Land Cover Classification and Forest Normalized Difference Vegetation Index (NDVI) Analysis of Manaslu Conservation Area, Central Nepal

A Dissertation Submitted for the Partial Fulfillment of Master of Science in Botany, Institute of Science and Technology, Tribhuvan University.

> Submitted by Janardan Mainali Exam Roll No. 5809 T.U. Regd Number: 5-2-22-702-2004

Central Department of Botany Tribhuvan University Kathmandu, Nepal December, 2011

Land Cover Classification and Forest Normalized Difference Vegetation Index (NDVI) Analysis of Manaslu Conservation Area, Central Nepal.

Thesis By

Janardan Mainali

Central Department of Botany

Tribhuvan University, Kirtipur Nepal

Main Supervisor

Dr. Pramod Kumar Jha

Professor

Central Department of Botany

Tribhuvan University, Kirtipur Nepal

Co-supervisor

Dr. John D. All

Associate professor

Western Kentucky University

USA

Co-Supervisor

Dr. Dinesh Raj Bhuju

Head of Science Faculty

Nepal Academy of Science and Technology

Lalitpur Nepal

RECOMMENDATION

This is to certify that the dissertation work entitled Land Cover Classification and Forest Normalized Difference Vegetation Index (NDVI) Analysis of Manaslu Conservation Area, Central Nepal submitted by Mr. Janardan Mainali has been carried out under our supervision. The entire work is primarily based on the results of his research work and has not been submitted for any other degree. We recommend this dissertation work to be accepted for the partial fulfillment of Master of Science in Botany.

Research Supervisor Prof. Dr. Pramod Kumar Jha Central Department of Botany Tribhuvan University

Associate Supervisor

Dr. Dinesh Raj Bhuju

Chief of Science Faculty

Nepal Academy of Science and Technology

Lalitpur, Nepal

APPROVAL LETTER

This dissertation work submitted by Mr. Janardan Mainali entitled "Land Cover Classification and Forest Normalized Difference Vegetation Index (NDVI) Analysis of Manaslu Conservation Area, Central Nepal" has been accepted as a partial fulfillment of M.Sc. in Botany.

EXPERT COMMITTEE

Research Supervisor

Prof. Dr. Pramod Kumar Jha Central Department of Botany Tribhuvan University

Associate Supervisor

Dr. Dinesh Raj Bhuju

Chief of Science Faculty

Nepal Academy of Science and Technology

Lalitpur, Nepal

External Examiner

Dr. Krishna Prasad Paudel Associate Professor Central Department of Education Tribhuvan University

Head of Departmnent

Prof. Dr. Krishna Kumar Shrestha Central Department of Botany Tribhuvan University

Internal Examiner

Dr. Ram Kailash Prasad Yadav Associate Professor Central Department of Botany Tribhuvan University

Acknowledgements

It has been possible to bring this work in this shape with the generous support of my teachers and cooperation of my colleagues and family.

Firstly, I would like to express my sense of gratitude to my academic advisors Prof. Dr. Pramod Kumar Jha, Dr. John D. All and Dr. Dinesh Raj Bhuju for guiding me to carryout this work. I am also grateful to Prof. Dr. Krishna Kumar Shrestha, Head of Department for departmental support and Remote Sensing/GIS facilities. I would like to thank teachers Dr. Bharat Babu Shrestha, Dr. Chandra Pokhrel and Dr. Ram Kailash Yadav for help and suggestions during this work.

Help from different individuals have been instrumental during my thesis work. I am indebted to Dr. Narcisa Pricope, Mr. Kamal Humagain, Ms. Sunita Thapa and Ms. Rita Chhetri for their cooperation during the first field visits. Similarly I would like to thank Mr. Arbindra Shrestha, Mr. Narayan Gaire and Ms. Prabina Rana for their support in the second field visit.

Nepal Academy of Science and Technology (NAST) deserves plethora of thanks for providing me with the financial support for my second field visit.

My friends Mr. Mahesh Limbu, Mr. Khum B. Thapa Magar and Ms. Shova Baral are never forgotten for being always on my side whenever I needed them. I am thankful to Mr. Sarbagya Kafle for his suggestion in grammatical errors of the manuscript.

Waiting, I would like to thank my sister Chandika for her support during all the time. My parents and all family members, indeed, deserve special acknowledgements.

December, 2011

Janardan Mainali

jmainali23@hotmail.com

Abstract

Remote sensing is nowadays widely used in study and management of environment both in spatial and temporal scales. Land cover classification is one of the earliest applications of remote sensing. Remote sensing can also be used in understanding different ecological phenomenon. This work encompasses land cover classification and productivity (NDVI) analysis of five high mountain forests of Manaslu Conservation Area (MCA) of central Nepal using remote sensing and GIS. Normalized Difference Vegetation Index (NDVI) calculated from remote sensing image is an indicator of vegetation vigor, productivity and health. It is the simplest index to understand the vegetation performance in different scales.

Landsat ETM+ image is used to classify land cover. Unsupervised and supervised methodology was used for classification in ERDAS imagine software. Accuracy of classified map was assessed by confusion matrix. NDVI analyses of five different forest patches (*Betula-Abies, Larix, Pinus wallichiana, Quercus* and *Picea-Tsuga*) were done using MODIS terra data products. NDVI of each forest patches was acquired from 16 days composite 250 m MODIS data of year 2000 January to 2008 December. Relation between NDVI and total monthly precipitation and average temperature of nearest weather station (Gorkha) was also tested.

Land cover map is acquired with 60.14 percent of overall accuracy. Boulder & Grass occupies highest area in MCA followed by human influenced land cover Agriculture & Settlement. Among five forest examined *Picea-Tsuga* forest is found with highest NDVI followed by *Quercus* forest. *Betula Abies* forest of highest altitude is found with lowest average NDVI value. *Larix* and *Pinus wallichiana* forests lie in between them. Except maximum value of *Larix* no forest showed any trend of increasing or decreasing NDVI from 2000 to 2008. One month lag of average monthly temperature and two month cumulative rainfall has been found as best predictor of NDVI for most of the forest types. Temperature is linearly related to NDVI and is seen as limiting factor for productivity of high mountain forest. Precipitation, however is unimodally related to NDVI exhibiting highest NDVI in moderate rainfall.

Keywords: NDVI, Land Cover, Mountain Forest, Remote Sensing, Geographical Information System (GIS)

Contents

Recommenda	tions	
Letter of App	roval	
Acknowledge	ement	Ι
Abstract		II
Contents		II
List of tables	and figures	VI
Abbreviations		VIII
Chapter 1:	Introduction	
1.1. Ren	note Sensing	1
1.2. Lan	d Cover Classification	1
1.2.1. Remo	ote sensing for land cover classification	2
1.2.1.1. Ima	ge Classification for Land cover detection	2
1.3. Rer	note sensing in vegetation analysis	4
1.3.1. NDV	I	5
1.3.2. ND	VI and Vegetation trend Analysis	6
1.3.3. NE	DVI and Climate	6

1.4.	Rationale of the Study	7
1.5.	Research Questions, Objective and Hypothesis	8

Chapter 2: Study Area

2.1.	Manaslu Conservation Area	9
2.2.	Climate	9
2.3.	Ecology	11
2.4.	Forest types studied	12

Chapter 3: Materials and Method

1.1.	Materials	14

1.2.	Methods	14
1.2.1.	Methodological framework	14
1.2.2.	Land Cover Classification and Mapping	15
1.2.2.1.	Reference Data colleection	15
1.2.2.2.	Satellite data and processing	15
1.2.2.3.	Unsupervised Classification	16
1.2.2.4.	Supervised Classification	17
1.2.3.	Productivity study	17
1.2.3.1.	Forest Area Delineation	17
1.2.3.2.	NDVI data acquisition	17
1.2.3.3.	Precipitation and Temperature data	18
3.2.4	Data Analysis	18
3.2.4.1.	Land Cover Data	18
3.2.4.2.	NDVI Data Analysis	18
3.2.4.3.	NDVI and Climatic variables	18

Chapter 4: Results

4.1.	Land Cover Classification	19
4.1.1.	Accuracy assessment of supervised classification	19
4.1.2.	Area of each land cover type	20
4.2.	NDVI temporal trend	22
4.3.	Seasonal NDVI Trend	23
4.4.	NDVI Temporal Trend	25
4.5.	Comparison of NDVI between different forest types	27
4.6.	Correlation Analysis between Climatic variables and NDVI	28
4.6.1.	Temperature and NDVI	28
4.6.2.	Precipitation and NDVI	28
4.7.	Regression Analysis between NDVI and Climatic Variables	29
4.7.1.	Temperature and NDVI trend	29
4.7.2.	Precipitation and NDVI trend	30

Chapter 5: Discussions

References		41
Chapter 6: Conclusions		39
5.5.	NDVI and Climate	36
5.4.	Vegetation Vigor (NDVI) comparison between different forest types	35
5.3.	NDVI Temporal Trend	34
5.2.	NDVI Seasonal Trend	33
5.1.	Land Cover of Manaslu Conservation Area	33

Appendices

Appendix 1: Sample of training data (ground control points, GCPs, collection sheet)	48
Appendix 2: Monthly NDVI data of each forest type	49
Appendix 3: Monthly rainfall and temperature data	51
Appendix 4: Description of land cover classes	52

List of Tables and Figures

List of Tables

Table 1 : The confusion matrix for analysis of classification accuracy	3
Table 2 : Confusion matrix showing accuracy of supervised classification.	20
Table 3 : Area occupied by different land cover in different classification system	21
Table 4 : Mean NDVI with standard deviation of 5 forest types	27
Table 5 : ANOVA of NDVI between different forest types. ^{NS} in superscript indicates 'no significant' difference at 0.05 level of significance.	ot 27
Table 6: Correlation coefficient between NDVI and Temperature	28
Table 7: Correlation coefficient between precipitation and NDVI	29

List of Figures

Fig 1: Graph showing seasonal variation of average rainfall (mm) and Temperature of	Gorkha
station (Data source: DHM 2011).	9
Fig 2: Map showing World, Nepal and Manaslu Conservation Area (Map layer	source,
MENRIS, 2010).	10
Fig 3: Map showing vegetation types in Manaslu Conservation Area (Map layer	Source:
MENRIS, 2010)	12
Fig 4: Flow Chart showing methodological framework of thesis work	15
Fig 5: Map showing supervised classified and unsupervised classified images of l	Manaslu
Conservation Area.	19
Fig 6: Monthly NDVI of Five forest type from 2000 to 2008	22
Fig 7(A1 to A5): Seasonal trend of NDVI of each forest type (Nine years NDVI (2000)	to
2008) values are averaged to get average NDVI of each month).	23
Fig 8 (B1 to B5): Trend of maximum and minimum NDVI of each forest type (NS- Not	
Significant, p value greater than 0.05).	26
Fig 9: Regression scatter plots of last months temperature and Monthly Average NDVI of	
Betula-Abies, Larix and Pinus wallichiana Forest. All fitted lines are based on line	ear
Regression model.	29
Fig 10: Regression graph between average monthly temperature and average monthly ND)VI in
Picea-Tsuga Forest. The fitted line is based on linear regression model.	30
Fig 11 : Regression Scatter plots of Two months total precipitation versus 2 nd month avera	age
Monthly NDVI in Betula-Abies and Larix forest. Both fitted lines are based on qu	
regression model.	30

- Fig 12: Regression Scatter plots of two months total precipitation versus 3rd month average monthly NDVI in *Pinus wallichiana* and *Picea-Tsuga* forest. Both fitted lines are based on quadratic regression model.

 31
- Fig 13: Regression Scatter plots of monthly total precipitation versus monthly average NDVI inQuercus forest. Fitted line is based on linear regression model.31

Abbreviations

ANOVA:	Analysis of Variance
AOI:	Area of Interest
AVHRR:	Advanced Very High Resolution Radiometer
DBH:	Diameter at Breast Height.
DHM:	Department of Hydrology and Meteorology
DN:	Digital Number
ERDAS:	Earth Resource Data Analysis System
ETM:	Enhanced Thematic Mapper
EVI:	Enhanced Vegetation Index
GCP:	Ground Control Point
GIS:	Geographical information System
GLCF:	Global Land Cover Facilities
GPS:	Global Positioning System
GVI:	Gross Vegetation Index
ICIMOD:	International Center for Integrated Mountain Development.
IUCN:	International Union for Conservation of Nature
Km:	Kilometer
m:	Meter
masl:	meter altitude from sea level
MCA:	Manaslu Conservation Area
MCAP:	Manaslu Conservation Area Project
MENRIS:	Mountain Environment and Natural Resources' Information System
mm:	Millimeter
MODIS:	Moderate Resolution Imaging Spectroradiometer.

NASA:	National Aeronautical and Space Administration, USA
NDVI:	Normalized Difference Vegetation Index
NIR:	Near Infrared radiation
NOAA:	National Oceanic and Atmospheric Administration, USA
NTNC:	National Trust for Nature Conservation, Nepal
RS:	Remote Sensing
sp.:	Species
spp:	Many species
SPOT:	Systeme Pour l'Observation de la Terre
SPSS:	Statistical program for Social Science
TIFF:	Tagged Image File Format
USA:	United States of America
USGS:	United States Geographic Survey
UTM:	Universal Transverse Mercator
VDC:	Village Development Committee
WGS:	World Geodetic System
°C:	Degree Centrigade
.img:	Imagine file extension