

TRIBHUVAN UNIVERSITY

CENTRAL DEPARTMENT OF COMPUTER SCIENCE AND
INFORMATION
TECHNOLOGY

UNIVERSITY CAMPUS
KIRTIPUR

Dissertation

COMPARATIVE ANALYSIS OF SPATIAL FILTERS FOR IMAGE
RECTIFICATION AND COMPUTATIONAL COMPLEXITY

(For the Partial Fulfillment of the Requirement for the Degree of Master of

Science in Computer Science and Information Technology)

Pushpa Parajuli
November, 2008

COMPARATIVE ANALYSIS OF SPATIAL FILTERS FOR IMAGE
RECTIFICATION AND COMPUTATIONAL COMPLEXITY

By
Pushpa Parajuli

(For the Partial Fulfillment of the Requirement for the Degree of Master of
Science in Computer Science and Information Technology)

Supervisor: Prof. Dr. Shashidhar Ram Joshi

Previous Degree:

B.Sc. in Computer Science
Gandaki College of Computer Science
Lamachaur, Pokhara, Nepal

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science and Information Technology

Certificate

This is to certify that the thesis titled “Comparative Analysis of Spatial Filters for Image

Rectification and Computational Complexity", submitted by Pushpa Parajuli in partial

fulfillment of the requirement for the award of the degree of Master of Science in

Computer Science and Information Technology has been carried out under my

supervision and guidance. The thesis fulfills the requirement related to the nature and

standard of the work for the award of Master of Science in Computer Science and

Information Technology. In my best knowledge this is an original work in computer

science and no part of this dissertation has been published or submitted for the award of

any degree else where in the past.

Prof. Dr. Shashidhar Ram Joshi,
Institute of Engineering (IOE)
Pulchowk Tribhuvan University

(Supervisor)

Approval

We certify that we have read this dissertation entitled “Comparative Analysis of Spatial

Filters for Image Rectification and Computational Complexity” and in our opinion, it is

satisfactory in the scope and quality as a dissertation in the partial fulfillment for the

requirement of Master’s Degree in Computer Science and Information Technology.

Evaluation Committee

---------------------------------- -------------------------------------

------------------------------- -------------------------------------

Prof. Dr. Shashidhar Ram Joshi,
Institute of Engineering (IOE)
Pulchowk Tribhuvan University

(Supervisor)

Dr. Tanka Nath Dhamala,
Head,
Centeral Department of Computer Science
and Information Technology,
Tribhuvan University, Nepal

 Mr. Roshan Chitrakar
 Nepal College of Information
 Technology (NCIT)
 Pokhara University

(External Examiner)

 Dr. Subarna Shakya
 Institute of Engineering (IOE)
 Pulchowk, Tribhuvan University

(Internal Examiner)

Date: ………………………

Acknowledgement

A dissertation of this nature calls for intellectual nourishment, and help and

encouragement from different individuals. I would not have been able to justify my work

without acknowledging those who helped and guided me to prepare this thesis report. I

would like to extend my heartiest gratitude to my advisor Prof. Dr. Shashidhar Ram Joshi

for his valuable suggestions, guidance and continuous inspiration throughout this

research.

I also owe special thanks to Dr. Tanka Nath Dhamala and all other teachers of Central

Department of Computer Science and Information Technology for their guidance and

suggestions.

I would like to express my sincere gratitude to all my colleagues’, family and other

friends, for their direct and indirect support in completing this thesis.

Pushpa Parajuli
November, 2008

Table Of Contents
Certificate
Approval
Acknowledgement
Abstract

CHAPTER 1.. 2

1. INTRODUCTION... 2

2. BACKGROUND ... 3

3. PROBLEM STATEMENT .. 4

4. RESEARCH OBJECTIVE .. 4

5. PROCEDURE ... 4

CHAPTER 2.. 6

LITERATURE REVIEW .. 6

1. IMAGE ACQUISITION .. 6
1.1 Image acquisition using a single sensor.. 6
1.2 Image Acquisition using sensor strips .. 7
1.3 Image Acquisition using Sensor Arrays ... 7

2. A SIMPLE IMAGE FORMATION MODEL.. 8

3. DIGITIZATION OF IMAGE.. 8

4. IMAGE ENHANCEMENT.. 9

5. SMOOTHING SPATIAL FILTERS... 11
5.1 Filtering... 12
5.2 Smoothing Linear Filter.. 13
5.3 Smoothing Non Linear Filter .. 13

6. NOISE .. 14

CHAPTER 3.. 16

IMPLEMENTATION DETAILS.. 16

1. TAKE 5*5 MATRIX... 16

2. DIVIDE IT INTO 5 REGIONS ... 16

3. ASSIGNING WEIGHTS TO PIXELS ... 17

4. FIND REGION WITH MINIMUM VARIANCE ... 17
4.1 Standard deviation .. 17

5. FIND MEAN BRIGHTNESS OF REGION OF MINIMUM VARIANCE 18
5.1 Average ... 18

CHAPTER 4.. 20

SYSTEM PROCESS DESCRIPTION.. 20

1. To calculate the total intensity ... 21

2. Calculate the total intensity in output images .. 21

3. To Calculate Root Mean square (RMS) error ... 22

4. Comparison of RMS error ... 22

CHAPTER 5.. 23

EXPERIMENTAL RESULTS... 23
1. Experimental Result for Kuwahara Filter. .. 23
2. Experimental Result for Gaussian Filter... 24
3. Experimental Result for Median Filter ... 25
4. Experimental Result for Proposed Algorithm... 26
5. Experimental Charts.. 27

CHAPTER 6.. 30

1. LIMITATIONS... 30

2. FUTURE ENHANCEMENT ... 30

3. CONCLUSION AND RECOMENDATION.. 30

CHAPTER 7.. 31

1.ANNEX 1 .. 31

2.ANNEX 2 .. 31

3.REFERENCES... 31
4. BIBLIOGRAPHY……………………………………………………………………31

List of Figures
Figures 1: 3*3 neighborhood about a point (x, y) in an image.............................. 10
Figures 2:Gray level transformation functions for contrast enhancement 11
Figures 3: General mask for filtering with a 3⋅3 window. 12
Figures 4: Example of filtering operation in the case of border pixel................... 12
Figures 5: Shows matrix of 5 * 5 ... 16
Figures 6: Show Region Allocation... 16
Figures 7: Assigning weight to pixels ... 17
Figures 8: Show process of System ... 20

List of Tables
Table 1: Complexity per pixel.. 19
Table 2:Complexity per pixel... 22
Table 3: Experimental Result for Kuwahara Filter .. 23
Table 4: Experimental Result for Gaussian Filter... 24
Table 5: Experimental Result for Median Filter ... 25
Table 6: Experimental Result for Proposed Algorithm .. 26

List of Charts
Chart 1: Shows comparison between Gaussian filter and Proposed algorithm...... 27
Chart 2: Shows comparison between Median filter and Proposed algorithm 27
Chart 3: Shows comparison between Kuwahara and Proposed algorithm............ 28
Chart 4: Shows comparison of Gaussian, Median and Kuwahara filters with
Proposed Algorithms ... 28
Chart 5:Shows comparison of time complexity among Median filter ,Gaussian filter.
Kuwahara filter and Algorithm. ... 29

List of Abbreviations
R.M.S Root Mean Square
S.D. Standard Deviation
Err. Error
A.M. Arithmetic Mean
V. Variance
MS Milisecond

1

ABSTRACT

Image Rectification is an important preprocessing step in many fields such as computer

vision, pattern matching and many real time image-processing applications. Rectifying

different things is image Rectification. But here the algorithm that helps to rectify

impurity presents in image is proposed. This impurity can be noise and distortions. The

sources of impurity in digital images arise during image acquisition (digitization) and /or

transmission. Impurity has two kinds of properties 1) Spatial properties 2) Frequency

properties. Frequency properties refer to the frequency content of impurity in the Fourier

sense. The spatial characteristics are concerned with statistical behavior of the gray level

values in the impurity component. So the proposed algorithm focuses in spatial properties

of impurity. There are two types of spatial filters. But noise reduction can be achieved

effectively with a nonlinear filter whose basic function is to compute the median gray-

level value in the neighborhood in which the filter is located.

There exist many works on minimizing impurity of images by using spatial filters. The

most widely used spatial filters are Median Filter, Kuwahara filter and Gaussian filter.

All are responsible to minimize impurity to some extent. The proposed algorithm that

helps to minimize impurity is better than these filters mentioned above. Here, checking of

the minimization of error is done by calculating RMS errors between input image and

output image. The proposed algorithm is also based on the spatial filters. Experiment

showed that the final rectified images are satisfactory and it makes it easy for further

image manipulation.

The efficiency of an algorithm depends on the complexity (time and space). Time

complexity is total time required for execution, whreas space complexity is total memory

space required for execution of an algorithm. Complexity of Median Filter, Kuwahara

filter and Gaussian filter and proposed filter are analysed for better efficiency.

Keywords: Noise, Distortions, Acquisition, Spatial, Impurity, Illumination,Gray level,

Filter mask, Root Mean Square Error, Pixel

2

CHAPTER 1
1. INTRODUCTION

Image filtering is done to remove noise, sharpen contrast, or highlight contours in digital

images. This document will discuss the basic distinctions between types of filters and

some of the uses for each[2,18]. Two of the most common classifications of filters are

based on their linearity and frequency response. Spatial filters whose response is based on

ordering (ranking) the pixels contained in the image area encompassed by the filter[8],

and then replacing the value of the center pixel with the value of determined by the

ranking result. The best-known example in this category is the median filter, which, as its

name implies, replaces the value of a pixel by the median of the gray levels in the

neighborhood of that pixel. In digital image application, impurity may cause many

problems. On the first steps we minimize the impurity and make the image smooth. Such

process makes further image manipulations easier. Mainly there are two kinds of spatial

filters a) Linear filters b) Non Linear filters. For linear spatial filtering, the response is

given by a sum of products of the filter coefficients and the corresponding image pixels

in the area spanned by the filter mask. In linear spatial filtering the same operation is

applied to each pixel location. The process of linear filtering is similar to a frequency

domain concept called convolution. For this reason linear spatial filtering is often

referred to as convolving a mask with an image. Non-linear filters which are not space

invariant; these attempt to locate edges in the noisy image before applying smoothing, a

difficult task at best, in order to reduce the blurring of edges due to smoothing[1,11].

In proposed algorithm, first of all, system takes a matrix of size 5*5 and divides that

matrix into five regions. A pixel is always influenced by its near pixels so system assigns

more weight to those pixels in each region, which is near the considered pixel. Different

regions have different variances. The variance of each region is measured and mean

brightness is calculated of that region which has less variance. The output value of the

center pixel in the window is the mean value of that region that has smallest variance.

3

The complexity of computational problems can be discussed by choosing a specific

machine as a model of computation and considering how much time and/or space the

machine of that type requires for the solution of that problem. The quality (efficiency) of

such computational problems can be measured in terms of the resources needed by the

algorithm for its execution. The two important resources used for executing a given

algorithm are time and memory, that are required to execute that algorithm[6,9].

2. BACKGROUND

Smoothing filters are used for blurring and noise reduction. Blurring is used in

preprocessing steps, such as removal of small details from an image. Linear spatial filter

is simply the average of the pixel contained in the neighborhood of the filter mask. These

filters are sometimes, called averaging filters. The idea behind smoothing filters is

straightforward. By replacing the value of very pixels in an image by the average of the

gray levels in the neighborhood defined by filters masks. This process results in an image

with reduced sharp transition in gray levels. The most obvious application of smoothing

is noise reduction. However, edges (which almost always are desirable features of image)

also are characterized by sharp transition in gray levels, so averaging filters have the

undesirable side effect that they blur edges. Another application of this type of process

includes the smoothing of false contours that result from using an insufficient number in

gray levels. A major use of averaging filter is in the reduction of irrelevant details in an

image. By irrelevant details mean, pixel regions that are small with respect to the size of

the filter mask.

In simple smoothing filter, average of the gray levels of the pixel in the size 3 * 3

neighborhood is defined by the mask. The coefficients of the filter are all 1’s. The idea

here is that it is computationally more efficient to have coefficients valued 1. At the end

of the filtering process I divide the entire image. A spatial averaging filter in which all

coefficients are equal is sometimes called a box filter. The second mask is called weight

average, the terminology are used to indicate that pixel are multiplied by different

coefficients, thus giving more importance (weight) to some pixel at the expense of others.

4

The pixel at the center of the mask is multiplied by a higher value than any other, thus

giving this pixel more importance in the calculation of the average[13,17]. The other

pixels are inversely weighted as a function of their distance from the center mask. An

important application of spatial averaging is to blur an image for the purpose of getting a

gross representation of objects of interest, such that the intensity of smaller objects

blends. Many impurity check rectification algorithms work based on spatial filtering

methods but they carry the following limitations:

• Disturbance the sharp of image

• High time complexity

• Support small Image size

• Minimize impurity in little

So, minimizing impurity in image is still an area where a lot more research is needed to

overcome limitations explored.

3. PROBLEM STATEMENT

Impurity has different nature. It is one of the difficult tasks to calculate the nature of

impurity. They may arise from various sources and processes. If we have to determine

nature of impurity, impurity model should be used. According to the nature of impurity

its reducing process can be different. Complexity is different for different algorithms. It

depends on the number of variables, loops and program instruction. According to the

nature of an algorithm complexity varies.

4. RESEARCH OBJECTIVE

Objective behind this research work is to make a spatial based filter to minimize the

impurity of an image without disturbing the nature and sharpness of image. The proposed

algorithm will be faster then the existing filter and complexity of different existing filters

as well as proposed algorithm will be analysed.

5. PROCEDURE

The procedure applied in proposed algorithm are given below

5

1. Take size of 5*5 matrix

2. Divide it into 5 regions

3. Assign weightage to the pixels

4. Find region with minimum variance

5. Find mean brightness of region of minimum variance

6. The output value of the center pixel in the window is the mean value of that

region that has smallest variance

The procedure for complexity are given below

i. Time Requirement:

• Starting time of an algorithm is captured

• Stoping time of an algorithm is captured

• Total time for executing an algorithm is calculated

ii. Storage Requirement:

• Number of variables and loops are detected

• Memory required for those variables are found

• Total memory space required for an algorithm is calculated

6

CHAPTER 2

LITERATURE REVIEW
 1. IMAGE ACQUISITION

Image acquisition is the first process in digital image processing. It gives information

about the origin of digital images. Generally, the image acquisition stage involves

preprocessing, such as scaling. Images which are generated by the combination of an

“illumination” source and the reflection or absorption of energy from that source by

the elements of the “scene” being imaged[10]. The illumination may originate from a

source of electromagnetic energy such as radar, infrared, or x- ray energy. It could

originate from less traditional sources, such as ultrasound or even a computer-

generated illumination pattern. Similarly, the scene elements could be familiar object,

but they can just as easily be molecules, buried rock formation, or a human brain.

Depending on the nature of the source, illumination energy is reflected from, or

transmitted through, objects. An example in the first category is light reflected from a

planar surface. An example in the second category is when X-rays pass through a

patient’ body for the purpose of generating a diagnostic X-ray film[8]. In some

application, the reflected or transmitted energy is focused onto a photo converter

(e.g., phosphor screen), which converts the energy into visible light. There are three

principal sensor arrangement used to transform illumination energy into digital

images

1.1 Image acquisition using a single sensor

The most familiar sensor of this type is photodiode, which is constructed of silicon

materials and whose output voltage waveform is proportional to light. In order to

generate a 2-D image using single sensor, there has to be relative displacement in

both the x-and y-directions between the sensor and the area to be imaged. It is used in

high precision scanning, where a film negative is mounted onto a drum whose

mechanical rotation provides displacement in one dimension. The single sensor is

mounted on a lead screw that provides motion in the perpendicular direction[8].

7

1.2 Image Acquisition using sensor strips

 A geometry that is used much more frequently that single sensors consists of an in-

line arrangement of sensor in the form of a sensor strip. The strip provides imaging

elements in one direction. Motion perpendicular to the strip provides imaging in the

other directions. This is the type of arrangement used in most flat bed scanners.

Sensing devices with 4000 or more in line sensors are possible. Inline sensor are used

routinely in airborne imaging applications in which the imaging system is mounted on

an aircraft that flies at constant altitude and speed over the geographical area to be

imaged. The imaging strip gives one line of an image at a time, and the motion of

strip completes the other dimension of a two dimensional image. Sensor strips

mounted in a ring configuration are used in medical and industrial imaging to obtain

cross sectional images of 3D objects. A rotating X- ray source provides illumination

and the portion of the sensors opposite the source collect the X-ray energy that pass

through the object.

1.3 Image Acquisition using Sensor Arrays

In this approach, numerous electromagnetic and some ultrasonic sensing devices are

frequently arranged in an array format. This is also the predominant arrangement

found in digital cameras. A typical sensor for these cameras is a CCD array, which

can be manufactured with a broad range of sensing properties and can be packaged in

rugged array of size 4000* 40000 elements or more. CCD sensors are used widely in

digital cameras and others light sensing instruments. The response of each sensor is

proportional to the integral of the light energy projected onto the surface of the

sensor, a property that is used in astronomical and other applications requiring low

noise images. The sensor array, which is coincident with the focal plane, produces

outputs proportional to the integral of the light received at each sensor.

8

2. A SIMPLE IMAGE FORMATION MODEL

Any image can be denoted by two-dimensional function of the form f (x, y). The value or

amplitude of f at spatial coordinates (x, y) is a positive scalar quantity whose physical

meaning is determined by the source of the image. Most of images are said to span the

gray scale. When image is generated from a physical process, its values are proportional

to energy radiated by a physical source (e.g., electromagnetic waves). As a consequence,

f (x, y) must be non zero and finite that is 0<f (x, y)<∝.

 The function f(x y) may be characterized by two components: 1) the amount of source

illumination incident on the scene being viewed , and 2) the amount of illumination

reflected by the object in the scene. So there are called the illumination and reflectance

components and are denoted by i (x, y) and r (x, y). The two functions combine as a

product to form f (x, y)

f (x, y)= i (x, y) r (x, y)

Where 0<i (x, y)<∝ and 0<r (x, y)<1

The nature of i (x, y) is determined by the illumination source and r (x, y) is determined

by the characteristics of the images objects.

3. DIGITIZATION OF IMAGE

Digital image consists of N × M pixels, each represented by k bits. A pixel can thus have

2k different values. In practical applications, the pixel values are considered as integers

varying from 0 (black pixel) to 2k-1 (white pixel)[12]. The images are obtained through a

digitization process, in which a two-dimensional sampling grid covers the object. The

main parameters of the digitization are:

• Image resolution: the number of samples in the grid.

• Pixel accuracy: how many bits are used per sample.

These two parameters have a direct effect on the image quality but also to the storage size

of the image. In general, the quality of the images increases as the resolution and the bits

per pixel increase. There are a few exceptions when reducing the number of bits increases

9

the image quality because of increasing the contrast. Moreover, in an image with a very

high resolution only very few gray-levels are needed. In some applications it is more

important to have a high resolution for detecting details in the image whereas in other

applications the number of different levels (or colors) is more important for better

outlook of the image. To sum up, if we have a certain amount of bits to allocate for an

image, it makes difference how to choose the digitization parameters. The properties of

human eyes imply some upper limits. For example, it is known that the human eye can

observe at most one thousand different gray levels in ideal conditions, but in any practical

situations 8 bits per pixel (256 gray level) is usually enough. The required levels decreases

even further as the resolution of the image increases. In a laser quality printing, as in this

lecture notes, even 6 bits (64 levels) results in quite satisfactory result. On the other hand, if

the application is e.g. in medical imaging or in cartography, the visual quality is not the

primary concern. For example, if the pixels represent some physical measure and/or a

computer will analyze the image, the additional accuracy may be useful. Even if human eye

cannot detect any differences, computer analysis may recognize the differences. The

requirement of the spatial resolution depends both on the usage of the image and the image

content. If the default printing (or display) size of the image is known, the scanning

resolution can be chosen accordingly so that the pixels are not seen and the image appearance

is not jagged (blocky). However, the final reproduction size of the image is not always

known but images are often achieved just for “later use”. Thus, once the image is digitized it

will most likely (according to Murphy’s law) be later edited and enlarged beyond what was

allowed by the original resolution. The image content sets also some requirements to the

resolution. If the image has very fine structure exceeding the sampling resolution, it may

cause so-called aliasing effect where the digitized image has patterns that does not exists in

the original

4. IMAGE ENHANCEMENT

 Image enhancement approaches fall into two broad categories: Spatial domain methods

and frequency domain methods[4,18]. The term spatial domain refers to the image plane

itself, and approaches in this category are based on direct manipulation of pixels in an

10

image. Frequency domain processing techniques are based on modifying the Fourier

transform of an image. Spatial domain processes will be denoted by the expression

 g(x, y)=T[f(x, y)]

Where f (x, y) is the input image, g(x, y) is the processed image, and T is an operator on

f, defined over some neighborhood of (x, y). In addition, T operates on a set of input

images, such as performing the pixel- by-pixel sum of K image for noise reduction. The

principle approach in defining a neighborhood about a point (x, y) is to use a square or

rectangular sub image area centered at (x, y). The center of the sub image is moved from

pixel to pixel starting, say, at the top left corner. The operator T is applied at each

location (x, y) to yield the output, g, at that location. The process utilizes only the pixels

in the area of the image spanned by the neighborhood. Although other neighborhood

shapes, such as approximations to a circle, sometimes are used, square and rectangular

arrays are by far the most predominant because of their ease of implementation. The

simplest form of T is when the neighborhood is of size 1*1 (that is , a single pixel). In

this case , g depends only on the value of f at (x, y) and T becomes a gray-level (also

called an intensity or mapping) transformation function of the form

 s=T(r)

Where, for simplicity in notation, r and s are variables denoting, respectively, the gray

level of f (x, y) and g(x, y) at any point (x, y)

 y

 x

Figures 1: 3*3 neighborhood about a point (x, y) in an image

Origin

(x,y)

Image f(x,y)

11

 s=T(r)

s=T(r)

 r

Figures 2:Gray level transformation functions for contrast
enhancement

If T(r) has the form shown in fig the effect of this transformation would be to produce an

image of higher contrast than the original by darkening the levels below m and

brightening the levels above m in the original image. In this technique known as contrast

stretching, the values of r below m are compressed by the transformation function into a

narrow range of s, towards black. Enhancement at any point in an image depends only on

the gray level at that point. This technique is known as point processing. The general

approach is to use a function of the values of f in a predefined neighborhood of (x, y) to

determine the value of g at (x, y). One of the principal approaches in this formation is

based on the use of so called masks (also referred as filters, kernels, templates or

windows). Enhancement of these techniques is known as mask processing or filtering.

5. SMOOTHING SPATIAL FILTERS

Smoothing filters are used for blurring and noise reduction. Blurring is used in

preprocessing steps, such as removal of small details from an image prior to object

extraction and bridging of small gaps in lines or curves. Noise reduction can be

accomplished by blurring with linear filter and also by non-linear filtering

Dark Light

m

T(r)

 T(r)

Dark Light

12

5.1 Filtering

Filtering is an image processing operation where the value of a pixel depends on the

values of its neighbor pixels. Each of the pixels is processed separately with a predefined

window (or template, or mask). Weighted sum of the pixels inside the window is calculated

using the weights given by a mask. The result of the sum replaces the original value in the

processed image.

 f(x) = ∑
=

nm

i
ii xw

*

1
.

 where m is the number of row and n is the number of column.

In case of border pixels, the part of the mask lying outside of the image is assumed to

have the same pixel values as that of the border pixels. The filtering is a parallel

operation, i.e. the neighboring values used in the calculations are always taken from the

original image, not from the processed image.

Figures 3: General mask for filtering with a 3⋅3 window.

Figures 4: Example of filtering operation in the case of border pixel.

W1 W2 W3

W4 W5 W6

W7 W8 W9

 34 42 67

13

5.2 Smoothing Linear Filter

The output of a smoothing, linear spatial filter is simply the average of the pixels

contained in the neighborhood of the filter mask. These filters are called averaging filter

and they also referred to low pass filters. Low-pass filtering (or averaging filtering, or

smoothing) reduces the high frequency components (or noise) in the image by averaging

the pixel values over a small region (block). This reduces noise and makes the image

generally smoother, especially near the edges. The level of smoothing can be changed by

increasing the size of the window. High-pass filtering is the opposite operation to low-

pass filtering. The low frequency components are eliminated and only the high frequency

components in the image are retained. The operation can be applied in image

enhancement by adding the result of the filtering to the original image. This is known as

sharpening. It enhances the pixels near edges and makes it easier to observe details in the

image. In uniform filter, the output image is based on a local averaging of the input filter

where all of the values within the filter support have the same weight. In Triangular filter

the output image is based on a local averaging of the input filter where the values within

the filter support have differing weights. In Gaussian filte, the use of the Gaussian kernel

for smoothing has become extremely popular. This has to do with certain properties of

the Gaussian (e.g. the central limit theorem, minimum space-bandwidth product) as well

as several application areas such as edge finding and scale space analysis. It helps to

remove noise but smears the image [18].

5.3 Smoothing Non Linear Filter

Statistics filters are nonlinear spatial filter whose response is based on ordering the pixels

contained in the image area encompassed by the filter, and then replacing the value of the

center pixel with the value determined by the ranking result. Low-pass and high-pass

filters are in the class of linear filters; a weighting mask can always describe them.

Median filtering, on the other hand, belongs to a class of rank filters. Here the pixels

within the window are ranked (or sorted) and the result of the filtering is chosen

according to the ordering of the pixel values. In median filtering the new value of a pixel

is the median of the pixel values in the window. The parameter of the filtering is the size

14

and the shape of the filtering window (mask). The median filter is used for removing

noise. It can remove isolated impulsive noise and at the same time it preserves the edges

and other structures in the image. Contrary to average filtering it does not smooth the

edges. Edges play an important role in our perception of images as well as in the analysis

of images. It is important to be able to smooth images without disturbing the sharpness

and, if possible, the position of edges. A filter that accomplishes this goal is termed an

edge-preserving filter and one particular example is the Kuwahara filter. Although this

filter can be implemented for a variety of different window shapes, the algorithm will be

described for a square window of size J = K = 4L + 1 where L is an integer. The window

is partitioned into four regions.

6. NOISE

The principal sources of noise in digital images arise during image acquisition

(digitization) and / or transmission. The performance of imaging sensor is affected by a

variety of factors, such as environment conditions during image acquisition, and by the

quality of the sensing elements themselves. For instance in acquiring images with a CCD

camera, light levels and sensor temperatures are major factors affecting the amount of

noise in the resulting image. Images are corrupted during transmission principally due to

interference in the channel used for transmission. For example, an image transmitted

using a wireless network might be corrupted as a result of lighting or other atmospheric

disturbance[8,18].

Noise has spatial and frequency properties. Frequency properties refer to the frequency

content of noise in the Fourier sense (i.e., as opposed to the electromagnetic spectrum).

For example, when the Fourier spectrum of noise is constant, the noise usually is called

white noise. This terminology is a carry-over from the physical properties of white light,

which contains nearly all frequencies in the visible spectrum in equal proportions.

7. COMPUTATIONAL COMPLEXITY

Computational complexity considers not only whether a problem can be solved at all on a

computer, but also how efficiently the problem can be solved.For it two major aspects are

considered: time complexity and space complexity, which are how many steps does it

15

take to perform a computation, and how much memory is required to perform that

computation respectively[9].

In order to analyze how much time and space a given algorithm requires, express the time

or space required to solve the problem as a function of the size of the input problem. For

example; finding a particular number in a long list of numbers becomes harder as the list

of numbers grows larger. If there are n numbers in the list, then if the list is not sorted or

indexed in any way you may have to look at every number in order to find the number

beeing sought. In order to solve this problem, a computer needs to perform a number of

steps that grows linearly in the size of the problem.

To simplify this problem Big O notation, which allows functions to be compared in a way

that ensures that particular aspects of a machine's construction does not need to be

considered, rather only the asymptomatic behavior on problems become large.

16

CHAPTER 3

IMPLEMENTATION DETAILS

1. TAKE 5*5 MATRIX
First of all we have to take square window of size five[4]. So it is matrix of five by

five. Then there are total twenty-five pixels in that matrix. The below figure shows

the matrix of proposed algorithm.

 Figures 5: Shows matrix of size 5 * 5

2. DIVIDE IT INTO 5 REGIONS

All twenty-five pixels are allocated into five regions. There are four regions at boundary

and one is at the center. The given figure shows how to allocate the pixels into different

regions.

 Figures 6: Show Region Allocation

17

3. ASSIGNING WEIGHTS TO PIXELS

Center pixel is affected from its near pixels. So near pixels give more weight than other

pixels .In the fig pixel in region five are near to center than others so that they get more

weight than others. They are shown in different colors

 Figures 7: Assigning weightage values to pixels

4. FIND REGION WITH MINIMUM VARIANCE

4.1 Standard deviation

The standard deviation, sa, of the brightnesses within a region () with pixels is called

the sample standard deviation and is given by:

 Sa = ∑
ℜ∈

−
−∆ πm

amnma 2)],[(
1

1

 =
1

],[22

−∆

−∆∑
ℜ∈πm

amnma

where is the number of pixels.

18

The square of the standard deviation is known as the variance. So that region of minimum

variance is calculated.

5. FIND MEAN BRIGHTNESS OF REGION OF MINIMUM
VARIANCE

5.1 Average

The average brightness of a region is defined as the sample mean of the pixel brightness

within that region. The average, ma, of the brightnesses over the pixels within a region

() is given by:

 ma = ∑
ℜ∈∆).(

],[1
πm

nma

The output value of the center pixel in the window is the mean value of that region that

has smallest variance At last center pixel has equal value of mean value of that region

which as smallest variance. That value is assigned to that center pixel. From all above

process all new images will form.

6. FIND COMPUTATIONL COMPLEXITY FOR IMAGE FILTER

6.1 Time Requirement
Time complexity is total time required for execution of an algorithm. Overall filtering

could caried out in time O(n) then the overall running time for each filter is given by O(

n log n). If we consider one process takes 1 millisecond then for 100 pixels, the

computation of the filter takes 100 millisecond.

6.2 Storage Requirement
Space complexity is the total memory space required for execution of an algorithm. If

filter requires n number of variables then storage requirement for all algorithm is given

by O(n2) where n is the number of variables because all algorithm uses nested loop.

19

 6.3 Complexity per pixel

Table 1: Complexity per pixel

Algorithm Domain Complexity per pixel
Median Space O(K)a
Gussian Space O(Constant)a

Kuwahara Space O(J* K)
Algorithm Space O(J* K)

20

CHAPTER 4

SYSTEM PROCESS DESCRIPTION

Figure8 below shows the overall process of the proposed Comparative study of image

rectification on spatial domain

 yes no

Figures 8: Show process of System

Digital image

Apply proposed filter

Output image

Calculate total intensity in
input image

Calculate total intensity in
output image

Root mean square error of
existing filters(rms1) Calculate Root mean square

error(rms2

 Is
rms1>rms2?

Calculate
complexity

Display Results

Existing filters are
better

Proposed filter is
better

21

First of all any digital image is provided as an input image for the system. Then, filtering

options are provided. Any types of filter can choose for minimizing impurity. For that

purpose there are most popular spatial filter such as median filter, Kuwahara filter, and

Gaussian filter. These entire filters are widely used for image processing application. So I

choose this filter for my analysis. We can choose any type of image filters for the first

step,then, total intensity of input images is calculated. The output of that filter appeares.

Total intensity of output image is also calculated. Root mean square error is calculated to

determine how much impurity is reduced from that filter. From that process we can get

RMS error of all filters.

Similarly,we can apply my proposed algorithms and total intensity of input and output

image is calculated. Root Mean Square error is also calculated. We can compare RMS

error values of my proposed algorithms and exiting popular filters. The RMS error is less

than RMS error of exiting filters.

1. To calculate the total intensity

An image may be defined as a two dimensional function, f(x, y), where x and y are

spatial (plane) coordinates and the amplitude of f at any pair of coordinates (x, y) is

called the intensity or the gray level of the image at that point . When x, y and the

amplitude values of f are all-finite, we call the image a digital image. Digital image is

composed of a finite number of elements, each of which has a particular location and

value. These elements are referred to as picture elements or pixels. So we have sum of

intensity values of pixels

()∑∑
−−

==

=
1,1

0,0
,

nm

YX
YXfsitySumTotalInten

2. Calculate the total intensity in output images

After filtering the image we get new output image. This image has different total

intensity than the original image. We have calculated the total intensity of output images

to determine impurity reduction ratio.

()∑∑
−−

==

=
1,1

0,0

' ,1
nm

YX
YXfsitySumTotalInten

22

3. To Calculate Root Mean square (RMS) error

Let f (x, y) represents an input image and let f” (x, y) denote an output image. For any

values of x and y , the error e(x, y) between f(x, y) and f’(x, y) can be defined as

() () ()yxfyxfyxe ,,, ' −=

So that the total error between the two images is

() ()∑∑∑∑
−−

==

−−

==

−=
1,1

0,0

1,1

0,0

' ,,
nm

YX

nm

YX
YXfYXfTotalErr

where the size of image is m*n. The Root mean square error, erms between f(x, y) and

f’(x, y) is the square root of the squared error averaged over the m*n array

() ()
2/1

1,1

0,0

21,1

0,0

' ,,*1





















−= ∑ ∑ ∑∑

−−

==

−−

==

nm

YX

nm

YX
YXfYXf

mn
TotalErms

4. Comparison of RMS error

We get RMS error from above formula. Then, the RMS of image for all filters is
calculated. Then we can easily compare each other. In above RMS calculation process,
which has little values then, we can easily guess that the process reduces more impurity
then others.
If (rms1>rms2)
Then rms2 has less impurity then rms1.
 If (rms1<rms2)
Then rms1 has less impurity then rms2.

5. Compariosn of Computationl Complexity

Algorithm Domain Complexity per pixel
Median Space O(K)a
Gussian Space O(Constant)a

Kuwahara Space O(J* K)
Proposed algorithm Space O(J* K)

Table 2:Complexity per pixel

23

CHAPTER 5

EXPERIMENTAL RESULTS

Model prototyping shows satisfactory result for small and medium image databases.

1. Experimental Result for Kuwahara Filter.

 Table 3: Experimental Result for Kuwahara Filter

Image Size

(KB)

Total

intensity in

input image

Total

intensity in

output image

Root Mean

Square Error

(RMS)

Time

Complexity

(MS)

1wall.bmp 104 33539 7189 11.238665 1400

2dbox.bmp 105 42194 3417 11.125982 1350

3dbar.bmp 102 39105 595 11.093336 1330

4dcman.bmp 107 40712 595 11.014090 1335

5dwall2.bmp 100 44551 8791 11.190162 1320

6droad.bmp 118 26403 5088 11.118701 1315

7dcave.bmp 117 34610 595 11.182601 1318

8ddoor.bmp 122 28985 1531 11.087574 1298

9win.bmp 122 44447 7815 11.191154 1322

10dwomen.bmp 114 34500 580 11.192502 1315

11tree.bmp 125 45337 8016 11.201254 1350

12canvas.bmp 119 35710 600 11.21351 1345

13sat.bmp 116 34410 575 11.087574 1314

14chair.bmp 111 33300 570 11.092502 1310

15cap.bmp 120 42345 7790 11.190254 1400

16tab.bmp 114 34500 580 11.192502 1315

17dflower.bmp 103 39108 593 11.094120 1310

18light.bmp 102 39105 595 11.093336 1305

19plane.bmp 101 38100 570 11.1025663 1300

20flag.bmp 106 35600 615 11.123564 1325

24

2. Experimental Result for Gaussian Filter

Image Size

(KB)

Total

intensity

in input

image

Total

intensity

in output

image

Root Mean

Square

Error

(RMS)

TimeComplexity

(MS)

1wall.bmp 104 33539 33414 11.494037 3500

2dbox.bmp 105 42194 40770 11.420481 3200

3dbar.bmp 102 39105 38613 11.790548 3600

4dcman.bmp 107 40712 39476 11.263325 3100

5dwall2.bmp 100 44551 42414 11.260066 3075

6droad.bmp 118 26403 26397 12.004144 3700

7dcave.bmp 117 34610 34100 11.471344 3350

8ddoor.bmp 122 28985 28611 11.686043 3550

9windows.bmp 122 44447 42820 11.261982 3060

10dwomen.bmp 114 34500 33700 11.361892 3120

11tree.bmp 135 45337 44201 11.372194 3250

12canvas.bmp 119 35710 34601 11.481982 3340

13sat.bmp 116 34410 33901 11.384581 3512

14chair.bmp 111 33300 33201 11.215678 3542

15cap.bmp 120 42345 41100 11.345614 3312

16tab.bmp 114 34500 33200 11.361892 3405

17dflower.bmp 103 39108 38500 11.789145 3340

18light.bmp 102 39105 37900 11.568921 3350

19plane.bmp 101 38100 37500 11.723456 3345

20flag.bmp 106 35600 34905 11.452356 3354

Table 4: Experimental Result for Gaussian Filter

25

3. Experimental Result for Median Filter

Image Size

(KB)

Total

Intensity

 in

input image

Total intensity

in

output image

Root Mean

Square Error

(RMS)

Time

Complexity

(MS)

1wall.bmp 104 33539 33167 11.635696 1000

2dbox.bmp 105 42194 41821 11.548772 975

3dbar.bmp 102 39105 37725 11.501963 970

4dcman.bmp 107 40712 39045 11.323892 965

5dwall2.bmp 100 44551 44259 11.627915 972

6droad.bmp 118 26403 26376 11.584725 969

7dcave.bmp 117 34610 33367 11.542884 971

8ddoor.bmp 122 28985 28204 11.567791 968

9windows.bmp 122 44447 42820 11.625469 974

10dwomen.bmp 114 34500 33400 11.614521 978

11tree.bmp 135 45337 44100 11.586584 981

12canvas.bmp 119 35710 34600 11.605689 957

13sat.bmp 116 34410 33200 11.594789 956

14chair.bmp 111 33300 32900 11.594568 955

15cap.bmp 120 42345 41300 11.553689 958

16tab.bmp 114 34500 33400 11.578962 960

17dflower.bmp 103 39108 38801 11.568974 948

18light.bmp 102 39105 37850 11.568423 968

19plane.bmp 101 38100 37560 11.584326 959

20flag.bmp 106 35600 34580 11.598742 958

Table 5: Experimental Result for Median Filter

26

4. Experimental Result for Proposed Algorithm

Image Size

(KB)

Total

intensity

in input

image

Total

intensity

in output

image

Root Mean

Square

Error (RMS)

Time

Complexity

(MS)

1wall.bmp 104 33539 7174 11.227622 1800

2dbox.bmp 105 42194 3402 11.1173717 1750

3dbar.bmp 102 39105 580 11.084783 1675

4dcman.bmp 107 40712 579 11.0125803 1650

5dwall2.bmp 100 44551 8776 11.180870 1775

6droad.bmp 118 26403 5073 11.108418 1700

7dcave.bmp 117 34610 580 11.171830 1725

8ddoor.bmp 122 28985 1516 11.087012 1668

9windows.bmp 122 44447 7800 11.182632 1760

10dwomen.bmp 114 34500 575 11.0845235 1784

11tree.bmp 135 45337 8860 11.182546 1685

12canvas.bmp 119 35710 7450 11.1145627 1753

13sat.bmp 116 34410 560 11.065485 1758

14chair.bmp 111 33300 595 11.075421 1764

15cap.bmp 120 42345 8575 11.0845142 1784

16tab.bmp 114 34500 575 11.095125 1764

17dflower.bmp 103 39108 675 11.089512 1754

18light.bmp 102 39105 650 11.0854623 1768

19plane.bmp 101 38100 595 11.052658 1684

20flag.bmp 106 35600 560 11.0984251 1657

Table 6: Experimental Result for Proposed Algorithm

27

5. Experimental Charts

Comparison of Gaussian Filter with Proposed
Algorithm

10
11
12
13

1 3 5 7 9 11 13 15 17 19
Image

R
M

S
Er

ro
r

Proposed Gaussian

Chart 1: Shows comparison between Gaussian filter and Proposed
algorithm

Comparison of Median Filter with Proposed Algorithm

10.6
10.8

11
11.2
11.4
11.6
11.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Image

R
M

S
Er

ro
r

Proposed Median

Chart 2: Shows comparison between Median filter and Proposed
algorithm

28

Comparison of Kuwahara Filter with Proposed Algorithm

10.8
10.9

11
11.1
11.2
11.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Image

R
M

S
E

rr
or

Proposed Kuwahara

Chart 3: Shows comparison between Kuwahara filter and Proposed
algorithm

Comparison Of All three Filters with Proposed
Algorithm

10
11
12
13

1 3 5 7 9 11 13 15 17 19
Images

R
M

S
Er

ro
r

Proposed Kuwahara Median Gaussian

Chart 4: Shows comparison of Gaussian, Median and Kuwahara
filters with Proposed Algorithms

29

Comparison of Time Complexity of all three filters with Proposed Algorithm

0
2000
4000
6000
8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Image

Ti
m

e(
M

S)

Gaussian
Median
Kuwahara
Proposed

Chart 5:Shows comparison of time complexity among Median filter
,Gaussian filter. Kuwahara filter and Proposed Algorithm.

30

CHAPTER 6

1. LIMITATIONS

• It is spatial based algorithms.

• Image having large size and large intensity cannot filter by this algorithm.

• Complexity can’t be reduced in higher level.

2. FUTURE ENHANCEMENT

• It can be used in image restoration process.
• Nature of impurity can be found before applying then, result can be better.
• Computational complexity (Execution time) is reduced a little bit.
• It is let to identify either the algorithm can be efficiently used as non-spatial

domain
• It also remains to study toward removing the space complexity of the algorithm.
• Much more work is left to extend the algorithm to the large size image.

These works are left for furthere study.

3. CONCLUSION AND RECOMENDATION

In this dissertation different approaches for minimizing errors in an image are analyzed.

Most of these algorithms are implemented. Finally, a new algorithm is purposed which

modifies the kuwahara filter algorithm to remove noise from the images. Output image of

this algorithm can be used as an input for other applications. It helps to remove noise in

image but it does not loose image details.

31

CHAPTER 7

1.ANNEX 1

2.ANNEX 2

3.REFERENCES

4.BIBLIOGRAPHY

32

 Annex: 1

Snapshots of Model Prototype

33

Snapshots of Model Prototypes

 Initial Screen

Screen after loading Image

34

Snapshots of Model Prototypes

Screen when operation is ready

 Time complexity of median filter

35

 Snapshot of Model Prototype

Time complexity of Gaussian filter

 Time complexity of kuwahara filter

36

Snapshots of Model Prototypes

 Time complexity of Proposed Algorithm

Output result of Median filter for image 1dwall.bmp

37

Snapshot of model Prototype

Output result of Gaussian filter for image 1dwall.bmp

Output result of Kuwahara Algorithm for image 1dwall.bmp

38

 Snapshot of Model Prototype

Output result of Proposed Algorithm for image 1dwall.bmp

39

Annex: 2

Source Code

40

Source Code

' Window
'A A A A A
'A A A A A
'A A X A A
'A A A A A
'A A A A A
Command9.Enabled = False
'Label5.Caption = "Logic : Based on region concept, Divides
segment into 4 regions,"
Picture2.Cls
Dim pt(6) As Double
Dim Min, Index, k As Integer
For I = 2 To Picture1.ScaleWidth
 For J = 2 To Picture1.ScaleHeight
 'region 1
 pt(0) = Picture1.Point(I, J + 1)
 pt(1) = Picture1.Point(I, J + 2)
 pt(2) = Picture1.Point(I - 1, J + 1)
 pt(3) = Picture1.Point(I - 1, J + 2)
 pt(4) = Picture1.Point(I - 2, J + 1)
 pt(5) = Picture1.Point(I - 2, J + 2)
 Call Region(pt, 0)
 'region 2
 pt(0) = Picture1.Point(I + 1, J) '0
 pt(1) = Picture1.Point(I + 1, J + 1) '0
 pt(2) = Picture1.Point(I + 1, J + 2) '1
 pt(3) = Picture1.Point(I + 2, J) '4
 pt(4) = Picture1.Point(I + 2, J + 1) '4
 pt(5) = Picture1.Point(I + 2, J + 2) '5
 Call Region(pt, 1)
 'region 3
 pt(0) = Picture1.Point(I - 1, J) '0
 pt(1) = Picture1.Point(I - 1, J - 1) '0
 pt(2) = Picture1.Point(I - 1, J - 2) '1
 pt(3) = Picture1.Point(I - 2, J) '4
 pt(4) = Picture1.Point(I - 2, J - 1) '4
 pt(5) = Picture1.Point(I - 2, J - 2) '5
 Call Region(pt, 2)
 'region 4
 pt(0) = Picture1.Point(I, J - 1)
 pt(1) = Picture1.Point(I, J - 2)
 pt(2) = Picture1.Point(I + 1, J - 1)
 pt(3) = Picture1.Point(I + 1, J - 2)
 pt(4) = Picture1.Point(I + 2, J - 1)
 pt(5) = Picture1.Point(I + 2, J - 2)

41

Source code for Kuwahara Filter Implemention

Source code

Call Region(pt, 3)
 DoEvents
 Min = Variance(0)
 For k = 0 To 3
 If Min >= Variance(k) Then
 Min = Variance(k)
 Index = k
 End If
 Next k
 Intensity = Means(Index)
 Picture2.PSet (I, J), Intensity
 Next J
Next I

Dim k1, l As Double: k1 = 0
k = 0
'Using Gaussian Smoothing
'smoothing the image before binarization using guassian filter
Dim wt As Integer
For I = 1 To Picture1.ScaleWidth
 For J = 1 To Picture1.ScaleHeight
 DoEvents
 k1 = Picture1.Point(I - 2, J - 2) + Picture1.Point(I - 2, J + 2) +
Picture1.Point(I + 2, J + 2) + Picture1.Point(I + 2, J - 2)
 k1 = k1 + 4 * (Picture1.Point(I - 2, J - 1) + Picture1.Point(I - 2, J +
1) + Picture1.Point(I + 2, J - 1) + Picture1.Point(I + 2, J + 1))
 k1 = k1 + 7 * (Picture1.Point(I, J - 2) + Picture1.Point(I - 2, J) +
Picture1.Point(I, J + 2) + Picture1.Point(I + 2, J))
 k1 = k1 + 16 * (Picture1.Point(I - 1, J - 1) + Picture1.Point(I - 1, J +
1) + Picture1.Point(I + 1, J + 1) + Picture1.Point(I + 1, J - 1))
 k1 = k1 + 26 * (Picture1.Point(I - 1, J) + Picture1.Point(I + 1, J) +
Picture1.Point(I, J - 1) + Picture1.Point(I, J + 1))
 k1 = k1 + 41 * (Picture1.Point(I, J))
 k1 = k1 / 273
 LngToRGB k1
 k1 = (R + G + b) / 3
 LngToRGB Picture1.Point(I, J)
 k = (R + G + b) / 3
 If k > k1 Then
 l = 0
 For p = -5 To 5
 For q = -5 To 5
 l = l + Picture1.Point(I + p, J + q)
 Next q
 Next p
 LngToRGB l
 l = (R + G + b) / 3
 If l < k1 Then
 Picture2.PSet (I, J), RGB(k1, k1, k1)
 Else

42

Source code for Gaussain Filter Implemention

Source code

Picture2.PSet (I, J), RGB(k1, k1, k1)
 Else
 Picture2.PSet (I, J), Picture1.Point(I, J)
 End If
 Else
 Picture2.PSet (I, J), Picture1.Point(I, J)
 End If
 Next J
 Next I

Dim aR(9), aG(9), aB(9) As Integer
Dim k As Long
Command7.Enabled = False
'Label5.Caption = "Logic : Take 8 Connected Pixels along with pixel
,Sort it, Take Median"
Picture2.Cls
For I = 1 To Picture1.ScaleWidth - 1
 For J = 1 To Picture1.ScaleHeight - 1
 k = Picture1.Point(I, J): LngToRGB k
 DoEvents
 aR(0) = R: aG(0) = G: aB(0) = b
 k = Picture1.Point(I + 1, J): LngToRGB k
 aR(1) = R: aG(1) = G: aB(1) = b
 k = Picture1.Point(I + 1, J + 1): LngToRGB k
 aR(2) = R: aG(2) = G: aB(2) = b
 k = Picture1.Point(I, J + 1): LngToRGB k
 aR(3) = R: aG(3) = G: aB(3) = b
 k = Picture1.Point(I - 1, J + 1): LngToRGB k
 aR(4) = R: aG(4) = G: aB(4) = b
 k = Picture1.Point(I - 1, J): LngToRGB k
 aR(5) = R: aG(5) = G: aB(5) = b

43

Source code for median filter Implementation

Source Code

Dim pt(6) As Double
Dim cpt(8) As Double
Dim Min, Index, k As Integer
For I = 2 To Picture1.ScaleWidth
 For J = 2 To Picture1.ScaleHeight
 'region 1
 pt(0) = Picture1.Point(I, J + 1)
 pt(1) = Picture1.Point(I, J + 2)
 pt(2) = Picture1.Point(I - 1, J + 1)
 pt(3) = Picture1.Point(I - 1, J + 2)
 pt(4) = Picture1.Point(I - 2, J + 1)
 pt(5) = Picture1.Point(I - 2, J + 2)
 Call Region(pt, 0)
 'region 2
 pt(0) = Picture1.Point(I + 1, J) '0
 pt(1) = Picture1.Point(I + 1, J + 1) '0
 pt(2) = Picture1.Point(I + 1, J + 2) '1
 pt(3) = Picture1.Point(I + 2, J) '4
 pt(4) = Picture1.Point(I + 2, J + 1) '4
 pt(5) = Picture1.Point(I + 2, J + 2) '5
 Call Region(pt, 1)
 'region 3

 k = Picture1.Point(I - 1, J - 1): LngToRGB k
 aR(6) = R: aG(6) = G: aB(6) = b
 k = Picture1.Point(I, J - 1): LngToRGB k
 aR(7) = R: aG(7) = G: aB(7) = b
 k = Picture1.Point(I + 1, J - 1): LngToRGB k
 aR(8) = R: aG(8) = G: aB(8) = b
 Call SortArry(aR, 8)
 Call SortArry(aG, 8)
 Call SortArry(aB, 8)
 Picture2.PSet (I, J), RGB(aR(5), aG(5), aB(5))
 Next J
Next I

44

Source code for Proposed Algorithm Implementation

pt(0) = Picture1.Point(I - 1, J) '0
 pt(1) = Picture1.Point(I - 1, J - 1) '0
 pt(2) = Picture1.Point(I - 1, J - 2) '1
 pt(3) = Picture1.Point(I - 2, J) '4
 pt(4) = Picture1.Point(I - 2, J - 1) '4
 pt(5) = Picture1.Point(I - 2, J - 2) '5
 Call Region(pt, 2)
 'region 4
 pt(0) = Picture1.Point(I, J - 1)
 pt(1) = Picture1.Point(I, J - 2)
 pt(2) = Picture1.Point(I + 1, J - 1)
 pt(3) = Picture1.Point(I + 1, J - 2)
 pt(4) = Picture1.Point(I + 2, J - 1)
 pt(5) = Picture1.Point(I + 2, J - 2)
 Call Region(pt, 3)
 DoEvents
 'region 5
cpt(0) = Picture1.Point(I - 1, J)
 cpt(1) = Picture1.Point(I + 1, J)
 cpt(2) = Picture1.Point(I + 1, J - 1)
 cpt(3) = Picture1.Point(I + 1, J + 1)
 cpt(4) = Picture1.Point(I - 1, J - 1)
 cpt(5) = Picture1.Point(I - 1, J + 1)
 cpt(6) = Picture1.Point(I, J - 1)
cpt(7) = Picture1.Point(I, J + 1)
 Call CRegion(cpt)
 DoEvents
 Min = CVariance
 For k = 0 To 3
 If Min >= Variance(k) Then
 Min = Variance(k)
 Index = k
 End If
 Next k
 If CVariance = Min Then
 Intensity = CMeans
 Else
 Intensity = Means(Index)
 End If
 Picture2.PSet (I, J), Intensity
 Next J
Next I
Command9.Enabled = True

45

Source code

Source Code for finding total intensity in input image

Dim ImagePixels(2, 800, 800)
 Dim I As Integer, J As Integer, total As Long
 Dim sum As Long
 Dim red As Integer, green As Integer, blue As Integer
 Dim pixel As Long

 sum = 0
 total = 0
 For I = 1 To Picture1.ScaleWidth - 1
 For J = 1 To Picture1.ScaleHeight - 1
 pixel = Picture1.Point(I, J)
 red = pixel& Mod 256
 green = ((pixel And &HFF00) / 256&) Mod 256&
 blue = (pixel And &HFF0000) / 65536
 ImagePixels(0, I, J) = red
 ImagePixels(1, I, J) = green
 ImagePixels(2, I, J) = blue
 Next
 sum = red + green + blue / 3
 total = total + sum

 Next
 'total = sum + sum

L b l3 C ti t t l

46

Source code

Source code for finding total intensity in output image.

Dim ImagePixels(2, 800, 800)
 Dim I As Integer, J As Integer, total As Long
 Dim sum As Long

 Dim red As Integer, green As Integer, blue As Integer
 Dim pixel As Long

 sum = 0
 total1 = 0
 For I = 1 To Picture2.ScaleWidth - 1
 For J = 1 To Picture2.ScaleHeight - 1
 pixel = Picture2.Point(I, J)
 red = pixel& Mod 256
 green = ((pixel And &HFF00) / 256&) Mod 256&
 blue = (pixel And &HFF0000) / 65536
 ImagePixels(0, I, J) = red
 ImagePixels(1, I, J) = green
 ImagePixels(2, I, J) = blue
 Next
 sum = red + green + blue / 3
 total1 = total1 + sum

 Next
 'total = sum + sum

 Label4.Caption = total1

47

Source code

Source code for finding RMS error

Screen.MousePointer = vbHourglass
Dim ImagePixels(2, 800, 800)
Dim ImagePixels1(2, 800, 800)
 Dim I, k, l As Integer, J As Integer, total As Long
 Dim sum, sum1 As Long

 Dim red As Integer, green As Integer, blue As Integer
 Dim pixel As Long
 Dim diff As Double
 sum = 0
 sum1 = 0
 total = 0
 For I = 1 To Picture1.Width
 For J = 1 To Picture1.Height
 pixel = Picture1.Point(I, J)
 red = pixel& Mod 256
 green = ((pixel And &HFF00) / 256&) Mod 256&
 blue = (pixel And &HFF0000) / 65536
 sum1 = red + green + blue / 3
 pixel = Picture2.Point(I, J)
 red = pixel& Mod 256
 green = ((pixel And &HFF00) / 256&) Mod 256&
 blue = (pixel And &HFF0000) / 65536
 sum2 = red + green + blue / 3
 diff = sum1 - sum2
 diff = diff * diff
 total = total + diff
 Next
 Next
 Label11.Caption = CStr(Abs(Log(((Sqr(total / Picture1.Height
* Picture1.Width)) ^ 0.5) / (Picture1.Width *
Picture1.Height))))
 Screen.MousePointer = vbNormal

48

Source Code

Public totalInterval As Double
Dim T1 As Double
Sub StartCounting()
T1 = Time

End Sub
Sub StopCounting()
totalInterval = totalInterval + Time - T1

End Sub
Sub ResetTimer()
totalInterval = 0

End Sub

Source Code for Time complexity

49

Source code

 Public b As Long
Public G As Long
Public R As Long
Public pict As PictureBox
Public CFRM As Form
Public Means(4) As Double
Public Variance(4) As Integer
Public CVariance As Integer
Public CMeans As Double
Public Sub AlignFrm()
CFRM.Top = (Screen.Height - CFRM.Height) / 2
CFRM.Left = (Screen.Width - CFRM.Width) / 2
End Sub
Public Function SortArry(DesArr, arrLen)
Dim k, M, temp As Integer
For k = 0 To arrLen
 For M = 0 To arrLen - 1 - k
 If (DesArr(M) > DesArr(M + 1)) Then
 temp = DesArr(M)
 DesArr(M) = DesArr(M + 1)
 DesArr(M + 1) = temp
 End If
 Next M
Next k
End Function
Public Function CRegion(pt() As Double)
 Dim aR(8) As Double, aG(8) As Double, aB(8) As Double
 Dim redM As Double, greenM As Double, blueM As Double
 Dim redV As Double, greenV As Double, blueV As Double
 Dim k As Integer

 LngToRGB (pt(0))
 aR(0) = R: aG(0) = G: aB(0) = b
 LngToRGB (pt(1))
 aR(1) = R: aG(1) = G: aB(1) = b
 LngToRGB (pt(2))
 aR(2) = R: aG(2) = G: aB(2) = b
 LngToRGB (pt(3))
 aR(3) = R: aG(3) = G: aB(3) = b
 LngToRGB (pt(4))

50

 aR(4) = R: aG(4) = G: aB(4) = b
 LngToRGB (pt(5))
 aR(5) = R: aG(5) = G: aB(5) = b
 LngToRGB (pt(6))
 aR(6) = R: aG(6) = G: aB(6) = b
 LngToRGB (pt(7))
 aR(7) = R: aG(7) = G: aB(7) = b
 redM = greenM = blueM = redV = greenV = blueV = 0
 For k = 0 To 7
 redM = redM + aR(k)
 greenM = greenM + aG(k)
 blueM = blueM + aB(k)
 Next k
 redM = redM / 8
 greenM = greenM / 8
 blueM = blueM / 8

 For k = 0 To 8
 redV = redV + (aR(k) - redM) ^ 2
 greenV = greenV + (aG(k) - greenM) ^ 2
 blueV = blueV + (aB(k) - blueM) ^ 2
 Next k
 redV = redV / 8
 greenV = greenV / 8
 blueV = blueV / 8

 CMeans = RGB(Abs(redM), Abs(greenM), Abs(blueM))
 CVariance = (redV + greenV + blueV) / 20
End Function
Public Function Region(pt() As Double, reg As Integer)
 Dim aR(6) As Double, aG(6) As Double, aB(6) As Double
 Dim redM As Double, greenM As Double, blueM As Double
 Dim redV As Double, greenV As Double, blueV As Double
 Dim k As Integer

 LngToRGB (pt(0))
 aR(0) = R: aG(0) = G: aB(0) = b
 LngToRGB (pt(1))
 aR(1) = R: aG(1) = G: aB(1) = b
 LngToRGB (pt(2))
 aR(2) = R: aG(2) = G: aB(2) = b

51

Source code for different modules

LngToRGB (pt(3))
 aR(3) = R: aG(3) = G: aB(3) = b
 LngToRGB (pt(4))
 aR(4) = R: aG(4) = G: aB(4) = b
 LngToRGB (pt(5))
 aR(5) = R: aG(5) = G: aB(5) = b

 redM = greenM = blueM = redV = greenV = blueV = 0
 For k = 0 To 5
 redM = redM + aR(k)
 greenM = greenM + aG(k)
 blueM = blueM + aB(k)
 Next k
 redM = redM / 6
 greenM = greenM / 6
 blueM = blueM / 6

 For k = 0 To 5
 redV = redV + (aR(k) - redM) ^ 2
 greenV = greenV + (aG(k) - greenM) ^ 2
 blueV = blueV + (aB(k) - blueM) ^ 2
 Next k
 redV = redV / 6
 greenV = greenV / 6
 blueV = blueV / 6

 Means(reg) = RGB(Abs(redM), Abs(greenM), Abs(blueM))
 Variance(reg) = (redV + greenV + blueV) / 3
End Function

Public Sub LngToRGB(ByVal longColor As Long)
 Dim lngColor As Long
 lngColor = longColor
 R = lngColor Mod &H100
 lngColor = lngColor \ &H100
 G = lngColor Mod &H100
 lngColor = lngColor \ &H100
 b = lngColor Mod &H100

End Sub

52

References:

[1] Banham, M. R. and Katsaggelos.” Spatially Adaptive Wavelet Based Multiscale
Image Restoration”,Proc. of IEEE,86(4), pp. 615-638[1993]

[2] P. Bakker, L.J. van Vliet, P.W.” Edge preserving orientation adaptive filtering”,IEEE
journals on spatial filter,43(3),pp. 157-193, Verbeek Pattern Recognition Group,
Department of Applied Physics, Delft University of Technology, The Netherlands[2003]

[3] Mark J. T. Smith, and Russell M. Mersereau.” Improved Structures of Maximally
Decimated Directional Filter Banks for Spatial Image Analysis”, [IEEE
TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 11, NOVEMBER 2004]

[4] Shlomo Greenberg, Mayer Aladjem, Daniel Kogan and Itshak Dimitrov.” Fingerprint
Image Enhancement using Filtering Techniques”, Electrical and Computer Engineering
Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel[2005]

[5] Oya Y. Rieger.” Preservation in the Age of Large Scale Digitization”, [2008]

[6] L. Fortnow and Steve Homer.” A Short History of Computational Complexity”,
[2002/2003].

[7] Briana Wandell and Abbaselgamal.” Common Principles of Image Acquisition”,
ANDBERNDGIROD,FELLOW,IEEE[2004]

[8] Rafael C. Gonzalez and Richard E. Woods.”Digital Image Processing”,Second
Edition

[9] Jan van Leeuwen.” Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity, The MIT Press/Elsevier”, [1990]

[10] Hanspeter Pfister and Leonard McMillan.“Acquisition and Rendering of Transparent
and Refractive Objects”, [2002]

[11] Claude Debussy.” Blurring strategies for hyperstack image segmentation”, [2001]

[12] Thomas Porter. “Compositing Digital Images”, [1984]

[13] Shawn Chen and Tian-Yuan Shih. “On the evaluation of edge preserving smoothing
filter “,Department of Civil Engineering National Chiao-Tung University Hsin-Chu,
Taiwan.[2001]

[14] Yasuyuki Sugaya, Kenichi Kanatani and Yasushi Kanazawa.“Generating Dense
Point Matches Using Epipolar Geometry”, Department of Computer Science, Okayama
University ,Okayama 700-8530 Japan[1993]

53

[15] Sing Bing Kang. “A Survey of Image-based Rendering Techniques”, [1997]

[16] D. Lee, I. Kweon, and R. Cipolla. “A biprism stereo camera system”, In Proceedings
of the 1999, Conference on Computer Vision and Pattern Recognition, [1999.]

[17] Richard I. Hartley.” Computation of the essential matrix from Points”, GE-CRD,
Schenectady, New York [1989]

[18] Du Huynh.” A short tutorial on image rectification”, December[2003]

54

Bibliography:

1. Mastering Visual Basic 6, Second Edition, Evangelos Petroustsos

2. Digital Image Processing, Second Edition, Rafael C. Gonzalez, Richard E. Woods

3. Introduction to Algorithms, Second Edition, Thomash H. Coremen, Charles E.

Leiserson, Ronald L. Rivest, Clifford Stein

4. Fundamentals of Digital Image Processing, First Edition, Kenneth R. Castleman

