RECOMMENDATION LETTER

This is to certify that Mr. Binod Parajuli has prepared the Dissertation entitled "APPLICATION OF HYDRO-METEOROLOGICAL AND GIS BASED HYDRAULIC MODEL IN RIVER TRAINING WORKS OF MARINE RIVER WITH PARTICULAR REFERENCE TO FOOD SECURITY" to fulfill the Degree of Master of science in Meteorology of the Tribhuvan University is the record of the candidates own work carried by him under our supervision and guidance.

Dissertation Supervisor

Dissertation Co-Supervisor

Prof. Dr. Lochan Prashad Devkota Head Central Department of Hydrology and Meteorology Tribhuvan University Kirtipur

Mr. Suresh Marahatta Assistant Lecturer Department of Meteorology Trichandra Multiple College, Ghantaghar

LETTER OF APPROVAL

This Dissertation entitled "APPLICATION OF HYDRO-METEOROLOGICAL AND GIS BASED HYDRAULIC MODEL IN RIVER TRAINING WORKS OF THE MARINE RIVER WITH PARTICULAR REFERENCE TO FOOD SECURITY" submitted by Mr. Binod Parajuli has been approved as a partial fulfillment for the Master of Science in Meteorology.

Prof. Dr. Lochan Prashad Devkota (Supervisor) Head Central Department of Hydrology and Meteorology Tribhuvan University Kirtipurm, Kathmandu, Nepal

Mr. Suresh Marahatta

(Co-Supervisor) Assistant Lecturer Department of Meteorology Trichandra Multiple College, Ghantaghar, Kathmandu, Nepal

Mr. Tirtha Adhikari (Internal Examiner) Lecturer Central Department of Hydrlogy and Meteorology Tribhuvan University Kirtipur, Kathmandu, Nepal Dr. Laxmi Prasad Devkota (External Examiner) Senior Research Scientist Nepal Development Reserch Institute Lalitpur, Nepal

Date:

ACKNOWLEDGEMENTS

I express my profound gratitude to my Supervisor **Professor Dr. Lochan Prasad Devkota,** Head, Central Department of Hydrology and Meteorology, Tribhuvan University whose guidance invigorated and inspired me to accomplish this research.

I am very grateful to my Co-Supervisor **Mr. Suresh Marahatta**, Assistant Lecturer, Department of Meteorology, Trichandra Multiple College for his guidance, important ideas, encouraging advice, help and suggestions.

It is great pleasure for me to express my deepest sense of gratitude to **Mr. Utsav Bhattarai**, Hydrologist Engineer, Cross Momentum Engineers Pvt. Ltd., for his untiring help, practical suggestions, constant support and encouragement throughout the study period.

I am also thankful to Former Head **Professor Khadga Bahadur Thapa**, **Associate Professors Mr. Dipak Aryal** and **Mr. Tek Bd. Chhetri**, and **Lecturers Mr. Tirtha Adhikari** and **Mr Binod Dawadi**, CDHM, TU for their encouragement all over the study period. I would also like to thank all the staff members of CDHM for their help and cooperation during the study period.

My sincere thanks goes to Mr. Kiran Shanker Yogachharya, Chairman and Mr. Jagat Kumar Bhusal, Vice Chairman, SOHAM-Nepal and Associate Professor Dr. Prem Chandra Jha, IoE, TU for their imperative ideas throughout the study period.

I am grateful to DWIDP, DHM, NARC, DOI, TU Library and RECHAM Consult for providing valuable data, information and literatures. Similarly, I acknowledge all the authors and writers, of whom the work is cited.

My friends Mr. Nitesh, Mr. Rajudhar, Mr. Niraj, Mr. Rameshower, Ms. Anita, Ms. Shobha and Mr. Rajesh and seniors Mr. Ram Chandra, Mr. Sami, Mr Chiranjivi, Mr. Minkumar, Ms Indira, Mr. Amrit, Ms Bibhuti, Mr. Sujan, Ms. Finu, Mr. Sunil, Mr. Santosh, Mr. Damoder and Mr. Divas has done a lot for me and only words are not sufficient to convey my gratitude to them.

Finally, my sincere gratitude goes to my beloved parents and all my family members for their continuous support, due to which I could complete my work on time.

Binod Parajuli

March, 2010

ABSTRACT

Marine River is one of the major Tributaries of Bagmati River originated from Mahabharat hills lying in south-western part of the Sindhuli Disrict. Total river length is about 68 km and the total basin area is about 544 km². Annual rainfall in the basin area varies from 1,724 mm (driest year) to 3,320 mm (wettest year) with 2,580 mm as the annual average value. Statistical analysis showed that the 24 hour maximum rainfall for 15 years, 25 years and 100 years return periods are 369.9mm, 448.3mm and 583.8mm respectively. This showed the region is more susceptible to flood. A major flood disaster has occurred in Marine River on 19-21 July, 1993 which was caused by intensive rainfall in the central region of Nepal. At that time the rainfall of Hariharpur Garhi was 482.2 in record. Along with this the floods of 1899, 1985 and other minor floods had swept away a couple of villages, killed a number of people and livestock and damaged agricultural land and standing crops, and other infrastructures in the past. Flood of 15, 25 and 100 years return period estimated by Modified Dickens method were 1213.62m3/s, 1391.3m3/s and 1872.16m3/s respectively which were taken as the different design discharges for each to be compare to the river training works which was proposed for the protection of inundated land.

A one-dimensional hydraulic model in HEC-RAS was developed and executed which enabled the analysis of flooding under different scenarios. Suitable structural methods for flood control identified were levees along the banks. The proposed river training structures in the Marine River explicitly demonstrates the relationship among the three parameters, viz, rainfall intensity, reclaimed land and economic value with respect to food security. Hydraulic models coupled with Geographic Information System (GIS) are powerful tools for quantitative and qualitative monitoring of spatial and temporal variation of flows in the river. The dynamic capability of GIS interfaced models which provide impressive visual perception in the sense of spatial and temporal variation of the modeling results in different scenarios for planners, could be used as a decision making tool for river training and sustainable integrated water resource management. For the purpose three different scenarios for each of the return period floods were analyzed. The comparative study showed the value of reclaimed agricultural land are 218.52, 224.79 and 251.50 hector for 15, 25 and 100 year return period flood securing the food (rice) for 15.8%, 16.3% and 18.2% of the total population of the basin considering the per capita rice consumption to be 93.4kg/yr taking into account that the hybrid rice is cultivated.

CONTENTS

Recommendation Letter	Page No. i	
Letter of Approval	ii	
Acknowledgement		
Abstract		
List of Tables	vii	
List of Figures		
Lists of Acronyms	ix	
CHAPTER-I: INTRODUCTION	1	
1.1 Background	1	
1.2 Rationale of the Study	2	
1.3 Objectives of the Study	3	
1.4 Limitations of the Study	3	
CHAPTER-II: LITERATURE REVIEW	4	
2.1 General	4	
2.2 Rainfall	5	
2.2.1 Extreme Rainfall	5	
2.2.2 Probable Maximum Precipitation	6	
2.2.3 Precipitation Climatology of Nepal	6	
2.3 Flood	8	
2.3.1 Estimation of Floods in Nepal	10	
2.3.2 Review on Flood Problems	11	
2.4 Hydraulic Modeling	14	
2.4.1 Types of Hydraulic Modeling	14	
2.4.2 Calibration and validation of the model	15	
2.4.3 Application of the model in river training	15	
2.5 River Training Works	16	
2.5.1 Flood Embankment	18	
2.5.2 Spurs	19	
2.5.3 Guide Banks	19	
2.5.4 Bank Protection Works	19	
CHAPTER-III: STUDY AREA	20	
3.1 General Features	20	

3.2 Climate	22
3.3 Topography	22
3.4 Geology	23
3.5 Flood Affected Areas	25
3.6 Inventory of Existing River Training Works	26
3.7 Socioeconomic Condition of the Marine River Basin	28
3.7.1 Population Distribution	28
3.7.2 Agriculture Practices	28
CHAPTER-IV: METHODOLOGY	30
4.1 Rainfall Analysis	30
4.1.1 Frequency Analysis	31
4.2 Discharge Computation	32
4.2.1 Water and Energy Commission Secretariat (WECS) Method	33
4.2.2 Modified Dicken's Method	33
4.2.3 DHM Method	34
4.3 Hydraulic Computation	35
4.3.1 Theoretical Background of HEC-RAS	35
4.3.2 Development of the Model	41
3.5 Food Security	44
CHAPTER-V: RESULTS AND DISCUSSION	46
5.1 Rainfall Analysis	46
5.2 Flow Analysis	48
5.3 Hydraulic Simulation	52
5.4 Inundation Analysis	52
5.5 Food Security	58
CHAPTER-VI: CONCLUSIONS AND RECOMMENDATIONS	62
6.1 Conclusions	62
6.2 Recommendations	63
REFERENCES	64

ANNEXES

LIST OF TABLES

Table 2-1:	Flood events and the damages in Marine River Basin	13
Table 3-1:	Areas affected by flood in the Marine River on both banks	26
Table 3-2:	Inventory of existing river training works in Marine River	27
Table 3-4:	Population distribution in Marine River Basin	28
Table 3-5:	Agricultural area and production affected by Marine River	29
Table 4-1	Values for Standard Normal Variate for various return periods	34
Table 5-2:	The major tributaries of the Marine River and their basins areas	49
Table 5-3:	Marine River discharge at various return periods	50
Table 5-4:	Reach-wise distribution of the calculated discharge	51
Table 5-5:	Reclaimed lands for different scenarios	58
Table 5-6:	Per unit yield of different zones	59
Table 5-7:	Total Productivity (MT) in Land reclaimed for 15 year flood	60
Table 5-8:	Total Productivity (MT) in Land reclaimed for 25 year flood	60
Table 5-9:	Total Productivity (MT) in Land reclaimed for 200 year flood	60
Table 5-10:	Food Security considering rice	61

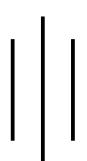
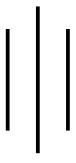

LIST OF FIGURES

Figure 2-1:	24 hours highest rainfall (mm)	6
Figure 2-2:	Hydraulic modeling types	15
Figure 2-3:	Typical layout of river training work	18
Figure 3-1:	Map of Sindhuli district with the Marine River basin	21
Figure 3-2:	Marine River Basin	21
Figure 3-3:	Land Cover Map of the Marine River Basin	23
Figure 4-1:	Flowchart for the overall methodology of the study	30
Figure 4-2:	Energy heads	36
Figure 4-3:	HEC-RAS modeling approach	40
Figure 4-4:	Plan view of the river model	43
Figure 5-1:	Average annual rainfall of the basin area	46
Figure 5-2:	24 hour maximum rainfall for different return periods	47
Figure 5-3:	Mean Monthly Rainfall of Marine River basin	48
Figure 5-4:	Monthly discharge of the Marine River at Bhabar	50
Figure 5-5:	Marine river discharge at various return periods	51
Figure 5-6:	L-profile of the river without river training works	53
Figure 5-7:	Typical cross sections of the flow without river training works	53
Figure 5-8:	Inundation map for 15 year return period	54
Figure 5-9:	Inundation map for 25 year return period	54
Figure 5-10:	Inundation map for 100 year return period	55
Figure 5-11:	Inundation map for 100 yr return period with levee	55
Figure 5-12:	Reclaimed Agricultural Land with levee for 15 year return period.	56
Figure 5-13:	Reclaimed Agricultural Land with levee for 25 year return period.	56
Figure 5-14:	Reclaimed Agricultural land for 100 year return period	57
Figure 5-15:	Reclaimed Agricultural land for different return period	58


LISTS OF ACRONYMS

CDHM	Central Department of Hydrology and Meteorlogy
d/s	Downstream
DADO	District Agriculture Development Office
DDC	District Development Committee
DHM	Department of Hydrology and Meteorology
DoI	Department of Irrigation
DWIDP	Department of Water Induced Disaster Prevention
GCM	General Circulation Model
GIS	Geographical Information System
GoN	Government of Nepal
ha	Hectare
HEC-RAS	Hydraulic Engineering Centres' River Analysis System
HFL	Highest Flood Level
IoE	Institute of Engineering
LB	Left Bank
MBT	Main Boundary Thrust
MoEST	Ministry of Environment, Science and Technology
MS	Middle Siwaliks
MT	Metric Tons
NARC	Nepal Agricultural Research Center
PCJ	Prem Chandra Jha
PMP	Probable Maximum Precipitation
RB	Right Bank
RBL	River Bed Level
RECHAM	Research Centre for Hydrology and Meteorology
SOHAM	Society of Hydrologists and Meteorologists – Nepal
TIN	Triangulated Irregular Network
TU	Tribhuvan University
u/s	Upstream
US	United States
USACE	US Army Corps of Engineers
VDC	Village Development Committee
WECS	Water and Energy Commission Secretariat
WS	Water Surface

APPLICATION OF HYDRO-METEOROLOGICAL AND GIS BASED HYDRAULIC MODEL IN RIVER TRAINING WORKS OF THE MARINE RIVER WITH PARTICULAR REFERENCE TO FOOD SECURITY

Dissertation submitted to the Central Department of Hydrology and Meteorology in partial fulfillment of requirements for award of the Degree of Master of Science in Meteorology

By

Binod Parajuli

Central Department of Hydrology and Meteorology Tribhuvan University, Kirtipur Kathmandu, Nepal

March 2010