

Tribhuvan University Institute of Science and Technology

An Efficient Algorithm for Mixed Model Just-in-Time Production System with Chain Constraints

Dissertation Submitted to

Central Department of Computer Science and Information Technology Institute of Science and Technology

Tribhuvan University

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology

> by Mukunda Bdr. Khadka December, 2009

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

Supervisor's Recommendation

I hereby recommend that this dissertation prepared under my supervision by **Mr. Mukunda Bdr. Khadka** entitled "**An Efficient Algorithm for Mixed Model Just-in-Time Production System with Chain Constraints**" in partial fulfillment of the requirements for the degree of M. Sc. in Computer Science and Information Technology be processed for the evaluation.

Dr. Tanka Nath Dhamala

Head, Central Department of Computer Science and IT Institute of Science and Technology Tribhuvan University, Nepal

Date:

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in Computer Science and Information Technology.

Date:

Evaluation Committee

Prof. Dr. Jeevan Jyoti Nakarmi Act. Head, Central Department of Computer Science and Information Technology, Tribhuvan University, Nepal **Dr. Tanka Nath Dhamala** Head, Central Department of Computer Science and Information Technology, Tribhuvan University, Nepal

(Supervisor)

(External Examiner)

....

(Internal Examiner)

ACKNOWLEDGEMENT

I would like to express my sincere and hearty gratitude to my respected supervisor, Dr. Tanka Nath Dhamala, Head of Department, Central Department of Computer Science and Information Technology, who guided me throughout the study. His patience, enthusiasm, cooperation, suggestions, constructive comments and keen interest in this study are really appreciable. His vigorous efforts made me present this dissertation work in this form.

I would also like to express my sincere gratitude to Prof. Jeevan Jyoti Nakarmi (Acting Head, CDCSIT), Prof. Dr. Devi Dutta Poudyal (Former Head, CDCSIT), Prof. Dr. Shashidhar Ram Joshi (IOE-TU), Asst. Prof. Dr. Subarna Shakya, Prof. Sudarshan Karanjit (NCIT), Asst. Prof. Min B. Khati (CDCSIT-TU), Mr. Arun Timalsina (CDCSIT-TU), Mr. Hemanta G.C (CDCSIT-TU), Mr. Bishnu Gautam (CDCSIT-TU), Mr. Dinesh Bajracharya (CDCSIT-TU), Mr. Samujjwal Bhandari (CDCSIT-TU) and others for their invaluable suggestion and regular inspiration throughout the research work. I am also equally thankful to my friend Mr. Dipak Pandey who assisted me in every difficulty.

Finally, I would like to extend my thanks to Mr. Bishnu Pandey, Mr. Prem Bhatta and Mr. Choodamani Poudyal for their friendly guidance to complete this work. I would like to extend warmest thanks to my family and parents for their constant support and encouragement. Likewise, all my well wishers who directly and indirectly helped me also deserve thanks.

> Mukunda Bdr. Khadka CDCSIT, TU

ABSTRACT

There has been growing interest in scheduling problems where the jobs are penalized both for being early and for being tardy. A mixed model manufacturing facility running under a just-in-time production system is controlled by setting the production schedule for the highest level in the facility, which is usually a mixed model final assembly line. The schedule is set to achieve the goals of the organization, which under JIT are to keep a constant rate of part usage and to maintain a smooth production load. We consider the former goal in this dissertation.

This dissertation includes different literature as well as the recent trends in JIT environment. Our concern in this dissertation is to find out the possible optimal sequences for controlling JIT production system for mixed-model production systems with Chain Constraints and min-sum deviation objective. For this, we consider non-overlapping chains, and by considering each chain as a pseudo job and their length as demands, we can have a pseudo schedule from EDD, which is later replaced by the real job, can lead a combined optimal chain sequence.

Therefore, in this case, an optimal sequence can be obtained in efficient time complexity. Our results extend the previous results on non-overlapping chain sequences with absolute-deviation objective function.

Contents

1.	INTRODUCTION			1	
2.	FUNDAMENTAL CONCEPTS				
	2.1	Turi	ng Machine	4	
	2.2	Com	putational Complexity	4	
	2.3	Func	ction	5	
	2.4 Con		plexity Classes	6	
	2	2.4.1	Class P	6	
	2	2.4.2	Class NP	6	
	2	2.4.3	NP-Complete	7	
	2	2.4.4	NP-Hard	7	
	2	2.4.5	P=NP Question	7	
	2	2.4.6	NP-Incomplete	8	
	2	2.4.7	C0-NP	8	
2.5 Graph and Matching Problems			bh and Matching Problems	9	
	2.6	Sche	eduling	9	
	2	2.6.1	Machine Environment	10	
	2	2.6.2	Some Application Areas of Scheduling	11	
			2.6.2.1 Scheduling in Production	11	
			2.6.2.2 Operating System Design Scheduling	11	
			2.6.2.3 I/O Scheduling	13	
			2.6.2.4 Timetable Scheduling	13	
			2.6.2.5 Project Scheduling	14	
	2.7 Application of Just-in-Time				
	2	2.7.1	Real Time Operating System	14	
	2	2.7.2	Scheduling in Operating System	14	
	2	2.7.3	Just-in-Time Compilation	15	
	2	2.7.4	Just-in-Time Sensor Networks	16	
	2	2.7.5	Just-in-Time to Enable Optical Networking for Grids	16	

3.	3. JIT PRODUCTION SYSTEM17				
	3.1 Kamban- an Integrated JIT System				
	3.2 Kamban- a Communication Tool in JIT Production System				
	3.3 Push versus Pull Production System				
	3.4 Objective of Just-in-Time				
	3.5 Toyota Production System				
	3.6 Lean Manufacturing				
	3.7 Mixed-Model Production System24				
	3.8 Mathematical Model Formulation	25			
	3.8.1 The PRV Problem Formulation	25			
	3.8.2 The ORV Problem Formulation	27			
4.	SOLUTION PROCEDURE FOR PRV PROBLEM	30			
4.	SOLUTION PROCEDURE FOR PRV PROBLEM4.1Release Date/ Due Date Decision Problem				
4.		30			
4.	4.1 Release Date/ Due Date Decision Problem	30 30			
4.	4.1 Release Date/ Due Date Decision Problem4.2 Earliest Due Date Algorithms	30 30 31			
4.	 4.1 Release Date/ Due Date Decision Problem				
4.	 4.1 Release Date/ Due Date Decision Problem				
4.	 4.1 Release Date/ Due Date Decision Problem				
4.	 4.1 Release Date/ Due Date Decision Problem				
4.	 4.1 Release Date/ Due Date Decision Problem				
4.	 4.1 Release Date/ Due Date Decision Problem				

References

Appendix A: Basic Mathematical Notations Appendix B: Program Source Code

ABBREVIATIONS

CPU	Central Processing Unit
EDD	Earliest Due Date
FCFS	First Come First Serve
GSM	Goal Chasing Method
JIT	Just-in-Time
MAC	Medium Access Control
NP	Non-deterministic Polynomial
ORV	Output Rate Variation
OS	Operating System
PRV	Product Rate Variation
PRVP	Product Rate Variation Problem
SJF	Shortest Job First
SRTN	Shortest Remaining Time Next
TPS	Toyota Production System
UTM	Universal Turing Machine