding, sales and purchases etc. 

• Sales: for customer, product and purchase information. 

• Manufacturing: for management of supply chain. 

• Human resources: for information about employee 

1.1 Purpose of Database System 

Traditionally, file processing system was used to manage information. It 

stores data in various files of different application programs to extract or 

insert data to appropriate file. 

File processing system has several drawbacks due to which database 

management system is required. Database management system removes 

problems found in file processing system. Some major problems of file 

processing systems are: 

1. Data redundancy and inconsistency 

In file processing system, different programmer creates files and writes 

application programs to access it. After a long period of time files may 

exist with different formats and application programs may written in many 

different programming languages. Moreover, same information may be 

duplicated in several files. We have to pay for higher storage and access 

cost for such redundancy. It may leads database in inconsistent state 

because update made in one file may reflected in one file but it may not 

reflected in another files where same information exist in another files. 

2. Difficulty in accessing data 

In file processing system, we can not easily access required data stored in 

particular file. For each new task we have to write a new application 
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program. File processing system can not allow data to be retrieve in 

convenient and efficient manner. 

3. Data isolation 

Since data are scatter in different files and data may stored in different 

format, so it is difficult to write program to retrieve appropriate data. 

4. Integrity problem 

In database, we required to enforce certain type consistency constraints to 

ensure the database correctness or to enforce certain business rules. It is in 

fact called integrity constraints (e.g. account balance > 0), integrity of 

database need not to be violated. In file processing system, integrity 

constraint becomes the part of application program. Programmer need to 

write appropriate code to enforce it. When new constraints are required to 

add or change existing one, it is difficult to change program to enforce it. 

5. Atomicity problem 

Failures may lead database in an inconsistent state with partial updates. 

For example, failure occurs while transferring fund from account A to B. 

There would be the case that certain amount from account A is retrieved 

and it is updated but failure occurs just before it is deposited to account B, 

such case may lead database in inconsistent state. 

6. Concurrent access problem 

Concurrent accessed increase the overall performance of system providing 

fast response time but uncontrolled concurrent accesses can lead 

inconsistencies in system. File processing system allow concurrent access 

but it is unable to coordinate different application programs so database 

may lead in inconsistent state. E.g. two people reading a balance and 

updating it at the same time 

7. Security problems 

Since file processing system consist large no. of application programs and 

it is added in ad hoc manner. So it is difficult to enforce security to each 

application to allow accessing only part of data/database for individual 

database users. 

1.2 Data Abstraction 

Data abstraction in database system is a mechanism to hide complexity of 

database. It allows database system to provide abstract view to database 
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user. It hides how data are actually stored and maintain in database. Data 

abstraction simplifies users’ interactions with the system. Three are three 

level of abstraction 

Physical level 

It is a lowest level of abstraction. It describes how data are actually stored 

in database. It describes complex low level data structures in detail. 

Logical Level 

This is a next highest level of abstraction. It describes what data are stored 

in database and what relationship exists among them. It describes entire 

database relatively in a simple structure. The user in logical level needs not 

to aware the complexity of physical level structure.” 

 

 

After the encryption the resultant encrypted text will be written in the file 

myfile.rp 
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7. CONCLUSION 
 

The significance of data security scheme is tremendous now days. In such 

situation the evolution of the new scheme is beneficial to the data security 

concerns. The interest of security concerns is to obtain the computationally 

secure, fast executing, dual implemental (hardware/software) algorithm. 

This research work provides an efficient algorithm that can be 

implemented in hardware as well as in software. The software 

implementation is done in object oriented programming approach using 

C++. The implementation codes are in the appendix section of the 

document. 

There is a popular concept that, the encryption scheme is not strong if it is 

dependent on the plain text. This works proves that the encryption can be 

strong even if it may be dependent on the plain text. The concept of 

encryption that uses the part of plain text to generate key is known as 

‘Code Reusing technique’.  

Basically this algorithm is designed considering the authentication 

problem. The first 32 bits of the plain text can be considered as the nonce 

for authentication hence can be mixed into Needam Schroeder’s 

authentication protocol. 

The strong points regarding the algorithm are the generation of keys. The 

key is 96 bit long and provides strong resistance against the brut force 

attacks. The operation ROOP which is the XOR operation of the bits in a 

block, acts the role of confusion. The XOR operation of different blocks 

will act as the diffusion operation. The use of plain text bits in the 

generation of key provides the randomization so that it will provide strong 

resistance against the known cipher text attack. Since the operation do not 

use any substitution boxes so it is free from hidden weaknesses also. The 

encryption is done in bit level so it is quite easy to understand and can be 

implemented for any kind of application like text applications as well as 

graphics, sound etc. Since it uses the ASCII values for encryption, it is free 

from the burden of character set and the language of the message.   

The use of data compression in conjunction with any encryption algorithm 

drastically increases the security of the encrypted data. For natural 
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language text, one approach that yields improved compression over the 

compression of constant size blocks of data is the compression of 

linguistic units, such as words. I have achieved reversible compression of 

such files to less than 35% of their original size using linguistic parsing 

and a Huffman code. For binary data, such as computer programs, the use 

of existing techniques, such as those in PKARC, written by Phil Katz and 

available on most computer bulletin boards, are recommended. It is hoped 

that the encryption algorithm, as well as some of my ideas on data 

compression, will make a positive contribution towards data security, 

communications privacy, and efficiency of data storage and transmission. 
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APPENDIX 
First 32 bit of plain text 
//*********************** 

int bpt[blocksize]; 

//****************************************************************

Function to concatenate the blocks  
//********************************* 

void concatenate(int k1[blocksize],int k2[blocksize],int k3[blocksize],int 

res[3*blocksize]) 

   { 

    for(int i=0;i<blocksize;i++) 

      { 

       res[i] = k1[i]; 

         res[blocksize+i]=k2[i]; 

         res[(2*blocksize)+i] = k3[i]; 

      } 

  } 

//**************************************************************** 

Function to convert char to binary  
//********************************* 

void bin(char blkchar[], int blkbin[])   

{ 

  int i, count=0; 

   for (i=0;i<(blocksize/8);i++) 

   { 

  int temp = blkchar[i]; 

      int bstr[8]; 

      int j; 

      for(j = 8; j>0;j--) 

      { 

       int rem; 

         rem = temp %2; 

         temp = temp /2; 



         bstr[j-1] = rem; 

      } 

 

      for(j=0;j<8;j++) 

      blkbin[count++]=bstr[j]; 

 } 

} 

   int xor(int a, int b) 

      { 

       if(a!=b) 

          return 1; 

         return 0; 

      } 

 

 void roop(int first[blocksize]) 

      { 

       for(int i=0;i<blocksize-1;i++) 

          first[i]=xor(first[i],first[i+1]); 

      } 

   

//**************************************************************** 

Block wise XOR operation(BROOP) 
//************************************** 
      void broop(int first[blocksize],int second[blocksize]) 

      { 

       for(int i = 0;i<blocksize;i++) 

          first[i] = xor(first[i],second[i]); 

      } 

   

//**************************************************************** 

 

 

 



The class to generate key 
//******************************************* 

class keygen 

{ 

   int key1[blocksize]; 

   int key2b1[blocksize]; 

   int key2b2[blocksize]; 

   int ik[3*blocksize]; 

   int ek[3*blocksize]; 

   friend class encrypt; 

   void proc1(int tk1[blocksize],int tk2[blocksize]) 

 { 

  unsigned long int dec_tk1; 

        int temp; 

        dec_tk1 = bintodec(tk1); 

        temp=dec_tk1%3; 

        switch(temp) 

  { 

   case 0: concatenate(tk1,key1,tk2,ik); 

     break; 

   case 1: concatenate(tk2,key1,tk1,ik); 

     break; 

   case 2: concatenate(tk1,tk2,key1,ik); 

     break; 

  } 

 

 } 

   //************************************ 

void proc2(int pk[blocksize]) 

 { 

  unsigned long int dec_pk; 

        int temp; 

        int i; 



  int ik1[blocksize],ik2[blocksize],ik3[blocksize]; 

  dec_pk = bintodec(pk); 

  temp=dec_pk % 2; 

  for(i=0;i<blocksize;i++) 

  { 

   ik1[i]=ik[i]; 

   ik2[i]=ik[i+blocksize]; 

   ik3[i]=ik[i+(blocksize*2)]; 

  } 

  switch(temp) 

  { 

   case 0:  broop(pk,ik1); 

     concatenate(pk,ik2,ik3,ek); 

     break; 

   case 1: broop(pk,ik3); 

     concatenate(ik1,ik2,pk,ek); 

     break; 

  } 

 } 

   

//**************************************************************** 

   unsigned long int bintodec(int tk1[]) 

 { 

  int i; 

  unsigned long int dec=0; 

        cout<<endl; 

  for(i=0;i<blocksize;i++) 

  { 

   dec =dec +(pow(2,i)*tk1[i]); 

 

  } 

        return dec; 

 } 

 



//***************************************** 

   public: 

   friend int key(); 

   //***************************************** 

void getdata(int k1[blocksize], int k2b1[blocksize],int k2b2[blocksize]) 

      { 

       for(int i = 0;i<blocksize;i++) 

         { 

          key1[i] = k1[i]; 

            key2b1[i] = k2b1[i]; 

            key2b2[i] = k2b2[i]; 

         } 

      } 

   //****************************************** 

     void keyprocess() 

     { 

      int tk1[blocksize]; 

          int tk2[blocksize]; 

          int pk[blocksize]; 

         for(int i = 0;i<blocksize;i++) 

         { 

          tk1[i] = key2b1[i]; 

            tk2[i] = key2b2[i]; 

            pk[i] = key1[i]; 

         } 

          roop(tk1); 

 broop(tk2,key1); 

          broop(pk, bpt); 

         proc1(tk1,tk2); 

         proc2(pk); 

     } 

//********************************************** 

     void display(void) 

      { 



       cout<<endl<<"Key 1:"<<endl; 

       for(int i = 0;i<blocksize;i++) 

            cout<<key1[i]; 

         cout<<endl<<"Key2b1:"<<endl; 

         for(int i = 0;i<blocksize;i++) 

            cout<<key2b1[i]; 

         cout<<endl<<"Key2b2:"<<endl; 

         for(int i = 0;i<blocksize;i++) 

            cout<<key2b2[i]; 

         cout<<endl<<"Initial Key:"<<endl; 

         for(int i = 0;i<(blocksize*3);i++) 

            cout<<ik[i]; 

         cout<<endl<<"Extended Key:"<<endl; 

         for(int i = 0;i<(blocksize*3);i++) 

            cout<<ek[i]; 

      } 

      friend void getkey(int key1[],int e1[],int e2[],int e3[],int i1[],int i2[],int i3[]); 

      //************************************************* 

int key() 

{ 

 ifstream inkey; 

   int k1[blocksize]; 

   int k2b1[blocksize]; 

   int k2b2[blocksize]; 

   char data[(blocksize/8)+1]; 

  //----------data for completing the block size-------- 

   inkey.open("key.dat"); 

   if(!inkey)     // file couldn't be opened 

   { 

      cerr << "Error: file could not be opened" << endl; 

      getch(); 

      exit(1); 

   } 

 



   int i; 

   for(i = 0;i<(blocksize/8)+1;i++) 

    data[i]='a'; 

    for(int j = 0;j<3;j++) 

      { 

    for(i = 0; i<(blocksize/8);i++) 

       { 

          if(!inkey.eof()) 

            { 

             inkey.get(data[i]); 

            } 

            else 

       data[i] = 'p'; 

 

         } 

         data[i] = '\0'; 

  //********************************************** 

         switch(j) 

         { 

         case 0: bin(data, k1); 

          break; 

         case 1: bin(data, k2b1); 

          break; 

         case 2: bin(data, k2b2); 

          break; 

         } 

      } 

      getdata(k1,k2b1,k2b2); 

  //***************************************************** 

  inkey.close(); 

  keyprocess(); 

} 

 

 



//************************* 

void getkey(int k1[blocksize],int e1[blocksize],int e2[blocksize],int 

e3[blocksize],int i1[blocksize],int i2[blocksize],int i3[blocksize]) 

      { 

       for(int i = 0;i<blocksize;i++) 

         { 

          k1[i] = key1[i]; 

            e1[i] = ek[i]; 

            e2[i] = ek[blocksize+i]; 

            e3[i] = ek[2*blocksize+i]; 

            i1[i] = ik[i]; 

            i2[i] = ik[blocksize+i]; 

            i3[i] = ik[2*blocksize+i]; 

         } 

      } 

}; 

//*************************************************************** 

Class to encrypt the file 
//************************************** 

class encrypt 

{ 

 int pt1[blocksize],pt2[blocksize],pt3[blocksize],pt4[blocksize]; 

   int ct1[blocksize],ct2[blocksize],ct3[blocksize],ct4[blocksize]; 

      

//************************************************************** 

   void bin2char(int binblk[],char charblk[]) // The function to convert binary 

string to ASCII 

 { 

  int b[8]={128,64,32,16,8,4,2,1}; 

  for(int i =0;i<blocksize/8;i++) 

    { 

     int val = 0; 

     for(int j = 0;j<8;j++) 



       { 

        val = val+(binblk[i*8+j]*b[j]); 

       } 

       charblk[i] = val; 

    } 

 } 

   //********************************************************* 

   public: 

    void getdata(int p1[blocksize],int p2[blocksize],int p3[blocksize], int 

p4[blocksize]) 

      { 

       for (int i = 0;i<blocksize;i++) 

         { 

          pt1[i] = p1[i]; 

            pt2[i] = p2[i]; 

            pt3[i] = p3[i]; 

            pt4[i] = p4[i]; 

            bpt[i] = p1[i]; 

         } 

      } 

      void proc() 

      { 

       int s1[blocksize],s2[blocksize],s3[blocksize],s4[blocksize]; 

         int 

k1[blocksize],e1[blocksize],e2[blocksize],e3[blocksize],i1[blocksize],i2[blocksize

],i3[blocksize]; 

         keygen k; 

         k.key(); 

         k.getkey(k1,e1,e2,e3,i1,i2,i3); 

         for(int i=0;i<blocksize;i++) 

         { 

          s1[i] = pt1[i]; 

            s2[i] = pt2[i]; 

            s3[i] = pt3[i]; 



            s4[i] = pt4[i]; 

         } 

         broop(s2, pt1); 

         broop(s3, pt2); 

         broop(s4, pt3); 

         broop(s1,k1); 

         broop(s2,e1); 

         broop(s3,e2); 

         broop(s3,e3); 

         broop(s1,i1); 

         broop(s2,i2); 

         broop(s3,i3); 

         roop(s4); 

         broop(s1,s2); 

         broop(s2,s3); 

         broop(s3,s4); 

         for(int i=0;i<blocksize;i++) 

         { 

          ct1[i] = s1[i]; 

            ct2[i] = s2[i]; 

            ct3[i] = s3[i]; 

            ct4[i] = s4[i]; 

         } 

      } 

      void bin_to_char(char cd[]) 

  { 

       char cip[blocksize/8]; 

         int i= 0; 

         bin2char(ct1,cip); 

         for(i=0;i<blocksize/8;i++) 

          cd[i] = cip[i]; 

         bin2char(ct2,cip); 

         for(i;i<2*(blocksize/8);i++) 

          cd[i] = cip[i-(blocksize/8)]; 



         bin2char(ct3,cip); 

         for(i;i<3*(blocksize/8);i++) 

          cd[i] = cip[i-(2*blocksize/8)]; 

         bin2char(ct4,cip); 

         for(i;i<4*(blocksize/8);i++) 

          cd[i] = cip[i-(3*blocksize/8)]; 

    } 

}; 

//*************************************************************** 

int main() 

{ 

 ifstream indata; 

   encrypt r; 

   int b0[blocksize]; 

   int b1[blocksize]; 

   int b2[blocksize]; 

   int b3[blocksize]; 

 char data[blocksize+1]; 

   char cd[blocksize/2]; 

//   char d1[textsize]; 

//   char d2[textsize]; 

//   char d3[textsize]; 

//----------data for completing the block size-------- 

   indata.open("myfile.dat"); 

   if(!indata)     // file couldn't be opened 

   { 

      cerr << "Error: file could not be opened" << endl; 

      getch(); 

      exit(1); 

   } 

   ofstream outdata; 

   outdata.open("myfile.rp"); 

   int i; 

   for(i = 0;i<(blocksize/8)+1;i++) 



    data[i]='a'; 

   while(!indata.eof()) 

   { 

    for(int j = 0;j<4;j++) 

      { 

    for(i = 0; i<blocksize/8;i++) 

       { 

          if(!indata.eof()) 

            { 

             indata.get(data[i]); 

            } 

            else 

       data[i] = 'p'; 

 

         } 

         data[i] = '\0'; 

  //*********************************************************** 

         switch(j) 

         { 

         case 0: bin(data, b0); 

          cout<<data; 

            getch(); 

          break; 

         case 1: bin(data, b1); 

          cout<<data; 

            getch(); 

          break; 

         case 2: bin(data, b2); 

          cout<<data; 

            getch(); 

          break; 

         case 3: bin(data, b3); 

          cout<<data; 

            getch(); 



          break; 

         } 

      } 

      r.getdata(b0,b1,b2,b3); 

      r.proc(); 

  //***************************************************** 

   r.bin_to_char(cd); 

      for(i=0;i<blocksize/2;i++) 

         outdata.put(cd[i]); 

 

   } 

  indata.close(); 

  outdata.close(); 

   getch(); 

} 
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