

Tribhuvan University Institute of Science and Technology

On the Cyclic Sequences in Mixed Model Just-in-Time Production System

Dissertation Submitted to

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology

by

Prem Raj Bhatta

January 2009

Tribhuvan University Institute of Science and Technology

On the Cyclic Sequences in Mixed Model Just-in-Time Production System

Dissertation Submitted to

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology

by

Prem Raj Bhatta

January 2009

Supervisor

Dr. Tanka Nath Dhamala

Student's Declaration

I hereby declare that I am the only author of this work and that no sources other than that listed here have been used in this work.

...

Prem Raj Bhatta

Date:

Supervisor's Recommendation

I hereby recommend that this Dissertation prepared under my supervision by **Mr**. *Prem Raj Bhatta* entitled **On the Cyclic Sequences in Mixed Model Just-in-Time Production System** in partial fulfillment of the requirements for the degree of M. Sc. in Computer Science and Information Technology be processed for the evaluation.

...

Dr. Tanka Nath Dhamala

Asst. Prof. Head, Central Department of Computer Science and Information Technology Institute of Science and Technology Tribhuvan University, Nepal

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in Computer Science and Information Technology.

Evaluation Committee

...

Dr. Tanka Nath Dhamala

Head, Center Department of Computer Science and Information Technology, Tribhuvan University, Nepal

Dr. Tanka Nath Dhamala Head, Center Department of Computer Science and Information Technology, Tribhuvan University, Nepal

(Supervisor)

(External Examiner)

(Internal External)

ACKNOWLEDGEMENT

It really gives me a great pleasure to write the acknowledgement on the completion of this dissertation at the Central Department of Computer Science and Information Technology, Tribhuvan University. I am deeply indebted to number of valuable guidance, constructive comments, encouragement and suggestion of my respected supervisor Dr. Tanka Nath Dhamala, Head, Central Department of Computer Science and Information Technology. His kindly help and scholarly guidance have become the greatest property of this dissertation, without his supervision, this would never have been appeared in the form. To whom I express my extreme gratitude. Meanwhile, I am very much grateful to the research committee members of Tribhuvan University who concluded positive decision on my proposal.

I express my appreciation to all my teachers, Dr. Onkar Prasad Sharma, Marist College, USA, Prof. Shashidhar Ram Joshi (IOE-TU), Asso. Prof. Dr. Subarna Sakaya (IOE-TU), Prof. Sudarsan Karanjit (NCIT), Asst. Prof. Min Bdr. Khati (CDCSIT-TU), Mr. Samujjwal Bhandari (CDCSIT-TU), Mr. Hementa GC (CDCSIT-TU), Mr. Bishnu Gautam (CDCSIT-TU), Mr. Dinesh Bajracharya (CDCSIT-TU) and others for granting me broad knowledge and inspirations within the time period of two years.

I can not remain without admiring the efforts put by my senior Mr. Dipak Panday for his exceptional participation on this work. I extend my thanks to Mr. Chudamani Poudyal for providing necessary materials and guidance to complete this work. I specially thank Miss. Binita Pant who continuously helped me for preparing and improving this dissertation.

Finally, I want to express my love and appreciation to Miss. Puspa Pandey for her patience and encouragement throughout this research time. I would like to thank my family and my friends for their continuous help and encouragement. Likewise, I thank all those relatives and other who wish a success.

Date: February, 2009 Prem Raj Bhatta

ABSTRACT

On the Cyclic Sequences in Mixed Model Just-in-Time Production System

Mixed-model Just-in-Time production systems have been developed in recent years in order to reduce costs of diversified small-lot production, which involves producing only the necessary products in the necessary quantities at necessary times. This problem minimizes both the earliness and the tardiness penalties that respond to the customer demands for a variety of models without holding large inventories or incurring shortages. The problem of sequencing flexible transfer lines or mixed-model assembly lines according to the JIT philosophy can be formulated as a non-linear integer programming problem.

Minimization of the variation in demand rate for outputs of supplying processes is the output rate variation problem (ORVP) and minimization of the variation in the rate at which different products are produced on the line is the product rate variation problem (PRVP). The problem for minimizing of deviations between actual and desired production for PRVP can be solved efficiently in pseudo-polynomial time complexity. However, the ORVP with two or more levels is strongly NP-hard. But under the pegging assumption the ORVP can be solved efficiently.

In this dissertation, we implement different algorithms and heuristics to solve both ORVP and PRVP. The cyclic sequences are optimal for both sum-deviation and max-deviation PRVPs. The cyclic sequences to ORVP are presented with an example. Likewise, the existences of cyclic sequences to PRVP under different solution approaches are explored. Furthermore, separal directions for further research are also explored including some emerged conjectures.

DEDICATION

To My Mother Yashoda Bhatta

And

My Father Padam Raj Bhatta

Who spend their whole life

For

My Study

Date:

LIST OF ABBREVIATIONS

AP	Assignment Problem
DP	Dynamic Programming
EDD	Earliest-Due-Date
FCFS	First Come First Serve
JIT	Just-in-Time
JITSP	Just-in-Time Sequencing Problem
MDJIT	Maximum Deviation Just-in-Time
MMJIT	Mixed-Model Just-in-Time
MMJITSP	Mixed-Model Just-in-Time Sequencing Problem
ORVP	Output Rate Variation Problem
OS	Operating System
PRVP	Product Rate Variation Problem
PRV-MD	Product Rate Variation Maximum Deviation
PRV-MM	Product Rate Variation Mixed-Model
SASJ	Scheduling Around the Shortest Job
SDJIT	Sum Deviation Just-in-Time
SJF	Shortest Job First
SRTN	Shortest Remaining Time Next

Contents

1	INTRODUCTION1		
2	FUNDAMENTAL BACKGROUND 4		
	Functions		
	Graph Theoretical Denotations		
	Algorithms and Heuristics		
	Complexity of Algorithms		
	Dynamic Programming		
	Combinatorial Optimization		
	Integer Programming		
	Bipartite Matching Problem		
	Assignment Problem 14		
3	SCHEDULING PROBLEMS		
	Schedules and their Representations		
	Three Field Notation		
	Earliest Due Date (EDD) Algorithm		
	Benefits of Just-in-Time Production Systems		
	Applications of Just-in-Time Production System		
4 _D	MATHEMATICAL MODEL OF JIT PRODUCTION		

	Output Rate Variation Problem, 26
	Product Rate Variation Problem 29
	Pegged ORV Problem
5	Tribhuvan University SOLUTION PROCEDURE FOR PRV PROBLEM Institute of Science and Technology
	Central Department of Computer Science and Information Technology
	Earliest Due Date Algorithms
	Nearest Integer Point Problem
	Dynamic Programming Algorithm
	Min-max Absolute-chain Algorithm
	Cost Assignment Problem
6	SOLUTION PROCEDURE FOR ORV PROBLEM
	Toyota's Goal Chasing Method (GCM)
	Miltenburg and Sinnamon Heuristic Approach
	Dynamic Programming Algorithm
7	CONCLUSION
RI	CFERENCES

List of Tables

Table 1: Schedule generated by EDD for max-abs 39
Table 2: Schedule generated by EDD for min-sum 42
Table 3: Schedule generated for demand vector $D = (2, 3, 5, 7)$ by nearest integer point 44
Table 4: Schedule generated for demand vector $D = (2, 3, 5, 1)$ by nearest integer point 44
Table 5: Schedule generated for demand vector $D = (2000, 3000, 5000, 1000)$ using heuristic
nearest integer point
Table 6: Schedule generated by dynamic programming 50
Table 7: Calculation of window value 53
Table 8: Output of min-max absolute chain algorithm 54
Table 9: Excess inventory or shortage costs calculated
Table 10: Schedule generated by cost assignment problem
Table 11: Assembly and demand data for Example 6.2.1
Table 12: Detail Schedule of Example 6.2.1

List of Figures

Figure 1: Graphical notation of $f(n) = O(g(n))$	
Figure 2: The Bipartite Matching Algorithm	14
Figure 3: The Hungarian method	19
Figure 4: Gantt chart	21
Figure 5: The ideal and actual commutative production quantities	
Figure 6: Input data for min-max absolute-chain algorithm	53
Figure 7: The Goal Chasing Algorithm	58
Figure 8: Miltenburg and Sinnamon heuristic approach	61
Figure 9: Input demand for ORVP	62